[netdrvr] Fix 8390 build breakage
[deliverable/linux.git] / net / ipv4 / ipmr.c
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@redhat.com>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Version: $Id: ipmr.c,v 1.65 2001/10/31 21:55:54 davem Exp $
13 *
14 * Fixes:
15 * Michael Chastain : Incorrect size of copying.
16 * Alan Cox : Added the cache manager code
17 * Alan Cox : Fixed the clone/copy bug and device race.
18 * Mike McLagan : Routing by source
19 * Malcolm Beattie : Buffer handling fixes.
20 * Alexey Kuznetsov : Double buffer free and other fixes.
21 * SVR Anand : Fixed several multicast bugs and problems.
22 * Alexey Kuznetsov : Status, optimisations and more.
23 * Brad Parker : Better behaviour on mrouted upcall
24 * overflow.
25 * Carlos Picoto : PIMv1 Support
26 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
27 * Relax this requrement to work with older peers.
28 *
29 */
30
31 #include <asm/system.h>
32 #include <asm/uaccess.h>
33 #include <linux/types.h>
34 #include <linux/capability.h>
35 #include <linux/errno.h>
36 #include <linux/timer.h>
37 #include <linux/mm.h>
38 #include <linux/kernel.h>
39 #include <linux/fcntl.h>
40 #include <linux/stat.h>
41 #include <linux/socket.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/netdevice.h>
45 #include <linux/inetdevice.h>
46 #include <linux/igmp.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/mroute.h>
50 #include <linux/init.h>
51 #include <linux/if_ether.h>
52 #include <net/net_namespace.h>
53 #include <net/ip.h>
54 #include <net/protocol.h>
55 #include <linux/skbuff.h>
56 #include <net/route.h>
57 #include <net/sock.h>
58 #include <net/icmp.h>
59 #include <net/udp.h>
60 #include <net/raw.h>
61 #include <linux/notifier.h>
62 #include <linux/if_arp.h>
63 #include <linux/netfilter_ipv4.h>
64 #include <net/ipip.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67
68 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
69 #define CONFIG_IP_PIMSM 1
70 #endif
71
72 static struct sock *mroute_socket;
73
74
75 /* Big lock, protecting vif table, mrt cache and mroute socket state.
76 Note that the changes are semaphored via rtnl_lock.
77 */
78
79 static DEFINE_RWLOCK(mrt_lock);
80
81 /*
82 * Multicast router control variables
83 */
84
85 static struct vif_device vif_table[MAXVIFS]; /* Devices */
86 static int maxvif;
87
88 #define VIF_EXISTS(idx) (vif_table[idx].dev != NULL)
89
90 static int mroute_do_assert; /* Set in PIM assert */
91 static int mroute_do_pim;
92
93 static struct mfc_cache *mfc_cache_array[MFC_LINES]; /* Forwarding cache */
94
95 static struct mfc_cache *mfc_unres_queue; /* Queue of unresolved entries */
96 static atomic_t cache_resolve_queue_len; /* Size of unresolved */
97
98 /* Special spinlock for queue of unresolved entries */
99 static DEFINE_SPINLOCK(mfc_unres_lock);
100
101 /* We return to original Alan's scheme. Hash table of resolved
102 entries is changed only in process context and protected
103 with weak lock mrt_lock. Queue of unresolved entries is protected
104 with strong spinlock mfc_unres_lock.
105
106 In this case data path is free of exclusive locks at all.
107 */
108
109 static struct kmem_cache *mrt_cachep __read_mostly;
110
111 static int ip_mr_forward(struct sk_buff *skb, struct mfc_cache *cache, int local);
112 static int ipmr_cache_report(struct sk_buff *pkt, vifi_t vifi, int assert);
113 static int ipmr_fill_mroute(struct sk_buff *skb, struct mfc_cache *c, struct rtmsg *rtm);
114
115 #ifdef CONFIG_IP_PIMSM_V2
116 static struct net_protocol pim_protocol;
117 #endif
118
119 static struct timer_list ipmr_expire_timer;
120
121 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
122
123 static
124 struct net_device *ipmr_new_tunnel(struct vifctl *v)
125 {
126 struct net_device *dev;
127
128 dev = __dev_get_by_name(&init_net, "tunl0");
129
130 if (dev) {
131 int err;
132 struct ifreq ifr;
133 mm_segment_t oldfs;
134 struct ip_tunnel_parm p;
135 struct in_device *in_dev;
136
137 memset(&p, 0, sizeof(p));
138 p.iph.daddr = v->vifc_rmt_addr.s_addr;
139 p.iph.saddr = v->vifc_lcl_addr.s_addr;
140 p.iph.version = 4;
141 p.iph.ihl = 5;
142 p.iph.protocol = IPPROTO_IPIP;
143 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
144 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
145
146 oldfs = get_fs(); set_fs(KERNEL_DS);
147 err = dev->do_ioctl(dev, &ifr, SIOCADDTUNNEL);
148 set_fs(oldfs);
149
150 dev = NULL;
151
152 if (err == 0 && (dev = __dev_get_by_name(&init_net, p.name)) != NULL) {
153 dev->flags |= IFF_MULTICAST;
154
155 in_dev = __in_dev_get_rtnl(dev);
156 if (in_dev == NULL)
157 goto failure;
158
159 ipv4_devconf_setall(in_dev);
160 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
161
162 if (dev_open(dev))
163 goto failure;
164 }
165 }
166 return dev;
167
168 failure:
169 /* allow the register to be completed before unregistering. */
170 rtnl_unlock();
171 rtnl_lock();
172
173 unregister_netdevice(dev);
174 return NULL;
175 }
176
177 #ifdef CONFIG_IP_PIMSM
178
179 static int reg_vif_num = -1;
180
181 static int reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
182 {
183 read_lock(&mrt_lock);
184 dev->stats.tx_bytes += skb->len;
185 dev->stats.tx_packets++;
186 ipmr_cache_report(skb, reg_vif_num, IGMPMSG_WHOLEPKT);
187 read_unlock(&mrt_lock);
188 kfree_skb(skb);
189 return 0;
190 }
191
192 static void reg_vif_setup(struct net_device *dev)
193 {
194 dev->type = ARPHRD_PIMREG;
195 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
196 dev->flags = IFF_NOARP;
197 dev->hard_start_xmit = reg_vif_xmit;
198 dev->destructor = free_netdev;
199 }
200
201 static struct net_device *ipmr_reg_vif(void)
202 {
203 struct net_device *dev;
204 struct in_device *in_dev;
205
206 dev = alloc_netdev(0, "pimreg", reg_vif_setup);
207
208 if (dev == NULL)
209 return NULL;
210
211 if (register_netdevice(dev)) {
212 free_netdev(dev);
213 return NULL;
214 }
215 dev->iflink = 0;
216
217 rcu_read_lock();
218 if ((in_dev = __in_dev_get_rcu(dev)) == NULL) {
219 rcu_read_unlock();
220 goto failure;
221 }
222
223 ipv4_devconf_setall(in_dev);
224 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
225 rcu_read_unlock();
226
227 if (dev_open(dev))
228 goto failure;
229
230 return dev;
231
232 failure:
233 /* allow the register to be completed before unregistering. */
234 rtnl_unlock();
235 rtnl_lock();
236
237 unregister_netdevice(dev);
238 return NULL;
239 }
240 #endif
241
242 /*
243 * Delete a VIF entry
244 */
245
246 static int vif_delete(int vifi)
247 {
248 struct vif_device *v;
249 struct net_device *dev;
250 struct in_device *in_dev;
251
252 if (vifi < 0 || vifi >= maxvif)
253 return -EADDRNOTAVAIL;
254
255 v = &vif_table[vifi];
256
257 write_lock_bh(&mrt_lock);
258 dev = v->dev;
259 v->dev = NULL;
260
261 if (!dev) {
262 write_unlock_bh(&mrt_lock);
263 return -EADDRNOTAVAIL;
264 }
265
266 #ifdef CONFIG_IP_PIMSM
267 if (vifi == reg_vif_num)
268 reg_vif_num = -1;
269 #endif
270
271 if (vifi+1 == maxvif) {
272 int tmp;
273 for (tmp=vifi-1; tmp>=0; tmp--) {
274 if (VIF_EXISTS(tmp))
275 break;
276 }
277 maxvif = tmp+1;
278 }
279
280 write_unlock_bh(&mrt_lock);
281
282 dev_set_allmulti(dev, -1);
283
284 if ((in_dev = __in_dev_get_rtnl(dev)) != NULL) {
285 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
286 ip_rt_multicast_event(in_dev);
287 }
288
289 if (v->flags&(VIFF_TUNNEL|VIFF_REGISTER))
290 unregister_netdevice(dev);
291
292 dev_put(dev);
293 return 0;
294 }
295
296 /* Destroy an unresolved cache entry, killing queued skbs
297 and reporting error to netlink readers.
298 */
299
300 static void ipmr_destroy_unres(struct mfc_cache *c)
301 {
302 struct sk_buff *skb;
303 struct nlmsgerr *e;
304
305 atomic_dec(&cache_resolve_queue_len);
306
307 while ((skb=skb_dequeue(&c->mfc_un.unres.unresolved))) {
308 if (ip_hdr(skb)->version == 0) {
309 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
310 nlh->nlmsg_type = NLMSG_ERROR;
311 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
312 skb_trim(skb, nlh->nlmsg_len);
313 e = NLMSG_DATA(nlh);
314 e->error = -ETIMEDOUT;
315 memset(&e->msg, 0, sizeof(e->msg));
316
317 rtnl_unicast(skb, &init_net, NETLINK_CB(skb).pid);
318 } else
319 kfree_skb(skb);
320 }
321
322 kmem_cache_free(mrt_cachep, c);
323 }
324
325
326 /* Single timer process for all the unresolved queue. */
327
328 static void ipmr_expire_process(unsigned long dummy)
329 {
330 unsigned long now;
331 unsigned long expires;
332 struct mfc_cache *c, **cp;
333
334 if (!spin_trylock(&mfc_unres_lock)) {
335 mod_timer(&ipmr_expire_timer, jiffies+HZ/10);
336 return;
337 }
338
339 if (atomic_read(&cache_resolve_queue_len) == 0)
340 goto out;
341
342 now = jiffies;
343 expires = 10*HZ;
344 cp = &mfc_unres_queue;
345
346 while ((c=*cp) != NULL) {
347 if (time_after(c->mfc_un.unres.expires, now)) {
348 unsigned long interval = c->mfc_un.unres.expires - now;
349 if (interval < expires)
350 expires = interval;
351 cp = &c->next;
352 continue;
353 }
354
355 *cp = c->next;
356
357 ipmr_destroy_unres(c);
358 }
359
360 if (atomic_read(&cache_resolve_queue_len))
361 mod_timer(&ipmr_expire_timer, jiffies + expires);
362
363 out:
364 spin_unlock(&mfc_unres_lock);
365 }
366
367 /* Fill oifs list. It is called under write locked mrt_lock. */
368
369 static void ipmr_update_thresholds(struct mfc_cache *cache, unsigned char *ttls)
370 {
371 int vifi;
372
373 cache->mfc_un.res.minvif = MAXVIFS;
374 cache->mfc_un.res.maxvif = 0;
375 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
376
377 for (vifi=0; vifi<maxvif; vifi++) {
378 if (VIF_EXISTS(vifi) && ttls[vifi] && ttls[vifi] < 255) {
379 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
380 if (cache->mfc_un.res.minvif > vifi)
381 cache->mfc_un.res.minvif = vifi;
382 if (cache->mfc_un.res.maxvif <= vifi)
383 cache->mfc_un.res.maxvif = vifi + 1;
384 }
385 }
386 }
387
388 static int vif_add(struct vifctl *vifc, int mrtsock)
389 {
390 int vifi = vifc->vifc_vifi;
391 struct vif_device *v = &vif_table[vifi];
392 struct net_device *dev;
393 struct in_device *in_dev;
394
395 /* Is vif busy ? */
396 if (VIF_EXISTS(vifi))
397 return -EADDRINUSE;
398
399 switch (vifc->vifc_flags) {
400 #ifdef CONFIG_IP_PIMSM
401 case VIFF_REGISTER:
402 /*
403 * Special Purpose VIF in PIM
404 * All the packets will be sent to the daemon
405 */
406 if (reg_vif_num >= 0)
407 return -EADDRINUSE;
408 dev = ipmr_reg_vif();
409 if (!dev)
410 return -ENOBUFS;
411 break;
412 #endif
413 case VIFF_TUNNEL:
414 dev = ipmr_new_tunnel(vifc);
415 if (!dev)
416 return -ENOBUFS;
417 break;
418 case 0:
419 dev = ip_dev_find(&init_net, vifc->vifc_lcl_addr.s_addr);
420 if (!dev)
421 return -EADDRNOTAVAIL;
422 dev_put(dev);
423 break;
424 default:
425 return -EINVAL;
426 }
427
428 if ((in_dev = __in_dev_get_rtnl(dev)) == NULL)
429 return -EADDRNOTAVAIL;
430 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
431 dev_set_allmulti(dev, +1);
432 ip_rt_multicast_event(in_dev);
433
434 /*
435 * Fill in the VIF structures
436 */
437 v->rate_limit=vifc->vifc_rate_limit;
438 v->local=vifc->vifc_lcl_addr.s_addr;
439 v->remote=vifc->vifc_rmt_addr.s_addr;
440 v->flags=vifc->vifc_flags;
441 if (!mrtsock)
442 v->flags |= VIFF_STATIC;
443 v->threshold=vifc->vifc_threshold;
444 v->bytes_in = 0;
445 v->bytes_out = 0;
446 v->pkt_in = 0;
447 v->pkt_out = 0;
448 v->link = dev->ifindex;
449 if (v->flags&(VIFF_TUNNEL|VIFF_REGISTER))
450 v->link = dev->iflink;
451
452 /* And finish update writing critical data */
453 write_lock_bh(&mrt_lock);
454 dev_hold(dev);
455 v->dev=dev;
456 #ifdef CONFIG_IP_PIMSM
457 if (v->flags&VIFF_REGISTER)
458 reg_vif_num = vifi;
459 #endif
460 if (vifi+1 > maxvif)
461 maxvif = vifi+1;
462 write_unlock_bh(&mrt_lock);
463 return 0;
464 }
465
466 static struct mfc_cache *ipmr_cache_find(__be32 origin, __be32 mcastgrp)
467 {
468 int line=MFC_HASH(mcastgrp,origin);
469 struct mfc_cache *c;
470
471 for (c=mfc_cache_array[line]; c; c = c->next) {
472 if (c->mfc_origin==origin && c->mfc_mcastgrp==mcastgrp)
473 break;
474 }
475 return c;
476 }
477
478 /*
479 * Allocate a multicast cache entry
480 */
481 static struct mfc_cache *ipmr_cache_alloc(void)
482 {
483 struct mfc_cache *c=kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
484 if (c==NULL)
485 return NULL;
486 c->mfc_un.res.minvif = MAXVIFS;
487 return c;
488 }
489
490 static struct mfc_cache *ipmr_cache_alloc_unres(void)
491 {
492 struct mfc_cache *c=kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
493 if (c==NULL)
494 return NULL;
495 skb_queue_head_init(&c->mfc_un.unres.unresolved);
496 c->mfc_un.unres.expires = jiffies + 10*HZ;
497 return c;
498 }
499
500 /*
501 * A cache entry has gone into a resolved state from queued
502 */
503
504 static void ipmr_cache_resolve(struct mfc_cache *uc, struct mfc_cache *c)
505 {
506 struct sk_buff *skb;
507 struct nlmsgerr *e;
508
509 /*
510 * Play the pending entries through our router
511 */
512
513 while ((skb=__skb_dequeue(&uc->mfc_un.unres.unresolved))) {
514 if (ip_hdr(skb)->version == 0) {
515 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
516
517 if (ipmr_fill_mroute(skb, c, NLMSG_DATA(nlh)) > 0) {
518 nlh->nlmsg_len = (skb_tail_pointer(skb) -
519 (u8 *)nlh);
520 } else {
521 nlh->nlmsg_type = NLMSG_ERROR;
522 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
523 skb_trim(skb, nlh->nlmsg_len);
524 e = NLMSG_DATA(nlh);
525 e->error = -EMSGSIZE;
526 memset(&e->msg, 0, sizeof(e->msg));
527 }
528
529 rtnl_unicast(skb, &init_net, NETLINK_CB(skb).pid);
530 } else
531 ip_mr_forward(skb, c, 0);
532 }
533 }
534
535 /*
536 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
537 * expects the following bizarre scheme.
538 *
539 * Called under mrt_lock.
540 */
541
542 static int ipmr_cache_report(struct sk_buff *pkt, vifi_t vifi, int assert)
543 {
544 struct sk_buff *skb;
545 const int ihl = ip_hdrlen(pkt);
546 struct igmphdr *igmp;
547 struct igmpmsg *msg;
548 int ret;
549
550 #ifdef CONFIG_IP_PIMSM
551 if (assert == IGMPMSG_WHOLEPKT)
552 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
553 else
554 #endif
555 skb = alloc_skb(128, GFP_ATOMIC);
556
557 if (!skb)
558 return -ENOBUFS;
559
560 #ifdef CONFIG_IP_PIMSM
561 if (assert == IGMPMSG_WHOLEPKT) {
562 /* Ugly, but we have no choice with this interface.
563 Duplicate old header, fix ihl, length etc.
564 And all this only to mangle msg->im_msgtype and
565 to set msg->im_mbz to "mbz" :-)
566 */
567 skb_push(skb, sizeof(struct iphdr));
568 skb_reset_network_header(skb);
569 skb_reset_transport_header(skb);
570 msg = (struct igmpmsg *)skb_network_header(skb);
571 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
572 msg->im_msgtype = IGMPMSG_WHOLEPKT;
573 msg->im_mbz = 0;
574 msg->im_vif = reg_vif_num;
575 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
576 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
577 sizeof(struct iphdr));
578 } else
579 #endif
580 {
581
582 /*
583 * Copy the IP header
584 */
585
586 skb->network_header = skb->tail;
587 skb_put(skb, ihl);
588 skb_copy_to_linear_data(skb, pkt->data, ihl);
589 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
590 msg = (struct igmpmsg *)skb_network_header(skb);
591 msg->im_vif = vifi;
592 skb->dst = dst_clone(pkt->dst);
593
594 /*
595 * Add our header
596 */
597
598 igmp=(struct igmphdr *)skb_put(skb,sizeof(struct igmphdr));
599 igmp->type =
600 msg->im_msgtype = assert;
601 igmp->code = 0;
602 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
603 skb->transport_header = skb->network_header;
604 }
605
606 if (mroute_socket == NULL) {
607 kfree_skb(skb);
608 return -EINVAL;
609 }
610
611 /*
612 * Deliver to mrouted
613 */
614 if ((ret=sock_queue_rcv_skb(mroute_socket,skb))<0) {
615 if (net_ratelimit())
616 printk(KERN_WARNING "mroute: pending queue full, dropping entries.\n");
617 kfree_skb(skb);
618 }
619
620 return ret;
621 }
622
623 /*
624 * Queue a packet for resolution. It gets locked cache entry!
625 */
626
627 static int
628 ipmr_cache_unresolved(vifi_t vifi, struct sk_buff *skb)
629 {
630 int err;
631 struct mfc_cache *c;
632 const struct iphdr *iph = ip_hdr(skb);
633
634 spin_lock_bh(&mfc_unres_lock);
635 for (c=mfc_unres_queue; c; c=c->next) {
636 if (c->mfc_mcastgrp == iph->daddr &&
637 c->mfc_origin == iph->saddr)
638 break;
639 }
640
641 if (c == NULL) {
642 /*
643 * Create a new entry if allowable
644 */
645
646 if (atomic_read(&cache_resolve_queue_len)>=10 ||
647 (c=ipmr_cache_alloc_unres())==NULL) {
648 spin_unlock_bh(&mfc_unres_lock);
649
650 kfree_skb(skb);
651 return -ENOBUFS;
652 }
653
654 /*
655 * Fill in the new cache entry
656 */
657 c->mfc_parent = -1;
658 c->mfc_origin = iph->saddr;
659 c->mfc_mcastgrp = iph->daddr;
660
661 /*
662 * Reflect first query at mrouted.
663 */
664 if ((err = ipmr_cache_report(skb, vifi, IGMPMSG_NOCACHE))<0) {
665 /* If the report failed throw the cache entry
666 out - Brad Parker
667 */
668 spin_unlock_bh(&mfc_unres_lock);
669
670 kmem_cache_free(mrt_cachep, c);
671 kfree_skb(skb);
672 return err;
673 }
674
675 atomic_inc(&cache_resolve_queue_len);
676 c->next = mfc_unres_queue;
677 mfc_unres_queue = c;
678
679 mod_timer(&ipmr_expire_timer, c->mfc_un.unres.expires);
680 }
681
682 /*
683 * See if we can append the packet
684 */
685 if (c->mfc_un.unres.unresolved.qlen>3) {
686 kfree_skb(skb);
687 err = -ENOBUFS;
688 } else {
689 skb_queue_tail(&c->mfc_un.unres.unresolved,skb);
690 err = 0;
691 }
692
693 spin_unlock_bh(&mfc_unres_lock);
694 return err;
695 }
696
697 /*
698 * MFC cache manipulation by user space mroute daemon
699 */
700
701 static int ipmr_mfc_delete(struct mfcctl *mfc)
702 {
703 int line;
704 struct mfc_cache *c, **cp;
705
706 line=MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
707
708 for (cp=&mfc_cache_array[line]; (c=*cp) != NULL; cp = &c->next) {
709 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
710 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
711 write_lock_bh(&mrt_lock);
712 *cp = c->next;
713 write_unlock_bh(&mrt_lock);
714
715 kmem_cache_free(mrt_cachep, c);
716 return 0;
717 }
718 }
719 return -ENOENT;
720 }
721
722 static int ipmr_mfc_add(struct mfcctl *mfc, int mrtsock)
723 {
724 int line;
725 struct mfc_cache *uc, *c, **cp;
726
727 line=MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
728
729 for (cp=&mfc_cache_array[line]; (c=*cp) != NULL; cp = &c->next) {
730 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
731 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr)
732 break;
733 }
734
735 if (c != NULL) {
736 write_lock_bh(&mrt_lock);
737 c->mfc_parent = mfc->mfcc_parent;
738 ipmr_update_thresholds(c, mfc->mfcc_ttls);
739 if (!mrtsock)
740 c->mfc_flags |= MFC_STATIC;
741 write_unlock_bh(&mrt_lock);
742 return 0;
743 }
744
745 if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
746 return -EINVAL;
747
748 c=ipmr_cache_alloc();
749 if (c==NULL)
750 return -ENOMEM;
751
752 c->mfc_origin=mfc->mfcc_origin.s_addr;
753 c->mfc_mcastgrp=mfc->mfcc_mcastgrp.s_addr;
754 c->mfc_parent=mfc->mfcc_parent;
755 ipmr_update_thresholds(c, mfc->mfcc_ttls);
756 if (!mrtsock)
757 c->mfc_flags |= MFC_STATIC;
758
759 write_lock_bh(&mrt_lock);
760 c->next = mfc_cache_array[line];
761 mfc_cache_array[line] = c;
762 write_unlock_bh(&mrt_lock);
763
764 /*
765 * Check to see if we resolved a queued list. If so we
766 * need to send on the frames and tidy up.
767 */
768 spin_lock_bh(&mfc_unres_lock);
769 for (cp = &mfc_unres_queue; (uc=*cp) != NULL;
770 cp = &uc->next) {
771 if (uc->mfc_origin == c->mfc_origin &&
772 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
773 *cp = uc->next;
774 if (atomic_dec_and_test(&cache_resolve_queue_len))
775 del_timer(&ipmr_expire_timer);
776 break;
777 }
778 }
779 spin_unlock_bh(&mfc_unres_lock);
780
781 if (uc) {
782 ipmr_cache_resolve(uc, c);
783 kmem_cache_free(mrt_cachep, uc);
784 }
785 return 0;
786 }
787
788 /*
789 * Close the multicast socket, and clear the vif tables etc
790 */
791
792 static void mroute_clean_tables(struct sock *sk)
793 {
794 int i;
795
796 /*
797 * Shut down all active vif entries
798 */
799 for (i=0; i<maxvif; i++) {
800 if (!(vif_table[i].flags&VIFF_STATIC))
801 vif_delete(i);
802 }
803
804 /*
805 * Wipe the cache
806 */
807 for (i=0;i<MFC_LINES;i++) {
808 struct mfc_cache *c, **cp;
809
810 cp = &mfc_cache_array[i];
811 while ((c = *cp) != NULL) {
812 if (c->mfc_flags&MFC_STATIC) {
813 cp = &c->next;
814 continue;
815 }
816 write_lock_bh(&mrt_lock);
817 *cp = c->next;
818 write_unlock_bh(&mrt_lock);
819
820 kmem_cache_free(mrt_cachep, c);
821 }
822 }
823
824 if (atomic_read(&cache_resolve_queue_len) != 0) {
825 struct mfc_cache *c;
826
827 spin_lock_bh(&mfc_unres_lock);
828 while (mfc_unres_queue != NULL) {
829 c = mfc_unres_queue;
830 mfc_unres_queue = c->next;
831 spin_unlock_bh(&mfc_unres_lock);
832
833 ipmr_destroy_unres(c);
834
835 spin_lock_bh(&mfc_unres_lock);
836 }
837 spin_unlock_bh(&mfc_unres_lock);
838 }
839 }
840
841 static void mrtsock_destruct(struct sock *sk)
842 {
843 rtnl_lock();
844 if (sk == mroute_socket) {
845 IPV4_DEVCONF_ALL(sock_net(sk), MC_FORWARDING)--;
846
847 write_lock_bh(&mrt_lock);
848 mroute_socket=NULL;
849 write_unlock_bh(&mrt_lock);
850
851 mroute_clean_tables(sk);
852 }
853 rtnl_unlock();
854 }
855
856 /*
857 * Socket options and virtual interface manipulation. The whole
858 * virtual interface system is a complete heap, but unfortunately
859 * that's how BSD mrouted happens to think. Maybe one day with a proper
860 * MOSPF/PIM router set up we can clean this up.
861 */
862
863 int ip_mroute_setsockopt(struct sock *sk,int optname,char __user *optval,int optlen)
864 {
865 int ret;
866 struct vifctl vif;
867 struct mfcctl mfc;
868
869 if (optname != MRT_INIT) {
870 if (sk != mroute_socket && !capable(CAP_NET_ADMIN))
871 return -EACCES;
872 }
873
874 switch (optname) {
875 case MRT_INIT:
876 if (sk->sk_type != SOCK_RAW ||
877 inet_sk(sk)->num != IPPROTO_IGMP)
878 return -EOPNOTSUPP;
879 if (optlen!=sizeof(int))
880 return -ENOPROTOOPT;
881
882 rtnl_lock();
883 if (mroute_socket) {
884 rtnl_unlock();
885 return -EADDRINUSE;
886 }
887
888 ret = ip_ra_control(sk, 1, mrtsock_destruct);
889 if (ret == 0) {
890 write_lock_bh(&mrt_lock);
891 mroute_socket=sk;
892 write_unlock_bh(&mrt_lock);
893
894 IPV4_DEVCONF_ALL(sock_net(sk), MC_FORWARDING)++;
895 }
896 rtnl_unlock();
897 return ret;
898 case MRT_DONE:
899 if (sk!=mroute_socket)
900 return -EACCES;
901 return ip_ra_control(sk, 0, NULL);
902 case MRT_ADD_VIF:
903 case MRT_DEL_VIF:
904 if (optlen!=sizeof(vif))
905 return -EINVAL;
906 if (copy_from_user(&vif,optval,sizeof(vif)))
907 return -EFAULT;
908 if (vif.vifc_vifi >= MAXVIFS)
909 return -ENFILE;
910 rtnl_lock();
911 if (optname==MRT_ADD_VIF) {
912 ret = vif_add(&vif, sk==mroute_socket);
913 } else {
914 ret = vif_delete(vif.vifc_vifi);
915 }
916 rtnl_unlock();
917 return ret;
918
919 /*
920 * Manipulate the forwarding caches. These live
921 * in a sort of kernel/user symbiosis.
922 */
923 case MRT_ADD_MFC:
924 case MRT_DEL_MFC:
925 if (optlen!=sizeof(mfc))
926 return -EINVAL;
927 if (copy_from_user(&mfc,optval, sizeof(mfc)))
928 return -EFAULT;
929 rtnl_lock();
930 if (optname==MRT_DEL_MFC)
931 ret = ipmr_mfc_delete(&mfc);
932 else
933 ret = ipmr_mfc_add(&mfc, sk==mroute_socket);
934 rtnl_unlock();
935 return ret;
936 /*
937 * Control PIM assert.
938 */
939 case MRT_ASSERT:
940 {
941 int v;
942 if (get_user(v,(int __user *)optval))
943 return -EFAULT;
944 mroute_do_assert=(v)?1:0;
945 return 0;
946 }
947 #ifdef CONFIG_IP_PIMSM
948 case MRT_PIM:
949 {
950 int v;
951
952 if (get_user(v,(int __user *)optval))
953 return -EFAULT;
954 v = (v) ? 1 : 0;
955
956 rtnl_lock();
957 ret = 0;
958 if (v != mroute_do_pim) {
959 mroute_do_pim = v;
960 mroute_do_assert = v;
961 #ifdef CONFIG_IP_PIMSM_V2
962 if (mroute_do_pim)
963 ret = inet_add_protocol(&pim_protocol,
964 IPPROTO_PIM);
965 else
966 ret = inet_del_protocol(&pim_protocol,
967 IPPROTO_PIM);
968 if (ret < 0)
969 ret = -EAGAIN;
970 #endif
971 }
972 rtnl_unlock();
973 return ret;
974 }
975 #endif
976 /*
977 * Spurious command, or MRT_VERSION which you cannot
978 * set.
979 */
980 default:
981 return -ENOPROTOOPT;
982 }
983 }
984
985 /*
986 * Getsock opt support for the multicast routing system.
987 */
988
989 int ip_mroute_getsockopt(struct sock *sk,int optname,char __user *optval,int __user *optlen)
990 {
991 int olr;
992 int val;
993
994 if (optname!=MRT_VERSION &&
995 #ifdef CONFIG_IP_PIMSM
996 optname!=MRT_PIM &&
997 #endif
998 optname!=MRT_ASSERT)
999 return -ENOPROTOOPT;
1000
1001 if (get_user(olr, optlen))
1002 return -EFAULT;
1003
1004 olr = min_t(unsigned int, olr, sizeof(int));
1005 if (olr < 0)
1006 return -EINVAL;
1007
1008 if (put_user(olr,optlen))
1009 return -EFAULT;
1010 if (optname==MRT_VERSION)
1011 val=0x0305;
1012 #ifdef CONFIG_IP_PIMSM
1013 else if (optname==MRT_PIM)
1014 val=mroute_do_pim;
1015 #endif
1016 else
1017 val=mroute_do_assert;
1018 if (copy_to_user(optval,&val,olr))
1019 return -EFAULT;
1020 return 0;
1021 }
1022
1023 /*
1024 * The IP multicast ioctl support routines.
1025 */
1026
1027 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1028 {
1029 struct sioc_sg_req sr;
1030 struct sioc_vif_req vr;
1031 struct vif_device *vif;
1032 struct mfc_cache *c;
1033
1034 switch (cmd) {
1035 case SIOCGETVIFCNT:
1036 if (copy_from_user(&vr,arg,sizeof(vr)))
1037 return -EFAULT;
1038 if (vr.vifi>=maxvif)
1039 return -EINVAL;
1040 read_lock(&mrt_lock);
1041 vif=&vif_table[vr.vifi];
1042 if (VIF_EXISTS(vr.vifi)) {
1043 vr.icount=vif->pkt_in;
1044 vr.ocount=vif->pkt_out;
1045 vr.ibytes=vif->bytes_in;
1046 vr.obytes=vif->bytes_out;
1047 read_unlock(&mrt_lock);
1048
1049 if (copy_to_user(arg,&vr,sizeof(vr)))
1050 return -EFAULT;
1051 return 0;
1052 }
1053 read_unlock(&mrt_lock);
1054 return -EADDRNOTAVAIL;
1055 case SIOCGETSGCNT:
1056 if (copy_from_user(&sr,arg,sizeof(sr)))
1057 return -EFAULT;
1058
1059 read_lock(&mrt_lock);
1060 c = ipmr_cache_find(sr.src.s_addr, sr.grp.s_addr);
1061 if (c) {
1062 sr.pktcnt = c->mfc_un.res.pkt;
1063 sr.bytecnt = c->mfc_un.res.bytes;
1064 sr.wrong_if = c->mfc_un.res.wrong_if;
1065 read_unlock(&mrt_lock);
1066
1067 if (copy_to_user(arg,&sr,sizeof(sr)))
1068 return -EFAULT;
1069 return 0;
1070 }
1071 read_unlock(&mrt_lock);
1072 return -EADDRNOTAVAIL;
1073 default:
1074 return -ENOIOCTLCMD;
1075 }
1076 }
1077
1078
1079 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1080 {
1081 struct net_device *dev = ptr;
1082 struct vif_device *v;
1083 int ct;
1084
1085 if (dev_net(dev) != &init_net)
1086 return NOTIFY_DONE;
1087
1088 if (event != NETDEV_UNREGISTER)
1089 return NOTIFY_DONE;
1090 v=&vif_table[0];
1091 for (ct=0;ct<maxvif;ct++,v++) {
1092 if (v->dev==dev)
1093 vif_delete(ct);
1094 }
1095 return NOTIFY_DONE;
1096 }
1097
1098
1099 static struct notifier_block ip_mr_notifier={
1100 .notifier_call = ipmr_device_event,
1101 };
1102
1103 /*
1104 * Encapsulate a packet by attaching a valid IPIP header to it.
1105 * This avoids tunnel drivers and other mess and gives us the speed so
1106 * important for multicast video.
1107 */
1108
1109 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1110 {
1111 struct iphdr *iph;
1112 struct iphdr *old_iph = ip_hdr(skb);
1113
1114 skb_push(skb, sizeof(struct iphdr));
1115 skb->transport_header = skb->network_header;
1116 skb_reset_network_header(skb);
1117 iph = ip_hdr(skb);
1118
1119 iph->version = 4;
1120 iph->tos = old_iph->tos;
1121 iph->ttl = old_iph->ttl;
1122 iph->frag_off = 0;
1123 iph->daddr = daddr;
1124 iph->saddr = saddr;
1125 iph->protocol = IPPROTO_IPIP;
1126 iph->ihl = 5;
1127 iph->tot_len = htons(skb->len);
1128 ip_select_ident(iph, skb->dst, NULL);
1129 ip_send_check(iph);
1130
1131 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1132 nf_reset(skb);
1133 }
1134
1135 static inline int ipmr_forward_finish(struct sk_buff *skb)
1136 {
1137 struct ip_options * opt = &(IPCB(skb)->opt);
1138
1139 IP_INC_STATS_BH(IPSTATS_MIB_OUTFORWDATAGRAMS);
1140
1141 if (unlikely(opt->optlen))
1142 ip_forward_options(skb);
1143
1144 return dst_output(skb);
1145 }
1146
1147 /*
1148 * Processing handlers for ipmr_forward
1149 */
1150
1151 static void ipmr_queue_xmit(struct sk_buff *skb, struct mfc_cache *c, int vifi)
1152 {
1153 const struct iphdr *iph = ip_hdr(skb);
1154 struct vif_device *vif = &vif_table[vifi];
1155 struct net_device *dev;
1156 struct rtable *rt;
1157 int encap = 0;
1158
1159 if (vif->dev == NULL)
1160 goto out_free;
1161
1162 #ifdef CONFIG_IP_PIMSM
1163 if (vif->flags & VIFF_REGISTER) {
1164 vif->pkt_out++;
1165 vif->bytes_out+=skb->len;
1166 vif->dev->stats.tx_bytes += skb->len;
1167 vif->dev->stats.tx_packets++;
1168 ipmr_cache_report(skb, vifi, IGMPMSG_WHOLEPKT);
1169 kfree_skb(skb);
1170 return;
1171 }
1172 #endif
1173
1174 if (vif->flags&VIFF_TUNNEL) {
1175 struct flowi fl = { .oif = vif->link,
1176 .nl_u = { .ip4_u =
1177 { .daddr = vif->remote,
1178 .saddr = vif->local,
1179 .tos = RT_TOS(iph->tos) } },
1180 .proto = IPPROTO_IPIP };
1181 if (ip_route_output_key(&init_net, &rt, &fl))
1182 goto out_free;
1183 encap = sizeof(struct iphdr);
1184 } else {
1185 struct flowi fl = { .oif = vif->link,
1186 .nl_u = { .ip4_u =
1187 { .daddr = iph->daddr,
1188 .tos = RT_TOS(iph->tos) } },
1189 .proto = IPPROTO_IPIP };
1190 if (ip_route_output_key(&init_net, &rt, &fl))
1191 goto out_free;
1192 }
1193
1194 dev = rt->u.dst.dev;
1195
1196 if (skb->len+encap > dst_mtu(&rt->u.dst) && (ntohs(iph->frag_off) & IP_DF)) {
1197 /* Do not fragment multicasts. Alas, IPv4 does not
1198 allow to send ICMP, so that packets will disappear
1199 to blackhole.
1200 */
1201
1202 IP_INC_STATS_BH(IPSTATS_MIB_FRAGFAILS);
1203 ip_rt_put(rt);
1204 goto out_free;
1205 }
1206
1207 encap += LL_RESERVED_SPACE(dev) + rt->u.dst.header_len;
1208
1209 if (skb_cow(skb, encap)) {
1210 ip_rt_put(rt);
1211 goto out_free;
1212 }
1213
1214 vif->pkt_out++;
1215 vif->bytes_out+=skb->len;
1216
1217 dst_release(skb->dst);
1218 skb->dst = &rt->u.dst;
1219 ip_decrease_ttl(ip_hdr(skb));
1220
1221 /* FIXME: forward and output firewalls used to be called here.
1222 * What do we do with netfilter? -- RR */
1223 if (vif->flags & VIFF_TUNNEL) {
1224 ip_encap(skb, vif->local, vif->remote);
1225 /* FIXME: extra output firewall step used to be here. --RR */
1226 vif->dev->stats.tx_packets++;
1227 vif->dev->stats.tx_bytes += skb->len;
1228 }
1229
1230 IPCB(skb)->flags |= IPSKB_FORWARDED;
1231
1232 /*
1233 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1234 * not only before forwarding, but after forwarding on all output
1235 * interfaces. It is clear, if mrouter runs a multicasting
1236 * program, it should receive packets not depending to what interface
1237 * program is joined.
1238 * If we will not make it, the program will have to join on all
1239 * interfaces. On the other hand, multihoming host (or router, but
1240 * not mrouter) cannot join to more than one interface - it will
1241 * result in receiving multiple packets.
1242 */
1243 NF_HOOK(PF_INET, NF_INET_FORWARD, skb, skb->dev, dev,
1244 ipmr_forward_finish);
1245 return;
1246
1247 out_free:
1248 kfree_skb(skb);
1249 return;
1250 }
1251
1252 static int ipmr_find_vif(struct net_device *dev)
1253 {
1254 int ct;
1255 for (ct=maxvif-1; ct>=0; ct--) {
1256 if (vif_table[ct].dev == dev)
1257 break;
1258 }
1259 return ct;
1260 }
1261
1262 /* "local" means that we should preserve one skb (for local delivery) */
1263
1264 static int ip_mr_forward(struct sk_buff *skb, struct mfc_cache *cache, int local)
1265 {
1266 int psend = -1;
1267 int vif, ct;
1268
1269 vif = cache->mfc_parent;
1270 cache->mfc_un.res.pkt++;
1271 cache->mfc_un.res.bytes += skb->len;
1272
1273 /*
1274 * Wrong interface: drop packet and (maybe) send PIM assert.
1275 */
1276 if (vif_table[vif].dev != skb->dev) {
1277 int true_vifi;
1278
1279 if (skb->rtable->fl.iif == 0) {
1280 /* It is our own packet, looped back.
1281 Very complicated situation...
1282
1283 The best workaround until routing daemons will be
1284 fixed is not to redistribute packet, if it was
1285 send through wrong interface. It means, that
1286 multicast applications WILL NOT work for
1287 (S,G), which have default multicast route pointing
1288 to wrong oif. In any case, it is not a good
1289 idea to use multicasting applications on router.
1290 */
1291 goto dont_forward;
1292 }
1293
1294 cache->mfc_un.res.wrong_if++;
1295 true_vifi = ipmr_find_vif(skb->dev);
1296
1297 if (true_vifi >= 0 && mroute_do_assert &&
1298 /* pimsm uses asserts, when switching from RPT to SPT,
1299 so that we cannot check that packet arrived on an oif.
1300 It is bad, but otherwise we would need to move pretty
1301 large chunk of pimd to kernel. Ough... --ANK
1302 */
1303 (mroute_do_pim || cache->mfc_un.res.ttls[true_vifi] < 255) &&
1304 time_after(jiffies,
1305 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1306 cache->mfc_un.res.last_assert = jiffies;
1307 ipmr_cache_report(skb, true_vifi, IGMPMSG_WRONGVIF);
1308 }
1309 goto dont_forward;
1310 }
1311
1312 vif_table[vif].pkt_in++;
1313 vif_table[vif].bytes_in+=skb->len;
1314
1315 /*
1316 * Forward the frame
1317 */
1318 for (ct = cache->mfc_un.res.maxvif-1; ct >= cache->mfc_un.res.minvif; ct--) {
1319 if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1320 if (psend != -1) {
1321 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1322 if (skb2)
1323 ipmr_queue_xmit(skb2, cache, psend);
1324 }
1325 psend=ct;
1326 }
1327 }
1328 if (psend != -1) {
1329 if (local) {
1330 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1331 if (skb2)
1332 ipmr_queue_xmit(skb2, cache, psend);
1333 } else {
1334 ipmr_queue_xmit(skb, cache, psend);
1335 return 0;
1336 }
1337 }
1338
1339 dont_forward:
1340 if (!local)
1341 kfree_skb(skb);
1342 return 0;
1343 }
1344
1345
1346 /*
1347 * Multicast packets for forwarding arrive here
1348 */
1349
1350 int ip_mr_input(struct sk_buff *skb)
1351 {
1352 struct mfc_cache *cache;
1353 int local = skb->rtable->rt_flags&RTCF_LOCAL;
1354
1355 /* Packet is looped back after forward, it should not be
1356 forwarded second time, but still can be delivered locally.
1357 */
1358 if (IPCB(skb)->flags&IPSKB_FORWARDED)
1359 goto dont_forward;
1360
1361 if (!local) {
1362 if (IPCB(skb)->opt.router_alert) {
1363 if (ip_call_ra_chain(skb))
1364 return 0;
1365 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP){
1366 /* IGMPv1 (and broken IGMPv2 implementations sort of
1367 Cisco IOS <= 11.2(8)) do not put router alert
1368 option to IGMP packets destined to routable
1369 groups. It is very bad, because it means
1370 that we can forward NO IGMP messages.
1371 */
1372 read_lock(&mrt_lock);
1373 if (mroute_socket) {
1374 nf_reset(skb);
1375 raw_rcv(mroute_socket, skb);
1376 read_unlock(&mrt_lock);
1377 return 0;
1378 }
1379 read_unlock(&mrt_lock);
1380 }
1381 }
1382
1383 read_lock(&mrt_lock);
1384 cache = ipmr_cache_find(ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1385
1386 /*
1387 * No usable cache entry
1388 */
1389 if (cache==NULL) {
1390 int vif;
1391
1392 if (local) {
1393 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1394 ip_local_deliver(skb);
1395 if (skb2 == NULL) {
1396 read_unlock(&mrt_lock);
1397 return -ENOBUFS;
1398 }
1399 skb = skb2;
1400 }
1401
1402 vif = ipmr_find_vif(skb->dev);
1403 if (vif >= 0) {
1404 int err = ipmr_cache_unresolved(vif, skb);
1405 read_unlock(&mrt_lock);
1406
1407 return err;
1408 }
1409 read_unlock(&mrt_lock);
1410 kfree_skb(skb);
1411 return -ENODEV;
1412 }
1413
1414 ip_mr_forward(skb, cache, local);
1415
1416 read_unlock(&mrt_lock);
1417
1418 if (local)
1419 return ip_local_deliver(skb);
1420
1421 return 0;
1422
1423 dont_forward:
1424 if (local)
1425 return ip_local_deliver(skb);
1426 kfree_skb(skb);
1427 return 0;
1428 }
1429
1430 #ifdef CONFIG_IP_PIMSM_V1
1431 /*
1432 * Handle IGMP messages of PIMv1
1433 */
1434
1435 int pim_rcv_v1(struct sk_buff * skb)
1436 {
1437 struct igmphdr *pim;
1438 struct iphdr *encap;
1439 struct net_device *reg_dev = NULL;
1440
1441 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(*encap)))
1442 goto drop;
1443
1444 pim = igmp_hdr(skb);
1445
1446 if (!mroute_do_pim ||
1447 skb->len < sizeof(*pim) + sizeof(*encap) ||
1448 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1449 goto drop;
1450
1451 encap = (struct iphdr *)(skb_transport_header(skb) +
1452 sizeof(struct igmphdr));
1453 /*
1454 Check that:
1455 a. packet is really destinted to a multicast group
1456 b. packet is not a NULL-REGISTER
1457 c. packet is not truncated
1458 */
1459 if (!ipv4_is_multicast(encap->daddr) ||
1460 encap->tot_len == 0 ||
1461 ntohs(encap->tot_len) + sizeof(*pim) > skb->len)
1462 goto drop;
1463
1464 read_lock(&mrt_lock);
1465 if (reg_vif_num >= 0)
1466 reg_dev = vif_table[reg_vif_num].dev;
1467 if (reg_dev)
1468 dev_hold(reg_dev);
1469 read_unlock(&mrt_lock);
1470
1471 if (reg_dev == NULL)
1472 goto drop;
1473
1474 skb->mac_header = skb->network_header;
1475 skb_pull(skb, (u8*)encap - skb->data);
1476 skb_reset_network_header(skb);
1477 skb->dev = reg_dev;
1478 skb->protocol = htons(ETH_P_IP);
1479 skb->ip_summed = 0;
1480 skb->pkt_type = PACKET_HOST;
1481 dst_release(skb->dst);
1482 skb->dst = NULL;
1483 reg_dev->stats.rx_bytes += skb->len;
1484 reg_dev->stats.rx_packets++;
1485 nf_reset(skb);
1486 netif_rx(skb);
1487 dev_put(reg_dev);
1488 return 0;
1489 drop:
1490 kfree_skb(skb);
1491 return 0;
1492 }
1493 #endif
1494
1495 #ifdef CONFIG_IP_PIMSM_V2
1496 static int pim_rcv(struct sk_buff * skb)
1497 {
1498 struct pimreghdr *pim;
1499 struct iphdr *encap;
1500 struct net_device *reg_dev = NULL;
1501
1502 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(*encap)))
1503 goto drop;
1504
1505 pim = (struct pimreghdr *)skb_transport_header(skb);
1506 if (pim->type != ((PIM_VERSION<<4)|(PIM_REGISTER)) ||
1507 (pim->flags&PIM_NULL_REGISTER) ||
1508 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
1509 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
1510 goto drop;
1511
1512 /* check if the inner packet is destined to mcast group */
1513 encap = (struct iphdr *)(skb_transport_header(skb) +
1514 sizeof(struct pimreghdr));
1515 if (!ipv4_is_multicast(encap->daddr) ||
1516 encap->tot_len == 0 ||
1517 ntohs(encap->tot_len) + sizeof(*pim) > skb->len)
1518 goto drop;
1519
1520 read_lock(&mrt_lock);
1521 if (reg_vif_num >= 0)
1522 reg_dev = vif_table[reg_vif_num].dev;
1523 if (reg_dev)
1524 dev_hold(reg_dev);
1525 read_unlock(&mrt_lock);
1526
1527 if (reg_dev == NULL)
1528 goto drop;
1529
1530 skb->mac_header = skb->network_header;
1531 skb_pull(skb, (u8*)encap - skb->data);
1532 skb_reset_network_header(skb);
1533 skb->dev = reg_dev;
1534 skb->protocol = htons(ETH_P_IP);
1535 skb->ip_summed = 0;
1536 skb->pkt_type = PACKET_HOST;
1537 dst_release(skb->dst);
1538 reg_dev->stats.rx_bytes += skb->len;
1539 reg_dev->stats.rx_packets++;
1540 skb->dst = NULL;
1541 nf_reset(skb);
1542 netif_rx(skb);
1543 dev_put(reg_dev);
1544 return 0;
1545 drop:
1546 kfree_skb(skb);
1547 return 0;
1548 }
1549 #endif
1550
1551 static int
1552 ipmr_fill_mroute(struct sk_buff *skb, struct mfc_cache *c, struct rtmsg *rtm)
1553 {
1554 int ct;
1555 struct rtnexthop *nhp;
1556 struct net_device *dev = vif_table[c->mfc_parent].dev;
1557 u8 *b = skb_tail_pointer(skb);
1558 struct rtattr *mp_head;
1559
1560 if (dev)
1561 RTA_PUT(skb, RTA_IIF, 4, &dev->ifindex);
1562
1563 mp_head = (struct rtattr*)skb_put(skb, RTA_LENGTH(0));
1564
1565 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
1566 if (c->mfc_un.res.ttls[ct] < 255) {
1567 if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
1568 goto rtattr_failure;
1569 nhp = (struct rtnexthop*)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
1570 nhp->rtnh_flags = 0;
1571 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
1572 nhp->rtnh_ifindex = vif_table[ct].dev->ifindex;
1573 nhp->rtnh_len = sizeof(*nhp);
1574 }
1575 }
1576 mp_head->rta_type = RTA_MULTIPATH;
1577 mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
1578 rtm->rtm_type = RTN_MULTICAST;
1579 return 1;
1580
1581 rtattr_failure:
1582 nlmsg_trim(skb, b);
1583 return -EMSGSIZE;
1584 }
1585
1586 int ipmr_get_route(struct sk_buff *skb, struct rtmsg *rtm, int nowait)
1587 {
1588 int err;
1589 struct mfc_cache *cache;
1590 struct rtable *rt = skb->rtable;
1591
1592 read_lock(&mrt_lock);
1593 cache = ipmr_cache_find(rt->rt_src, rt->rt_dst);
1594
1595 if (cache==NULL) {
1596 struct sk_buff *skb2;
1597 struct iphdr *iph;
1598 struct net_device *dev;
1599 int vif;
1600
1601 if (nowait) {
1602 read_unlock(&mrt_lock);
1603 return -EAGAIN;
1604 }
1605
1606 dev = skb->dev;
1607 if (dev == NULL || (vif = ipmr_find_vif(dev)) < 0) {
1608 read_unlock(&mrt_lock);
1609 return -ENODEV;
1610 }
1611 skb2 = skb_clone(skb, GFP_ATOMIC);
1612 if (!skb2) {
1613 read_unlock(&mrt_lock);
1614 return -ENOMEM;
1615 }
1616
1617 skb_push(skb2, sizeof(struct iphdr));
1618 skb_reset_network_header(skb2);
1619 iph = ip_hdr(skb2);
1620 iph->ihl = sizeof(struct iphdr) >> 2;
1621 iph->saddr = rt->rt_src;
1622 iph->daddr = rt->rt_dst;
1623 iph->version = 0;
1624 err = ipmr_cache_unresolved(vif, skb2);
1625 read_unlock(&mrt_lock);
1626 return err;
1627 }
1628
1629 if (!nowait && (rtm->rtm_flags&RTM_F_NOTIFY))
1630 cache->mfc_flags |= MFC_NOTIFY;
1631 err = ipmr_fill_mroute(skb, cache, rtm);
1632 read_unlock(&mrt_lock);
1633 return err;
1634 }
1635
1636 #ifdef CONFIG_PROC_FS
1637 /*
1638 * The /proc interfaces to multicast routing /proc/ip_mr_cache /proc/ip_mr_vif
1639 */
1640 struct ipmr_vif_iter {
1641 int ct;
1642 };
1643
1644 static struct vif_device *ipmr_vif_seq_idx(struct ipmr_vif_iter *iter,
1645 loff_t pos)
1646 {
1647 for (iter->ct = 0; iter->ct < maxvif; ++iter->ct) {
1648 if (!VIF_EXISTS(iter->ct))
1649 continue;
1650 if (pos-- == 0)
1651 return &vif_table[iter->ct];
1652 }
1653 return NULL;
1654 }
1655
1656 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
1657 __acquires(mrt_lock)
1658 {
1659 read_lock(&mrt_lock);
1660 return *pos ? ipmr_vif_seq_idx(seq->private, *pos - 1)
1661 : SEQ_START_TOKEN;
1662 }
1663
1664 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1665 {
1666 struct ipmr_vif_iter *iter = seq->private;
1667
1668 ++*pos;
1669 if (v == SEQ_START_TOKEN)
1670 return ipmr_vif_seq_idx(iter, 0);
1671
1672 while (++iter->ct < maxvif) {
1673 if (!VIF_EXISTS(iter->ct))
1674 continue;
1675 return &vif_table[iter->ct];
1676 }
1677 return NULL;
1678 }
1679
1680 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
1681 __releases(mrt_lock)
1682 {
1683 read_unlock(&mrt_lock);
1684 }
1685
1686 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
1687 {
1688 if (v == SEQ_START_TOKEN) {
1689 seq_puts(seq,
1690 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
1691 } else {
1692 const struct vif_device *vif = v;
1693 const char *name = vif->dev ? vif->dev->name : "none";
1694
1695 seq_printf(seq,
1696 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
1697 vif - vif_table,
1698 name, vif->bytes_in, vif->pkt_in,
1699 vif->bytes_out, vif->pkt_out,
1700 vif->flags, vif->local, vif->remote);
1701 }
1702 return 0;
1703 }
1704
1705 static const struct seq_operations ipmr_vif_seq_ops = {
1706 .start = ipmr_vif_seq_start,
1707 .next = ipmr_vif_seq_next,
1708 .stop = ipmr_vif_seq_stop,
1709 .show = ipmr_vif_seq_show,
1710 };
1711
1712 static int ipmr_vif_open(struct inode *inode, struct file *file)
1713 {
1714 return seq_open_private(file, &ipmr_vif_seq_ops,
1715 sizeof(struct ipmr_vif_iter));
1716 }
1717
1718 static const struct file_operations ipmr_vif_fops = {
1719 .owner = THIS_MODULE,
1720 .open = ipmr_vif_open,
1721 .read = seq_read,
1722 .llseek = seq_lseek,
1723 .release = seq_release_private,
1724 };
1725
1726 struct ipmr_mfc_iter {
1727 struct mfc_cache **cache;
1728 int ct;
1729 };
1730
1731
1732 static struct mfc_cache *ipmr_mfc_seq_idx(struct ipmr_mfc_iter *it, loff_t pos)
1733 {
1734 struct mfc_cache *mfc;
1735
1736 it->cache = mfc_cache_array;
1737 read_lock(&mrt_lock);
1738 for (it->ct = 0; it->ct < MFC_LINES; it->ct++)
1739 for (mfc = mfc_cache_array[it->ct]; mfc; mfc = mfc->next)
1740 if (pos-- == 0)
1741 return mfc;
1742 read_unlock(&mrt_lock);
1743
1744 it->cache = &mfc_unres_queue;
1745 spin_lock_bh(&mfc_unres_lock);
1746 for (mfc = mfc_unres_queue; mfc; mfc = mfc->next)
1747 if (pos-- == 0)
1748 return mfc;
1749 spin_unlock_bh(&mfc_unres_lock);
1750
1751 it->cache = NULL;
1752 return NULL;
1753 }
1754
1755
1756 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
1757 {
1758 struct ipmr_mfc_iter *it = seq->private;
1759 it->cache = NULL;
1760 it->ct = 0;
1761 return *pos ? ipmr_mfc_seq_idx(seq->private, *pos - 1)
1762 : SEQ_START_TOKEN;
1763 }
1764
1765 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1766 {
1767 struct mfc_cache *mfc = v;
1768 struct ipmr_mfc_iter *it = seq->private;
1769
1770 ++*pos;
1771
1772 if (v == SEQ_START_TOKEN)
1773 return ipmr_mfc_seq_idx(seq->private, 0);
1774
1775 if (mfc->next)
1776 return mfc->next;
1777
1778 if (it->cache == &mfc_unres_queue)
1779 goto end_of_list;
1780
1781 BUG_ON(it->cache != mfc_cache_array);
1782
1783 while (++it->ct < MFC_LINES) {
1784 mfc = mfc_cache_array[it->ct];
1785 if (mfc)
1786 return mfc;
1787 }
1788
1789 /* exhausted cache_array, show unresolved */
1790 read_unlock(&mrt_lock);
1791 it->cache = &mfc_unres_queue;
1792 it->ct = 0;
1793
1794 spin_lock_bh(&mfc_unres_lock);
1795 mfc = mfc_unres_queue;
1796 if (mfc)
1797 return mfc;
1798
1799 end_of_list:
1800 spin_unlock_bh(&mfc_unres_lock);
1801 it->cache = NULL;
1802
1803 return NULL;
1804 }
1805
1806 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
1807 {
1808 struct ipmr_mfc_iter *it = seq->private;
1809
1810 if (it->cache == &mfc_unres_queue)
1811 spin_unlock_bh(&mfc_unres_lock);
1812 else if (it->cache == mfc_cache_array)
1813 read_unlock(&mrt_lock);
1814 }
1815
1816 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
1817 {
1818 int n;
1819
1820 if (v == SEQ_START_TOKEN) {
1821 seq_puts(seq,
1822 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
1823 } else {
1824 const struct mfc_cache *mfc = v;
1825 const struct ipmr_mfc_iter *it = seq->private;
1826
1827 seq_printf(seq, "%08lX %08lX %-3d %8ld %8ld %8ld",
1828 (unsigned long) mfc->mfc_mcastgrp,
1829 (unsigned long) mfc->mfc_origin,
1830 mfc->mfc_parent,
1831 mfc->mfc_un.res.pkt,
1832 mfc->mfc_un.res.bytes,
1833 mfc->mfc_un.res.wrong_if);
1834
1835 if (it->cache != &mfc_unres_queue) {
1836 for (n = mfc->mfc_un.res.minvif;
1837 n < mfc->mfc_un.res.maxvif; n++ ) {
1838 if (VIF_EXISTS(n)
1839 && mfc->mfc_un.res.ttls[n] < 255)
1840 seq_printf(seq,
1841 " %2d:%-3d",
1842 n, mfc->mfc_un.res.ttls[n]);
1843 }
1844 }
1845 seq_putc(seq, '\n');
1846 }
1847 return 0;
1848 }
1849
1850 static const struct seq_operations ipmr_mfc_seq_ops = {
1851 .start = ipmr_mfc_seq_start,
1852 .next = ipmr_mfc_seq_next,
1853 .stop = ipmr_mfc_seq_stop,
1854 .show = ipmr_mfc_seq_show,
1855 };
1856
1857 static int ipmr_mfc_open(struct inode *inode, struct file *file)
1858 {
1859 return seq_open_private(file, &ipmr_mfc_seq_ops,
1860 sizeof(struct ipmr_mfc_iter));
1861 }
1862
1863 static const struct file_operations ipmr_mfc_fops = {
1864 .owner = THIS_MODULE,
1865 .open = ipmr_mfc_open,
1866 .read = seq_read,
1867 .llseek = seq_lseek,
1868 .release = seq_release_private,
1869 };
1870 #endif
1871
1872 #ifdef CONFIG_IP_PIMSM_V2
1873 static struct net_protocol pim_protocol = {
1874 .handler = pim_rcv,
1875 };
1876 #endif
1877
1878
1879 /*
1880 * Setup for IP multicast routing
1881 */
1882
1883 void __init ip_mr_init(void)
1884 {
1885 mrt_cachep = kmem_cache_create("ip_mrt_cache",
1886 sizeof(struct mfc_cache),
1887 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1888 NULL);
1889 setup_timer(&ipmr_expire_timer, ipmr_expire_process, 0);
1890 register_netdevice_notifier(&ip_mr_notifier);
1891 #ifdef CONFIG_PROC_FS
1892 proc_net_fops_create(&init_net, "ip_mr_vif", 0, &ipmr_vif_fops);
1893 proc_net_fops_create(&init_net, "ip_mr_cache", 0, &ipmr_mfc_fops);
1894 #endif
1895 }
This page took 0.073603 seconds and 5 git commands to generate.