net: Abstract dst->neighbour accesses behind helpers.
[deliverable/linux.git] / net / ipv4 / route.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * ROUTE - implementation of the IP router.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
12 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
13 *
14 * Fixes:
15 * Alan Cox : Verify area fixes.
16 * Alan Cox : cli() protects routing changes
17 * Rui Oliveira : ICMP routing table updates
18 * (rco@di.uminho.pt) Routing table insertion and update
19 * Linus Torvalds : Rewrote bits to be sensible
20 * Alan Cox : Added BSD route gw semantics
21 * Alan Cox : Super /proc >4K
22 * Alan Cox : MTU in route table
23 * Alan Cox : MSS actually. Also added the window
24 * clamper.
25 * Sam Lantinga : Fixed route matching in rt_del()
26 * Alan Cox : Routing cache support.
27 * Alan Cox : Removed compatibility cruft.
28 * Alan Cox : RTF_REJECT support.
29 * Alan Cox : TCP irtt support.
30 * Jonathan Naylor : Added Metric support.
31 * Miquel van Smoorenburg : BSD API fixes.
32 * Miquel van Smoorenburg : Metrics.
33 * Alan Cox : Use __u32 properly
34 * Alan Cox : Aligned routing errors more closely with BSD
35 * our system is still very different.
36 * Alan Cox : Faster /proc handling
37 * Alexey Kuznetsov : Massive rework to support tree based routing,
38 * routing caches and better behaviour.
39 *
40 * Olaf Erb : irtt wasn't being copied right.
41 * Bjorn Ekwall : Kerneld route support.
42 * Alan Cox : Multicast fixed (I hope)
43 * Pavel Krauz : Limited broadcast fixed
44 * Mike McLagan : Routing by source
45 * Alexey Kuznetsov : End of old history. Split to fib.c and
46 * route.c and rewritten from scratch.
47 * Andi Kleen : Load-limit warning messages.
48 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
49 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
50 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
51 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
52 * Marc Boucher : routing by fwmark
53 * Robert Olsson : Added rt_cache statistics
54 * Arnaldo C. Melo : Convert proc stuff to seq_file
55 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
56 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
57 * Ilia Sotnikov : Removed TOS from hash calculations
58 *
59 * This program is free software; you can redistribute it and/or
60 * modify it under the terms of the GNU General Public License
61 * as published by the Free Software Foundation; either version
62 * 2 of the License, or (at your option) any later version.
63 */
64
65 #include <linux/module.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <linux/bitops.h>
69 #include <linux/types.h>
70 #include <linux/kernel.h>
71 #include <linux/mm.h>
72 #include <linux/bootmem.h>
73 #include <linux/string.h>
74 #include <linux/socket.h>
75 #include <linux/sockios.h>
76 #include <linux/errno.h>
77 #include <linux/in.h>
78 #include <linux/inet.h>
79 #include <linux/netdevice.h>
80 #include <linux/proc_fs.h>
81 #include <linux/init.h>
82 #include <linux/workqueue.h>
83 #include <linux/skbuff.h>
84 #include <linux/inetdevice.h>
85 #include <linux/igmp.h>
86 #include <linux/pkt_sched.h>
87 #include <linux/mroute.h>
88 #include <linux/netfilter_ipv4.h>
89 #include <linux/random.h>
90 #include <linux/jhash.h>
91 #include <linux/rcupdate.h>
92 #include <linux/times.h>
93 #include <linux/slab.h>
94 #include <net/dst.h>
95 #include <net/net_namespace.h>
96 #include <net/protocol.h>
97 #include <net/ip.h>
98 #include <net/route.h>
99 #include <net/inetpeer.h>
100 #include <net/sock.h>
101 #include <net/ip_fib.h>
102 #include <net/arp.h>
103 #include <net/tcp.h>
104 #include <net/icmp.h>
105 #include <net/xfrm.h>
106 #include <net/netevent.h>
107 #include <net/rtnetlink.h>
108 #ifdef CONFIG_SYSCTL
109 #include <linux/sysctl.h>
110 #endif
111 #include <net/atmclip.h>
112
113 #define RT_FL_TOS(oldflp4) \
114 ((u32)(oldflp4->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
115
116 #define IP_MAX_MTU 0xFFF0
117
118 #define RT_GC_TIMEOUT (300*HZ)
119
120 static int ip_rt_max_size;
121 static int ip_rt_gc_timeout __read_mostly = RT_GC_TIMEOUT;
122 static int ip_rt_gc_interval __read_mostly = 60 * HZ;
123 static int ip_rt_gc_min_interval __read_mostly = HZ / 2;
124 static int ip_rt_redirect_number __read_mostly = 9;
125 static int ip_rt_redirect_load __read_mostly = HZ / 50;
126 static int ip_rt_redirect_silence __read_mostly = ((HZ / 50) << (9 + 1));
127 static int ip_rt_error_cost __read_mostly = HZ;
128 static int ip_rt_error_burst __read_mostly = 5 * HZ;
129 static int ip_rt_gc_elasticity __read_mostly = 8;
130 static int ip_rt_mtu_expires __read_mostly = 10 * 60 * HZ;
131 static int ip_rt_min_pmtu __read_mostly = 512 + 20 + 20;
132 static int ip_rt_min_advmss __read_mostly = 256;
133 static int rt_chain_length_max __read_mostly = 20;
134
135 /*
136 * Interface to generic destination cache.
137 */
138
139 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
140 static unsigned int ipv4_default_advmss(const struct dst_entry *dst);
141 static unsigned int ipv4_default_mtu(const struct dst_entry *dst);
142 static void ipv4_dst_destroy(struct dst_entry *dst);
143 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
144 static void ipv4_link_failure(struct sk_buff *skb);
145 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
146 static int rt_garbage_collect(struct dst_ops *ops);
147
148 static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
149 int how)
150 {
151 }
152
153 static u32 *ipv4_cow_metrics(struct dst_entry *dst, unsigned long old)
154 {
155 struct rtable *rt = (struct rtable *) dst;
156 struct inet_peer *peer;
157 u32 *p = NULL;
158
159 if (!rt->peer)
160 rt_bind_peer(rt, rt->rt_dst, 1);
161
162 peer = rt->peer;
163 if (peer) {
164 u32 *old_p = __DST_METRICS_PTR(old);
165 unsigned long prev, new;
166
167 p = peer->metrics;
168 if (inet_metrics_new(peer))
169 memcpy(p, old_p, sizeof(u32) * RTAX_MAX);
170
171 new = (unsigned long) p;
172 prev = cmpxchg(&dst->_metrics, old, new);
173
174 if (prev != old) {
175 p = __DST_METRICS_PTR(prev);
176 if (prev & DST_METRICS_READ_ONLY)
177 p = NULL;
178 } else {
179 if (rt->fi) {
180 fib_info_put(rt->fi);
181 rt->fi = NULL;
182 }
183 }
184 }
185 return p;
186 }
187
188 static struct dst_ops ipv4_dst_ops = {
189 .family = AF_INET,
190 .protocol = cpu_to_be16(ETH_P_IP),
191 .gc = rt_garbage_collect,
192 .check = ipv4_dst_check,
193 .default_advmss = ipv4_default_advmss,
194 .default_mtu = ipv4_default_mtu,
195 .cow_metrics = ipv4_cow_metrics,
196 .destroy = ipv4_dst_destroy,
197 .ifdown = ipv4_dst_ifdown,
198 .negative_advice = ipv4_negative_advice,
199 .link_failure = ipv4_link_failure,
200 .update_pmtu = ip_rt_update_pmtu,
201 .local_out = __ip_local_out,
202 };
203
204 #define ECN_OR_COST(class) TC_PRIO_##class
205
206 const __u8 ip_tos2prio[16] = {
207 TC_PRIO_BESTEFFORT,
208 ECN_OR_COST(BESTEFFORT),
209 TC_PRIO_BESTEFFORT,
210 ECN_OR_COST(BESTEFFORT),
211 TC_PRIO_BULK,
212 ECN_OR_COST(BULK),
213 TC_PRIO_BULK,
214 ECN_OR_COST(BULK),
215 TC_PRIO_INTERACTIVE,
216 ECN_OR_COST(INTERACTIVE),
217 TC_PRIO_INTERACTIVE,
218 ECN_OR_COST(INTERACTIVE),
219 TC_PRIO_INTERACTIVE_BULK,
220 ECN_OR_COST(INTERACTIVE_BULK),
221 TC_PRIO_INTERACTIVE_BULK,
222 ECN_OR_COST(INTERACTIVE_BULK)
223 };
224
225
226 /*
227 * Route cache.
228 */
229
230 /* The locking scheme is rather straight forward:
231 *
232 * 1) Read-Copy Update protects the buckets of the central route hash.
233 * 2) Only writers remove entries, and they hold the lock
234 * as they look at rtable reference counts.
235 * 3) Only readers acquire references to rtable entries,
236 * they do so with atomic increments and with the
237 * lock held.
238 */
239
240 struct rt_hash_bucket {
241 struct rtable __rcu *chain;
242 };
243
244 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
245 defined(CONFIG_PROVE_LOCKING)
246 /*
247 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
248 * The size of this table is a power of two and depends on the number of CPUS.
249 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
250 */
251 #ifdef CONFIG_LOCKDEP
252 # define RT_HASH_LOCK_SZ 256
253 #else
254 # if NR_CPUS >= 32
255 # define RT_HASH_LOCK_SZ 4096
256 # elif NR_CPUS >= 16
257 # define RT_HASH_LOCK_SZ 2048
258 # elif NR_CPUS >= 8
259 # define RT_HASH_LOCK_SZ 1024
260 # elif NR_CPUS >= 4
261 # define RT_HASH_LOCK_SZ 512
262 # else
263 # define RT_HASH_LOCK_SZ 256
264 # endif
265 #endif
266
267 static spinlock_t *rt_hash_locks;
268 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
269
270 static __init void rt_hash_lock_init(void)
271 {
272 int i;
273
274 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ,
275 GFP_KERNEL);
276 if (!rt_hash_locks)
277 panic("IP: failed to allocate rt_hash_locks\n");
278
279 for (i = 0; i < RT_HASH_LOCK_SZ; i++)
280 spin_lock_init(&rt_hash_locks[i]);
281 }
282 #else
283 # define rt_hash_lock_addr(slot) NULL
284
285 static inline void rt_hash_lock_init(void)
286 {
287 }
288 #endif
289
290 static struct rt_hash_bucket *rt_hash_table __read_mostly;
291 static unsigned rt_hash_mask __read_mostly;
292 static unsigned int rt_hash_log __read_mostly;
293
294 static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
295 #define RT_CACHE_STAT_INC(field) __this_cpu_inc(rt_cache_stat.field)
296
297 static inline unsigned int rt_hash(__be32 daddr, __be32 saddr, int idx,
298 int genid)
299 {
300 return jhash_3words((__force u32)daddr, (__force u32)saddr,
301 idx, genid)
302 & rt_hash_mask;
303 }
304
305 static inline int rt_genid(struct net *net)
306 {
307 return atomic_read(&net->ipv4.rt_genid);
308 }
309
310 #ifdef CONFIG_PROC_FS
311 struct rt_cache_iter_state {
312 struct seq_net_private p;
313 int bucket;
314 int genid;
315 };
316
317 static struct rtable *rt_cache_get_first(struct seq_file *seq)
318 {
319 struct rt_cache_iter_state *st = seq->private;
320 struct rtable *r = NULL;
321
322 for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
323 if (!rcu_dereference_raw(rt_hash_table[st->bucket].chain))
324 continue;
325 rcu_read_lock_bh();
326 r = rcu_dereference_bh(rt_hash_table[st->bucket].chain);
327 while (r) {
328 if (dev_net(r->dst.dev) == seq_file_net(seq) &&
329 r->rt_genid == st->genid)
330 return r;
331 r = rcu_dereference_bh(r->dst.rt_next);
332 }
333 rcu_read_unlock_bh();
334 }
335 return r;
336 }
337
338 static struct rtable *__rt_cache_get_next(struct seq_file *seq,
339 struct rtable *r)
340 {
341 struct rt_cache_iter_state *st = seq->private;
342
343 r = rcu_dereference_bh(r->dst.rt_next);
344 while (!r) {
345 rcu_read_unlock_bh();
346 do {
347 if (--st->bucket < 0)
348 return NULL;
349 } while (!rcu_dereference_raw(rt_hash_table[st->bucket].chain));
350 rcu_read_lock_bh();
351 r = rcu_dereference_bh(rt_hash_table[st->bucket].chain);
352 }
353 return r;
354 }
355
356 static struct rtable *rt_cache_get_next(struct seq_file *seq,
357 struct rtable *r)
358 {
359 struct rt_cache_iter_state *st = seq->private;
360 while ((r = __rt_cache_get_next(seq, r)) != NULL) {
361 if (dev_net(r->dst.dev) != seq_file_net(seq))
362 continue;
363 if (r->rt_genid == st->genid)
364 break;
365 }
366 return r;
367 }
368
369 static struct rtable *rt_cache_get_idx(struct seq_file *seq, loff_t pos)
370 {
371 struct rtable *r = rt_cache_get_first(seq);
372
373 if (r)
374 while (pos && (r = rt_cache_get_next(seq, r)))
375 --pos;
376 return pos ? NULL : r;
377 }
378
379 static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
380 {
381 struct rt_cache_iter_state *st = seq->private;
382 if (*pos)
383 return rt_cache_get_idx(seq, *pos - 1);
384 st->genid = rt_genid(seq_file_net(seq));
385 return SEQ_START_TOKEN;
386 }
387
388 static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
389 {
390 struct rtable *r;
391
392 if (v == SEQ_START_TOKEN)
393 r = rt_cache_get_first(seq);
394 else
395 r = rt_cache_get_next(seq, v);
396 ++*pos;
397 return r;
398 }
399
400 static void rt_cache_seq_stop(struct seq_file *seq, void *v)
401 {
402 if (v && v != SEQ_START_TOKEN)
403 rcu_read_unlock_bh();
404 }
405
406 static int rt_cache_seq_show(struct seq_file *seq, void *v)
407 {
408 if (v == SEQ_START_TOKEN)
409 seq_printf(seq, "%-127s\n",
410 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
411 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
412 "HHUptod\tSpecDst");
413 else {
414 struct rtable *r = v;
415 struct neighbour *n;
416 int len;
417
418 n = dst_get_neighbour(&r->dst);
419 seq_printf(seq, "%s\t%08X\t%08X\t%8X\t%d\t%u\t%d\t"
420 "%08X\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X%n",
421 r->dst.dev ? r->dst.dev->name : "*",
422 (__force u32)r->rt_dst,
423 (__force u32)r->rt_gateway,
424 r->rt_flags, atomic_read(&r->dst.__refcnt),
425 r->dst.__use, 0, (__force u32)r->rt_src,
426 dst_metric_advmss(&r->dst) + 40,
427 dst_metric(&r->dst, RTAX_WINDOW),
428 (int)((dst_metric(&r->dst, RTAX_RTT) >> 3) +
429 dst_metric(&r->dst, RTAX_RTTVAR)),
430 r->rt_key_tos,
431 -1,
432 (n && (n->nud_state & NUD_CONNECTED)) ? 1 : 0,
433 r->rt_spec_dst, &len);
434
435 seq_printf(seq, "%*s\n", 127 - len, "");
436 }
437 return 0;
438 }
439
440 static const struct seq_operations rt_cache_seq_ops = {
441 .start = rt_cache_seq_start,
442 .next = rt_cache_seq_next,
443 .stop = rt_cache_seq_stop,
444 .show = rt_cache_seq_show,
445 };
446
447 static int rt_cache_seq_open(struct inode *inode, struct file *file)
448 {
449 return seq_open_net(inode, file, &rt_cache_seq_ops,
450 sizeof(struct rt_cache_iter_state));
451 }
452
453 static const struct file_operations rt_cache_seq_fops = {
454 .owner = THIS_MODULE,
455 .open = rt_cache_seq_open,
456 .read = seq_read,
457 .llseek = seq_lseek,
458 .release = seq_release_net,
459 };
460
461
462 static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
463 {
464 int cpu;
465
466 if (*pos == 0)
467 return SEQ_START_TOKEN;
468
469 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
470 if (!cpu_possible(cpu))
471 continue;
472 *pos = cpu+1;
473 return &per_cpu(rt_cache_stat, cpu);
474 }
475 return NULL;
476 }
477
478 static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
479 {
480 int cpu;
481
482 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
483 if (!cpu_possible(cpu))
484 continue;
485 *pos = cpu+1;
486 return &per_cpu(rt_cache_stat, cpu);
487 }
488 return NULL;
489
490 }
491
492 static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
493 {
494
495 }
496
497 static int rt_cpu_seq_show(struct seq_file *seq, void *v)
498 {
499 struct rt_cache_stat *st = v;
500
501 if (v == SEQ_START_TOKEN) {
502 seq_printf(seq, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
503 return 0;
504 }
505
506 seq_printf(seq,"%08x %08x %08x %08x %08x %08x %08x %08x "
507 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
508 dst_entries_get_slow(&ipv4_dst_ops),
509 st->in_hit,
510 st->in_slow_tot,
511 st->in_slow_mc,
512 st->in_no_route,
513 st->in_brd,
514 st->in_martian_dst,
515 st->in_martian_src,
516
517 st->out_hit,
518 st->out_slow_tot,
519 st->out_slow_mc,
520
521 st->gc_total,
522 st->gc_ignored,
523 st->gc_goal_miss,
524 st->gc_dst_overflow,
525 st->in_hlist_search,
526 st->out_hlist_search
527 );
528 return 0;
529 }
530
531 static const struct seq_operations rt_cpu_seq_ops = {
532 .start = rt_cpu_seq_start,
533 .next = rt_cpu_seq_next,
534 .stop = rt_cpu_seq_stop,
535 .show = rt_cpu_seq_show,
536 };
537
538
539 static int rt_cpu_seq_open(struct inode *inode, struct file *file)
540 {
541 return seq_open(file, &rt_cpu_seq_ops);
542 }
543
544 static const struct file_operations rt_cpu_seq_fops = {
545 .owner = THIS_MODULE,
546 .open = rt_cpu_seq_open,
547 .read = seq_read,
548 .llseek = seq_lseek,
549 .release = seq_release,
550 };
551
552 #ifdef CONFIG_IP_ROUTE_CLASSID
553 static int rt_acct_proc_show(struct seq_file *m, void *v)
554 {
555 struct ip_rt_acct *dst, *src;
556 unsigned int i, j;
557
558 dst = kcalloc(256, sizeof(struct ip_rt_acct), GFP_KERNEL);
559 if (!dst)
560 return -ENOMEM;
561
562 for_each_possible_cpu(i) {
563 src = (struct ip_rt_acct *)per_cpu_ptr(ip_rt_acct, i);
564 for (j = 0; j < 256; j++) {
565 dst[j].o_bytes += src[j].o_bytes;
566 dst[j].o_packets += src[j].o_packets;
567 dst[j].i_bytes += src[j].i_bytes;
568 dst[j].i_packets += src[j].i_packets;
569 }
570 }
571
572 seq_write(m, dst, 256 * sizeof(struct ip_rt_acct));
573 kfree(dst);
574 return 0;
575 }
576
577 static int rt_acct_proc_open(struct inode *inode, struct file *file)
578 {
579 return single_open(file, rt_acct_proc_show, NULL);
580 }
581
582 static const struct file_operations rt_acct_proc_fops = {
583 .owner = THIS_MODULE,
584 .open = rt_acct_proc_open,
585 .read = seq_read,
586 .llseek = seq_lseek,
587 .release = single_release,
588 };
589 #endif
590
591 static int __net_init ip_rt_do_proc_init(struct net *net)
592 {
593 struct proc_dir_entry *pde;
594
595 pde = proc_net_fops_create(net, "rt_cache", S_IRUGO,
596 &rt_cache_seq_fops);
597 if (!pde)
598 goto err1;
599
600 pde = proc_create("rt_cache", S_IRUGO,
601 net->proc_net_stat, &rt_cpu_seq_fops);
602 if (!pde)
603 goto err2;
604
605 #ifdef CONFIG_IP_ROUTE_CLASSID
606 pde = proc_create("rt_acct", 0, net->proc_net, &rt_acct_proc_fops);
607 if (!pde)
608 goto err3;
609 #endif
610 return 0;
611
612 #ifdef CONFIG_IP_ROUTE_CLASSID
613 err3:
614 remove_proc_entry("rt_cache", net->proc_net_stat);
615 #endif
616 err2:
617 remove_proc_entry("rt_cache", net->proc_net);
618 err1:
619 return -ENOMEM;
620 }
621
622 static void __net_exit ip_rt_do_proc_exit(struct net *net)
623 {
624 remove_proc_entry("rt_cache", net->proc_net_stat);
625 remove_proc_entry("rt_cache", net->proc_net);
626 #ifdef CONFIG_IP_ROUTE_CLASSID
627 remove_proc_entry("rt_acct", net->proc_net);
628 #endif
629 }
630
631 static struct pernet_operations ip_rt_proc_ops __net_initdata = {
632 .init = ip_rt_do_proc_init,
633 .exit = ip_rt_do_proc_exit,
634 };
635
636 static int __init ip_rt_proc_init(void)
637 {
638 return register_pernet_subsys(&ip_rt_proc_ops);
639 }
640
641 #else
642 static inline int ip_rt_proc_init(void)
643 {
644 return 0;
645 }
646 #endif /* CONFIG_PROC_FS */
647
648 static inline void rt_free(struct rtable *rt)
649 {
650 call_rcu_bh(&rt->dst.rcu_head, dst_rcu_free);
651 }
652
653 static inline void rt_drop(struct rtable *rt)
654 {
655 ip_rt_put(rt);
656 call_rcu_bh(&rt->dst.rcu_head, dst_rcu_free);
657 }
658
659 static inline int rt_fast_clean(struct rtable *rth)
660 {
661 /* Kill broadcast/multicast entries very aggresively, if they
662 collide in hash table with more useful entries */
663 return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
664 rt_is_input_route(rth) && rth->dst.rt_next;
665 }
666
667 static inline int rt_valuable(struct rtable *rth)
668 {
669 return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
670 (rth->peer && rth->peer->pmtu_expires);
671 }
672
673 static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
674 {
675 unsigned long age;
676 int ret = 0;
677
678 if (atomic_read(&rth->dst.__refcnt))
679 goto out;
680
681 age = jiffies - rth->dst.lastuse;
682 if ((age <= tmo1 && !rt_fast_clean(rth)) ||
683 (age <= tmo2 && rt_valuable(rth)))
684 goto out;
685 ret = 1;
686 out: return ret;
687 }
688
689 /* Bits of score are:
690 * 31: very valuable
691 * 30: not quite useless
692 * 29..0: usage counter
693 */
694 static inline u32 rt_score(struct rtable *rt)
695 {
696 u32 score = jiffies - rt->dst.lastuse;
697
698 score = ~score & ~(3<<30);
699
700 if (rt_valuable(rt))
701 score |= (1<<31);
702
703 if (rt_is_output_route(rt) ||
704 !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
705 score |= (1<<30);
706
707 return score;
708 }
709
710 static inline bool rt_caching(const struct net *net)
711 {
712 return net->ipv4.current_rt_cache_rebuild_count <=
713 net->ipv4.sysctl_rt_cache_rebuild_count;
714 }
715
716 static inline bool compare_hash_inputs(const struct rtable *rt1,
717 const struct rtable *rt2)
718 {
719 return ((((__force u32)rt1->rt_key_dst ^ (__force u32)rt2->rt_key_dst) |
720 ((__force u32)rt1->rt_key_src ^ (__force u32)rt2->rt_key_src) |
721 (rt1->rt_iif ^ rt2->rt_iif)) == 0);
722 }
723
724 static inline int compare_keys(struct rtable *rt1, struct rtable *rt2)
725 {
726 return (((__force u32)rt1->rt_key_dst ^ (__force u32)rt2->rt_key_dst) |
727 ((__force u32)rt1->rt_key_src ^ (__force u32)rt2->rt_key_src) |
728 (rt1->rt_mark ^ rt2->rt_mark) |
729 (rt1->rt_key_tos ^ rt2->rt_key_tos) |
730 (rt1->rt_oif ^ rt2->rt_oif) |
731 (rt1->rt_iif ^ rt2->rt_iif)) == 0;
732 }
733
734 static inline int compare_netns(struct rtable *rt1, struct rtable *rt2)
735 {
736 return net_eq(dev_net(rt1->dst.dev), dev_net(rt2->dst.dev));
737 }
738
739 static inline int rt_is_expired(struct rtable *rth)
740 {
741 return rth->rt_genid != rt_genid(dev_net(rth->dst.dev));
742 }
743
744 /*
745 * Perform a full scan of hash table and free all entries.
746 * Can be called by a softirq or a process.
747 * In the later case, we want to be reschedule if necessary
748 */
749 static void rt_do_flush(struct net *net, int process_context)
750 {
751 unsigned int i;
752 struct rtable *rth, *next;
753
754 for (i = 0; i <= rt_hash_mask; i++) {
755 struct rtable __rcu **pprev;
756 struct rtable *list;
757
758 if (process_context && need_resched())
759 cond_resched();
760 rth = rcu_dereference_raw(rt_hash_table[i].chain);
761 if (!rth)
762 continue;
763
764 spin_lock_bh(rt_hash_lock_addr(i));
765
766 list = NULL;
767 pprev = &rt_hash_table[i].chain;
768 rth = rcu_dereference_protected(*pprev,
769 lockdep_is_held(rt_hash_lock_addr(i)));
770
771 while (rth) {
772 next = rcu_dereference_protected(rth->dst.rt_next,
773 lockdep_is_held(rt_hash_lock_addr(i)));
774
775 if (!net ||
776 net_eq(dev_net(rth->dst.dev), net)) {
777 rcu_assign_pointer(*pprev, next);
778 rcu_assign_pointer(rth->dst.rt_next, list);
779 list = rth;
780 } else {
781 pprev = &rth->dst.rt_next;
782 }
783 rth = next;
784 }
785
786 spin_unlock_bh(rt_hash_lock_addr(i));
787
788 for (; list; list = next) {
789 next = rcu_dereference_protected(list->dst.rt_next, 1);
790 rt_free(list);
791 }
792 }
793 }
794
795 /*
796 * While freeing expired entries, we compute average chain length
797 * and standard deviation, using fixed-point arithmetic.
798 * This to have an estimation of rt_chain_length_max
799 * rt_chain_length_max = max(elasticity, AVG + 4*SD)
800 * We use 3 bits for frational part, and 29 (or 61) for magnitude.
801 */
802
803 #define FRACT_BITS 3
804 #define ONE (1UL << FRACT_BITS)
805
806 /*
807 * Given a hash chain and an item in this hash chain,
808 * find if a previous entry has the same hash_inputs
809 * (but differs on tos, mark or oif)
810 * Returns 0 if an alias is found.
811 * Returns ONE if rth has no alias before itself.
812 */
813 static int has_noalias(const struct rtable *head, const struct rtable *rth)
814 {
815 const struct rtable *aux = head;
816
817 while (aux != rth) {
818 if (compare_hash_inputs(aux, rth))
819 return 0;
820 aux = rcu_dereference_protected(aux->dst.rt_next, 1);
821 }
822 return ONE;
823 }
824
825 /*
826 * Perturbation of rt_genid by a small quantity [1..256]
827 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
828 * many times (2^24) without giving recent rt_genid.
829 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
830 */
831 static void rt_cache_invalidate(struct net *net)
832 {
833 unsigned char shuffle;
834
835 get_random_bytes(&shuffle, sizeof(shuffle));
836 atomic_add(shuffle + 1U, &net->ipv4.rt_genid);
837 }
838
839 /*
840 * delay < 0 : invalidate cache (fast : entries will be deleted later)
841 * delay >= 0 : invalidate & flush cache (can be long)
842 */
843 void rt_cache_flush(struct net *net, int delay)
844 {
845 rt_cache_invalidate(net);
846 if (delay >= 0)
847 rt_do_flush(net, !in_softirq());
848 }
849
850 /* Flush previous cache invalidated entries from the cache */
851 void rt_cache_flush_batch(struct net *net)
852 {
853 rt_do_flush(net, !in_softirq());
854 }
855
856 static void rt_emergency_hash_rebuild(struct net *net)
857 {
858 if (net_ratelimit())
859 printk(KERN_WARNING "Route hash chain too long!\n");
860 rt_cache_invalidate(net);
861 }
862
863 /*
864 Short description of GC goals.
865
866 We want to build algorithm, which will keep routing cache
867 at some equilibrium point, when number of aged off entries
868 is kept approximately equal to newly generated ones.
869
870 Current expiration strength is variable "expire".
871 We try to adjust it dynamically, so that if networking
872 is idle expires is large enough to keep enough of warm entries,
873 and when load increases it reduces to limit cache size.
874 */
875
876 static int rt_garbage_collect(struct dst_ops *ops)
877 {
878 static unsigned long expire = RT_GC_TIMEOUT;
879 static unsigned long last_gc;
880 static int rover;
881 static int equilibrium;
882 struct rtable *rth;
883 struct rtable __rcu **rthp;
884 unsigned long now = jiffies;
885 int goal;
886 int entries = dst_entries_get_fast(&ipv4_dst_ops);
887
888 /*
889 * Garbage collection is pretty expensive,
890 * do not make it too frequently.
891 */
892
893 RT_CACHE_STAT_INC(gc_total);
894
895 if (now - last_gc < ip_rt_gc_min_interval &&
896 entries < ip_rt_max_size) {
897 RT_CACHE_STAT_INC(gc_ignored);
898 goto out;
899 }
900
901 entries = dst_entries_get_slow(&ipv4_dst_ops);
902 /* Calculate number of entries, which we want to expire now. */
903 goal = entries - (ip_rt_gc_elasticity << rt_hash_log);
904 if (goal <= 0) {
905 if (equilibrium < ipv4_dst_ops.gc_thresh)
906 equilibrium = ipv4_dst_ops.gc_thresh;
907 goal = entries - equilibrium;
908 if (goal > 0) {
909 equilibrium += min_t(unsigned int, goal >> 1, rt_hash_mask + 1);
910 goal = entries - equilibrium;
911 }
912 } else {
913 /* We are in dangerous area. Try to reduce cache really
914 * aggressively.
915 */
916 goal = max_t(unsigned int, goal >> 1, rt_hash_mask + 1);
917 equilibrium = entries - goal;
918 }
919
920 if (now - last_gc >= ip_rt_gc_min_interval)
921 last_gc = now;
922
923 if (goal <= 0) {
924 equilibrium += goal;
925 goto work_done;
926 }
927
928 do {
929 int i, k;
930
931 for (i = rt_hash_mask, k = rover; i >= 0; i--) {
932 unsigned long tmo = expire;
933
934 k = (k + 1) & rt_hash_mask;
935 rthp = &rt_hash_table[k].chain;
936 spin_lock_bh(rt_hash_lock_addr(k));
937 while ((rth = rcu_dereference_protected(*rthp,
938 lockdep_is_held(rt_hash_lock_addr(k)))) != NULL) {
939 if (!rt_is_expired(rth) &&
940 !rt_may_expire(rth, tmo, expire)) {
941 tmo >>= 1;
942 rthp = &rth->dst.rt_next;
943 continue;
944 }
945 *rthp = rth->dst.rt_next;
946 rt_free(rth);
947 goal--;
948 }
949 spin_unlock_bh(rt_hash_lock_addr(k));
950 if (goal <= 0)
951 break;
952 }
953 rover = k;
954
955 if (goal <= 0)
956 goto work_done;
957
958 /* Goal is not achieved. We stop process if:
959
960 - if expire reduced to zero. Otherwise, expire is halfed.
961 - if table is not full.
962 - if we are called from interrupt.
963 - jiffies check is just fallback/debug loop breaker.
964 We will not spin here for long time in any case.
965 */
966
967 RT_CACHE_STAT_INC(gc_goal_miss);
968
969 if (expire == 0)
970 break;
971
972 expire >>= 1;
973
974 if (dst_entries_get_fast(&ipv4_dst_ops) < ip_rt_max_size)
975 goto out;
976 } while (!in_softirq() && time_before_eq(jiffies, now));
977
978 if (dst_entries_get_fast(&ipv4_dst_ops) < ip_rt_max_size)
979 goto out;
980 if (dst_entries_get_slow(&ipv4_dst_ops) < ip_rt_max_size)
981 goto out;
982 if (net_ratelimit())
983 printk(KERN_WARNING "dst cache overflow\n");
984 RT_CACHE_STAT_INC(gc_dst_overflow);
985 return 1;
986
987 work_done:
988 expire += ip_rt_gc_min_interval;
989 if (expire > ip_rt_gc_timeout ||
990 dst_entries_get_fast(&ipv4_dst_ops) < ipv4_dst_ops.gc_thresh ||
991 dst_entries_get_slow(&ipv4_dst_ops) < ipv4_dst_ops.gc_thresh)
992 expire = ip_rt_gc_timeout;
993 out: return 0;
994 }
995
996 /*
997 * Returns number of entries in a hash chain that have different hash_inputs
998 */
999 static int slow_chain_length(const struct rtable *head)
1000 {
1001 int length = 0;
1002 const struct rtable *rth = head;
1003
1004 while (rth) {
1005 length += has_noalias(head, rth);
1006 rth = rcu_dereference_protected(rth->dst.rt_next, 1);
1007 }
1008 return length >> FRACT_BITS;
1009 }
1010
1011 static int rt_bind_neighbour(struct rtable *rt)
1012 {
1013 static const __be32 inaddr_any = 0;
1014 struct net_device *dev = rt->dst.dev;
1015 struct neigh_table *tbl = &arp_tbl;
1016 const __be32 *nexthop;
1017 struct neighbour *n;
1018
1019 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1020 if (dev->type == ARPHRD_ATM)
1021 tbl = clip_tbl_hook;
1022 #endif
1023 nexthop = &rt->rt_gateway;
1024 if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
1025 nexthop = &inaddr_any;
1026 n = ipv4_neigh_lookup(tbl, dev, nexthop);
1027 if (IS_ERR(n))
1028 return PTR_ERR(n);
1029 dst_set_neighbour(&rt->dst, n);
1030
1031 return 0;
1032 }
1033
1034 static struct rtable *rt_intern_hash(unsigned hash, struct rtable *rt,
1035 struct sk_buff *skb, int ifindex)
1036 {
1037 struct rtable *rth, *cand;
1038 struct rtable __rcu **rthp, **candp;
1039 unsigned long now;
1040 u32 min_score;
1041 int chain_length;
1042 int attempts = !in_softirq();
1043
1044 restart:
1045 chain_length = 0;
1046 min_score = ~(u32)0;
1047 cand = NULL;
1048 candp = NULL;
1049 now = jiffies;
1050
1051 if (!rt_caching(dev_net(rt->dst.dev))) {
1052 /*
1053 * If we're not caching, just tell the caller we
1054 * were successful and don't touch the route. The
1055 * caller hold the sole reference to the cache entry, and
1056 * it will be released when the caller is done with it.
1057 * If we drop it here, the callers have no way to resolve routes
1058 * when we're not caching. Instead, just point *rp at rt, so
1059 * the caller gets a single use out of the route
1060 * Note that we do rt_free on this new route entry, so that
1061 * once its refcount hits zero, we are still able to reap it
1062 * (Thanks Alexey)
1063 * Note: To avoid expensive rcu stuff for this uncached dst,
1064 * we set DST_NOCACHE so that dst_release() can free dst without
1065 * waiting a grace period.
1066 */
1067
1068 rt->dst.flags |= DST_NOCACHE;
1069 if (rt->rt_type == RTN_UNICAST || rt_is_output_route(rt)) {
1070 int err = rt_bind_neighbour(rt);
1071 if (err) {
1072 if (net_ratelimit())
1073 printk(KERN_WARNING
1074 "Neighbour table failure & not caching routes.\n");
1075 ip_rt_put(rt);
1076 return ERR_PTR(err);
1077 }
1078 }
1079
1080 goto skip_hashing;
1081 }
1082
1083 rthp = &rt_hash_table[hash].chain;
1084
1085 spin_lock_bh(rt_hash_lock_addr(hash));
1086 while ((rth = rcu_dereference_protected(*rthp,
1087 lockdep_is_held(rt_hash_lock_addr(hash)))) != NULL) {
1088 if (rt_is_expired(rth)) {
1089 *rthp = rth->dst.rt_next;
1090 rt_free(rth);
1091 continue;
1092 }
1093 if (compare_keys(rth, rt) && compare_netns(rth, rt)) {
1094 /* Put it first */
1095 *rthp = rth->dst.rt_next;
1096 /*
1097 * Since lookup is lockfree, the deletion
1098 * must be visible to another weakly ordered CPU before
1099 * the insertion at the start of the hash chain.
1100 */
1101 rcu_assign_pointer(rth->dst.rt_next,
1102 rt_hash_table[hash].chain);
1103 /*
1104 * Since lookup is lockfree, the update writes
1105 * must be ordered for consistency on SMP.
1106 */
1107 rcu_assign_pointer(rt_hash_table[hash].chain, rth);
1108
1109 dst_use(&rth->dst, now);
1110 spin_unlock_bh(rt_hash_lock_addr(hash));
1111
1112 rt_drop(rt);
1113 if (skb)
1114 skb_dst_set(skb, &rth->dst);
1115 return rth;
1116 }
1117
1118 if (!atomic_read(&rth->dst.__refcnt)) {
1119 u32 score = rt_score(rth);
1120
1121 if (score <= min_score) {
1122 cand = rth;
1123 candp = rthp;
1124 min_score = score;
1125 }
1126 }
1127
1128 chain_length++;
1129
1130 rthp = &rth->dst.rt_next;
1131 }
1132
1133 if (cand) {
1134 /* ip_rt_gc_elasticity used to be average length of chain
1135 * length, when exceeded gc becomes really aggressive.
1136 *
1137 * The second limit is less certain. At the moment it allows
1138 * only 2 entries per bucket. We will see.
1139 */
1140 if (chain_length > ip_rt_gc_elasticity) {
1141 *candp = cand->dst.rt_next;
1142 rt_free(cand);
1143 }
1144 } else {
1145 if (chain_length > rt_chain_length_max &&
1146 slow_chain_length(rt_hash_table[hash].chain) > rt_chain_length_max) {
1147 struct net *net = dev_net(rt->dst.dev);
1148 int num = ++net->ipv4.current_rt_cache_rebuild_count;
1149 if (!rt_caching(net)) {
1150 printk(KERN_WARNING "%s: %d rebuilds is over limit, route caching disabled\n",
1151 rt->dst.dev->name, num);
1152 }
1153 rt_emergency_hash_rebuild(net);
1154 spin_unlock_bh(rt_hash_lock_addr(hash));
1155
1156 hash = rt_hash(rt->rt_key_dst, rt->rt_key_src,
1157 ifindex, rt_genid(net));
1158 goto restart;
1159 }
1160 }
1161
1162 /* Try to bind route to arp only if it is output
1163 route or unicast forwarding path.
1164 */
1165 if (rt->rt_type == RTN_UNICAST || rt_is_output_route(rt)) {
1166 int err = rt_bind_neighbour(rt);
1167 if (err) {
1168 spin_unlock_bh(rt_hash_lock_addr(hash));
1169
1170 if (err != -ENOBUFS) {
1171 rt_drop(rt);
1172 return ERR_PTR(err);
1173 }
1174
1175 /* Neighbour tables are full and nothing
1176 can be released. Try to shrink route cache,
1177 it is most likely it holds some neighbour records.
1178 */
1179 if (attempts-- > 0) {
1180 int saved_elasticity = ip_rt_gc_elasticity;
1181 int saved_int = ip_rt_gc_min_interval;
1182 ip_rt_gc_elasticity = 1;
1183 ip_rt_gc_min_interval = 0;
1184 rt_garbage_collect(&ipv4_dst_ops);
1185 ip_rt_gc_min_interval = saved_int;
1186 ip_rt_gc_elasticity = saved_elasticity;
1187 goto restart;
1188 }
1189
1190 if (net_ratelimit())
1191 printk(KERN_WARNING "ipv4: Neighbour table overflow.\n");
1192 rt_drop(rt);
1193 return ERR_PTR(-ENOBUFS);
1194 }
1195 }
1196
1197 rt->dst.rt_next = rt_hash_table[hash].chain;
1198
1199 /*
1200 * Since lookup is lockfree, we must make sure
1201 * previous writes to rt are committed to memory
1202 * before making rt visible to other CPUS.
1203 */
1204 rcu_assign_pointer(rt_hash_table[hash].chain, rt);
1205
1206 spin_unlock_bh(rt_hash_lock_addr(hash));
1207
1208 skip_hashing:
1209 if (skb)
1210 skb_dst_set(skb, &rt->dst);
1211 return rt;
1212 }
1213
1214 static atomic_t __rt_peer_genid = ATOMIC_INIT(0);
1215
1216 static u32 rt_peer_genid(void)
1217 {
1218 return atomic_read(&__rt_peer_genid);
1219 }
1220
1221 void rt_bind_peer(struct rtable *rt, __be32 daddr, int create)
1222 {
1223 struct inet_peer *peer;
1224
1225 peer = inet_getpeer_v4(daddr, create);
1226
1227 if (peer && cmpxchg(&rt->peer, NULL, peer) != NULL)
1228 inet_putpeer(peer);
1229 else
1230 rt->rt_peer_genid = rt_peer_genid();
1231 }
1232
1233 /*
1234 * Peer allocation may fail only in serious out-of-memory conditions. However
1235 * we still can generate some output.
1236 * Random ID selection looks a bit dangerous because we have no chances to
1237 * select ID being unique in a reasonable period of time.
1238 * But broken packet identifier may be better than no packet at all.
1239 */
1240 static void ip_select_fb_ident(struct iphdr *iph)
1241 {
1242 static DEFINE_SPINLOCK(ip_fb_id_lock);
1243 static u32 ip_fallback_id;
1244 u32 salt;
1245
1246 spin_lock_bh(&ip_fb_id_lock);
1247 salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
1248 iph->id = htons(salt & 0xFFFF);
1249 ip_fallback_id = salt;
1250 spin_unlock_bh(&ip_fb_id_lock);
1251 }
1252
1253 void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
1254 {
1255 struct rtable *rt = (struct rtable *) dst;
1256
1257 if (rt) {
1258 if (rt->peer == NULL)
1259 rt_bind_peer(rt, rt->rt_dst, 1);
1260
1261 /* If peer is attached to destination, it is never detached,
1262 so that we need not to grab a lock to dereference it.
1263 */
1264 if (rt->peer) {
1265 iph->id = htons(inet_getid(rt->peer, more));
1266 return;
1267 }
1268 } else
1269 printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",
1270 __builtin_return_address(0));
1271
1272 ip_select_fb_ident(iph);
1273 }
1274 EXPORT_SYMBOL(__ip_select_ident);
1275
1276 static void rt_del(unsigned hash, struct rtable *rt)
1277 {
1278 struct rtable __rcu **rthp;
1279 struct rtable *aux;
1280
1281 rthp = &rt_hash_table[hash].chain;
1282 spin_lock_bh(rt_hash_lock_addr(hash));
1283 ip_rt_put(rt);
1284 while ((aux = rcu_dereference_protected(*rthp,
1285 lockdep_is_held(rt_hash_lock_addr(hash)))) != NULL) {
1286 if (aux == rt || rt_is_expired(aux)) {
1287 *rthp = aux->dst.rt_next;
1288 rt_free(aux);
1289 continue;
1290 }
1291 rthp = &aux->dst.rt_next;
1292 }
1293 spin_unlock_bh(rt_hash_lock_addr(hash));
1294 }
1295
1296 /* called in rcu_read_lock() section */
1297 void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw,
1298 __be32 saddr, struct net_device *dev)
1299 {
1300 struct in_device *in_dev = __in_dev_get_rcu(dev);
1301 struct inet_peer *peer;
1302 struct net *net;
1303
1304 if (!in_dev)
1305 return;
1306
1307 net = dev_net(dev);
1308 if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev) ||
1309 ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw) ||
1310 ipv4_is_zeronet(new_gw))
1311 goto reject_redirect;
1312
1313 if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1314 if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1315 goto reject_redirect;
1316 if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1317 goto reject_redirect;
1318 } else {
1319 if (inet_addr_type(net, new_gw) != RTN_UNICAST)
1320 goto reject_redirect;
1321 }
1322
1323 peer = inet_getpeer_v4(daddr, 1);
1324 if (peer) {
1325 peer->redirect_learned.a4 = new_gw;
1326
1327 inet_putpeer(peer);
1328
1329 atomic_inc(&__rt_peer_genid);
1330 }
1331 return;
1332
1333 reject_redirect:
1334 #ifdef CONFIG_IP_ROUTE_VERBOSE
1335 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1336 printk(KERN_INFO "Redirect from %pI4 on %s about %pI4 ignored.\n"
1337 " Advised path = %pI4 -> %pI4\n",
1338 &old_gw, dev->name, &new_gw,
1339 &saddr, &daddr);
1340 #endif
1341 ;
1342 }
1343
1344 static bool peer_pmtu_expired(struct inet_peer *peer)
1345 {
1346 unsigned long orig = ACCESS_ONCE(peer->pmtu_expires);
1347
1348 return orig &&
1349 time_after_eq(jiffies, orig) &&
1350 cmpxchg(&peer->pmtu_expires, orig, 0) == orig;
1351 }
1352
1353 static bool peer_pmtu_cleaned(struct inet_peer *peer)
1354 {
1355 unsigned long orig = ACCESS_ONCE(peer->pmtu_expires);
1356
1357 return orig &&
1358 cmpxchg(&peer->pmtu_expires, orig, 0) == orig;
1359 }
1360
1361 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1362 {
1363 struct rtable *rt = (struct rtable *)dst;
1364 struct dst_entry *ret = dst;
1365
1366 if (rt) {
1367 if (dst->obsolete > 0) {
1368 ip_rt_put(rt);
1369 ret = NULL;
1370 } else if (rt->rt_flags & RTCF_REDIRECTED) {
1371 unsigned hash = rt_hash(rt->rt_key_dst, rt->rt_key_src,
1372 rt->rt_oif,
1373 rt_genid(dev_net(dst->dev)));
1374 rt_del(hash, rt);
1375 ret = NULL;
1376 } else if (rt->peer && peer_pmtu_expired(rt->peer)) {
1377 dst_metric_set(dst, RTAX_MTU, rt->peer->pmtu_orig);
1378 }
1379 }
1380 return ret;
1381 }
1382
1383 /*
1384 * Algorithm:
1385 * 1. The first ip_rt_redirect_number redirects are sent
1386 * with exponential backoff, then we stop sending them at all,
1387 * assuming that the host ignores our redirects.
1388 * 2. If we did not see packets requiring redirects
1389 * during ip_rt_redirect_silence, we assume that the host
1390 * forgot redirected route and start to send redirects again.
1391 *
1392 * This algorithm is much cheaper and more intelligent than dumb load limiting
1393 * in icmp.c.
1394 *
1395 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1396 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1397 */
1398
1399 void ip_rt_send_redirect(struct sk_buff *skb)
1400 {
1401 struct rtable *rt = skb_rtable(skb);
1402 struct in_device *in_dev;
1403 struct inet_peer *peer;
1404 int log_martians;
1405
1406 rcu_read_lock();
1407 in_dev = __in_dev_get_rcu(rt->dst.dev);
1408 if (!in_dev || !IN_DEV_TX_REDIRECTS(in_dev)) {
1409 rcu_read_unlock();
1410 return;
1411 }
1412 log_martians = IN_DEV_LOG_MARTIANS(in_dev);
1413 rcu_read_unlock();
1414
1415 if (!rt->peer)
1416 rt_bind_peer(rt, rt->rt_dst, 1);
1417 peer = rt->peer;
1418 if (!peer) {
1419 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1420 return;
1421 }
1422
1423 /* No redirected packets during ip_rt_redirect_silence;
1424 * reset the algorithm.
1425 */
1426 if (time_after(jiffies, peer->rate_last + ip_rt_redirect_silence))
1427 peer->rate_tokens = 0;
1428
1429 /* Too many ignored redirects; do not send anything
1430 * set dst.rate_last to the last seen redirected packet.
1431 */
1432 if (peer->rate_tokens >= ip_rt_redirect_number) {
1433 peer->rate_last = jiffies;
1434 return;
1435 }
1436
1437 /* Check for load limit; set rate_last to the latest sent
1438 * redirect.
1439 */
1440 if (peer->rate_tokens == 0 ||
1441 time_after(jiffies,
1442 (peer->rate_last +
1443 (ip_rt_redirect_load << peer->rate_tokens)))) {
1444 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1445 peer->rate_last = jiffies;
1446 ++peer->rate_tokens;
1447 #ifdef CONFIG_IP_ROUTE_VERBOSE
1448 if (log_martians &&
1449 peer->rate_tokens == ip_rt_redirect_number &&
1450 net_ratelimit())
1451 printk(KERN_WARNING "host %pI4/if%d ignores redirects for %pI4 to %pI4.\n",
1452 &ip_hdr(skb)->saddr, rt->rt_iif,
1453 &rt->rt_dst, &rt->rt_gateway);
1454 #endif
1455 }
1456 }
1457
1458 static int ip_error(struct sk_buff *skb)
1459 {
1460 struct rtable *rt = skb_rtable(skb);
1461 struct inet_peer *peer;
1462 unsigned long now;
1463 bool send;
1464 int code;
1465
1466 switch (rt->dst.error) {
1467 case EINVAL:
1468 default:
1469 goto out;
1470 case EHOSTUNREACH:
1471 code = ICMP_HOST_UNREACH;
1472 break;
1473 case ENETUNREACH:
1474 code = ICMP_NET_UNREACH;
1475 IP_INC_STATS_BH(dev_net(rt->dst.dev),
1476 IPSTATS_MIB_INNOROUTES);
1477 break;
1478 case EACCES:
1479 code = ICMP_PKT_FILTERED;
1480 break;
1481 }
1482
1483 if (!rt->peer)
1484 rt_bind_peer(rt, rt->rt_dst, 1);
1485 peer = rt->peer;
1486
1487 send = true;
1488 if (peer) {
1489 now = jiffies;
1490 peer->rate_tokens += now - peer->rate_last;
1491 if (peer->rate_tokens > ip_rt_error_burst)
1492 peer->rate_tokens = ip_rt_error_burst;
1493 peer->rate_last = now;
1494 if (peer->rate_tokens >= ip_rt_error_cost)
1495 peer->rate_tokens -= ip_rt_error_cost;
1496 else
1497 send = false;
1498 }
1499 if (send)
1500 icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1501
1502 out: kfree_skb(skb);
1503 return 0;
1504 }
1505
1506 /*
1507 * The last two values are not from the RFC but
1508 * are needed for AMPRnet AX.25 paths.
1509 */
1510
1511 static const unsigned short mtu_plateau[] =
1512 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1513
1514 static inline unsigned short guess_mtu(unsigned short old_mtu)
1515 {
1516 int i;
1517
1518 for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++)
1519 if (old_mtu > mtu_plateau[i])
1520 return mtu_plateau[i];
1521 return 68;
1522 }
1523
1524 unsigned short ip_rt_frag_needed(struct net *net, const struct iphdr *iph,
1525 unsigned short new_mtu,
1526 struct net_device *dev)
1527 {
1528 unsigned short old_mtu = ntohs(iph->tot_len);
1529 unsigned short est_mtu = 0;
1530 struct inet_peer *peer;
1531
1532 peer = inet_getpeer_v4(iph->daddr, 1);
1533 if (peer) {
1534 unsigned short mtu = new_mtu;
1535
1536 if (new_mtu < 68 || new_mtu >= old_mtu) {
1537 /* BSD 4.2 derived systems incorrectly adjust
1538 * tot_len by the IP header length, and report
1539 * a zero MTU in the ICMP message.
1540 */
1541 if (mtu == 0 &&
1542 old_mtu >= 68 + (iph->ihl << 2))
1543 old_mtu -= iph->ihl << 2;
1544 mtu = guess_mtu(old_mtu);
1545 }
1546
1547 if (mtu < ip_rt_min_pmtu)
1548 mtu = ip_rt_min_pmtu;
1549 if (!peer->pmtu_expires || mtu < peer->pmtu_learned) {
1550 unsigned long pmtu_expires;
1551
1552 pmtu_expires = jiffies + ip_rt_mtu_expires;
1553 if (!pmtu_expires)
1554 pmtu_expires = 1UL;
1555
1556 est_mtu = mtu;
1557 peer->pmtu_learned = mtu;
1558 peer->pmtu_expires = pmtu_expires;
1559 }
1560
1561 inet_putpeer(peer);
1562
1563 atomic_inc(&__rt_peer_genid);
1564 }
1565 return est_mtu ? : new_mtu;
1566 }
1567
1568 static void check_peer_pmtu(struct dst_entry *dst, struct inet_peer *peer)
1569 {
1570 unsigned long expires = ACCESS_ONCE(peer->pmtu_expires);
1571
1572 if (!expires)
1573 return;
1574 if (time_before(jiffies, expires)) {
1575 u32 orig_dst_mtu = dst_mtu(dst);
1576 if (peer->pmtu_learned < orig_dst_mtu) {
1577 if (!peer->pmtu_orig)
1578 peer->pmtu_orig = dst_metric_raw(dst, RTAX_MTU);
1579 dst_metric_set(dst, RTAX_MTU, peer->pmtu_learned);
1580 }
1581 } else if (cmpxchg(&peer->pmtu_expires, expires, 0) == expires)
1582 dst_metric_set(dst, RTAX_MTU, peer->pmtu_orig);
1583 }
1584
1585 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1586 {
1587 struct rtable *rt = (struct rtable *) dst;
1588 struct inet_peer *peer;
1589
1590 dst_confirm(dst);
1591
1592 if (!rt->peer)
1593 rt_bind_peer(rt, rt->rt_dst, 1);
1594 peer = rt->peer;
1595 if (peer) {
1596 unsigned long pmtu_expires = ACCESS_ONCE(peer->pmtu_expires);
1597
1598 if (mtu < ip_rt_min_pmtu)
1599 mtu = ip_rt_min_pmtu;
1600 if (!pmtu_expires || mtu < peer->pmtu_learned) {
1601
1602 pmtu_expires = jiffies + ip_rt_mtu_expires;
1603 if (!pmtu_expires)
1604 pmtu_expires = 1UL;
1605
1606 peer->pmtu_learned = mtu;
1607 peer->pmtu_expires = pmtu_expires;
1608
1609 atomic_inc(&__rt_peer_genid);
1610 rt->rt_peer_genid = rt_peer_genid();
1611 }
1612 check_peer_pmtu(dst, peer);
1613 }
1614 }
1615
1616 static int check_peer_redir(struct dst_entry *dst, struct inet_peer *peer)
1617 {
1618 struct rtable *rt = (struct rtable *) dst;
1619 __be32 orig_gw = rt->rt_gateway;
1620 struct neighbour *n;
1621
1622 dst_confirm(&rt->dst);
1623
1624 neigh_release(dst_get_neighbour(&rt->dst));
1625 dst_set_neighbour(&rt->dst, NULL);
1626
1627 rt->rt_gateway = peer->redirect_learned.a4;
1628 rt_bind_neighbour(rt);
1629 n = dst_get_neighbour(&rt->dst);
1630 if (!n || !(n->nud_state & NUD_VALID)) {
1631 if (n)
1632 neigh_event_send(n, NULL);
1633 rt->rt_gateway = orig_gw;
1634 return -EAGAIN;
1635 } else {
1636 rt->rt_flags |= RTCF_REDIRECTED;
1637 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, n);
1638 }
1639 return 0;
1640 }
1641
1642 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1643 {
1644 struct rtable *rt = (struct rtable *) dst;
1645
1646 if (rt_is_expired(rt))
1647 return NULL;
1648 if (rt->rt_peer_genid != rt_peer_genid()) {
1649 struct inet_peer *peer;
1650
1651 if (!rt->peer)
1652 rt_bind_peer(rt, rt->rt_dst, 0);
1653
1654 peer = rt->peer;
1655 if (peer) {
1656 check_peer_pmtu(dst, peer);
1657
1658 if (peer->redirect_learned.a4 &&
1659 peer->redirect_learned.a4 != rt->rt_gateway) {
1660 if (check_peer_redir(dst, peer))
1661 return NULL;
1662 }
1663 }
1664
1665 rt->rt_peer_genid = rt_peer_genid();
1666 }
1667 return dst;
1668 }
1669
1670 static void ipv4_dst_destroy(struct dst_entry *dst)
1671 {
1672 struct rtable *rt = (struct rtable *) dst;
1673 struct inet_peer *peer = rt->peer;
1674
1675 if (rt->fi) {
1676 fib_info_put(rt->fi);
1677 rt->fi = NULL;
1678 }
1679 if (peer) {
1680 rt->peer = NULL;
1681 inet_putpeer(peer);
1682 }
1683 }
1684
1685
1686 static void ipv4_link_failure(struct sk_buff *skb)
1687 {
1688 struct rtable *rt;
1689
1690 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1691
1692 rt = skb_rtable(skb);
1693 if (rt && rt->peer && peer_pmtu_cleaned(rt->peer))
1694 dst_metric_set(&rt->dst, RTAX_MTU, rt->peer->pmtu_orig);
1695 }
1696
1697 static int ip_rt_bug(struct sk_buff *skb)
1698 {
1699 printk(KERN_DEBUG "ip_rt_bug: %pI4 -> %pI4, %s\n",
1700 &ip_hdr(skb)->saddr, &ip_hdr(skb)->daddr,
1701 skb->dev ? skb->dev->name : "?");
1702 kfree_skb(skb);
1703 WARN_ON(1);
1704 return 0;
1705 }
1706
1707 /*
1708 We do not cache source address of outgoing interface,
1709 because it is used only by IP RR, TS and SRR options,
1710 so that it out of fast path.
1711
1712 BTW remember: "addr" is allowed to be not aligned
1713 in IP options!
1714 */
1715
1716 void ip_rt_get_source(u8 *addr, struct sk_buff *skb, struct rtable *rt)
1717 {
1718 __be32 src;
1719
1720 if (rt_is_output_route(rt))
1721 src = ip_hdr(skb)->saddr;
1722 else {
1723 struct fib_result res;
1724 struct flowi4 fl4;
1725 struct iphdr *iph;
1726
1727 iph = ip_hdr(skb);
1728
1729 memset(&fl4, 0, sizeof(fl4));
1730 fl4.daddr = iph->daddr;
1731 fl4.saddr = iph->saddr;
1732 fl4.flowi4_tos = iph->tos;
1733 fl4.flowi4_oif = rt->dst.dev->ifindex;
1734 fl4.flowi4_iif = skb->dev->ifindex;
1735 fl4.flowi4_mark = skb->mark;
1736
1737 rcu_read_lock();
1738 if (fib_lookup(dev_net(rt->dst.dev), &fl4, &res) == 0)
1739 src = FIB_RES_PREFSRC(dev_net(rt->dst.dev), res);
1740 else
1741 src = inet_select_addr(rt->dst.dev, rt->rt_gateway,
1742 RT_SCOPE_UNIVERSE);
1743 rcu_read_unlock();
1744 }
1745 memcpy(addr, &src, 4);
1746 }
1747
1748 #ifdef CONFIG_IP_ROUTE_CLASSID
1749 static void set_class_tag(struct rtable *rt, u32 tag)
1750 {
1751 if (!(rt->dst.tclassid & 0xFFFF))
1752 rt->dst.tclassid |= tag & 0xFFFF;
1753 if (!(rt->dst.tclassid & 0xFFFF0000))
1754 rt->dst.tclassid |= tag & 0xFFFF0000;
1755 }
1756 #endif
1757
1758 static unsigned int ipv4_default_advmss(const struct dst_entry *dst)
1759 {
1760 unsigned int advmss = dst_metric_raw(dst, RTAX_ADVMSS);
1761
1762 if (advmss == 0) {
1763 advmss = max_t(unsigned int, dst->dev->mtu - 40,
1764 ip_rt_min_advmss);
1765 if (advmss > 65535 - 40)
1766 advmss = 65535 - 40;
1767 }
1768 return advmss;
1769 }
1770
1771 static unsigned int ipv4_default_mtu(const struct dst_entry *dst)
1772 {
1773 unsigned int mtu = dst->dev->mtu;
1774
1775 if (unlikely(dst_metric_locked(dst, RTAX_MTU))) {
1776 const struct rtable *rt = (const struct rtable *) dst;
1777
1778 if (rt->rt_gateway != rt->rt_dst && mtu > 576)
1779 mtu = 576;
1780 }
1781
1782 if (mtu > IP_MAX_MTU)
1783 mtu = IP_MAX_MTU;
1784
1785 return mtu;
1786 }
1787
1788 static void rt_init_metrics(struct rtable *rt, const struct flowi4 *fl4,
1789 struct fib_info *fi)
1790 {
1791 struct inet_peer *peer;
1792 int create = 0;
1793
1794 /* If a peer entry exists for this destination, we must hook
1795 * it up in order to get at cached metrics.
1796 */
1797 if (fl4 && (fl4->flowi4_flags & FLOWI_FLAG_PRECOW_METRICS))
1798 create = 1;
1799
1800 rt->peer = peer = inet_getpeer_v4(rt->rt_dst, create);
1801 if (peer) {
1802 rt->rt_peer_genid = rt_peer_genid();
1803 if (inet_metrics_new(peer))
1804 memcpy(peer->metrics, fi->fib_metrics,
1805 sizeof(u32) * RTAX_MAX);
1806 dst_init_metrics(&rt->dst, peer->metrics, false);
1807
1808 check_peer_pmtu(&rt->dst, peer);
1809 if (peer->redirect_learned.a4 &&
1810 peer->redirect_learned.a4 != rt->rt_gateway) {
1811 rt->rt_gateway = peer->redirect_learned.a4;
1812 rt->rt_flags |= RTCF_REDIRECTED;
1813 }
1814 } else {
1815 if (fi->fib_metrics != (u32 *) dst_default_metrics) {
1816 rt->fi = fi;
1817 atomic_inc(&fi->fib_clntref);
1818 }
1819 dst_init_metrics(&rt->dst, fi->fib_metrics, true);
1820 }
1821 }
1822
1823 static void rt_set_nexthop(struct rtable *rt, const struct flowi4 *fl4,
1824 const struct fib_result *res,
1825 struct fib_info *fi, u16 type, u32 itag)
1826 {
1827 struct dst_entry *dst = &rt->dst;
1828
1829 if (fi) {
1830 if (FIB_RES_GW(*res) &&
1831 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1832 rt->rt_gateway = FIB_RES_GW(*res);
1833 rt_init_metrics(rt, fl4, fi);
1834 #ifdef CONFIG_IP_ROUTE_CLASSID
1835 dst->tclassid = FIB_RES_NH(*res).nh_tclassid;
1836 #endif
1837 }
1838
1839 if (dst_mtu(dst) > IP_MAX_MTU)
1840 dst_metric_set(dst, RTAX_MTU, IP_MAX_MTU);
1841 if (dst_metric_raw(dst, RTAX_ADVMSS) > 65535 - 40)
1842 dst_metric_set(dst, RTAX_ADVMSS, 65535 - 40);
1843
1844 #ifdef CONFIG_IP_ROUTE_CLASSID
1845 #ifdef CONFIG_IP_MULTIPLE_TABLES
1846 set_class_tag(rt, fib_rules_tclass(res));
1847 #endif
1848 set_class_tag(rt, itag);
1849 #endif
1850 }
1851
1852 static struct rtable *rt_dst_alloc(struct net_device *dev,
1853 bool nopolicy, bool noxfrm)
1854 {
1855 return dst_alloc(&ipv4_dst_ops, dev, 1, -1,
1856 DST_HOST |
1857 (nopolicy ? DST_NOPOLICY : 0) |
1858 (noxfrm ? DST_NOXFRM : 0));
1859 }
1860
1861 /* called in rcu_read_lock() section */
1862 static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1863 u8 tos, struct net_device *dev, int our)
1864 {
1865 unsigned int hash;
1866 struct rtable *rth;
1867 __be32 spec_dst;
1868 struct in_device *in_dev = __in_dev_get_rcu(dev);
1869 u32 itag = 0;
1870 int err;
1871
1872 /* Primary sanity checks. */
1873
1874 if (in_dev == NULL)
1875 return -EINVAL;
1876
1877 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1878 ipv4_is_loopback(saddr) || skb->protocol != htons(ETH_P_IP))
1879 goto e_inval;
1880
1881 if (ipv4_is_zeronet(saddr)) {
1882 if (!ipv4_is_local_multicast(daddr))
1883 goto e_inval;
1884 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1885 } else {
1886 err = fib_validate_source(skb, saddr, 0, tos, 0, dev, &spec_dst,
1887 &itag);
1888 if (err < 0)
1889 goto e_err;
1890 }
1891 rth = rt_dst_alloc(init_net.loopback_dev,
1892 IN_DEV_CONF_GET(in_dev, NOPOLICY), false);
1893 if (!rth)
1894 goto e_nobufs;
1895
1896 #ifdef CONFIG_IP_ROUTE_CLASSID
1897 rth->dst.tclassid = itag;
1898 #endif
1899 rth->dst.output = ip_rt_bug;
1900
1901 rth->rt_key_dst = daddr;
1902 rth->rt_key_src = saddr;
1903 rth->rt_genid = rt_genid(dev_net(dev));
1904 rth->rt_flags = RTCF_MULTICAST;
1905 rth->rt_type = RTN_MULTICAST;
1906 rth->rt_key_tos = tos;
1907 rth->rt_dst = daddr;
1908 rth->rt_src = saddr;
1909 rth->rt_route_iif = dev->ifindex;
1910 rth->rt_iif = dev->ifindex;
1911 rth->rt_oif = 0;
1912 rth->rt_mark = skb->mark;
1913 rth->rt_gateway = daddr;
1914 rth->rt_spec_dst= spec_dst;
1915 rth->rt_peer_genid = 0;
1916 rth->peer = NULL;
1917 rth->fi = NULL;
1918 if (our) {
1919 rth->dst.input= ip_local_deliver;
1920 rth->rt_flags |= RTCF_LOCAL;
1921 }
1922
1923 #ifdef CONFIG_IP_MROUTE
1924 if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev))
1925 rth->dst.input = ip_mr_input;
1926 #endif
1927 RT_CACHE_STAT_INC(in_slow_mc);
1928
1929 hash = rt_hash(daddr, saddr, dev->ifindex, rt_genid(dev_net(dev)));
1930 rth = rt_intern_hash(hash, rth, skb, dev->ifindex);
1931 return IS_ERR(rth) ? PTR_ERR(rth) : 0;
1932
1933 e_nobufs:
1934 return -ENOBUFS;
1935 e_inval:
1936 return -EINVAL;
1937 e_err:
1938 return err;
1939 }
1940
1941
1942 static void ip_handle_martian_source(struct net_device *dev,
1943 struct in_device *in_dev,
1944 struct sk_buff *skb,
1945 __be32 daddr,
1946 __be32 saddr)
1947 {
1948 RT_CACHE_STAT_INC(in_martian_src);
1949 #ifdef CONFIG_IP_ROUTE_VERBOSE
1950 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
1951 /*
1952 * RFC1812 recommendation, if source is martian,
1953 * the only hint is MAC header.
1954 */
1955 printk(KERN_WARNING "martian source %pI4 from %pI4, on dev %s\n",
1956 &daddr, &saddr, dev->name);
1957 if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
1958 int i;
1959 const unsigned char *p = skb_mac_header(skb);
1960 printk(KERN_WARNING "ll header: ");
1961 for (i = 0; i < dev->hard_header_len; i++, p++) {
1962 printk("%02x", *p);
1963 if (i < (dev->hard_header_len - 1))
1964 printk(":");
1965 }
1966 printk("\n");
1967 }
1968 }
1969 #endif
1970 }
1971
1972 /* called in rcu_read_lock() section */
1973 static int __mkroute_input(struct sk_buff *skb,
1974 const struct fib_result *res,
1975 struct in_device *in_dev,
1976 __be32 daddr, __be32 saddr, u32 tos,
1977 struct rtable **result)
1978 {
1979 struct rtable *rth;
1980 int err;
1981 struct in_device *out_dev;
1982 unsigned int flags = 0;
1983 __be32 spec_dst;
1984 u32 itag;
1985
1986 /* get a working reference to the output device */
1987 out_dev = __in_dev_get_rcu(FIB_RES_DEV(*res));
1988 if (out_dev == NULL) {
1989 if (net_ratelimit())
1990 printk(KERN_CRIT "Bug in ip_route_input" \
1991 "_slow(). Please, report\n");
1992 return -EINVAL;
1993 }
1994
1995
1996 err = fib_validate_source(skb, saddr, daddr, tos, FIB_RES_OIF(*res),
1997 in_dev->dev, &spec_dst, &itag);
1998 if (err < 0) {
1999 ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
2000 saddr);
2001
2002 goto cleanup;
2003 }
2004
2005 if (err)
2006 flags |= RTCF_DIRECTSRC;
2007
2008 if (out_dev == in_dev && err &&
2009 (IN_DEV_SHARED_MEDIA(out_dev) ||
2010 inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
2011 flags |= RTCF_DOREDIRECT;
2012
2013 if (skb->protocol != htons(ETH_P_IP)) {
2014 /* Not IP (i.e. ARP). Do not create route, if it is
2015 * invalid for proxy arp. DNAT routes are always valid.
2016 *
2017 * Proxy arp feature have been extended to allow, ARP
2018 * replies back to the same interface, to support
2019 * Private VLAN switch technologies. See arp.c.
2020 */
2021 if (out_dev == in_dev &&
2022 IN_DEV_PROXY_ARP_PVLAN(in_dev) == 0) {
2023 err = -EINVAL;
2024 goto cleanup;
2025 }
2026 }
2027
2028 rth = rt_dst_alloc(out_dev->dev,
2029 IN_DEV_CONF_GET(in_dev, NOPOLICY),
2030 IN_DEV_CONF_GET(out_dev, NOXFRM));
2031 if (!rth) {
2032 err = -ENOBUFS;
2033 goto cleanup;
2034 }
2035
2036 rth->rt_key_dst = daddr;
2037 rth->rt_key_src = saddr;
2038 rth->rt_genid = rt_genid(dev_net(rth->dst.dev));
2039 rth->rt_flags = flags;
2040 rth->rt_type = res->type;
2041 rth->rt_key_tos = tos;
2042 rth->rt_dst = daddr;
2043 rth->rt_src = saddr;
2044 rth->rt_route_iif = in_dev->dev->ifindex;
2045 rth->rt_iif = in_dev->dev->ifindex;
2046 rth->rt_oif = 0;
2047 rth->rt_mark = skb->mark;
2048 rth->rt_gateway = daddr;
2049 rth->rt_spec_dst= spec_dst;
2050 rth->rt_peer_genid = 0;
2051 rth->peer = NULL;
2052 rth->fi = NULL;
2053
2054 rth->dst.input = ip_forward;
2055 rth->dst.output = ip_output;
2056
2057 rt_set_nexthop(rth, NULL, res, res->fi, res->type, itag);
2058
2059 *result = rth;
2060 err = 0;
2061 cleanup:
2062 return err;
2063 }
2064
2065 static int ip_mkroute_input(struct sk_buff *skb,
2066 struct fib_result *res,
2067 const struct flowi4 *fl4,
2068 struct in_device *in_dev,
2069 __be32 daddr, __be32 saddr, u32 tos)
2070 {
2071 struct rtable* rth = NULL;
2072 int err;
2073 unsigned hash;
2074
2075 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2076 if (res->fi && res->fi->fib_nhs > 1)
2077 fib_select_multipath(res);
2078 #endif
2079
2080 /* create a routing cache entry */
2081 err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
2082 if (err)
2083 return err;
2084
2085 /* put it into the cache */
2086 hash = rt_hash(daddr, saddr, fl4->flowi4_iif,
2087 rt_genid(dev_net(rth->dst.dev)));
2088 rth = rt_intern_hash(hash, rth, skb, fl4->flowi4_iif);
2089 if (IS_ERR(rth))
2090 return PTR_ERR(rth);
2091 return 0;
2092 }
2093
2094 /*
2095 * NOTE. We drop all the packets that has local source
2096 * addresses, because every properly looped back packet
2097 * must have correct destination already attached by output routine.
2098 *
2099 * Such approach solves two big problems:
2100 * 1. Not simplex devices are handled properly.
2101 * 2. IP spoofing attempts are filtered with 100% of guarantee.
2102 * called with rcu_read_lock()
2103 */
2104
2105 static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2106 u8 tos, struct net_device *dev)
2107 {
2108 struct fib_result res;
2109 struct in_device *in_dev = __in_dev_get_rcu(dev);
2110 struct flowi4 fl4;
2111 unsigned flags = 0;
2112 u32 itag = 0;
2113 struct rtable * rth;
2114 unsigned hash;
2115 __be32 spec_dst;
2116 int err = -EINVAL;
2117 struct net * net = dev_net(dev);
2118
2119 /* IP on this device is disabled. */
2120
2121 if (!in_dev)
2122 goto out;
2123
2124 /* Check for the most weird martians, which can be not detected
2125 by fib_lookup.
2126 */
2127
2128 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
2129 ipv4_is_loopback(saddr))
2130 goto martian_source;
2131
2132 if (ipv4_is_lbcast(daddr) || (saddr == 0 && daddr == 0))
2133 goto brd_input;
2134
2135 /* Accept zero addresses only to limited broadcast;
2136 * I even do not know to fix it or not. Waiting for complains :-)
2137 */
2138 if (ipv4_is_zeronet(saddr))
2139 goto martian_source;
2140
2141 if (ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr))
2142 goto martian_destination;
2143
2144 /*
2145 * Now we are ready to route packet.
2146 */
2147 fl4.flowi4_oif = 0;
2148 fl4.flowi4_iif = dev->ifindex;
2149 fl4.flowi4_mark = skb->mark;
2150 fl4.flowi4_tos = tos;
2151 fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
2152 fl4.daddr = daddr;
2153 fl4.saddr = saddr;
2154 err = fib_lookup(net, &fl4, &res);
2155 if (err != 0) {
2156 if (!IN_DEV_FORWARD(in_dev))
2157 goto e_hostunreach;
2158 goto no_route;
2159 }
2160
2161 RT_CACHE_STAT_INC(in_slow_tot);
2162
2163 if (res.type == RTN_BROADCAST)
2164 goto brd_input;
2165
2166 if (res.type == RTN_LOCAL) {
2167 err = fib_validate_source(skb, saddr, daddr, tos,
2168 net->loopback_dev->ifindex,
2169 dev, &spec_dst, &itag);
2170 if (err < 0)
2171 goto martian_source_keep_err;
2172 if (err)
2173 flags |= RTCF_DIRECTSRC;
2174 spec_dst = daddr;
2175 goto local_input;
2176 }
2177
2178 if (!IN_DEV_FORWARD(in_dev))
2179 goto e_hostunreach;
2180 if (res.type != RTN_UNICAST)
2181 goto martian_destination;
2182
2183 err = ip_mkroute_input(skb, &res, &fl4, in_dev, daddr, saddr, tos);
2184 out: return err;
2185
2186 brd_input:
2187 if (skb->protocol != htons(ETH_P_IP))
2188 goto e_inval;
2189
2190 if (ipv4_is_zeronet(saddr))
2191 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
2192 else {
2193 err = fib_validate_source(skb, saddr, 0, tos, 0, dev, &spec_dst,
2194 &itag);
2195 if (err < 0)
2196 goto martian_source_keep_err;
2197 if (err)
2198 flags |= RTCF_DIRECTSRC;
2199 }
2200 flags |= RTCF_BROADCAST;
2201 res.type = RTN_BROADCAST;
2202 RT_CACHE_STAT_INC(in_brd);
2203
2204 local_input:
2205 rth = rt_dst_alloc(net->loopback_dev,
2206 IN_DEV_CONF_GET(in_dev, NOPOLICY), false);
2207 if (!rth)
2208 goto e_nobufs;
2209
2210 rth->dst.input= ip_local_deliver;
2211 rth->dst.output= ip_rt_bug;
2212 #ifdef CONFIG_IP_ROUTE_CLASSID
2213 rth->dst.tclassid = itag;
2214 #endif
2215
2216 rth->rt_key_dst = daddr;
2217 rth->rt_key_src = saddr;
2218 rth->rt_genid = rt_genid(net);
2219 rth->rt_flags = flags|RTCF_LOCAL;
2220 rth->rt_type = res.type;
2221 rth->rt_key_tos = tos;
2222 rth->rt_dst = daddr;
2223 rth->rt_src = saddr;
2224 #ifdef CONFIG_IP_ROUTE_CLASSID
2225 rth->dst.tclassid = itag;
2226 #endif
2227 rth->rt_route_iif = dev->ifindex;
2228 rth->rt_iif = dev->ifindex;
2229 rth->rt_oif = 0;
2230 rth->rt_mark = skb->mark;
2231 rth->rt_gateway = daddr;
2232 rth->rt_spec_dst= spec_dst;
2233 rth->rt_peer_genid = 0;
2234 rth->peer = NULL;
2235 rth->fi = NULL;
2236 if (res.type == RTN_UNREACHABLE) {
2237 rth->dst.input= ip_error;
2238 rth->dst.error= -err;
2239 rth->rt_flags &= ~RTCF_LOCAL;
2240 }
2241 hash = rt_hash(daddr, saddr, fl4.flowi4_iif, rt_genid(net));
2242 rth = rt_intern_hash(hash, rth, skb, fl4.flowi4_iif);
2243 err = 0;
2244 if (IS_ERR(rth))
2245 err = PTR_ERR(rth);
2246 goto out;
2247
2248 no_route:
2249 RT_CACHE_STAT_INC(in_no_route);
2250 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
2251 res.type = RTN_UNREACHABLE;
2252 if (err == -ESRCH)
2253 err = -ENETUNREACH;
2254 goto local_input;
2255
2256 /*
2257 * Do not cache martian addresses: they should be logged (RFC1812)
2258 */
2259 martian_destination:
2260 RT_CACHE_STAT_INC(in_martian_dst);
2261 #ifdef CONFIG_IP_ROUTE_VERBOSE
2262 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
2263 printk(KERN_WARNING "martian destination %pI4 from %pI4, dev %s\n",
2264 &daddr, &saddr, dev->name);
2265 #endif
2266
2267 e_hostunreach:
2268 err = -EHOSTUNREACH;
2269 goto out;
2270
2271 e_inval:
2272 err = -EINVAL;
2273 goto out;
2274
2275 e_nobufs:
2276 err = -ENOBUFS;
2277 goto out;
2278
2279 martian_source:
2280 err = -EINVAL;
2281 martian_source_keep_err:
2282 ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
2283 goto out;
2284 }
2285
2286 int ip_route_input_common(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2287 u8 tos, struct net_device *dev, bool noref)
2288 {
2289 struct rtable * rth;
2290 unsigned hash;
2291 int iif = dev->ifindex;
2292 struct net *net;
2293 int res;
2294
2295 net = dev_net(dev);
2296
2297 rcu_read_lock();
2298
2299 if (!rt_caching(net))
2300 goto skip_cache;
2301
2302 tos &= IPTOS_RT_MASK;
2303 hash = rt_hash(daddr, saddr, iif, rt_genid(net));
2304
2305 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2306 rth = rcu_dereference(rth->dst.rt_next)) {
2307 if ((((__force u32)rth->rt_key_dst ^ (__force u32)daddr) |
2308 ((__force u32)rth->rt_key_src ^ (__force u32)saddr) |
2309 (rth->rt_iif ^ iif) |
2310 rth->rt_oif |
2311 (rth->rt_key_tos ^ tos)) == 0 &&
2312 rth->rt_mark == skb->mark &&
2313 net_eq(dev_net(rth->dst.dev), net) &&
2314 !rt_is_expired(rth)) {
2315 if (noref) {
2316 dst_use_noref(&rth->dst, jiffies);
2317 skb_dst_set_noref(skb, &rth->dst);
2318 } else {
2319 dst_use(&rth->dst, jiffies);
2320 skb_dst_set(skb, &rth->dst);
2321 }
2322 RT_CACHE_STAT_INC(in_hit);
2323 rcu_read_unlock();
2324 return 0;
2325 }
2326 RT_CACHE_STAT_INC(in_hlist_search);
2327 }
2328
2329 skip_cache:
2330 /* Multicast recognition logic is moved from route cache to here.
2331 The problem was that too many Ethernet cards have broken/missing
2332 hardware multicast filters :-( As result the host on multicasting
2333 network acquires a lot of useless route cache entries, sort of
2334 SDR messages from all the world. Now we try to get rid of them.
2335 Really, provided software IP multicast filter is organized
2336 reasonably (at least, hashed), it does not result in a slowdown
2337 comparing with route cache reject entries.
2338 Note, that multicast routers are not affected, because
2339 route cache entry is created eventually.
2340 */
2341 if (ipv4_is_multicast(daddr)) {
2342 struct in_device *in_dev = __in_dev_get_rcu(dev);
2343
2344 if (in_dev) {
2345 int our = ip_check_mc_rcu(in_dev, daddr, saddr,
2346 ip_hdr(skb)->protocol);
2347 if (our
2348 #ifdef CONFIG_IP_MROUTE
2349 ||
2350 (!ipv4_is_local_multicast(daddr) &&
2351 IN_DEV_MFORWARD(in_dev))
2352 #endif
2353 ) {
2354 int res = ip_route_input_mc(skb, daddr, saddr,
2355 tos, dev, our);
2356 rcu_read_unlock();
2357 return res;
2358 }
2359 }
2360 rcu_read_unlock();
2361 return -EINVAL;
2362 }
2363 res = ip_route_input_slow(skb, daddr, saddr, tos, dev);
2364 rcu_read_unlock();
2365 return res;
2366 }
2367 EXPORT_SYMBOL(ip_route_input_common);
2368
2369 /* called with rcu_read_lock() */
2370 static struct rtable *__mkroute_output(const struct fib_result *res,
2371 const struct flowi4 *fl4,
2372 __be32 orig_daddr, __be32 orig_saddr,
2373 int orig_oif, struct net_device *dev_out,
2374 unsigned int flags)
2375 {
2376 struct fib_info *fi = res->fi;
2377 u32 tos = RT_FL_TOS(fl4);
2378 struct in_device *in_dev;
2379 u16 type = res->type;
2380 struct rtable *rth;
2381
2382 if (ipv4_is_loopback(fl4->saddr) && !(dev_out->flags & IFF_LOOPBACK))
2383 return ERR_PTR(-EINVAL);
2384
2385 if (ipv4_is_lbcast(fl4->daddr))
2386 type = RTN_BROADCAST;
2387 else if (ipv4_is_multicast(fl4->daddr))
2388 type = RTN_MULTICAST;
2389 else if (ipv4_is_zeronet(fl4->daddr))
2390 return ERR_PTR(-EINVAL);
2391
2392 if (dev_out->flags & IFF_LOOPBACK)
2393 flags |= RTCF_LOCAL;
2394
2395 in_dev = __in_dev_get_rcu(dev_out);
2396 if (!in_dev)
2397 return ERR_PTR(-EINVAL);
2398
2399 if (type == RTN_BROADCAST) {
2400 flags |= RTCF_BROADCAST | RTCF_LOCAL;
2401 fi = NULL;
2402 } else if (type == RTN_MULTICAST) {
2403 flags |= RTCF_MULTICAST | RTCF_LOCAL;
2404 if (!ip_check_mc_rcu(in_dev, fl4->daddr, fl4->saddr,
2405 fl4->flowi4_proto))
2406 flags &= ~RTCF_LOCAL;
2407 /* If multicast route do not exist use
2408 * default one, but do not gateway in this case.
2409 * Yes, it is hack.
2410 */
2411 if (fi && res->prefixlen < 4)
2412 fi = NULL;
2413 }
2414
2415 rth = rt_dst_alloc(dev_out,
2416 IN_DEV_CONF_GET(in_dev, NOPOLICY),
2417 IN_DEV_CONF_GET(in_dev, NOXFRM));
2418 if (!rth)
2419 return ERR_PTR(-ENOBUFS);
2420
2421 rth->dst.output = ip_output;
2422
2423 rth->rt_key_dst = orig_daddr;
2424 rth->rt_key_src = orig_saddr;
2425 rth->rt_genid = rt_genid(dev_net(dev_out));
2426 rth->rt_flags = flags;
2427 rth->rt_type = type;
2428 rth->rt_key_tos = tos;
2429 rth->rt_dst = fl4->daddr;
2430 rth->rt_src = fl4->saddr;
2431 rth->rt_route_iif = 0;
2432 rth->rt_iif = orig_oif ? : dev_out->ifindex;
2433 rth->rt_oif = orig_oif;
2434 rth->rt_mark = fl4->flowi4_mark;
2435 rth->rt_gateway = fl4->daddr;
2436 rth->rt_spec_dst= fl4->saddr;
2437 rth->rt_peer_genid = 0;
2438 rth->peer = NULL;
2439 rth->fi = NULL;
2440
2441 RT_CACHE_STAT_INC(out_slow_tot);
2442
2443 if (flags & RTCF_LOCAL) {
2444 rth->dst.input = ip_local_deliver;
2445 rth->rt_spec_dst = fl4->daddr;
2446 }
2447 if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2448 rth->rt_spec_dst = fl4->saddr;
2449 if (flags & RTCF_LOCAL &&
2450 !(dev_out->flags & IFF_LOOPBACK)) {
2451 rth->dst.output = ip_mc_output;
2452 RT_CACHE_STAT_INC(out_slow_mc);
2453 }
2454 #ifdef CONFIG_IP_MROUTE
2455 if (type == RTN_MULTICAST) {
2456 if (IN_DEV_MFORWARD(in_dev) &&
2457 !ipv4_is_local_multicast(fl4->daddr)) {
2458 rth->dst.input = ip_mr_input;
2459 rth->dst.output = ip_mc_output;
2460 }
2461 }
2462 #endif
2463 }
2464
2465 rt_set_nexthop(rth, fl4, res, fi, type, 0);
2466
2467 return rth;
2468 }
2469
2470 /*
2471 * Major route resolver routine.
2472 * called with rcu_read_lock();
2473 */
2474
2475 static struct rtable *ip_route_output_slow(struct net *net, struct flowi4 *fl4)
2476 {
2477 struct net_device *dev_out = NULL;
2478 u32 tos = RT_FL_TOS(fl4);
2479 unsigned int flags = 0;
2480 struct fib_result res;
2481 struct rtable *rth;
2482 __be32 orig_daddr;
2483 __be32 orig_saddr;
2484 int orig_oif;
2485
2486 res.fi = NULL;
2487 #ifdef CONFIG_IP_MULTIPLE_TABLES
2488 res.r = NULL;
2489 #endif
2490
2491 orig_daddr = fl4->daddr;
2492 orig_saddr = fl4->saddr;
2493 orig_oif = fl4->flowi4_oif;
2494
2495 fl4->flowi4_iif = net->loopback_dev->ifindex;
2496 fl4->flowi4_tos = tos & IPTOS_RT_MASK;
2497 fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
2498 RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
2499
2500 rcu_read_lock();
2501 if (fl4->saddr) {
2502 rth = ERR_PTR(-EINVAL);
2503 if (ipv4_is_multicast(fl4->saddr) ||
2504 ipv4_is_lbcast(fl4->saddr) ||
2505 ipv4_is_zeronet(fl4->saddr))
2506 goto out;
2507
2508 /* I removed check for oif == dev_out->oif here.
2509 It was wrong for two reasons:
2510 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2511 is assigned to multiple interfaces.
2512 2. Moreover, we are allowed to send packets with saddr
2513 of another iface. --ANK
2514 */
2515
2516 if (fl4->flowi4_oif == 0 &&
2517 (ipv4_is_multicast(fl4->daddr) ||
2518 ipv4_is_lbcast(fl4->daddr))) {
2519 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2520 dev_out = __ip_dev_find(net, fl4->saddr, false);
2521 if (dev_out == NULL)
2522 goto out;
2523
2524 /* Special hack: user can direct multicasts
2525 and limited broadcast via necessary interface
2526 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2527 This hack is not just for fun, it allows
2528 vic,vat and friends to work.
2529 They bind socket to loopback, set ttl to zero
2530 and expect that it will work.
2531 From the viewpoint of routing cache they are broken,
2532 because we are not allowed to build multicast path
2533 with loopback source addr (look, routing cache
2534 cannot know, that ttl is zero, so that packet
2535 will not leave this host and route is valid).
2536 Luckily, this hack is good workaround.
2537 */
2538
2539 fl4->flowi4_oif = dev_out->ifindex;
2540 goto make_route;
2541 }
2542
2543 if (!(fl4->flowi4_flags & FLOWI_FLAG_ANYSRC)) {
2544 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2545 if (!__ip_dev_find(net, fl4->saddr, false))
2546 goto out;
2547 }
2548 }
2549
2550
2551 if (fl4->flowi4_oif) {
2552 dev_out = dev_get_by_index_rcu(net, fl4->flowi4_oif);
2553 rth = ERR_PTR(-ENODEV);
2554 if (dev_out == NULL)
2555 goto out;
2556
2557 /* RACE: Check return value of inet_select_addr instead. */
2558 if (!(dev_out->flags & IFF_UP) || !__in_dev_get_rcu(dev_out)) {
2559 rth = ERR_PTR(-ENETUNREACH);
2560 goto out;
2561 }
2562 if (ipv4_is_local_multicast(fl4->daddr) ||
2563 ipv4_is_lbcast(fl4->daddr)) {
2564 if (!fl4->saddr)
2565 fl4->saddr = inet_select_addr(dev_out, 0,
2566 RT_SCOPE_LINK);
2567 goto make_route;
2568 }
2569 if (fl4->saddr) {
2570 if (ipv4_is_multicast(fl4->daddr))
2571 fl4->saddr = inet_select_addr(dev_out, 0,
2572 fl4->flowi4_scope);
2573 else if (!fl4->daddr)
2574 fl4->saddr = inet_select_addr(dev_out, 0,
2575 RT_SCOPE_HOST);
2576 }
2577 }
2578
2579 if (!fl4->daddr) {
2580 fl4->daddr = fl4->saddr;
2581 if (!fl4->daddr)
2582 fl4->daddr = fl4->saddr = htonl(INADDR_LOOPBACK);
2583 dev_out = net->loopback_dev;
2584 fl4->flowi4_oif = net->loopback_dev->ifindex;
2585 res.type = RTN_LOCAL;
2586 flags |= RTCF_LOCAL;
2587 goto make_route;
2588 }
2589
2590 if (fib_lookup(net, fl4, &res)) {
2591 res.fi = NULL;
2592 if (fl4->flowi4_oif) {
2593 /* Apparently, routing tables are wrong. Assume,
2594 that the destination is on link.
2595
2596 WHY? DW.
2597 Because we are allowed to send to iface
2598 even if it has NO routes and NO assigned
2599 addresses. When oif is specified, routing
2600 tables are looked up with only one purpose:
2601 to catch if destination is gatewayed, rather than
2602 direct. Moreover, if MSG_DONTROUTE is set,
2603 we send packet, ignoring both routing tables
2604 and ifaddr state. --ANK
2605
2606
2607 We could make it even if oif is unknown,
2608 likely IPv6, but we do not.
2609 */
2610
2611 if (fl4->saddr == 0)
2612 fl4->saddr = inet_select_addr(dev_out, 0,
2613 RT_SCOPE_LINK);
2614 res.type = RTN_UNICAST;
2615 goto make_route;
2616 }
2617 rth = ERR_PTR(-ENETUNREACH);
2618 goto out;
2619 }
2620
2621 if (res.type == RTN_LOCAL) {
2622 if (!fl4->saddr) {
2623 if (res.fi->fib_prefsrc)
2624 fl4->saddr = res.fi->fib_prefsrc;
2625 else
2626 fl4->saddr = fl4->daddr;
2627 }
2628 dev_out = net->loopback_dev;
2629 fl4->flowi4_oif = dev_out->ifindex;
2630 res.fi = NULL;
2631 flags |= RTCF_LOCAL;
2632 goto make_route;
2633 }
2634
2635 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2636 if (res.fi->fib_nhs > 1 && fl4->flowi4_oif == 0)
2637 fib_select_multipath(&res);
2638 else
2639 #endif
2640 if (!res.prefixlen &&
2641 res.table->tb_num_default > 1 &&
2642 res.type == RTN_UNICAST && !fl4->flowi4_oif)
2643 fib_select_default(&res);
2644
2645 if (!fl4->saddr)
2646 fl4->saddr = FIB_RES_PREFSRC(net, res);
2647
2648 dev_out = FIB_RES_DEV(res);
2649 fl4->flowi4_oif = dev_out->ifindex;
2650
2651
2652 make_route:
2653 rth = __mkroute_output(&res, fl4, orig_daddr, orig_saddr, orig_oif,
2654 dev_out, flags);
2655 if (!IS_ERR(rth)) {
2656 unsigned int hash;
2657
2658 hash = rt_hash(orig_daddr, orig_saddr, orig_oif,
2659 rt_genid(dev_net(dev_out)));
2660 rth = rt_intern_hash(hash, rth, NULL, orig_oif);
2661 }
2662
2663 out:
2664 rcu_read_unlock();
2665 return rth;
2666 }
2667
2668 struct rtable *__ip_route_output_key(struct net *net, struct flowi4 *flp4)
2669 {
2670 struct rtable *rth;
2671 unsigned int hash;
2672
2673 if (!rt_caching(net))
2674 goto slow_output;
2675
2676 hash = rt_hash(flp4->daddr, flp4->saddr, flp4->flowi4_oif, rt_genid(net));
2677
2678 rcu_read_lock_bh();
2679 for (rth = rcu_dereference_bh(rt_hash_table[hash].chain); rth;
2680 rth = rcu_dereference_bh(rth->dst.rt_next)) {
2681 if (rth->rt_key_dst == flp4->daddr &&
2682 rth->rt_key_src == flp4->saddr &&
2683 rt_is_output_route(rth) &&
2684 rth->rt_oif == flp4->flowi4_oif &&
2685 rth->rt_mark == flp4->flowi4_mark &&
2686 !((rth->rt_key_tos ^ flp4->flowi4_tos) &
2687 (IPTOS_RT_MASK | RTO_ONLINK)) &&
2688 net_eq(dev_net(rth->dst.dev), net) &&
2689 !rt_is_expired(rth)) {
2690 dst_use(&rth->dst, jiffies);
2691 RT_CACHE_STAT_INC(out_hit);
2692 rcu_read_unlock_bh();
2693 if (!flp4->saddr)
2694 flp4->saddr = rth->rt_src;
2695 if (!flp4->daddr)
2696 flp4->daddr = rth->rt_dst;
2697 return rth;
2698 }
2699 RT_CACHE_STAT_INC(out_hlist_search);
2700 }
2701 rcu_read_unlock_bh();
2702
2703 slow_output:
2704 return ip_route_output_slow(net, flp4);
2705 }
2706 EXPORT_SYMBOL_GPL(__ip_route_output_key);
2707
2708 static struct dst_entry *ipv4_blackhole_dst_check(struct dst_entry *dst, u32 cookie)
2709 {
2710 return NULL;
2711 }
2712
2713 static unsigned int ipv4_blackhole_default_mtu(const struct dst_entry *dst)
2714 {
2715 return 0;
2716 }
2717
2718 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2719 {
2720 }
2721
2722 static u32 *ipv4_rt_blackhole_cow_metrics(struct dst_entry *dst,
2723 unsigned long old)
2724 {
2725 return NULL;
2726 }
2727
2728 static struct dst_ops ipv4_dst_blackhole_ops = {
2729 .family = AF_INET,
2730 .protocol = cpu_to_be16(ETH_P_IP),
2731 .destroy = ipv4_dst_destroy,
2732 .check = ipv4_blackhole_dst_check,
2733 .default_mtu = ipv4_blackhole_default_mtu,
2734 .default_advmss = ipv4_default_advmss,
2735 .update_pmtu = ipv4_rt_blackhole_update_pmtu,
2736 .cow_metrics = ipv4_rt_blackhole_cow_metrics,
2737 };
2738
2739 struct dst_entry *ipv4_blackhole_route(struct net *net, struct dst_entry *dst_orig)
2740 {
2741 struct rtable *rt = dst_alloc(&ipv4_dst_blackhole_ops, NULL, 1, 0, 0);
2742 struct rtable *ort = (struct rtable *) dst_orig;
2743
2744 if (rt) {
2745 struct dst_entry *new = &rt->dst;
2746
2747 new->__use = 1;
2748 new->input = dst_discard;
2749 new->output = dst_discard;
2750 dst_copy_metrics(new, &ort->dst);
2751
2752 new->dev = ort->dst.dev;
2753 if (new->dev)
2754 dev_hold(new->dev);
2755
2756 rt->rt_key_dst = ort->rt_key_dst;
2757 rt->rt_key_src = ort->rt_key_src;
2758 rt->rt_key_tos = ort->rt_key_tos;
2759 rt->rt_route_iif = ort->rt_route_iif;
2760 rt->rt_iif = ort->rt_iif;
2761 rt->rt_oif = ort->rt_oif;
2762 rt->rt_mark = ort->rt_mark;
2763
2764 rt->rt_genid = rt_genid(net);
2765 rt->rt_flags = ort->rt_flags;
2766 rt->rt_type = ort->rt_type;
2767 rt->rt_dst = ort->rt_dst;
2768 rt->rt_src = ort->rt_src;
2769 rt->rt_gateway = ort->rt_gateway;
2770 rt->rt_spec_dst = ort->rt_spec_dst;
2771 rt->peer = ort->peer;
2772 if (rt->peer)
2773 atomic_inc(&rt->peer->refcnt);
2774 rt->fi = ort->fi;
2775 if (rt->fi)
2776 atomic_inc(&rt->fi->fib_clntref);
2777
2778 dst_free(new);
2779 }
2780
2781 dst_release(dst_orig);
2782
2783 return rt ? &rt->dst : ERR_PTR(-ENOMEM);
2784 }
2785
2786 struct rtable *ip_route_output_flow(struct net *net, struct flowi4 *flp4,
2787 struct sock *sk)
2788 {
2789 struct rtable *rt = __ip_route_output_key(net, flp4);
2790
2791 if (IS_ERR(rt))
2792 return rt;
2793
2794 if (flp4->flowi4_proto)
2795 rt = (struct rtable *) xfrm_lookup(net, &rt->dst,
2796 flowi4_to_flowi(flp4),
2797 sk, 0);
2798
2799 return rt;
2800 }
2801 EXPORT_SYMBOL_GPL(ip_route_output_flow);
2802
2803 static int rt_fill_info(struct net *net,
2804 struct sk_buff *skb, u32 pid, u32 seq, int event,
2805 int nowait, unsigned int flags)
2806 {
2807 struct rtable *rt = skb_rtable(skb);
2808 struct rtmsg *r;
2809 struct nlmsghdr *nlh;
2810 long expires = 0;
2811 const struct inet_peer *peer = rt->peer;
2812 u32 id = 0, ts = 0, tsage = 0, error;
2813
2814 nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2815 if (nlh == NULL)
2816 return -EMSGSIZE;
2817
2818 r = nlmsg_data(nlh);
2819 r->rtm_family = AF_INET;
2820 r->rtm_dst_len = 32;
2821 r->rtm_src_len = 0;
2822 r->rtm_tos = rt->rt_key_tos;
2823 r->rtm_table = RT_TABLE_MAIN;
2824 NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN);
2825 r->rtm_type = rt->rt_type;
2826 r->rtm_scope = RT_SCOPE_UNIVERSE;
2827 r->rtm_protocol = RTPROT_UNSPEC;
2828 r->rtm_flags = (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2829 if (rt->rt_flags & RTCF_NOTIFY)
2830 r->rtm_flags |= RTM_F_NOTIFY;
2831
2832 NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst);
2833
2834 if (rt->rt_key_src) {
2835 r->rtm_src_len = 32;
2836 NLA_PUT_BE32(skb, RTA_SRC, rt->rt_key_src);
2837 }
2838 if (rt->dst.dev)
2839 NLA_PUT_U32(skb, RTA_OIF, rt->dst.dev->ifindex);
2840 #ifdef CONFIG_IP_ROUTE_CLASSID
2841 if (rt->dst.tclassid)
2842 NLA_PUT_U32(skb, RTA_FLOW, rt->dst.tclassid);
2843 #endif
2844 if (rt_is_input_route(rt))
2845 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst);
2846 else if (rt->rt_src != rt->rt_key_src)
2847 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src);
2848
2849 if (rt->rt_dst != rt->rt_gateway)
2850 NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway);
2851
2852 if (rtnetlink_put_metrics(skb, dst_metrics_ptr(&rt->dst)) < 0)
2853 goto nla_put_failure;
2854
2855 if (rt->rt_mark)
2856 NLA_PUT_BE32(skb, RTA_MARK, rt->rt_mark);
2857
2858 error = rt->dst.error;
2859 if (peer) {
2860 inet_peer_refcheck(rt->peer);
2861 id = atomic_read(&peer->ip_id_count) & 0xffff;
2862 if (peer->tcp_ts_stamp) {
2863 ts = peer->tcp_ts;
2864 tsage = get_seconds() - peer->tcp_ts_stamp;
2865 }
2866 expires = ACCESS_ONCE(peer->pmtu_expires);
2867 if (expires)
2868 expires -= jiffies;
2869 }
2870
2871 if (rt_is_input_route(rt)) {
2872 #ifdef CONFIG_IP_MROUTE
2873 __be32 dst = rt->rt_dst;
2874
2875 if (ipv4_is_multicast(dst) && !ipv4_is_local_multicast(dst) &&
2876 IPV4_DEVCONF_ALL(net, MC_FORWARDING)) {
2877 int err = ipmr_get_route(net, skb,
2878 rt->rt_src, rt->rt_dst,
2879 r, nowait);
2880 if (err <= 0) {
2881 if (!nowait) {
2882 if (err == 0)
2883 return 0;
2884 goto nla_put_failure;
2885 } else {
2886 if (err == -EMSGSIZE)
2887 goto nla_put_failure;
2888 error = err;
2889 }
2890 }
2891 } else
2892 #endif
2893 NLA_PUT_U32(skb, RTA_IIF, rt->rt_iif);
2894 }
2895
2896 if (rtnl_put_cacheinfo(skb, &rt->dst, id, ts, tsage,
2897 expires, error) < 0)
2898 goto nla_put_failure;
2899
2900 return nlmsg_end(skb, nlh);
2901
2902 nla_put_failure:
2903 nlmsg_cancel(skb, nlh);
2904 return -EMSGSIZE;
2905 }
2906
2907 static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2908 {
2909 struct net *net = sock_net(in_skb->sk);
2910 struct rtmsg *rtm;
2911 struct nlattr *tb[RTA_MAX+1];
2912 struct rtable *rt = NULL;
2913 __be32 dst = 0;
2914 __be32 src = 0;
2915 u32 iif;
2916 int err;
2917 int mark;
2918 struct sk_buff *skb;
2919
2920 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2921 if (err < 0)
2922 goto errout;
2923
2924 rtm = nlmsg_data(nlh);
2925
2926 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2927 if (skb == NULL) {
2928 err = -ENOBUFS;
2929 goto errout;
2930 }
2931
2932 /* Reserve room for dummy headers, this skb can pass
2933 through good chunk of routing engine.
2934 */
2935 skb_reset_mac_header(skb);
2936 skb_reset_network_header(skb);
2937
2938 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2939 ip_hdr(skb)->protocol = IPPROTO_ICMP;
2940 skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2941
2942 src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
2943 dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
2944 iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
2945 mark = tb[RTA_MARK] ? nla_get_u32(tb[RTA_MARK]) : 0;
2946
2947 if (iif) {
2948 struct net_device *dev;
2949
2950 dev = __dev_get_by_index(net, iif);
2951 if (dev == NULL) {
2952 err = -ENODEV;
2953 goto errout_free;
2954 }
2955
2956 skb->protocol = htons(ETH_P_IP);
2957 skb->dev = dev;
2958 skb->mark = mark;
2959 local_bh_disable();
2960 err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
2961 local_bh_enable();
2962
2963 rt = skb_rtable(skb);
2964 if (err == 0 && rt->dst.error)
2965 err = -rt->dst.error;
2966 } else {
2967 struct flowi4 fl4 = {
2968 .daddr = dst,
2969 .saddr = src,
2970 .flowi4_tos = rtm->rtm_tos,
2971 .flowi4_oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
2972 .flowi4_mark = mark,
2973 };
2974 rt = ip_route_output_key(net, &fl4);
2975
2976 err = 0;
2977 if (IS_ERR(rt))
2978 err = PTR_ERR(rt);
2979 }
2980
2981 if (err)
2982 goto errout_free;
2983
2984 skb_dst_set(skb, &rt->dst);
2985 if (rtm->rtm_flags & RTM_F_NOTIFY)
2986 rt->rt_flags |= RTCF_NOTIFY;
2987
2988 err = rt_fill_info(net, skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
2989 RTM_NEWROUTE, 0, 0);
2990 if (err <= 0)
2991 goto errout_free;
2992
2993 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid);
2994 errout:
2995 return err;
2996
2997 errout_free:
2998 kfree_skb(skb);
2999 goto errout;
3000 }
3001
3002 int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb)
3003 {
3004 struct rtable *rt;
3005 int h, s_h;
3006 int idx, s_idx;
3007 struct net *net;
3008
3009 net = sock_net(skb->sk);
3010
3011 s_h = cb->args[0];
3012 if (s_h < 0)
3013 s_h = 0;
3014 s_idx = idx = cb->args[1];
3015 for (h = s_h; h <= rt_hash_mask; h++, s_idx = 0) {
3016 if (!rt_hash_table[h].chain)
3017 continue;
3018 rcu_read_lock_bh();
3019 for (rt = rcu_dereference_bh(rt_hash_table[h].chain), idx = 0; rt;
3020 rt = rcu_dereference_bh(rt->dst.rt_next), idx++) {
3021 if (!net_eq(dev_net(rt->dst.dev), net) || idx < s_idx)
3022 continue;
3023 if (rt_is_expired(rt))
3024 continue;
3025 skb_dst_set_noref(skb, &rt->dst);
3026 if (rt_fill_info(net, skb, NETLINK_CB(cb->skb).pid,
3027 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
3028 1, NLM_F_MULTI) <= 0) {
3029 skb_dst_drop(skb);
3030 rcu_read_unlock_bh();
3031 goto done;
3032 }
3033 skb_dst_drop(skb);
3034 }
3035 rcu_read_unlock_bh();
3036 }
3037
3038 done:
3039 cb->args[0] = h;
3040 cb->args[1] = idx;
3041 return skb->len;
3042 }
3043
3044 void ip_rt_multicast_event(struct in_device *in_dev)
3045 {
3046 rt_cache_flush(dev_net(in_dev->dev), 0);
3047 }
3048
3049 #ifdef CONFIG_SYSCTL
3050 static int ipv4_sysctl_rtcache_flush(ctl_table *__ctl, int write,
3051 void __user *buffer,
3052 size_t *lenp, loff_t *ppos)
3053 {
3054 if (write) {
3055 int flush_delay;
3056 ctl_table ctl;
3057 struct net *net;
3058
3059 memcpy(&ctl, __ctl, sizeof(ctl));
3060 ctl.data = &flush_delay;
3061 proc_dointvec(&ctl, write, buffer, lenp, ppos);
3062
3063 net = (struct net *)__ctl->extra1;
3064 rt_cache_flush(net, flush_delay);
3065 return 0;
3066 }
3067
3068 return -EINVAL;
3069 }
3070
3071 static ctl_table ipv4_route_table[] = {
3072 {
3073 .procname = "gc_thresh",
3074 .data = &ipv4_dst_ops.gc_thresh,
3075 .maxlen = sizeof(int),
3076 .mode = 0644,
3077 .proc_handler = proc_dointvec,
3078 },
3079 {
3080 .procname = "max_size",
3081 .data = &ip_rt_max_size,
3082 .maxlen = sizeof(int),
3083 .mode = 0644,
3084 .proc_handler = proc_dointvec,
3085 },
3086 {
3087 /* Deprecated. Use gc_min_interval_ms */
3088
3089 .procname = "gc_min_interval",
3090 .data = &ip_rt_gc_min_interval,
3091 .maxlen = sizeof(int),
3092 .mode = 0644,
3093 .proc_handler = proc_dointvec_jiffies,
3094 },
3095 {
3096 .procname = "gc_min_interval_ms",
3097 .data = &ip_rt_gc_min_interval,
3098 .maxlen = sizeof(int),
3099 .mode = 0644,
3100 .proc_handler = proc_dointvec_ms_jiffies,
3101 },
3102 {
3103 .procname = "gc_timeout",
3104 .data = &ip_rt_gc_timeout,
3105 .maxlen = sizeof(int),
3106 .mode = 0644,
3107 .proc_handler = proc_dointvec_jiffies,
3108 },
3109 {
3110 .procname = "gc_interval",
3111 .data = &ip_rt_gc_interval,
3112 .maxlen = sizeof(int),
3113 .mode = 0644,
3114 .proc_handler = proc_dointvec_jiffies,
3115 },
3116 {
3117 .procname = "redirect_load",
3118 .data = &ip_rt_redirect_load,
3119 .maxlen = sizeof(int),
3120 .mode = 0644,
3121 .proc_handler = proc_dointvec,
3122 },
3123 {
3124 .procname = "redirect_number",
3125 .data = &ip_rt_redirect_number,
3126 .maxlen = sizeof(int),
3127 .mode = 0644,
3128 .proc_handler = proc_dointvec,
3129 },
3130 {
3131 .procname = "redirect_silence",
3132 .data = &ip_rt_redirect_silence,
3133 .maxlen = sizeof(int),
3134 .mode = 0644,
3135 .proc_handler = proc_dointvec,
3136 },
3137 {
3138 .procname = "error_cost",
3139 .data = &ip_rt_error_cost,
3140 .maxlen = sizeof(int),
3141 .mode = 0644,
3142 .proc_handler = proc_dointvec,
3143 },
3144 {
3145 .procname = "error_burst",
3146 .data = &ip_rt_error_burst,
3147 .maxlen = sizeof(int),
3148 .mode = 0644,
3149 .proc_handler = proc_dointvec,
3150 },
3151 {
3152 .procname = "gc_elasticity",
3153 .data = &ip_rt_gc_elasticity,
3154 .maxlen = sizeof(int),
3155 .mode = 0644,
3156 .proc_handler = proc_dointvec,
3157 },
3158 {
3159 .procname = "mtu_expires",
3160 .data = &ip_rt_mtu_expires,
3161 .maxlen = sizeof(int),
3162 .mode = 0644,
3163 .proc_handler = proc_dointvec_jiffies,
3164 },
3165 {
3166 .procname = "min_pmtu",
3167 .data = &ip_rt_min_pmtu,
3168 .maxlen = sizeof(int),
3169 .mode = 0644,
3170 .proc_handler = proc_dointvec,
3171 },
3172 {
3173 .procname = "min_adv_mss",
3174 .data = &ip_rt_min_advmss,
3175 .maxlen = sizeof(int),
3176 .mode = 0644,
3177 .proc_handler = proc_dointvec,
3178 },
3179 { }
3180 };
3181
3182 static struct ctl_table empty[1];
3183
3184 static struct ctl_table ipv4_skeleton[] =
3185 {
3186 { .procname = "route",
3187 .mode = 0555, .child = ipv4_route_table},
3188 { .procname = "neigh",
3189 .mode = 0555, .child = empty},
3190 { }
3191 };
3192
3193 static __net_initdata struct ctl_path ipv4_path[] = {
3194 { .procname = "net", },
3195 { .procname = "ipv4", },
3196 { },
3197 };
3198
3199 static struct ctl_table ipv4_route_flush_table[] = {
3200 {
3201 .procname = "flush",
3202 .maxlen = sizeof(int),
3203 .mode = 0200,
3204 .proc_handler = ipv4_sysctl_rtcache_flush,
3205 },
3206 { },
3207 };
3208
3209 static __net_initdata struct ctl_path ipv4_route_path[] = {
3210 { .procname = "net", },
3211 { .procname = "ipv4", },
3212 { .procname = "route", },
3213 { },
3214 };
3215
3216 static __net_init int sysctl_route_net_init(struct net *net)
3217 {
3218 struct ctl_table *tbl;
3219
3220 tbl = ipv4_route_flush_table;
3221 if (!net_eq(net, &init_net)) {
3222 tbl = kmemdup(tbl, sizeof(ipv4_route_flush_table), GFP_KERNEL);
3223 if (tbl == NULL)
3224 goto err_dup;
3225 }
3226 tbl[0].extra1 = net;
3227
3228 net->ipv4.route_hdr =
3229 register_net_sysctl_table(net, ipv4_route_path, tbl);
3230 if (net->ipv4.route_hdr == NULL)
3231 goto err_reg;
3232 return 0;
3233
3234 err_reg:
3235 if (tbl != ipv4_route_flush_table)
3236 kfree(tbl);
3237 err_dup:
3238 return -ENOMEM;
3239 }
3240
3241 static __net_exit void sysctl_route_net_exit(struct net *net)
3242 {
3243 struct ctl_table *tbl;
3244
3245 tbl = net->ipv4.route_hdr->ctl_table_arg;
3246 unregister_net_sysctl_table(net->ipv4.route_hdr);
3247 BUG_ON(tbl == ipv4_route_flush_table);
3248 kfree(tbl);
3249 }
3250
3251 static __net_initdata struct pernet_operations sysctl_route_ops = {
3252 .init = sysctl_route_net_init,
3253 .exit = sysctl_route_net_exit,
3254 };
3255 #endif
3256
3257 static __net_init int rt_genid_init(struct net *net)
3258 {
3259 get_random_bytes(&net->ipv4.rt_genid,
3260 sizeof(net->ipv4.rt_genid));
3261 get_random_bytes(&net->ipv4.dev_addr_genid,
3262 sizeof(net->ipv4.dev_addr_genid));
3263 return 0;
3264 }
3265
3266 static __net_initdata struct pernet_operations rt_genid_ops = {
3267 .init = rt_genid_init,
3268 };
3269
3270
3271 #ifdef CONFIG_IP_ROUTE_CLASSID
3272 struct ip_rt_acct __percpu *ip_rt_acct __read_mostly;
3273 #endif /* CONFIG_IP_ROUTE_CLASSID */
3274
3275 static __initdata unsigned long rhash_entries;
3276 static int __init set_rhash_entries(char *str)
3277 {
3278 if (!str)
3279 return 0;
3280 rhash_entries = simple_strtoul(str, &str, 0);
3281 return 1;
3282 }
3283 __setup("rhash_entries=", set_rhash_entries);
3284
3285 int __init ip_rt_init(void)
3286 {
3287 int rc = 0;
3288
3289 #ifdef CONFIG_IP_ROUTE_CLASSID
3290 ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct), __alignof__(struct ip_rt_acct));
3291 if (!ip_rt_acct)
3292 panic("IP: failed to allocate ip_rt_acct\n");
3293 #endif
3294
3295 ipv4_dst_ops.kmem_cachep =
3296 kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
3297 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3298
3299 ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
3300
3301 if (dst_entries_init(&ipv4_dst_ops) < 0)
3302 panic("IP: failed to allocate ipv4_dst_ops counter\n");
3303
3304 if (dst_entries_init(&ipv4_dst_blackhole_ops) < 0)
3305 panic("IP: failed to allocate ipv4_dst_blackhole_ops counter\n");
3306
3307 rt_hash_table = (struct rt_hash_bucket *)
3308 alloc_large_system_hash("IP route cache",
3309 sizeof(struct rt_hash_bucket),
3310 rhash_entries,
3311 (totalram_pages >= 128 * 1024) ?
3312 15 : 17,
3313 0,
3314 &rt_hash_log,
3315 &rt_hash_mask,
3316 rhash_entries ? 0 : 512 * 1024);
3317 memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3318 rt_hash_lock_init();
3319
3320 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3321 ip_rt_max_size = (rt_hash_mask + 1) * 16;
3322
3323 devinet_init();
3324 ip_fib_init();
3325
3326 if (ip_rt_proc_init())
3327 printk(KERN_ERR "Unable to create route proc files\n");
3328 #ifdef CONFIG_XFRM
3329 xfrm_init();
3330 xfrm4_init(ip_rt_max_size);
3331 #endif
3332 rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL, NULL);
3333
3334 #ifdef CONFIG_SYSCTL
3335 register_pernet_subsys(&sysctl_route_ops);
3336 #endif
3337 register_pernet_subsys(&rt_genid_ops);
3338 return rc;
3339 }
3340
3341 #ifdef CONFIG_SYSCTL
3342 /*
3343 * We really need to sanitize the damn ipv4 init order, then all
3344 * this nonsense will go away.
3345 */
3346 void __init ip_static_sysctl_init(void)
3347 {
3348 register_sysctl_paths(ipv4_path, ipv4_skeleton);
3349 }
3350 #endif
This page took 0.099576 seconds and 5 git commands to generate.