[UDP]: Make full use of proto.h.udp_hash innovation.
[deliverable/linux.git] / net / ipv4 / route.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * ROUTE - implementation of the IP router.
7 *
8 * Version: $Id: route.c,v 1.103 2002/01/12 07:44:09 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Alan Cox, <gw4pts@gw4pts.ampr.org>
13 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
14 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
15 *
16 * Fixes:
17 * Alan Cox : Verify area fixes.
18 * Alan Cox : cli() protects routing changes
19 * Rui Oliveira : ICMP routing table updates
20 * (rco@di.uminho.pt) Routing table insertion and update
21 * Linus Torvalds : Rewrote bits to be sensible
22 * Alan Cox : Added BSD route gw semantics
23 * Alan Cox : Super /proc >4K
24 * Alan Cox : MTU in route table
25 * Alan Cox : MSS actually. Also added the window
26 * clamper.
27 * Sam Lantinga : Fixed route matching in rt_del()
28 * Alan Cox : Routing cache support.
29 * Alan Cox : Removed compatibility cruft.
30 * Alan Cox : RTF_REJECT support.
31 * Alan Cox : TCP irtt support.
32 * Jonathan Naylor : Added Metric support.
33 * Miquel van Smoorenburg : BSD API fixes.
34 * Miquel van Smoorenburg : Metrics.
35 * Alan Cox : Use __u32 properly
36 * Alan Cox : Aligned routing errors more closely with BSD
37 * our system is still very different.
38 * Alan Cox : Faster /proc handling
39 * Alexey Kuznetsov : Massive rework to support tree based routing,
40 * routing caches and better behaviour.
41 *
42 * Olaf Erb : irtt wasn't being copied right.
43 * Bjorn Ekwall : Kerneld route support.
44 * Alan Cox : Multicast fixed (I hope)
45 * Pavel Krauz : Limited broadcast fixed
46 * Mike McLagan : Routing by source
47 * Alexey Kuznetsov : End of old history. Split to fib.c and
48 * route.c and rewritten from scratch.
49 * Andi Kleen : Load-limit warning messages.
50 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
51 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
52 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
53 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
54 * Marc Boucher : routing by fwmark
55 * Robert Olsson : Added rt_cache statistics
56 * Arnaldo C. Melo : Convert proc stuff to seq_file
57 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
58 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
59 * Ilia Sotnikov : Removed TOS from hash calculations
60 *
61 * This program is free software; you can redistribute it and/or
62 * modify it under the terms of the GNU General Public License
63 * as published by the Free Software Foundation; either version
64 * 2 of the License, or (at your option) any later version.
65 */
66
67 #include <linux/module.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <linux/bitops.h>
71 #include <linux/types.h>
72 #include <linux/kernel.h>
73 #include <linux/mm.h>
74 #include <linux/bootmem.h>
75 #include <linux/string.h>
76 #include <linux/socket.h>
77 #include <linux/sockios.h>
78 #include <linux/errno.h>
79 #include <linux/in.h>
80 #include <linux/inet.h>
81 #include <linux/netdevice.h>
82 #include <linux/proc_fs.h>
83 #include <linux/init.h>
84 #include <linux/workqueue.h>
85 #include <linux/skbuff.h>
86 #include <linux/inetdevice.h>
87 #include <linux/igmp.h>
88 #include <linux/pkt_sched.h>
89 #include <linux/mroute.h>
90 #include <linux/netfilter_ipv4.h>
91 #include <linux/random.h>
92 #include <linux/jhash.h>
93 #include <linux/rcupdate.h>
94 #include <linux/times.h>
95 #include <net/dst.h>
96 #include <net/net_namespace.h>
97 #include <net/protocol.h>
98 #include <net/ip.h>
99 #include <net/route.h>
100 #include <net/inetpeer.h>
101 #include <net/sock.h>
102 #include <net/ip_fib.h>
103 #include <net/arp.h>
104 #include <net/tcp.h>
105 #include <net/icmp.h>
106 #include <net/xfrm.h>
107 #include <net/netevent.h>
108 #include <net/rtnetlink.h>
109 #ifdef CONFIG_SYSCTL
110 #include <linux/sysctl.h>
111 #endif
112
113 #define RT_FL_TOS(oldflp) \
114 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
115
116 #define IP_MAX_MTU 0xFFF0
117
118 #define RT_GC_TIMEOUT (300*HZ)
119
120 static int ip_rt_max_size;
121 static int ip_rt_gc_timeout = RT_GC_TIMEOUT;
122 static int ip_rt_gc_interval = 60 * HZ;
123 static int ip_rt_gc_min_interval = HZ / 2;
124 static int ip_rt_redirect_number = 9;
125 static int ip_rt_redirect_load = HZ / 50;
126 static int ip_rt_redirect_silence = ((HZ / 50) << (9 + 1));
127 static int ip_rt_error_cost = HZ;
128 static int ip_rt_error_burst = 5 * HZ;
129 static int ip_rt_gc_elasticity = 8;
130 static int ip_rt_mtu_expires = 10 * 60 * HZ;
131 static int ip_rt_min_pmtu = 512 + 20 + 20;
132 static int ip_rt_min_advmss = 256;
133 static int ip_rt_secret_interval = 10 * 60 * HZ;
134
135 #define RTprint(a...) printk(KERN_DEBUG a)
136
137 static void rt_worker_func(struct work_struct *work);
138 static DECLARE_DELAYED_WORK(expires_work, rt_worker_func);
139 static struct timer_list rt_secret_timer;
140
141 /*
142 * Interface to generic destination cache.
143 */
144
145 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
146 static void ipv4_dst_destroy(struct dst_entry *dst);
147 static void ipv4_dst_ifdown(struct dst_entry *dst,
148 struct net_device *dev, int how);
149 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
150 static void ipv4_link_failure(struct sk_buff *skb);
151 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
152 static int rt_garbage_collect(struct dst_ops *ops);
153
154
155 static struct dst_ops ipv4_dst_ops = {
156 .family = AF_INET,
157 .protocol = __constant_htons(ETH_P_IP),
158 .gc = rt_garbage_collect,
159 .check = ipv4_dst_check,
160 .destroy = ipv4_dst_destroy,
161 .ifdown = ipv4_dst_ifdown,
162 .negative_advice = ipv4_negative_advice,
163 .link_failure = ipv4_link_failure,
164 .update_pmtu = ip_rt_update_pmtu,
165 .local_out = ip_local_out,
166 .entry_size = sizeof(struct rtable),
167 .entries = ATOMIC_INIT(0),
168 };
169
170 #define ECN_OR_COST(class) TC_PRIO_##class
171
172 const __u8 ip_tos2prio[16] = {
173 TC_PRIO_BESTEFFORT,
174 ECN_OR_COST(FILLER),
175 TC_PRIO_BESTEFFORT,
176 ECN_OR_COST(BESTEFFORT),
177 TC_PRIO_BULK,
178 ECN_OR_COST(BULK),
179 TC_PRIO_BULK,
180 ECN_OR_COST(BULK),
181 TC_PRIO_INTERACTIVE,
182 ECN_OR_COST(INTERACTIVE),
183 TC_PRIO_INTERACTIVE,
184 ECN_OR_COST(INTERACTIVE),
185 TC_PRIO_INTERACTIVE_BULK,
186 ECN_OR_COST(INTERACTIVE_BULK),
187 TC_PRIO_INTERACTIVE_BULK,
188 ECN_OR_COST(INTERACTIVE_BULK)
189 };
190
191
192 /*
193 * Route cache.
194 */
195
196 /* The locking scheme is rather straight forward:
197 *
198 * 1) Read-Copy Update protects the buckets of the central route hash.
199 * 2) Only writers remove entries, and they hold the lock
200 * as they look at rtable reference counts.
201 * 3) Only readers acquire references to rtable entries,
202 * they do so with atomic increments and with the
203 * lock held.
204 */
205
206 struct rt_hash_bucket {
207 struct rtable *chain;
208 };
209 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
210 defined(CONFIG_PROVE_LOCKING)
211 /*
212 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
213 * The size of this table is a power of two and depends on the number of CPUS.
214 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
215 */
216 #ifdef CONFIG_LOCKDEP
217 # define RT_HASH_LOCK_SZ 256
218 #else
219 # if NR_CPUS >= 32
220 # define RT_HASH_LOCK_SZ 4096
221 # elif NR_CPUS >= 16
222 # define RT_HASH_LOCK_SZ 2048
223 # elif NR_CPUS >= 8
224 # define RT_HASH_LOCK_SZ 1024
225 # elif NR_CPUS >= 4
226 # define RT_HASH_LOCK_SZ 512
227 # else
228 # define RT_HASH_LOCK_SZ 256
229 # endif
230 #endif
231
232 static spinlock_t *rt_hash_locks;
233 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
234
235 static __init void rt_hash_lock_init(void)
236 {
237 int i;
238
239 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ,
240 GFP_KERNEL);
241 if (!rt_hash_locks)
242 panic("IP: failed to allocate rt_hash_locks\n");
243
244 for (i = 0; i < RT_HASH_LOCK_SZ; i++)
245 spin_lock_init(&rt_hash_locks[i]);
246 }
247 #else
248 # define rt_hash_lock_addr(slot) NULL
249
250 static inline void rt_hash_lock_init(void)
251 {
252 }
253 #endif
254
255 static struct rt_hash_bucket *rt_hash_table;
256 static unsigned rt_hash_mask;
257 static unsigned int rt_hash_log;
258 static atomic_t rt_genid;
259
260 static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
261 #define RT_CACHE_STAT_INC(field) \
262 (__raw_get_cpu_var(rt_cache_stat).field++)
263
264 static unsigned int rt_hash_code(u32 daddr, u32 saddr)
265 {
266 return jhash_2words(daddr, saddr, atomic_read(&rt_genid))
267 & rt_hash_mask;
268 }
269
270 #define rt_hash(daddr, saddr, idx) \
271 rt_hash_code((__force u32)(__be32)(daddr),\
272 (__force u32)(__be32)(saddr) ^ ((idx) << 5))
273
274 #ifdef CONFIG_PROC_FS
275 struct rt_cache_iter_state {
276 struct seq_net_private p;
277 int bucket;
278 int genid;
279 };
280
281 static struct rtable *rt_cache_get_first(struct rt_cache_iter_state *st)
282 {
283 struct rtable *r = NULL;
284
285 for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
286 rcu_read_lock_bh();
287 r = rcu_dereference(rt_hash_table[st->bucket].chain);
288 while (r) {
289 if (r->u.dst.dev->nd_net == st->p.net &&
290 r->rt_genid == st->genid)
291 return r;
292 r = rcu_dereference(r->u.dst.rt_next);
293 }
294 rcu_read_unlock_bh();
295 }
296 return r;
297 }
298
299 static struct rtable *__rt_cache_get_next(struct rt_cache_iter_state *st,
300 struct rtable *r)
301 {
302 r = r->u.dst.rt_next;
303 while (!r) {
304 rcu_read_unlock_bh();
305 if (--st->bucket < 0)
306 break;
307 rcu_read_lock_bh();
308 r = rt_hash_table[st->bucket].chain;
309 }
310 return rcu_dereference(r);
311 }
312
313 static struct rtable *rt_cache_get_next(struct rt_cache_iter_state *st,
314 struct rtable *r)
315 {
316 while ((r = __rt_cache_get_next(st, r)) != NULL) {
317 if (r->u.dst.dev->nd_net != st->p.net)
318 continue;
319 if (r->rt_genid == st->genid)
320 break;
321 }
322 return r;
323 }
324
325 static struct rtable *rt_cache_get_idx(struct rt_cache_iter_state *st, loff_t pos)
326 {
327 struct rtable *r = rt_cache_get_first(st);
328
329 if (r)
330 while (pos && (r = rt_cache_get_next(st, r)))
331 --pos;
332 return pos ? NULL : r;
333 }
334
335 static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
336 {
337 struct rt_cache_iter_state *st = seq->private;
338
339 if (*pos)
340 return rt_cache_get_idx(st, *pos - 1);
341 st->genid = atomic_read(&rt_genid);
342 return SEQ_START_TOKEN;
343 }
344
345 static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
346 {
347 struct rtable *r;
348 struct rt_cache_iter_state *st = seq->private;
349
350 if (v == SEQ_START_TOKEN)
351 r = rt_cache_get_first(st);
352 else
353 r = rt_cache_get_next(st, v);
354 ++*pos;
355 return r;
356 }
357
358 static void rt_cache_seq_stop(struct seq_file *seq, void *v)
359 {
360 if (v && v != SEQ_START_TOKEN)
361 rcu_read_unlock_bh();
362 }
363
364 static int rt_cache_seq_show(struct seq_file *seq, void *v)
365 {
366 if (v == SEQ_START_TOKEN)
367 seq_printf(seq, "%-127s\n",
368 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
369 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
370 "HHUptod\tSpecDst");
371 else {
372 struct rtable *r = v;
373 char temp[256];
374
375 sprintf(temp, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
376 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X",
377 r->u.dst.dev ? r->u.dst.dev->name : "*",
378 (unsigned long)r->rt_dst, (unsigned long)r->rt_gateway,
379 r->rt_flags, atomic_read(&r->u.dst.__refcnt),
380 r->u.dst.__use, 0, (unsigned long)r->rt_src,
381 (dst_metric(&r->u.dst, RTAX_ADVMSS) ?
382 (int)dst_metric(&r->u.dst, RTAX_ADVMSS) + 40 : 0),
383 dst_metric(&r->u.dst, RTAX_WINDOW),
384 (int)((dst_metric(&r->u.dst, RTAX_RTT) >> 3) +
385 dst_metric(&r->u.dst, RTAX_RTTVAR)),
386 r->fl.fl4_tos,
387 r->u.dst.hh ? atomic_read(&r->u.dst.hh->hh_refcnt) : -1,
388 r->u.dst.hh ? (r->u.dst.hh->hh_output ==
389 dev_queue_xmit) : 0,
390 r->rt_spec_dst);
391 seq_printf(seq, "%-127s\n", temp);
392 }
393 return 0;
394 }
395
396 static const struct seq_operations rt_cache_seq_ops = {
397 .start = rt_cache_seq_start,
398 .next = rt_cache_seq_next,
399 .stop = rt_cache_seq_stop,
400 .show = rt_cache_seq_show,
401 };
402
403 static int rt_cache_seq_open(struct inode *inode, struct file *file)
404 {
405 return seq_open_net(inode, file, &rt_cache_seq_ops,
406 sizeof(struct rt_cache_iter_state));
407 }
408
409 static const struct file_operations rt_cache_seq_fops = {
410 .owner = THIS_MODULE,
411 .open = rt_cache_seq_open,
412 .read = seq_read,
413 .llseek = seq_lseek,
414 .release = seq_release_net,
415 };
416
417
418 static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
419 {
420 int cpu;
421
422 if (*pos == 0)
423 return SEQ_START_TOKEN;
424
425 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
426 if (!cpu_possible(cpu))
427 continue;
428 *pos = cpu+1;
429 return &per_cpu(rt_cache_stat, cpu);
430 }
431 return NULL;
432 }
433
434 static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
435 {
436 int cpu;
437
438 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
439 if (!cpu_possible(cpu))
440 continue;
441 *pos = cpu+1;
442 return &per_cpu(rt_cache_stat, cpu);
443 }
444 return NULL;
445
446 }
447
448 static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
449 {
450
451 }
452
453 static int rt_cpu_seq_show(struct seq_file *seq, void *v)
454 {
455 struct rt_cache_stat *st = v;
456
457 if (v == SEQ_START_TOKEN) {
458 seq_printf(seq, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
459 return 0;
460 }
461
462 seq_printf(seq,"%08x %08x %08x %08x %08x %08x %08x %08x "
463 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
464 atomic_read(&ipv4_dst_ops.entries),
465 st->in_hit,
466 st->in_slow_tot,
467 st->in_slow_mc,
468 st->in_no_route,
469 st->in_brd,
470 st->in_martian_dst,
471 st->in_martian_src,
472
473 st->out_hit,
474 st->out_slow_tot,
475 st->out_slow_mc,
476
477 st->gc_total,
478 st->gc_ignored,
479 st->gc_goal_miss,
480 st->gc_dst_overflow,
481 st->in_hlist_search,
482 st->out_hlist_search
483 );
484 return 0;
485 }
486
487 static const struct seq_operations rt_cpu_seq_ops = {
488 .start = rt_cpu_seq_start,
489 .next = rt_cpu_seq_next,
490 .stop = rt_cpu_seq_stop,
491 .show = rt_cpu_seq_show,
492 };
493
494
495 static int rt_cpu_seq_open(struct inode *inode, struct file *file)
496 {
497 return seq_open(file, &rt_cpu_seq_ops);
498 }
499
500 static const struct file_operations rt_cpu_seq_fops = {
501 .owner = THIS_MODULE,
502 .open = rt_cpu_seq_open,
503 .read = seq_read,
504 .llseek = seq_lseek,
505 .release = seq_release,
506 };
507
508 #ifdef CONFIG_NET_CLS_ROUTE
509 static int ip_rt_acct_read(char *buffer, char **start, off_t offset,
510 int length, int *eof, void *data)
511 {
512 unsigned int i;
513
514 if ((offset & 3) || (length & 3))
515 return -EIO;
516
517 if (offset >= sizeof(struct ip_rt_acct) * 256) {
518 *eof = 1;
519 return 0;
520 }
521
522 if (offset + length >= sizeof(struct ip_rt_acct) * 256) {
523 length = sizeof(struct ip_rt_acct) * 256 - offset;
524 *eof = 1;
525 }
526
527 offset /= sizeof(u32);
528
529 if (length > 0) {
530 u32 *dst = (u32 *) buffer;
531
532 *start = buffer;
533 memset(dst, 0, length);
534
535 for_each_possible_cpu(i) {
536 unsigned int j;
537 u32 *src;
538
539 src = ((u32 *) per_cpu_ptr(ip_rt_acct, i)) + offset;
540 for (j = 0; j < length/4; j++)
541 dst[j] += src[j];
542 }
543 }
544 return length;
545 }
546 #endif
547
548 static int __net_init ip_rt_do_proc_init(struct net *net)
549 {
550 struct proc_dir_entry *pde;
551
552 pde = proc_net_fops_create(net, "rt_cache", S_IRUGO,
553 &rt_cache_seq_fops);
554 if (!pde)
555 goto err1;
556
557 pde = proc_create("rt_cache", S_IRUGO,
558 net->proc_net_stat, &rt_cpu_seq_fops);
559 if (!pde)
560 goto err2;
561
562 #ifdef CONFIG_NET_CLS_ROUTE
563 pde = create_proc_read_entry("rt_acct", 0, net->proc_net,
564 ip_rt_acct_read, NULL);
565 if (!pde)
566 goto err3;
567 #endif
568 return 0;
569
570 #ifdef CONFIG_NET_CLS_ROUTE
571 err3:
572 remove_proc_entry("rt_cache", net->proc_net_stat);
573 #endif
574 err2:
575 remove_proc_entry("rt_cache", net->proc_net);
576 err1:
577 return -ENOMEM;
578 }
579
580 static void __net_exit ip_rt_do_proc_exit(struct net *net)
581 {
582 remove_proc_entry("rt_cache", net->proc_net_stat);
583 remove_proc_entry("rt_cache", net->proc_net);
584 remove_proc_entry("rt_acct", net->proc_net);
585 }
586
587 static struct pernet_operations ip_rt_proc_ops __net_initdata = {
588 .init = ip_rt_do_proc_init,
589 .exit = ip_rt_do_proc_exit,
590 };
591
592 static int __init ip_rt_proc_init(void)
593 {
594 return register_pernet_subsys(&ip_rt_proc_ops);
595 }
596
597 #else
598 static inline int ip_rt_proc_init(void)
599 {
600 return 0;
601 }
602 #endif /* CONFIG_PROC_FS */
603
604 static __inline__ void rt_free(struct rtable *rt)
605 {
606 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
607 }
608
609 static __inline__ void rt_drop(struct rtable *rt)
610 {
611 ip_rt_put(rt);
612 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
613 }
614
615 static __inline__ int rt_fast_clean(struct rtable *rth)
616 {
617 /* Kill broadcast/multicast entries very aggresively, if they
618 collide in hash table with more useful entries */
619 return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
620 rth->fl.iif && rth->u.dst.rt_next;
621 }
622
623 static __inline__ int rt_valuable(struct rtable *rth)
624 {
625 return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
626 rth->u.dst.expires;
627 }
628
629 static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
630 {
631 unsigned long age;
632 int ret = 0;
633
634 if (atomic_read(&rth->u.dst.__refcnt))
635 goto out;
636
637 ret = 1;
638 if (rth->u.dst.expires &&
639 time_after_eq(jiffies, rth->u.dst.expires))
640 goto out;
641
642 age = jiffies - rth->u.dst.lastuse;
643 ret = 0;
644 if ((age <= tmo1 && !rt_fast_clean(rth)) ||
645 (age <= tmo2 && rt_valuable(rth)))
646 goto out;
647 ret = 1;
648 out: return ret;
649 }
650
651 /* Bits of score are:
652 * 31: very valuable
653 * 30: not quite useless
654 * 29..0: usage counter
655 */
656 static inline u32 rt_score(struct rtable *rt)
657 {
658 u32 score = jiffies - rt->u.dst.lastuse;
659
660 score = ~score & ~(3<<30);
661
662 if (rt_valuable(rt))
663 score |= (1<<31);
664
665 if (!rt->fl.iif ||
666 !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
667 score |= (1<<30);
668
669 return score;
670 }
671
672 static inline int compare_keys(struct flowi *fl1, struct flowi *fl2)
673 {
674 return ((__force u32)((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
675 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr)) |
676 (fl1->mark ^ fl2->mark) |
677 (*(u16 *)&fl1->nl_u.ip4_u.tos ^
678 *(u16 *)&fl2->nl_u.ip4_u.tos) |
679 (fl1->oif ^ fl2->oif) |
680 (fl1->iif ^ fl2->iif)) == 0;
681 }
682
683 static inline int compare_netns(struct rtable *rt1, struct rtable *rt2)
684 {
685 return rt1->u.dst.dev->nd_net == rt2->u.dst.dev->nd_net;
686 }
687
688 /*
689 * Perform a full scan of hash table and free all entries.
690 * Can be called by a softirq or a process.
691 * In the later case, we want to be reschedule if necessary
692 */
693 static void rt_do_flush(int process_context)
694 {
695 unsigned int i;
696 struct rtable *rth, *next;
697
698 for (i = 0; i <= rt_hash_mask; i++) {
699 if (process_context && need_resched())
700 cond_resched();
701 rth = rt_hash_table[i].chain;
702 if (!rth)
703 continue;
704
705 spin_lock_bh(rt_hash_lock_addr(i));
706 rth = rt_hash_table[i].chain;
707 rt_hash_table[i].chain = NULL;
708 spin_unlock_bh(rt_hash_lock_addr(i));
709
710 for (; rth; rth = next) {
711 next = rth->u.dst.rt_next;
712 rt_free(rth);
713 }
714 }
715 }
716
717 static void rt_check_expire(void)
718 {
719 static unsigned int rover;
720 unsigned int i = rover, goal;
721 struct rtable *rth, **rthp;
722 u64 mult;
723
724 mult = ((u64)ip_rt_gc_interval) << rt_hash_log;
725 if (ip_rt_gc_timeout > 1)
726 do_div(mult, ip_rt_gc_timeout);
727 goal = (unsigned int)mult;
728 if (goal > rt_hash_mask)
729 goal = rt_hash_mask + 1;
730 for (; goal > 0; goal--) {
731 unsigned long tmo = ip_rt_gc_timeout;
732
733 i = (i + 1) & rt_hash_mask;
734 rthp = &rt_hash_table[i].chain;
735
736 if (need_resched())
737 cond_resched();
738
739 if (*rthp == NULL)
740 continue;
741 spin_lock_bh(rt_hash_lock_addr(i));
742 while ((rth = *rthp) != NULL) {
743 if (rth->rt_genid != atomic_read(&rt_genid)) {
744 *rthp = rth->u.dst.rt_next;
745 rt_free(rth);
746 continue;
747 }
748 if (rth->u.dst.expires) {
749 /* Entry is expired even if it is in use */
750 if (time_before_eq(jiffies, rth->u.dst.expires)) {
751 tmo >>= 1;
752 rthp = &rth->u.dst.rt_next;
753 continue;
754 }
755 } else if (!rt_may_expire(rth, tmo, ip_rt_gc_timeout)) {
756 tmo >>= 1;
757 rthp = &rth->u.dst.rt_next;
758 continue;
759 }
760
761 /* Cleanup aged off entries. */
762 *rthp = rth->u.dst.rt_next;
763 rt_free(rth);
764 }
765 spin_unlock_bh(rt_hash_lock_addr(i));
766 }
767 rover = i;
768 }
769
770 /*
771 * rt_worker_func() is run in process context.
772 * we call rt_check_expire() to scan part of the hash table
773 */
774 static void rt_worker_func(struct work_struct *work)
775 {
776 rt_check_expire();
777 schedule_delayed_work(&expires_work, ip_rt_gc_interval);
778 }
779
780 /*
781 * Pertubation of rt_genid by a small quantity [1..256]
782 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
783 * many times (2^24) without giving recent rt_genid.
784 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
785 */
786 static void rt_cache_invalidate(void)
787 {
788 unsigned char shuffle;
789
790 get_random_bytes(&shuffle, sizeof(shuffle));
791 atomic_add(shuffle + 1U, &rt_genid);
792 }
793
794 /*
795 * delay < 0 : invalidate cache (fast : entries will be deleted later)
796 * delay >= 0 : invalidate & flush cache (can be long)
797 */
798 void rt_cache_flush(int delay)
799 {
800 rt_cache_invalidate();
801 if (delay >= 0)
802 rt_do_flush(!in_softirq());
803 }
804
805 /*
806 * We change rt_genid and let gc do the cleanup
807 */
808 static void rt_secret_rebuild(unsigned long dummy)
809 {
810 rt_cache_invalidate();
811 mod_timer(&rt_secret_timer, jiffies + ip_rt_secret_interval);
812 }
813
814 /*
815 Short description of GC goals.
816
817 We want to build algorithm, which will keep routing cache
818 at some equilibrium point, when number of aged off entries
819 is kept approximately equal to newly generated ones.
820
821 Current expiration strength is variable "expire".
822 We try to adjust it dynamically, so that if networking
823 is idle expires is large enough to keep enough of warm entries,
824 and when load increases it reduces to limit cache size.
825 */
826
827 static int rt_garbage_collect(struct dst_ops *ops)
828 {
829 static unsigned long expire = RT_GC_TIMEOUT;
830 static unsigned long last_gc;
831 static int rover;
832 static int equilibrium;
833 struct rtable *rth, **rthp;
834 unsigned long now = jiffies;
835 int goal;
836
837 /*
838 * Garbage collection is pretty expensive,
839 * do not make it too frequently.
840 */
841
842 RT_CACHE_STAT_INC(gc_total);
843
844 if (now - last_gc < ip_rt_gc_min_interval &&
845 atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size) {
846 RT_CACHE_STAT_INC(gc_ignored);
847 goto out;
848 }
849
850 /* Calculate number of entries, which we want to expire now. */
851 goal = atomic_read(&ipv4_dst_ops.entries) -
852 (ip_rt_gc_elasticity << rt_hash_log);
853 if (goal <= 0) {
854 if (equilibrium < ipv4_dst_ops.gc_thresh)
855 equilibrium = ipv4_dst_ops.gc_thresh;
856 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
857 if (goal > 0) {
858 equilibrium += min_t(unsigned int, goal >> 1, rt_hash_mask + 1);
859 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
860 }
861 } else {
862 /* We are in dangerous area. Try to reduce cache really
863 * aggressively.
864 */
865 goal = max_t(unsigned int, goal >> 1, rt_hash_mask + 1);
866 equilibrium = atomic_read(&ipv4_dst_ops.entries) - goal;
867 }
868
869 if (now - last_gc >= ip_rt_gc_min_interval)
870 last_gc = now;
871
872 if (goal <= 0) {
873 equilibrium += goal;
874 goto work_done;
875 }
876
877 do {
878 int i, k;
879
880 for (i = rt_hash_mask, k = rover; i >= 0; i--) {
881 unsigned long tmo = expire;
882
883 k = (k + 1) & rt_hash_mask;
884 rthp = &rt_hash_table[k].chain;
885 spin_lock_bh(rt_hash_lock_addr(k));
886 while ((rth = *rthp) != NULL) {
887 if (rth->rt_genid == atomic_read(&rt_genid) &&
888 !rt_may_expire(rth, tmo, expire)) {
889 tmo >>= 1;
890 rthp = &rth->u.dst.rt_next;
891 continue;
892 }
893 *rthp = rth->u.dst.rt_next;
894 rt_free(rth);
895 goal--;
896 }
897 spin_unlock_bh(rt_hash_lock_addr(k));
898 if (goal <= 0)
899 break;
900 }
901 rover = k;
902
903 if (goal <= 0)
904 goto work_done;
905
906 /* Goal is not achieved. We stop process if:
907
908 - if expire reduced to zero. Otherwise, expire is halfed.
909 - if table is not full.
910 - if we are called from interrupt.
911 - jiffies check is just fallback/debug loop breaker.
912 We will not spin here for long time in any case.
913 */
914
915 RT_CACHE_STAT_INC(gc_goal_miss);
916
917 if (expire == 0)
918 break;
919
920 expire >>= 1;
921 #if RT_CACHE_DEBUG >= 2
922 printk(KERN_DEBUG "expire>> %u %d %d %d\n", expire,
923 atomic_read(&ipv4_dst_ops.entries), goal, i);
924 #endif
925
926 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
927 goto out;
928 } while (!in_softirq() && time_before_eq(jiffies, now));
929
930 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
931 goto out;
932 if (net_ratelimit())
933 printk(KERN_WARNING "dst cache overflow\n");
934 RT_CACHE_STAT_INC(gc_dst_overflow);
935 return 1;
936
937 work_done:
938 expire += ip_rt_gc_min_interval;
939 if (expire > ip_rt_gc_timeout ||
940 atomic_read(&ipv4_dst_ops.entries) < ipv4_dst_ops.gc_thresh)
941 expire = ip_rt_gc_timeout;
942 #if RT_CACHE_DEBUG >= 2
943 printk(KERN_DEBUG "expire++ %u %d %d %d\n", expire,
944 atomic_read(&ipv4_dst_ops.entries), goal, rover);
945 #endif
946 out: return 0;
947 }
948
949 static int rt_intern_hash(unsigned hash, struct rtable *rt, struct rtable **rp)
950 {
951 struct rtable *rth, **rthp;
952 unsigned long now;
953 struct rtable *cand, **candp;
954 u32 min_score;
955 int chain_length;
956 int attempts = !in_softirq();
957
958 restart:
959 chain_length = 0;
960 min_score = ~(u32)0;
961 cand = NULL;
962 candp = NULL;
963 now = jiffies;
964
965 rthp = &rt_hash_table[hash].chain;
966
967 spin_lock_bh(rt_hash_lock_addr(hash));
968 while ((rth = *rthp) != NULL) {
969 if (rth->rt_genid != atomic_read(&rt_genid)) {
970 *rthp = rth->u.dst.rt_next;
971 rt_free(rth);
972 continue;
973 }
974 if (compare_keys(&rth->fl, &rt->fl) && compare_netns(rth, rt)) {
975 /* Put it first */
976 *rthp = rth->u.dst.rt_next;
977 /*
978 * Since lookup is lockfree, the deletion
979 * must be visible to another weakly ordered CPU before
980 * the insertion at the start of the hash chain.
981 */
982 rcu_assign_pointer(rth->u.dst.rt_next,
983 rt_hash_table[hash].chain);
984 /*
985 * Since lookup is lockfree, the update writes
986 * must be ordered for consistency on SMP.
987 */
988 rcu_assign_pointer(rt_hash_table[hash].chain, rth);
989
990 dst_use(&rth->u.dst, now);
991 spin_unlock_bh(rt_hash_lock_addr(hash));
992
993 rt_drop(rt);
994 *rp = rth;
995 return 0;
996 }
997
998 if (!atomic_read(&rth->u.dst.__refcnt)) {
999 u32 score = rt_score(rth);
1000
1001 if (score <= min_score) {
1002 cand = rth;
1003 candp = rthp;
1004 min_score = score;
1005 }
1006 }
1007
1008 chain_length++;
1009
1010 rthp = &rth->u.dst.rt_next;
1011 }
1012
1013 if (cand) {
1014 /* ip_rt_gc_elasticity used to be average length of chain
1015 * length, when exceeded gc becomes really aggressive.
1016 *
1017 * The second limit is less certain. At the moment it allows
1018 * only 2 entries per bucket. We will see.
1019 */
1020 if (chain_length > ip_rt_gc_elasticity) {
1021 *candp = cand->u.dst.rt_next;
1022 rt_free(cand);
1023 }
1024 }
1025
1026 /* Try to bind route to arp only if it is output
1027 route or unicast forwarding path.
1028 */
1029 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
1030 int err = arp_bind_neighbour(&rt->u.dst);
1031 if (err) {
1032 spin_unlock_bh(rt_hash_lock_addr(hash));
1033
1034 if (err != -ENOBUFS) {
1035 rt_drop(rt);
1036 return err;
1037 }
1038
1039 /* Neighbour tables are full and nothing
1040 can be released. Try to shrink route cache,
1041 it is most likely it holds some neighbour records.
1042 */
1043 if (attempts-- > 0) {
1044 int saved_elasticity = ip_rt_gc_elasticity;
1045 int saved_int = ip_rt_gc_min_interval;
1046 ip_rt_gc_elasticity = 1;
1047 ip_rt_gc_min_interval = 0;
1048 rt_garbage_collect(&ipv4_dst_ops);
1049 ip_rt_gc_min_interval = saved_int;
1050 ip_rt_gc_elasticity = saved_elasticity;
1051 goto restart;
1052 }
1053
1054 if (net_ratelimit())
1055 printk(KERN_WARNING "Neighbour table overflow.\n");
1056 rt_drop(rt);
1057 return -ENOBUFS;
1058 }
1059 }
1060
1061 rt->u.dst.rt_next = rt_hash_table[hash].chain;
1062 #if RT_CACHE_DEBUG >= 2
1063 if (rt->u.dst.rt_next) {
1064 struct rtable *trt;
1065 printk(KERN_DEBUG "rt_cache @%02x: %u.%u.%u.%u", hash,
1066 NIPQUAD(rt->rt_dst));
1067 for (trt = rt->u.dst.rt_next; trt; trt = trt->u.dst.rt_next)
1068 printk(" . %u.%u.%u.%u", NIPQUAD(trt->rt_dst));
1069 printk("\n");
1070 }
1071 #endif
1072 rt_hash_table[hash].chain = rt;
1073 spin_unlock_bh(rt_hash_lock_addr(hash));
1074 *rp = rt;
1075 return 0;
1076 }
1077
1078 void rt_bind_peer(struct rtable *rt, int create)
1079 {
1080 static DEFINE_SPINLOCK(rt_peer_lock);
1081 struct inet_peer *peer;
1082
1083 peer = inet_getpeer(rt->rt_dst, create);
1084
1085 spin_lock_bh(&rt_peer_lock);
1086 if (rt->peer == NULL) {
1087 rt->peer = peer;
1088 peer = NULL;
1089 }
1090 spin_unlock_bh(&rt_peer_lock);
1091 if (peer)
1092 inet_putpeer(peer);
1093 }
1094
1095 /*
1096 * Peer allocation may fail only in serious out-of-memory conditions. However
1097 * we still can generate some output.
1098 * Random ID selection looks a bit dangerous because we have no chances to
1099 * select ID being unique in a reasonable period of time.
1100 * But broken packet identifier may be better than no packet at all.
1101 */
1102 static void ip_select_fb_ident(struct iphdr *iph)
1103 {
1104 static DEFINE_SPINLOCK(ip_fb_id_lock);
1105 static u32 ip_fallback_id;
1106 u32 salt;
1107
1108 spin_lock_bh(&ip_fb_id_lock);
1109 salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
1110 iph->id = htons(salt & 0xFFFF);
1111 ip_fallback_id = salt;
1112 spin_unlock_bh(&ip_fb_id_lock);
1113 }
1114
1115 void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
1116 {
1117 struct rtable *rt = (struct rtable *) dst;
1118
1119 if (rt) {
1120 if (rt->peer == NULL)
1121 rt_bind_peer(rt, 1);
1122
1123 /* If peer is attached to destination, it is never detached,
1124 so that we need not to grab a lock to dereference it.
1125 */
1126 if (rt->peer) {
1127 iph->id = htons(inet_getid(rt->peer, more));
1128 return;
1129 }
1130 } else
1131 printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",
1132 __builtin_return_address(0));
1133
1134 ip_select_fb_ident(iph);
1135 }
1136
1137 static void rt_del(unsigned hash, struct rtable *rt)
1138 {
1139 struct rtable **rthp, *aux;
1140
1141 rthp = &rt_hash_table[hash].chain;
1142 spin_lock_bh(rt_hash_lock_addr(hash));
1143 ip_rt_put(rt);
1144 while ((aux = *rthp) != NULL) {
1145 if (aux == rt || (aux->rt_genid != atomic_read(&rt_genid))) {
1146 *rthp = aux->u.dst.rt_next;
1147 rt_free(aux);
1148 continue;
1149 }
1150 rthp = &aux->u.dst.rt_next;
1151 }
1152 spin_unlock_bh(rt_hash_lock_addr(hash));
1153 }
1154
1155 void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw,
1156 __be32 saddr, struct net_device *dev)
1157 {
1158 int i, k;
1159 struct in_device *in_dev = in_dev_get(dev);
1160 struct rtable *rth, **rthp;
1161 __be32 skeys[2] = { saddr, 0 };
1162 int ikeys[2] = { dev->ifindex, 0 };
1163 struct netevent_redirect netevent;
1164 struct net *net;
1165
1166 if (!in_dev)
1167 return;
1168
1169 net = dev->nd_net;
1170 if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev)
1171 || ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw)
1172 || ipv4_is_zeronet(new_gw))
1173 goto reject_redirect;
1174
1175 if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1176 if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1177 goto reject_redirect;
1178 if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1179 goto reject_redirect;
1180 } else {
1181 if (inet_addr_type(net, new_gw) != RTN_UNICAST)
1182 goto reject_redirect;
1183 }
1184
1185 for (i = 0; i < 2; i++) {
1186 for (k = 0; k < 2; k++) {
1187 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k]);
1188
1189 rthp=&rt_hash_table[hash].chain;
1190
1191 rcu_read_lock();
1192 while ((rth = rcu_dereference(*rthp)) != NULL) {
1193 struct rtable *rt;
1194
1195 if (rth->fl.fl4_dst != daddr ||
1196 rth->fl.fl4_src != skeys[i] ||
1197 rth->fl.oif != ikeys[k] ||
1198 rth->fl.iif != 0 ||
1199 rth->rt_genid != atomic_read(&rt_genid) ||
1200 rth->u.dst.dev->nd_net != net) {
1201 rthp = &rth->u.dst.rt_next;
1202 continue;
1203 }
1204
1205 if (rth->rt_dst != daddr ||
1206 rth->rt_src != saddr ||
1207 rth->u.dst.error ||
1208 rth->rt_gateway != old_gw ||
1209 rth->u.dst.dev != dev)
1210 break;
1211
1212 dst_hold(&rth->u.dst);
1213 rcu_read_unlock();
1214
1215 rt = dst_alloc(&ipv4_dst_ops);
1216 if (rt == NULL) {
1217 ip_rt_put(rth);
1218 in_dev_put(in_dev);
1219 return;
1220 }
1221
1222 /* Copy all the information. */
1223 *rt = *rth;
1224 INIT_RCU_HEAD(&rt->u.dst.rcu_head);
1225 rt->u.dst.__use = 1;
1226 atomic_set(&rt->u.dst.__refcnt, 1);
1227 rt->u.dst.child = NULL;
1228 if (rt->u.dst.dev)
1229 dev_hold(rt->u.dst.dev);
1230 if (rt->idev)
1231 in_dev_hold(rt->idev);
1232 rt->u.dst.obsolete = 0;
1233 rt->u.dst.lastuse = jiffies;
1234 rt->u.dst.path = &rt->u.dst;
1235 rt->u.dst.neighbour = NULL;
1236 rt->u.dst.hh = NULL;
1237 rt->u.dst.xfrm = NULL;
1238 rt->rt_genid = atomic_read(&rt_genid);
1239 rt->rt_flags |= RTCF_REDIRECTED;
1240
1241 /* Gateway is different ... */
1242 rt->rt_gateway = new_gw;
1243
1244 /* Redirect received -> path was valid */
1245 dst_confirm(&rth->u.dst);
1246
1247 if (rt->peer)
1248 atomic_inc(&rt->peer->refcnt);
1249
1250 if (arp_bind_neighbour(&rt->u.dst) ||
1251 !(rt->u.dst.neighbour->nud_state &
1252 NUD_VALID)) {
1253 if (rt->u.dst.neighbour)
1254 neigh_event_send(rt->u.dst.neighbour, NULL);
1255 ip_rt_put(rth);
1256 rt_drop(rt);
1257 goto do_next;
1258 }
1259
1260 netevent.old = &rth->u.dst;
1261 netevent.new = &rt->u.dst;
1262 call_netevent_notifiers(NETEVENT_REDIRECT,
1263 &netevent);
1264
1265 rt_del(hash, rth);
1266 if (!rt_intern_hash(hash, rt, &rt))
1267 ip_rt_put(rt);
1268 goto do_next;
1269 }
1270 rcu_read_unlock();
1271 do_next:
1272 ;
1273 }
1274 }
1275 in_dev_put(in_dev);
1276 return;
1277
1278 reject_redirect:
1279 #ifdef CONFIG_IP_ROUTE_VERBOSE
1280 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1281 printk(KERN_INFO "Redirect from %u.%u.%u.%u on %s about "
1282 "%u.%u.%u.%u ignored.\n"
1283 " Advised path = %u.%u.%u.%u -> %u.%u.%u.%u\n",
1284 NIPQUAD(old_gw), dev->name, NIPQUAD(new_gw),
1285 NIPQUAD(saddr), NIPQUAD(daddr));
1286 #endif
1287 in_dev_put(in_dev);
1288 }
1289
1290 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1291 {
1292 struct rtable *rt = (struct rtable *)dst;
1293 struct dst_entry *ret = dst;
1294
1295 if (rt) {
1296 if (dst->obsolete) {
1297 ip_rt_put(rt);
1298 ret = NULL;
1299 } else if ((rt->rt_flags & RTCF_REDIRECTED) ||
1300 rt->u.dst.expires) {
1301 unsigned hash = rt_hash(rt->fl.fl4_dst, rt->fl.fl4_src,
1302 rt->fl.oif);
1303 #if RT_CACHE_DEBUG >= 1
1304 printk(KERN_DEBUG "ipv4_negative_advice: redirect to "
1305 "%u.%u.%u.%u/%02x dropped\n",
1306 NIPQUAD(rt->rt_dst), rt->fl.fl4_tos);
1307 #endif
1308 rt_del(hash, rt);
1309 ret = NULL;
1310 }
1311 }
1312 return ret;
1313 }
1314
1315 /*
1316 * Algorithm:
1317 * 1. The first ip_rt_redirect_number redirects are sent
1318 * with exponential backoff, then we stop sending them at all,
1319 * assuming that the host ignores our redirects.
1320 * 2. If we did not see packets requiring redirects
1321 * during ip_rt_redirect_silence, we assume that the host
1322 * forgot redirected route and start to send redirects again.
1323 *
1324 * This algorithm is much cheaper and more intelligent than dumb load limiting
1325 * in icmp.c.
1326 *
1327 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1328 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1329 */
1330
1331 void ip_rt_send_redirect(struct sk_buff *skb)
1332 {
1333 struct rtable *rt = skb->rtable;
1334 struct in_device *in_dev = in_dev_get(rt->u.dst.dev);
1335
1336 if (!in_dev)
1337 return;
1338
1339 if (!IN_DEV_TX_REDIRECTS(in_dev))
1340 goto out;
1341
1342 /* No redirected packets during ip_rt_redirect_silence;
1343 * reset the algorithm.
1344 */
1345 if (time_after(jiffies, rt->u.dst.rate_last + ip_rt_redirect_silence))
1346 rt->u.dst.rate_tokens = 0;
1347
1348 /* Too many ignored redirects; do not send anything
1349 * set u.dst.rate_last to the last seen redirected packet.
1350 */
1351 if (rt->u.dst.rate_tokens >= ip_rt_redirect_number) {
1352 rt->u.dst.rate_last = jiffies;
1353 goto out;
1354 }
1355
1356 /* Check for load limit; set rate_last to the latest sent
1357 * redirect.
1358 */
1359 if (rt->u.dst.rate_tokens == 0 ||
1360 time_after(jiffies,
1361 (rt->u.dst.rate_last +
1362 (ip_rt_redirect_load << rt->u.dst.rate_tokens)))) {
1363 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1364 rt->u.dst.rate_last = jiffies;
1365 ++rt->u.dst.rate_tokens;
1366 #ifdef CONFIG_IP_ROUTE_VERBOSE
1367 if (IN_DEV_LOG_MARTIANS(in_dev) &&
1368 rt->u.dst.rate_tokens == ip_rt_redirect_number &&
1369 net_ratelimit())
1370 printk(KERN_WARNING "host %u.%u.%u.%u/if%d ignores "
1371 "redirects for %u.%u.%u.%u to %u.%u.%u.%u.\n",
1372 NIPQUAD(rt->rt_src), rt->rt_iif,
1373 NIPQUAD(rt->rt_dst), NIPQUAD(rt->rt_gateway));
1374 #endif
1375 }
1376 out:
1377 in_dev_put(in_dev);
1378 }
1379
1380 static int ip_error(struct sk_buff *skb)
1381 {
1382 struct rtable *rt = skb->rtable;
1383 unsigned long now;
1384 int code;
1385
1386 switch (rt->u.dst.error) {
1387 case EINVAL:
1388 default:
1389 goto out;
1390 case EHOSTUNREACH:
1391 code = ICMP_HOST_UNREACH;
1392 break;
1393 case ENETUNREACH:
1394 code = ICMP_NET_UNREACH;
1395 IP_INC_STATS_BH(IPSTATS_MIB_INNOROUTES);
1396 break;
1397 case EACCES:
1398 code = ICMP_PKT_FILTERED;
1399 break;
1400 }
1401
1402 now = jiffies;
1403 rt->u.dst.rate_tokens += now - rt->u.dst.rate_last;
1404 if (rt->u.dst.rate_tokens > ip_rt_error_burst)
1405 rt->u.dst.rate_tokens = ip_rt_error_burst;
1406 rt->u.dst.rate_last = now;
1407 if (rt->u.dst.rate_tokens >= ip_rt_error_cost) {
1408 rt->u.dst.rate_tokens -= ip_rt_error_cost;
1409 icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1410 }
1411
1412 out: kfree_skb(skb);
1413 return 0;
1414 }
1415
1416 /*
1417 * The last two values are not from the RFC but
1418 * are needed for AMPRnet AX.25 paths.
1419 */
1420
1421 static const unsigned short mtu_plateau[] =
1422 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1423
1424 static __inline__ unsigned short guess_mtu(unsigned short old_mtu)
1425 {
1426 int i;
1427
1428 for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++)
1429 if (old_mtu > mtu_plateau[i])
1430 return mtu_plateau[i];
1431 return 68;
1432 }
1433
1434 unsigned short ip_rt_frag_needed(struct net *net, struct iphdr *iph,
1435 unsigned short new_mtu)
1436 {
1437 int i;
1438 unsigned short old_mtu = ntohs(iph->tot_len);
1439 struct rtable *rth;
1440 __be32 skeys[2] = { iph->saddr, 0, };
1441 __be32 daddr = iph->daddr;
1442 unsigned short est_mtu = 0;
1443
1444 if (ipv4_config.no_pmtu_disc)
1445 return 0;
1446
1447 for (i = 0; i < 2; i++) {
1448 unsigned hash = rt_hash(daddr, skeys[i], 0);
1449
1450 rcu_read_lock();
1451 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
1452 rth = rcu_dereference(rth->u.dst.rt_next)) {
1453 if (rth->fl.fl4_dst == daddr &&
1454 rth->fl.fl4_src == skeys[i] &&
1455 rth->rt_dst == daddr &&
1456 rth->rt_src == iph->saddr &&
1457 rth->fl.iif == 0 &&
1458 !(dst_metric_locked(&rth->u.dst, RTAX_MTU)) &&
1459 rth->u.dst.dev->nd_net == net &&
1460 rth->rt_genid == atomic_read(&rt_genid)) {
1461 unsigned short mtu = new_mtu;
1462
1463 if (new_mtu < 68 || new_mtu >= old_mtu) {
1464
1465 /* BSD 4.2 compatibility hack :-( */
1466 if (mtu == 0 &&
1467 old_mtu >= rth->u.dst.metrics[RTAX_MTU-1] &&
1468 old_mtu >= 68 + (iph->ihl << 2))
1469 old_mtu -= iph->ihl << 2;
1470
1471 mtu = guess_mtu(old_mtu);
1472 }
1473 if (mtu <= rth->u.dst.metrics[RTAX_MTU-1]) {
1474 if (mtu < rth->u.dst.metrics[RTAX_MTU-1]) {
1475 dst_confirm(&rth->u.dst);
1476 if (mtu < ip_rt_min_pmtu) {
1477 mtu = ip_rt_min_pmtu;
1478 rth->u.dst.metrics[RTAX_LOCK-1] |=
1479 (1 << RTAX_MTU);
1480 }
1481 rth->u.dst.metrics[RTAX_MTU-1] = mtu;
1482 dst_set_expires(&rth->u.dst,
1483 ip_rt_mtu_expires);
1484 }
1485 est_mtu = mtu;
1486 }
1487 }
1488 }
1489 rcu_read_unlock();
1490 }
1491 return est_mtu ? : new_mtu;
1492 }
1493
1494 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1495 {
1496 if (dst->metrics[RTAX_MTU-1] > mtu && mtu >= 68 &&
1497 !(dst_metric_locked(dst, RTAX_MTU))) {
1498 if (mtu < ip_rt_min_pmtu) {
1499 mtu = ip_rt_min_pmtu;
1500 dst->metrics[RTAX_LOCK-1] |= (1 << RTAX_MTU);
1501 }
1502 dst->metrics[RTAX_MTU-1] = mtu;
1503 dst_set_expires(dst, ip_rt_mtu_expires);
1504 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
1505 }
1506 }
1507
1508 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1509 {
1510 return NULL;
1511 }
1512
1513 static void ipv4_dst_destroy(struct dst_entry *dst)
1514 {
1515 struct rtable *rt = (struct rtable *) dst;
1516 struct inet_peer *peer = rt->peer;
1517 struct in_device *idev = rt->idev;
1518
1519 if (peer) {
1520 rt->peer = NULL;
1521 inet_putpeer(peer);
1522 }
1523
1524 if (idev) {
1525 rt->idev = NULL;
1526 in_dev_put(idev);
1527 }
1528 }
1529
1530 static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
1531 int how)
1532 {
1533 struct rtable *rt = (struct rtable *) dst;
1534 struct in_device *idev = rt->idev;
1535 if (dev != dev->nd_net->loopback_dev && idev && idev->dev == dev) {
1536 struct in_device *loopback_idev =
1537 in_dev_get(dev->nd_net->loopback_dev);
1538 if (loopback_idev) {
1539 rt->idev = loopback_idev;
1540 in_dev_put(idev);
1541 }
1542 }
1543 }
1544
1545 static void ipv4_link_failure(struct sk_buff *skb)
1546 {
1547 struct rtable *rt;
1548
1549 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1550
1551 rt = skb->rtable;
1552 if (rt)
1553 dst_set_expires(&rt->u.dst, 0);
1554 }
1555
1556 static int ip_rt_bug(struct sk_buff *skb)
1557 {
1558 printk(KERN_DEBUG "ip_rt_bug: %u.%u.%u.%u -> %u.%u.%u.%u, %s\n",
1559 NIPQUAD(ip_hdr(skb)->saddr), NIPQUAD(ip_hdr(skb)->daddr),
1560 skb->dev ? skb->dev->name : "?");
1561 kfree_skb(skb);
1562 return 0;
1563 }
1564
1565 /*
1566 We do not cache source address of outgoing interface,
1567 because it is used only by IP RR, TS and SRR options,
1568 so that it out of fast path.
1569
1570 BTW remember: "addr" is allowed to be not aligned
1571 in IP options!
1572 */
1573
1574 void ip_rt_get_source(u8 *addr, struct rtable *rt)
1575 {
1576 __be32 src;
1577 struct fib_result res;
1578
1579 if (rt->fl.iif == 0)
1580 src = rt->rt_src;
1581 else if (fib_lookup(rt->u.dst.dev->nd_net, &rt->fl, &res) == 0) {
1582 src = FIB_RES_PREFSRC(res);
1583 fib_res_put(&res);
1584 } else
1585 src = inet_select_addr(rt->u.dst.dev, rt->rt_gateway,
1586 RT_SCOPE_UNIVERSE);
1587 memcpy(addr, &src, 4);
1588 }
1589
1590 #ifdef CONFIG_NET_CLS_ROUTE
1591 static void set_class_tag(struct rtable *rt, u32 tag)
1592 {
1593 if (!(rt->u.dst.tclassid & 0xFFFF))
1594 rt->u.dst.tclassid |= tag & 0xFFFF;
1595 if (!(rt->u.dst.tclassid & 0xFFFF0000))
1596 rt->u.dst.tclassid |= tag & 0xFFFF0000;
1597 }
1598 #endif
1599
1600 static void rt_set_nexthop(struct rtable *rt, struct fib_result *res, u32 itag)
1601 {
1602 struct fib_info *fi = res->fi;
1603
1604 if (fi) {
1605 if (FIB_RES_GW(*res) &&
1606 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1607 rt->rt_gateway = FIB_RES_GW(*res);
1608 memcpy(rt->u.dst.metrics, fi->fib_metrics,
1609 sizeof(rt->u.dst.metrics));
1610 if (fi->fib_mtu == 0) {
1611 rt->u.dst.metrics[RTAX_MTU-1] = rt->u.dst.dev->mtu;
1612 if (rt->u.dst.metrics[RTAX_LOCK-1] & (1 << RTAX_MTU) &&
1613 rt->rt_gateway != rt->rt_dst &&
1614 rt->u.dst.dev->mtu > 576)
1615 rt->u.dst.metrics[RTAX_MTU-1] = 576;
1616 }
1617 #ifdef CONFIG_NET_CLS_ROUTE
1618 rt->u.dst.tclassid = FIB_RES_NH(*res).nh_tclassid;
1619 #endif
1620 } else
1621 rt->u.dst.metrics[RTAX_MTU-1]= rt->u.dst.dev->mtu;
1622
1623 if (rt->u.dst.metrics[RTAX_HOPLIMIT-1] == 0)
1624 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = sysctl_ip_default_ttl;
1625 if (rt->u.dst.metrics[RTAX_MTU-1] > IP_MAX_MTU)
1626 rt->u.dst.metrics[RTAX_MTU-1] = IP_MAX_MTU;
1627 if (rt->u.dst.metrics[RTAX_ADVMSS-1] == 0)
1628 rt->u.dst.metrics[RTAX_ADVMSS-1] = max_t(unsigned int, rt->u.dst.dev->mtu - 40,
1629 ip_rt_min_advmss);
1630 if (rt->u.dst.metrics[RTAX_ADVMSS-1] > 65535 - 40)
1631 rt->u.dst.metrics[RTAX_ADVMSS-1] = 65535 - 40;
1632
1633 #ifdef CONFIG_NET_CLS_ROUTE
1634 #ifdef CONFIG_IP_MULTIPLE_TABLES
1635 set_class_tag(rt, fib_rules_tclass(res));
1636 #endif
1637 set_class_tag(rt, itag);
1638 #endif
1639 rt->rt_type = res->type;
1640 }
1641
1642 static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1643 u8 tos, struct net_device *dev, int our)
1644 {
1645 unsigned hash;
1646 struct rtable *rth;
1647 __be32 spec_dst;
1648 struct in_device *in_dev = in_dev_get(dev);
1649 u32 itag = 0;
1650
1651 /* Primary sanity checks. */
1652
1653 if (in_dev == NULL)
1654 return -EINVAL;
1655
1656 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1657 ipv4_is_loopback(saddr) || skb->protocol != htons(ETH_P_IP))
1658 goto e_inval;
1659
1660 if (ipv4_is_zeronet(saddr)) {
1661 if (!ipv4_is_local_multicast(daddr))
1662 goto e_inval;
1663 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1664 } else if (fib_validate_source(saddr, 0, tos, 0,
1665 dev, &spec_dst, &itag) < 0)
1666 goto e_inval;
1667
1668 rth = dst_alloc(&ipv4_dst_ops);
1669 if (!rth)
1670 goto e_nobufs;
1671
1672 rth->u.dst.output= ip_rt_bug;
1673
1674 atomic_set(&rth->u.dst.__refcnt, 1);
1675 rth->u.dst.flags= DST_HOST;
1676 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1677 rth->u.dst.flags |= DST_NOPOLICY;
1678 rth->fl.fl4_dst = daddr;
1679 rth->rt_dst = daddr;
1680 rth->fl.fl4_tos = tos;
1681 rth->fl.mark = skb->mark;
1682 rth->fl.fl4_src = saddr;
1683 rth->rt_src = saddr;
1684 #ifdef CONFIG_NET_CLS_ROUTE
1685 rth->u.dst.tclassid = itag;
1686 #endif
1687 rth->rt_iif =
1688 rth->fl.iif = dev->ifindex;
1689 rth->u.dst.dev = init_net.loopback_dev;
1690 dev_hold(rth->u.dst.dev);
1691 rth->idev = in_dev_get(rth->u.dst.dev);
1692 rth->fl.oif = 0;
1693 rth->rt_gateway = daddr;
1694 rth->rt_spec_dst= spec_dst;
1695 rth->rt_genid = atomic_read(&rt_genid);
1696 rth->rt_flags = RTCF_MULTICAST;
1697 rth->rt_type = RTN_MULTICAST;
1698 if (our) {
1699 rth->u.dst.input= ip_local_deliver;
1700 rth->rt_flags |= RTCF_LOCAL;
1701 }
1702
1703 #ifdef CONFIG_IP_MROUTE
1704 if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev))
1705 rth->u.dst.input = ip_mr_input;
1706 #endif
1707 RT_CACHE_STAT_INC(in_slow_mc);
1708
1709 in_dev_put(in_dev);
1710 hash = rt_hash(daddr, saddr, dev->ifindex);
1711 return rt_intern_hash(hash, rth, &skb->rtable);
1712
1713 e_nobufs:
1714 in_dev_put(in_dev);
1715 return -ENOBUFS;
1716
1717 e_inval:
1718 in_dev_put(in_dev);
1719 return -EINVAL;
1720 }
1721
1722
1723 static void ip_handle_martian_source(struct net_device *dev,
1724 struct in_device *in_dev,
1725 struct sk_buff *skb,
1726 __be32 daddr,
1727 __be32 saddr)
1728 {
1729 RT_CACHE_STAT_INC(in_martian_src);
1730 #ifdef CONFIG_IP_ROUTE_VERBOSE
1731 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
1732 /*
1733 * RFC1812 recommendation, if source is martian,
1734 * the only hint is MAC header.
1735 */
1736 printk(KERN_WARNING "martian source %u.%u.%u.%u from "
1737 "%u.%u.%u.%u, on dev %s\n",
1738 NIPQUAD(daddr), NIPQUAD(saddr), dev->name);
1739 if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
1740 int i;
1741 const unsigned char *p = skb_mac_header(skb);
1742 printk(KERN_WARNING "ll header: ");
1743 for (i = 0; i < dev->hard_header_len; i++, p++) {
1744 printk("%02x", *p);
1745 if (i < (dev->hard_header_len - 1))
1746 printk(":");
1747 }
1748 printk("\n");
1749 }
1750 }
1751 #endif
1752 }
1753
1754 static inline int __mkroute_input(struct sk_buff *skb,
1755 struct fib_result* res,
1756 struct in_device *in_dev,
1757 __be32 daddr, __be32 saddr, u32 tos,
1758 struct rtable **result)
1759 {
1760
1761 struct rtable *rth;
1762 int err;
1763 struct in_device *out_dev;
1764 unsigned flags = 0;
1765 __be32 spec_dst;
1766 u32 itag;
1767
1768 /* get a working reference to the output device */
1769 out_dev = in_dev_get(FIB_RES_DEV(*res));
1770 if (out_dev == NULL) {
1771 if (net_ratelimit())
1772 printk(KERN_CRIT "Bug in ip_route_input" \
1773 "_slow(). Please, report\n");
1774 return -EINVAL;
1775 }
1776
1777
1778 err = fib_validate_source(saddr, daddr, tos, FIB_RES_OIF(*res),
1779 in_dev->dev, &spec_dst, &itag);
1780 if (err < 0) {
1781 ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
1782 saddr);
1783
1784 err = -EINVAL;
1785 goto cleanup;
1786 }
1787
1788 if (err)
1789 flags |= RTCF_DIRECTSRC;
1790
1791 if (out_dev == in_dev && err && !(flags & RTCF_MASQ) &&
1792 (IN_DEV_SHARED_MEDIA(out_dev) ||
1793 inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
1794 flags |= RTCF_DOREDIRECT;
1795
1796 if (skb->protocol != htons(ETH_P_IP)) {
1797 /* Not IP (i.e. ARP). Do not create route, if it is
1798 * invalid for proxy arp. DNAT routes are always valid.
1799 */
1800 if (out_dev == in_dev) {
1801 err = -EINVAL;
1802 goto cleanup;
1803 }
1804 }
1805
1806
1807 rth = dst_alloc(&ipv4_dst_ops);
1808 if (!rth) {
1809 err = -ENOBUFS;
1810 goto cleanup;
1811 }
1812
1813 atomic_set(&rth->u.dst.__refcnt, 1);
1814 rth->u.dst.flags= DST_HOST;
1815 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1816 rth->u.dst.flags |= DST_NOPOLICY;
1817 if (IN_DEV_CONF_GET(out_dev, NOXFRM))
1818 rth->u.dst.flags |= DST_NOXFRM;
1819 rth->fl.fl4_dst = daddr;
1820 rth->rt_dst = daddr;
1821 rth->fl.fl4_tos = tos;
1822 rth->fl.mark = skb->mark;
1823 rth->fl.fl4_src = saddr;
1824 rth->rt_src = saddr;
1825 rth->rt_gateway = daddr;
1826 rth->rt_iif =
1827 rth->fl.iif = in_dev->dev->ifindex;
1828 rth->u.dst.dev = (out_dev)->dev;
1829 dev_hold(rth->u.dst.dev);
1830 rth->idev = in_dev_get(rth->u.dst.dev);
1831 rth->fl.oif = 0;
1832 rth->rt_spec_dst= spec_dst;
1833
1834 rth->u.dst.input = ip_forward;
1835 rth->u.dst.output = ip_output;
1836 rth->rt_genid = atomic_read(&rt_genid);
1837
1838 rt_set_nexthop(rth, res, itag);
1839
1840 rth->rt_flags = flags;
1841
1842 *result = rth;
1843 err = 0;
1844 cleanup:
1845 /* release the working reference to the output device */
1846 in_dev_put(out_dev);
1847 return err;
1848 }
1849
1850 static inline int ip_mkroute_input(struct sk_buff *skb,
1851 struct fib_result* res,
1852 const struct flowi *fl,
1853 struct in_device *in_dev,
1854 __be32 daddr, __be32 saddr, u32 tos)
1855 {
1856 struct rtable* rth = NULL;
1857 int err;
1858 unsigned hash;
1859
1860 #ifdef CONFIG_IP_ROUTE_MULTIPATH
1861 if (res->fi && res->fi->fib_nhs > 1 && fl->oif == 0)
1862 fib_select_multipath(fl, res);
1863 #endif
1864
1865 /* create a routing cache entry */
1866 err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
1867 if (err)
1868 return err;
1869
1870 /* put it into the cache */
1871 hash = rt_hash(daddr, saddr, fl->iif);
1872 return rt_intern_hash(hash, rth, &skb->rtable);
1873 }
1874
1875 /*
1876 * NOTE. We drop all the packets that has local source
1877 * addresses, because every properly looped back packet
1878 * must have correct destination already attached by output routine.
1879 *
1880 * Such approach solves two big problems:
1881 * 1. Not simplex devices are handled properly.
1882 * 2. IP spoofing attempts are filtered with 100% of guarantee.
1883 */
1884
1885 static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1886 u8 tos, struct net_device *dev)
1887 {
1888 struct fib_result res;
1889 struct in_device *in_dev = in_dev_get(dev);
1890 struct flowi fl = { .nl_u = { .ip4_u =
1891 { .daddr = daddr,
1892 .saddr = saddr,
1893 .tos = tos,
1894 .scope = RT_SCOPE_UNIVERSE,
1895 } },
1896 .mark = skb->mark,
1897 .iif = dev->ifindex };
1898 unsigned flags = 0;
1899 u32 itag = 0;
1900 struct rtable * rth;
1901 unsigned hash;
1902 __be32 spec_dst;
1903 int err = -EINVAL;
1904 int free_res = 0;
1905 struct net * net = dev->nd_net;
1906
1907 /* IP on this device is disabled. */
1908
1909 if (!in_dev)
1910 goto out;
1911
1912 /* Check for the most weird martians, which can be not detected
1913 by fib_lookup.
1914 */
1915
1916 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1917 ipv4_is_loopback(saddr))
1918 goto martian_source;
1919
1920 if (daddr == htonl(0xFFFFFFFF) || (saddr == 0 && daddr == 0))
1921 goto brd_input;
1922
1923 /* Accept zero addresses only to limited broadcast;
1924 * I even do not know to fix it or not. Waiting for complains :-)
1925 */
1926 if (ipv4_is_zeronet(saddr))
1927 goto martian_source;
1928
1929 if (ipv4_is_lbcast(daddr) || ipv4_is_zeronet(daddr) ||
1930 ipv4_is_loopback(daddr))
1931 goto martian_destination;
1932
1933 /*
1934 * Now we are ready to route packet.
1935 */
1936 if ((err = fib_lookup(net, &fl, &res)) != 0) {
1937 if (!IN_DEV_FORWARD(in_dev))
1938 goto e_hostunreach;
1939 goto no_route;
1940 }
1941 free_res = 1;
1942
1943 RT_CACHE_STAT_INC(in_slow_tot);
1944
1945 if (res.type == RTN_BROADCAST)
1946 goto brd_input;
1947
1948 if (res.type == RTN_LOCAL) {
1949 int result;
1950 result = fib_validate_source(saddr, daddr, tos,
1951 net->loopback_dev->ifindex,
1952 dev, &spec_dst, &itag);
1953 if (result < 0)
1954 goto martian_source;
1955 if (result)
1956 flags |= RTCF_DIRECTSRC;
1957 spec_dst = daddr;
1958 goto local_input;
1959 }
1960
1961 if (!IN_DEV_FORWARD(in_dev))
1962 goto e_hostunreach;
1963 if (res.type != RTN_UNICAST)
1964 goto martian_destination;
1965
1966 err = ip_mkroute_input(skb, &res, &fl, in_dev, daddr, saddr, tos);
1967 done:
1968 in_dev_put(in_dev);
1969 if (free_res)
1970 fib_res_put(&res);
1971 out: return err;
1972
1973 brd_input:
1974 if (skb->protocol != htons(ETH_P_IP))
1975 goto e_inval;
1976
1977 if (ipv4_is_zeronet(saddr))
1978 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1979 else {
1980 err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst,
1981 &itag);
1982 if (err < 0)
1983 goto martian_source;
1984 if (err)
1985 flags |= RTCF_DIRECTSRC;
1986 }
1987 flags |= RTCF_BROADCAST;
1988 res.type = RTN_BROADCAST;
1989 RT_CACHE_STAT_INC(in_brd);
1990
1991 local_input:
1992 rth = dst_alloc(&ipv4_dst_ops);
1993 if (!rth)
1994 goto e_nobufs;
1995
1996 rth->u.dst.output= ip_rt_bug;
1997 rth->rt_genid = atomic_read(&rt_genid);
1998
1999 atomic_set(&rth->u.dst.__refcnt, 1);
2000 rth->u.dst.flags= DST_HOST;
2001 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2002 rth->u.dst.flags |= DST_NOPOLICY;
2003 rth->fl.fl4_dst = daddr;
2004 rth->rt_dst = daddr;
2005 rth->fl.fl4_tos = tos;
2006 rth->fl.mark = skb->mark;
2007 rth->fl.fl4_src = saddr;
2008 rth->rt_src = saddr;
2009 #ifdef CONFIG_NET_CLS_ROUTE
2010 rth->u.dst.tclassid = itag;
2011 #endif
2012 rth->rt_iif =
2013 rth->fl.iif = dev->ifindex;
2014 rth->u.dst.dev = net->loopback_dev;
2015 dev_hold(rth->u.dst.dev);
2016 rth->idev = in_dev_get(rth->u.dst.dev);
2017 rth->rt_gateway = daddr;
2018 rth->rt_spec_dst= spec_dst;
2019 rth->u.dst.input= ip_local_deliver;
2020 rth->rt_flags = flags|RTCF_LOCAL;
2021 if (res.type == RTN_UNREACHABLE) {
2022 rth->u.dst.input= ip_error;
2023 rth->u.dst.error= -err;
2024 rth->rt_flags &= ~RTCF_LOCAL;
2025 }
2026 rth->rt_type = res.type;
2027 hash = rt_hash(daddr, saddr, fl.iif);
2028 err = rt_intern_hash(hash, rth, &skb->rtable);
2029 goto done;
2030
2031 no_route:
2032 RT_CACHE_STAT_INC(in_no_route);
2033 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
2034 res.type = RTN_UNREACHABLE;
2035 if (err == -ESRCH)
2036 err = -ENETUNREACH;
2037 goto local_input;
2038
2039 /*
2040 * Do not cache martian addresses: they should be logged (RFC1812)
2041 */
2042 martian_destination:
2043 RT_CACHE_STAT_INC(in_martian_dst);
2044 #ifdef CONFIG_IP_ROUTE_VERBOSE
2045 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
2046 printk(KERN_WARNING "martian destination %u.%u.%u.%u from "
2047 "%u.%u.%u.%u, dev %s\n",
2048 NIPQUAD(daddr), NIPQUAD(saddr), dev->name);
2049 #endif
2050
2051 e_hostunreach:
2052 err = -EHOSTUNREACH;
2053 goto done;
2054
2055 e_inval:
2056 err = -EINVAL;
2057 goto done;
2058
2059 e_nobufs:
2060 err = -ENOBUFS;
2061 goto done;
2062
2063 martian_source:
2064 ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
2065 goto e_inval;
2066 }
2067
2068 int ip_route_input(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2069 u8 tos, struct net_device *dev)
2070 {
2071 struct rtable * rth;
2072 unsigned hash;
2073 int iif = dev->ifindex;
2074 struct net *net;
2075
2076 net = dev->nd_net;
2077 tos &= IPTOS_RT_MASK;
2078 hash = rt_hash(daddr, saddr, iif);
2079
2080 rcu_read_lock();
2081 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2082 rth = rcu_dereference(rth->u.dst.rt_next)) {
2083 if (rth->fl.fl4_dst == daddr &&
2084 rth->fl.fl4_src == saddr &&
2085 rth->fl.iif == iif &&
2086 rth->fl.oif == 0 &&
2087 rth->fl.mark == skb->mark &&
2088 rth->fl.fl4_tos == tos &&
2089 rth->u.dst.dev->nd_net == net &&
2090 rth->rt_genid == atomic_read(&rt_genid)) {
2091 dst_use(&rth->u.dst, jiffies);
2092 RT_CACHE_STAT_INC(in_hit);
2093 rcu_read_unlock();
2094 skb->rtable = rth;
2095 return 0;
2096 }
2097 RT_CACHE_STAT_INC(in_hlist_search);
2098 }
2099 rcu_read_unlock();
2100
2101 /* Multicast recognition logic is moved from route cache to here.
2102 The problem was that too many Ethernet cards have broken/missing
2103 hardware multicast filters :-( As result the host on multicasting
2104 network acquires a lot of useless route cache entries, sort of
2105 SDR messages from all the world. Now we try to get rid of them.
2106 Really, provided software IP multicast filter is organized
2107 reasonably (at least, hashed), it does not result in a slowdown
2108 comparing with route cache reject entries.
2109 Note, that multicast routers are not affected, because
2110 route cache entry is created eventually.
2111 */
2112 if (ipv4_is_multicast(daddr)) {
2113 struct in_device *in_dev;
2114
2115 rcu_read_lock();
2116 if ((in_dev = __in_dev_get_rcu(dev)) != NULL) {
2117 int our = ip_check_mc(in_dev, daddr, saddr,
2118 ip_hdr(skb)->protocol);
2119 if (our
2120 #ifdef CONFIG_IP_MROUTE
2121 || (!ipv4_is_local_multicast(daddr) &&
2122 IN_DEV_MFORWARD(in_dev))
2123 #endif
2124 ) {
2125 rcu_read_unlock();
2126 return ip_route_input_mc(skb, daddr, saddr,
2127 tos, dev, our);
2128 }
2129 }
2130 rcu_read_unlock();
2131 return -EINVAL;
2132 }
2133 return ip_route_input_slow(skb, daddr, saddr, tos, dev);
2134 }
2135
2136 static inline int __mkroute_output(struct rtable **result,
2137 struct fib_result* res,
2138 const struct flowi *fl,
2139 const struct flowi *oldflp,
2140 struct net_device *dev_out,
2141 unsigned flags)
2142 {
2143 struct rtable *rth;
2144 struct in_device *in_dev;
2145 u32 tos = RT_FL_TOS(oldflp);
2146 int err = 0;
2147
2148 if (ipv4_is_loopback(fl->fl4_src) && !(dev_out->flags&IFF_LOOPBACK))
2149 return -EINVAL;
2150
2151 if (fl->fl4_dst == htonl(0xFFFFFFFF))
2152 res->type = RTN_BROADCAST;
2153 else if (ipv4_is_multicast(fl->fl4_dst))
2154 res->type = RTN_MULTICAST;
2155 else if (ipv4_is_lbcast(fl->fl4_dst) || ipv4_is_zeronet(fl->fl4_dst))
2156 return -EINVAL;
2157
2158 if (dev_out->flags & IFF_LOOPBACK)
2159 flags |= RTCF_LOCAL;
2160
2161 /* get work reference to inet device */
2162 in_dev = in_dev_get(dev_out);
2163 if (!in_dev)
2164 return -EINVAL;
2165
2166 if (res->type == RTN_BROADCAST) {
2167 flags |= RTCF_BROADCAST | RTCF_LOCAL;
2168 if (res->fi) {
2169 fib_info_put(res->fi);
2170 res->fi = NULL;
2171 }
2172 } else if (res->type == RTN_MULTICAST) {
2173 flags |= RTCF_MULTICAST|RTCF_LOCAL;
2174 if (!ip_check_mc(in_dev, oldflp->fl4_dst, oldflp->fl4_src,
2175 oldflp->proto))
2176 flags &= ~RTCF_LOCAL;
2177 /* If multicast route do not exist use
2178 default one, but do not gateway in this case.
2179 Yes, it is hack.
2180 */
2181 if (res->fi && res->prefixlen < 4) {
2182 fib_info_put(res->fi);
2183 res->fi = NULL;
2184 }
2185 }
2186
2187
2188 rth = dst_alloc(&ipv4_dst_ops);
2189 if (!rth) {
2190 err = -ENOBUFS;
2191 goto cleanup;
2192 }
2193
2194 atomic_set(&rth->u.dst.__refcnt, 1);
2195 rth->u.dst.flags= DST_HOST;
2196 if (IN_DEV_CONF_GET(in_dev, NOXFRM))
2197 rth->u.dst.flags |= DST_NOXFRM;
2198 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2199 rth->u.dst.flags |= DST_NOPOLICY;
2200
2201 rth->fl.fl4_dst = oldflp->fl4_dst;
2202 rth->fl.fl4_tos = tos;
2203 rth->fl.fl4_src = oldflp->fl4_src;
2204 rth->fl.oif = oldflp->oif;
2205 rth->fl.mark = oldflp->mark;
2206 rth->rt_dst = fl->fl4_dst;
2207 rth->rt_src = fl->fl4_src;
2208 rth->rt_iif = oldflp->oif ? : dev_out->ifindex;
2209 /* get references to the devices that are to be hold by the routing
2210 cache entry */
2211 rth->u.dst.dev = dev_out;
2212 dev_hold(dev_out);
2213 rth->idev = in_dev_get(dev_out);
2214 rth->rt_gateway = fl->fl4_dst;
2215 rth->rt_spec_dst= fl->fl4_src;
2216
2217 rth->u.dst.output=ip_output;
2218 rth->rt_genid = atomic_read(&rt_genid);
2219
2220 RT_CACHE_STAT_INC(out_slow_tot);
2221
2222 if (flags & RTCF_LOCAL) {
2223 rth->u.dst.input = ip_local_deliver;
2224 rth->rt_spec_dst = fl->fl4_dst;
2225 }
2226 if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2227 rth->rt_spec_dst = fl->fl4_src;
2228 if (flags & RTCF_LOCAL &&
2229 !(dev_out->flags & IFF_LOOPBACK)) {
2230 rth->u.dst.output = ip_mc_output;
2231 RT_CACHE_STAT_INC(out_slow_mc);
2232 }
2233 #ifdef CONFIG_IP_MROUTE
2234 if (res->type == RTN_MULTICAST) {
2235 if (IN_DEV_MFORWARD(in_dev) &&
2236 !ipv4_is_local_multicast(oldflp->fl4_dst)) {
2237 rth->u.dst.input = ip_mr_input;
2238 rth->u.dst.output = ip_mc_output;
2239 }
2240 }
2241 #endif
2242 }
2243
2244 rt_set_nexthop(rth, res, 0);
2245
2246 rth->rt_flags = flags;
2247
2248 *result = rth;
2249 cleanup:
2250 /* release work reference to inet device */
2251 in_dev_put(in_dev);
2252
2253 return err;
2254 }
2255
2256 static inline int ip_mkroute_output(struct rtable **rp,
2257 struct fib_result* res,
2258 const struct flowi *fl,
2259 const struct flowi *oldflp,
2260 struct net_device *dev_out,
2261 unsigned flags)
2262 {
2263 struct rtable *rth = NULL;
2264 int err = __mkroute_output(&rth, res, fl, oldflp, dev_out, flags);
2265 unsigned hash;
2266 if (err == 0) {
2267 hash = rt_hash(oldflp->fl4_dst, oldflp->fl4_src, oldflp->oif);
2268 err = rt_intern_hash(hash, rth, rp);
2269 }
2270
2271 return err;
2272 }
2273
2274 /*
2275 * Major route resolver routine.
2276 */
2277
2278 static int ip_route_output_slow(struct net *net, struct rtable **rp,
2279 const struct flowi *oldflp)
2280 {
2281 u32 tos = RT_FL_TOS(oldflp);
2282 struct flowi fl = { .nl_u = { .ip4_u =
2283 { .daddr = oldflp->fl4_dst,
2284 .saddr = oldflp->fl4_src,
2285 .tos = tos & IPTOS_RT_MASK,
2286 .scope = ((tos & RTO_ONLINK) ?
2287 RT_SCOPE_LINK :
2288 RT_SCOPE_UNIVERSE),
2289 } },
2290 .mark = oldflp->mark,
2291 .iif = net->loopback_dev->ifindex,
2292 .oif = oldflp->oif };
2293 struct fib_result res;
2294 unsigned flags = 0;
2295 struct net_device *dev_out = NULL;
2296 int free_res = 0;
2297 int err;
2298
2299
2300 res.fi = NULL;
2301 #ifdef CONFIG_IP_MULTIPLE_TABLES
2302 res.r = NULL;
2303 #endif
2304
2305 if (oldflp->fl4_src) {
2306 err = -EINVAL;
2307 if (ipv4_is_multicast(oldflp->fl4_src) ||
2308 ipv4_is_lbcast(oldflp->fl4_src) ||
2309 ipv4_is_zeronet(oldflp->fl4_src))
2310 goto out;
2311
2312 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2313 dev_out = ip_dev_find(net, oldflp->fl4_src);
2314 if (dev_out == NULL)
2315 goto out;
2316
2317 /* I removed check for oif == dev_out->oif here.
2318 It was wrong for two reasons:
2319 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2320 is assigned to multiple interfaces.
2321 2. Moreover, we are allowed to send packets with saddr
2322 of another iface. --ANK
2323 */
2324
2325 if (oldflp->oif == 0
2326 && (ipv4_is_multicast(oldflp->fl4_dst) ||
2327 oldflp->fl4_dst == htonl(0xFFFFFFFF))) {
2328 /* Special hack: user can direct multicasts
2329 and limited broadcast via necessary interface
2330 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2331 This hack is not just for fun, it allows
2332 vic,vat and friends to work.
2333 They bind socket to loopback, set ttl to zero
2334 and expect that it will work.
2335 From the viewpoint of routing cache they are broken,
2336 because we are not allowed to build multicast path
2337 with loopback source addr (look, routing cache
2338 cannot know, that ttl is zero, so that packet
2339 will not leave this host and route is valid).
2340 Luckily, this hack is good workaround.
2341 */
2342
2343 fl.oif = dev_out->ifindex;
2344 goto make_route;
2345 }
2346 if (dev_out)
2347 dev_put(dev_out);
2348 dev_out = NULL;
2349 }
2350
2351
2352 if (oldflp->oif) {
2353 dev_out = dev_get_by_index(net, oldflp->oif);
2354 err = -ENODEV;
2355 if (dev_out == NULL)
2356 goto out;
2357
2358 /* RACE: Check return value of inet_select_addr instead. */
2359 if (__in_dev_get_rtnl(dev_out) == NULL) {
2360 dev_put(dev_out);
2361 goto out; /* Wrong error code */
2362 }
2363
2364 if (ipv4_is_local_multicast(oldflp->fl4_dst) ||
2365 oldflp->fl4_dst == htonl(0xFFFFFFFF)) {
2366 if (!fl.fl4_src)
2367 fl.fl4_src = inet_select_addr(dev_out, 0,
2368 RT_SCOPE_LINK);
2369 goto make_route;
2370 }
2371 if (!fl.fl4_src) {
2372 if (ipv4_is_multicast(oldflp->fl4_dst))
2373 fl.fl4_src = inet_select_addr(dev_out, 0,
2374 fl.fl4_scope);
2375 else if (!oldflp->fl4_dst)
2376 fl.fl4_src = inet_select_addr(dev_out, 0,
2377 RT_SCOPE_HOST);
2378 }
2379 }
2380
2381 if (!fl.fl4_dst) {
2382 fl.fl4_dst = fl.fl4_src;
2383 if (!fl.fl4_dst)
2384 fl.fl4_dst = fl.fl4_src = htonl(INADDR_LOOPBACK);
2385 if (dev_out)
2386 dev_put(dev_out);
2387 dev_out = net->loopback_dev;
2388 dev_hold(dev_out);
2389 fl.oif = net->loopback_dev->ifindex;
2390 res.type = RTN_LOCAL;
2391 flags |= RTCF_LOCAL;
2392 goto make_route;
2393 }
2394
2395 if (fib_lookup(net, &fl, &res)) {
2396 res.fi = NULL;
2397 if (oldflp->oif) {
2398 /* Apparently, routing tables are wrong. Assume,
2399 that the destination is on link.
2400
2401 WHY? DW.
2402 Because we are allowed to send to iface
2403 even if it has NO routes and NO assigned
2404 addresses. When oif is specified, routing
2405 tables are looked up with only one purpose:
2406 to catch if destination is gatewayed, rather than
2407 direct. Moreover, if MSG_DONTROUTE is set,
2408 we send packet, ignoring both routing tables
2409 and ifaddr state. --ANK
2410
2411
2412 We could make it even if oif is unknown,
2413 likely IPv6, but we do not.
2414 */
2415
2416 if (fl.fl4_src == 0)
2417 fl.fl4_src = inet_select_addr(dev_out, 0,
2418 RT_SCOPE_LINK);
2419 res.type = RTN_UNICAST;
2420 goto make_route;
2421 }
2422 if (dev_out)
2423 dev_put(dev_out);
2424 err = -ENETUNREACH;
2425 goto out;
2426 }
2427 free_res = 1;
2428
2429 if (res.type == RTN_LOCAL) {
2430 if (!fl.fl4_src)
2431 fl.fl4_src = fl.fl4_dst;
2432 if (dev_out)
2433 dev_put(dev_out);
2434 dev_out = net->loopback_dev;
2435 dev_hold(dev_out);
2436 fl.oif = dev_out->ifindex;
2437 if (res.fi)
2438 fib_info_put(res.fi);
2439 res.fi = NULL;
2440 flags |= RTCF_LOCAL;
2441 goto make_route;
2442 }
2443
2444 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2445 if (res.fi->fib_nhs > 1 && fl.oif == 0)
2446 fib_select_multipath(&fl, &res);
2447 else
2448 #endif
2449 if (!res.prefixlen && res.type == RTN_UNICAST && !fl.oif)
2450 fib_select_default(net, &fl, &res);
2451
2452 if (!fl.fl4_src)
2453 fl.fl4_src = FIB_RES_PREFSRC(res);
2454
2455 if (dev_out)
2456 dev_put(dev_out);
2457 dev_out = FIB_RES_DEV(res);
2458 dev_hold(dev_out);
2459 fl.oif = dev_out->ifindex;
2460
2461
2462 make_route:
2463 err = ip_mkroute_output(rp, &res, &fl, oldflp, dev_out, flags);
2464
2465
2466 if (free_res)
2467 fib_res_put(&res);
2468 if (dev_out)
2469 dev_put(dev_out);
2470 out: return err;
2471 }
2472
2473 int __ip_route_output_key(struct net *net, struct rtable **rp,
2474 const struct flowi *flp)
2475 {
2476 unsigned hash;
2477 struct rtable *rth;
2478
2479 hash = rt_hash(flp->fl4_dst, flp->fl4_src, flp->oif);
2480
2481 rcu_read_lock_bh();
2482 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2483 rth = rcu_dereference(rth->u.dst.rt_next)) {
2484 if (rth->fl.fl4_dst == flp->fl4_dst &&
2485 rth->fl.fl4_src == flp->fl4_src &&
2486 rth->fl.iif == 0 &&
2487 rth->fl.oif == flp->oif &&
2488 rth->fl.mark == flp->mark &&
2489 !((rth->fl.fl4_tos ^ flp->fl4_tos) &
2490 (IPTOS_RT_MASK | RTO_ONLINK)) &&
2491 rth->u.dst.dev->nd_net == net &&
2492 rth->rt_genid == atomic_read(&rt_genid)) {
2493 dst_use(&rth->u.dst, jiffies);
2494 RT_CACHE_STAT_INC(out_hit);
2495 rcu_read_unlock_bh();
2496 *rp = rth;
2497 return 0;
2498 }
2499 RT_CACHE_STAT_INC(out_hlist_search);
2500 }
2501 rcu_read_unlock_bh();
2502
2503 return ip_route_output_slow(net, rp, flp);
2504 }
2505
2506 EXPORT_SYMBOL_GPL(__ip_route_output_key);
2507
2508 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2509 {
2510 }
2511
2512 static struct dst_ops ipv4_dst_blackhole_ops = {
2513 .family = AF_INET,
2514 .protocol = __constant_htons(ETH_P_IP),
2515 .destroy = ipv4_dst_destroy,
2516 .check = ipv4_dst_check,
2517 .update_pmtu = ipv4_rt_blackhole_update_pmtu,
2518 .entry_size = sizeof(struct rtable),
2519 .entries = ATOMIC_INIT(0),
2520 };
2521
2522
2523 static int ipv4_dst_blackhole(struct rtable **rp, struct flowi *flp, struct sock *sk)
2524 {
2525 struct rtable *ort = *rp;
2526 struct rtable *rt = (struct rtable *)
2527 dst_alloc(&ipv4_dst_blackhole_ops);
2528
2529 if (rt) {
2530 struct dst_entry *new = &rt->u.dst;
2531
2532 atomic_set(&new->__refcnt, 1);
2533 new->__use = 1;
2534 new->input = dst_discard;
2535 new->output = dst_discard;
2536 memcpy(new->metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
2537
2538 new->dev = ort->u.dst.dev;
2539 if (new->dev)
2540 dev_hold(new->dev);
2541
2542 rt->fl = ort->fl;
2543
2544 rt->idev = ort->idev;
2545 if (rt->idev)
2546 in_dev_hold(rt->idev);
2547 rt->rt_genid = atomic_read(&rt_genid);
2548 rt->rt_flags = ort->rt_flags;
2549 rt->rt_type = ort->rt_type;
2550 rt->rt_dst = ort->rt_dst;
2551 rt->rt_src = ort->rt_src;
2552 rt->rt_iif = ort->rt_iif;
2553 rt->rt_gateway = ort->rt_gateway;
2554 rt->rt_spec_dst = ort->rt_spec_dst;
2555 rt->peer = ort->peer;
2556 if (rt->peer)
2557 atomic_inc(&rt->peer->refcnt);
2558
2559 dst_free(new);
2560 }
2561
2562 dst_release(&(*rp)->u.dst);
2563 *rp = rt;
2564 return (rt ? 0 : -ENOMEM);
2565 }
2566
2567 int ip_route_output_flow(struct net *net, struct rtable **rp, struct flowi *flp,
2568 struct sock *sk, int flags)
2569 {
2570 int err;
2571
2572 if ((err = __ip_route_output_key(net, rp, flp)) != 0)
2573 return err;
2574
2575 if (flp->proto) {
2576 if (!flp->fl4_src)
2577 flp->fl4_src = (*rp)->rt_src;
2578 if (!flp->fl4_dst)
2579 flp->fl4_dst = (*rp)->rt_dst;
2580 err = __xfrm_lookup((struct dst_entry **)rp, flp, sk,
2581 flags ? XFRM_LOOKUP_WAIT : 0);
2582 if (err == -EREMOTE)
2583 err = ipv4_dst_blackhole(rp, flp, sk);
2584
2585 return err;
2586 }
2587
2588 return 0;
2589 }
2590
2591 EXPORT_SYMBOL_GPL(ip_route_output_flow);
2592
2593 int ip_route_output_key(struct net *net, struct rtable **rp, struct flowi *flp)
2594 {
2595 return ip_route_output_flow(net, rp, flp, NULL, 0);
2596 }
2597
2598 static int rt_fill_info(struct sk_buff *skb, u32 pid, u32 seq, int event,
2599 int nowait, unsigned int flags)
2600 {
2601 struct rtable *rt = skb->rtable;
2602 struct rtmsg *r;
2603 struct nlmsghdr *nlh;
2604 long expires;
2605 u32 id = 0, ts = 0, tsage = 0, error;
2606
2607 nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2608 if (nlh == NULL)
2609 return -EMSGSIZE;
2610
2611 r = nlmsg_data(nlh);
2612 r->rtm_family = AF_INET;
2613 r->rtm_dst_len = 32;
2614 r->rtm_src_len = 0;
2615 r->rtm_tos = rt->fl.fl4_tos;
2616 r->rtm_table = RT_TABLE_MAIN;
2617 NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN);
2618 r->rtm_type = rt->rt_type;
2619 r->rtm_scope = RT_SCOPE_UNIVERSE;
2620 r->rtm_protocol = RTPROT_UNSPEC;
2621 r->rtm_flags = (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2622 if (rt->rt_flags & RTCF_NOTIFY)
2623 r->rtm_flags |= RTM_F_NOTIFY;
2624
2625 NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst);
2626
2627 if (rt->fl.fl4_src) {
2628 r->rtm_src_len = 32;
2629 NLA_PUT_BE32(skb, RTA_SRC, rt->fl.fl4_src);
2630 }
2631 if (rt->u.dst.dev)
2632 NLA_PUT_U32(skb, RTA_OIF, rt->u.dst.dev->ifindex);
2633 #ifdef CONFIG_NET_CLS_ROUTE
2634 if (rt->u.dst.tclassid)
2635 NLA_PUT_U32(skb, RTA_FLOW, rt->u.dst.tclassid);
2636 #endif
2637 if (rt->fl.iif)
2638 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst);
2639 else if (rt->rt_src != rt->fl.fl4_src)
2640 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src);
2641
2642 if (rt->rt_dst != rt->rt_gateway)
2643 NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway);
2644
2645 if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2646 goto nla_put_failure;
2647
2648 error = rt->u.dst.error;
2649 expires = rt->u.dst.expires ? rt->u.dst.expires - jiffies : 0;
2650 if (rt->peer) {
2651 id = rt->peer->ip_id_count;
2652 if (rt->peer->tcp_ts_stamp) {
2653 ts = rt->peer->tcp_ts;
2654 tsage = get_seconds() - rt->peer->tcp_ts_stamp;
2655 }
2656 }
2657
2658 if (rt->fl.iif) {
2659 #ifdef CONFIG_IP_MROUTE
2660 __be32 dst = rt->rt_dst;
2661
2662 if (ipv4_is_multicast(dst) && !ipv4_is_local_multicast(dst) &&
2663 IPV4_DEVCONF_ALL(&init_net, MC_FORWARDING)) {
2664 int err = ipmr_get_route(skb, r, nowait);
2665 if (err <= 0) {
2666 if (!nowait) {
2667 if (err == 0)
2668 return 0;
2669 goto nla_put_failure;
2670 } else {
2671 if (err == -EMSGSIZE)
2672 goto nla_put_failure;
2673 error = err;
2674 }
2675 }
2676 } else
2677 #endif
2678 NLA_PUT_U32(skb, RTA_IIF, rt->fl.iif);
2679 }
2680
2681 if (rtnl_put_cacheinfo(skb, &rt->u.dst, id, ts, tsage,
2682 expires, error) < 0)
2683 goto nla_put_failure;
2684
2685 return nlmsg_end(skb, nlh);
2686
2687 nla_put_failure:
2688 nlmsg_cancel(skb, nlh);
2689 return -EMSGSIZE;
2690 }
2691
2692 static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2693 {
2694 struct net *net = in_skb->sk->sk_net;
2695 struct rtmsg *rtm;
2696 struct nlattr *tb[RTA_MAX+1];
2697 struct rtable *rt = NULL;
2698 __be32 dst = 0;
2699 __be32 src = 0;
2700 u32 iif;
2701 int err;
2702 struct sk_buff *skb;
2703
2704 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2705 if (err < 0)
2706 goto errout;
2707
2708 rtm = nlmsg_data(nlh);
2709
2710 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2711 if (skb == NULL) {
2712 err = -ENOBUFS;
2713 goto errout;
2714 }
2715
2716 /* Reserve room for dummy headers, this skb can pass
2717 through good chunk of routing engine.
2718 */
2719 skb_reset_mac_header(skb);
2720 skb_reset_network_header(skb);
2721
2722 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2723 ip_hdr(skb)->protocol = IPPROTO_ICMP;
2724 skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2725
2726 src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
2727 dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
2728 iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
2729
2730 if (iif) {
2731 struct net_device *dev;
2732
2733 dev = __dev_get_by_index(net, iif);
2734 if (dev == NULL) {
2735 err = -ENODEV;
2736 goto errout_free;
2737 }
2738
2739 skb->protocol = htons(ETH_P_IP);
2740 skb->dev = dev;
2741 local_bh_disable();
2742 err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
2743 local_bh_enable();
2744
2745 rt = skb->rtable;
2746 if (err == 0 && rt->u.dst.error)
2747 err = -rt->u.dst.error;
2748 } else {
2749 struct flowi fl = {
2750 .nl_u = {
2751 .ip4_u = {
2752 .daddr = dst,
2753 .saddr = src,
2754 .tos = rtm->rtm_tos,
2755 },
2756 },
2757 .oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
2758 };
2759 err = ip_route_output_key(net, &rt, &fl);
2760 }
2761
2762 if (err)
2763 goto errout_free;
2764
2765 skb->rtable = rt;
2766 if (rtm->rtm_flags & RTM_F_NOTIFY)
2767 rt->rt_flags |= RTCF_NOTIFY;
2768
2769 err = rt_fill_info(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
2770 RTM_NEWROUTE, 0, 0);
2771 if (err <= 0)
2772 goto errout_free;
2773
2774 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid);
2775 errout:
2776 return err;
2777
2778 errout_free:
2779 kfree_skb(skb);
2780 goto errout;
2781 }
2782
2783 int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb)
2784 {
2785 struct rtable *rt;
2786 int h, s_h;
2787 int idx, s_idx;
2788 struct net *net;
2789
2790 net = skb->sk->sk_net;
2791
2792 s_h = cb->args[0];
2793 if (s_h < 0)
2794 s_h = 0;
2795 s_idx = idx = cb->args[1];
2796 for (h = s_h; h <= rt_hash_mask; h++) {
2797 rcu_read_lock_bh();
2798 for (rt = rcu_dereference(rt_hash_table[h].chain), idx = 0; rt;
2799 rt = rcu_dereference(rt->u.dst.rt_next), idx++) {
2800 if (rt->u.dst.dev->nd_net != net || idx < s_idx)
2801 continue;
2802 if (rt->rt_genid != atomic_read(&rt_genid))
2803 continue;
2804 skb->dst = dst_clone(&rt->u.dst);
2805 if (rt_fill_info(skb, NETLINK_CB(cb->skb).pid,
2806 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2807 1, NLM_F_MULTI) <= 0) {
2808 dst_release(xchg(&skb->dst, NULL));
2809 rcu_read_unlock_bh();
2810 goto done;
2811 }
2812 dst_release(xchg(&skb->dst, NULL));
2813 }
2814 rcu_read_unlock_bh();
2815 s_idx = 0;
2816 }
2817
2818 done:
2819 cb->args[0] = h;
2820 cb->args[1] = idx;
2821 return skb->len;
2822 }
2823
2824 void ip_rt_multicast_event(struct in_device *in_dev)
2825 {
2826 rt_cache_flush(0);
2827 }
2828
2829 #ifdef CONFIG_SYSCTL
2830 static int flush_delay;
2831
2832 static int ipv4_sysctl_rtcache_flush(ctl_table *ctl, int write,
2833 struct file *filp, void __user *buffer,
2834 size_t *lenp, loff_t *ppos)
2835 {
2836 if (write) {
2837 proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
2838 rt_cache_flush(flush_delay);
2839 return 0;
2840 }
2841
2842 return -EINVAL;
2843 }
2844
2845 static int ipv4_sysctl_rtcache_flush_strategy(ctl_table *table,
2846 int __user *name,
2847 int nlen,
2848 void __user *oldval,
2849 size_t __user *oldlenp,
2850 void __user *newval,
2851 size_t newlen)
2852 {
2853 int delay;
2854 if (newlen != sizeof(int))
2855 return -EINVAL;
2856 if (get_user(delay, (int __user *)newval))
2857 return -EFAULT;
2858 rt_cache_flush(delay);
2859 return 0;
2860 }
2861
2862 ctl_table ipv4_route_table[] = {
2863 {
2864 .ctl_name = NET_IPV4_ROUTE_FLUSH,
2865 .procname = "flush",
2866 .data = &flush_delay,
2867 .maxlen = sizeof(int),
2868 .mode = 0200,
2869 .proc_handler = &ipv4_sysctl_rtcache_flush,
2870 .strategy = &ipv4_sysctl_rtcache_flush_strategy,
2871 },
2872 {
2873 .ctl_name = NET_IPV4_ROUTE_GC_THRESH,
2874 .procname = "gc_thresh",
2875 .data = &ipv4_dst_ops.gc_thresh,
2876 .maxlen = sizeof(int),
2877 .mode = 0644,
2878 .proc_handler = &proc_dointvec,
2879 },
2880 {
2881 .ctl_name = NET_IPV4_ROUTE_MAX_SIZE,
2882 .procname = "max_size",
2883 .data = &ip_rt_max_size,
2884 .maxlen = sizeof(int),
2885 .mode = 0644,
2886 .proc_handler = &proc_dointvec,
2887 },
2888 {
2889 /* Deprecated. Use gc_min_interval_ms */
2890
2891 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL,
2892 .procname = "gc_min_interval",
2893 .data = &ip_rt_gc_min_interval,
2894 .maxlen = sizeof(int),
2895 .mode = 0644,
2896 .proc_handler = &proc_dointvec_jiffies,
2897 .strategy = &sysctl_jiffies,
2898 },
2899 {
2900 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS,
2901 .procname = "gc_min_interval_ms",
2902 .data = &ip_rt_gc_min_interval,
2903 .maxlen = sizeof(int),
2904 .mode = 0644,
2905 .proc_handler = &proc_dointvec_ms_jiffies,
2906 .strategy = &sysctl_ms_jiffies,
2907 },
2908 {
2909 .ctl_name = NET_IPV4_ROUTE_GC_TIMEOUT,
2910 .procname = "gc_timeout",
2911 .data = &ip_rt_gc_timeout,
2912 .maxlen = sizeof(int),
2913 .mode = 0644,
2914 .proc_handler = &proc_dointvec_jiffies,
2915 .strategy = &sysctl_jiffies,
2916 },
2917 {
2918 .ctl_name = NET_IPV4_ROUTE_GC_INTERVAL,
2919 .procname = "gc_interval",
2920 .data = &ip_rt_gc_interval,
2921 .maxlen = sizeof(int),
2922 .mode = 0644,
2923 .proc_handler = &proc_dointvec_jiffies,
2924 .strategy = &sysctl_jiffies,
2925 },
2926 {
2927 .ctl_name = NET_IPV4_ROUTE_REDIRECT_LOAD,
2928 .procname = "redirect_load",
2929 .data = &ip_rt_redirect_load,
2930 .maxlen = sizeof(int),
2931 .mode = 0644,
2932 .proc_handler = &proc_dointvec,
2933 },
2934 {
2935 .ctl_name = NET_IPV4_ROUTE_REDIRECT_NUMBER,
2936 .procname = "redirect_number",
2937 .data = &ip_rt_redirect_number,
2938 .maxlen = sizeof(int),
2939 .mode = 0644,
2940 .proc_handler = &proc_dointvec,
2941 },
2942 {
2943 .ctl_name = NET_IPV4_ROUTE_REDIRECT_SILENCE,
2944 .procname = "redirect_silence",
2945 .data = &ip_rt_redirect_silence,
2946 .maxlen = sizeof(int),
2947 .mode = 0644,
2948 .proc_handler = &proc_dointvec,
2949 },
2950 {
2951 .ctl_name = NET_IPV4_ROUTE_ERROR_COST,
2952 .procname = "error_cost",
2953 .data = &ip_rt_error_cost,
2954 .maxlen = sizeof(int),
2955 .mode = 0644,
2956 .proc_handler = &proc_dointvec,
2957 },
2958 {
2959 .ctl_name = NET_IPV4_ROUTE_ERROR_BURST,
2960 .procname = "error_burst",
2961 .data = &ip_rt_error_burst,
2962 .maxlen = sizeof(int),
2963 .mode = 0644,
2964 .proc_handler = &proc_dointvec,
2965 },
2966 {
2967 .ctl_name = NET_IPV4_ROUTE_GC_ELASTICITY,
2968 .procname = "gc_elasticity",
2969 .data = &ip_rt_gc_elasticity,
2970 .maxlen = sizeof(int),
2971 .mode = 0644,
2972 .proc_handler = &proc_dointvec,
2973 },
2974 {
2975 .ctl_name = NET_IPV4_ROUTE_MTU_EXPIRES,
2976 .procname = "mtu_expires",
2977 .data = &ip_rt_mtu_expires,
2978 .maxlen = sizeof(int),
2979 .mode = 0644,
2980 .proc_handler = &proc_dointvec_jiffies,
2981 .strategy = &sysctl_jiffies,
2982 },
2983 {
2984 .ctl_name = NET_IPV4_ROUTE_MIN_PMTU,
2985 .procname = "min_pmtu",
2986 .data = &ip_rt_min_pmtu,
2987 .maxlen = sizeof(int),
2988 .mode = 0644,
2989 .proc_handler = &proc_dointvec,
2990 },
2991 {
2992 .ctl_name = NET_IPV4_ROUTE_MIN_ADVMSS,
2993 .procname = "min_adv_mss",
2994 .data = &ip_rt_min_advmss,
2995 .maxlen = sizeof(int),
2996 .mode = 0644,
2997 .proc_handler = &proc_dointvec,
2998 },
2999 {
3000 .ctl_name = NET_IPV4_ROUTE_SECRET_INTERVAL,
3001 .procname = "secret_interval",
3002 .data = &ip_rt_secret_interval,
3003 .maxlen = sizeof(int),
3004 .mode = 0644,
3005 .proc_handler = &proc_dointvec_jiffies,
3006 .strategy = &sysctl_jiffies,
3007 },
3008 { .ctl_name = 0 }
3009 };
3010 #endif
3011
3012 #ifdef CONFIG_NET_CLS_ROUTE
3013 struct ip_rt_acct *ip_rt_acct __read_mostly;
3014 #endif /* CONFIG_NET_CLS_ROUTE */
3015
3016 static __initdata unsigned long rhash_entries;
3017 static int __init set_rhash_entries(char *str)
3018 {
3019 if (!str)
3020 return 0;
3021 rhash_entries = simple_strtoul(str, &str, 0);
3022 return 1;
3023 }
3024 __setup("rhash_entries=", set_rhash_entries);
3025
3026 int __init ip_rt_init(void)
3027 {
3028 int rc = 0;
3029
3030 atomic_set(&rt_genid, (int) ((num_physpages ^ (num_physpages>>8)) ^
3031 (jiffies ^ (jiffies >> 7))));
3032
3033 #ifdef CONFIG_NET_CLS_ROUTE
3034 ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct));
3035 if (!ip_rt_acct)
3036 panic("IP: failed to allocate ip_rt_acct\n");
3037 #endif
3038
3039 ipv4_dst_ops.kmem_cachep =
3040 kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
3041 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3042
3043 ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
3044
3045 rt_hash_table = (struct rt_hash_bucket *)
3046 alloc_large_system_hash("IP route cache",
3047 sizeof(struct rt_hash_bucket),
3048 rhash_entries,
3049 (num_physpages >= 128 * 1024) ?
3050 15 : 17,
3051 0,
3052 &rt_hash_log,
3053 &rt_hash_mask,
3054 0);
3055 memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3056 rt_hash_lock_init();
3057
3058 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3059 ip_rt_max_size = (rt_hash_mask + 1) * 16;
3060
3061 devinet_init();
3062 ip_fib_init();
3063
3064 setup_timer(&rt_secret_timer, rt_secret_rebuild, 0);
3065
3066 /* All the timers, started at system startup tend
3067 to synchronize. Perturb it a bit.
3068 */
3069 schedule_delayed_work(&expires_work,
3070 net_random() % ip_rt_gc_interval + ip_rt_gc_interval);
3071
3072 rt_secret_timer.expires = jiffies + net_random() % ip_rt_secret_interval +
3073 ip_rt_secret_interval;
3074 add_timer(&rt_secret_timer);
3075
3076 if (ip_rt_proc_init())
3077 printk(KERN_ERR "Unable to create route proc files\n");
3078 #ifdef CONFIG_XFRM
3079 xfrm_init();
3080 xfrm4_init();
3081 #endif
3082 rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL);
3083
3084 return rc;
3085 }
3086
3087 EXPORT_SYMBOL(__ip_select_ident);
3088 EXPORT_SYMBOL(ip_route_input);
3089 EXPORT_SYMBOL(ip_route_output_key);
This page took 0.225852 seconds and 5 git commands to generate.