net: remove unnecessary mroute.h includes
[deliverable/linux.git] / net / ipv4 / ipmr.c
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
26 *
27 */
28
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69
70 struct mr_table {
71 struct list_head list;
72 possible_net_t net;
73 u32 id;
74 struct sock __rcu *mroute_sk;
75 struct timer_list ipmr_expire_timer;
76 struct list_head mfc_unres_queue;
77 struct list_head mfc_cache_array[MFC_LINES];
78 struct vif_device vif_table[MAXVIFS];
79 int maxvif;
80 atomic_t cache_resolve_queue_len;
81 bool mroute_do_assert;
82 bool mroute_do_pim;
83 int mroute_reg_vif_num;
84 };
85
86 struct ipmr_rule {
87 struct fib_rule common;
88 };
89
90 struct ipmr_result {
91 struct mr_table *mrt;
92 };
93
94 static inline bool pimsm_enabled(void)
95 {
96 return IS_BUILTIN(CONFIG_IP_PIMSM_V1) || IS_BUILTIN(CONFIG_IP_PIMSM_V2);
97 }
98
99 /* Big lock, protecting vif table, mrt cache and mroute socket state.
100 * Note that the changes are semaphored via rtnl_lock.
101 */
102
103 static DEFINE_RWLOCK(mrt_lock);
104
105 /* Multicast router control variables */
106
107 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
108
109 /* Special spinlock for queue of unresolved entries */
110 static DEFINE_SPINLOCK(mfc_unres_lock);
111
112 /* We return to original Alan's scheme. Hash table of resolved
113 * entries is changed only in process context and protected
114 * with weak lock mrt_lock. Queue of unresolved entries is protected
115 * with strong spinlock mfc_unres_lock.
116 *
117 * In this case data path is free of exclusive locks at all.
118 */
119
120 static struct kmem_cache *mrt_cachep __read_mostly;
121
122 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
123 static void ipmr_free_table(struct mr_table *mrt);
124
125 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
126 struct sk_buff *skb, struct mfc_cache *cache,
127 int local);
128 static int ipmr_cache_report(struct mr_table *mrt,
129 struct sk_buff *pkt, vifi_t vifi, int assert);
130 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
131 struct mfc_cache *c, struct rtmsg *rtm);
132 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
133 int cmd);
134 static void mroute_clean_tables(struct mr_table *mrt);
135 static void ipmr_expire_process(unsigned long arg);
136
137 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
138 #define ipmr_for_each_table(mrt, net) \
139 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
140
141 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
142 {
143 struct mr_table *mrt;
144
145 ipmr_for_each_table(mrt, net) {
146 if (mrt->id == id)
147 return mrt;
148 }
149 return NULL;
150 }
151
152 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
153 struct mr_table **mrt)
154 {
155 int err;
156 struct ipmr_result res;
157 struct fib_lookup_arg arg = {
158 .result = &res,
159 .flags = FIB_LOOKUP_NOREF,
160 };
161
162 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
163 flowi4_to_flowi(flp4), 0, &arg);
164 if (err < 0)
165 return err;
166 *mrt = res.mrt;
167 return 0;
168 }
169
170 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
171 int flags, struct fib_lookup_arg *arg)
172 {
173 struct ipmr_result *res = arg->result;
174 struct mr_table *mrt;
175
176 switch (rule->action) {
177 case FR_ACT_TO_TBL:
178 break;
179 case FR_ACT_UNREACHABLE:
180 return -ENETUNREACH;
181 case FR_ACT_PROHIBIT:
182 return -EACCES;
183 case FR_ACT_BLACKHOLE:
184 default:
185 return -EINVAL;
186 }
187
188 mrt = ipmr_get_table(rule->fr_net, rule->table);
189 if (!mrt)
190 return -EAGAIN;
191 res->mrt = mrt;
192 return 0;
193 }
194
195 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
196 {
197 return 1;
198 }
199
200 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
201 FRA_GENERIC_POLICY,
202 };
203
204 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
205 struct fib_rule_hdr *frh, struct nlattr **tb)
206 {
207 return 0;
208 }
209
210 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
211 struct nlattr **tb)
212 {
213 return 1;
214 }
215
216 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
217 struct fib_rule_hdr *frh)
218 {
219 frh->dst_len = 0;
220 frh->src_len = 0;
221 frh->tos = 0;
222 return 0;
223 }
224
225 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
226 .family = RTNL_FAMILY_IPMR,
227 .rule_size = sizeof(struct ipmr_rule),
228 .addr_size = sizeof(u32),
229 .action = ipmr_rule_action,
230 .match = ipmr_rule_match,
231 .configure = ipmr_rule_configure,
232 .compare = ipmr_rule_compare,
233 .fill = ipmr_rule_fill,
234 .nlgroup = RTNLGRP_IPV4_RULE,
235 .policy = ipmr_rule_policy,
236 .owner = THIS_MODULE,
237 };
238
239 static int __net_init ipmr_rules_init(struct net *net)
240 {
241 struct fib_rules_ops *ops;
242 struct mr_table *mrt;
243 int err;
244
245 ops = fib_rules_register(&ipmr_rules_ops_template, net);
246 if (IS_ERR(ops))
247 return PTR_ERR(ops);
248
249 INIT_LIST_HEAD(&net->ipv4.mr_tables);
250
251 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
252 if (IS_ERR(mrt)) {
253 err = PTR_ERR(mrt);
254 goto err1;
255 }
256
257 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
258 if (err < 0)
259 goto err2;
260
261 net->ipv4.mr_rules_ops = ops;
262 return 0;
263
264 err2:
265 ipmr_free_table(mrt);
266 err1:
267 fib_rules_unregister(ops);
268 return err;
269 }
270
271 static void __net_exit ipmr_rules_exit(struct net *net)
272 {
273 struct mr_table *mrt, *next;
274
275 rtnl_lock();
276 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
277 list_del(&mrt->list);
278 ipmr_free_table(mrt);
279 }
280 fib_rules_unregister(net->ipv4.mr_rules_ops);
281 rtnl_unlock();
282 }
283 #else
284 #define ipmr_for_each_table(mrt, net) \
285 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
286
287 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
288 {
289 return net->ipv4.mrt;
290 }
291
292 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
293 struct mr_table **mrt)
294 {
295 *mrt = net->ipv4.mrt;
296 return 0;
297 }
298
299 static int __net_init ipmr_rules_init(struct net *net)
300 {
301 struct mr_table *mrt;
302
303 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
304 if (IS_ERR(mrt))
305 return PTR_ERR(mrt);
306 net->ipv4.mrt = mrt;
307 return 0;
308 }
309
310 static void __net_exit ipmr_rules_exit(struct net *net)
311 {
312 rtnl_lock();
313 ipmr_free_table(net->ipv4.mrt);
314 net->ipv4.mrt = NULL;
315 rtnl_unlock();
316 }
317 #endif
318
319 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
320 {
321 struct mr_table *mrt;
322 unsigned int i;
323
324 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
325 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
326 return ERR_PTR(-EINVAL);
327
328 mrt = ipmr_get_table(net, id);
329 if (mrt)
330 return mrt;
331
332 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
333 if (!mrt)
334 return ERR_PTR(-ENOMEM);
335 write_pnet(&mrt->net, net);
336 mrt->id = id;
337
338 /* Forwarding cache */
339 for (i = 0; i < MFC_LINES; i++)
340 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
341
342 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
343
344 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
345 (unsigned long)mrt);
346
347 mrt->mroute_reg_vif_num = -1;
348 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
349 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
350 #endif
351 return mrt;
352 }
353
354 static void ipmr_free_table(struct mr_table *mrt)
355 {
356 del_timer_sync(&mrt->ipmr_expire_timer);
357 mroute_clean_tables(mrt);
358 kfree(mrt);
359 }
360
361 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
362
363 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
364 {
365 struct net *net = dev_net(dev);
366
367 dev_close(dev);
368
369 dev = __dev_get_by_name(net, "tunl0");
370 if (dev) {
371 const struct net_device_ops *ops = dev->netdev_ops;
372 struct ifreq ifr;
373 struct ip_tunnel_parm p;
374
375 memset(&p, 0, sizeof(p));
376 p.iph.daddr = v->vifc_rmt_addr.s_addr;
377 p.iph.saddr = v->vifc_lcl_addr.s_addr;
378 p.iph.version = 4;
379 p.iph.ihl = 5;
380 p.iph.protocol = IPPROTO_IPIP;
381 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
382 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
383
384 if (ops->ndo_do_ioctl) {
385 mm_segment_t oldfs = get_fs();
386
387 set_fs(KERNEL_DS);
388 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
389 set_fs(oldfs);
390 }
391 }
392 }
393
394 /* Initialize ipmr pimreg/tunnel in_device */
395 static bool ipmr_init_vif_indev(const struct net_device *dev)
396 {
397 struct in_device *in_dev;
398
399 ASSERT_RTNL();
400
401 in_dev = __in_dev_get_rtnl(dev);
402 if (!in_dev)
403 return false;
404 ipv4_devconf_setall(in_dev);
405 neigh_parms_data_state_setall(in_dev->arp_parms);
406 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
407
408 return true;
409 }
410
411 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
412 {
413 struct net_device *dev;
414
415 dev = __dev_get_by_name(net, "tunl0");
416
417 if (dev) {
418 const struct net_device_ops *ops = dev->netdev_ops;
419 int err;
420 struct ifreq ifr;
421 struct ip_tunnel_parm p;
422
423 memset(&p, 0, sizeof(p));
424 p.iph.daddr = v->vifc_rmt_addr.s_addr;
425 p.iph.saddr = v->vifc_lcl_addr.s_addr;
426 p.iph.version = 4;
427 p.iph.ihl = 5;
428 p.iph.protocol = IPPROTO_IPIP;
429 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
430 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
431
432 if (ops->ndo_do_ioctl) {
433 mm_segment_t oldfs = get_fs();
434
435 set_fs(KERNEL_DS);
436 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
437 set_fs(oldfs);
438 } else {
439 err = -EOPNOTSUPP;
440 }
441 dev = NULL;
442
443 if (err == 0 &&
444 (dev = __dev_get_by_name(net, p.name)) != NULL) {
445 dev->flags |= IFF_MULTICAST;
446 if (!ipmr_init_vif_indev(dev))
447 goto failure;
448 if (dev_open(dev))
449 goto failure;
450 dev_hold(dev);
451 }
452 }
453 return dev;
454
455 failure:
456 /* allow the register to be completed before unregistering. */
457 rtnl_unlock();
458 rtnl_lock();
459
460 unregister_netdevice(dev);
461 return NULL;
462 }
463
464 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
465 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
466 {
467 struct net *net = dev_net(dev);
468 struct mr_table *mrt;
469 struct flowi4 fl4 = {
470 .flowi4_oif = dev->ifindex,
471 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
472 .flowi4_mark = skb->mark,
473 };
474 int err;
475
476 err = ipmr_fib_lookup(net, &fl4, &mrt);
477 if (err < 0) {
478 kfree_skb(skb);
479 return err;
480 }
481
482 read_lock(&mrt_lock);
483 dev->stats.tx_bytes += skb->len;
484 dev->stats.tx_packets++;
485 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
486 read_unlock(&mrt_lock);
487 kfree_skb(skb);
488 return NETDEV_TX_OK;
489 }
490
491 static int reg_vif_get_iflink(const struct net_device *dev)
492 {
493 return 0;
494 }
495
496 static const struct net_device_ops reg_vif_netdev_ops = {
497 .ndo_start_xmit = reg_vif_xmit,
498 .ndo_get_iflink = reg_vif_get_iflink,
499 };
500
501 static void reg_vif_setup(struct net_device *dev)
502 {
503 dev->type = ARPHRD_PIMREG;
504 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
505 dev->flags = IFF_NOARP;
506 dev->netdev_ops = &reg_vif_netdev_ops;
507 dev->destructor = free_netdev;
508 dev->features |= NETIF_F_NETNS_LOCAL;
509 }
510
511 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
512 {
513 struct net_device *dev;
514 char name[IFNAMSIZ];
515
516 if (mrt->id == RT_TABLE_DEFAULT)
517 sprintf(name, "pimreg");
518 else
519 sprintf(name, "pimreg%u", mrt->id);
520
521 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
522
523 if (!dev)
524 return NULL;
525
526 dev_net_set(dev, net);
527
528 if (register_netdevice(dev)) {
529 free_netdev(dev);
530 return NULL;
531 }
532
533 if (!ipmr_init_vif_indev(dev))
534 goto failure;
535 if (dev_open(dev))
536 goto failure;
537
538 dev_hold(dev);
539
540 return dev;
541
542 failure:
543 /* allow the register to be completed before unregistering. */
544 rtnl_unlock();
545 rtnl_lock();
546
547 unregister_netdevice(dev);
548 return NULL;
549 }
550
551 /* called with rcu_read_lock() */
552 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
553 unsigned int pimlen)
554 {
555 struct net_device *reg_dev = NULL;
556 struct iphdr *encap;
557
558 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
559 /* Check that:
560 * a. packet is really sent to a multicast group
561 * b. packet is not a NULL-REGISTER
562 * c. packet is not truncated
563 */
564 if (!ipv4_is_multicast(encap->daddr) ||
565 encap->tot_len == 0 ||
566 ntohs(encap->tot_len) + pimlen > skb->len)
567 return 1;
568
569 read_lock(&mrt_lock);
570 if (mrt->mroute_reg_vif_num >= 0)
571 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
572 read_unlock(&mrt_lock);
573
574 if (!reg_dev)
575 return 1;
576
577 skb->mac_header = skb->network_header;
578 skb_pull(skb, (u8 *)encap - skb->data);
579 skb_reset_network_header(skb);
580 skb->protocol = htons(ETH_P_IP);
581 skb->ip_summed = CHECKSUM_NONE;
582
583 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
584
585 netif_rx(skb);
586
587 return NET_RX_SUCCESS;
588 }
589 #else
590 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
591 {
592 return NULL;
593 }
594 #endif
595
596 /**
597 * vif_delete - Delete a VIF entry
598 * @notify: Set to 1, if the caller is a notifier_call
599 */
600 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
601 struct list_head *head)
602 {
603 struct vif_device *v;
604 struct net_device *dev;
605 struct in_device *in_dev;
606
607 if (vifi < 0 || vifi >= mrt->maxvif)
608 return -EADDRNOTAVAIL;
609
610 v = &mrt->vif_table[vifi];
611
612 write_lock_bh(&mrt_lock);
613 dev = v->dev;
614 v->dev = NULL;
615
616 if (!dev) {
617 write_unlock_bh(&mrt_lock);
618 return -EADDRNOTAVAIL;
619 }
620
621 if (vifi == mrt->mroute_reg_vif_num)
622 mrt->mroute_reg_vif_num = -1;
623
624 if (vifi + 1 == mrt->maxvif) {
625 int tmp;
626
627 for (tmp = vifi - 1; tmp >= 0; tmp--) {
628 if (VIF_EXISTS(mrt, tmp))
629 break;
630 }
631 mrt->maxvif = tmp+1;
632 }
633
634 write_unlock_bh(&mrt_lock);
635
636 dev_set_allmulti(dev, -1);
637
638 in_dev = __in_dev_get_rtnl(dev);
639 if (in_dev) {
640 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
641 inet_netconf_notify_devconf(dev_net(dev),
642 NETCONFA_MC_FORWARDING,
643 dev->ifindex, &in_dev->cnf);
644 ip_rt_multicast_event(in_dev);
645 }
646
647 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
648 unregister_netdevice_queue(dev, head);
649
650 dev_put(dev);
651 return 0;
652 }
653
654 static void ipmr_cache_free_rcu(struct rcu_head *head)
655 {
656 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
657
658 kmem_cache_free(mrt_cachep, c);
659 }
660
661 static inline void ipmr_cache_free(struct mfc_cache *c)
662 {
663 call_rcu(&c->rcu, ipmr_cache_free_rcu);
664 }
665
666 /* Destroy an unresolved cache entry, killing queued skbs
667 * and reporting error to netlink readers.
668 */
669 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
670 {
671 struct net *net = read_pnet(&mrt->net);
672 struct sk_buff *skb;
673 struct nlmsgerr *e;
674
675 atomic_dec(&mrt->cache_resolve_queue_len);
676
677 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
678 if (ip_hdr(skb)->version == 0) {
679 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
680 nlh->nlmsg_type = NLMSG_ERROR;
681 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
682 skb_trim(skb, nlh->nlmsg_len);
683 e = nlmsg_data(nlh);
684 e->error = -ETIMEDOUT;
685 memset(&e->msg, 0, sizeof(e->msg));
686
687 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
688 } else {
689 kfree_skb(skb);
690 }
691 }
692
693 ipmr_cache_free(c);
694 }
695
696 /* Timer process for the unresolved queue. */
697 static void ipmr_expire_process(unsigned long arg)
698 {
699 struct mr_table *mrt = (struct mr_table *)arg;
700 unsigned long now;
701 unsigned long expires;
702 struct mfc_cache *c, *next;
703
704 if (!spin_trylock(&mfc_unres_lock)) {
705 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
706 return;
707 }
708
709 if (list_empty(&mrt->mfc_unres_queue))
710 goto out;
711
712 now = jiffies;
713 expires = 10*HZ;
714
715 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
716 if (time_after(c->mfc_un.unres.expires, now)) {
717 unsigned long interval = c->mfc_un.unres.expires - now;
718 if (interval < expires)
719 expires = interval;
720 continue;
721 }
722
723 list_del(&c->list);
724 mroute_netlink_event(mrt, c, RTM_DELROUTE);
725 ipmr_destroy_unres(mrt, c);
726 }
727
728 if (!list_empty(&mrt->mfc_unres_queue))
729 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
730
731 out:
732 spin_unlock(&mfc_unres_lock);
733 }
734
735 /* Fill oifs list. It is called under write locked mrt_lock. */
736 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
737 unsigned char *ttls)
738 {
739 int vifi;
740
741 cache->mfc_un.res.minvif = MAXVIFS;
742 cache->mfc_un.res.maxvif = 0;
743 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
744
745 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
746 if (VIF_EXISTS(mrt, vifi) &&
747 ttls[vifi] && ttls[vifi] < 255) {
748 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
749 if (cache->mfc_un.res.minvif > vifi)
750 cache->mfc_un.res.minvif = vifi;
751 if (cache->mfc_un.res.maxvif <= vifi)
752 cache->mfc_un.res.maxvif = vifi + 1;
753 }
754 }
755 }
756
757 static int vif_add(struct net *net, struct mr_table *mrt,
758 struct vifctl *vifc, int mrtsock)
759 {
760 int vifi = vifc->vifc_vifi;
761 struct vif_device *v = &mrt->vif_table[vifi];
762 struct net_device *dev;
763 struct in_device *in_dev;
764 int err;
765
766 /* Is vif busy ? */
767 if (VIF_EXISTS(mrt, vifi))
768 return -EADDRINUSE;
769
770 switch (vifc->vifc_flags) {
771 case VIFF_REGISTER:
772 if (!pimsm_enabled())
773 return -EINVAL;
774 /* Special Purpose VIF in PIM
775 * All the packets will be sent to the daemon
776 */
777 if (mrt->mroute_reg_vif_num >= 0)
778 return -EADDRINUSE;
779 dev = ipmr_reg_vif(net, mrt);
780 if (!dev)
781 return -ENOBUFS;
782 err = dev_set_allmulti(dev, 1);
783 if (err) {
784 unregister_netdevice(dev);
785 dev_put(dev);
786 return err;
787 }
788 break;
789 case VIFF_TUNNEL:
790 dev = ipmr_new_tunnel(net, vifc);
791 if (!dev)
792 return -ENOBUFS;
793 err = dev_set_allmulti(dev, 1);
794 if (err) {
795 ipmr_del_tunnel(dev, vifc);
796 dev_put(dev);
797 return err;
798 }
799 break;
800 case VIFF_USE_IFINDEX:
801 case 0:
802 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
803 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
804 if (dev && !__in_dev_get_rtnl(dev)) {
805 dev_put(dev);
806 return -EADDRNOTAVAIL;
807 }
808 } else {
809 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
810 }
811 if (!dev)
812 return -EADDRNOTAVAIL;
813 err = dev_set_allmulti(dev, 1);
814 if (err) {
815 dev_put(dev);
816 return err;
817 }
818 break;
819 default:
820 return -EINVAL;
821 }
822
823 in_dev = __in_dev_get_rtnl(dev);
824 if (!in_dev) {
825 dev_put(dev);
826 return -EADDRNOTAVAIL;
827 }
828 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
829 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
830 &in_dev->cnf);
831 ip_rt_multicast_event(in_dev);
832
833 /* Fill in the VIF structures */
834
835 v->rate_limit = vifc->vifc_rate_limit;
836 v->local = vifc->vifc_lcl_addr.s_addr;
837 v->remote = vifc->vifc_rmt_addr.s_addr;
838 v->flags = vifc->vifc_flags;
839 if (!mrtsock)
840 v->flags |= VIFF_STATIC;
841 v->threshold = vifc->vifc_threshold;
842 v->bytes_in = 0;
843 v->bytes_out = 0;
844 v->pkt_in = 0;
845 v->pkt_out = 0;
846 v->link = dev->ifindex;
847 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
848 v->link = dev_get_iflink(dev);
849
850 /* And finish update writing critical data */
851 write_lock_bh(&mrt_lock);
852 v->dev = dev;
853 if (v->flags & VIFF_REGISTER)
854 mrt->mroute_reg_vif_num = vifi;
855 if (vifi+1 > mrt->maxvif)
856 mrt->maxvif = vifi+1;
857 write_unlock_bh(&mrt_lock);
858 return 0;
859 }
860
861 /* called with rcu_read_lock() */
862 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
863 __be32 origin,
864 __be32 mcastgrp)
865 {
866 int line = MFC_HASH(mcastgrp, origin);
867 struct mfc_cache *c;
868
869 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
870 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
871 return c;
872 }
873 return NULL;
874 }
875
876 /* Look for a (*,*,oif) entry */
877 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
878 int vifi)
879 {
880 int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
881 struct mfc_cache *c;
882
883 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
884 if (c->mfc_origin == htonl(INADDR_ANY) &&
885 c->mfc_mcastgrp == htonl(INADDR_ANY) &&
886 c->mfc_un.res.ttls[vifi] < 255)
887 return c;
888
889 return NULL;
890 }
891
892 /* Look for a (*,G) entry */
893 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
894 __be32 mcastgrp, int vifi)
895 {
896 int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
897 struct mfc_cache *c, *proxy;
898
899 if (mcastgrp == htonl(INADDR_ANY))
900 goto skip;
901
902 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
903 if (c->mfc_origin == htonl(INADDR_ANY) &&
904 c->mfc_mcastgrp == mcastgrp) {
905 if (c->mfc_un.res.ttls[vifi] < 255)
906 return c;
907
908 /* It's ok if the vifi is part of the static tree */
909 proxy = ipmr_cache_find_any_parent(mrt,
910 c->mfc_parent);
911 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
912 return c;
913 }
914
915 skip:
916 return ipmr_cache_find_any_parent(mrt, vifi);
917 }
918
919 /* Allocate a multicast cache entry */
920 static struct mfc_cache *ipmr_cache_alloc(void)
921 {
922 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
923
924 if (c)
925 c->mfc_un.res.minvif = MAXVIFS;
926 return c;
927 }
928
929 static struct mfc_cache *ipmr_cache_alloc_unres(void)
930 {
931 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
932
933 if (c) {
934 skb_queue_head_init(&c->mfc_un.unres.unresolved);
935 c->mfc_un.unres.expires = jiffies + 10*HZ;
936 }
937 return c;
938 }
939
940 /* A cache entry has gone into a resolved state from queued */
941 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
942 struct mfc_cache *uc, struct mfc_cache *c)
943 {
944 struct sk_buff *skb;
945 struct nlmsgerr *e;
946
947 /* Play the pending entries through our router */
948 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
949 if (ip_hdr(skb)->version == 0) {
950 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
951
952 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
953 nlh->nlmsg_len = skb_tail_pointer(skb) -
954 (u8 *)nlh;
955 } else {
956 nlh->nlmsg_type = NLMSG_ERROR;
957 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
958 skb_trim(skb, nlh->nlmsg_len);
959 e = nlmsg_data(nlh);
960 e->error = -EMSGSIZE;
961 memset(&e->msg, 0, sizeof(e->msg));
962 }
963
964 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
965 } else {
966 ip_mr_forward(net, mrt, skb, c, 0);
967 }
968 }
969 }
970
971 /* Bounce a cache query up to mrouted. We could use netlink for this but mrouted
972 * expects the following bizarre scheme.
973 *
974 * Called under mrt_lock.
975 */
976 static int ipmr_cache_report(struct mr_table *mrt,
977 struct sk_buff *pkt, vifi_t vifi, int assert)
978 {
979 const int ihl = ip_hdrlen(pkt);
980 struct sock *mroute_sk;
981 struct igmphdr *igmp;
982 struct igmpmsg *msg;
983 struct sk_buff *skb;
984 int ret;
985
986 if (assert == IGMPMSG_WHOLEPKT)
987 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
988 else
989 skb = alloc_skb(128, GFP_ATOMIC);
990
991 if (!skb)
992 return -ENOBUFS;
993
994 if (assert == IGMPMSG_WHOLEPKT) {
995 /* Ugly, but we have no choice with this interface.
996 * Duplicate old header, fix ihl, length etc.
997 * And all this only to mangle msg->im_msgtype and
998 * to set msg->im_mbz to "mbz" :-)
999 */
1000 skb_push(skb, sizeof(struct iphdr));
1001 skb_reset_network_header(skb);
1002 skb_reset_transport_header(skb);
1003 msg = (struct igmpmsg *)skb_network_header(skb);
1004 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1005 msg->im_msgtype = IGMPMSG_WHOLEPKT;
1006 msg->im_mbz = 0;
1007 msg->im_vif = mrt->mroute_reg_vif_num;
1008 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1009 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1010 sizeof(struct iphdr));
1011 } else {
1012 /* Copy the IP header */
1013 skb_set_network_header(skb, skb->len);
1014 skb_put(skb, ihl);
1015 skb_copy_to_linear_data(skb, pkt->data, ihl);
1016 /* Flag to the kernel this is a route add */
1017 ip_hdr(skb)->protocol = 0;
1018 msg = (struct igmpmsg *)skb_network_header(skb);
1019 msg->im_vif = vifi;
1020 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1021 /* Add our header */
1022 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
1023 igmp->type = assert;
1024 msg->im_msgtype = assert;
1025 igmp->code = 0;
1026 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1027 skb->transport_header = skb->network_header;
1028 }
1029
1030 rcu_read_lock();
1031 mroute_sk = rcu_dereference(mrt->mroute_sk);
1032 if (!mroute_sk) {
1033 rcu_read_unlock();
1034 kfree_skb(skb);
1035 return -EINVAL;
1036 }
1037
1038 /* Deliver to mrouted */
1039 ret = sock_queue_rcv_skb(mroute_sk, skb);
1040 rcu_read_unlock();
1041 if (ret < 0) {
1042 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1043 kfree_skb(skb);
1044 }
1045
1046 return ret;
1047 }
1048
1049 /* Queue a packet for resolution. It gets locked cache entry! */
1050 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1051 struct sk_buff *skb)
1052 {
1053 bool found = false;
1054 int err;
1055 struct mfc_cache *c;
1056 const struct iphdr *iph = ip_hdr(skb);
1057
1058 spin_lock_bh(&mfc_unres_lock);
1059 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1060 if (c->mfc_mcastgrp == iph->daddr &&
1061 c->mfc_origin == iph->saddr) {
1062 found = true;
1063 break;
1064 }
1065 }
1066
1067 if (!found) {
1068 /* Create a new entry if allowable */
1069 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1070 (c = ipmr_cache_alloc_unres()) == NULL) {
1071 spin_unlock_bh(&mfc_unres_lock);
1072
1073 kfree_skb(skb);
1074 return -ENOBUFS;
1075 }
1076
1077 /* Fill in the new cache entry */
1078 c->mfc_parent = -1;
1079 c->mfc_origin = iph->saddr;
1080 c->mfc_mcastgrp = iph->daddr;
1081
1082 /* Reflect first query at mrouted. */
1083 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1084 if (err < 0) {
1085 /* If the report failed throw the cache entry
1086 out - Brad Parker
1087 */
1088 spin_unlock_bh(&mfc_unres_lock);
1089
1090 ipmr_cache_free(c);
1091 kfree_skb(skb);
1092 return err;
1093 }
1094
1095 atomic_inc(&mrt->cache_resolve_queue_len);
1096 list_add(&c->list, &mrt->mfc_unres_queue);
1097 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1098
1099 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1100 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1101 }
1102
1103 /* See if we can append the packet */
1104 if (c->mfc_un.unres.unresolved.qlen > 3) {
1105 kfree_skb(skb);
1106 err = -ENOBUFS;
1107 } else {
1108 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1109 err = 0;
1110 }
1111
1112 spin_unlock_bh(&mfc_unres_lock);
1113 return err;
1114 }
1115
1116 /* MFC cache manipulation by user space mroute daemon */
1117
1118 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1119 {
1120 int line;
1121 struct mfc_cache *c, *next;
1122
1123 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1124
1125 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1126 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1127 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1128 (parent == -1 || parent == c->mfc_parent)) {
1129 list_del_rcu(&c->list);
1130 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1131 ipmr_cache_free(c);
1132 return 0;
1133 }
1134 }
1135 return -ENOENT;
1136 }
1137
1138 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1139 struct mfcctl *mfc, int mrtsock, int parent)
1140 {
1141 bool found = false;
1142 int line;
1143 struct mfc_cache *uc, *c;
1144
1145 if (mfc->mfcc_parent >= MAXVIFS)
1146 return -ENFILE;
1147
1148 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1149
1150 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1151 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1152 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1153 (parent == -1 || parent == c->mfc_parent)) {
1154 found = true;
1155 break;
1156 }
1157 }
1158
1159 if (found) {
1160 write_lock_bh(&mrt_lock);
1161 c->mfc_parent = mfc->mfcc_parent;
1162 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1163 if (!mrtsock)
1164 c->mfc_flags |= MFC_STATIC;
1165 write_unlock_bh(&mrt_lock);
1166 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1167 return 0;
1168 }
1169
1170 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1171 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1172 return -EINVAL;
1173
1174 c = ipmr_cache_alloc();
1175 if (!c)
1176 return -ENOMEM;
1177
1178 c->mfc_origin = mfc->mfcc_origin.s_addr;
1179 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1180 c->mfc_parent = mfc->mfcc_parent;
1181 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1182 if (!mrtsock)
1183 c->mfc_flags |= MFC_STATIC;
1184
1185 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1186
1187 /* Check to see if we resolved a queued list. If so we
1188 * need to send on the frames and tidy up.
1189 */
1190 found = false;
1191 spin_lock_bh(&mfc_unres_lock);
1192 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1193 if (uc->mfc_origin == c->mfc_origin &&
1194 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1195 list_del(&uc->list);
1196 atomic_dec(&mrt->cache_resolve_queue_len);
1197 found = true;
1198 break;
1199 }
1200 }
1201 if (list_empty(&mrt->mfc_unres_queue))
1202 del_timer(&mrt->ipmr_expire_timer);
1203 spin_unlock_bh(&mfc_unres_lock);
1204
1205 if (found) {
1206 ipmr_cache_resolve(net, mrt, uc, c);
1207 ipmr_cache_free(uc);
1208 }
1209 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1210 return 0;
1211 }
1212
1213 /* Close the multicast socket, and clear the vif tables etc */
1214 static void mroute_clean_tables(struct mr_table *mrt)
1215 {
1216 int i;
1217 LIST_HEAD(list);
1218 struct mfc_cache *c, *next;
1219
1220 /* Shut down all active vif entries */
1221 for (i = 0; i < mrt->maxvif; i++) {
1222 if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1223 vif_delete(mrt, i, 0, &list);
1224 }
1225 unregister_netdevice_many(&list);
1226
1227 /* Wipe the cache */
1228 for (i = 0; i < MFC_LINES; i++) {
1229 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1230 if (c->mfc_flags & MFC_STATIC)
1231 continue;
1232 list_del_rcu(&c->list);
1233 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1234 ipmr_cache_free(c);
1235 }
1236 }
1237
1238 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1239 spin_lock_bh(&mfc_unres_lock);
1240 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1241 list_del(&c->list);
1242 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1243 ipmr_destroy_unres(mrt, c);
1244 }
1245 spin_unlock_bh(&mfc_unres_lock);
1246 }
1247 }
1248
1249 /* called from ip_ra_control(), before an RCU grace period,
1250 * we dont need to call synchronize_rcu() here
1251 */
1252 static void mrtsock_destruct(struct sock *sk)
1253 {
1254 struct net *net = sock_net(sk);
1255 struct mr_table *mrt;
1256
1257 rtnl_lock();
1258 ipmr_for_each_table(mrt, net) {
1259 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1260 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1261 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1262 NETCONFA_IFINDEX_ALL,
1263 net->ipv4.devconf_all);
1264 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1265 mroute_clean_tables(mrt);
1266 }
1267 }
1268 rtnl_unlock();
1269 }
1270
1271 /* Socket options and virtual interface manipulation. The whole
1272 * virtual interface system is a complete heap, but unfortunately
1273 * that's how BSD mrouted happens to think. Maybe one day with a proper
1274 * MOSPF/PIM router set up we can clean this up.
1275 */
1276
1277 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1278 unsigned int optlen)
1279 {
1280 struct net *net = sock_net(sk);
1281 int val, ret = 0, parent = 0;
1282 struct mr_table *mrt;
1283 struct vifctl vif;
1284 struct mfcctl mfc;
1285 u32 uval;
1286
1287 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1288 rtnl_lock();
1289 if (sk->sk_type != SOCK_RAW ||
1290 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1291 ret = -EOPNOTSUPP;
1292 goto out_unlock;
1293 }
1294
1295 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1296 if (!mrt) {
1297 ret = -ENOENT;
1298 goto out_unlock;
1299 }
1300 if (optname != MRT_INIT) {
1301 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1302 !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1303 ret = -EACCES;
1304 goto out_unlock;
1305 }
1306 }
1307
1308 switch (optname) {
1309 case MRT_INIT:
1310 if (optlen != sizeof(int))
1311 ret = -EINVAL;
1312 if (rtnl_dereference(mrt->mroute_sk))
1313 ret = -EADDRINUSE;
1314 if (ret)
1315 break;
1316
1317 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1318 if (ret == 0) {
1319 rcu_assign_pointer(mrt->mroute_sk, sk);
1320 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1321 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1322 NETCONFA_IFINDEX_ALL,
1323 net->ipv4.devconf_all);
1324 }
1325 break;
1326 case MRT_DONE:
1327 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1328 ret = -EACCES;
1329 } else {
1330 /* We need to unlock here because mrtsock_destruct takes
1331 * care of rtnl itself and we can't change that due to
1332 * the IP_ROUTER_ALERT setsockopt which runs without it.
1333 */
1334 rtnl_unlock();
1335 ret = ip_ra_control(sk, 0, NULL);
1336 goto out;
1337 }
1338 break;
1339 case MRT_ADD_VIF:
1340 case MRT_DEL_VIF:
1341 if (optlen != sizeof(vif)) {
1342 ret = -EINVAL;
1343 break;
1344 }
1345 if (copy_from_user(&vif, optval, sizeof(vif))) {
1346 ret = -EFAULT;
1347 break;
1348 }
1349 if (vif.vifc_vifi >= MAXVIFS) {
1350 ret = -ENFILE;
1351 break;
1352 }
1353 if (optname == MRT_ADD_VIF) {
1354 ret = vif_add(net, mrt, &vif,
1355 sk == rtnl_dereference(mrt->mroute_sk));
1356 } else {
1357 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1358 }
1359 break;
1360 /* Manipulate the forwarding caches. These live
1361 * in a sort of kernel/user symbiosis.
1362 */
1363 case MRT_ADD_MFC:
1364 case MRT_DEL_MFC:
1365 parent = -1;
1366 case MRT_ADD_MFC_PROXY:
1367 case MRT_DEL_MFC_PROXY:
1368 if (optlen != sizeof(mfc)) {
1369 ret = -EINVAL;
1370 break;
1371 }
1372 if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1373 ret = -EFAULT;
1374 break;
1375 }
1376 if (parent == 0)
1377 parent = mfc.mfcc_parent;
1378 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1379 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1380 else
1381 ret = ipmr_mfc_add(net, mrt, &mfc,
1382 sk == rtnl_dereference(mrt->mroute_sk),
1383 parent);
1384 break;
1385 /* Control PIM assert. */
1386 case MRT_ASSERT:
1387 if (optlen != sizeof(val)) {
1388 ret = -EINVAL;
1389 break;
1390 }
1391 if (get_user(val, (int __user *)optval)) {
1392 ret = -EFAULT;
1393 break;
1394 }
1395 mrt->mroute_do_assert = val;
1396 break;
1397 case MRT_PIM:
1398 if (!pimsm_enabled()) {
1399 ret = -ENOPROTOOPT;
1400 break;
1401 }
1402 if (optlen != sizeof(val)) {
1403 ret = -EINVAL;
1404 break;
1405 }
1406 if (get_user(val, (int __user *)optval)) {
1407 ret = -EFAULT;
1408 break;
1409 }
1410
1411 val = !!val;
1412 if (val != mrt->mroute_do_pim) {
1413 mrt->mroute_do_pim = val;
1414 mrt->mroute_do_assert = val;
1415 }
1416 break;
1417 case MRT_TABLE:
1418 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1419 ret = -ENOPROTOOPT;
1420 break;
1421 }
1422 if (optlen != sizeof(uval)) {
1423 ret = -EINVAL;
1424 break;
1425 }
1426 if (get_user(uval, (u32 __user *)optval)) {
1427 ret = -EFAULT;
1428 break;
1429 }
1430
1431 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1432 ret = -EBUSY;
1433 } else {
1434 mrt = ipmr_new_table(net, uval);
1435 if (IS_ERR(mrt))
1436 ret = PTR_ERR(mrt);
1437 else
1438 raw_sk(sk)->ipmr_table = uval;
1439 }
1440 break;
1441 /* Spurious command, or MRT_VERSION which you cannot set. */
1442 default:
1443 ret = -ENOPROTOOPT;
1444 }
1445 out_unlock:
1446 rtnl_unlock();
1447 out:
1448 return ret;
1449 }
1450
1451 /* Getsock opt support for the multicast routing system. */
1452 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1453 {
1454 int olr;
1455 int val;
1456 struct net *net = sock_net(sk);
1457 struct mr_table *mrt;
1458
1459 if (sk->sk_type != SOCK_RAW ||
1460 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1461 return -EOPNOTSUPP;
1462
1463 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1464 if (!mrt)
1465 return -ENOENT;
1466
1467 switch (optname) {
1468 case MRT_VERSION:
1469 val = 0x0305;
1470 break;
1471 case MRT_PIM:
1472 if (!pimsm_enabled())
1473 return -ENOPROTOOPT;
1474 val = mrt->mroute_do_pim;
1475 break;
1476 case MRT_ASSERT:
1477 val = mrt->mroute_do_assert;
1478 break;
1479 default:
1480 return -ENOPROTOOPT;
1481 }
1482
1483 if (get_user(olr, optlen))
1484 return -EFAULT;
1485 olr = min_t(unsigned int, olr, sizeof(int));
1486 if (olr < 0)
1487 return -EINVAL;
1488 if (put_user(olr, optlen))
1489 return -EFAULT;
1490 if (copy_to_user(optval, &val, olr))
1491 return -EFAULT;
1492 return 0;
1493 }
1494
1495 /* The IP multicast ioctl support routines. */
1496 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1497 {
1498 struct sioc_sg_req sr;
1499 struct sioc_vif_req vr;
1500 struct vif_device *vif;
1501 struct mfc_cache *c;
1502 struct net *net = sock_net(sk);
1503 struct mr_table *mrt;
1504
1505 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1506 if (!mrt)
1507 return -ENOENT;
1508
1509 switch (cmd) {
1510 case SIOCGETVIFCNT:
1511 if (copy_from_user(&vr, arg, sizeof(vr)))
1512 return -EFAULT;
1513 if (vr.vifi >= mrt->maxvif)
1514 return -EINVAL;
1515 read_lock(&mrt_lock);
1516 vif = &mrt->vif_table[vr.vifi];
1517 if (VIF_EXISTS(mrt, vr.vifi)) {
1518 vr.icount = vif->pkt_in;
1519 vr.ocount = vif->pkt_out;
1520 vr.ibytes = vif->bytes_in;
1521 vr.obytes = vif->bytes_out;
1522 read_unlock(&mrt_lock);
1523
1524 if (copy_to_user(arg, &vr, sizeof(vr)))
1525 return -EFAULT;
1526 return 0;
1527 }
1528 read_unlock(&mrt_lock);
1529 return -EADDRNOTAVAIL;
1530 case SIOCGETSGCNT:
1531 if (copy_from_user(&sr, arg, sizeof(sr)))
1532 return -EFAULT;
1533
1534 rcu_read_lock();
1535 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1536 if (c) {
1537 sr.pktcnt = c->mfc_un.res.pkt;
1538 sr.bytecnt = c->mfc_un.res.bytes;
1539 sr.wrong_if = c->mfc_un.res.wrong_if;
1540 rcu_read_unlock();
1541
1542 if (copy_to_user(arg, &sr, sizeof(sr)))
1543 return -EFAULT;
1544 return 0;
1545 }
1546 rcu_read_unlock();
1547 return -EADDRNOTAVAIL;
1548 default:
1549 return -ENOIOCTLCMD;
1550 }
1551 }
1552
1553 #ifdef CONFIG_COMPAT
1554 struct compat_sioc_sg_req {
1555 struct in_addr src;
1556 struct in_addr grp;
1557 compat_ulong_t pktcnt;
1558 compat_ulong_t bytecnt;
1559 compat_ulong_t wrong_if;
1560 };
1561
1562 struct compat_sioc_vif_req {
1563 vifi_t vifi; /* Which iface */
1564 compat_ulong_t icount;
1565 compat_ulong_t ocount;
1566 compat_ulong_t ibytes;
1567 compat_ulong_t obytes;
1568 };
1569
1570 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1571 {
1572 struct compat_sioc_sg_req sr;
1573 struct compat_sioc_vif_req vr;
1574 struct vif_device *vif;
1575 struct mfc_cache *c;
1576 struct net *net = sock_net(sk);
1577 struct mr_table *mrt;
1578
1579 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1580 if (!mrt)
1581 return -ENOENT;
1582
1583 switch (cmd) {
1584 case SIOCGETVIFCNT:
1585 if (copy_from_user(&vr, arg, sizeof(vr)))
1586 return -EFAULT;
1587 if (vr.vifi >= mrt->maxvif)
1588 return -EINVAL;
1589 read_lock(&mrt_lock);
1590 vif = &mrt->vif_table[vr.vifi];
1591 if (VIF_EXISTS(mrt, vr.vifi)) {
1592 vr.icount = vif->pkt_in;
1593 vr.ocount = vif->pkt_out;
1594 vr.ibytes = vif->bytes_in;
1595 vr.obytes = vif->bytes_out;
1596 read_unlock(&mrt_lock);
1597
1598 if (copy_to_user(arg, &vr, sizeof(vr)))
1599 return -EFAULT;
1600 return 0;
1601 }
1602 read_unlock(&mrt_lock);
1603 return -EADDRNOTAVAIL;
1604 case SIOCGETSGCNT:
1605 if (copy_from_user(&sr, arg, sizeof(sr)))
1606 return -EFAULT;
1607
1608 rcu_read_lock();
1609 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1610 if (c) {
1611 sr.pktcnt = c->mfc_un.res.pkt;
1612 sr.bytecnt = c->mfc_un.res.bytes;
1613 sr.wrong_if = c->mfc_un.res.wrong_if;
1614 rcu_read_unlock();
1615
1616 if (copy_to_user(arg, &sr, sizeof(sr)))
1617 return -EFAULT;
1618 return 0;
1619 }
1620 rcu_read_unlock();
1621 return -EADDRNOTAVAIL;
1622 default:
1623 return -ENOIOCTLCMD;
1624 }
1625 }
1626 #endif
1627
1628 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1629 {
1630 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1631 struct net *net = dev_net(dev);
1632 struct mr_table *mrt;
1633 struct vif_device *v;
1634 int ct;
1635
1636 if (event != NETDEV_UNREGISTER)
1637 return NOTIFY_DONE;
1638
1639 ipmr_for_each_table(mrt, net) {
1640 v = &mrt->vif_table[0];
1641 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1642 if (v->dev == dev)
1643 vif_delete(mrt, ct, 1, NULL);
1644 }
1645 }
1646 return NOTIFY_DONE;
1647 }
1648
1649 static struct notifier_block ip_mr_notifier = {
1650 .notifier_call = ipmr_device_event,
1651 };
1652
1653 /* Encapsulate a packet by attaching a valid IPIP header to it.
1654 * This avoids tunnel drivers and other mess and gives us the speed so
1655 * important for multicast video.
1656 */
1657 static void ip_encap(struct net *net, struct sk_buff *skb,
1658 __be32 saddr, __be32 daddr)
1659 {
1660 struct iphdr *iph;
1661 const struct iphdr *old_iph = ip_hdr(skb);
1662
1663 skb_push(skb, sizeof(struct iphdr));
1664 skb->transport_header = skb->network_header;
1665 skb_reset_network_header(skb);
1666 iph = ip_hdr(skb);
1667
1668 iph->version = 4;
1669 iph->tos = old_iph->tos;
1670 iph->ttl = old_iph->ttl;
1671 iph->frag_off = 0;
1672 iph->daddr = daddr;
1673 iph->saddr = saddr;
1674 iph->protocol = IPPROTO_IPIP;
1675 iph->ihl = 5;
1676 iph->tot_len = htons(skb->len);
1677 ip_select_ident(net, skb, NULL);
1678 ip_send_check(iph);
1679
1680 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1681 nf_reset(skb);
1682 }
1683
1684 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1685 struct sk_buff *skb)
1686 {
1687 struct ip_options *opt = &(IPCB(skb)->opt);
1688
1689 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1690 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1691
1692 if (unlikely(opt->optlen))
1693 ip_forward_options(skb);
1694
1695 return dst_output(net, sk, skb);
1696 }
1697
1698 /* Processing handlers for ipmr_forward */
1699
1700 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1701 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1702 {
1703 const struct iphdr *iph = ip_hdr(skb);
1704 struct vif_device *vif = &mrt->vif_table[vifi];
1705 struct net_device *dev;
1706 struct rtable *rt;
1707 struct flowi4 fl4;
1708 int encap = 0;
1709
1710 if (!vif->dev)
1711 goto out_free;
1712
1713 if (vif->flags & VIFF_REGISTER) {
1714 vif->pkt_out++;
1715 vif->bytes_out += skb->len;
1716 vif->dev->stats.tx_bytes += skb->len;
1717 vif->dev->stats.tx_packets++;
1718 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1719 goto out_free;
1720 }
1721
1722 if (vif->flags & VIFF_TUNNEL) {
1723 rt = ip_route_output_ports(net, &fl4, NULL,
1724 vif->remote, vif->local,
1725 0, 0,
1726 IPPROTO_IPIP,
1727 RT_TOS(iph->tos), vif->link);
1728 if (IS_ERR(rt))
1729 goto out_free;
1730 encap = sizeof(struct iphdr);
1731 } else {
1732 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1733 0, 0,
1734 IPPROTO_IPIP,
1735 RT_TOS(iph->tos), vif->link);
1736 if (IS_ERR(rt))
1737 goto out_free;
1738 }
1739
1740 dev = rt->dst.dev;
1741
1742 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1743 /* Do not fragment multicasts. Alas, IPv4 does not
1744 * allow to send ICMP, so that packets will disappear
1745 * to blackhole.
1746 */
1747 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1748 ip_rt_put(rt);
1749 goto out_free;
1750 }
1751
1752 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1753
1754 if (skb_cow(skb, encap)) {
1755 ip_rt_put(rt);
1756 goto out_free;
1757 }
1758
1759 vif->pkt_out++;
1760 vif->bytes_out += skb->len;
1761
1762 skb_dst_drop(skb);
1763 skb_dst_set(skb, &rt->dst);
1764 ip_decrease_ttl(ip_hdr(skb));
1765
1766 /* FIXME: forward and output firewalls used to be called here.
1767 * What do we do with netfilter? -- RR
1768 */
1769 if (vif->flags & VIFF_TUNNEL) {
1770 ip_encap(net, skb, vif->local, vif->remote);
1771 /* FIXME: extra output firewall step used to be here. --RR */
1772 vif->dev->stats.tx_packets++;
1773 vif->dev->stats.tx_bytes += skb->len;
1774 }
1775
1776 IPCB(skb)->flags |= IPSKB_FORWARDED;
1777
1778 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1779 * not only before forwarding, but after forwarding on all output
1780 * interfaces. It is clear, if mrouter runs a multicasting
1781 * program, it should receive packets not depending to what interface
1782 * program is joined.
1783 * If we will not make it, the program will have to join on all
1784 * interfaces. On the other hand, multihoming host (or router, but
1785 * not mrouter) cannot join to more than one interface - it will
1786 * result in receiving multiple packets.
1787 */
1788 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1789 net, NULL, skb, skb->dev, dev,
1790 ipmr_forward_finish);
1791 return;
1792
1793 out_free:
1794 kfree_skb(skb);
1795 }
1796
1797 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1798 {
1799 int ct;
1800
1801 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1802 if (mrt->vif_table[ct].dev == dev)
1803 break;
1804 }
1805 return ct;
1806 }
1807
1808 /* "local" means that we should preserve one skb (for local delivery) */
1809 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1810 struct sk_buff *skb, struct mfc_cache *cache,
1811 int local)
1812 {
1813 int psend = -1;
1814 int vif, ct;
1815 int true_vifi = ipmr_find_vif(mrt, skb->dev);
1816
1817 vif = cache->mfc_parent;
1818 cache->mfc_un.res.pkt++;
1819 cache->mfc_un.res.bytes += skb->len;
1820
1821 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1822 struct mfc_cache *cache_proxy;
1823
1824 /* For an (*,G) entry, we only check that the incomming
1825 * interface is part of the static tree.
1826 */
1827 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1828 if (cache_proxy &&
1829 cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1830 goto forward;
1831 }
1832
1833 /* Wrong interface: drop packet and (maybe) send PIM assert. */
1834 if (mrt->vif_table[vif].dev != skb->dev) {
1835 if (rt_is_output_route(skb_rtable(skb))) {
1836 /* It is our own packet, looped back.
1837 * Very complicated situation...
1838 *
1839 * The best workaround until routing daemons will be
1840 * fixed is not to redistribute packet, if it was
1841 * send through wrong interface. It means, that
1842 * multicast applications WILL NOT work for
1843 * (S,G), which have default multicast route pointing
1844 * to wrong oif. In any case, it is not a good
1845 * idea to use multicasting applications on router.
1846 */
1847 goto dont_forward;
1848 }
1849
1850 cache->mfc_un.res.wrong_if++;
1851
1852 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1853 /* pimsm uses asserts, when switching from RPT to SPT,
1854 * so that we cannot check that packet arrived on an oif.
1855 * It is bad, but otherwise we would need to move pretty
1856 * large chunk of pimd to kernel. Ough... --ANK
1857 */
1858 (mrt->mroute_do_pim ||
1859 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1860 time_after(jiffies,
1861 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1862 cache->mfc_un.res.last_assert = jiffies;
1863 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1864 }
1865 goto dont_forward;
1866 }
1867
1868 forward:
1869 mrt->vif_table[vif].pkt_in++;
1870 mrt->vif_table[vif].bytes_in += skb->len;
1871
1872 /* Forward the frame */
1873 if (cache->mfc_origin == htonl(INADDR_ANY) &&
1874 cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1875 if (true_vifi >= 0 &&
1876 true_vifi != cache->mfc_parent &&
1877 ip_hdr(skb)->ttl >
1878 cache->mfc_un.res.ttls[cache->mfc_parent]) {
1879 /* It's an (*,*) entry and the packet is not coming from
1880 * the upstream: forward the packet to the upstream
1881 * only.
1882 */
1883 psend = cache->mfc_parent;
1884 goto last_forward;
1885 }
1886 goto dont_forward;
1887 }
1888 for (ct = cache->mfc_un.res.maxvif - 1;
1889 ct >= cache->mfc_un.res.minvif; ct--) {
1890 /* For (*,G) entry, don't forward to the incoming interface */
1891 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1892 ct != true_vifi) &&
1893 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1894 if (psend != -1) {
1895 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1896
1897 if (skb2)
1898 ipmr_queue_xmit(net, mrt, skb2, cache,
1899 psend);
1900 }
1901 psend = ct;
1902 }
1903 }
1904 last_forward:
1905 if (psend != -1) {
1906 if (local) {
1907 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1908
1909 if (skb2)
1910 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1911 } else {
1912 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1913 return;
1914 }
1915 }
1916
1917 dont_forward:
1918 if (!local)
1919 kfree_skb(skb);
1920 }
1921
1922 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1923 {
1924 struct rtable *rt = skb_rtable(skb);
1925 struct iphdr *iph = ip_hdr(skb);
1926 struct flowi4 fl4 = {
1927 .daddr = iph->daddr,
1928 .saddr = iph->saddr,
1929 .flowi4_tos = RT_TOS(iph->tos),
1930 .flowi4_oif = (rt_is_output_route(rt) ?
1931 skb->dev->ifindex : 0),
1932 .flowi4_iif = (rt_is_output_route(rt) ?
1933 LOOPBACK_IFINDEX :
1934 skb->dev->ifindex),
1935 .flowi4_mark = skb->mark,
1936 };
1937 struct mr_table *mrt;
1938 int err;
1939
1940 err = ipmr_fib_lookup(net, &fl4, &mrt);
1941 if (err)
1942 return ERR_PTR(err);
1943 return mrt;
1944 }
1945
1946 /* Multicast packets for forwarding arrive here
1947 * Called with rcu_read_lock();
1948 */
1949 int ip_mr_input(struct sk_buff *skb)
1950 {
1951 struct mfc_cache *cache;
1952 struct net *net = dev_net(skb->dev);
1953 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1954 struct mr_table *mrt;
1955
1956 /* Packet is looped back after forward, it should not be
1957 * forwarded second time, but still can be delivered locally.
1958 */
1959 if (IPCB(skb)->flags & IPSKB_FORWARDED)
1960 goto dont_forward;
1961
1962 mrt = ipmr_rt_fib_lookup(net, skb);
1963 if (IS_ERR(mrt)) {
1964 kfree_skb(skb);
1965 return PTR_ERR(mrt);
1966 }
1967 if (!local) {
1968 if (IPCB(skb)->opt.router_alert) {
1969 if (ip_call_ra_chain(skb))
1970 return 0;
1971 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1972 /* IGMPv1 (and broken IGMPv2 implementations sort of
1973 * Cisco IOS <= 11.2(8)) do not put router alert
1974 * option to IGMP packets destined to routable
1975 * groups. It is very bad, because it means
1976 * that we can forward NO IGMP messages.
1977 */
1978 struct sock *mroute_sk;
1979
1980 mroute_sk = rcu_dereference(mrt->mroute_sk);
1981 if (mroute_sk) {
1982 nf_reset(skb);
1983 raw_rcv(mroute_sk, skb);
1984 return 0;
1985 }
1986 }
1987 }
1988
1989 /* already under rcu_read_lock() */
1990 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1991 if (!cache) {
1992 int vif = ipmr_find_vif(mrt, skb->dev);
1993
1994 if (vif >= 0)
1995 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1996 vif);
1997 }
1998
1999 /* No usable cache entry */
2000 if (!cache) {
2001 int vif;
2002
2003 if (local) {
2004 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2005 ip_local_deliver(skb);
2006 if (!skb2)
2007 return -ENOBUFS;
2008 skb = skb2;
2009 }
2010
2011 read_lock(&mrt_lock);
2012 vif = ipmr_find_vif(mrt, skb->dev);
2013 if (vif >= 0) {
2014 int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2015 read_unlock(&mrt_lock);
2016
2017 return err2;
2018 }
2019 read_unlock(&mrt_lock);
2020 kfree_skb(skb);
2021 return -ENODEV;
2022 }
2023
2024 read_lock(&mrt_lock);
2025 ip_mr_forward(net, mrt, skb, cache, local);
2026 read_unlock(&mrt_lock);
2027
2028 if (local)
2029 return ip_local_deliver(skb);
2030
2031 return 0;
2032
2033 dont_forward:
2034 if (local)
2035 return ip_local_deliver(skb);
2036 kfree_skb(skb);
2037 return 0;
2038 }
2039
2040 #ifdef CONFIG_IP_PIMSM_V1
2041 /* Handle IGMP messages of PIMv1 */
2042 int pim_rcv_v1(struct sk_buff *skb)
2043 {
2044 struct igmphdr *pim;
2045 struct net *net = dev_net(skb->dev);
2046 struct mr_table *mrt;
2047
2048 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2049 goto drop;
2050
2051 pim = igmp_hdr(skb);
2052
2053 mrt = ipmr_rt_fib_lookup(net, skb);
2054 if (IS_ERR(mrt))
2055 goto drop;
2056 if (!mrt->mroute_do_pim ||
2057 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2058 goto drop;
2059
2060 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2061 drop:
2062 kfree_skb(skb);
2063 }
2064 return 0;
2065 }
2066 #endif
2067
2068 #ifdef CONFIG_IP_PIMSM_V2
2069 static int pim_rcv(struct sk_buff *skb)
2070 {
2071 struct pimreghdr *pim;
2072 struct net *net = dev_net(skb->dev);
2073 struct mr_table *mrt;
2074
2075 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2076 goto drop;
2077
2078 pim = (struct pimreghdr *)skb_transport_header(skb);
2079 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2080 (pim->flags & PIM_NULL_REGISTER) ||
2081 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2082 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2083 goto drop;
2084
2085 mrt = ipmr_rt_fib_lookup(net, skb);
2086 if (IS_ERR(mrt))
2087 goto drop;
2088 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2089 drop:
2090 kfree_skb(skb);
2091 }
2092 return 0;
2093 }
2094 #endif
2095
2096 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2097 struct mfc_cache *c, struct rtmsg *rtm)
2098 {
2099 int ct;
2100 struct rtnexthop *nhp;
2101 struct nlattr *mp_attr;
2102 struct rta_mfc_stats mfcs;
2103
2104 /* If cache is unresolved, don't try to parse IIF and OIF */
2105 if (c->mfc_parent >= MAXVIFS)
2106 return -ENOENT;
2107
2108 if (VIF_EXISTS(mrt, c->mfc_parent) &&
2109 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2110 return -EMSGSIZE;
2111
2112 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2113 return -EMSGSIZE;
2114
2115 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2116 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2117 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2118 nla_nest_cancel(skb, mp_attr);
2119 return -EMSGSIZE;
2120 }
2121
2122 nhp->rtnh_flags = 0;
2123 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2124 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2125 nhp->rtnh_len = sizeof(*nhp);
2126 }
2127 }
2128
2129 nla_nest_end(skb, mp_attr);
2130
2131 mfcs.mfcs_packets = c->mfc_un.res.pkt;
2132 mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2133 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2134 if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2135 return -EMSGSIZE;
2136
2137 rtm->rtm_type = RTN_MULTICAST;
2138 return 1;
2139 }
2140
2141 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2142 __be32 saddr, __be32 daddr,
2143 struct rtmsg *rtm, int nowait)
2144 {
2145 struct mfc_cache *cache;
2146 struct mr_table *mrt;
2147 int err;
2148
2149 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2150 if (!mrt)
2151 return -ENOENT;
2152
2153 rcu_read_lock();
2154 cache = ipmr_cache_find(mrt, saddr, daddr);
2155 if (!cache && skb->dev) {
2156 int vif = ipmr_find_vif(mrt, skb->dev);
2157
2158 if (vif >= 0)
2159 cache = ipmr_cache_find_any(mrt, daddr, vif);
2160 }
2161 if (!cache) {
2162 struct sk_buff *skb2;
2163 struct iphdr *iph;
2164 struct net_device *dev;
2165 int vif = -1;
2166
2167 if (nowait) {
2168 rcu_read_unlock();
2169 return -EAGAIN;
2170 }
2171
2172 dev = skb->dev;
2173 read_lock(&mrt_lock);
2174 if (dev)
2175 vif = ipmr_find_vif(mrt, dev);
2176 if (vif < 0) {
2177 read_unlock(&mrt_lock);
2178 rcu_read_unlock();
2179 return -ENODEV;
2180 }
2181 skb2 = skb_clone(skb, GFP_ATOMIC);
2182 if (!skb2) {
2183 read_unlock(&mrt_lock);
2184 rcu_read_unlock();
2185 return -ENOMEM;
2186 }
2187
2188 skb_push(skb2, sizeof(struct iphdr));
2189 skb_reset_network_header(skb2);
2190 iph = ip_hdr(skb2);
2191 iph->ihl = sizeof(struct iphdr) >> 2;
2192 iph->saddr = saddr;
2193 iph->daddr = daddr;
2194 iph->version = 0;
2195 err = ipmr_cache_unresolved(mrt, vif, skb2);
2196 read_unlock(&mrt_lock);
2197 rcu_read_unlock();
2198 return err;
2199 }
2200
2201 read_lock(&mrt_lock);
2202 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2203 cache->mfc_flags |= MFC_NOTIFY;
2204 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2205 read_unlock(&mrt_lock);
2206 rcu_read_unlock();
2207 return err;
2208 }
2209
2210 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2211 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2212 int flags)
2213 {
2214 struct nlmsghdr *nlh;
2215 struct rtmsg *rtm;
2216 int err;
2217
2218 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2219 if (!nlh)
2220 return -EMSGSIZE;
2221
2222 rtm = nlmsg_data(nlh);
2223 rtm->rtm_family = RTNL_FAMILY_IPMR;
2224 rtm->rtm_dst_len = 32;
2225 rtm->rtm_src_len = 32;
2226 rtm->rtm_tos = 0;
2227 rtm->rtm_table = mrt->id;
2228 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2229 goto nla_put_failure;
2230 rtm->rtm_type = RTN_MULTICAST;
2231 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2232 if (c->mfc_flags & MFC_STATIC)
2233 rtm->rtm_protocol = RTPROT_STATIC;
2234 else
2235 rtm->rtm_protocol = RTPROT_MROUTED;
2236 rtm->rtm_flags = 0;
2237
2238 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2239 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2240 goto nla_put_failure;
2241 err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2242 /* do not break the dump if cache is unresolved */
2243 if (err < 0 && err != -ENOENT)
2244 goto nla_put_failure;
2245
2246 nlmsg_end(skb, nlh);
2247 return 0;
2248
2249 nla_put_failure:
2250 nlmsg_cancel(skb, nlh);
2251 return -EMSGSIZE;
2252 }
2253
2254 static size_t mroute_msgsize(bool unresolved, int maxvif)
2255 {
2256 size_t len =
2257 NLMSG_ALIGN(sizeof(struct rtmsg))
2258 + nla_total_size(4) /* RTA_TABLE */
2259 + nla_total_size(4) /* RTA_SRC */
2260 + nla_total_size(4) /* RTA_DST */
2261 ;
2262
2263 if (!unresolved)
2264 len = len
2265 + nla_total_size(4) /* RTA_IIF */
2266 + nla_total_size(0) /* RTA_MULTIPATH */
2267 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2268 /* RTA_MFC_STATS */
2269 + nla_total_size(sizeof(struct rta_mfc_stats))
2270 ;
2271
2272 return len;
2273 }
2274
2275 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2276 int cmd)
2277 {
2278 struct net *net = read_pnet(&mrt->net);
2279 struct sk_buff *skb;
2280 int err = -ENOBUFS;
2281
2282 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2283 GFP_ATOMIC);
2284 if (!skb)
2285 goto errout;
2286
2287 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2288 if (err < 0)
2289 goto errout;
2290
2291 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2292 return;
2293
2294 errout:
2295 kfree_skb(skb);
2296 if (err < 0)
2297 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2298 }
2299
2300 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2301 {
2302 struct net *net = sock_net(skb->sk);
2303 struct mr_table *mrt;
2304 struct mfc_cache *mfc;
2305 unsigned int t = 0, s_t;
2306 unsigned int h = 0, s_h;
2307 unsigned int e = 0, s_e;
2308
2309 s_t = cb->args[0];
2310 s_h = cb->args[1];
2311 s_e = cb->args[2];
2312
2313 rcu_read_lock();
2314 ipmr_for_each_table(mrt, net) {
2315 if (t < s_t)
2316 goto next_table;
2317 if (t > s_t)
2318 s_h = 0;
2319 for (h = s_h; h < MFC_LINES; h++) {
2320 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2321 if (e < s_e)
2322 goto next_entry;
2323 if (ipmr_fill_mroute(mrt, skb,
2324 NETLINK_CB(cb->skb).portid,
2325 cb->nlh->nlmsg_seq,
2326 mfc, RTM_NEWROUTE,
2327 NLM_F_MULTI) < 0)
2328 goto done;
2329 next_entry:
2330 e++;
2331 }
2332 e = s_e = 0;
2333 }
2334 spin_lock_bh(&mfc_unres_lock);
2335 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2336 if (e < s_e)
2337 goto next_entry2;
2338 if (ipmr_fill_mroute(mrt, skb,
2339 NETLINK_CB(cb->skb).portid,
2340 cb->nlh->nlmsg_seq,
2341 mfc, RTM_NEWROUTE,
2342 NLM_F_MULTI) < 0) {
2343 spin_unlock_bh(&mfc_unres_lock);
2344 goto done;
2345 }
2346 next_entry2:
2347 e++;
2348 }
2349 spin_unlock_bh(&mfc_unres_lock);
2350 e = s_e = 0;
2351 s_h = 0;
2352 next_table:
2353 t++;
2354 }
2355 done:
2356 rcu_read_unlock();
2357
2358 cb->args[2] = e;
2359 cb->args[1] = h;
2360 cb->args[0] = t;
2361
2362 return skb->len;
2363 }
2364
2365 #ifdef CONFIG_PROC_FS
2366 /* The /proc interfaces to multicast routing :
2367 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2368 */
2369 struct ipmr_vif_iter {
2370 struct seq_net_private p;
2371 struct mr_table *mrt;
2372 int ct;
2373 };
2374
2375 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2376 struct ipmr_vif_iter *iter,
2377 loff_t pos)
2378 {
2379 struct mr_table *mrt = iter->mrt;
2380
2381 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2382 if (!VIF_EXISTS(mrt, iter->ct))
2383 continue;
2384 if (pos-- == 0)
2385 return &mrt->vif_table[iter->ct];
2386 }
2387 return NULL;
2388 }
2389
2390 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2391 __acquires(mrt_lock)
2392 {
2393 struct ipmr_vif_iter *iter = seq->private;
2394 struct net *net = seq_file_net(seq);
2395 struct mr_table *mrt;
2396
2397 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2398 if (!mrt)
2399 return ERR_PTR(-ENOENT);
2400
2401 iter->mrt = mrt;
2402
2403 read_lock(&mrt_lock);
2404 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2405 : SEQ_START_TOKEN;
2406 }
2407
2408 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2409 {
2410 struct ipmr_vif_iter *iter = seq->private;
2411 struct net *net = seq_file_net(seq);
2412 struct mr_table *mrt = iter->mrt;
2413
2414 ++*pos;
2415 if (v == SEQ_START_TOKEN)
2416 return ipmr_vif_seq_idx(net, iter, 0);
2417
2418 while (++iter->ct < mrt->maxvif) {
2419 if (!VIF_EXISTS(mrt, iter->ct))
2420 continue;
2421 return &mrt->vif_table[iter->ct];
2422 }
2423 return NULL;
2424 }
2425
2426 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2427 __releases(mrt_lock)
2428 {
2429 read_unlock(&mrt_lock);
2430 }
2431
2432 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2433 {
2434 struct ipmr_vif_iter *iter = seq->private;
2435 struct mr_table *mrt = iter->mrt;
2436
2437 if (v == SEQ_START_TOKEN) {
2438 seq_puts(seq,
2439 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2440 } else {
2441 const struct vif_device *vif = v;
2442 const char *name = vif->dev ? vif->dev->name : "none";
2443
2444 seq_printf(seq,
2445 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2446 vif - mrt->vif_table,
2447 name, vif->bytes_in, vif->pkt_in,
2448 vif->bytes_out, vif->pkt_out,
2449 vif->flags, vif->local, vif->remote);
2450 }
2451 return 0;
2452 }
2453
2454 static const struct seq_operations ipmr_vif_seq_ops = {
2455 .start = ipmr_vif_seq_start,
2456 .next = ipmr_vif_seq_next,
2457 .stop = ipmr_vif_seq_stop,
2458 .show = ipmr_vif_seq_show,
2459 };
2460
2461 static int ipmr_vif_open(struct inode *inode, struct file *file)
2462 {
2463 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2464 sizeof(struct ipmr_vif_iter));
2465 }
2466
2467 static const struct file_operations ipmr_vif_fops = {
2468 .owner = THIS_MODULE,
2469 .open = ipmr_vif_open,
2470 .read = seq_read,
2471 .llseek = seq_lseek,
2472 .release = seq_release_net,
2473 };
2474
2475 struct ipmr_mfc_iter {
2476 struct seq_net_private p;
2477 struct mr_table *mrt;
2478 struct list_head *cache;
2479 int ct;
2480 };
2481
2482
2483 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2484 struct ipmr_mfc_iter *it, loff_t pos)
2485 {
2486 struct mr_table *mrt = it->mrt;
2487 struct mfc_cache *mfc;
2488
2489 rcu_read_lock();
2490 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2491 it->cache = &mrt->mfc_cache_array[it->ct];
2492 list_for_each_entry_rcu(mfc, it->cache, list)
2493 if (pos-- == 0)
2494 return mfc;
2495 }
2496 rcu_read_unlock();
2497
2498 spin_lock_bh(&mfc_unres_lock);
2499 it->cache = &mrt->mfc_unres_queue;
2500 list_for_each_entry(mfc, it->cache, list)
2501 if (pos-- == 0)
2502 return mfc;
2503 spin_unlock_bh(&mfc_unres_lock);
2504
2505 it->cache = NULL;
2506 return NULL;
2507 }
2508
2509
2510 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2511 {
2512 struct ipmr_mfc_iter *it = seq->private;
2513 struct net *net = seq_file_net(seq);
2514 struct mr_table *mrt;
2515
2516 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2517 if (!mrt)
2518 return ERR_PTR(-ENOENT);
2519
2520 it->mrt = mrt;
2521 it->cache = NULL;
2522 it->ct = 0;
2523 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2524 : SEQ_START_TOKEN;
2525 }
2526
2527 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2528 {
2529 struct mfc_cache *mfc = v;
2530 struct ipmr_mfc_iter *it = seq->private;
2531 struct net *net = seq_file_net(seq);
2532 struct mr_table *mrt = it->mrt;
2533
2534 ++*pos;
2535
2536 if (v == SEQ_START_TOKEN)
2537 return ipmr_mfc_seq_idx(net, seq->private, 0);
2538
2539 if (mfc->list.next != it->cache)
2540 return list_entry(mfc->list.next, struct mfc_cache, list);
2541
2542 if (it->cache == &mrt->mfc_unres_queue)
2543 goto end_of_list;
2544
2545 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2546
2547 while (++it->ct < MFC_LINES) {
2548 it->cache = &mrt->mfc_cache_array[it->ct];
2549 if (list_empty(it->cache))
2550 continue;
2551 return list_first_entry(it->cache, struct mfc_cache, list);
2552 }
2553
2554 /* exhausted cache_array, show unresolved */
2555 rcu_read_unlock();
2556 it->cache = &mrt->mfc_unres_queue;
2557 it->ct = 0;
2558
2559 spin_lock_bh(&mfc_unres_lock);
2560 if (!list_empty(it->cache))
2561 return list_first_entry(it->cache, struct mfc_cache, list);
2562
2563 end_of_list:
2564 spin_unlock_bh(&mfc_unres_lock);
2565 it->cache = NULL;
2566
2567 return NULL;
2568 }
2569
2570 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2571 {
2572 struct ipmr_mfc_iter *it = seq->private;
2573 struct mr_table *mrt = it->mrt;
2574
2575 if (it->cache == &mrt->mfc_unres_queue)
2576 spin_unlock_bh(&mfc_unres_lock);
2577 else if (it->cache == &mrt->mfc_cache_array[it->ct])
2578 rcu_read_unlock();
2579 }
2580
2581 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2582 {
2583 int n;
2584
2585 if (v == SEQ_START_TOKEN) {
2586 seq_puts(seq,
2587 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2588 } else {
2589 const struct mfc_cache *mfc = v;
2590 const struct ipmr_mfc_iter *it = seq->private;
2591 const struct mr_table *mrt = it->mrt;
2592
2593 seq_printf(seq, "%08X %08X %-3hd",
2594 (__force u32) mfc->mfc_mcastgrp,
2595 (__force u32) mfc->mfc_origin,
2596 mfc->mfc_parent);
2597
2598 if (it->cache != &mrt->mfc_unres_queue) {
2599 seq_printf(seq, " %8lu %8lu %8lu",
2600 mfc->mfc_un.res.pkt,
2601 mfc->mfc_un.res.bytes,
2602 mfc->mfc_un.res.wrong_if);
2603 for (n = mfc->mfc_un.res.minvif;
2604 n < mfc->mfc_un.res.maxvif; n++) {
2605 if (VIF_EXISTS(mrt, n) &&
2606 mfc->mfc_un.res.ttls[n] < 255)
2607 seq_printf(seq,
2608 " %2d:%-3d",
2609 n, mfc->mfc_un.res.ttls[n]);
2610 }
2611 } else {
2612 /* unresolved mfc_caches don't contain
2613 * pkt, bytes and wrong_if values
2614 */
2615 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2616 }
2617 seq_putc(seq, '\n');
2618 }
2619 return 0;
2620 }
2621
2622 static const struct seq_operations ipmr_mfc_seq_ops = {
2623 .start = ipmr_mfc_seq_start,
2624 .next = ipmr_mfc_seq_next,
2625 .stop = ipmr_mfc_seq_stop,
2626 .show = ipmr_mfc_seq_show,
2627 };
2628
2629 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2630 {
2631 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2632 sizeof(struct ipmr_mfc_iter));
2633 }
2634
2635 static const struct file_operations ipmr_mfc_fops = {
2636 .owner = THIS_MODULE,
2637 .open = ipmr_mfc_open,
2638 .read = seq_read,
2639 .llseek = seq_lseek,
2640 .release = seq_release_net,
2641 };
2642 #endif
2643
2644 #ifdef CONFIG_IP_PIMSM_V2
2645 static const struct net_protocol pim_protocol = {
2646 .handler = pim_rcv,
2647 .netns_ok = 1,
2648 };
2649 #endif
2650
2651 /* Setup for IP multicast routing */
2652 static int __net_init ipmr_net_init(struct net *net)
2653 {
2654 int err;
2655
2656 err = ipmr_rules_init(net);
2657 if (err < 0)
2658 goto fail;
2659
2660 #ifdef CONFIG_PROC_FS
2661 err = -ENOMEM;
2662 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2663 goto proc_vif_fail;
2664 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2665 goto proc_cache_fail;
2666 #endif
2667 return 0;
2668
2669 #ifdef CONFIG_PROC_FS
2670 proc_cache_fail:
2671 remove_proc_entry("ip_mr_vif", net->proc_net);
2672 proc_vif_fail:
2673 ipmr_rules_exit(net);
2674 #endif
2675 fail:
2676 return err;
2677 }
2678
2679 static void __net_exit ipmr_net_exit(struct net *net)
2680 {
2681 #ifdef CONFIG_PROC_FS
2682 remove_proc_entry("ip_mr_cache", net->proc_net);
2683 remove_proc_entry("ip_mr_vif", net->proc_net);
2684 #endif
2685 ipmr_rules_exit(net);
2686 }
2687
2688 static struct pernet_operations ipmr_net_ops = {
2689 .init = ipmr_net_init,
2690 .exit = ipmr_net_exit,
2691 };
2692
2693 int __init ip_mr_init(void)
2694 {
2695 int err;
2696
2697 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2698 sizeof(struct mfc_cache),
2699 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2700 NULL);
2701
2702 err = register_pernet_subsys(&ipmr_net_ops);
2703 if (err)
2704 goto reg_pernet_fail;
2705
2706 err = register_netdevice_notifier(&ip_mr_notifier);
2707 if (err)
2708 goto reg_notif_fail;
2709 #ifdef CONFIG_IP_PIMSM_V2
2710 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2711 pr_err("%s: can't add PIM protocol\n", __func__);
2712 err = -EAGAIN;
2713 goto add_proto_fail;
2714 }
2715 #endif
2716 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2717 NULL, ipmr_rtm_dumproute, NULL);
2718 return 0;
2719
2720 #ifdef CONFIG_IP_PIMSM_V2
2721 add_proto_fail:
2722 unregister_netdevice_notifier(&ip_mr_notifier);
2723 #endif
2724 reg_notif_fail:
2725 unregister_pernet_subsys(&ipmr_net_ops);
2726 reg_pernet_fail:
2727 kmem_cache_destroy(mrt_cachep);
2728 return err;
2729 }
This page took 0.089742 seconds and 5 git commands to generate.