Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[deliverable/linux.git] / net / ipv4 / ipmr.c
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
26 *
27 */
28
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69
70 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
71 #define CONFIG_IP_PIMSM 1
72 #endif
73
74 struct mr_table {
75 struct list_head list;
76 possible_net_t net;
77 u32 id;
78 struct sock __rcu *mroute_sk;
79 struct timer_list ipmr_expire_timer;
80 struct list_head mfc_unres_queue;
81 struct list_head mfc_cache_array[MFC_LINES];
82 struct vif_device vif_table[MAXVIFS];
83 int maxvif;
84 atomic_t cache_resolve_queue_len;
85 bool mroute_do_assert;
86 bool mroute_do_pim;
87 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
88 int mroute_reg_vif_num;
89 #endif
90 };
91
92 struct ipmr_rule {
93 struct fib_rule common;
94 };
95
96 struct ipmr_result {
97 struct mr_table *mrt;
98 };
99
100 /* Big lock, protecting vif table, mrt cache and mroute socket state.
101 * Note that the changes are semaphored via rtnl_lock.
102 */
103
104 static DEFINE_RWLOCK(mrt_lock);
105
106 /*
107 * Multicast router control variables
108 */
109
110 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
111
112 /* Special spinlock for queue of unresolved entries */
113 static DEFINE_SPINLOCK(mfc_unres_lock);
114
115 /* We return to original Alan's scheme. Hash table of resolved
116 * entries is changed only in process context and protected
117 * with weak lock mrt_lock. Queue of unresolved entries is protected
118 * with strong spinlock mfc_unres_lock.
119 *
120 * In this case data path is free of exclusive locks at all.
121 */
122
123 static struct kmem_cache *mrt_cachep __read_mostly;
124
125 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
126 static void ipmr_free_table(struct mr_table *mrt);
127
128 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
129 struct sk_buff *skb, struct mfc_cache *cache,
130 int local);
131 static int ipmr_cache_report(struct mr_table *mrt,
132 struct sk_buff *pkt, vifi_t vifi, int assert);
133 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
134 struct mfc_cache *c, struct rtmsg *rtm);
135 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
136 int cmd);
137 static void mroute_clean_tables(struct mr_table *mrt, bool all);
138 static void ipmr_expire_process(unsigned long arg);
139
140 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
141 #define ipmr_for_each_table(mrt, net) \
142 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
143
144 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
145 {
146 struct mr_table *mrt;
147
148 ipmr_for_each_table(mrt, net) {
149 if (mrt->id == id)
150 return mrt;
151 }
152 return NULL;
153 }
154
155 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
156 struct mr_table **mrt)
157 {
158 int err;
159 struct ipmr_result res;
160 struct fib_lookup_arg arg = {
161 .result = &res,
162 .flags = FIB_LOOKUP_NOREF,
163 };
164
165 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
166 flowi4_to_flowi(flp4), 0, &arg);
167 if (err < 0)
168 return err;
169 *mrt = res.mrt;
170 return 0;
171 }
172
173 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
174 int flags, struct fib_lookup_arg *arg)
175 {
176 struct ipmr_result *res = arg->result;
177 struct mr_table *mrt;
178
179 switch (rule->action) {
180 case FR_ACT_TO_TBL:
181 break;
182 case FR_ACT_UNREACHABLE:
183 return -ENETUNREACH;
184 case FR_ACT_PROHIBIT:
185 return -EACCES;
186 case FR_ACT_BLACKHOLE:
187 default:
188 return -EINVAL;
189 }
190
191 mrt = ipmr_get_table(rule->fr_net, rule->table);
192 if (!mrt)
193 return -EAGAIN;
194 res->mrt = mrt;
195 return 0;
196 }
197
198 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
199 {
200 return 1;
201 }
202
203 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
204 FRA_GENERIC_POLICY,
205 };
206
207 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
208 struct fib_rule_hdr *frh, struct nlattr **tb)
209 {
210 return 0;
211 }
212
213 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
214 struct nlattr **tb)
215 {
216 return 1;
217 }
218
219 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
220 struct fib_rule_hdr *frh)
221 {
222 frh->dst_len = 0;
223 frh->src_len = 0;
224 frh->tos = 0;
225 return 0;
226 }
227
228 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
229 .family = RTNL_FAMILY_IPMR,
230 .rule_size = sizeof(struct ipmr_rule),
231 .addr_size = sizeof(u32),
232 .action = ipmr_rule_action,
233 .match = ipmr_rule_match,
234 .configure = ipmr_rule_configure,
235 .compare = ipmr_rule_compare,
236 .fill = ipmr_rule_fill,
237 .nlgroup = RTNLGRP_IPV4_RULE,
238 .policy = ipmr_rule_policy,
239 .owner = THIS_MODULE,
240 };
241
242 static int __net_init ipmr_rules_init(struct net *net)
243 {
244 struct fib_rules_ops *ops;
245 struct mr_table *mrt;
246 int err;
247
248 ops = fib_rules_register(&ipmr_rules_ops_template, net);
249 if (IS_ERR(ops))
250 return PTR_ERR(ops);
251
252 INIT_LIST_HEAD(&net->ipv4.mr_tables);
253
254 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
255 if (!mrt) {
256 err = -ENOMEM;
257 goto err1;
258 }
259
260 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
261 if (err < 0)
262 goto err2;
263
264 net->ipv4.mr_rules_ops = ops;
265 return 0;
266
267 err2:
268 ipmr_free_table(mrt);
269 err1:
270 fib_rules_unregister(ops);
271 return err;
272 }
273
274 static void __net_exit ipmr_rules_exit(struct net *net)
275 {
276 struct mr_table *mrt, *next;
277
278 rtnl_lock();
279 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
280 list_del(&mrt->list);
281 ipmr_free_table(mrt);
282 }
283 fib_rules_unregister(net->ipv4.mr_rules_ops);
284 rtnl_unlock();
285 }
286 #else
287 #define ipmr_for_each_table(mrt, net) \
288 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
289
290 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
291 {
292 return net->ipv4.mrt;
293 }
294
295 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
296 struct mr_table **mrt)
297 {
298 *mrt = net->ipv4.mrt;
299 return 0;
300 }
301
302 static int __net_init ipmr_rules_init(struct net *net)
303 {
304 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
305 return net->ipv4.mrt ? 0 : -ENOMEM;
306 }
307
308 static void __net_exit ipmr_rules_exit(struct net *net)
309 {
310 rtnl_lock();
311 ipmr_free_table(net->ipv4.mrt);
312 net->ipv4.mrt = NULL;
313 rtnl_unlock();
314 }
315 #endif
316
317 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
318 {
319 struct mr_table *mrt;
320 unsigned int i;
321
322 mrt = ipmr_get_table(net, id);
323 if (mrt)
324 return mrt;
325
326 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
327 if (!mrt)
328 return NULL;
329 write_pnet(&mrt->net, net);
330 mrt->id = id;
331
332 /* Forwarding cache */
333 for (i = 0; i < MFC_LINES; i++)
334 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
335
336 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
337
338 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
339 (unsigned long)mrt);
340
341 #ifdef CONFIG_IP_PIMSM
342 mrt->mroute_reg_vif_num = -1;
343 #endif
344 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
345 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
346 #endif
347 return mrt;
348 }
349
350 static void ipmr_free_table(struct mr_table *mrt)
351 {
352 del_timer_sync(&mrt->ipmr_expire_timer);
353 mroute_clean_tables(mrt, true);
354 kfree(mrt);
355 }
356
357 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
358
359 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
360 {
361 struct net *net = dev_net(dev);
362
363 dev_close(dev);
364
365 dev = __dev_get_by_name(net, "tunl0");
366 if (dev) {
367 const struct net_device_ops *ops = dev->netdev_ops;
368 struct ifreq ifr;
369 struct ip_tunnel_parm p;
370
371 memset(&p, 0, sizeof(p));
372 p.iph.daddr = v->vifc_rmt_addr.s_addr;
373 p.iph.saddr = v->vifc_lcl_addr.s_addr;
374 p.iph.version = 4;
375 p.iph.ihl = 5;
376 p.iph.protocol = IPPROTO_IPIP;
377 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
378 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
379
380 if (ops->ndo_do_ioctl) {
381 mm_segment_t oldfs = get_fs();
382
383 set_fs(KERNEL_DS);
384 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
385 set_fs(oldfs);
386 }
387 }
388 }
389
390 static
391 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
392 {
393 struct net_device *dev;
394
395 dev = __dev_get_by_name(net, "tunl0");
396
397 if (dev) {
398 const struct net_device_ops *ops = dev->netdev_ops;
399 int err;
400 struct ifreq ifr;
401 struct ip_tunnel_parm p;
402 struct in_device *in_dev;
403
404 memset(&p, 0, sizeof(p));
405 p.iph.daddr = v->vifc_rmt_addr.s_addr;
406 p.iph.saddr = v->vifc_lcl_addr.s_addr;
407 p.iph.version = 4;
408 p.iph.ihl = 5;
409 p.iph.protocol = IPPROTO_IPIP;
410 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
411 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
412
413 if (ops->ndo_do_ioctl) {
414 mm_segment_t oldfs = get_fs();
415
416 set_fs(KERNEL_DS);
417 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
418 set_fs(oldfs);
419 } else {
420 err = -EOPNOTSUPP;
421 }
422 dev = NULL;
423
424 if (err == 0 &&
425 (dev = __dev_get_by_name(net, p.name)) != NULL) {
426 dev->flags |= IFF_MULTICAST;
427
428 in_dev = __in_dev_get_rtnl(dev);
429 if (!in_dev)
430 goto failure;
431
432 ipv4_devconf_setall(in_dev);
433 neigh_parms_data_state_setall(in_dev->arp_parms);
434 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
435
436 if (dev_open(dev))
437 goto failure;
438 dev_hold(dev);
439 }
440 }
441 return dev;
442
443 failure:
444 unregister_netdevice(dev);
445 return NULL;
446 }
447
448 #ifdef CONFIG_IP_PIMSM
449
450 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
451 {
452 struct net *net = dev_net(dev);
453 struct mr_table *mrt;
454 struct flowi4 fl4 = {
455 .flowi4_oif = dev->ifindex,
456 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
457 .flowi4_mark = skb->mark,
458 };
459 int err;
460
461 err = ipmr_fib_lookup(net, &fl4, &mrt);
462 if (err < 0) {
463 kfree_skb(skb);
464 return err;
465 }
466
467 read_lock(&mrt_lock);
468 dev->stats.tx_bytes += skb->len;
469 dev->stats.tx_packets++;
470 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
471 read_unlock(&mrt_lock);
472 kfree_skb(skb);
473 return NETDEV_TX_OK;
474 }
475
476 static int reg_vif_get_iflink(const struct net_device *dev)
477 {
478 return 0;
479 }
480
481 static const struct net_device_ops reg_vif_netdev_ops = {
482 .ndo_start_xmit = reg_vif_xmit,
483 .ndo_get_iflink = reg_vif_get_iflink,
484 };
485
486 static void reg_vif_setup(struct net_device *dev)
487 {
488 dev->type = ARPHRD_PIMREG;
489 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
490 dev->flags = IFF_NOARP;
491 dev->netdev_ops = &reg_vif_netdev_ops;
492 dev->destructor = free_netdev;
493 dev->features |= NETIF_F_NETNS_LOCAL;
494 }
495
496 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
497 {
498 struct net_device *dev;
499 struct in_device *in_dev;
500 char name[IFNAMSIZ];
501
502 if (mrt->id == RT_TABLE_DEFAULT)
503 sprintf(name, "pimreg");
504 else
505 sprintf(name, "pimreg%u", mrt->id);
506
507 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
508
509 if (!dev)
510 return NULL;
511
512 dev_net_set(dev, net);
513
514 if (register_netdevice(dev)) {
515 free_netdev(dev);
516 return NULL;
517 }
518
519 rcu_read_lock();
520 in_dev = __in_dev_get_rcu(dev);
521 if (!in_dev) {
522 rcu_read_unlock();
523 goto failure;
524 }
525
526 ipv4_devconf_setall(in_dev);
527 neigh_parms_data_state_setall(in_dev->arp_parms);
528 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
529 rcu_read_unlock();
530
531 if (dev_open(dev))
532 goto failure;
533
534 dev_hold(dev);
535
536 return dev;
537
538 failure:
539 unregister_netdevice(dev);
540 return NULL;
541 }
542 #endif
543
544 /**
545 * vif_delete - Delete a VIF entry
546 * @notify: Set to 1, if the caller is a notifier_call
547 */
548
549 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
550 struct list_head *head)
551 {
552 struct vif_device *v;
553 struct net_device *dev;
554 struct in_device *in_dev;
555
556 if (vifi < 0 || vifi >= mrt->maxvif)
557 return -EADDRNOTAVAIL;
558
559 v = &mrt->vif_table[vifi];
560
561 write_lock_bh(&mrt_lock);
562 dev = v->dev;
563 v->dev = NULL;
564
565 if (!dev) {
566 write_unlock_bh(&mrt_lock);
567 return -EADDRNOTAVAIL;
568 }
569
570 #ifdef CONFIG_IP_PIMSM
571 if (vifi == mrt->mroute_reg_vif_num)
572 mrt->mroute_reg_vif_num = -1;
573 #endif
574
575 if (vifi + 1 == mrt->maxvif) {
576 int tmp;
577
578 for (tmp = vifi - 1; tmp >= 0; tmp--) {
579 if (VIF_EXISTS(mrt, tmp))
580 break;
581 }
582 mrt->maxvif = tmp+1;
583 }
584
585 write_unlock_bh(&mrt_lock);
586
587 dev_set_allmulti(dev, -1);
588
589 in_dev = __in_dev_get_rtnl(dev);
590 if (in_dev) {
591 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
592 inet_netconf_notify_devconf(dev_net(dev),
593 NETCONFA_MC_FORWARDING,
594 dev->ifindex, &in_dev->cnf);
595 ip_rt_multicast_event(in_dev);
596 }
597
598 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
599 unregister_netdevice_queue(dev, head);
600
601 dev_put(dev);
602 return 0;
603 }
604
605 static void ipmr_cache_free_rcu(struct rcu_head *head)
606 {
607 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
608
609 kmem_cache_free(mrt_cachep, c);
610 }
611
612 static inline void ipmr_cache_free(struct mfc_cache *c)
613 {
614 call_rcu(&c->rcu, ipmr_cache_free_rcu);
615 }
616
617 /* Destroy an unresolved cache entry, killing queued skbs
618 * and reporting error to netlink readers.
619 */
620
621 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
622 {
623 struct net *net = read_pnet(&mrt->net);
624 struct sk_buff *skb;
625 struct nlmsgerr *e;
626
627 atomic_dec(&mrt->cache_resolve_queue_len);
628
629 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
630 if (ip_hdr(skb)->version == 0) {
631 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
632 nlh->nlmsg_type = NLMSG_ERROR;
633 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
634 skb_trim(skb, nlh->nlmsg_len);
635 e = nlmsg_data(nlh);
636 e->error = -ETIMEDOUT;
637 memset(&e->msg, 0, sizeof(e->msg));
638
639 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
640 } else {
641 kfree_skb(skb);
642 }
643 }
644
645 ipmr_cache_free(c);
646 }
647
648
649 /* Timer process for the unresolved queue. */
650
651 static void ipmr_expire_process(unsigned long arg)
652 {
653 struct mr_table *mrt = (struct mr_table *)arg;
654 unsigned long now;
655 unsigned long expires;
656 struct mfc_cache *c, *next;
657
658 if (!spin_trylock(&mfc_unres_lock)) {
659 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
660 return;
661 }
662
663 if (list_empty(&mrt->mfc_unres_queue))
664 goto out;
665
666 now = jiffies;
667 expires = 10*HZ;
668
669 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
670 if (time_after(c->mfc_un.unres.expires, now)) {
671 unsigned long interval = c->mfc_un.unres.expires - now;
672 if (interval < expires)
673 expires = interval;
674 continue;
675 }
676
677 list_del(&c->list);
678 mroute_netlink_event(mrt, c, RTM_DELROUTE);
679 ipmr_destroy_unres(mrt, c);
680 }
681
682 if (!list_empty(&mrt->mfc_unres_queue))
683 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
684
685 out:
686 spin_unlock(&mfc_unres_lock);
687 }
688
689 /* Fill oifs list. It is called under write locked mrt_lock. */
690
691 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
692 unsigned char *ttls)
693 {
694 int vifi;
695
696 cache->mfc_un.res.minvif = MAXVIFS;
697 cache->mfc_un.res.maxvif = 0;
698 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
699
700 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
701 if (VIF_EXISTS(mrt, vifi) &&
702 ttls[vifi] && ttls[vifi] < 255) {
703 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
704 if (cache->mfc_un.res.minvif > vifi)
705 cache->mfc_un.res.minvif = vifi;
706 if (cache->mfc_un.res.maxvif <= vifi)
707 cache->mfc_un.res.maxvif = vifi + 1;
708 }
709 }
710 }
711
712 static int vif_add(struct net *net, struct mr_table *mrt,
713 struct vifctl *vifc, int mrtsock)
714 {
715 int vifi = vifc->vifc_vifi;
716 struct vif_device *v = &mrt->vif_table[vifi];
717 struct net_device *dev;
718 struct in_device *in_dev;
719 int err;
720
721 /* Is vif busy ? */
722 if (VIF_EXISTS(mrt, vifi))
723 return -EADDRINUSE;
724
725 switch (vifc->vifc_flags) {
726 #ifdef CONFIG_IP_PIMSM
727 case VIFF_REGISTER:
728 /*
729 * Special Purpose VIF in PIM
730 * All the packets will be sent to the daemon
731 */
732 if (mrt->mroute_reg_vif_num >= 0)
733 return -EADDRINUSE;
734 dev = ipmr_reg_vif(net, mrt);
735 if (!dev)
736 return -ENOBUFS;
737 err = dev_set_allmulti(dev, 1);
738 if (err) {
739 unregister_netdevice(dev);
740 dev_put(dev);
741 return err;
742 }
743 break;
744 #endif
745 case VIFF_TUNNEL:
746 dev = ipmr_new_tunnel(net, vifc);
747 if (!dev)
748 return -ENOBUFS;
749 err = dev_set_allmulti(dev, 1);
750 if (err) {
751 ipmr_del_tunnel(dev, vifc);
752 dev_put(dev);
753 return err;
754 }
755 break;
756
757 case VIFF_USE_IFINDEX:
758 case 0:
759 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
760 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
761 if (dev && !__in_dev_get_rtnl(dev)) {
762 dev_put(dev);
763 return -EADDRNOTAVAIL;
764 }
765 } else {
766 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
767 }
768 if (!dev)
769 return -EADDRNOTAVAIL;
770 err = dev_set_allmulti(dev, 1);
771 if (err) {
772 dev_put(dev);
773 return err;
774 }
775 break;
776 default:
777 return -EINVAL;
778 }
779
780 in_dev = __in_dev_get_rtnl(dev);
781 if (!in_dev) {
782 dev_put(dev);
783 return -EADDRNOTAVAIL;
784 }
785 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
786 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
787 &in_dev->cnf);
788 ip_rt_multicast_event(in_dev);
789
790 /* Fill in the VIF structures */
791
792 v->rate_limit = vifc->vifc_rate_limit;
793 v->local = vifc->vifc_lcl_addr.s_addr;
794 v->remote = vifc->vifc_rmt_addr.s_addr;
795 v->flags = vifc->vifc_flags;
796 if (!mrtsock)
797 v->flags |= VIFF_STATIC;
798 v->threshold = vifc->vifc_threshold;
799 v->bytes_in = 0;
800 v->bytes_out = 0;
801 v->pkt_in = 0;
802 v->pkt_out = 0;
803 v->link = dev->ifindex;
804 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
805 v->link = dev_get_iflink(dev);
806
807 /* And finish update writing critical data */
808 write_lock_bh(&mrt_lock);
809 v->dev = dev;
810 #ifdef CONFIG_IP_PIMSM
811 if (v->flags & VIFF_REGISTER)
812 mrt->mroute_reg_vif_num = vifi;
813 #endif
814 if (vifi+1 > mrt->maxvif)
815 mrt->maxvif = vifi+1;
816 write_unlock_bh(&mrt_lock);
817 return 0;
818 }
819
820 /* called with rcu_read_lock() */
821 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
822 __be32 origin,
823 __be32 mcastgrp)
824 {
825 int line = MFC_HASH(mcastgrp, origin);
826 struct mfc_cache *c;
827
828 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
829 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
830 return c;
831 }
832 return NULL;
833 }
834
835 /* Look for a (*,*,oif) entry */
836 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
837 int vifi)
838 {
839 int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
840 struct mfc_cache *c;
841
842 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
843 if (c->mfc_origin == htonl(INADDR_ANY) &&
844 c->mfc_mcastgrp == htonl(INADDR_ANY) &&
845 c->mfc_un.res.ttls[vifi] < 255)
846 return c;
847
848 return NULL;
849 }
850
851 /* Look for a (*,G) entry */
852 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
853 __be32 mcastgrp, int vifi)
854 {
855 int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
856 struct mfc_cache *c, *proxy;
857
858 if (mcastgrp == htonl(INADDR_ANY))
859 goto skip;
860
861 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
862 if (c->mfc_origin == htonl(INADDR_ANY) &&
863 c->mfc_mcastgrp == mcastgrp) {
864 if (c->mfc_un.res.ttls[vifi] < 255)
865 return c;
866
867 /* It's ok if the vifi is part of the static tree */
868 proxy = ipmr_cache_find_any_parent(mrt,
869 c->mfc_parent);
870 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
871 return c;
872 }
873
874 skip:
875 return ipmr_cache_find_any_parent(mrt, vifi);
876 }
877
878 /*
879 * Allocate a multicast cache entry
880 */
881 static struct mfc_cache *ipmr_cache_alloc(void)
882 {
883 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
884
885 if (c)
886 c->mfc_un.res.minvif = MAXVIFS;
887 return c;
888 }
889
890 static struct mfc_cache *ipmr_cache_alloc_unres(void)
891 {
892 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
893
894 if (c) {
895 skb_queue_head_init(&c->mfc_un.unres.unresolved);
896 c->mfc_un.unres.expires = jiffies + 10*HZ;
897 }
898 return c;
899 }
900
901 /*
902 * A cache entry has gone into a resolved state from queued
903 */
904
905 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
906 struct mfc_cache *uc, struct mfc_cache *c)
907 {
908 struct sk_buff *skb;
909 struct nlmsgerr *e;
910
911 /* Play the pending entries through our router */
912
913 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
914 if (ip_hdr(skb)->version == 0) {
915 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
916
917 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
918 nlh->nlmsg_len = skb_tail_pointer(skb) -
919 (u8 *)nlh;
920 } else {
921 nlh->nlmsg_type = NLMSG_ERROR;
922 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
923 skb_trim(skb, nlh->nlmsg_len);
924 e = nlmsg_data(nlh);
925 e->error = -EMSGSIZE;
926 memset(&e->msg, 0, sizeof(e->msg));
927 }
928
929 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
930 } else {
931 ip_mr_forward(net, mrt, skb, c, 0);
932 }
933 }
934 }
935
936 /*
937 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
938 * expects the following bizarre scheme.
939 *
940 * Called under mrt_lock.
941 */
942
943 static int ipmr_cache_report(struct mr_table *mrt,
944 struct sk_buff *pkt, vifi_t vifi, int assert)
945 {
946 struct sk_buff *skb;
947 const int ihl = ip_hdrlen(pkt);
948 struct igmphdr *igmp;
949 struct igmpmsg *msg;
950 struct sock *mroute_sk;
951 int ret;
952
953 #ifdef CONFIG_IP_PIMSM
954 if (assert == IGMPMSG_WHOLEPKT)
955 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
956 else
957 #endif
958 skb = alloc_skb(128, GFP_ATOMIC);
959
960 if (!skb)
961 return -ENOBUFS;
962
963 #ifdef CONFIG_IP_PIMSM
964 if (assert == IGMPMSG_WHOLEPKT) {
965 /* Ugly, but we have no choice with this interface.
966 * Duplicate old header, fix ihl, length etc.
967 * And all this only to mangle msg->im_msgtype and
968 * to set msg->im_mbz to "mbz" :-)
969 */
970 skb_push(skb, sizeof(struct iphdr));
971 skb_reset_network_header(skb);
972 skb_reset_transport_header(skb);
973 msg = (struct igmpmsg *)skb_network_header(skb);
974 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
975 msg->im_msgtype = IGMPMSG_WHOLEPKT;
976 msg->im_mbz = 0;
977 msg->im_vif = mrt->mroute_reg_vif_num;
978 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
979 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
980 sizeof(struct iphdr));
981 } else
982 #endif
983 {
984
985 /* Copy the IP header */
986
987 skb_set_network_header(skb, skb->len);
988 skb_put(skb, ihl);
989 skb_copy_to_linear_data(skb, pkt->data, ihl);
990 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
991 msg = (struct igmpmsg *)skb_network_header(skb);
992 msg->im_vif = vifi;
993 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
994
995 /* Add our header */
996
997 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
998 igmp->type =
999 msg->im_msgtype = assert;
1000 igmp->code = 0;
1001 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1002 skb->transport_header = skb->network_header;
1003 }
1004
1005 rcu_read_lock();
1006 mroute_sk = rcu_dereference(mrt->mroute_sk);
1007 if (!mroute_sk) {
1008 rcu_read_unlock();
1009 kfree_skb(skb);
1010 return -EINVAL;
1011 }
1012
1013 /* Deliver to mrouted */
1014
1015 ret = sock_queue_rcv_skb(mroute_sk, skb);
1016 rcu_read_unlock();
1017 if (ret < 0) {
1018 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1019 kfree_skb(skb);
1020 }
1021
1022 return ret;
1023 }
1024
1025 /*
1026 * Queue a packet for resolution. It gets locked cache entry!
1027 */
1028
1029 static int
1030 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
1031 {
1032 bool found = false;
1033 int err;
1034 struct mfc_cache *c;
1035 const struct iphdr *iph = ip_hdr(skb);
1036
1037 spin_lock_bh(&mfc_unres_lock);
1038 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1039 if (c->mfc_mcastgrp == iph->daddr &&
1040 c->mfc_origin == iph->saddr) {
1041 found = true;
1042 break;
1043 }
1044 }
1045
1046 if (!found) {
1047 /* Create a new entry if allowable */
1048
1049 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1050 (c = ipmr_cache_alloc_unres()) == NULL) {
1051 spin_unlock_bh(&mfc_unres_lock);
1052
1053 kfree_skb(skb);
1054 return -ENOBUFS;
1055 }
1056
1057 /* Fill in the new cache entry */
1058
1059 c->mfc_parent = -1;
1060 c->mfc_origin = iph->saddr;
1061 c->mfc_mcastgrp = iph->daddr;
1062
1063 /* Reflect first query at mrouted. */
1064
1065 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1066 if (err < 0) {
1067 /* If the report failed throw the cache entry
1068 out - Brad Parker
1069 */
1070 spin_unlock_bh(&mfc_unres_lock);
1071
1072 ipmr_cache_free(c);
1073 kfree_skb(skb);
1074 return err;
1075 }
1076
1077 atomic_inc(&mrt->cache_resolve_queue_len);
1078 list_add(&c->list, &mrt->mfc_unres_queue);
1079 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1080
1081 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1082 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1083 }
1084
1085 /* See if we can append the packet */
1086
1087 if (c->mfc_un.unres.unresolved.qlen > 3) {
1088 kfree_skb(skb);
1089 err = -ENOBUFS;
1090 } else {
1091 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1092 err = 0;
1093 }
1094
1095 spin_unlock_bh(&mfc_unres_lock);
1096 return err;
1097 }
1098
1099 /*
1100 * MFC cache manipulation by user space mroute daemon
1101 */
1102
1103 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1104 {
1105 int line;
1106 struct mfc_cache *c, *next;
1107
1108 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1109
1110 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1111 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1112 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1113 (parent == -1 || parent == c->mfc_parent)) {
1114 list_del_rcu(&c->list);
1115 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1116 ipmr_cache_free(c);
1117 return 0;
1118 }
1119 }
1120 return -ENOENT;
1121 }
1122
1123 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1124 struct mfcctl *mfc, int mrtsock, int parent)
1125 {
1126 bool found = false;
1127 int line;
1128 struct mfc_cache *uc, *c;
1129
1130 if (mfc->mfcc_parent >= MAXVIFS)
1131 return -ENFILE;
1132
1133 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1134
1135 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1136 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1137 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1138 (parent == -1 || parent == c->mfc_parent)) {
1139 found = true;
1140 break;
1141 }
1142 }
1143
1144 if (found) {
1145 write_lock_bh(&mrt_lock);
1146 c->mfc_parent = mfc->mfcc_parent;
1147 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1148 if (!mrtsock)
1149 c->mfc_flags |= MFC_STATIC;
1150 write_unlock_bh(&mrt_lock);
1151 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1152 return 0;
1153 }
1154
1155 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1156 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1157 return -EINVAL;
1158
1159 c = ipmr_cache_alloc();
1160 if (!c)
1161 return -ENOMEM;
1162
1163 c->mfc_origin = mfc->mfcc_origin.s_addr;
1164 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1165 c->mfc_parent = mfc->mfcc_parent;
1166 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1167 if (!mrtsock)
1168 c->mfc_flags |= MFC_STATIC;
1169
1170 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1171
1172 /*
1173 * Check to see if we resolved a queued list. If so we
1174 * need to send on the frames and tidy up.
1175 */
1176 found = false;
1177 spin_lock_bh(&mfc_unres_lock);
1178 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1179 if (uc->mfc_origin == c->mfc_origin &&
1180 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1181 list_del(&uc->list);
1182 atomic_dec(&mrt->cache_resolve_queue_len);
1183 found = true;
1184 break;
1185 }
1186 }
1187 if (list_empty(&mrt->mfc_unres_queue))
1188 del_timer(&mrt->ipmr_expire_timer);
1189 spin_unlock_bh(&mfc_unres_lock);
1190
1191 if (found) {
1192 ipmr_cache_resolve(net, mrt, uc, c);
1193 ipmr_cache_free(uc);
1194 }
1195 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1196 return 0;
1197 }
1198
1199 /*
1200 * Close the multicast socket, and clear the vif tables etc
1201 */
1202
1203 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1204 {
1205 int i;
1206 LIST_HEAD(list);
1207 struct mfc_cache *c, *next;
1208
1209 /* Shut down all active vif entries */
1210
1211 for (i = 0; i < mrt->maxvif; i++) {
1212 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1213 continue;
1214 vif_delete(mrt, i, 0, &list);
1215 }
1216 unregister_netdevice_many(&list);
1217
1218 /* Wipe the cache */
1219
1220 for (i = 0; i < MFC_LINES; i++) {
1221 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1222 if (!all && (c->mfc_flags & MFC_STATIC))
1223 continue;
1224 list_del_rcu(&c->list);
1225 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1226 ipmr_cache_free(c);
1227 }
1228 }
1229
1230 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1231 spin_lock_bh(&mfc_unres_lock);
1232 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1233 list_del(&c->list);
1234 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1235 ipmr_destroy_unres(mrt, c);
1236 }
1237 spin_unlock_bh(&mfc_unres_lock);
1238 }
1239 }
1240
1241 /* called from ip_ra_control(), before an RCU grace period,
1242 * we dont need to call synchronize_rcu() here
1243 */
1244 static void mrtsock_destruct(struct sock *sk)
1245 {
1246 struct net *net = sock_net(sk);
1247 struct mr_table *mrt;
1248
1249 rtnl_lock();
1250 ipmr_for_each_table(mrt, net) {
1251 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1252 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1253 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1254 NETCONFA_IFINDEX_ALL,
1255 net->ipv4.devconf_all);
1256 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1257 mroute_clean_tables(mrt, false);
1258 }
1259 }
1260 rtnl_unlock();
1261 }
1262
1263 /*
1264 * Socket options and virtual interface manipulation. The whole
1265 * virtual interface system is a complete heap, but unfortunately
1266 * that's how BSD mrouted happens to think. Maybe one day with a proper
1267 * MOSPF/PIM router set up we can clean this up.
1268 */
1269
1270 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1271 {
1272 int ret, parent = 0;
1273 struct vifctl vif;
1274 struct mfcctl mfc;
1275 struct net *net = sock_net(sk);
1276 struct mr_table *mrt;
1277
1278 if (sk->sk_type != SOCK_RAW ||
1279 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1280 return -EOPNOTSUPP;
1281
1282 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1283 if (!mrt)
1284 return -ENOENT;
1285
1286 if (optname != MRT_INIT) {
1287 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1288 !ns_capable(net->user_ns, CAP_NET_ADMIN))
1289 return -EACCES;
1290 }
1291
1292 switch (optname) {
1293 case MRT_INIT:
1294 if (optlen != sizeof(int))
1295 return -EINVAL;
1296
1297 rtnl_lock();
1298 if (rtnl_dereference(mrt->mroute_sk)) {
1299 rtnl_unlock();
1300 return -EADDRINUSE;
1301 }
1302
1303 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1304 if (ret == 0) {
1305 rcu_assign_pointer(mrt->mroute_sk, sk);
1306 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1307 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1308 NETCONFA_IFINDEX_ALL,
1309 net->ipv4.devconf_all);
1310 }
1311 rtnl_unlock();
1312 return ret;
1313 case MRT_DONE:
1314 if (sk != rcu_access_pointer(mrt->mroute_sk))
1315 return -EACCES;
1316 return ip_ra_control(sk, 0, NULL);
1317 case MRT_ADD_VIF:
1318 case MRT_DEL_VIF:
1319 if (optlen != sizeof(vif))
1320 return -EINVAL;
1321 if (copy_from_user(&vif, optval, sizeof(vif)))
1322 return -EFAULT;
1323 if (vif.vifc_vifi >= MAXVIFS)
1324 return -ENFILE;
1325 rtnl_lock();
1326 if (optname == MRT_ADD_VIF) {
1327 ret = vif_add(net, mrt, &vif,
1328 sk == rtnl_dereference(mrt->mroute_sk));
1329 } else {
1330 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1331 }
1332 rtnl_unlock();
1333 return ret;
1334
1335 /*
1336 * Manipulate the forwarding caches. These live
1337 * in a sort of kernel/user symbiosis.
1338 */
1339 case MRT_ADD_MFC:
1340 case MRT_DEL_MFC:
1341 parent = -1;
1342 case MRT_ADD_MFC_PROXY:
1343 case MRT_DEL_MFC_PROXY:
1344 if (optlen != sizeof(mfc))
1345 return -EINVAL;
1346 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1347 return -EFAULT;
1348 if (parent == 0)
1349 parent = mfc.mfcc_parent;
1350 rtnl_lock();
1351 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1352 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1353 else
1354 ret = ipmr_mfc_add(net, mrt, &mfc,
1355 sk == rtnl_dereference(mrt->mroute_sk),
1356 parent);
1357 rtnl_unlock();
1358 return ret;
1359 /*
1360 * Control PIM assert.
1361 */
1362 case MRT_ASSERT:
1363 {
1364 int v;
1365 if (optlen != sizeof(v))
1366 return -EINVAL;
1367 if (get_user(v, (int __user *)optval))
1368 return -EFAULT;
1369 mrt->mroute_do_assert = v;
1370 return 0;
1371 }
1372 #ifdef CONFIG_IP_PIMSM
1373 case MRT_PIM:
1374 {
1375 int v;
1376
1377 if (optlen != sizeof(v))
1378 return -EINVAL;
1379 if (get_user(v, (int __user *)optval))
1380 return -EFAULT;
1381 v = !!v;
1382
1383 rtnl_lock();
1384 ret = 0;
1385 if (v != mrt->mroute_do_pim) {
1386 mrt->mroute_do_pim = v;
1387 mrt->mroute_do_assert = v;
1388 }
1389 rtnl_unlock();
1390 return ret;
1391 }
1392 #endif
1393 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1394 case MRT_TABLE:
1395 {
1396 u32 v;
1397
1398 if (optlen != sizeof(u32))
1399 return -EINVAL;
1400 if (get_user(v, (u32 __user *)optval))
1401 return -EFAULT;
1402
1403 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
1404 if (v != RT_TABLE_DEFAULT && v >= 1000000000)
1405 return -EINVAL;
1406
1407 rtnl_lock();
1408 ret = 0;
1409 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1410 ret = -EBUSY;
1411 } else {
1412 if (!ipmr_new_table(net, v))
1413 ret = -ENOMEM;
1414 else
1415 raw_sk(sk)->ipmr_table = v;
1416 }
1417 rtnl_unlock();
1418 return ret;
1419 }
1420 #endif
1421 /*
1422 * Spurious command, or MRT_VERSION which you cannot
1423 * set.
1424 */
1425 default:
1426 return -ENOPROTOOPT;
1427 }
1428 }
1429
1430 /*
1431 * Getsock opt support for the multicast routing system.
1432 */
1433
1434 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1435 {
1436 int olr;
1437 int val;
1438 struct net *net = sock_net(sk);
1439 struct mr_table *mrt;
1440
1441 if (sk->sk_type != SOCK_RAW ||
1442 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1443 return -EOPNOTSUPP;
1444
1445 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1446 if (!mrt)
1447 return -ENOENT;
1448
1449 if (optname != MRT_VERSION &&
1450 #ifdef CONFIG_IP_PIMSM
1451 optname != MRT_PIM &&
1452 #endif
1453 optname != MRT_ASSERT)
1454 return -ENOPROTOOPT;
1455
1456 if (get_user(olr, optlen))
1457 return -EFAULT;
1458
1459 olr = min_t(unsigned int, olr, sizeof(int));
1460 if (olr < 0)
1461 return -EINVAL;
1462
1463 if (put_user(olr, optlen))
1464 return -EFAULT;
1465 if (optname == MRT_VERSION)
1466 val = 0x0305;
1467 #ifdef CONFIG_IP_PIMSM
1468 else if (optname == MRT_PIM)
1469 val = mrt->mroute_do_pim;
1470 #endif
1471 else
1472 val = mrt->mroute_do_assert;
1473 if (copy_to_user(optval, &val, olr))
1474 return -EFAULT;
1475 return 0;
1476 }
1477
1478 /*
1479 * The IP multicast ioctl support routines.
1480 */
1481
1482 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1483 {
1484 struct sioc_sg_req sr;
1485 struct sioc_vif_req vr;
1486 struct vif_device *vif;
1487 struct mfc_cache *c;
1488 struct net *net = sock_net(sk);
1489 struct mr_table *mrt;
1490
1491 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1492 if (!mrt)
1493 return -ENOENT;
1494
1495 switch (cmd) {
1496 case SIOCGETVIFCNT:
1497 if (copy_from_user(&vr, arg, sizeof(vr)))
1498 return -EFAULT;
1499 if (vr.vifi >= mrt->maxvif)
1500 return -EINVAL;
1501 read_lock(&mrt_lock);
1502 vif = &mrt->vif_table[vr.vifi];
1503 if (VIF_EXISTS(mrt, vr.vifi)) {
1504 vr.icount = vif->pkt_in;
1505 vr.ocount = vif->pkt_out;
1506 vr.ibytes = vif->bytes_in;
1507 vr.obytes = vif->bytes_out;
1508 read_unlock(&mrt_lock);
1509
1510 if (copy_to_user(arg, &vr, sizeof(vr)))
1511 return -EFAULT;
1512 return 0;
1513 }
1514 read_unlock(&mrt_lock);
1515 return -EADDRNOTAVAIL;
1516 case SIOCGETSGCNT:
1517 if (copy_from_user(&sr, arg, sizeof(sr)))
1518 return -EFAULT;
1519
1520 rcu_read_lock();
1521 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1522 if (c) {
1523 sr.pktcnt = c->mfc_un.res.pkt;
1524 sr.bytecnt = c->mfc_un.res.bytes;
1525 sr.wrong_if = c->mfc_un.res.wrong_if;
1526 rcu_read_unlock();
1527
1528 if (copy_to_user(arg, &sr, sizeof(sr)))
1529 return -EFAULT;
1530 return 0;
1531 }
1532 rcu_read_unlock();
1533 return -EADDRNOTAVAIL;
1534 default:
1535 return -ENOIOCTLCMD;
1536 }
1537 }
1538
1539 #ifdef CONFIG_COMPAT
1540 struct compat_sioc_sg_req {
1541 struct in_addr src;
1542 struct in_addr grp;
1543 compat_ulong_t pktcnt;
1544 compat_ulong_t bytecnt;
1545 compat_ulong_t wrong_if;
1546 };
1547
1548 struct compat_sioc_vif_req {
1549 vifi_t vifi; /* Which iface */
1550 compat_ulong_t icount;
1551 compat_ulong_t ocount;
1552 compat_ulong_t ibytes;
1553 compat_ulong_t obytes;
1554 };
1555
1556 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1557 {
1558 struct compat_sioc_sg_req sr;
1559 struct compat_sioc_vif_req vr;
1560 struct vif_device *vif;
1561 struct mfc_cache *c;
1562 struct net *net = sock_net(sk);
1563 struct mr_table *mrt;
1564
1565 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1566 if (!mrt)
1567 return -ENOENT;
1568
1569 switch (cmd) {
1570 case SIOCGETVIFCNT:
1571 if (copy_from_user(&vr, arg, sizeof(vr)))
1572 return -EFAULT;
1573 if (vr.vifi >= mrt->maxvif)
1574 return -EINVAL;
1575 read_lock(&mrt_lock);
1576 vif = &mrt->vif_table[vr.vifi];
1577 if (VIF_EXISTS(mrt, vr.vifi)) {
1578 vr.icount = vif->pkt_in;
1579 vr.ocount = vif->pkt_out;
1580 vr.ibytes = vif->bytes_in;
1581 vr.obytes = vif->bytes_out;
1582 read_unlock(&mrt_lock);
1583
1584 if (copy_to_user(arg, &vr, sizeof(vr)))
1585 return -EFAULT;
1586 return 0;
1587 }
1588 read_unlock(&mrt_lock);
1589 return -EADDRNOTAVAIL;
1590 case SIOCGETSGCNT:
1591 if (copy_from_user(&sr, arg, sizeof(sr)))
1592 return -EFAULT;
1593
1594 rcu_read_lock();
1595 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1596 if (c) {
1597 sr.pktcnt = c->mfc_un.res.pkt;
1598 sr.bytecnt = c->mfc_un.res.bytes;
1599 sr.wrong_if = c->mfc_un.res.wrong_if;
1600 rcu_read_unlock();
1601
1602 if (copy_to_user(arg, &sr, sizeof(sr)))
1603 return -EFAULT;
1604 return 0;
1605 }
1606 rcu_read_unlock();
1607 return -EADDRNOTAVAIL;
1608 default:
1609 return -ENOIOCTLCMD;
1610 }
1611 }
1612 #endif
1613
1614
1615 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1616 {
1617 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1618 struct net *net = dev_net(dev);
1619 struct mr_table *mrt;
1620 struct vif_device *v;
1621 int ct;
1622
1623 if (event != NETDEV_UNREGISTER)
1624 return NOTIFY_DONE;
1625
1626 ipmr_for_each_table(mrt, net) {
1627 v = &mrt->vif_table[0];
1628 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1629 if (v->dev == dev)
1630 vif_delete(mrt, ct, 1, NULL);
1631 }
1632 }
1633 return NOTIFY_DONE;
1634 }
1635
1636
1637 static struct notifier_block ip_mr_notifier = {
1638 .notifier_call = ipmr_device_event,
1639 };
1640
1641 /*
1642 * Encapsulate a packet by attaching a valid IPIP header to it.
1643 * This avoids tunnel drivers and other mess and gives us the speed so
1644 * important for multicast video.
1645 */
1646
1647 static void ip_encap(struct net *net, struct sk_buff *skb,
1648 __be32 saddr, __be32 daddr)
1649 {
1650 struct iphdr *iph;
1651 const struct iphdr *old_iph = ip_hdr(skb);
1652
1653 skb_push(skb, sizeof(struct iphdr));
1654 skb->transport_header = skb->network_header;
1655 skb_reset_network_header(skb);
1656 iph = ip_hdr(skb);
1657
1658 iph->version = 4;
1659 iph->tos = old_iph->tos;
1660 iph->ttl = old_iph->ttl;
1661 iph->frag_off = 0;
1662 iph->daddr = daddr;
1663 iph->saddr = saddr;
1664 iph->protocol = IPPROTO_IPIP;
1665 iph->ihl = 5;
1666 iph->tot_len = htons(skb->len);
1667 ip_select_ident(net, skb, NULL);
1668 ip_send_check(iph);
1669
1670 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1671 nf_reset(skb);
1672 }
1673
1674 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1675 struct sk_buff *skb)
1676 {
1677 struct ip_options *opt = &(IPCB(skb)->opt);
1678
1679 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1680 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1681
1682 if (unlikely(opt->optlen))
1683 ip_forward_options(skb);
1684
1685 return dst_output(net, sk, skb);
1686 }
1687
1688 /*
1689 * Processing handlers for ipmr_forward
1690 */
1691
1692 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1693 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1694 {
1695 const struct iphdr *iph = ip_hdr(skb);
1696 struct vif_device *vif = &mrt->vif_table[vifi];
1697 struct net_device *dev;
1698 struct rtable *rt;
1699 struct flowi4 fl4;
1700 int encap = 0;
1701
1702 if (!vif->dev)
1703 goto out_free;
1704
1705 #ifdef CONFIG_IP_PIMSM
1706 if (vif->flags & VIFF_REGISTER) {
1707 vif->pkt_out++;
1708 vif->bytes_out += skb->len;
1709 vif->dev->stats.tx_bytes += skb->len;
1710 vif->dev->stats.tx_packets++;
1711 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1712 goto out_free;
1713 }
1714 #endif
1715
1716 if (vif->flags & VIFF_TUNNEL) {
1717 rt = ip_route_output_ports(net, &fl4, NULL,
1718 vif->remote, vif->local,
1719 0, 0,
1720 IPPROTO_IPIP,
1721 RT_TOS(iph->tos), vif->link);
1722 if (IS_ERR(rt))
1723 goto out_free;
1724 encap = sizeof(struct iphdr);
1725 } else {
1726 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1727 0, 0,
1728 IPPROTO_IPIP,
1729 RT_TOS(iph->tos), vif->link);
1730 if (IS_ERR(rt))
1731 goto out_free;
1732 }
1733
1734 dev = rt->dst.dev;
1735
1736 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1737 /* Do not fragment multicasts. Alas, IPv4 does not
1738 * allow to send ICMP, so that packets will disappear
1739 * to blackhole.
1740 */
1741
1742 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1743 ip_rt_put(rt);
1744 goto out_free;
1745 }
1746
1747 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1748
1749 if (skb_cow(skb, encap)) {
1750 ip_rt_put(rt);
1751 goto out_free;
1752 }
1753
1754 vif->pkt_out++;
1755 vif->bytes_out += skb->len;
1756
1757 skb_dst_drop(skb);
1758 skb_dst_set(skb, &rt->dst);
1759 ip_decrease_ttl(ip_hdr(skb));
1760
1761 /* FIXME: forward and output firewalls used to be called here.
1762 * What do we do with netfilter? -- RR
1763 */
1764 if (vif->flags & VIFF_TUNNEL) {
1765 ip_encap(net, skb, vif->local, vif->remote);
1766 /* FIXME: extra output firewall step used to be here. --RR */
1767 vif->dev->stats.tx_packets++;
1768 vif->dev->stats.tx_bytes += skb->len;
1769 }
1770
1771 IPCB(skb)->flags |= IPSKB_FORWARDED;
1772
1773 /*
1774 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1775 * not only before forwarding, but after forwarding on all output
1776 * interfaces. It is clear, if mrouter runs a multicasting
1777 * program, it should receive packets not depending to what interface
1778 * program is joined.
1779 * If we will not make it, the program will have to join on all
1780 * interfaces. On the other hand, multihoming host (or router, but
1781 * not mrouter) cannot join to more than one interface - it will
1782 * result in receiving multiple packets.
1783 */
1784 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1785 net, NULL, skb, skb->dev, dev,
1786 ipmr_forward_finish);
1787 return;
1788
1789 out_free:
1790 kfree_skb(skb);
1791 }
1792
1793 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1794 {
1795 int ct;
1796
1797 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1798 if (mrt->vif_table[ct].dev == dev)
1799 break;
1800 }
1801 return ct;
1802 }
1803
1804 /* "local" means that we should preserve one skb (for local delivery) */
1805
1806 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1807 struct sk_buff *skb, struct mfc_cache *cache,
1808 int local)
1809 {
1810 int psend = -1;
1811 int vif, ct;
1812 int true_vifi = ipmr_find_vif(mrt, skb->dev);
1813
1814 vif = cache->mfc_parent;
1815 cache->mfc_un.res.pkt++;
1816 cache->mfc_un.res.bytes += skb->len;
1817
1818 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1819 struct mfc_cache *cache_proxy;
1820
1821 /* For an (*,G) entry, we only check that the incomming
1822 * interface is part of the static tree.
1823 */
1824 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1825 if (cache_proxy &&
1826 cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1827 goto forward;
1828 }
1829
1830 /*
1831 * Wrong interface: drop packet and (maybe) send PIM assert.
1832 */
1833 if (mrt->vif_table[vif].dev != skb->dev) {
1834 if (rt_is_output_route(skb_rtable(skb))) {
1835 /* It is our own packet, looped back.
1836 * Very complicated situation...
1837 *
1838 * The best workaround until routing daemons will be
1839 * fixed is not to redistribute packet, if it was
1840 * send through wrong interface. It means, that
1841 * multicast applications WILL NOT work for
1842 * (S,G), which have default multicast route pointing
1843 * to wrong oif. In any case, it is not a good
1844 * idea to use multicasting applications on router.
1845 */
1846 goto dont_forward;
1847 }
1848
1849 cache->mfc_un.res.wrong_if++;
1850
1851 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1852 /* pimsm uses asserts, when switching from RPT to SPT,
1853 * so that we cannot check that packet arrived on an oif.
1854 * It is bad, but otherwise we would need to move pretty
1855 * large chunk of pimd to kernel. Ough... --ANK
1856 */
1857 (mrt->mroute_do_pim ||
1858 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1859 time_after(jiffies,
1860 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1861 cache->mfc_un.res.last_assert = jiffies;
1862 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1863 }
1864 goto dont_forward;
1865 }
1866
1867 forward:
1868 mrt->vif_table[vif].pkt_in++;
1869 mrt->vif_table[vif].bytes_in += skb->len;
1870
1871 /*
1872 * Forward the frame
1873 */
1874 if (cache->mfc_origin == htonl(INADDR_ANY) &&
1875 cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1876 if (true_vifi >= 0 &&
1877 true_vifi != cache->mfc_parent &&
1878 ip_hdr(skb)->ttl >
1879 cache->mfc_un.res.ttls[cache->mfc_parent]) {
1880 /* It's an (*,*) entry and the packet is not coming from
1881 * the upstream: forward the packet to the upstream
1882 * only.
1883 */
1884 psend = cache->mfc_parent;
1885 goto last_forward;
1886 }
1887 goto dont_forward;
1888 }
1889 for (ct = cache->mfc_un.res.maxvif - 1;
1890 ct >= cache->mfc_un.res.minvif; ct--) {
1891 /* For (*,G) entry, don't forward to the incoming interface */
1892 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1893 ct != true_vifi) &&
1894 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1895 if (psend != -1) {
1896 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1897
1898 if (skb2)
1899 ipmr_queue_xmit(net, mrt, skb2, cache,
1900 psend);
1901 }
1902 psend = ct;
1903 }
1904 }
1905 last_forward:
1906 if (psend != -1) {
1907 if (local) {
1908 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1909
1910 if (skb2)
1911 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1912 } else {
1913 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1914 return;
1915 }
1916 }
1917
1918 dont_forward:
1919 if (!local)
1920 kfree_skb(skb);
1921 }
1922
1923 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1924 {
1925 struct rtable *rt = skb_rtable(skb);
1926 struct iphdr *iph = ip_hdr(skb);
1927 struct flowi4 fl4 = {
1928 .daddr = iph->daddr,
1929 .saddr = iph->saddr,
1930 .flowi4_tos = RT_TOS(iph->tos),
1931 .flowi4_oif = (rt_is_output_route(rt) ?
1932 skb->dev->ifindex : 0),
1933 .flowi4_iif = (rt_is_output_route(rt) ?
1934 LOOPBACK_IFINDEX :
1935 skb->dev->ifindex),
1936 .flowi4_mark = skb->mark,
1937 };
1938 struct mr_table *mrt;
1939 int err;
1940
1941 err = ipmr_fib_lookup(net, &fl4, &mrt);
1942 if (err)
1943 return ERR_PTR(err);
1944 return mrt;
1945 }
1946
1947 /*
1948 * Multicast packets for forwarding arrive here
1949 * Called with rcu_read_lock();
1950 */
1951
1952 int ip_mr_input(struct sk_buff *skb)
1953 {
1954 struct mfc_cache *cache;
1955 struct net *net = dev_net(skb->dev);
1956 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1957 struct mr_table *mrt;
1958
1959 /* Packet is looped back after forward, it should not be
1960 * forwarded second time, but still can be delivered locally.
1961 */
1962 if (IPCB(skb)->flags & IPSKB_FORWARDED)
1963 goto dont_forward;
1964
1965 mrt = ipmr_rt_fib_lookup(net, skb);
1966 if (IS_ERR(mrt)) {
1967 kfree_skb(skb);
1968 return PTR_ERR(mrt);
1969 }
1970 if (!local) {
1971 if (IPCB(skb)->opt.router_alert) {
1972 if (ip_call_ra_chain(skb))
1973 return 0;
1974 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1975 /* IGMPv1 (and broken IGMPv2 implementations sort of
1976 * Cisco IOS <= 11.2(8)) do not put router alert
1977 * option to IGMP packets destined to routable
1978 * groups. It is very bad, because it means
1979 * that we can forward NO IGMP messages.
1980 */
1981 struct sock *mroute_sk;
1982
1983 mroute_sk = rcu_dereference(mrt->mroute_sk);
1984 if (mroute_sk) {
1985 nf_reset(skb);
1986 raw_rcv(mroute_sk, skb);
1987 return 0;
1988 }
1989 }
1990 }
1991
1992 /* already under rcu_read_lock() */
1993 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1994 if (!cache) {
1995 int vif = ipmr_find_vif(mrt, skb->dev);
1996
1997 if (vif >= 0)
1998 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1999 vif);
2000 }
2001
2002 /*
2003 * No usable cache entry
2004 */
2005 if (!cache) {
2006 int vif;
2007
2008 if (local) {
2009 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2010 ip_local_deliver(skb);
2011 if (!skb2)
2012 return -ENOBUFS;
2013 skb = skb2;
2014 }
2015
2016 read_lock(&mrt_lock);
2017 vif = ipmr_find_vif(mrt, skb->dev);
2018 if (vif >= 0) {
2019 int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2020 read_unlock(&mrt_lock);
2021
2022 return err2;
2023 }
2024 read_unlock(&mrt_lock);
2025 kfree_skb(skb);
2026 return -ENODEV;
2027 }
2028
2029 read_lock(&mrt_lock);
2030 ip_mr_forward(net, mrt, skb, cache, local);
2031 read_unlock(&mrt_lock);
2032
2033 if (local)
2034 return ip_local_deliver(skb);
2035
2036 return 0;
2037
2038 dont_forward:
2039 if (local)
2040 return ip_local_deliver(skb);
2041 kfree_skb(skb);
2042 return 0;
2043 }
2044
2045 #ifdef CONFIG_IP_PIMSM
2046 /* called with rcu_read_lock() */
2047 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
2048 unsigned int pimlen)
2049 {
2050 struct net_device *reg_dev = NULL;
2051 struct iphdr *encap;
2052
2053 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
2054 /*
2055 * Check that:
2056 * a. packet is really sent to a multicast group
2057 * b. packet is not a NULL-REGISTER
2058 * c. packet is not truncated
2059 */
2060 if (!ipv4_is_multicast(encap->daddr) ||
2061 encap->tot_len == 0 ||
2062 ntohs(encap->tot_len) + pimlen > skb->len)
2063 return 1;
2064
2065 read_lock(&mrt_lock);
2066 if (mrt->mroute_reg_vif_num >= 0)
2067 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
2068 read_unlock(&mrt_lock);
2069
2070 if (!reg_dev)
2071 return 1;
2072
2073 skb->mac_header = skb->network_header;
2074 skb_pull(skb, (u8 *)encap - skb->data);
2075 skb_reset_network_header(skb);
2076 skb->protocol = htons(ETH_P_IP);
2077 skb->ip_summed = CHECKSUM_NONE;
2078
2079 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
2080
2081 netif_rx(skb);
2082
2083 return NET_RX_SUCCESS;
2084 }
2085 #endif
2086
2087 #ifdef CONFIG_IP_PIMSM_V1
2088 /*
2089 * Handle IGMP messages of PIMv1
2090 */
2091
2092 int pim_rcv_v1(struct sk_buff *skb)
2093 {
2094 struct igmphdr *pim;
2095 struct net *net = dev_net(skb->dev);
2096 struct mr_table *mrt;
2097
2098 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2099 goto drop;
2100
2101 pim = igmp_hdr(skb);
2102
2103 mrt = ipmr_rt_fib_lookup(net, skb);
2104 if (IS_ERR(mrt))
2105 goto drop;
2106 if (!mrt->mroute_do_pim ||
2107 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2108 goto drop;
2109
2110 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2111 drop:
2112 kfree_skb(skb);
2113 }
2114 return 0;
2115 }
2116 #endif
2117
2118 #ifdef CONFIG_IP_PIMSM_V2
2119 static int pim_rcv(struct sk_buff *skb)
2120 {
2121 struct pimreghdr *pim;
2122 struct net *net = dev_net(skb->dev);
2123 struct mr_table *mrt;
2124
2125 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2126 goto drop;
2127
2128 pim = (struct pimreghdr *)skb_transport_header(skb);
2129 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2130 (pim->flags & PIM_NULL_REGISTER) ||
2131 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2132 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2133 goto drop;
2134
2135 mrt = ipmr_rt_fib_lookup(net, skb);
2136 if (IS_ERR(mrt))
2137 goto drop;
2138 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2139 drop:
2140 kfree_skb(skb);
2141 }
2142 return 0;
2143 }
2144 #endif
2145
2146 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2147 struct mfc_cache *c, struct rtmsg *rtm)
2148 {
2149 int ct;
2150 struct rtnexthop *nhp;
2151 struct nlattr *mp_attr;
2152 struct rta_mfc_stats mfcs;
2153
2154 /* If cache is unresolved, don't try to parse IIF and OIF */
2155 if (c->mfc_parent >= MAXVIFS)
2156 return -ENOENT;
2157
2158 if (VIF_EXISTS(mrt, c->mfc_parent) &&
2159 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2160 return -EMSGSIZE;
2161
2162 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2163 return -EMSGSIZE;
2164
2165 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2166 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2167 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2168 nla_nest_cancel(skb, mp_attr);
2169 return -EMSGSIZE;
2170 }
2171
2172 nhp->rtnh_flags = 0;
2173 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2174 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2175 nhp->rtnh_len = sizeof(*nhp);
2176 }
2177 }
2178
2179 nla_nest_end(skb, mp_attr);
2180
2181 mfcs.mfcs_packets = c->mfc_un.res.pkt;
2182 mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2183 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2184 if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2185 return -EMSGSIZE;
2186
2187 rtm->rtm_type = RTN_MULTICAST;
2188 return 1;
2189 }
2190
2191 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2192 __be32 saddr, __be32 daddr,
2193 struct rtmsg *rtm, int nowait)
2194 {
2195 struct mfc_cache *cache;
2196 struct mr_table *mrt;
2197 int err;
2198
2199 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2200 if (!mrt)
2201 return -ENOENT;
2202
2203 rcu_read_lock();
2204 cache = ipmr_cache_find(mrt, saddr, daddr);
2205 if (!cache && skb->dev) {
2206 int vif = ipmr_find_vif(mrt, skb->dev);
2207
2208 if (vif >= 0)
2209 cache = ipmr_cache_find_any(mrt, daddr, vif);
2210 }
2211 if (!cache) {
2212 struct sk_buff *skb2;
2213 struct iphdr *iph;
2214 struct net_device *dev;
2215 int vif = -1;
2216
2217 if (nowait) {
2218 rcu_read_unlock();
2219 return -EAGAIN;
2220 }
2221
2222 dev = skb->dev;
2223 read_lock(&mrt_lock);
2224 if (dev)
2225 vif = ipmr_find_vif(mrt, dev);
2226 if (vif < 0) {
2227 read_unlock(&mrt_lock);
2228 rcu_read_unlock();
2229 return -ENODEV;
2230 }
2231 skb2 = skb_clone(skb, GFP_ATOMIC);
2232 if (!skb2) {
2233 read_unlock(&mrt_lock);
2234 rcu_read_unlock();
2235 return -ENOMEM;
2236 }
2237
2238 skb_push(skb2, sizeof(struct iphdr));
2239 skb_reset_network_header(skb2);
2240 iph = ip_hdr(skb2);
2241 iph->ihl = sizeof(struct iphdr) >> 2;
2242 iph->saddr = saddr;
2243 iph->daddr = daddr;
2244 iph->version = 0;
2245 err = ipmr_cache_unresolved(mrt, vif, skb2);
2246 read_unlock(&mrt_lock);
2247 rcu_read_unlock();
2248 return err;
2249 }
2250
2251 read_lock(&mrt_lock);
2252 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2253 cache->mfc_flags |= MFC_NOTIFY;
2254 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2255 read_unlock(&mrt_lock);
2256 rcu_read_unlock();
2257 return err;
2258 }
2259
2260 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2261 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2262 int flags)
2263 {
2264 struct nlmsghdr *nlh;
2265 struct rtmsg *rtm;
2266 int err;
2267
2268 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2269 if (!nlh)
2270 return -EMSGSIZE;
2271
2272 rtm = nlmsg_data(nlh);
2273 rtm->rtm_family = RTNL_FAMILY_IPMR;
2274 rtm->rtm_dst_len = 32;
2275 rtm->rtm_src_len = 32;
2276 rtm->rtm_tos = 0;
2277 rtm->rtm_table = mrt->id;
2278 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2279 goto nla_put_failure;
2280 rtm->rtm_type = RTN_MULTICAST;
2281 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2282 if (c->mfc_flags & MFC_STATIC)
2283 rtm->rtm_protocol = RTPROT_STATIC;
2284 else
2285 rtm->rtm_protocol = RTPROT_MROUTED;
2286 rtm->rtm_flags = 0;
2287
2288 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2289 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2290 goto nla_put_failure;
2291 err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2292 /* do not break the dump if cache is unresolved */
2293 if (err < 0 && err != -ENOENT)
2294 goto nla_put_failure;
2295
2296 nlmsg_end(skb, nlh);
2297 return 0;
2298
2299 nla_put_failure:
2300 nlmsg_cancel(skb, nlh);
2301 return -EMSGSIZE;
2302 }
2303
2304 static size_t mroute_msgsize(bool unresolved, int maxvif)
2305 {
2306 size_t len =
2307 NLMSG_ALIGN(sizeof(struct rtmsg))
2308 + nla_total_size(4) /* RTA_TABLE */
2309 + nla_total_size(4) /* RTA_SRC */
2310 + nla_total_size(4) /* RTA_DST */
2311 ;
2312
2313 if (!unresolved)
2314 len = len
2315 + nla_total_size(4) /* RTA_IIF */
2316 + nla_total_size(0) /* RTA_MULTIPATH */
2317 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2318 /* RTA_MFC_STATS */
2319 + nla_total_size(sizeof(struct rta_mfc_stats))
2320 ;
2321
2322 return len;
2323 }
2324
2325 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2326 int cmd)
2327 {
2328 struct net *net = read_pnet(&mrt->net);
2329 struct sk_buff *skb;
2330 int err = -ENOBUFS;
2331
2332 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2333 GFP_ATOMIC);
2334 if (!skb)
2335 goto errout;
2336
2337 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2338 if (err < 0)
2339 goto errout;
2340
2341 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2342 return;
2343
2344 errout:
2345 kfree_skb(skb);
2346 if (err < 0)
2347 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2348 }
2349
2350 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2351 {
2352 struct net *net = sock_net(skb->sk);
2353 struct mr_table *mrt;
2354 struct mfc_cache *mfc;
2355 unsigned int t = 0, s_t;
2356 unsigned int h = 0, s_h;
2357 unsigned int e = 0, s_e;
2358
2359 s_t = cb->args[0];
2360 s_h = cb->args[1];
2361 s_e = cb->args[2];
2362
2363 rcu_read_lock();
2364 ipmr_for_each_table(mrt, net) {
2365 if (t < s_t)
2366 goto next_table;
2367 if (t > s_t)
2368 s_h = 0;
2369 for (h = s_h; h < MFC_LINES; h++) {
2370 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2371 if (e < s_e)
2372 goto next_entry;
2373 if (ipmr_fill_mroute(mrt, skb,
2374 NETLINK_CB(cb->skb).portid,
2375 cb->nlh->nlmsg_seq,
2376 mfc, RTM_NEWROUTE,
2377 NLM_F_MULTI) < 0)
2378 goto done;
2379 next_entry:
2380 e++;
2381 }
2382 e = s_e = 0;
2383 }
2384 spin_lock_bh(&mfc_unres_lock);
2385 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2386 if (e < s_e)
2387 goto next_entry2;
2388 if (ipmr_fill_mroute(mrt, skb,
2389 NETLINK_CB(cb->skb).portid,
2390 cb->nlh->nlmsg_seq,
2391 mfc, RTM_NEWROUTE,
2392 NLM_F_MULTI) < 0) {
2393 spin_unlock_bh(&mfc_unres_lock);
2394 goto done;
2395 }
2396 next_entry2:
2397 e++;
2398 }
2399 spin_unlock_bh(&mfc_unres_lock);
2400 e = s_e = 0;
2401 s_h = 0;
2402 next_table:
2403 t++;
2404 }
2405 done:
2406 rcu_read_unlock();
2407
2408 cb->args[2] = e;
2409 cb->args[1] = h;
2410 cb->args[0] = t;
2411
2412 return skb->len;
2413 }
2414
2415 #ifdef CONFIG_PROC_FS
2416 /*
2417 * The /proc interfaces to multicast routing :
2418 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2419 */
2420 struct ipmr_vif_iter {
2421 struct seq_net_private p;
2422 struct mr_table *mrt;
2423 int ct;
2424 };
2425
2426 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2427 struct ipmr_vif_iter *iter,
2428 loff_t pos)
2429 {
2430 struct mr_table *mrt = iter->mrt;
2431
2432 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2433 if (!VIF_EXISTS(mrt, iter->ct))
2434 continue;
2435 if (pos-- == 0)
2436 return &mrt->vif_table[iter->ct];
2437 }
2438 return NULL;
2439 }
2440
2441 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2442 __acquires(mrt_lock)
2443 {
2444 struct ipmr_vif_iter *iter = seq->private;
2445 struct net *net = seq_file_net(seq);
2446 struct mr_table *mrt;
2447
2448 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2449 if (!mrt)
2450 return ERR_PTR(-ENOENT);
2451
2452 iter->mrt = mrt;
2453
2454 read_lock(&mrt_lock);
2455 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2456 : SEQ_START_TOKEN;
2457 }
2458
2459 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2460 {
2461 struct ipmr_vif_iter *iter = seq->private;
2462 struct net *net = seq_file_net(seq);
2463 struct mr_table *mrt = iter->mrt;
2464
2465 ++*pos;
2466 if (v == SEQ_START_TOKEN)
2467 return ipmr_vif_seq_idx(net, iter, 0);
2468
2469 while (++iter->ct < mrt->maxvif) {
2470 if (!VIF_EXISTS(mrt, iter->ct))
2471 continue;
2472 return &mrt->vif_table[iter->ct];
2473 }
2474 return NULL;
2475 }
2476
2477 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2478 __releases(mrt_lock)
2479 {
2480 read_unlock(&mrt_lock);
2481 }
2482
2483 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2484 {
2485 struct ipmr_vif_iter *iter = seq->private;
2486 struct mr_table *mrt = iter->mrt;
2487
2488 if (v == SEQ_START_TOKEN) {
2489 seq_puts(seq,
2490 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2491 } else {
2492 const struct vif_device *vif = v;
2493 const char *name = vif->dev ? vif->dev->name : "none";
2494
2495 seq_printf(seq,
2496 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2497 vif - mrt->vif_table,
2498 name, vif->bytes_in, vif->pkt_in,
2499 vif->bytes_out, vif->pkt_out,
2500 vif->flags, vif->local, vif->remote);
2501 }
2502 return 0;
2503 }
2504
2505 static const struct seq_operations ipmr_vif_seq_ops = {
2506 .start = ipmr_vif_seq_start,
2507 .next = ipmr_vif_seq_next,
2508 .stop = ipmr_vif_seq_stop,
2509 .show = ipmr_vif_seq_show,
2510 };
2511
2512 static int ipmr_vif_open(struct inode *inode, struct file *file)
2513 {
2514 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2515 sizeof(struct ipmr_vif_iter));
2516 }
2517
2518 static const struct file_operations ipmr_vif_fops = {
2519 .owner = THIS_MODULE,
2520 .open = ipmr_vif_open,
2521 .read = seq_read,
2522 .llseek = seq_lseek,
2523 .release = seq_release_net,
2524 };
2525
2526 struct ipmr_mfc_iter {
2527 struct seq_net_private p;
2528 struct mr_table *mrt;
2529 struct list_head *cache;
2530 int ct;
2531 };
2532
2533
2534 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2535 struct ipmr_mfc_iter *it, loff_t pos)
2536 {
2537 struct mr_table *mrt = it->mrt;
2538 struct mfc_cache *mfc;
2539
2540 rcu_read_lock();
2541 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2542 it->cache = &mrt->mfc_cache_array[it->ct];
2543 list_for_each_entry_rcu(mfc, it->cache, list)
2544 if (pos-- == 0)
2545 return mfc;
2546 }
2547 rcu_read_unlock();
2548
2549 spin_lock_bh(&mfc_unres_lock);
2550 it->cache = &mrt->mfc_unres_queue;
2551 list_for_each_entry(mfc, it->cache, list)
2552 if (pos-- == 0)
2553 return mfc;
2554 spin_unlock_bh(&mfc_unres_lock);
2555
2556 it->cache = NULL;
2557 return NULL;
2558 }
2559
2560
2561 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2562 {
2563 struct ipmr_mfc_iter *it = seq->private;
2564 struct net *net = seq_file_net(seq);
2565 struct mr_table *mrt;
2566
2567 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2568 if (!mrt)
2569 return ERR_PTR(-ENOENT);
2570
2571 it->mrt = mrt;
2572 it->cache = NULL;
2573 it->ct = 0;
2574 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2575 : SEQ_START_TOKEN;
2576 }
2577
2578 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2579 {
2580 struct mfc_cache *mfc = v;
2581 struct ipmr_mfc_iter *it = seq->private;
2582 struct net *net = seq_file_net(seq);
2583 struct mr_table *mrt = it->mrt;
2584
2585 ++*pos;
2586
2587 if (v == SEQ_START_TOKEN)
2588 return ipmr_mfc_seq_idx(net, seq->private, 0);
2589
2590 if (mfc->list.next != it->cache)
2591 return list_entry(mfc->list.next, struct mfc_cache, list);
2592
2593 if (it->cache == &mrt->mfc_unres_queue)
2594 goto end_of_list;
2595
2596 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2597
2598 while (++it->ct < MFC_LINES) {
2599 it->cache = &mrt->mfc_cache_array[it->ct];
2600 if (list_empty(it->cache))
2601 continue;
2602 return list_first_entry(it->cache, struct mfc_cache, list);
2603 }
2604
2605 /* exhausted cache_array, show unresolved */
2606 rcu_read_unlock();
2607 it->cache = &mrt->mfc_unres_queue;
2608 it->ct = 0;
2609
2610 spin_lock_bh(&mfc_unres_lock);
2611 if (!list_empty(it->cache))
2612 return list_first_entry(it->cache, struct mfc_cache, list);
2613
2614 end_of_list:
2615 spin_unlock_bh(&mfc_unres_lock);
2616 it->cache = NULL;
2617
2618 return NULL;
2619 }
2620
2621 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2622 {
2623 struct ipmr_mfc_iter *it = seq->private;
2624 struct mr_table *mrt = it->mrt;
2625
2626 if (it->cache == &mrt->mfc_unres_queue)
2627 spin_unlock_bh(&mfc_unres_lock);
2628 else if (it->cache == &mrt->mfc_cache_array[it->ct])
2629 rcu_read_unlock();
2630 }
2631
2632 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2633 {
2634 int n;
2635
2636 if (v == SEQ_START_TOKEN) {
2637 seq_puts(seq,
2638 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2639 } else {
2640 const struct mfc_cache *mfc = v;
2641 const struct ipmr_mfc_iter *it = seq->private;
2642 const struct mr_table *mrt = it->mrt;
2643
2644 seq_printf(seq, "%08X %08X %-3hd",
2645 (__force u32) mfc->mfc_mcastgrp,
2646 (__force u32) mfc->mfc_origin,
2647 mfc->mfc_parent);
2648
2649 if (it->cache != &mrt->mfc_unres_queue) {
2650 seq_printf(seq, " %8lu %8lu %8lu",
2651 mfc->mfc_un.res.pkt,
2652 mfc->mfc_un.res.bytes,
2653 mfc->mfc_un.res.wrong_if);
2654 for (n = mfc->mfc_un.res.minvif;
2655 n < mfc->mfc_un.res.maxvif; n++) {
2656 if (VIF_EXISTS(mrt, n) &&
2657 mfc->mfc_un.res.ttls[n] < 255)
2658 seq_printf(seq,
2659 " %2d:%-3d",
2660 n, mfc->mfc_un.res.ttls[n]);
2661 }
2662 } else {
2663 /* unresolved mfc_caches don't contain
2664 * pkt, bytes and wrong_if values
2665 */
2666 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2667 }
2668 seq_putc(seq, '\n');
2669 }
2670 return 0;
2671 }
2672
2673 static const struct seq_operations ipmr_mfc_seq_ops = {
2674 .start = ipmr_mfc_seq_start,
2675 .next = ipmr_mfc_seq_next,
2676 .stop = ipmr_mfc_seq_stop,
2677 .show = ipmr_mfc_seq_show,
2678 };
2679
2680 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2681 {
2682 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2683 sizeof(struct ipmr_mfc_iter));
2684 }
2685
2686 static const struct file_operations ipmr_mfc_fops = {
2687 .owner = THIS_MODULE,
2688 .open = ipmr_mfc_open,
2689 .read = seq_read,
2690 .llseek = seq_lseek,
2691 .release = seq_release_net,
2692 };
2693 #endif
2694
2695 #ifdef CONFIG_IP_PIMSM_V2
2696 static const struct net_protocol pim_protocol = {
2697 .handler = pim_rcv,
2698 .netns_ok = 1,
2699 };
2700 #endif
2701
2702
2703 /*
2704 * Setup for IP multicast routing
2705 */
2706 static int __net_init ipmr_net_init(struct net *net)
2707 {
2708 int err;
2709
2710 err = ipmr_rules_init(net);
2711 if (err < 0)
2712 goto fail;
2713
2714 #ifdef CONFIG_PROC_FS
2715 err = -ENOMEM;
2716 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2717 goto proc_vif_fail;
2718 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2719 goto proc_cache_fail;
2720 #endif
2721 return 0;
2722
2723 #ifdef CONFIG_PROC_FS
2724 proc_cache_fail:
2725 remove_proc_entry("ip_mr_vif", net->proc_net);
2726 proc_vif_fail:
2727 ipmr_rules_exit(net);
2728 #endif
2729 fail:
2730 return err;
2731 }
2732
2733 static void __net_exit ipmr_net_exit(struct net *net)
2734 {
2735 #ifdef CONFIG_PROC_FS
2736 remove_proc_entry("ip_mr_cache", net->proc_net);
2737 remove_proc_entry("ip_mr_vif", net->proc_net);
2738 #endif
2739 ipmr_rules_exit(net);
2740 }
2741
2742 static struct pernet_operations ipmr_net_ops = {
2743 .init = ipmr_net_init,
2744 .exit = ipmr_net_exit,
2745 };
2746
2747 int __init ip_mr_init(void)
2748 {
2749 int err;
2750
2751 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2752 sizeof(struct mfc_cache),
2753 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2754 NULL);
2755 if (!mrt_cachep)
2756 return -ENOMEM;
2757
2758 err = register_pernet_subsys(&ipmr_net_ops);
2759 if (err)
2760 goto reg_pernet_fail;
2761
2762 err = register_netdevice_notifier(&ip_mr_notifier);
2763 if (err)
2764 goto reg_notif_fail;
2765 #ifdef CONFIG_IP_PIMSM_V2
2766 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2767 pr_err("%s: can't add PIM protocol\n", __func__);
2768 err = -EAGAIN;
2769 goto add_proto_fail;
2770 }
2771 #endif
2772 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2773 NULL, ipmr_rtm_dumproute, NULL);
2774 return 0;
2775
2776 #ifdef CONFIG_IP_PIMSM_V2
2777 add_proto_fail:
2778 unregister_netdevice_notifier(&ip_mr_notifier);
2779 #endif
2780 reg_notif_fail:
2781 unregister_pernet_subsys(&ipmr_net_ops);
2782 reg_pernet_fail:
2783 kmem_cache_destroy(mrt_cachep);
2784 return err;
2785 }
This page took 0.090071 seconds and 5 git commands to generate.