Merge tag 'usb-for-v4.1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/balbi...
[deliverable/linux.git] / net / ipv4 / ipmr.c
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
26 *
27 */
28
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69
70 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
71 #define CONFIG_IP_PIMSM 1
72 #endif
73
74 struct mr_table {
75 struct list_head list;
76 #ifdef CONFIG_NET_NS
77 struct net *net;
78 #endif
79 u32 id;
80 struct sock __rcu *mroute_sk;
81 struct timer_list ipmr_expire_timer;
82 struct list_head mfc_unres_queue;
83 struct list_head mfc_cache_array[MFC_LINES];
84 struct vif_device vif_table[MAXVIFS];
85 int maxvif;
86 atomic_t cache_resolve_queue_len;
87 bool mroute_do_assert;
88 bool mroute_do_pim;
89 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
90 int mroute_reg_vif_num;
91 #endif
92 };
93
94 struct ipmr_rule {
95 struct fib_rule common;
96 };
97
98 struct ipmr_result {
99 struct mr_table *mrt;
100 };
101
102 /* Big lock, protecting vif table, mrt cache and mroute socket state.
103 * Note that the changes are semaphored via rtnl_lock.
104 */
105
106 static DEFINE_RWLOCK(mrt_lock);
107
108 /*
109 * Multicast router control variables
110 */
111
112 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
113
114 /* Special spinlock for queue of unresolved entries */
115 static DEFINE_SPINLOCK(mfc_unres_lock);
116
117 /* We return to original Alan's scheme. Hash table of resolved
118 * entries is changed only in process context and protected
119 * with weak lock mrt_lock. Queue of unresolved entries is protected
120 * with strong spinlock mfc_unres_lock.
121 *
122 * In this case data path is free of exclusive locks at all.
123 */
124
125 static struct kmem_cache *mrt_cachep __read_mostly;
126
127 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
128 static void ipmr_free_table(struct mr_table *mrt);
129
130 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
131 struct sk_buff *skb, struct mfc_cache *cache,
132 int local);
133 static int ipmr_cache_report(struct mr_table *mrt,
134 struct sk_buff *pkt, vifi_t vifi, int assert);
135 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
136 struct mfc_cache *c, struct rtmsg *rtm);
137 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
138 int cmd);
139 static void mroute_clean_tables(struct mr_table *mrt);
140 static void ipmr_expire_process(unsigned long arg);
141
142 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
143 #define ipmr_for_each_table(mrt, net) \
144 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
145
146 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
147 {
148 struct mr_table *mrt;
149
150 ipmr_for_each_table(mrt, net) {
151 if (mrt->id == id)
152 return mrt;
153 }
154 return NULL;
155 }
156
157 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
158 struct mr_table **mrt)
159 {
160 int err;
161 struct ipmr_result res;
162 struct fib_lookup_arg arg = {
163 .result = &res,
164 .flags = FIB_LOOKUP_NOREF,
165 };
166
167 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
168 flowi4_to_flowi(flp4), 0, &arg);
169 if (err < 0)
170 return err;
171 *mrt = res.mrt;
172 return 0;
173 }
174
175 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
176 int flags, struct fib_lookup_arg *arg)
177 {
178 struct ipmr_result *res = arg->result;
179 struct mr_table *mrt;
180
181 switch (rule->action) {
182 case FR_ACT_TO_TBL:
183 break;
184 case FR_ACT_UNREACHABLE:
185 return -ENETUNREACH;
186 case FR_ACT_PROHIBIT:
187 return -EACCES;
188 case FR_ACT_BLACKHOLE:
189 default:
190 return -EINVAL;
191 }
192
193 mrt = ipmr_get_table(rule->fr_net, rule->table);
194 if (mrt == NULL)
195 return -EAGAIN;
196 res->mrt = mrt;
197 return 0;
198 }
199
200 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
201 {
202 return 1;
203 }
204
205 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
206 FRA_GENERIC_POLICY,
207 };
208
209 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
210 struct fib_rule_hdr *frh, struct nlattr **tb)
211 {
212 return 0;
213 }
214
215 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
216 struct nlattr **tb)
217 {
218 return 1;
219 }
220
221 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
222 struct fib_rule_hdr *frh)
223 {
224 frh->dst_len = 0;
225 frh->src_len = 0;
226 frh->tos = 0;
227 return 0;
228 }
229
230 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
231 .family = RTNL_FAMILY_IPMR,
232 .rule_size = sizeof(struct ipmr_rule),
233 .addr_size = sizeof(u32),
234 .action = ipmr_rule_action,
235 .match = ipmr_rule_match,
236 .configure = ipmr_rule_configure,
237 .compare = ipmr_rule_compare,
238 .default_pref = fib_default_rule_pref,
239 .fill = ipmr_rule_fill,
240 .nlgroup = RTNLGRP_IPV4_RULE,
241 .policy = ipmr_rule_policy,
242 .owner = THIS_MODULE,
243 };
244
245 static int __net_init ipmr_rules_init(struct net *net)
246 {
247 struct fib_rules_ops *ops;
248 struct mr_table *mrt;
249 int err;
250
251 ops = fib_rules_register(&ipmr_rules_ops_template, net);
252 if (IS_ERR(ops))
253 return PTR_ERR(ops);
254
255 INIT_LIST_HEAD(&net->ipv4.mr_tables);
256
257 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
258 if (mrt == NULL) {
259 err = -ENOMEM;
260 goto err1;
261 }
262
263 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
264 if (err < 0)
265 goto err2;
266
267 net->ipv4.mr_rules_ops = ops;
268 return 0;
269
270 err2:
271 ipmr_free_table(mrt);
272 err1:
273 fib_rules_unregister(ops);
274 return err;
275 }
276
277 static void __net_exit ipmr_rules_exit(struct net *net)
278 {
279 struct mr_table *mrt, *next;
280
281 rtnl_lock();
282 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
283 list_del(&mrt->list);
284 ipmr_free_table(mrt);
285 }
286 fib_rules_unregister(net->ipv4.mr_rules_ops);
287 rtnl_unlock();
288 }
289 #else
290 #define ipmr_for_each_table(mrt, net) \
291 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
292
293 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
294 {
295 return net->ipv4.mrt;
296 }
297
298 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
299 struct mr_table **mrt)
300 {
301 *mrt = net->ipv4.mrt;
302 return 0;
303 }
304
305 static int __net_init ipmr_rules_init(struct net *net)
306 {
307 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
308 return net->ipv4.mrt ? 0 : -ENOMEM;
309 }
310
311 static void __net_exit ipmr_rules_exit(struct net *net)
312 {
313 rtnl_lock();
314 ipmr_free_table(net->ipv4.mrt);
315 net->ipv4.mrt = NULL;
316 rtnl_unlock();
317 }
318 #endif
319
320 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
321 {
322 struct mr_table *mrt;
323 unsigned int i;
324
325 mrt = ipmr_get_table(net, id);
326 if (mrt != NULL)
327 return mrt;
328
329 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
330 if (mrt == NULL)
331 return NULL;
332 write_pnet(&mrt->net, net);
333 mrt->id = id;
334
335 /* Forwarding cache */
336 for (i = 0; i < MFC_LINES; i++)
337 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
338
339 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
340
341 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
342 (unsigned long)mrt);
343
344 #ifdef CONFIG_IP_PIMSM
345 mrt->mroute_reg_vif_num = -1;
346 #endif
347 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
348 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
349 #endif
350 return mrt;
351 }
352
353 static void ipmr_free_table(struct mr_table *mrt)
354 {
355 del_timer_sync(&mrt->ipmr_expire_timer);
356 mroute_clean_tables(mrt);
357 kfree(mrt);
358 }
359
360 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
361
362 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
363 {
364 struct net *net = dev_net(dev);
365
366 dev_close(dev);
367
368 dev = __dev_get_by_name(net, "tunl0");
369 if (dev) {
370 const struct net_device_ops *ops = dev->netdev_ops;
371 struct ifreq ifr;
372 struct ip_tunnel_parm p;
373
374 memset(&p, 0, sizeof(p));
375 p.iph.daddr = v->vifc_rmt_addr.s_addr;
376 p.iph.saddr = v->vifc_lcl_addr.s_addr;
377 p.iph.version = 4;
378 p.iph.ihl = 5;
379 p.iph.protocol = IPPROTO_IPIP;
380 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
381 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
382
383 if (ops->ndo_do_ioctl) {
384 mm_segment_t oldfs = get_fs();
385
386 set_fs(KERNEL_DS);
387 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
388 set_fs(oldfs);
389 }
390 }
391 }
392
393 static
394 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
395 {
396 struct net_device *dev;
397
398 dev = __dev_get_by_name(net, "tunl0");
399
400 if (dev) {
401 const struct net_device_ops *ops = dev->netdev_ops;
402 int err;
403 struct ifreq ifr;
404 struct ip_tunnel_parm p;
405 struct in_device *in_dev;
406
407 memset(&p, 0, sizeof(p));
408 p.iph.daddr = v->vifc_rmt_addr.s_addr;
409 p.iph.saddr = v->vifc_lcl_addr.s_addr;
410 p.iph.version = 4;
411 p.iph.ihl = 5;
412 p.iph.protocol = IPPROTO_IPIP;
413 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
414 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
415
416 if (ops->ndo_do_ioctl) {
417 mm_segment_t oldfs = get_fs();
418
419 set_fs(KERNEL_DS);
420 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
421 set_fs(oldfs);
422 } else {
423 err = -EOPNOTSUPP;
424 }
425 dev = NULL;
426
427 if (err == 0 &&
428 (dev = __dev_get_by_name(net, p.name)) != NULL) {
429 dev->flags |= IFF_MULTICAST;
430
431 in_dev = __in_dev_get_rtnl(dev);
432 if (in_dev == NULL)
433 goto failure;
434
435 ipv4_devconf_setall(in_dev);
436 neigh_parms_data_state_setall(in_dev->arp_parms);
437 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
438
439 if (dev_open(dev))
440 goto failure;
441 dev_hold(dev);
442 }
443 }
444 return dev;
445
446 failure:
447 /* allow the register to be completed before unregistering. */
448 rtnl_unlock();
449 rtnl_lock();
450
451 unregister_netdevice(dev);
452 return NULL;
453 }
454
455 #ifdef CONFIG_IP_PIMSM
456
457 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
458 {
459 struct net *net = dev_net(dev);
460 struct mr_table *mrt;
461 struct flowi4 fl4 = {
462 .flowi4_oif = dev->ifindex,
463 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
464 .flowi4_mark = skb->mark,
465 };
466 int err;
467
468 err = ipmr_fib_lookup(net, &fl4, &mrt);
469 if (err < 0) {
470 kfree_skb(skb);
471 return err;
472 }
473
474 read_lock(&mrt_lock);
475 dev->stats.tx_bytes += skb->len;
476 dev->stats.tx_packets++;
477 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
478 read_unlock(&mrt_lock);
479 kfree_skb(skb);
480 return NETDEV_TX_OK;
481 }
482
483 static const struct net_device_ops reg_vif_netdev_ops = {
484 .ndo_start_xmit = reg_vif_xmit,
485 };
486
487 static void reg_vif_setup(struct net_device *dev)
488 {
489 dev->type = ARPHRD_PIMREG;
490 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
491 dev->flags = IFF_NOARP;
492 dev->netdev_ops = &reg_vif_netdev_ops;
493 dev->destructor = free_netdev;
494 dev->features |= NETIF_F_NETNS_LOCAL;
495 }
496
497 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
498 {
499 struct net_device *dev;
500 struct in_device *in_dev;
501 char name[IFNAMSIZ];
502
503 if (mrt->id == RT_TABLE_DEFAULT)
504 sprintf(name, "pimreg");
505 else
506 sprintf(name, "pimreg%u", mrt->id);
507
508 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
509
510 if (dev == NULL)
511 return NULL;
512
513 dev_net_set(dev, net);
514
515 if (register_netdevice(dev)) {
516 free_netdev(dev);
517 return NULL;
518 }
519 dev->iflink = 0;
520
521 rcu_read_lock();
522 in_dev = __in_dev_get_rcu(dev);
523 if (!in_dev) {
524 rcu_read_unlock();
525 goto failure;
526 }
527
528 ipv4_devconf_setall(in_dev);
529 neigh_parms_data_state_setall(in_dev->arp_parms);
530 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
531 rcu_read_unlock();
532
533 if (dev_open(dev))
534 goto failure;
535
536 dev_hold(dev);
537
538 return dev;
539
540 failure:
541 /* allow the register to be completed before unregistering. */
542 rtnl_unlock();
543 rtnl_lock();
544
545 unregister_netdevice(dev);
546 return NULL;
547 }
548 #endif
549
550 /**
551 * vif_delete - Delete a VIF entry
552 * @notify: Set to 1, if the caller is a notifier_call
553 */
554
555 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
556 struct list_head *head)
557 {
558 struct vif_device *v;
559 struct net_device *dev;
560 struct in_device *in_dev;
561
562 if (vifi < 0 || vifi >= mrt->maxvif)
563 return -EADDRNOTAVAIL;
564
565 v = &mrt->vif_table[vifi];
566
567 write_lock_bh(&mrt_lock);
568 dev = v->dev;
569 v->dev = NULL;
570
571 if (!dev) {
572 write_unlock_bh(&mrt_lock);
573 return -EADDRNOTAVAIL;
574 }
575
576 #ifdef CONFIG_IP_PIMSM
577 if (vifi == mrt->mroute_reg_vif_num)
578 mrt->mroute_reg_vif_num = -1;
579 #endif
580
581 if (vifi + 1 == mrt->maxvif) {
582 int tmp;
583
584 for (tmp = vifi - 1; tmp >= 0; tmp--) {
585 if (VIF_EXISTS(mrt, tmp))
586 break;
587 }
588 mrt->maxvif = tmp+1;
589 }
590
591 write_unlock_bh(&mrt_lock);
592
593 dev_set_allmulti(dev, -1);
594
595 in_dev = __in_dev_get_rtnl(dev);
596 if (in_dev) {
597 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
598 inet_netconf_notify_devconf(dev_net(dev),
599 NETCONFA_MC_FORWARDING,
600 dev->ifindex, &in_dev->cnf);
601 ip_rt_multicast_event(in_dev);
602 }
603
604 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
605 unregister_netdevice_queue(dev, head);
606
607 dev_put(dev);
608 return 0;
609 }
610
611 static void ipmr_cache_free_rcu(struct rcu_head *head)
612 {
613 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
614
615 kmem_cache_free(mrt_cachep, c);
616 }
617
618 static inline void ipmr_cache_free(struct mfc_cache *c)
619 {
620 call_rcu(&c->rcu, ipmr_cache_free_rcu);
621 }
622
623 /* Destroy an unresolved cache entry, killing queued skbs
624 * and reporting error to netlink readers.
625 */
626
627 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
628 {
629 struct net *net = read_pnet(&mrt->net);
630 struct sk_buff *skb;
631 struct nlmsgerr *e;
632
633 atomic_dec(&mrt->cache_resolve_queue_len);
634
635 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
636 if (ip_hdr(skb)->version == 0) {
637 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
638 nlh->nlmsg_type = NLMSG_ERROR;
639 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
640 skb_trim(skb, nlh->nlmsg_len);
641 e = nlmsg_data(nlh);
642 e->error = -ETIMEDOUT;
643 memset(&e->msg, 0, sizeof(e->msg));
644
645 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
646 } else {
647 kfree_skb(skb);
648 }
649 }
650
651 ipmr_cache_free(c);
652 }
653
654
655 /* Timer process for the unresolved queue. */
656
657 static void ipmr_expire_process(unsigned long arg)
658 {
659 struct mr_table *mrt = (struct mr_table *)arg;
660 unsigned long now;
661 unsigned long expires;
662 struct mfc_cache *c, *next;
663
664 if (!spin_trylock(&mfc_unres_lock)) {
665 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
666 return;
667 }
668
669 if (list_empty(&mrt->mfc_unres_queue))
670 goto out;
671
672 now = jiffies;
673 expires = 10*HZ;
674
675 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
676 if (time_after(c->mfc_un.unres.expires, now)) {
677 unsigned long interval = c->mfc_un.unres.expires - now;
678 if (interval < expires)
679 expires = interval;
680 continue;
681 }
682
683 list_del(&c->list);
684 mroute_netlink_event(mrt, c, RTM_DELROUTE);
685 ipmr_destroy_unres(mrt, c);
686 }
687
688 if (!list_empty(&mrt->mfc_unres_queue))
689 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
690
691 out:
692 spin_unlock(&mfc_unres_lock);
693 }
694
695 /* Fill oifs list. It is called under write locked mrt_lock. */
696
697 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
698 unsigned char *ttls)
699 {
700 int vifi;
701
702 cache->mfc_un.res.minvif = MAXVIFS;
703 cache->mfc_un.res.maxvif = 0;
704 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
705
706 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
707 if (VIF_EXISTS(mrt, vifi) &&
708 ttls[vifi] && ttls[vifi] < 255) {
709 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
710 if (cache->mfc_un.res.minvif > vifi)
711 cache->mfc_un.res.minvif = vifi;
712 if (cache->mfc_un.res.maxvif <= vifi)
713 cache->mfc_un.res.maxvif = vifi + 1;
714 }
715 }
716 }
717
718 static int vif_add(struct net *net, struct mr_table *mrt,
719 struct vifctl *vifc, int mrtsock)
720 {
721 int vifi = vifc->vifc_vifi;
722 struct vif_device *v = &mrt->vif_table[vifi];
723 struct net_device *dev;
724 struct in_device *in_dev;
725 int err;
726
727 /* Is vif busy ? */
728 if (VIF_EXISTS(mrt, vifi))
729 return -EADDRINUSE;
730
731 switch (vifc->vifc_flags) {
732 #ifdef CONFIG_IP_PIMSM
733 case VIFF_REGISTER:
734 /*
735 * Special Purpose VIF in PIM
736 * All the packets will be sent to the daemon
737 */
738 if (mrt->mroute_reg_vif_num >= 0)
739 return -EADDRINUSE;
740 dev = ipmr_reg_vif(net, mrt);
741 if (!dev)
742 return -ENOBUFS;
743 err = dev_set_allmulti(dev, 1);
744 if (err) {
745 unregister_netdevice(dev);
746 dev_put(dev);
747 return err;
748 }
749 break;
750 #endif
751 case VIFF_TUNNEL:
752 dev = ipmr_new_tunnel(net, vifc);
753 if (!dev)
754 return -ENOBUFS;
755 err = dev_set_allmulti(dev, 1);
756 if (err) {
757 ipmr_del_tunnel(dev, vifc);
758 dev_put(dev);
759 return err;
760 }
761 break;
762
763 case VIFF_USE_IFINDEX:
764 case 0:
765 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
766 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
767 if (dev && __in_dev_get_rtnl(dev) == NULL) {
768 dev_put(dev);
769 return -EADDRNOTAVAIL;
770 }
771 } else {
772 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
773 }
774 if (!dev)
775 return -EADDRNOTAVAIL;
776 err = dev_set_allmulti(dev, 1);
777 if (err) {
778 dev_put(dev);
779 return err;
780 }
781 break;
782 default:
783 return -EINVAL;
784 }
785
786 in_dev = __in_dev_get_rtnl(dev);
787 if (!in_dev) {
788 dev_put(dev);
789 return -EADDRNOTAVAIL;
790 }
791 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
792 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
793 &in_dev->cnf);
794 ip_rt_multicast_event(in_dev);
795
796 /* Fill in the VIF structures */
797
798 v->rate_limit = vifc->vifc_rate_limit;
799 v->local = vifc->vifc_lcl_addr.s_addr;
800 v->remote = vifc->vifc_rmt_addr.s_addr;
801 v->flags = vifc->vifc_flags;
802 if (!mrtsock)
803 v->flags |= VIFF_STATIC;
804 v->threshold = vifc->vifc_threshold;
805 v->bytes_in = 0;
806 v->bytes_out = 0;
807 v->pkt_in = 0;
808 v->pkt_out = 0;
809 v->link = dev->ifindex;
810 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
811 v->link = dev->iflink;
812
813 /* And finish update writing critical data */
814 write_lock_bh(&mrt_lock);
815 v->dev = dev;
816 #ifdef CONFIG_IP_PIMSM
817 if (v->flags & VIFF_REGISTER)
818 mrt->mroute_reg_vif_num = vifi;
819 #endif
820 if (vifi+1 > mrt->maxvif)
821 mrt->maxvif = vifi+1;
822 write_unlock_bh(&mrt_lock);
823 return 0;
824 }
825
826 /* called with rcu_read_lock() */
827 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
828 __be32 origin,
829 __be32 mcastgrp)
830 {
831 int line = MFC_HASH(mcastgrp, origin);
832 struct mfc_cache *c;
833
834 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
835 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
836 return c;
837 }
838 return NULL;
839 }
840
841 /* Look for a (*,*,oif) entry */
842 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
843 int vifi)
844 {
845 int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
846 struct mfc_cache *c;
847
848 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
849 if (c->mfc_origin == htonl(INADDR_ANY) &&
850 c->mfc_mcastgrp == htonl(INADDR_ANY) &&
851 c->mfc_un.res.ttls[vifi] < 255)
852 return c;
853
854 return NULL;
855 }
856
857 /* Look for a (*,G) entry */
858 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
859 __be32 mcastgrp, int vifi)
860 {
861 int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
862 struct mfc_cache *c, *proxy;
863
864 if (mcastgrp == htonl(INADDR_ANY))
865 goto skip;
866
867 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
868 if (c->mfc_origin == htonl(INADDR_ANY) &&
869 c->mfc_mcastgrp == mcastgrp) {
870 if (c->mfc_un.res.ttls[vifi] < 255)
871 return c;
872
873 /* It's ok if the vifi is part of the static tree */
874 proxy = ipmr_cache_find_any_parent(mrt,
875 c->mfc_parent);
876 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
877 return c;
878 }
879
880 skip:
881 return ipmr_cache_find_any_parent(mrt, vifi);
882 }
883
884 /*
885 * Allocate a multicast cache entry
886 */
887 static struct mfc_cache *ipmr_cache_alloc(void)
888 {
889 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
890
891 if (c)
892 c->mfc_un.res.minvif = MAXVIFS;
893 return c;
894 }
895
896 static struct mfc_cache *ipmr_cache_alloc_unres(void)
897 {
898 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
899
900 if (c) {
901 skb_queue_head_init(&c->mfc_un.unres.unresolved);
902 c->mfc_un.unres.expires = jiffies + 10*HZ;
903 }
904 return c;
905 }
906
907 /*
908 * A cache entry has gone into a resolved state from queued
909 */
910
911 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
912 struct mfc_cache *uc, struct mfc_cache *c)
913 {
914 struct sk_buff *skb;
915 struct nlmsgerr *e;
916
917 /* Play the pending entries through our router */
918
919 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
920 if (ip_hdr(skb)->version == 0) {
921 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
922
923 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
924 nlh->nlmsg_len = skb_tail_pointer(skb) -
925 (u8 *)nlh;
926 } else {
927 nlh->nlmsg_type = NLMSG_ERROR;
928 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
929 skb_trim(skb, nlh->nlmsg_len);
930 e = nlmsg_data(nlh);
931 e->error = -EMSGSIZE;
932 memset(&e->msg, 0, sizeof(e->msg));
933 }
934
935 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
936 } else {
937 ip_mr_forward(net, mrt, skb, c, 0);
938 }
939 }
940 }
941
942 /*
943 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
944 * expects the following bizarre scheme.
945 *
946 * Called under mrt_lock.
947 */
948
949 static int ipmr_cache_report(struct mr_table *mrt,
950 struct sk_buff *pkt, vifi_t vifi, int assert)
951 {
952 struct sk_buff *skb;
953 const int ihl = ip_hdrlen(pkt);
954 struct igmphdr *igmp;
955 struct igmpmsg *msg;
956 struct sock *mroute_sk;
957 int ret;
958
959 #ifdef CONFIG_IP_PIMSM
960 if (assert == IGMPMSG_WHOLEPKT)
961 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
962 else
963 #endif
964 skb = alloc_skb(128, GFP_ATOMIC);
965
966 if (!skb)
967 return -ENOBUFS;
968
969 #ifdef CONFIG_IP_PIMSM
970 if (assert == IGMPMSG_WHOLEPKT) {
971 /* Ugly, but we have no choice with this interface.
972 * Duplicate old header, fix ihl, length etc.
973 * And all this only to mangle msg->im_msgtype and
974 * to set msg->im_mbz to "mbz" :-)
975 */
976 skb_push(skb, sizeof(struct iphdr));
977 skb_reset_network_header(skb);
978 skb_reset_transport_header(skb);
979 msg = (struct igmpmsg *)skb_network_header(skb);
980 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
981 msg->im_msgtype = IGMPMSG_WHOLEPKT;
982 msg->im_mbz = 0;
983 msg->im_vif = mrt->mroute_reg_vif_num;
984 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
985 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
986 sizeof(struct iphdr));
987 } else
988 #endif
989 {
990
991 /* Copy the IP header */
992
993 skb_set_network_header(skb, skb->len);
994 skb_put(skb, ihl);
995 skb_copy_to_linear_data(skb, pkt->data, ihl);
996 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
997 msg = (struct igmpmsg *)skb_network_header(skb);
998 msg->im_vif = vifi;
999 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1000
1001 /* Add our header */
1002
1003 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
1004 igmp->type =
1005 msg->im_msgtype = assert;
1006 igmp->code = 0;
1007 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1008 skb->transport_header = skb->network_header;
1009 }
1010
1011 rcu_read_lock();
1012 mroute_sk = rcu_dereference(mrt->mroute_sk);
1013 if (mroute_sk == NULL) {
1014 rcu_read_unlock();
1015 kfree_skb(skb);
1016 return -EINVAL;
1017 }
1018
1019 /* Deliver to mrouted */
1020
1021 ret = sock_queue_rcv_skb(mroute_sk, skb);
1022 rcu_read_unlock();
1023 if (ret < 0) {
1024 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1025 kfree_skb(skb);
1026 }
1027
1028 return ret;
1029 }
1030
1031 /*
1032 * Queue a packet for resolution. It gets locked cache entry!
1033 */
1034
1035 static int
1036 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
1037 {
1038 bool found = false;
1039 int err;
1040 struct mfc_cache *c;
1041 const struct iphdr *iph = ip_hdr(skb);
1042
1043 spin_lock_bh(&mfc_unres_lock);
1044 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1045 if (c->mfc_mcastgrp == iph->daddr &&
1046 c->mfc_origin == iph->saddr) {
1047 found = true;
1048 break;
1049 }
1050 }
1051
1052 if (!found) {
1053 /* Create a new entry if allowable */
1054
1055 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1056 (c = ipmr_cache_alloc_unres()) == NULL) {
1057 spin_unlock_bh(&mfc_unres_lock);
1058
1059 kfree_skb(skb);
1060 return -ENOBUFS;
1061 }
1062
1063 /* Fill in the new cache entry */
1064
1065 c->mfc_parent = -1;
1066 c->mfc_origin = iph->saddr;
1067 c->mfc_mcastgrp = iph->daddr;
1068
1069 /* Reflect first query at mrouted. */
1070
1071 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1072 if (err < 0) {
1073 /* If the report failed throw the cache entry
1074 out - Brad Parker
1075 */
1076 spin_unlock_bh(&mfc_unres_lock);
1077
1078 ipmr_cache_free(c);
1079 kfree_skb(skb);
1080 return err;
1081 }
1082
1083 atomic_inc(&mrt->cache_resolve_queue_len);
1084 list_add(&c->list, &mrt->mfc_unres_queue);
1085 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1086
1087 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1088 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1089 }
1090
1091 /* See if we can append the packet */
1092
1093 if (c->mfc_un.unres.unresolved.qlen > 3) {
1094 kfree_skb(skb);
1095 err = -ENOBUFS;
1096 } else {
1097 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1098 err = 0;
1099 }
1100
1101 spin_unlock_bh(&mfc_unres_lock);
1102 return err;
1103 }
1104
1105 /*
1106 * MFC cache manipulation by user space mroute daemon
1107 */
1108
1109 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1110 {
1111 int line;
1112 struct mfc_cache *c, *next;
1113
1114 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1115
1116 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1117 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1118 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1119 (parent == -1 || parent == c->mfc_parent)) {
1120 list_del_rcu(&c->list);
1121 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1122 ipmr_cache_free(c);
1123 return 0;
1124 }
1125 }
1126 return -ENOENT;
1127 }
1128
1129 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1130 struct mfcctl *mfc, int mrtsock, int parent)
1131 {
1132 bool found = false;
1133 int line;
1134 struct mfc_cache *uc, *c;
1135
1136 if (mfc->mfcc_parent >= MAXVIFS)
1137 return -ENFILE;
1138
1139 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1140
1141 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1142 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1143 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1144 (parent == -1 || parent == c->mfc_parent)) {
1145 found = true;
1146 break;
1147 }
1148 }
1149
1150 if (found) {
1151 write_lock_bh(&mrt_lock);
1152 c->mfc_parent = mfc->mfcc_parent;
1153 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1154 if (!mrtsock)
1155 c->mfc_flags |= MFC_STATIC;
1156 write_unlock_bh(&mrt_lock);
1157 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1158 return 0;
1159 }
1160
1161 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1162 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1163 return -EINVAL;
1164
1165 c = ipmr_cache_alloc();
1166 if (c == NULL)
1167 return -ENOMEM;
1168
1169 c->mfc_origin = mfc->mfcc_origin.s_addr;
1170 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1171 c->mfc_parent = mfc->mfcc_parent;
1172 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1173 if (!mrtsock)
1174 c->mfc_flags |= MFC_STATIC;
1175
1176 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1177
1178 /*
1179 * Check to see if we resolved a queued list. If so we
1180 * need to send on the frames and tidy up.
1181 */
1182 found = false;
1183 spin_lock_bh(&mfc_unres_lock);
1184 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1185 if (uc->mfc_origin == c->mfc_origin &&
1186 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1187 list_del(&uc->list);
1188 atomic_dec(&mrt->cache_resolve_queue_len);
1189 found = true;
1190 break;
1191 }
1192 }
1193 if (list_empty(&mrt->mfc_unres_queue))
1194 del_timer(&mrt->ipmr_expire_timer);
1195 spin_unlock_bh(&mfc_unres_lock);
1196
1197 if (found) {
1198 ipmr_cache_resolve(net, mrt, uc, c);
1199 ipmr_cache_free(uc);
1200 }
1201 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1202 return 0;
1203 }
1204
1205 /*
1206 * Close the multicast socket, and clear the vif tables etc
1207 */
1208
1209 static void mroute_clean_tables(struct mr_table *mrt)
1210 {
1211 int i;
1212 LIST_HEAD(list);
1213 struct mfc_cache *c, *next;
1214
1215 /* Shut down all active vif entries */
1216
1217 for (i = 0; i < mrt->maxvif; i++) {
1218 if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1219 vif_delete(mrt, i, 0, &list);
1220 }
1221 unregister_netdevice_many(&list);
1222
1223 /* Wipe the cache */
1224
1225 for (i = 0; i < MFC_LINES; i++) {
1226 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1227 if (c->mfc_flags & MFC_STATIC)
1228 continue;
1229 list_del_rcu(&c->list);
1230 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1231 ipmr_cache_free(c);
1232 }
1233 }
1234
1235 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1236 spin_lock_bh(&mfc_unres_lock);
1237 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1238 list_del(&c->list);
1239 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1240 ipmr_destroy_unres(mrt, c);
1241 }
1242 spin_unlock_bh(&mfc_unres_lock);
1243 }
1244 }
1245
1246 /* called from ip_ra_control(), before an RCU grace period,
1247 * we dont need to call synchronize_rcu() here
1248 */
1249 static void mrtsock_destruct(struct sock *sk)
1250 {
1251 struct net *net = sock_net(sk);
1252 struct mr_table *mrt;
1253
1254 rtnl_lock();
1255 ipmr_for_each_table(mrt, net) {
1256 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1257 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1258 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1259 NETCONFA_IFINDEX_ALL,
1260 net->ipv4.devconf_all);
1261 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1262 mroute_clean_tables(mrt);
1263 }
1264 }
1265 rtnl_unlock();
1266 }
1267
1268 /*
1269 * Socket options and virtual interface manipulation. The whole
1270 * virtual interface system is a complete heap, but unfortunately
1271 * that's how BSD mrouted happens to think. Maybe one day with a proper
1272 * MOSPF/PIM router set up we can clean this up.
1273 */
1274
1275 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1276 {
1277 int ret, parent = 0;
1278 struct vifctl vif;
1279 struct mfcctl mfc;
1280 struct net *net = sock_net(sk);
1281 struct mr_table *mrt;
1282
1283 if (sk->sk_type != SOCK_RAW ||
1284 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1285 return -EOPNOTSUPP;
1286
1287 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1288 if (mrt == NULL)
1289 return -ENOENT;
1290
1291 if (optname != MRT_INIT) {
1292 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1293 !ns_capable(net->user_ns, CAP_NET_ADMIN))
1294 return -EACCES;
1295 }
1296
1297 switch (optname) {
1298 case MRT_INIT:
1299 if (optlen != sizeof(int))
1300 return -EINVAL;
1301
1302 rtnl_lock();
1303 if (rtnl_dereference(mrt->mroute_sk)) {
1304 rtnl_unlock();
1305 return -EADDRINUSE;
1306 }
1307
1308 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1309 if (ret == 0) {
1310 rcu_assign_pointer(mrt->mroute_sk, sk);
1311 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1312 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1313 NETCONFA_IFINDEX_ALL,
1314 net->ipv4.devconf_all);
1315 }
1316 rtnl_unlock();
1317 return ret;
1318 case MRT_DONE:
1319 if (sk != rcu_access_pointer(mrt->mroute_sk))
1320 return -EACCES;
1321 return ip_ra_control(sk, 0, NULL);
1322 case MRT_ADD_VIF:
1323 case MRT_DEL_VIF:
1324 if (optlen != sizeof(vif))
1325 return -EINVAL;
1326 if (copy_from_user(&vif, optval, sizeof(vif)))
1327 return -EFAULT;
1328 if (vif.vifc_vifi >= MAXVIFS)
1329 return -ENFILE;
1330 rtnl_lock();
1331 if (optname == MRT_ADD_VIF) {
1332 ret = vif_add(net, mrt, &vif,
1333 sk == rtnl_dereference(mrt->mroute_sk));
1334 } else {
1335 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1336 }
1337 rtnl_unlock();
1338 return ret;
1339
1340 /*
1341 * Manipulate the forwarding caches. These live
1342 * in a sort of kernel/user symbiosis.
1343 */
1344 case MRT_ADD_MFC:
1345 case MRT_DEL_MFC:
1346 parent = -1;
1347 case MRT_ADD_MFC_PROXY:
1348 case MRT_DEL_MFC_PROXY:
1349 if (optlen != sizeof(mfc))
1350 return -EINVAL;
1351 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1352 return -EFAULT;
1353 if (parent == 0)
1354 parent = mfc.mfcc_parent;
1355 rtnl_lock();
1356 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1357 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1358 else
1359 ret = ipmr_mfc_add(net, mrt, &mfc,
1360 sk == rtnl_dereference(mrt->mroute_sk),
1361 parent);
1362 rtnl_unlock();
1363 return ret;
1364 /*
1365 * Control PIM assert.
1366 */
1367 case MRT_ASSERT:
1368 {
1369 int v;
1370 if (optlen != sizeof(v))
1371 return -EINVAL;
1372 if (get_user(v, (int __user *)optval))
1373 return -EFAULT;
1374 mrt->mroute_do_assert = v;
1375 return 0;
1376 }
1377 #ifdef CONFIG_IP_PIMSM
1378 case MRT_PIM:
1379 {
1380 int v;
1381
1382 if (optlen != sizeof(v))
1383 return -EINVAL;
1384 if (get_user(v, (int __user *)optval))
1385 return -EFAULT;
1386 v = !!v;
1387
1388 rtnl_lock();
1389 ret = 0;
1390 if (v != mrt->mroute_do_pim) {
1391 mrt->mroute_do_pim = v;
1392 mrt->mroute_do_assert = v;
1393 }
1394 rtnl_unlock();
1395 return ret;
1396 }
1397 #endif
1398 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1399 case MRT_TABLE:
1400 {
1401 u32 v;
1402
1403 if (optlen != sizeof(u32))
1404 return -EINVAL;
1405 if (get_user(v, (u32 __user *)optval))
1406 return -EFAULT;
1407
1408 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
1409 if (v != RT_TABLE_DEFAULT && v >= 1000000000)
1410 return -EINVAL;
1411
1412 rtnl_lock();
1413 ret = 0;
1414 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1415 ret = -EBUSY;
1416 } else {
1417 if (!ipmr_new_table(net, v))
1418 ret = -ENOMEM;
1419 else
1420 raw_sk(sk)->ipmr_table = v;
1421 }
1422 rtnl_unlock();
1423 return ret;
1424 }
1425 #endif
1426 /*
1427 * Spurious command, or MRT_VERSION which you cannot
1428 * set.
1429 */
1430 default:
1431 return -ENOPROTOOPT;
1432 }
1433 }
1434
1435 /*
1436 * Getsock opt support for the multicast routing system.
1437 */
1438
1439 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1440 {
1441 int olr;
1442 int val;
1443 struct net *net = sock_net(sk);
1444 struct mr_table *mrt;
1445
1446 if (sk->sk_type != SOCK_RAW ||
1447 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1448 return -EOPNOTSUPP;
1449
1450 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1451 if (mrt == NULL)
1452 return -ENOENT;
1453
1454 if (optname != MRT_VERSION &&
1455 #ifdef CONFIG_IP_PIMSM
1456 optname != MRT_PIM &&
1457 #endif
1458 optname != MRT_ASSERT)
1459 return -ENOPROTOOPT;
1460
1461 if (get_user(olr, optlen))
1462 return -EFAULT;
1463
1464 olr = min_t(unsigned int, olr, sizeof(int));
1465 if (olr < 0)
1466 return -EINVAL;
1467
1468 if (put_user(olr, optlen))
1469 return -EFAULT;
1470 if (optname == MRT_VERSION)
1471 val = 0x0305;
1472 #ifdef CONFIG_IP_PIMSM
1473 else if (optname == MRT_PIM)
1474 val = mrt->mroute_do_pim;
1475 #endif
1476 else
1477 val = mrt->mroute_do_assert;
1478 if (copy_to_user(optval, &val, olr))
1479 return -EFAULT;
1480 return 0;
1481 }
1482
1483 /*
1484 * The IP multicast ioctl support routines.
1485 */
1486
1487 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1488 {
1489 struct sioc_sg_req sr;
1490 struct sioc_vif_req vr;
1491 struct vif_device *vif;
1492 struct mfc_cache *c;
1493 struct net *net = sock_net(sk);
1494 struct mr_table *mrt;
1495
1496 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1497 if (mrt == NULL)
1498 return -ENOENT;
1499
1500 switch (cmd) {
1501 case SIOCGETVIFCNT:
1502 if (copy_from_user(&vr, arg, sizeof(vr)))
1503 return -EFAULT;
1504 if (vr.vifi >= mrt->maxvif)
1505 return -EINVAL;
1506 read_lock(&mrt_lock);
1507 vif = &mrt->vif_table[vr.vifi];
1508 if (VIF_EXISTS(mrt, vr.vifi)) {
1509 vr.icount = vif->pkt_in;
1510 vr.ocount = vif->pkt_out;
1511 vr.ibytes = vif->bytes_in;
1512 vr.obytes = vif->bytes_out;
1513 read_unlock(&mrt_lock);
1514
1515 if (copy_to_user(arg, &vr, sizeof(vr)))
1516 return -EFAULT;
1517 return 0;
1518 }
1519 read_unlock(&mrt_lock);
1520 return -EADDRNOTAVAIL;
1521 case SIOCGETSGCNT:
1522 if (copy_from_user(&sr, arg, sizeof(sr)))
1523 return -EFAULT;
1524
1525 rcu_read_lock();
1526 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1527 if (c) {
1528 sr.pktcnt = c->mfc_un.res.pkt;
1529 sr.bytecnt = c->mfc_un.res.bytes;
1530 sr.wrong_if = c->mfc_un.res.wrong_if;
1531 rcu_read_unlock();
1532
1533 if (copy_to_user(arg, &sr, sizeof(sr)))
1534 return -EFAULT;
1535 return 0;
1536 }
1537 rcu_read_unlock();
1538 return -EADDRNOTAVAIL;
1539 default:
1540 return -ENOIOCTLCMD;
1541 }
1542 }
1543
1544 #ifdef CONFIG_COMPAT
1545 struct compat_sioc_sg_req {
1546 struct in_addr src;
1547 struct in_addr grp;
1548 compat_ulong_t pktcnt;
1549 compat_ulong_t bytecnt;
1550 compat_ulong_t wrong_if;
1551 };
1552
1553 struct compat_sioc_vif_req {
1554 vifi_t vifi; /* Which iface */
1555 compat_ulong_t icount;
1556 compat_ulong_t ocount;
1557 compat_ulong_t ibytes;
1558 compat_ulong_t obytes;
1559 };
1560
1561 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1562 {
1563 struct compat_sioc_sg_req sr;
1564 struct compat_sioc_vif_req vr;
1565 struct vif_device *vif;
1566 struct mfc_cache *c;
1567 struct net *net = sock_net(sk);
1568 struct mr_table *mrt;
1569
1570 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1571 if (mrt == NULL)
1572 return -ENOENT;
1573
1574 switch (cmd) {
1575 case SIOCGETVIFCNT:
1576 if (copy_from_user(&vr, arg, sizeof(vr)))
1577 return -EFAULT;
1578 if (vr.vifi >= mrt->maxvif)
1579 return -EINVAL;
1580 read_lock(&mrt_lock);
1581 vif = &mrt->vif_table[vr.vifi];
1582 if (VIF_EXISTS(mrt, vr.vifi)) {
1583 vr.icount = vif->pkt_in;
1584 vr.ocount = vif->pkt_out;
1585 vr.ibytes = vif->bytes_in;
1586 vr.obytes = vif->bytes_out;
1587 read_unlock(&mrt_lock);
1588
1589 if (copy_to_user(arg, &vr, sizeof(vr)))
1590 return -EFAULT;
1591 return 0;
1592 }
1593 read_unlock(&mrt_lock);
1594 return -EADDRNOTAVAIL;
1595 case SIOCGETSGCNT:
1596 if (copy_from_user(&sr, arg, sizeof(sr)))
1597 return -EFAULT;
1598
1599 rcu_read_lock();
1600 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1601 if (c) {
1602 sr.pktcnt = c->mfc_un.res.pkt;
1603 sr.bytecnt = c->mfc_un.res.bytes;
1604 sr.wrong_if = c->mfc_un.res.wrong_if;
1605 rcu_read_unlock();
1606
1607 if (copy_to_user(arg, &sr, sizeof(sr)))
1608 return -EFAULT;
1609 return 0;
1610 }
1611 rcu_read_unlock();
1612 return -EADDRNOTAVAIL;
1613 default:
1614 return -ENOIOCTLCMD;
1615 }
1616 }
1617 #endif
1618
1619
1620 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1621 {
1622 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1623 struct net *net = dev_net(dev);
1624 struct mr_table *mrt;
1625 struct vif_device *v;
1626 int ct;
1627
1628 if (event != NETDEV_UNREGISTER)
1629 return NOTIFY_DONE;
1630
1631 ipmr_for_each_table(mrt, net) {
1632 v = &mrt->vif_table[0];
1633 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1634 if (v->dev == dev)
1635 vif_delete(mrt, ct, 1, NULL);
1636 }
1637 }
1638 return NOTIFY_DONE;
1639 }
1640
1641
1642 static struct notifier_block ip_mr_notifier = {
1643 .notifier_call = ipmr_device_event,
1644 };
1645
1646 /*
1647 * Encapsulate a packet by attaching a valid IPIP header to it.
1648 * This avoids tunnel drivers and other mess and gives us the speed so
1649 * important for multicast video.
1650 */
1651
1652 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1653 {
1654 struct iphdr *iph;
1655 const struct iphdr *old_iph = ip_hdr(skb);
1656
1657 skb_push(skb, sizeof(struct iphdr));
1658 skb->transport_header = skb->network_header;
1659 skb_reset_network_header(skb);
1660 iph = ip_hdr(skb);
1661
1662 iph->version = 4;
1663 iph->tos = old_iph->tos;
1664 iph->ttl = old_iph->ttl;
1665 iph->frag_off = 0;
1666 iph->daddr = daddr;
1667 iph->saddr = saddr;
1668 iph->protocol = IPPROTO_IPIP;
1669 iph->ihl = 5;
1670 iph->tot_len = htons(skb->len);
1671 ip_select_ident(skb, NULL);
1672 ip_send_check(iph);
1673
1674 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1675 nf_reset(skb);
1676 }
1677
1678 static inline int ipmr_forward_finish(struct sk_buff *skb)
1679 {
1680 struct ip_options *opt = &(IPCB(skb)->opt);
1681
1682 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1683 IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1684
1685 if (unlikely(opt->optlen))
1686 ip_forward_options(skb);
1687
1688 return dst_output(skb);
1689 }
1690
1691 /*
1692 * Processing handlers for ipmr_forward
1693 */
1694
1695 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1696 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1697 {
1698 const struct iphdr *iph = ip_hdr(skb);
1699 struct vif_device *vif = &mrt->vif_table[vifi];
1700 struct net_device *dev;
1701 struct rtable *rt;
1702 struct flowi4 fl4;
1703 int encap = 0;
1704
1705 if (vif->dev == NULL)
1706 goto out_free;
1707
1708 #ifdef CONFIG_IP_PIMSM
1709 if (vif->flags & VIFF_REGISTER) {
1710 vif->pkt_out++;
1711 vif->bytes_out += skb->len;
1712 vif->dev->stats.tx_bytes += skb->len;
1713 vif->dev->stats.tx_packets++;
1714 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1715 goto out_free;
1716 }
1717 #endif
1718
1719 if (vif->flags & VIFF_TUNNEL) {
1720 rt = ip_route_output_ports(net, &fl4, NULL,
1721 vif->remote, vif->local,
1722 0, 0,
1723 IPPROTO_IPIP,
1724 RT_TOS(iph->tos), vif->link);
1725 if (IS_ERR(rt))
1726 goto out_free;
1727 encap = sizeof(struct iphdr);
1728 } else {
1729 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1730 0, 0,
1731 IPPROTO_IPIP,
1732 RT_TOS(iph->tos), vif->link);
1733 if (IS_ERR(rt))
1734 goto out_free;
1735 }
1736
1737 dev = rt->dst.dev;
1738
1739 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1740 /* Do not fragment multicasts. Alas, IPv4 does not
1741 * allow to send ICMP, so that packets will disappear
1742 * to blackhole.
1743 */
1744
1745 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1746 ip_rt_put(rt);
1747 goto out_free;
1748 }
1749
1750 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1751
1752 if (skb_cow(skb, encap)) {
1753 ip_rt_put(rt);
1754 goto out_free;
1755 }
1756
1757 vif->pkt_out++;
1758 vif->bytes_out += skb->len;
1759
1760 skb_dst_drop(skb);
1761 skb_dst_set(skb, &rt->dst);
1762 ip_decrease_ttl(ip_hdr(skb));
1763
1764 /* FIXME: forward and output firewalls used to be called here.
1765 * What do we do with netfilter? -- RR
1766 */
1767 if (vif->flags & VIFF_TUNNEL) {
1768 ip_encap(skb, vif->local, vif->remote);
1769 /* FIXME: extra output firewall step used to be here. --RR */
1770 vif->dev->stats.tx_packets++;
1771 vif->dev->stats.tx_bytes += skb->len;
1772 }
1773
1774 IPCB(skb)->flags |= IPSKB_FORWARDED;
1775
1776 /*
1777 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1778 * not only before forwarding, but after forwarding on all output
1779 * interfaces. It is clear, if mrouter runs a multicasting
1780 * program, it should receive packets not depending to what interface
1781 * program is joined.
1782 * If we will not make it, the program will have to join on all
1783 * interfaces. On the other hand, multihoming host (or router, but
1784 * not mrouter) cannot join to more than one interface - it will
1785 * result in receiving multiple packets.
1786 */
1787 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1788 ipmr_forward_finish);
1789 return;
1790
1791 out_free:
1792 kfree_skb(skb);
1793 }
1794
1795 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1796 {
1797 int ct;
1798
1799 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1800 if (mrt->vif_table[ct].dev == dev)
1801 break;
1802 }
1803 return ct;
1804 }
1805
1806 /* "local" means that we should preserve one skb (for local delivery) */
1807
1808 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1809 struct sk_buff *skb, struct mfc_cache *cache,
1810 int local)
1811 {
1812 int psend = -1;
1813 int vif, ct;
1814 int true_vifi = ipmr_find_vif(mrt, skb->dev);
1815
1816 vif = cache->mfc_parent;
1817 cache->mfc_un.res.pkt++;
1818 cache->mfc_un.res.bytes += skb->len;
1819
1820 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1821 struct mfc_cache *cache_proxy;
1822
1823 /* For an (*,G) entry, we only check that the incomming
1824 * interface is part of the static tree.
1825 */
1826 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1827 if (cache_proxy &&
1828 cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1829 goto forward;
1830 }
1831
1832 /*
1833 * Wrong interface: drop packet and (maybe) send PIM assert.
1834 */
1835 if (mrt->vif_table[vif].dev != skb->dev) {
1836 if (rt_is_output_route(skb_rtable(skb))) {
1837 /* It is our own packet, looped back.
1838 * Very complicated situation...
1839 *
1840 * The best workaround until routing daemons will be
1841 * fixed is not to redistribute packet, if it was
1842 * send through wrong interface. It means, that
1843 * multicast applications WILL NOT work for
1844 * (S,G), which have default multicast route pointing
1845 * to wrong oif. In any case, it is not a good
1846 * idea to use multicasting applications on router.
1847 */
1848 goto dont_forward;
1849 }
1850
1851 cache->mfc_un.res.wrong_if++;
1852
1853 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1854 /* pimsm uses asserts, when switching from RPT to SPT,
1855 * so that we cannot check that packet arrived on an oif.
1856 * It is bad, but otherwise we would need to move pretty
1857 * large chunk of pimd to kernel. Ough... --ANK
1858 */
1859 (mrt->mroute_do_pim ||
1860 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1861 time_after(jiffies,
1862 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1863 cache->mfc_un.res.last_assert = jiffies;
1864 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1865 }
1866 goto dont_forward;
1867 }
1868
1869 forward:
1870 mrt->vif_table[vif].pkt_in++;
1871 mrt->vif_table[vif].bytes_in += skb->len;
1872
1873 /*
1874 * Forward the frame
1875 */
1876 if (cache->mfc_origin == htonl(INADDR_ANY) &&
1877 cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1878 if (true_vifi >= 0 &&
1879 true_vifi != cache->mfc_parent &&
1880 ip_hdr(skb)->ttl >
1881 cache->mfc_un.res.ttls[cache->mfc_parent]) {
1882 /* It's an (*,*) entry and the packet is not coming from
1883 * the upstream: forward the packet to the upstream
1884 * only.
1885 */
1886 psend = cache->mfc_parent;
1887 goto last_forward;
1888 }
1889 goto dont_forward;
1890 }
1891 for (ct = cache->mfc_un.res.maxvif - 1;
1892 ct >= cache->mfc_un.res.minvif; ct--) {
1893 /* For (*,G) entry, don't forward to the incoming interface */
1894 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1895 ct != true_vifi) &&
1896 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1897 if (psend != -1) {
1898 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1899
1900 if (skb2)
1901 ipmr_queue_xmit(net, mrt, skb2, cache,
1902 psend);
1903 }
1904 psend = ct;
1905 }
1906 }
1907 last_forward:
1908 if (psend != -1) {
1909 if (local) {
1910 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1911
1912 if (skb2)
1913 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1914 } else {
1915 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1916 return;
1917 }
1918 }
1919
1920 dont_forward:
1921 if (!local)
1922 kfree_skb(skb);
1923 }
1924
1925 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1926 {
1927 struct rtable *rt = skb_rtable(skb);
1928 struct iphdr *iph = ip_hdr(skb);
1929 struct flowi4 fl4 = {
1930 .daddr = iph->daddr,
1931 .saddr = iph->saddr,
1932 .flowi4_tos = RT_TOS(iph->tos),
1933 .flowi4_oif = (rt_is_output_route(rt) ?
1934 skb->dev->ifindex : 0),
1935 .flowi4_iif = (rt_is_output_route(rt) ?
1936 LOOPBACK_IFINDEX :
1937 skb->dev->ifindex),
1938 .flowi4_mark = skb->mark,
1939 };
1940 struct mr_table *mrt;
1941 int err;
1942
1943 err = ipmr_fib_lookup(net, &fl4, &mrt);
1944 if (err)
1945 return ERR_PTR(err);
1946 return mrt;
1947 }
1948
1949 /*
1950 * Multicast packets for forwarding arrive here
1951 * Called with rcu_read_lock();
1952 */
1953
1954 int ip_mr_input(struct sk_buff *skb)
1955 {
1956 struct mfc_cache *cache;
1957 struct net *net = dev_net(skb->dev);
1958 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1959 struct mr_table *mrt;
1960
1961 /* Packet is looped back after forward, it should not be
1962 * forwarded second time, but still can be delivered locally.
1963 */
1964 if (IPCB(skb)->flags & IPSKB_FORWARDED)
1965 goto dont_forward;
1966
1967 mrt = ipmr_rt_fib_lookup(net, skb);
1968 if (IS_ERR(mrt)) {
1969 kfree_skb(skb);
1970 return PTR_ERR(mrt);
1971 }
1972 if (!local) {
1973 if (IPCB(skb)->opt.router_alert) {
1974 if (ip_call_ra_chain(skb))
1975 return 0;
1976 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1977 /* IGMPv1 (and broken IGMPv2 implementations sort of
1978 * Cisco IOS <= 11.2(8)) do not put router alert
1979 * option to IGMP packets destined to routable
1980 * groups. It is very bad, because it means
1981 * that we can forward NO IGMP messages.
1982 */
1983 struct sock *mroute_sk;
1984
1985 mroute_sk = rcu_dereference(mrt->mroute_sk);
1986 if (mroute_sk) {
1987 nf_reset(skb);
1988 raw_rcv(mroute_sk, skb);
1989 return 0;
1990 }
1991 }
1992 }
1993
1994 /* already under rcu_read_lock() */
1995 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1996 if (cache == NULL) {
1997 int vif = ipmr_find_vif(mrt, skb->dev);
1998
1999 if (vif >= 0)
2000 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2001 vif);
2002 }
2003
2004 /*
2005 * No usable cache entry
2006 */
2007 if (cache == NULL) {
2008 int vif;
2009
2010 if (local) {
2011 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2012 ip_local_deliver(skb);
2013 if (skb2 == NULL)
2014 return -ENOBUFS;
2015 skb = skb2;
2016 }
2017
2018 read_lock(&mrt_lock);
2019 vif = ipmr_find_vif(mrt, skb->dev);
2020 if (vif >= 0) {
2021 int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2022 read_unlock(&mrt_lock);
2023
2024 return err2;
2025 }
2026 read_unlock(&mrt_lock);
2027 kfree_skb(skb);
2028 return -ENODEV;
2029 }
2030
2031 read_lock(&mrt_lock);
2032 ip_mr_forward(net, mrt, skb, cache, local);
2033 read_unlock(&mrt_lock);
2034
2035 if (local)
2036 return ip_local_deliver(skb);
2037
2038 return 0;
2039
2040 dont_forward:
2041 if (local)
2042 return ip_local_deliver(skb);
2043 kfree_skb(skb);
2044 return 0;
2045 }
2046
2047 #ifdef CONFIG_IP_PIMSM
2048 /* called with rcu_read_lock() */
2049 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
2050 unsigned int pimlen)
2051 {
2052 struct net_device *reg_dev = NULL;
2053 struct iphdr *encap;
2054
2055 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
2056 /*
2057 * Check that:
2058 * a. packet is really sent to a multicast group
2059 * b. packet is not a NULL-REGISTER
2060 * c. packet is not truncated
2061 */
2062 if (!ipv4_is_multicast(encap->daddr) ||
2063 encap->tot_len == 0 ||
2064 ntohs(encap->tot_len) + pimlen > skb->len)
2065 return 1;
2066
2067 read_lock(&mrt_lock);
2068 if (mrt->mroute_reg_vif_num >= 0)
2069 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
2070 read_unlock(&mrt_lock);
2071
2072 if (reg_dev == NULL)
2073 return 1;
2074
2075 skb->mac_header = skb->network_header;
2076 skb_pull(skb, (u8 *)encap - skb->data);
2077 skb_reset_network_header(skb);
2078 skb->protocol = htons(ETH_P_IP);
2079 skb->ip_summed = CHECKSUM_NONE;
2080
2081 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
2082
2083 netif_rx(skb);
2084
2085 return NET_RX_SUCCESS;
2086 }
2087 #endif
2088
2089 #ifdef CONFIG_IP_PIMSM_V1
2090 /*
2091 * Handle IGMP messages of PIMv1
2092 */
2093
2094 int pim_rcv_v1(struct sk_buff *skb)
2095 {
2096 struct igmphdr *pim;
2097 struct net *net = dev_net(skb->dev);
2098 struct mr_table *mrt;
2099
2100 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2101 goto drop;
2102
2103 pim = igmp_hdr(skb);
2104
2105 mrt = ipmr_rt_fib_lookup(net, skb);
2106 if (IS_ERR(mrt))
2107 goto drop;
2108 if (!mrt->mroute_do_pim ||
2109 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2110 goto drop;
2111
2112 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2113 drop:
2114 kfree_skb(skb);
2115 }
2116 return 0;
2117 }
2118 #endif
2119
2120 #ifdef CONFIG_IP_PIMSM_V2
2121 static int pim_rcv(struct sk_buff *skb)
2122 {
2123 struct pimreghdr *pim;
2124 struct net *net = dev_net(skb->dev);
2125 struct mr_table *mrt;
2126
2127 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2128 goto drop;
2129
2130 pim = (struct pimreghdr *)skb_transport_header(skb);
2131 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2132 (pim->flags & PIM_NULL_REGISTER) ||
2133 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2134 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2135 goto drop;
2136
2137 mrt = ipmr_rt_fib_lookup(net, skb);
2138 if (IS_ERR(mrt))
2139 goto drop;
2140 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2141 drop:
2142 kfree_skb(skb);
2143 }
2144 return 0;
2145 }
2146 #endif
2147
2148 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2149 struct mfc_cache *c, struct rtmsg *rtm)
2150 {
2151 int ct;
2152 struct rtnexthop *nhp;
2153 struct nlattr *mp_attr;
2154 struct rta_mfc_stats mfcs;
2155
2156 /* If cache is unresolved, don't try to parse IIF and OIF */
2157 if (c->mfc_parent >= MAXVIFS)
2158 return -ENOENT;
2159
2160 if (VIF_EXISTS(mrt, c->mfc_parent) &&
2161 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2162 return -EMSGSIZE;
2163
2164 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2165 return -EMSGSIZE;
2166
2167 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2168 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2169 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2170 nla_nest_cancel(skb, mp_attr);
2171 return -EMSGSIZE;
2172 }
2173
2174 nhp->rtnh_flags = 0;
2175 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2176 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2177 nhp->rtnh_len = sizeof(*nhp);
2178 }
2179 }
2180
2181 nla_nest_end(skb, mp_attr);
2182
2183 mfcs.mfcs_packets = c->mfc_un.res.pkt;
2184 mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2185 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2186 if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2187 return -EMSGSIZE;
2188
2189 rtm->rtm_type = RTN_MULTICAST;
2190 return 1;
2191 }
2192
2193 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2194 __be32 saddr, __be32 daddr,
2195 struct rtmsg *rtm, int nowait)
2196 {
2197 struct mfc_cache *cache;
2198 struct mr_table *mrt;
2199 int err;
2200
2201 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2202 if (mrt == NULL)
2203 return -ENOENT;
2204
2205 rcu_read_lock();
2206 cache = ipmr_cache_find(mrt, saddr, daddr);
2207 if (cache == NULL && skb->dev) {
2208 int vif = ipmr_find_vif(mrt, skb->dev);
2209
2210 if (vif >= 0)
2211 cache = ipmr_cache_find_any(mrt, daddr, vif);
2212 }
2213 if (cache == NULL) {
2214 struct sk_buff *skb2;
2215 struct iphdr *iph;
2216 struct net_device *dev;
2217 int vif = -1;
2218
2219 if (nowait) {
2220 rcu_read_unlock();
2221 return -EAGAIN;
2222 }
2223
2224 dev = skb->dev;
2225 read_lock(&mrt_lock);
2226 if (dev)
2227 vif = ipmr_find_vif(mrt, dev);
2228 if (vif < 0) {
2229 read_unlock(&mrt_lock);
2230 rcu_read_unlock();
2231 return -ENODEV;
2232 }
2233 skb2 = skb_clone(skb, GFP_ATOMIC);
2234 if (!skb2) {
2235 read_unlock(&mrt_lock);
2236 rcu_read_unlock();
2237 return -ENOMEM;
2238 }
2239
2240 skb_push(skb2, sizeof(struct iphdr));
2241 skb_reset_network_header(skb2);
2242 iph = ip_hdr(skb2);
2243 iph->ihl = sizeof(struct iphdr) >> 2;
2244 iph->saddr = saddr;
2245 iph->daddr = daddr;
2246 iph->version = 0;
2247 err = ipmr_cache_unresolved(mrt, vif, skb2);
2248 read_unlock(&mrt_lock);
2249 rcu_read_unlock();
2250 return err;
2251 }
2252
2253 read_lock(&mrt_lock);
2254 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2255 cache->mfc_flags |= MFC_NOTIFY;
2256 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2257 read_unlock(&mrt_lock);
2258 rcu_read_unlock();
2259 return err;
2260 }
2261
2262 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2263 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2264 int flags)
2265 {
2266 struct nlmsghdr *nlh;
2267 struct rtmsg *rtm;
2268 int err;
2269
2270 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2271 if (nlh == NULL)
2272 return -EMSGSIZE;
2273
2274 rtm = nlmsg_data(nlh);
2275 rtm->rtm_family = RTNL_FAMILY_IPMR;
2276 rtm->rtm_dst_len = 32;
2277 rtm->rtm_src_len = 32;
2278 rtm->rtm_tos = 0;
2279 rtm->rtm_table = mrt->id;
2280 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2281 goto nla_put_failure;
2282 rtm->rtm_type = RTN_MULTICAST;
2283 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2284 if (c->mfc_flags & MFC_STATIC)
2285 rtm->rtm_protocol = RTPROT_STATIC;
2286 else
2287 rtm->rtm_protocol = RTPROT_MROUTED;
2288 rtm->rtm_flags = 0;
2289
2290 if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2291 nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2292 goto nla_put_failure;
2293 err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2294 /* do not break the dump if cache is unresolved */
2295 if (err < 0 && err != -ENOENT)
2296 goto nla_put_failure;
2297
2298 nlmsg_end(skb, nlh);
2299 return 0;
2300
2301 nla_put_failure:
2302 nlmsg_cancel(skb, nlh);
2303 return -EMSGSIZE;
2304 }
2305
2306 static size_t mroute_msgsize(bool unresolved, int maxvif)
2307 {
2308 size_t len =
2309 NLMSG_ALIGN(sizeof(struct rtmsg))
2310 + nla_total_size(4) /* RTA_TABLE */
2311 + nla_total_size(4) /* RTA_SRC */
2312 + nla_total_size(4) /* RTA_DST */
2313 ;
2314
2315 if (!unresolved)
2316 len = len
2317 + nla_total_size(4) /* RTA_IIF */
2318 + nla_total_size(0) /* RTA_MULTIPATH */
2319 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2320 /* RTA_MFC_STATS */
2321 + nla_total_size(sizeof(struct rta_mfc_stats))
2322 ;
2323
2324 return len;
2325 }
2326
2327 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2328 int cmd)
2329 {
2330 struct net *net = read_pnet(&mrt->net);
2331 struct sk_buff *skb;
2332 int err = -ENOBUFS;
2333
2334 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2335 GFP_ATOMIC);
2336 if (skb == NULL)
2337 goto errout;
2338
2339 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2340 if (err < 0)
2341 goto errout;
2342
2343 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2344 return;
2345
2346 errout:
2347 kfree_skb(skb);
2348 if (err < 0)
2349 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2350 }
2351
2352 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2353 {
2354 struct net *net = sock_net(skb->sk);
2355 struct mr_table *mrt;
2356 struct mfc_cache *mfc;
2357 unsigned int t = 0, s_t;
2358 unsigned int h = 0, s_h;
2359 unsigned int e = 0, s_e;
2360
2361 s_t = cb->args[0];
2362 s_h = cb->args[1];
2363 s_e = cb->args[2];
2364
2365 rcu_read_lock();
2366 ipmr_for_each_table(mrt, net) {
2367 if (t < s_t)
2368 goto next_table;
2369 if (t > s_t)
2370 s_h = 0;
2371 for (h = s_h; h < MFC_LINES; h++) {
2372 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2373 if (e < s_e)
2374 goto next_entry;
2375 if (ipmr_fill_mroute(mrt, skb,
2376 NETLINK_CB(cb->skb).portid,
2377 cb->nlh->nlmsg_seq,
2378 mfc, RTM_NEWROUTE,
2379 NLM_F_MULTI) < 0)
2380 goto done;
2381 next_entry:
2382 e++;
2383 }
2384 e = s_e = 0;
2385 }
2386 spin_lock_bh(&mfc_unres_lock);
2387 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2388 if (e < s_e)
2389 goto next_entry2;
2390 if (ipmr_fill_mroute(mrt, skb,
2391 NETLINK_CB(cb->skb).portid,
2392 cb->nlh->nlmsg_seq,
2393 mfc, RTM_NEWROUTE,
2394 NLM_F_MULTI) < 0) {
2395 spin_unlock_bh(&mfc_unres_lock);
2396 goto done;
2397 }
2398 next_entry2:
2399 e++;
2400 }
2401 spin_unlock_bh(&mfc_unres_lock);
2402 e = s_e = 0;
2403 s_h = 0;
2404 next_table:
2405 t++;
2406 }
2407 done:
2408 rcu_read_unlock();
2409
2410 cb->args[2] = e;
2411 cb->args[1] = h;
2412 cb->args[0] = t;
2413
2414 return skb->len;
2415 }
2416
2417 #ifdef CONFIG_PROC_FS
2418 /*
2419 * The /proc interfaces to multicast routing :
2420 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2421 */
2422 struct ipmr_vif_iter {
2423 struct seq_net_private p;
2424 struct mr_table *mrt;
2425 int ct;
2426 };
2427
2428 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2429 struct ipmr_vif_iter *iter,
2430 loff_t pos)
2431 {
2432 struct mr_table *mrt = iter->mrt;
2433
2434 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2435 if (!VIF_EXISTS(mrt, iter->ct))
2436 continue;
2437 if (pos-- == 0)
2438 return &mrt->vif_table[iter->ct];
2439 }
2440 return NULL;
2441 }
2442
2443 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2444 __acquires(mrt_lock)
2445 {
2446 struct ipmr_vif_iter *iter = seq->private;
2447 struct net *net = seq_file_net(seq);
2448 struct mr_table *mrt;
2449
2450 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2451 if (mrt == NULL)
2452 return ERR_PTR(-ENOENT);
2453
2454 iter->mrt = mrt;
2455
2456 read_lock(&mrt_lock);
2457 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2458 : SEQ_START_TOKEN;
2459 }
2460
2461 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2462 {
2463 struct ipmr_vif_iter *iter = seq->private;
2464 struct net *net = seq_file_net(seq);
2465 struct mr_table *mrt = iter->mrt;
2466
2467 ++*pos;
2468 if (v == SEQ_START_TOKEN)
2469 return ipmr_vif_seq_idx(net, iter, 0);
2470
2471 while (++iter->ct < mrt->maxvif) {
2472 if (!VIF_EXISTS(mrt, iter->ct))
2473 continue;
2474 return &mrt->vif_table[iter->ct];
2475 }
2476 return NULL;
2477 }
2478
2479 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2480 __releases(mrt_lock)
2481 {
2482 read_unlock(&mrt_lock);
2483 }
2484
2485 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2486 {
2487 struct ipmr_vif_iter *iter = seq->private;
2488 struct mr_table *mrt = iter->mrt;
2489
2490 if (v == SEQ_START_TOKEN) {
2491 seq_puts(seq,
2492 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2493 } else {
2494 const struct vif_device *vif = v;
2495 const char *name = vif->dev ? vif->dev->name : "none";
2496
2497 seq_printf(seq,
2498 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2499 vif - mrt->vif_table,
2500 name, vif->bytes_in, vif->pkt_in,
2501 vif->bytes_out, vif->pkt_out,
2502 vif->flags, vif->local, vif->remote);
2503 }
2504 return 0;
2505 }
2506
2507 static const struct seq_operations ipmr_vif_seq_ops = {
2508 .start = ipmr_vif_seq_start,
2509 .next = ipmr_vif_seq_next,
2510 .stop = ipmr_vif_seq_stop,
2511 .show = ipmr_vif_seq_show,
2512 };
2513
2514 static int ipmr_vif_open(struct inode *inode, struct file *file)
2515 {
2516 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2517 sizeof(struct ipmr_vif_iter));
2518 }
2519
2520 static const struct file_operations ipmr_vif_fops = {
2521 .owner = THIS_MODULE,
2522 .open = ipmr_vif_open,
2523 .read = seq_read,
2524 .llseek = seq_lseek,
2525 .release = seq_release_net,
2526 };
2527
2528 struct ipmr_mfc_iter {
2529 struct seq_net_private p;
2530 struct mr_table *mrt;
2531 struct list_head *cache;
2532 int ct;
2533 };
2534
2535
2536 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2537 struct ipmr_mfc_iter *it, loff_t pos)
2538 {
2539 struct mr_table *mrt = it->mrt;
2540 struct mfc_cache *mfc;
2541
2542 rcu_read_lock();
2543 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2544 it->cache = &mrt->mfc_cache_array[it->ct];
2545 list_for_each_entry_rcu(mfc, it->cache, list)
2546 if (pos-- == 0)
2547 return mfc;
2548 }
2549 rcu_read_unlock();
2550
2551 spin_lock_bh(&mfc_unres_lock);
2552 it->cache = &mrt->mfc_unres_queue;
2553 list_for_each_entry(mfc, it->cache, list)
2554 if (pos-- == 0)
2555 return mfc;
2556 spin_unlock_bh(&mfc_unres_lock);
2557
2558 it->cache = NULL;
2559 return NULL;
2560 }
2561
2562
2563 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2564 {
2565 struct ipmr_mfc_iter *it = seq->private;
2566 struct net *net = seq_file_net(seq);
2567 struct mr_table *mrt;
2568
2569 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2570 if (mrt == NULL)
2571 return ERR_PTR(-ENOENT);
2572
2573 it->mrt = mrt;
2574 it->cache = NULL;
2575 it->ct = 0;
2576 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2577 : SEQ_START_TOKEN;
2578 }
2579
2580 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2581 {
2582 struct mfc_cache *mfc = v;
2583 struct ipmr_mfc_iter *it = seq->private;
2584 struct net *net = seq_file_net(seq);
2585 struct mr_table *mrt = it->mrt;
2586
2587 ++*pos;
2588
2589 if (v == SEQ_START_TOKEN)
2590 return ipmr_mfc_seq_idx(net, seq->private, 0);
2591
2592 if (mfc->list.next != it->cache)
2593 return list_entry(mfc->list.next, struct mfc_cache, list);
2594
2595 if (it->cache == &mrt->mfc_unres_queue)
2596 goto end_of_list;
2597
2598 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2599
2600 while (++it->ct < MFC_LINES) {
2601 it->cache = &mrt->mfc_cache_array[it->ct];
2602 if (list_empty(it->cache))
2603 continue;
2604 return list_first_entry(it->cache, struct mfc_cache, list);
2605 }
2606
2607 /* exhausted cache_array, show unresolved */
2608 rcu_read_unlock();
2609 it->cache = &mrt->mfc_unres_queue;
2610 it->ct = 0;
2611
2612 spin_lock_bh(&mfc_unres_lock);
2613 if (!list_empty(it->cache))
2614 return list_first_entry(it->cache, struct mfc_cache, list);
2615
2616 end_of_list:
2617 spin_unlock_bh(&mfc_unres_lock);
2618 it->cache = NULL;
2619
2620 return NULL;
2621 }
2622
2623 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2624 {
2625 struct ipmr_mfc_iter *it = seq->private;
2626 struct mr_table *mrt = it->mrt;
2627
2628 if (it->cache == &mrt->mfc_unres_queue)
2629 spin_unlock_bh(&mfc_unres_lock);
2630 else if (it->cache == &mrt->mfc_cache_array[it->ct])
2631 rcu_read_unlock();
2632 }
2633
2634 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2635 {
2636 int n;
2637
2638 if (v == SEQ_START_TOKEN) {
2639 seq_puts(seq,
2640 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2641 } else {
2642 const struct mfc_cache *mfc = v;
2643 const struct ipmr_mfc_iter *it = seq->private;
2644 const struct mr_table *mrt = it->mrt;
2645
2646 seq_printf(seq, "%08X %08X %-3hd",
2647 (__force u32) mfc->mfc_mcastgrp,
2648 (__force u32) mfc->mfc_origin,
2649 mfc->mfc_parent);
2650
2651 if (it->cache != &mrt->mfc_unres_queue) {
2652 seq_printf(seq, " %8lu %8lu %8lu",
2653 mfc->mfc_un.res.pkt,
2654 mfc->mfc_un.res.bytes,
2655 mfc->mfc_un.res.wrong_if);
2656 for (n = mfc->mfc_un.res.minvif;
2657 n < mfc->mfc_un.res.maxvif; n++) {
2658 if (VIF_EXISTS(mrt, n) &&
2659 mfc->mfc_un.res.ttls[n] < 255)
2660 seq_printf(seq,
2661 " %2d:%-3d",
2662 n, mfc->mfc_un.res.ttls[n]);
2663 }
2664 } else {
2665 /* unresolved mfc_caches don't contain
2666 * pkt, bytes and wrong_if values
2667 */
2668 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2669 }
2670 seq_putc(seq, '\n');
2671 }
2672 return 0;
2673 }
2674
2675 static const struct seq_operations ipmr_mfc_seq_ops = {
2676 .start = ipmr_mfc_seq_start,
2677 .next = ipmr_mfc_seq_next,
2678 .stop = ipmr_mfc_seq_stop,
2679 .show = ipmr_mfc_seq_show,
2680 };
2681
2682 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2683 {
2684 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2685 sizeof(struct ipmr_mfc_iter));
2686 }
2687
2688 static const struct file_operations ipmr_mfc_fops = {
2689 .owner = THIS_MODULE,
2690 .open = ipmr_mfc_open,
2691 .read = seq_read,
2692 .llseek = seq_lseek,
2693 .release = seq_release_net,
2694 };
2695 #endif
2696
2697 #ifdef CONFIG_IP_PIMSM_V2
2698 static const struct net_protocol pim_protocol = {
2699 .handler = pim_rcv,
2700 .netns_ok = 1,
2701 };
2702 #endif
2703
2704
2705 /*
2706 * Setup for IP multicast routing
2707 */
2708 static int __net_init ipmr_net_init(struct net *net)
2709 {
2710 int err;
2711
2712 err = ipmr_rules_init(net);
2713 if (err < 0)
2714 goto fail;
2715
2716 #ifdef CONFIG_PROC_FS
2717 err = -ENOMEM;
2718 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2719 goto proc_vif_fail;
2720 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2721 goto proc_cache_fail;
2722 #endif
2723 return 0;
2724
2725 #ifdef CONFIG_PROC_FS
2726 proc_cache_fail:
2727 remove_proc_entry("ip_mr_vif", net->proc_net);
2728 proc_vif_fail:
2729 ipmr_rules_exit(net);
2730 #endif
2731 fail:
2732 return err;
2733 }
2734
2735 static void __net_exit ipmr_net_exit(struct net *net)
2736 {
2737 #ifdef CONFIG_PROC_FS
2738 remove_proc_entry("ip_mr_cache", net->proc_net);
2739 remove_proc_entry("ip_mr_vif", net->proc_net);
2740 #endif
2741 ipmr_rules_exit(net);
2742 }
2743
2744 static struct pernet_operations ipmr_net_ops = {
2745 .init = ipmr_net_init,
2746 .exit = ipmr_net_exit,
2747 };
2748
2749 int __init ip_mr_init(void)
2750 {
2751 int err;
2752
2753 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2754 sizeof(struct mfc_cache),
2755 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2756 NULL);
2757 if (!mrt_cachep)
2758 return -ENOMEM;
2759
2760 err = register_pernet_subsys(&ipmr_net_ops);
2761 if (err)
2762 goto reg_pernet_fail;
2763
2764 err = register_netdevice_notifier(&ip_mr_notifier);
2765 if (err)
2766 goto reg_notif_fail;
2767 #ifdef CONFIG_IP_PIMSM_V2
2768 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2769 pr_err("%s: can't add PIM protocol\n", __func__);
2770 err = -EAGAIN;
2771 goto add_proto_fail;
2772 }
2773 #endif
2774 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2775 NULL, ipmr_rtm_dumproute, NULL);
2776 return 0;
2777
2778 #ifdef CONFIG_IP_PIMSM_V2
2779 add_proto_fail:
2780 unregister_netdevice_notifier(&ip_mr_notifier);
2781 #endif
2782 reg_notif_fail:
2783 unregister_pernet_subsys(&ipmr_net_ops);
2784 reg_pernet_fail:
2785 kmem_cache_destroy(mrt_cachep);
2786 return err;
2787 }
This page took 0.08749 seconds and 6 git commands to generate.