net: Add getsockopt support for TCP thin-streams
[deliverable/linux.git] / net / ipv4 / route.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * ROUTE - implementation of the IP router.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
12 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
13 *
14 * Fixes:
15 * Alan Cox : Verify area fixes.
16 * Alan Cox : cli() protects routing changes
17 * Rui Oliveira : ICMP routing table updates
18 * (rco@di.uminho.pt) Routing table insertion and update
19 * Linus Torvalds : Rewrote bits to be sensible
20 * Alan Cox : Added BSD route gw semantics
21 * Alan Cox : Super /proc >4K
22 * Alan Cox : MTU in route table
23 * Alan Cox : MSS actually. Also added the window
24 * clamper.
25 * Sam Lantinga : Fixed route matching in rt_del()
26 * Alan Cox : Routing cache support.
27 * Alan Cox : Removed compatibility cruft.
28 * Alan Cox : RTF_REJECT support.
29 * Alan Cox : TCP irtt support.
30 * Jonathan Naylor : Added Metric support.
31 * Miquel van Smoorenburg : BSD API fixes.
32 * Miquel van Smoorenburg : Metrics.
33 * Alan Cox : Use __u32 properly
34 * Alan Cox : Aligned routing errors more closely with BSD
35 * our system is still very different.
36 * Alan Cox : Faster /proc handling
37 * Alexey Kuznetsov : Massive rework to support tree based routing,
38 * routing caches and better behaviour.
39 *
40 * Olaf Erb : irtt wasn't being copied right.
41 * Bjorn Ekwall : Kerneld route support.
42 * Alan Cox : Multicast fixed (I hope)
43 * Pavel Krauz : Limited broadcast fixed
44 * Mike McLagan : Routing by source
45 * Alexey Kuznetsov : End of old history. Split to fib.c and
46 * route.c and rewritten from scratch.
47 * Andi Kleen : Load-limit warning messages.
48 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
49 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
50 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
51 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
52 * Marc Boucher : routing by fwmark
53 * Robert Olsson : Added rt_cache statistics
54 * Arnaldo C. Melo : Convert proc stuff to seq_file
55 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
56 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
57 * Ilia Sotnikov : Removed TOS from hash calculations
58 *
59 * This program is free software; you can redistribute it and/or
60 * modify it under the terms of the GNU General Public License
61 * as published by the Free Software Foundation; either version
62 * 2 of the License, or (at your option) any later version.
63 */
64
65 #include <linux/module.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <linux/bitops.h>
69 #include <linux/types.h>
70 #include <linux/kernel.h>
71 #include <linux/mm.h>
72 #include <linux/bootmem.h>
73 #include <linux/string.h>
74 #include <linux/socket.h>
75 #include <linux/sockios.h>
76 #include <linux/errno.h>
77 #include <linux/in.h>
78 #include <linux/inet.h>
79 #include <linux/netdevice.h>
80 #include <linux/proc_fs.h>
81 #include <linux/init.h>
82 #include <linux/workqueue.h>
83 #include <linux/skbuff.h>
84 #include <linux/inetdevice.h>
85 #include <linux/igmp.h>
86 #include <linux/pkt_sched.h>
87 #include <linux/mroute.h>
88 #include <linux/netfilter_ipv4.h>
89 #include <linux/random.h>
90 #include <linux/jhash.h>
91 #include <linux/rcupdate.h>
92 #include <linux/times.h>
93 #include <linux/slab.h>
94 #include <net/dst.h>
95 #include <net/net_namespace.h>
96 #include <net/protocol.h>
97 #include <net/ip.h>
98 #include <net/route.h>
99 #include <net/inetpeer.h>
100 #include <net/sock.h>
101 #include <net/ip_fib.h>
102 #include <net/arp.h>
103 #include <net/tcp.h>
104 #include <net/icmp.h>
105 #include <net/xfrm.h>
106 #include <net/netevent.h>
107 #include <net/rtnetlink.h>
108 #ifdef CONFIG_SYSCTL
109 #include <linux/sysctl.h>
110 #endif
111
112 #define RT_FL_TOS(oldflp) \
113 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
114
115 #define IP_MAX_MTU 0xFFF0
116
117 #define RT_GC_TIMEOUT (300*HZ)
118
119 static int ip_rt_max_size;
120 static int ip_rt_gc_timeout __read_mostly = RT_GC_TIMEOUT;
121 static int ip_rt_gc_interval __read_mostly = 60 * HZ;
122 static int ip_rt_gc_min_interval __read_mostly = HZ / 2;
123 static int ip_rt_redirect_number __read_mostly = 9;
124 static int ip_rt_redirect_load __read_mostly = HZ / 50;
125 static int ip_rt_redirect_silence __read_mostly = ((HZ / 50) << (9 + 1));
126 static int ip_rt_error_cost __read_mostly = HZ;
127 static int ip_rt_error_burst __read_mostly = 5 * HZ;
128 static int ip_rt_gc_elasticity __read_mostly = 8;
129 static int ip_rt_mtu_expires __read_mostly = 10 * 60 * HZ;
130 static int ip_rt_min_pmtu __read_mostly = 512 + 20 + 20;
131 static int ip_rt_min_advmss __read_mostly = 256;
132 static int rt_chain_length_max __read_mostly = 20;
133
134 static struct delayed_work expires_work;
135 static unsigned long expires_ljiffies;
136
137 /*
138 * Interface to generic destination cache.
139 */
140
141 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
142 static void ipv4_dst_destroy(struct dst_entry *dst);
143 static void ipv4_dst_ifdown(struct dst_entry *dst,
144 struct net_device *dev, int how);
145 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
146 static void ipv4_link_failure(struct sk_buff *skb);
147 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
148 static int rt_garbage_collect(struct dst_ops *ops);
149
150
151 static struct dst_ops ipv4_dst_ops = {
152 .family = AF_INET,
153 .protocol = cpu_to_be16(ETH_P_IP),
154 .gc = rt_garbage_collect,
155 .check = ipv4_dst_check,
156 .destroy = ipv4_dst_destroy,
157 .ifdown = ipv4_dst_ifdown,
158 .negative_advice = ipv4_negative_advice,
159 .link_failure = ipv4_link_failure,
160 .update_pmtu = ip_rt_update_pmtu,
161 .local_out = __ip_local_out,
162 .entries = ATOMIC_INIT(0),
163 };
164
165 #define ECN_OR_COST(class) TC_PRIO_##class
166
167 const __u8 ip_tos2prio[16] = {
168 TC_PRIO_BESTEFFORT,
169 ECN_OR_COST(FILLER),
170 TC_PRIO_BESTEFFORT,
171 ECN_OR_COST(BESTEFFORT),
172 TC_PRIO_BULK,
173 ECN_OR_COST(BULK),
174 TC_PRIO_BULK,
175 ECN_OR_COST(BULK),
176 TC_PRIO_INTERACTIVE,
177 ECN_OR_COST(INTERACTIVE),
178 TC_PRIO_INTERACTIVE,
179 ECN_OR_COST(INTERACTIVE),
180 TC_PRIO_INTERACTIVE_BULK,
181 ECN_OR_COST(INTERACTIVE_BULK),
182 TC_PRIO_INTERACTIVE_BULK,
183 ECN_OR_COST(INTERACTIVE_BULK)
184 };
185
186
187 /*
188 * Route cache.
189 */
190
191 /* The locking scheme is rather straight forward:
192 *
193 * 1) Read-Copy Update protects the buckets of the central route hash.
194 * 2) Only writers remove entries, and they hold the lock
195 * as they look at rtable reference counts.
196 * 3) Only readers acquire references to rtable entries,
197 * they do so with atomic increments and with the
198 * lock held.
199 */
200
201 struct rt_hash_bucket {
202 struct rtable *chain;
203 };
204
205 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
206 defined(CONFIG_PROVE_LOCKING)
207 /*
208 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
209 * The size of this table is a power of two and depends on the number of CPUS.
210 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
211 */
212 #ifdef CONFIG_LOCKDEP
213 # define RT_HASH_LOCK_SZ 256
214 #else
215 # if NR_CPUS >= 32
216 # define RT_HASH_LOCK_SZ 4096
217 # elif NR_CPUS >= 16
218 # define RT_HASH_LOCK_SZ 2048
219 # elif NR_CPUS >= 8
220 # define RT_HASH_LOCK_SZ 1024
221 # elif NR_CPUS >= 4
222 # define RT_HASH_LOCK_SZ 512
223 # else
224 # define RT_HASH_LOCK_SZ 256
225 # endif
226 #endif
227
228 static spinlock_t *rt_hash_locks;
229 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
230
231 static __init void rt_hash_lock_init(void)
232 {
233 int i;
234
235 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ,
236 GFP_KERNEL);
237 if (!rt_hash_locks)
238 panic("IP: failed to allocate rt_hash_locks\n");
239
240 for (i = 0; i < RT_HASH_LOCK_SZ; i++)
241 spin_lock_init(&rt_hash_locks[i]);
242 }
243 #else
244 # define rt_hash_lock_addr(slot) NULL
245
246 static inline void rt_hash_lock_init(void)
247 {
248 }
249 #endif
250
251 static struct rt_hash_bucket *rt_hash_table __read_mostly;
252 static unsigned rt_hash_mask __read_mostly;
253 static unsigned int rt_hash_log __read_mostly;
254
255 static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
256 #define RT_CACHE_STAT_INC(field) __this_cpu_inc(rt_cache_stat.field)
257
258 static inline unsigned int rt_hash(__be32 daddr, __be32 saddr, int idx,
259 int genid)
260 {
261 return jhash_3words((__force u32)daddr, (__force u32)saddr,
262 idx, genid)
263 & rt_hash_mask;
264 }
265
266 static inline int rt_genid(struct net *net)
267 {
268 return atomic_read(&net->ipv4.rt_genid);
269 }
270
271 #ifdef CONFIG_PROC_FS
272 struct rt_cache_iter_state {
273 struct seq_net_private p;
274 int bucket;
275 int genid;
276 };
277
278 static struct rtable *rt_cache_get_first(struct seq_file *seq)
279 {
280 struct rt_cache_iter_state *st = seq->private;
281 struct rtable *r = NULL;
282
283 for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
284 if (!rt_hash_table[st->bucket].chain)
285 continue;
286 rcu_read_lock_bh();
287 r = rcu_dereference_bh(rt_hash_table[st->bucket].chain);
288 while (r) {
289 if (dev_net(r->dst.dev) == seq_file_net(seq) &&
290 r->rt_genid == st->genid)
291 return r;
292 r = rcu_dereference_bh(r->dst.rt_next);
293 }
294 rcu_read_unlock_bh();
295 }
296 return r;
297 }
298
299 static struct rtable *__rt_cache_get_next(struct seq_file *seq,
300 struct rtable *r)
301 {
302 struct rt_cache_iter_state *st = seq->private;
303
304 r = r->dst.rt_next;
305 while (!r) {
306 rcu_read_unlock_bh();
307 do {
308 if (--st->bucket < 0)
309 return NULL;
310 } while (!rt_hash_table[st->bucket].chain);
311 rcu_read_lock_bh();
312 r = rt_hash_table[st->bucket].chain;
313 }
314 return rcu_dereference_bh(r);
315 }
316
317 static struct rtable *rt_cache_get_next(struct seq_file *seq,
318 struct rtable *r)
319 {
320 struct rt_cache_iter_state *st = seq->private;
321 while ((r = __rt_cache_get_next(seq, r)) != NULL) {
322 if (dev_net(r->dst.dev) != seq_file_net(seq))
323 continue;
324 if (r->rt_genid == st->genid)
325 break;
326 }
327 return r;
328 }
329
330 static struct rtable *rt_cache_get_idx(struct seq_file *seq, loff_t pos)
331 {
332 struct rtable *r = rt_cache_get_first(seq);
333
334 if (r)
335 while (pos && (r = rt_cache_get_next(seq, r)))
336 --pos;
337 return pos ? NULL : r;
338 }
339
340 static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
341 {
342 struct rt_cache_iter_state *st = seq->private;
343 if (*pos)
344 return rt_cache_get_idx(seq, *pos - 1);
345 st->genid = rt_genid(seq_file_net(seq));
346 return SEQ_START_TOKEN;
347 }
348
349 static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
350 {
351 struct rtable *r;
352
353 if (v == SEQ_START_TOKEN)
354 r = rt_cache_get_first(seq);
355 else
356 r = rt_cache_get_next(seq, v);
357 ++*pos;
358 return r;
359 }
360
361 static void rt_cache_seq_stop(struct seq_file *seq, void *v)
362 {
363 if (v && v != SEQ_START_TOKEN)
364 rcu_read_unlock_bh();
365 }
366
367 static int rt_cache_seq_show(struct seq_file *seq, void *v)
368 {
369 if (v == SEQ_START_TOKEN)
370 seq_printf(seq, "%-127s\n",
371 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
372 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
373 "HHUptod\tSpecDst");
374 else {
375 struct rtable *r = v;
376 int len;
377
378 seq_printf(seq, "%s\t%08X\t%08X\t%8X\t%d\t%u\t%d\t"
379 "%08X\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X%n",
380 r->dst.dev ? r->dst.dev->name : "*",
381 (__force u32)r->rt_dst,
382 (__force u32)r->rt_gateway,
383 r->rt_flags, atomic_read(&r->dst.__refcnt),
384 r->dst.__use, 0, (__force u32)r->rt_src,
385 (dst_metric(&r->dst, RTAX_ADVMSS) ?
386 (int)dst_metric(&r->dst, RTAX_ADVMSS) + 40 : 0),
387 dst_metric(&r->dst, RTAX_WINDOW),
388 (int)((dst_metric(&r->dst, RTAX_RTT) >> 3) +
389 dst_metric(&r->dst, RTAX_RTTVAR)),
390 r->fl.fl4_tos,
391 r->dst.hh ? atomic_read(&r->dst.hh->hh_refcnt) : -1,
392 r->dst.hh ? (r->dst.hh->hh_output ==
393 dev_queue_xmit) : 0,
394 r->rt_spec_dst, &len);
395
396 seq_printf(seq, "%*s\n", 127 - len, "");
397 }
398 return 0;
399 }
400
401 static const struct seq_operations rt_cache_seq_ops = {
402 .start = rt_cache_seq_start,
403 .next = rt_cache_seq_next,
404 .stop = rt_cache_seq_stop,
405 .show = rt_cache_seq_show,
406 };
407
408 static int rt_cache_seq_open(struct inode *inode, struct file *file)
409 {
410 return seq_open_net(inode, file, &rt_cache_seq_ops,
411 sizeof(struct rt_cache_iter_state));
412 }
413
414 static const struct file_operations rt_cache_seq_fops = {
415 .owner = THIS_MODULE,
416 .open = rt_cache_seq_open,
417 .read = seq_read,
418 .llseek = seq_lseek,
419 .release = seq_release_net,
420 };
421
422
423 static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
424 {
425 int cpu;
426
427 if (*pos == 0)
428 return SEQ_START_TOKEN;
429
430 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
431 if (!cpu_possible(cpu))
432 continue;
433 *pos = cpu+1;
434 return &per_cpu(rt_cache_stat, cpu);
435 }
436 return NULL;
437 }
438
439 static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
440 {
441 int cpu;
442
443 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
444 if (!cpu_possible(cpu))
445 continue;
446 *pos = cpu+1;
447 return &per_cpu(rt_cache_stat, cpu);
448 }
449 return NULL;
450
451 }
452
453 static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
454 {
455
456 }
457
458 static int rt_cpu_seq_show(struct seq_file *seq, void *v)
459 {
460 struct rt_cache_stat *st = v;
461
462 if (v == SEQ_START_TOKEN) {
463 seq_printf(seq, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
464 return 0;
465 }
466
467 seq_printf(seq,"%08x %08x %08x %08x %08x %08x %08x %08x "
468 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
469 atomic_read(&ipv4_dst_ops.entries),
470 st->in_hit,
471 st->in_slow_tot,
472 st->in_slow_mc,
473 st->in_no_route,
474 st->in_brd,
475 st->in_martian_dst,
476 st->in_martian_src,
477
478 st->out_hit,
479 st->out_slow_tot,
480 st->out_slow_mc,
481
482 st->gc_total,
483 st->gc_ignored,
484 st->gc_goal_miss,
485 st->gc_dst_overflow,
486 st->in_hlist_search,
487 st->out_hlist_search
488 );
489 return 0;
490 }
491
492 static const struct seq_operations rt_cpu_seq_ops = {
493 .start = rt_cpu_seq_start,
494 .next = rt_cpu_seq_next,
495 .stop = rt_cpu_seq_stop,
496 .show = rt_cpu_seq_show,
497 };
498
499
500 static int rt_cpu_seq_open(struct inode *inode, struct file *file)
501 {
502 return seq_open(file, &rt_cpu_seq_ops);
503 }
504
505 static const struct file_operations rt_cpu_seq_fops = {
506 .owner = THIS_MODULE,
507 .open = rt_cpu_seq_open,
508 .read = seq_read,
509 .llseek = seq_lseek,
510 .release = seq_release,
511 };
512
513 #ifdef CONFIG_NET_CLS_ROUTE
514 static int rt_acct_proc_show(struct seq_file *m, void *v)
515 {
516 struct ip_rt_acct *dst, *src;
517 unsigned int i, j;
518
519 dst = kcalloc(256, sizeof(struct ip_rt_acct), GFP_KERNEL);
520 if (!dst)
521 return -ENOMEM;
522
523 for_each_possible_cpu(i) {
524 src = (struct ip_rt_acct *)per_cpu_ptr(ip_rt_acct, i);
525 for (j = 0; j < 256; j++) {
526 dst[j].o_bytes += src[j].o_bytes;
527 dst[j].o_packets += src[j].o_packets;
528 dst[j].i_bytes += src[j].i_bytes;
529 dst[j].i_packets += src[j].i_packets;
530 }
531 }
532
533 seq_write(m, dst, 256 * sizeof(struct ip_rt_acct));
534 kfree(dst);
535 return 0;
536 }
537
538 static int rt_acct_proc_open(struct inode *inode, struct file *file)
539 {
540 return single_open(file, rt_acct_proc_show, NULL);
541 }
542
543 static const struct file_operations rt_acct_proc_fops = {
544 .owner = THIS_MODULE,
545 .open = rt_acct_proc_open,
546 .read = seq_read,
547 .llseek = seq_lseek,
548 .release = single_release,
549 };
550 #endif
551
552 static int __net_init ip_rt_do_proc_init(struct net *net)
553 {
554 struct proc_dir_entry *pde;
555
556 pde = proc_net_fops_create(net, "rt_cache", S_IRUGO,
557 &rt_cache_seq_fops);
558 if (!pde)
559 goto err1;
560
561 pde = proc_create("rt_cache", S_IRUGO,
562 net->proc_net_stat, &rt_cpu_seq_fops);
563 if (!pde)
564 goto err2;
565
566 #ifdef CONFIG_NET_CLS_ROUTE
567 pde = proc_create("rt_acct", 0, net->proc_net, &rt_acct_proc_fops);
568 if (!pde)
569 goto err3;
570 #endif
571 return 0;
572
573 #ifdef CONFIG_NET_CLS_ROUTE
574 err3:
575 remove_proc_entry("rt_cache", net->proc_net_stat);
576 #endif
577 err2:
578 remove_proc_entry("rt_cache", net->proc_net);
579 err1:
580 return -ENOMEM;
581 }
582
583 static void __net_exit ip_rt_do_proc_exit(struct net *net)
584 {
585 remove_proc_entry("rt_cache", net->proc_net_stat);
586 remove_proc_entry("rt_cache", net->proc_net);
587 #ifdef CONFIG_NET_CLS_ROUTE
588 remove_proc_entry("rt_acct", net->proc_net);
589 #endif
590 }
591
592 static struct pernet_operations ip_rt_proc_ops __net_initdata = {
593 .init = ip_rt_do_proc_init,
594 .exit = ip_rt_do_proc_exit,
595 };
596
597 static int __init ip_rt_proc_init(void)
598 {
599 return register_pernet_subsys(&ip_rt_proc_ops);
600 }
601
602 #else
603 static inline int ip_rt_proc_init(void)
604 {
605 return 0;
606 }
607 #endif /* CONFIG_PROC_FS */
608
609 static inline void rt_free(struct rtable *rt)
610 {
611 call_rcu_bh(&rt->dst.rcu_head, dst_rcu_free);
612 }
613
614 static inline void rt_drop(struct rtable *rt)
615 {
616 ip_rt_put(rt);
617 call_rcu_bh(&rt->dst.rcu_head, dst_rcu_free);
618 }
619
620 static inline int rt_fast_clean(struct rtable *rth)
621 {
622 /* Kill broadcast/multicast entries very aggresively, if they
623 collide in hash table with more useful entries */
624 return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
625 rth->fl.iif && rth->dst.rt_next;
626 }
627
628 static inline int rt_valuable(struct rtable *rth)
629 {
630 return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
631 rth->dst.expires;
632 }
633
634 static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
635 {
636 unsigned long age;
637 int ret = 0;
638
639 if (atomic_read(&rth->dst.__refcnt))
640 goto out;
641
642 ret = 1;
643 if (rth->dst.expires &&
644 time_after_eq(jiffies, rth->dst.expires))
645 goto out;
646
647 age = jiffies - rth->dst.lastuse;
648 ret = 0;
649 if ((age <= tmo1 && !rt_fast_clean(rth)) ||
650 (age <= tmo2 && rt_valuable(rth)))
651 goto out;
652 ret = 1;
653 out: return ret;
654 }
655
656 /* Bits of score are:
657 * 31: very valuable
658 * 30: not quite useless
659 * 29..0: usage counter
660 */
661 static inline u32 rt_score(struct rtable *rt)
662 {
663 u32 score = jiffies - rt->dst.lastuse;
664
665 score = ~score & ~(3<<30);
666
667 if (rt_valuable(rt))
668 score |= (1<<31);
669
670 if (!rt->fl.iif ||
671 !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
672 score |= (1<<30);
673
674 return score;
675 }
676
677 static inline bool rt_caching(const struct net *net)
678 {
679 return net->ipv4.current_rt_cache_rebuild_count <=
680 net->ipv4.sysctl_rt_cache_rebuild_count;
681 }
682
683 static inline bool compare_hash_inputs(const struct flowi *fl1,
684 const struct flowi *fl2)
685 {
686 return ((((__force u32)fl1->nl_u.ip4_u.daddr ^ (__force u32)fl2->nl_u.ip4_u.daddr) |
687 ((__force u32)fl1->nl_u.ip4_u.saddr ^ (__force u32)fl2->nl_u.ip4_u.saddr) |
688 (fl1->iif ^ fl2->iif)) == 0);
689 }
690
691 static inline int compare_keys(struct flowi *fl1, struct flowi *fl2)
692 {
693 return (((__force u32)fl1->nl_u.ip4_u.daddr ^ (__force u32)fl2->nl_u.ip4_u.daddr) |
694 ((__force u32)fl1->nl_u.ip4_u.saddr ^ (__force u32)fl2->nl_u.ip4_u.saddr) |
695 (fl1->mark ^ fl2->mark) |
696 (*(u16 *)&fl1->nl_u.ip4_u.tos ^ *(u16 *)&fl2->nl_u.ip4_u.tos) |
697 (fl1->oif ^ fl2->oif) |
698 (fl1->iif ^ fl2->iif)) == 0;
699 }
700
701 static inline int compare_netns(struct rtable *rt1, struct rtable *rt2)
702 {
703 return net_eq(dev_net(rt1->dst.dev), dev_net(rt2->dst.dev));
704 }
705
706 static inline int rt_is_expired(struct rtable *rth)
707 {
708 return rth->rt_genid != rt_genid(dev_net(rth->dst.dev));
709 }
710
711 /*
712 * Perform a full scan of hash table and free all entries.
713 * Can be called by a softirq or a process.
714 * In the later case, we want to be reschedule if necessary
715 */
716 static void rt_do_flush(int process_context)
717 {
718 unsigned int i;
719 struct rtable *rth, *next;
720 struct rtable * tail;
721
722 for (i = 0; i <= rt_hash_mask; i++) {
723 if (process_context && need_resched())
724 cond_resched();
725 rth = rt_hash_table[i].chain;
726 if (!rth)
727 continue;
728
729 spin_lock_bh(rt_hash_lock_addr(i));
730 #ifdef CONFIG_NET_NS
731 {
732 struct rtable ** prev, * p;
733
734 rth = rt_hash_table[i].chain;
735
736 /* defer releasing the head of the list after spin_unlock */
737 for (tail = rth; tail; tail = tail->dst.rt_next)
738 if (!rt_is_expired(tail))
739 break;
740 if (rth != tail)
741 rt_hash_table[i].chain = tail;
742
743 /* call rt_free on entries after the tail requiring flush */
744 prev = &rt_hash_table[i].chain;
745 for (p = *prev; p; p = next) {
746 next = p->dst.rt_next;
747 if (!rt_is_expired(p)) {
748 prev = &p->dst.rt_next;
749 } else {
750 *prev = next;
751 rt_free(p);
752 }
753 }
754 }
755 #else
756 rth = rt_hash_table[i].chain;
757 rt_hash_table[i].chain = NULL;
758 tail = NULL;
759 #endif
760 spin_unlock_bh(rt_hash_lock_addr(i));
761
762 for (; rth != tail; rth = next) {
763 next = rth->dst.rt_next;
764 rt_free(rth);
765 }
766 }
767 }
768
769 /*
770 * While freeing expired entries, we compute average chain length
771 * and standard deviation, using fixed-point arithmetic.
772 * This to have an estimation of rt_chain_length_max
773 * rt_chain_length_max = max(elasticity, AVG + 4*SD)
774 * We use 3 bits for frational part, and 29 (or 61) for magnitude.
775 */
776
777 #define FRACT_BITS 3
778 #define ONE (1UL << FRACT_BITS)
779
780 /*
781 * Given a hash chain and an item in this hash chain,
782 * find if a previous entry has the same hash_inputs
783 * (but differs on tos, mark or oif)
784 * Returns 0 if an alias is found.
785 * Returns ONE if rth has no alias before itself.
786 */
787 static int has_noalias(const struct rtable *head, const struct rtable *rth)
788 {
789 const struct rtable *aux = head;
790
791 while (aux != rth) {
792 if (compare_hash_inputs(&aux->fl, &rth->fl))
793 return 0;
794 aux = aux->dst.rt_next;
795 }
796 return ONE;
797 }
798
799 static void rt_check_expire(void)
800 {
801 static unsigned int rover;
802 unsigned int i = rover, goal;
803 struct rtable *rth, **rthp;
804 unsigned long samples = 0;
805 unsigned long sum = 0, sum2 = 0;
806 unsigned long delta;
807 u64 mult;
808
809 delta = jiffies - expires_ljiffies;
810 expires_ljiffies = jiffies;
811 mult = ((u64)delta) << rt_hash_log;
812 if (ip_rt_gc_timeout > 1)
813 do_div(mult, ip_rt_gc_timeout);
814 goal = (unsigned int)mult;
815 if (goal > rt_hash_mask)
816 goal = rt_hash_mask + 1;
817 for (; goal > 0; goal--) {
818 unsigned long tmo = ip_rt_gc_timeout;
819 unsigned long length;
820
821 i = (i + 1) & rt_hash_mask;
822 rthp = &rt_hash_table[i].chain;
823
824 if (need_resched())
825 cond_resched();
826
827 samples++;
828
829 if (*rthp == NULL)
830 continue;
831 length = 0;
832 spin_lock_bh(rt_hash_lock_addr(i));
833 while ((rth = *rthp) != NULL) {
834 prefetch(rth->dst.rt_next);
835 if (rt_is_expired(rth)) {
836 *rthp = rth->dst.rt_next;
837 rt_free(rth);
838 continue;
839 }
840 if (rth->dst.expires) {
841 /* Entry is expired even if it is in use */
842 if (time_before_eq(jiffies, rth->dst.expires)) {
843 nofree:
844 tmo >>= 1;
845 rthp = &rth->dst.rt_next;
846 /*
847 * We only count entries on
848 * a chain with equal hash inputs once
849 * so that entries for different QOS
850 * levels, and other non-hash input
851 * attributes don't unfairly skew
852 * the length computation
853 */
854 length += has_noalias(rt_hash_table[i].chain, rth);
855 continue;
856 }
857 } else if (!rt_may_expire(rth, tmo, ip_rt_gc_timeout))
858 goto nofree;
859
860 /* Cleanup aged off entries. */
861 *rthp = rth->dst.rt_next;
862 rt_free(rth);
863 }
864 spin_unlock_bh(rt_hash_lock_addr(i));
865 sum += length;
866 sum2 += length*length;
867 }
868 if (samples) {
869 unsigned long avg = sum / samples;
870 unsigned long sd = int_sqrt(sum2 / samples - avg*avg);
871 rt_chain_length_max = max_t(unsigned long,
872 ip_rt_gc_elasticity,
873 (avg + 4*sd) >> FRACT_BITS);
874 }
875 rover = i;
876 }
877
878 /*
879 * rt_worker_func() is run in process context.
880 * we call rt_check_expire() to scan part of the hash table
881 */
882 static void rt_worker_func(struct work_struct *work)
883 {
884 rt_check_expire();
885 schedule_delayed_work(&expires_work, ip_rt_gc_interval);
886 }
887
888 /*
889 * Pertubation of rt_genid by a small quantity [1..256]
890 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
891 * many times (2^24) without giving recent rt_genid.
892 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
893 */
894 static void rt_cache_invalidate(struct net *net)
895 {
896 unsigned char shuffle;
897
898 get_random_bytes(&shuffle, sizeof(shuffle));
899 atomic_add(shuffle + 1U, &net->ipv4.rt_genid);
900 }
901
902 /*
903 * delay < 0 : invalidate cache (fast : entries will be deleted later)
904 * delay >= 0 : invalidate & flush cache (can be long)
905 */
906 void rt_cache_flush(struct net *net, int delay)
907 {
908 rt_cache_invalidate(net);
909 if (delay >= 0)
910 rt_do_flush(!in_softirq());
911 }
912
913 /* Flush previous cache invalidated entries from the cache */
914 void rt_cache_flush_batch(void)
915 {
916 rt_do_flush(!in_softirq());
917 }
918
919 static void rt_emergency_hash_rebuild(struct net *net)
920 {
921 if (net_ratelimit())
922 printk(KERN_WARNING "Route hash chain too long!\n");
923 rt_cache_invalidate(net);
924 }
925
926 /*
927 Short description of GC goals.
928
929 We want to build algorithm, which will keep routing cache
930 at some equilibrium point, when number of aged off entries
931 is kept approximately equal to newly generated ones.
932
933 Current expiration strength is variable "expire".
934 We try to adjust it dynamically, so that if networking
935 is idle expires is large enough to keep enough of warm entries,
936 and when load increases it reduces to limit cache size.
937 */
938
939 static int rt_garbage_collect(struct dst_ops *ops)
940 {
941 static unsigned long expire = RT_GC_TIMEOUT;
942 static unsigned long last_gc;
943 static int rover;
944 static int equilibrium;
945 struct rtable *rth, **rthp;
946 unsigned long now = jiffies;
947 int goal;
948
949 /*
950 * Garbage collection is pretty expensive,
951 * do not make it too frequently.
952 */
953
954 RT_CACHE_STAT_INC(gc_total);
955
956 if (now - last_gc < ip_rt_gc_min_interval &&
957 atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size) {
958 RT_CACHE_STAT_INC(gc_ignored);
959 goto out;
960 }
961
962 /* Calculate number of entries, which we want to expire now. */
963 goal = atomic_read(&ipv4_dst_ops.entries) -
964 (ip_rt_gc_elasticity << rt_hash_log);
965 if (goal <= 0) {
966 if (equilibrium < ipv4_dst_ops.gc_thresh)
967 equilibrium = ipv4_dst_ops.gc_thresh;
968 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
969 if (goal > 0) {
970 equilibrium += min_t(unsigned int, goal >> 1, rt_hash_mask + 1);
971 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
972 }
973 } else {
974 /* We are in dangerous area. Try to reduce cache really
975 * aggressively.
976 */
977 goal = max_t(unsigned int, goal >> 1, rt_hash_mask + 1);
978 equilibrium = atomic_read(&ipv4_dst_ops.entries) - goal;
979 }
980
981 if (now - last_gc >= ip_rt_gc_min_interval)
982 last_gc = now;
983
984 if (goal <= 0) {
985 equilibrium += goal;
986 goto work_done;
987 }
988
989 do {
990 int i, k;
991
992 for (i = rt_hash_mask, k = rover; i >= 0; i--) {
993 unsigned long tmo = expire;
994
995 k = (k + 1) & rt_hash_mask;
996 rthp = &rt_hash_table[k].chain;
997 spin_lock_bh(rt_hash_lock_addr(k));
998 while ((rth = *rthp) != NULL) {
999 if (!rt_is_expired(rth) &&
1000 !rt_may_expire(rth, tmo, expire)) {
1001 tmo >>= 1;
1002 rthp = &rth->dst.rt_next;
1003 continue;
1004 }
1005 *rthp = rth->dst.rt_next;
1006 rt_free(rth);
1007 goal--;
1008 }
1009 spin_unlock_bh(rt_hash_lock_addr(k));
1010 if (goal <= 0)
1011 break;
1012 }
1013 rover = k;
1014
1015 if (goal <= 0)
1016 goto work_done;
1017
1018 /* Goal is not achieved. We stop process if:
1019
1020 - if expire reduced to zero. Otherwise, expire is halfed.
1021 - if table is not full.
1022 - if we are called from interrupt.
1023 - jiffies check is just fallback/debug loop breaker.
1024 We will not spin here for long time in any case.
1025 */
1026
1027 RT_CACHE_STAT_INC(gc_goal_miss);
1028
1029 if (expire == 0)
1030 break;
1031
1032 expire >>= 1;
1033 #if RT_CACHE_DEBUG >= 2
1034 printk(KERN_DEBUG "expire>> %u %d %d %d\n", expire,
1035 atomic_read(&ipv4_dst_ops.entries), goal, i);
1036 #endif
1037
1038 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
1039 goto out;
1040 } while (!in_softirq() && time_before_eq(jiffies, now));
1041
1042 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
1043 goto out;
1044 if (net_ratelimit())
1045 printk(KERN_WARNING "dst cache overflow\n");
1046 RT_CACHE_STAT_INC(gc_dst_overflow);
1047 return 1;
1048
1049 work_done:
1050 expire += ip_rt_gc_min_interval;
1051 if (expire > ip_rt_gc_timeout ||
1052 atomic_read(&ipv4_dst_ops.entries) < ipv4_dst_ops.gc_thresh)
1053 expire = ip_rt_gc_timeout;
1054 #if RT_CACHE_DEBUG >= 2
1055 printk(KERN_DEBUG "expire++ %u %d %d %d\n", expire,
1056 atomic_read(&ipv4_dst_ops.entries), goal, rover);
1057 #endif
1058 out: return 0;
1059 }
1060
1061 /*
1062 * Returns number of entries in a hash chain that have different hash_inputs
1063 */
1064 static int slow_chain_length(const struct rtable *head)
1065 {
1066 int length = 0;
1067 const struct rtable *rth = head;
1068
1069 while (rth) {
1070 length += has_noalias(head, rth);
1071 rth = rth->dst.rt_next;
1072 }
1073 return length >> FRACT_BITS;
1074 }
1075
1076 static int rt_intern_hash(unsigned hash, struct rtable *rt,
1077 struct rtable **rp, struct sk_buff *skb, int ifindex)
1078 {
1079 struct rtable *rth, **rthp;
1080 unsigned long now;
1081 struct rtable *cand, **candp;
1082 u32 min_score;
1083 int chain_length;
1084 int attempts = !in_softirq();
1085
1086 restart:
1087 chain_length = 0;
1088 min_score = ~(u32)0;
1089 cand = NULL;
1090 candp = NULL;
1091 now = jiffies;
1092
1093 if (!rt_caching(dev_net(rt->dst.dev))) {
1094 /*
1095 * If we're not caching, just tell the caller we
1096 * were successful and don't touch the route. The
1097 * caller hold the sole reference to the cache entry, and
1098 * it will be released when the caller is done with it.
1099 * If we drop it here, the callers have no way to resolve routes
1100 * when we're not caching. Instead, just point *rp at rt, so
1101 * the caller gets a single use out of the route
1102 * Note that we do rt_free on this new route entry, so that
1103 * once its refcount hits zero, we are still able to reap it
1104 * (Thanks Alexey)
1105 * Note also the rt_free uses call_rcu. We don't actually
1106 * need rcu protection here, this is just our path to get
1107 * on the route gc list.
1108 */
1109
1110 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
1111 int err = arp_bind_neighbour(&rt->dst);
1112 if (err) {
1113 if (net_ratelimit())
1114 printk(KERN_WARNING
1115 "Neighbour table failure & not caching routes.\n");
1116 rt_drop(rt);
1117 return err;
1118 }
1119 }
1120
1121 rt_free(rt);
1122 goto skip_hashing;
1123 }
1124
1125 rthp = &rt_hash_table[hash].chain;
1126
1127 spin_lock_bh(rt_hash_lock_addr(hash));
1128 while ((rth = *rthp) != NULL) {
1129 if (rt_is_expired(rth)) {
1130 *rthp = rth->dst.rt_next;
1131 rt_free(rth);
1132 continue;
1133 }
1134 if (compare_keys(&rth->fl, &rt->fl) && compare_netns(rth, rt)) {
1135 /* Put it first */
1136 *rthp = rth->dst.rt_next;
1137 /*
1138 * Since lookup is lockfree, the deletion
1139 * must be visible to another weakly ordered CPU before
1140 * the insertion at the start of the hash chain.
1141 */
1142 rcu_assign_pointer(rth->dst.rt_next,
1143 rt_hash_table[hash].chain);
1144 /*
1145 * Since lookup is lockfree, the update writes
1146 * must be ordered for consistency on SMP.
1147 */
1148 rcu_assign_pointer(rt_hash_table[hash].chain, rth);
1149
1150 dst_use(&rth->dst, now);
1151 spin_unlock_bh(rt_hash_lock_addr(hash));
1152
1153 rt_drop(rt);
1154 if (rp)
1155 *rp = rth;
1156 else
1157 skb_dst_set(skb, &rth->dst);
1158 return 0;
1159 }
1160
1161 if (!atomic_read(&rth->dst.__refcnt)) {
1162 u32 score = rt_score(rth);
1163
1164 if (score <= min_score) {
1165 cand = rth;
1166 candp = rthp;
1167 min_score = score;
1168 }
1169 }
1170
1171 chain_length++;
1172
1173 rthp = &rth->dst.rt_next;
1174 }
1175
1176 if (cand) {
1177 /* ip_rt_gc_elasticity used to be average length of chain
1178 * length, when exceeded gc becomes really aggressive.
1179 *
1180 * The second limit is less certain. At the moment it allows
1181 * only 2 entries per bucket. We will see.
1182 */
1183 if (chain_length > ip_rt_gc_elasticity) {
1184 *candp = cand->dst.rt_next;
1185 rt_free(cand);
1186 }
1187 } else {
1188 if (chain_length > rt_chain_length_max &&
1189 slow_chain_length(rt_hash_table[hash].chain) > rt_chain_length_max) {
1190 struct net *net = dev_net(rt->dst.dev);
1191 int num = ++net->ipv4.current_rt_cache_rebuild_count;
1192 if (!rt_caching(net)) {
1193 printk(KERN_WARNING "%s: %d rebuilds is over limit, route caching disabled\n",
1194 rt->dst.dev->name, num);
1195 }
1196 rt_emergency_hash_rebuild(net);
1197 spin_unlock_bh(rt_hash_lock_addr(hash));
1198
1199 hash = rt_hash(rt->fl.fl4_dst, rt->fl.fl4_src,
1200 ifindex, rt_genid(net));
1201 goto restart;
1202 }
1203 }
1204
1205 /* Try to bind route to arp only if it is output
1206 route or unicast forwarding path.
1207 */
1208 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
1209 int err = arp_bind_neighbour(&rt->dst);
1210 if (err) {
1211 spin_unlock_bh(rt_hash_lock_addr(hash));
1212
1213 if (err != -ENOBUFS) {
1214 rt_drop(rt);
1215 return err;
1216 }
1217
1218 /* Neighbour tables are full and nothing
1219 can be released. Try to shrink route cache,
1220 it is most likely it holds some neighbour records.
1221 */
1222 if (attempts-- > 0) {
1223 int saved_elasticity = ip_rt_gc_elasticity;
1224 int saved_int = ip_rt_gc_min_interval;
1225 ip_rt_gc_elasticity = 1;
1226 ip_rt_gc_min_interval = 0;
1227 rt_garbage_collect(&ipv4_dst_ops);
1228 ip_rt_gc_min_interval = saved_int;
1229 ip_rt_gc_elasticity = saved_elasticity;
1230 goto restart;
1231 }
1232
1233 if (net_ratelimit())
1234 printk(KERN_WARNING "Neighbour table overflow.\n");
1235 rt_drop(rt);
1236 return -ENOBUFS;
1237 }
1238 }
1239
1240 rt->dst.rt_next = rt_hash_table[hash].chain;
1241
1242 #if RT_CACHE_DEBUG >= 2
1243 if (rt->dst.rt_next) {
1244 struct rtable *trt;
1245 printk(KERN_DEBUG "rt_cache @%02x: %pI4",
1246 hash, &rt->rt_dst);
1247 for (trt = rt->dst.rt_next; trt; trt = trt->dst.rt_next)
1248 printk(" . %pI4", &trt->rt_dst);
1249 printk("\n");
1250 }
1251 #endif
1252 /*
1253 * Since lookup is lockfree, we must make sure
1254 * previous writes to rt are comitted to memory
1255 * before making rt visible to other CPUS.
1256 */
1257 rcu_assign_pointer(rt_hash_table[hash].chain, rt);
1258
1259 spin_unlock_bh(rt_hash_lock_addr(hash));
1260
1261 skip_hashing:
1262 if (rp)
1263 *rp = rt;
1264 else
1265 skb_dst_set(skb, &rt->dst);
1266 return 0;
1267 }
1268
1269 void rt_bind_peer(struct rtable *rt, int create)
1270 {
1271 static DEFINE_SPINLOCK(rt_peer_lock);
1272 struct inet_peer *peer;
1273
1274 peer = inet_getpeer(rt->rt_dst, create);
1275
1276 spin_lock_bh(&rt_peer_lock);
1277 if (rt->peer == NULL) {
1278 rt->peer = peer;
1279 peer = NULL;
1280 }
1281 spin_unlock_bh(&rt_peer_lock);
1282 if (peer)
1283 inet_putpeer(peer);
1284 }
1285
1286 /*
1287 * Peer allocation may fail only in serious out-of-memory conditions. However
1288 * we still can generate some output.
1289 * Random ID selection looks a bit dangerous because we have no chances to
1290 * select ID being unique in a reasonable period of time.
1291 * But broken packet identifier may be better than no packet at all.
1292 */
1293 static void ip_select_fb_ident(struct iphdr *iph)
1294 {
1295 static DEFINE_SPINLOCK(ip_fb_id_lock);
1296 static u32 ip_fallback_id;
1297 u32 salt;
1298
1299 spin_lock_bh(&ip_fb_id_lock);
1300 salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
1301 iph->id = htons(salt & 0xFFFF);
1302 ip_fallback_id = salt;
1303 spin_unlock_bh(&ip_fb_id_lock);
1304 }
1305
1306 void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
1307 {
1308 struct rtable *rt = (struct rtable *) dst;
1309
1310 if (rt) {
1311 if (rt->peer == NULL)
1312 rt_bind_peer(rt, 1);
1313
1314 /* If peer is attached to destination, it is never detached,
1315 so that we need not to grab a lock to dereference it.
1316 */
1317 if (rt->peer) {
1318 iph->id = htons(inet_getid(rt->peer, more));
1319 return;
1320 }
1321 } else
1322 printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",
1323 __builtin_return_address(0));
1324
1325 ip_select_fb_ident(iph);
1326 }
1327 EXPORT_SYMBOL(__ip_select_ident);
1328
1329 static void rt_del(unsigned hash, struct rtable *rt)
1330 {
1331 struct rtable **rthp, *aux;
1332
1333 rthp = &rt_hash_table[hash].chain;
1334 spin_lock_bh(rt_hash_lock_addr(hash));
1335 ip_rt_put(rt);
1336 while ((aux = *rthp) != NULL) {
1337 if (aux == rt || rt_is_expired(aux)) {
1338 *rthp = aux->dst.rt_next;
1339 rt_free(aux);
1340 continue;
1341 }
1342 rthp = &aux->dst.rt_next;
1343 }
1344 spin_unlock_bh(rt_hash_lock_addr(hash));
1345 }
1346
1347 /* called in rcu_read_lock() section */
1348 void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw,
1349 __be32 saddr, struct net_device *dev)
1350 {
1351 int i, k;
1352 struct in_device *in_dev = __in_dev_get_rcu(dev);
1353 struct rtable *rth, **rthp;
1354 __be32 skeys[2] = { saddr, 0 };
1355 int ikeys[2] = { dev->ifindex, 0 };
1356 struct netevent_redirect netevent;
1357 struct net *net;
1358
1359 if (!in_dev)
1360 return;
1361
1362 net = dev_net(dev);
1363 if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev) ||
1364 ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw) ||
1365 ipv4_is_zeronet(new_gw))
1366 goto reject_redirect;
1367
1368 if (!rt_caching(net))
1369 goto reject_redirect;
1370
1371 if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1372 if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1373 goto reject_redirect;
1374 if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1375 goto reject_redirect;
1376 } else {
1377 if (inet_addr_type(net, new_gw) != RTN_UNICAST)
1378 goto reject_redirect;
1379 }
1380
1381 for (i = 0; i < 2; i++) {
1382 for (k = 0; k < 2; k++) {
1383 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k],
1384 rt_genid(net));
1385
1386 rthp=&rt_hash_table[hash].chain;
1387
1388 while ((rth = rcu_dereference(*rthp)) != NULL) {
1389 struct rtable *rt;
1390
1391 if (rth->fl.fl4_dst != daddr ||
1392 rth->fl.fl4_src != skeys[i] ||
1393 rth->fl.oif != ikeys[k] ||
1394 rth->fl.iif != 0 ||
1395 rt_is_expired(rth) ||
1396 !net_eq(dev_net(rth->dst.dev), net)) {
1397 rthp = &rth->dst.rt_next;
1398 continue;
1399 }
1400
1401 if (rth->rt_dst != daddr ||
1402 rth->rt_src != saddr ||
1403 rth->dst.error ||
1404 rth->rt_gateway != old_gw ||
1405 rth->dst.dev != dev)
1406 break;
1407
1408 dst_hold(&rth->dst);
1409
1410 rt = dst_alloc(&ipv4_dst_ops);
1411 if (rt == NULL) {
1412 ip_rt_put(rth);
1413 return;
1414 }
1415
1416 /* Copy all the information. */
1417 *rt = *rth;
1418 rt->dst.__use = 1;
1419 atomic_set(&rt->dst.__refcnt, 1);
1420 rt->dst.child = NULL;
1421 if (rt->dst.dev)
1422 dev_hold(rt->dst.dev);
1423 if (rt->idev)
1424 in_dev_hold(rt->idev);
1425 rt->dst.obsolete = -1;
1426 rt->dst.lastuse = jiffies;
1427 rt->dst.path = &rt->dst;
1428 rt->dst.neighbour = NULL;
1429 rt->dst.hh = NULL;
1430 #ifdef CONFIG_XFRM
1431 rt->dst.xfrm = NULL;
1432 #endif
1433 rt->rt_genid = rt_genid(net);
1434 rt->rt_flags |= RTCF_REDIRECTED;
1435
1436 /* Gateway is different ... */
1437 rt->rt_gateway = new_gw;
1438
1439 /* Redirect received -> path was valid */
1440 dst_confirm(&rth->dst);
1441
1442 if (rt->peer)
1443 atomic_inc(&rt->peer->refcnt);
1444
1445 if (arp_bind_neighbour(&rt->dst) ||
1446 !(rt->dst.neighbour->nud_state &
1447 NUD_VALID)) {
1448 if (rt->dst.neighbour)
1449 neigh_event_send(rt->dst.neighbour, NULL);
1450 ip_rt_put(rth);
1451 rt_drop(rt);
1452 goto do_next;
1453 }
1454
1455 netevent.old = &rth->dst;
1456 netevent.new = &rt->dst;
1457 call_netevent_notifiers(NETEVENT_REDIRECT,
1458 &netevent);
1459
1460 rt_del(hash, rth);
1461 if (!rt_intern_hash(hash, rt, &rt, NULL, rt->fl.oif))
1462 ip_rt_put(rt);
1463 goto do_next;
1464 }
1465 do_next:
1466 ;
1467 }
1468 }
1469 return;
1470
1471 reject_redirect:
1472 #ifdef CONFIG_IP_ROUTE_VERBOSE
1473 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1474 printk(KERN_INFO "Redirect from %pI4 on %s about %pI4 ignored.\n"
1475 " Advised path = %pI4 -> %pI4\n",
1476 &old_gw, dev->name, &new_gw,
1477 &saddr, &daddr);
1478 #endif
1479 ;
1480 }
1481
1482 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1483 {
1484 struct rtable *rt = (struct rtable *)dst;
1485 struct dst_entry *ret = dst;
1486
1487 if (rt) {
1488 if (dst->obsolete > 0) {
1489 ip_rt_put(rt);
1490 ret = NULL;
1491 } else if ((rt->rt_flags & RTCF_REDIRECTED) ||
1492 (rt->dst.expires &&
1493 time_after_eq(jiffies, rt->dst.expires))) {
1494 unsigned hash = rt_hash(rt->fl.fl4_dst, rt->fl.fl4_src,
1495 rt->fl.oif,
1496 rt_genid(dev_net(dst->dev)));
1497 #if RT_CACHE_DEBUG >= 1
1498 printk(KERN_DEBUG "ipv4_negative_advice: redirect to %pI4/%02x dropped\n",
1499 &rt->rt_dst, rt->fl.fl4_tos);
1500 #endif
1501 rt_del(hash, rt);
1502 ret = NULL;
1503 }
1504 }
1505 return ret;
1506 }
1507
1508 /*
1509 * Algorithm:
1510 * 1. The first ip_rt_redirect_number redirects are sent
1511 * with exponential backoff, then we stop sending them at all,
1512 * assuming that the host ignores our redirects.
1513 * 2. If we did not see packets requiring redirects
1514 * during ip_rt_redirect_silence, we assume that the host
1515 * forgot redirected route and start to send redirects again.
1516 *
1517 * This algorithm is much cheaper and more intelligent than dumb load limiting
1518 * in icmp.c.
1519 *
1520 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1521 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1522 */
1523
1524 void ip_rt_send_redirect(struct sk_buff *skb)
1525 {
1526 struct rtable *rt = skb_rtable(skb);
1527 struct in_device *in_dev;
1528 int log_martians;
1529
1530 rcu_read_lock();
1531 in_dev = __in_dev_get_rcu(rt->dst.dev);
1532 if (!in_dev || !IN_DEV_TX_REDIRECTS(in_dev)) {
1533 rcu_read_unlock();
1534 return;
1535 }
1536 log_martians = IN_DEV_LOG_MARTIANS(in_dev);
1537 rcu_read_unlock();
1538
1539 /* No redirected packets during ip_rt_redirect_silence;
1540 * reset the algorithm.
1541 */
1542 if (time_after(jiffies, rt->dst.rate_last + ip_rt_redirect_silence))
1543 rt->dst.rate_tokens = 0;
1544
1545 /* Too many ignored redirects; do not send anything
1546 * set dst.rate_last to the last seen redirected packet.
1547 */
1548 if (rt->dst.rate_tokens >= ip_rt_redirect_number) {
1549 rt->dst.rate_last = jiffies;
1550 return;
1551 }
1552
1553 /* Check for load limit; set rate_last to the latest sent
1554 * redirect.
1555 */
1556 if (rt->dst.rate_tokens == 0 ||
1557 time_after(jiffies,
1558 (rt->dst.rate_last +
1559 (ip_rt_redirect_load << rt->dst.rate_tokens)))) {
1560 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1561 rt->dst.rate_last = jiffies;
1562 ++rt->dst.rate_tokens;
1563 #ifdef CONFIG_IP_ROUTE_VERBOSE
1564 if (log_martians &&
1565 rt->dst.rate_tokens == ip_rt_redirect_number &&
1566 net_ratelimit())
1567 printk(KERN_WARNING "host %pI4/if%d ignores redirects for %pI4 to %pI4.\n",
1568 &rt->rt_src, rt->rt_iif,
1569 &rt->rt_dst, &rt->rt_gateway);
1570 #endif
1571 }
1572 }
1573
1574 static int ip_error(struct sk_buff *skb)
1575 {
1576 struct rtable *rt = skb_rtable(skb);
1577 unsigned long now;
1578 int code;
1579
1580 switch (rt->dst.error) {
1581 case EINVAL:
1582 default:
1583 goto out;
1584 case EHOSTUNREACH:
1585 code = ICMP_HOST_UNREACH;
1586 break;
1587 case ENETUNREACH:
1588 code = ICMP_NET_UNREACH;
1589 IP_INC_STATS_BH(dev_net(rt->dst.dev),
1590 IPSTATS_MIB_INNOROUTES);
1591 break;
1592 case EACCES:
1593 code = ICMP_PKT_FILTERED;
1594 break;
1595 }
1596
1597 now = jiffies;
1598 rt->dst.rate_tokens += now - rt->dst.rate_last;
1599 if (rt->dst.rate_tokens > ip_rt_error_burst)
1600 rt->dst.rate_tokens = ip_rt_error_burst;
1601 rt->dst.rate_last = now;
1602 if (rt->dst.rate_tokens >= ip_rt_error_cost) {
1603 rt->dst.rate_tokens -= ip_rt_error_cost;
1604 icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1605 }
1606
1607 out: kfree_skb(skb);
1608 return 0;
1609 }
1610
1611 /*
1612 * The last two values are not from the RFC but
1613 * are needed for AMPRnet AX.25 paths.
1614 */
1615
1616 static const unsigned short mtu_plateau[] =
1617 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1618
1619 static inline unsigned short guess_mtu(unsigned short old_mtu)
1620 {
1621 int i;
1622
1623 for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++)
1624 if (old_mtu > mtu_plateau[i])
1625 return mtu_plateau[i];
1626 return 68;
1627 }
1628
1629 unsigned short ip_rt_frag_needed(struct net *net, struct iphdr *iph,
1630 unsigned short new_mtu,
1631 struct net_device *dev)
1632 {
1633 int i, k;
1634 unsigned short old_mtu = ntohs(iph->tot_len);
1635 struct rtable *rth;
1636 int ikeys[2] = { dev->ifindex, 0 };
1637 __be32 skeys[2] = { iph->saddr, 0, };
1638 __be32 daddr = iph->daddr;
1639 unsigned short est_mtu = 0;
1640
1641 for (k = 0; k < 2; k++) {
1642 for (i = 0; i < 2; i++) {
1643 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k],
1644 rt_genid(net));
1645
1646 rcu_read_lock();
1647 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
1648 rth = rcu_dereference(rth->dst.rt_next)) {
1649 unsigned short mtu = new_mtu;
1650
1651 if (rth->fl.fl4_dst != daddr ||
1652 rth->fl.fl4_src != skeys[i] ||
1653 rth->rt_dst != daddr ||
1654 rth->rt_src != iph->saddr ||
1655 rth->fl.oif != ikeys[k] ||
1656 rth->fl.iif != 0 ||
1657 dst_metric_locked(&rth->dst, RTAX_MTU) ||
1658 !net_eq(dev_net(rth->dst.dev), net) ||
1659 rt_is_expired(rth))
1660 continue;
1661
1662 if (new_mtu < 68 || new_mtu >= old_mtu) {
1663
1664 /* BSD 4.2 compatibility hack :-( */
1665 if (mtu == 0 &&
1666 old_mtu >= dst_mtu(&rth->dst) &&
1667 old_mtu >= 68 + (iph->ihl << 2))
1668 old_mtu -= iph->ihl << 2;
1669
1670 mtu = guess_mtu(old_mtu);
1671 }
1672 if (mtu <= dst_mtu(&rth->dst)) {
1673 if (mtu < dst_mtu(&rth->dst)) {
1674 dst_confirm(&rth->dst);
1675 if (mtu < ip_rt_min_pmtu) {
1676 mtu = ip_rt_min_pmtu;
1677 rth->dst.metrics[RTAX_LOCK-1] |=
1678 (1 << RTAX_MTU);
1679 }
1680 rth->dst.metrics[RTAX_MTU-1] = mtu;
1681 dst_set_expires(&rth->dst,
1682 ip_rt_mtu_expires);
1683 }
1684 est_mtu = mtu;
1685 }
1686 }
1687 rcu_read_unlock();
1688 }
1689 }
1690 return est_mtu ? : new_mtu;
1691 }
1692
1693 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1694 {
1695 if (dst_mtu(dst) > mtu && mtu >= 68 &&
1696 !(dst_metric_locked(dst, RTAX_MTU))) {
1697 if (mtu < ip_rt_min_pmtu) {
1698 mtu = ip_rt_min_pmtu;
1699 dst->metrics[RTAX_LOCK-1] |= (1 << RTAX_MTU);
1700 }
1701 dst->metrics[RTAX_MTU-1] = mtu;
1702 dst_set_expires(dst, ip_rt_mtu_expires);
1703 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
1704 }
1705 }
1706
1707 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1708 {
1709 if (rt_is_expired((struct rtable *)dst))
1710 return NULL;
1711 return dst;
1712 }
1713
1714 static void ipv4_dst_destroy(struct dst_entry *dst)
1715 {
1716 struct rtable *rt = (struct rtable *) dst;
1717 struct inet_peer *peer = rt->peer;
1718 struct in_device *idev = rt->idev;
1719
1720 if (peer) {
1721 rt->peer = NULL;
1722 inet_putpeer(peer);
1723 }
1724
1725 if (idev) {
1726 rt->idev = NULL;
1727 in_dev_put(idev);
1728 }
1729 }
1730
1731 static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
1732 int how)
1733 {
1734 struct rtable *rt = (struct rtable *) dst;
1735 struct in_device *idev = rt->idev;
1736 if (dev != dev_net(dev)->loopback_dev && idev && idev->dev == dev) {
1737 struct in_device *loopback_idev =
1738 in_dev_get(dev_net(dev)->loopback_dev);
1739 if (loopback_idev) {
1740 rt->idev = loopback_idev;
1741 in_dev_put(idev);
1742 }
1743 }
1744 }
1745
1746 static void ipv4_link_failure(struct sk_buff *skb)
1747 {
1748 struct rtable *rt;
1749
1750 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1751
1752 rt = skb_rtable(skb);
1753 if (rt)
1754 dst_set_expires(&rt->dst, 0);
1755 }
1756
1757 static int ip_rt_bug(struct sk_buff *skb)
1758 {
1759 printk(KERN_DEBUG "ip_rt_bug: %pI4 -> %pI4, %s\n",
1760 &ip_hdr(skb)->saddr, &ip_hdr(skb)->daddr,
1761 skb->dev ? skb->dev->name : "?");
1762 kfree_skb(skb);
1763 return 0;
1764 }
1765
1766 /*
1767 We do not cache source address of outgoing interface,
1768 because it is used only by IP RR, TS and SRR options,
1769 so that it out of fast path.
1770
1771 BTW remember: "addr" is allowed to be not aligned
1772 in IP options!
1773 */
1774
1775 void ip_rt_get_source(u8 *addr, struct rtable *rt)
1776 {
1777 __be32 src;
1778 struct fib_result res;
1779
1780 if (rt->fl.iif == 0)
1781 src = rt->rt_src;
1782 else if (fib_lookup(dev_net(rt->dst.dev), &rt->fl, &res) == 0) {
1783 src = FIB_RES_PREFSRC(res);
1784 fib_res_put(&res);
1785 } else
1786 src = inet_select_addr(rt->dst.dev, rt->rt_gateway,
1787 RT_SCOPE_UNIVERSE);
1788 memcpy(addr, &src, 4);
1789 }
1790
1791 #ifdef CONFIG_NET_CLS_ROUTE
1792 static void set_class_tag(struct rtable *rt, u32 tag)
1793 {
1794 if (!(rt->dst.tclassid & 0xFFFF))
1795 rt->dst.tclassid |= tag & 0xFFFF;
1796 if (!(rt->dst.tclassid & 0xFFFF0000))
1797 rt->dst.tclassid |= tag & 0xFFFF0000;
1798 }
1799 #endif
1800
1801 static void rt_set_nexthop(struct rtable *rt, struct fib_result *res, u32 itag)
1802 {
1803 struct fib_info *fi = res->fi;
1804
1805 if (fi) {
1806 if (FIB_RES_GW(*res) &&
1807 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1808 rt->rt_gateway = FIB_RES_GW(*res);
1809 memcpy(rt->dst.metrics, fi->fib_metrics,
1810 sizeof(rt->dst.metrics));
1811 if (fi->fib_mtu == 0) {
1812 rt->dst.metrics[RTAX_MTU-1] = rt->dst.dev->mtu;
1813 if (dst_metric_locked(&rt->dst, RTAX_MTU) &&
1814 rt->rt_gateway != rt->rt_dst &&
1815 rt->dst.dev->mtu > 576)
1816 rt->dst.metrics[RTAX_MTU-1] = 576;
1817 }
1818 #ifdef CONFIG_NET_CLS_ROUTE
1819 rt->dst.tclassid = FIB_RES_NH(*res).nh_tclassid;
1820 #endif
1821 } else
1822 rt->dst.metrics[RTAX_MTU-1]= rt->dst.dev->mtu;
1823
1824 if (dst_metric(&rt->dst, RTAX_HOPLIMIT) == 0)
1825 rt->dst.metrics[RTAX_HOPLIMIT-1] = sysctl_ip_default_ttl;
1826 if (dst_mtu(&rt->dst) > IP_MAX_MTU)
1827 rt->dst.metrics[RTAX_MTU-1] = IP_MAX_MTU;
1828 if (dst_metric(&rt->dst, RTAX_ADVMSS) == 0)
1829 rt->dst.metrics[RTAX_ADVMSS-1] = max_t(unsigned int, rt->dst.dev->mtu - 40,
1830 ip_rt_min_advmss);
1831 if (dst_metric(&rt->dst, RTAX_ADVMSS) > 65535 - 40)
1832 rt->dst.metrics[RTAX_ADVMSS-1] = 65535 - 40;
1833
1834 #ifdef CONFIG_NET_CLS_ROUTE
1835 #ifdef CONFIG_IP_MULTIPLE_TABLES
1836 set_class_tag(rt, fib_rules_tclass(res));
1837 #endif
1838 set_class_tag(rt, itag);
1839 #endif
1840 rt->rt_type = res->type;
1841 }
1842
1843 /* called in rcu_read_lock() section */
1844 static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1845 u8 tos, struct net_device *dev, int our)
1846 {
1847 unsigned int hash;
1848 struct rtable *rth;
1849 __be32 spec_dst;
1850 struct in_device *in_dev = __in_dev_get_rcu(dev);
1851 u32 itag = 0;
1852 int err;
1853
1854 /* Primary sanity checks. */
1855
1856 if (in_dev == NULL)
1857 return -EINVAL;
1858
1859 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1860 ipv4_is_loopback(saddr) || skb->protocol != htons(ETH_P_IP))
1861 goto e_inval;
1862
1863 if (ipv4_is_zeronet(saddr)) {
1864 if (!ipv4_is_local_multicast(daddr))
1865 goto e_inval;
1866 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1867 } else {
1868 err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst,
1869 &itag, 0);
1870 if (err < 0)
1871 goto e_err;
1872 }
1873 rth = dst_alloc(&ipv4_dst_ops);
1874 if (!rth)
1875 goto e_nobufs;
1876
1877 rth->dst.output = ip_rt_bug;
1878 rth->dst.obsolete = -1;
1879
1880 atomic_set(&rth->dst.__refcnt, 1);
1881 rth->dst.flags= DST_HOST;
1882 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1883 rth->dst.flags |= DST_NOPOLICY;
1884 rth->fl.fl4_dst = daddr;
1885 rth->rt_dst = daddr;
1886 rth->fl.fl4_tos = tos;
1887 rth->fl.mark = skb->mark;
1888 rth->fl.fl4_src = saddr;
1889 rth->rt_src = saddr;
1890 #ifdef CONFIG_NET_CLS_ROUTE
1891 rth->dst.tclassid = itag;
1892 #endif
1893 rth->rt_iif =
1894 rth->fl.iif = dev->ifindex;
1895 rth->dst.dev = init_net.loopback_dev;
1896 dev_hold(rth->dst.dev);
1897 rth->idev = in_dev_get(rth->dst.dev);
1898 rth->fl.oif = 0;
1899 rth->rt_gateway = daddr;
1900 rth->rt_spec_dst= spec_dst;
1901 rth->rt_genid = rt_genid(dev_net(dev));
1902 rth->rt_flags = RTCF_MULTICAST;
1903 rth->rt_type = RTN_MULTICAST;
1904 if (our) {
1905 rth->dst.input= ip_local_deliver;
1906 rth->rt_flags |= RTCF_LOCAL;
1907 }
1908
1909 #ifdef CONFIG_IP_MROUTE
1910 if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev))
1911 rth->dst.input = ip_mr_input;
1912 #endif
1913 RT_CACHE_STAT_INC(in_slow_mc);
1914
1915 hash = rt_hash(daddr, saddr, dev->ifindex, rt_genid(dev_net(dev)));
1916 return rt_intern_hash(hash, rth, NULL, skb, dev->ifindex);
1917
1918 e_nobufs:
1919 return -ENOBUFS;
1920 e_inval:
1921 return -EINVAL;
1922 e_err:
1923 return err;
1924 }
1925
1926
1927 static void ip_handle_martian_source(struct net_device *dev,
1928 struct in_device *in_dev,
1929 struct sk_buff *skb,
1930 __be32 daddr,
1931 __be32 saddr)
1932 {
1933 RT_CACHE_STAT_INC(in_martian_src);
1934 #ifdef CONFIG_IP_ROUTE_VERBOSE
1935 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
1936 /*
1937 * RFC1812 recommendation, if source is martian,
1938 * the only hint is MAC header.
1939 */
1940 printk(KERN_WARNING "martian source %pI4 from %pI4, on dev %s\n",
1941 &daddr, &saddr, dev->name);
1942 if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
1943 int i;
1944 const unsigned char *p = skb_mac_header(skb);
1945 printk(KERN_WARNING "ll header: ");
1946 for (i = 0; i < dev->hard_header_len; i++, p++) {
1947 printk("%02x", *p);
1948 if (i < (dev->hard_header_len - 1))
1949 printk(":");
1950 }
1951 printk("\n");
1952 }
1953 }
1954 #endif
1955 }
1956
1957 /* called in rcu_read_lock() section */
1958 static int __mkroute_input(struct sk_buff *skb,
1959 struct fib_result *res,
1960 struct in_device *in_dev,
1961 __be32 daddr, __be32 saddr, u32 tos,
1962 struct rtable **result)
1963 {
1964 struct rtable *rth;
1965 int err;
1966 struct in_device *out_dev;
1967 unsigned int flags = 0;
1968 __be32 spec_dst;
1969 u32 itag;
1970
1971 /* get a working reference to the output device */
1972 out_dev = __in_dev_get_rcu(FIB_RES_DEV(*res));
1973 if (out_dev == NULL) {
1974 if (net_ratelimit())
1975 printk(KERN_CRIT "Bug in ip_route_input" \
1976 "_slow(). Please, report\n");
1977 return -EINVAL;
1978 }
1979
1980
1981 err = fib_validate_source(saddr, daddr, tos, FIB_RES_OIF(*res),
1982 in_dev->dev, &spec_dst, &itag, skb->mark);
1983 if (err < 0) {
1984 ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
1985 saddr);
1986
1987 goto cleanup;
1988 }
1989
1990 if (err)
1991 flags |= RTCF_DIRECTSRC;
1992
1993 if (out_dev == in_dev && err &&
1994 (IN_DEV_SHARED_MEDIA(out_dev) ||
1995 inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
1996 flags |= RTCF_DOREDIRECT;
1997
1998 if (skb->protocol != htons(ETH_P_IP)) {
1999 /* Not IP (i.e. ARP). Do not create route, if it is
2000 * invalid for proxy arp. DNAT routes are always valid.
2001 *
2002 * Proxy arp feature have been extended to allow, ARP
2003 * replies back to the same interface, to support
2004 * Private VLAN switch technologies. See arp.c.
2005 */
2006 if (out_dev == in_dev &&
2007 IN_DEV_PROXY_ARP_PVLAN(in_dev) == 0) {
2008 err = -EINVAL;
2009 goto cleanup;
2010 }
2011 }
2012
2013
2014 rth = dst_alloc(&ipv4_dst_ops);
2015 if (!rth) {
2016 err = -ENOBUFS;
2017 goto cleanup;
2018 }
2019
2020 atomic_set(&rth->dst.__refcnt, 1);
2021 rth->dst.flags= DST_HOST;
2022 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2023 rth->dst.flags |= DST_NOPOLICY;
2024 if (IN_DEV_CONF_GET(out_dev, NOXFRM))
2025 rth->dst.flags |= DST_NOXFRM;
2026 rth->fl.fl4_dst = daddr;
2027 rth->rt_dst = daddr;
2028 rth->fl.fl4_tos = tos;
2029 rth->fl.mark = skb->mark;
2030 rth->fl.fl4_src = saddr;
2031 rth->rt_src = saddr;
2032 rth->rt_gateway = daddr;
2033 rth->rt_iif =
2034 rth->fl.iif = in_dev->dev->ifindex;
2035 rth->dst.dev = (out_dev)->dev;
2036 dev_hold(rth->dst.dev);
2037 rth->idev = in_dev_get(rth->dst.dev);
2038 rth->fl.oif = 0;
2039 rth->rt_spec_dst= spec_dst;
2040
2041 rth->dst.obsolete = -1;
2042 rth->dst.input = ip_forward;
2043 rth->dst.output = ip_output;
2044 rth->rt_genid = rt_genid(dev_net(rth->dst.dev));
2045
2046 rt_set_nexthop(rth, res, itag);
2047
2048 rth->rt_flags = flags;
2049
2050 *result = rth;
2051 err = 0;
2052 cleanup:
2053 return err;
2054 }
2055
2056 static int ip_mkroute_input(struct sk_buff *skb,
2057 struct fib_result *res,
2058 const struct flowi *fl,
2059 struct in_device *in_dev,
2060 __be32 daddr, __be32 saddr, u32 tos)
2061 {
2062 struct rtable* rth = NULL;
2063 int err;
2064 unsigned hash;
2065
2066 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2067 if (res->fi && res->fi->fib_nhs > 1 && fl->oif == 0)
2068 fib_select_multipath(fl, res);
2069 #endif
2070
2071 /* create a routing cache entry */
2072 err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
2073 if (err)
2074 return err;
2075
2076 /* put it into the cache */
2077 hash = rt_hash(daddr, saddr, fl->iif,
2078 rt_genid(dev_net(rth->dst.dev)));
2079 return rt_intern_hash(hash, rth, NULL, skb, fl->iif);
2080 }
2081
2082 /*
2083 * NOTE. We drop all the packets that has local source
2084 * addresses, because every properly looped back packet
2085 * must have correct destination already attached by output routine.
2086 *
2087 * Such approach solves two big problems:
2088 * 1. Not simplex devices are handled properly.
2089 * 2. IP spoofing attempts are filtered with 100% of guarantee.
2090 */
2091
2092 static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2093 u8 tos, struct net_device *dev)
2094 {
2095 struct fib_result res;
2096 struct in_device *in_dev = __in_dev_get_rcu(dev);
2097 struct flowi fl = { .nl_u = { .ip4_u =
2098 { .daddr = daddr,
2099 .saddr = saddr,
2100 .tos = tos,
2101 .scope = RT_SCOPE_UNIVERSE,
2102 } },
2103 .mark = skb->mark,
2104 .iif = dev->ifindex };
2105 unsigned flags = 0;
2106 u32 itag = 0;
2107 struct rtable * rth;
2108 unsigned hash;
2109 __be32 spec_dst;
2110 int err = -EINVAL;
2111 int free_res = 0;
2112 struct net * net = dev_net(dev);
2113
2114 /* IP on this device is disabled. */
2115
2116 if (!in_dev)
2117 goto out;
2118
2119 /* Check for the most weird martians, which can be not detected
2120 by fib_lookup.
2121 */
2122
2123 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
2124 ipv4_is_loopback(saddr))
2125 goto martian_source;
2126
2127 if (daddr == htonl(0xFFFFFFFF) || (saddr == 0 && daddr == 0))
2128 goto brd_input;
2129
2130 /* Accept zero addresses only to limited broadcast;
2131 * I even do not know to fix it or not. Waiting for complains :-)
2132 */
2133 if (ipv4_is_zeronet(saddr))
2134 goto martian_source;
2135
2136 if (ipv4_is_lbcast(daddr) || ipv4_is_zeronet(daddr) ||
2137 ipv4_is_loopback(daddr))
2138 goto martian_destination;
2139
2140 /*
2141 * Now we are ready to route packet.
2142 */
2143 if ((err = fib_lookup(net, &fl, &res)) != 0) {
2144 if (!IN_DEV_FORWARD(in_dev))
2145 goto e_hostunreach;
2146 goto no_route;
2147 }
2148 free_res = 1;
2149
2150 RT_CACHE_STAT_INC(in_slow_tot);
2151
2152 if (res.type == RTN_BROADCAST)
2153 goto brd_input;
2154
2155 if (res.type == RTN_LOCAL) {
2156 err = fib_validate_source(saddr, daddr, tos,
2157 net->loopback_dev->ifindex,
2158 dev, &spec_dst, &itag, skb->mark);
2159 if (err < 0)
2160 goto martian_source_keep_err;
2161 if (err)
2162 flags |= RTCF_DIRECTSRC;
2163 spec_dst = daddr;
2164 goto local_input;
2165 }
2166
2167 if (!IN_DEV_FORWARD(in_dev))
2168 goto e_hostunreach;
2169 if (res.type != RTN_UNICAST)
2170 goto martian_destination;
2171
2172 err = ip_mkroute_input(skb, &res, &fl, in_dev, daddr, saddr, tos);
2173 done:
2174 if (free_res)
2175 fib_res_put(&res);
2176 out: return err;
2177
2178 brd_input:
2179 if (skb->protocol != htons(ETH_P_IP))
2180 goto e_inval;
2181
2182 if (ipv4_is_zeronet(saddr))
2183 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
2184 else {
2185 err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst,
2186 &itag, skb->mark);
2187 if (err < 0)
2188 goto martian_source_keep_err;
2189 if (err)
2190 flags |= RTCF_DIRECTSRC;
2191 }
2192 flags |= RTCF_BROADCAST;
2193 res.type = RTN_BROADCAST;
2194 RT_CACHE_STAT_INC(in_brd);
2195
2196 local_input:
2197 rth = dst_alloc(&ipv4_dst_ops);
2198 if (!rth)
2199 goto e_nobufs;
2200
2201 rth->dst.output= ip_rt_bug;
2202 rth->dst.obsolete = -1;
2203 rth->rt_genid = rt_genid(net);
2204
2205 atomic_set(&rth->dst.__refcnt, 1);
2206 rth->dst.flags= DST_HOST;
2207 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2208 rth->dst.flags |= DST_NOPOLICY;
2209 rth->fl.fl4_dst = daddr;
2210 rth->rt_dst = daddr;
2211 rth->fl.fl4_tos = tos;
2212 rth->fl.mark = skb->mark;
2213 rth->fl.fl4_src = saddr;
2214 rth->rt_src = saddr;
2215 #ifdef CONFIG_NET_CLS_ROUTE
2216 rth->dst.tclassid = itag;
2217 #endif
2218 rth->rt_iif =
2219 rth->fl.iif = dev->ifindex;
2220 rth->dst.dev = net->loopback_dev;
2221 dev_hold(rth->dst.dev);
2222 rth->idev = in_dev_get(rth->dst.dev);
2223 rth->rt_gateway = daddr;
2224 rth->rt_spec_dst= spec_dst;
2225 rth->dst.input= ip_local_deliver;
2226 rth->rt_flags = flags|RTCF_LOCAL;
2227 if (res.type == RTN_UNREACHABLE) {
2228 rth->dst.input= ip_error;
2229 rth->dst.error= -err;
2230 rth->rt_flags &= ~RTCF_LOCAL;
2231 }
2232 rth->rt_type = res.type;
2233 hash = rt_hash(daddr, saddr, fl.iif, rt_genid(net));
2234 err = rt_intern_hash(hash, rth, NULL, skb, fl.iif);
2235 goto done;
2236
2237 no_route:
2238 RT_CACHE_STAT_INC(in_no_route);
2239 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
2240 res.type = RTN_UNREACHABLE;
2241 if (err == -ESRCH)
2242 err = -ENETUNREACH;
2243 goto local_input;
2244
2245 /*
2246 * Do not cache martian addresses: they should be logged (RFC1812)
2247 */
2248 martian_destination:
2249 RT_CACHE_STAT_INC(in_martian_dst);
2250 #ifdef CONFIG_IP_ROUTE_VERBOSE
2251 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
2252 printk(KERN_WARNING "martian destination %pI4 from %pI4, dev %s\n",
2253 &daddr, &saddr, dev->name);
2254 #endif
2255
2256 e_hostunreach:
2257 err = -EHOSTUNREACH;
2258 goto done;
2259
2260 e_inval:
2261 err = -EINVAL;
2262 goto done;
2263
2264 e_nobufs:
2265 err = -ENOBUFS;
2266 goto done;
2267
2268 martian_source:
2269 err = -EINVAL;
2270 martian_source_keep_err:
2271 ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
2272 goto done;
2273 }
2274
2275 int ip_route_input_common(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2276 u8 tos, struct net_device *dev, bool noref)
2277 {
2278 struct rtable * rth;
2279 unsigned hash;
2280 int iif = dev->ifindex;
2281 struct net *net;
2282 int res;
2283
2284 net = dev_net(dev);
2285
2286 rcu_read_lock();
2287
2288 if (!rt_caching(net))
2289 goto skip_cache;
2290
2291 tos &= IPTOS_RT_MASK;
2292 hash = rt_hash(daddr, saddr, iif, rt_genid(net));
2293
2294 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2295 rth = rcu_dereference(rth->dst.rt_next)) {
2296 if ((((__force u32)rth->fl.fl4_dst ^ (__force u32)daddr) |
2297 ((__force u32)rth->fl.fl4_src ^ (__force u32)saddr) |
2298 (rth->fl.iif ^ iif) |
2299 rth->fl.oif |
2300 (rth->fl.fl4_tos ^ tos)) == 0 &&
2301 rth->fl.mark == skb->mark &&
2302 net_eq(dev_net(rth->dst.dev), net) &&
2303 !rt_is_expired(rth)) {
2304 if (noref) {
2305 dst_use_noref(&rth->dst, jiffies);
2306 skb_dst_set_noref(skb, &rth->dst);
2307 } else {
2308 dst_use(&rth->dst, jiffies);
2309 skb_dst_set(skb, &rth->dst);
2310 }
2311 RT_CACHE_STAT_INC(in_hit);
2312 rcu_read_unlock();
2313 return 0;
2314 }
2315 RT_CACHE_STAT_INC(in_hlist_search);
2316 }
2317
2318 skip_cache:
2319 /* Multicast recognition logic is moved from route cache to here.
2320 The problem was that too many Ethernet cards have broken/missing
2321 hardware multicast filters :-( As result the host on multicasting
2322 network acquires a lot of useless route cache entries, sort of
2323 SDR messages from all the world. Now we try to get rid of them.
2324 Really, provided software IP multicast filter is organized
2325 reasonably (at least, hashed), it does not result in a slowdown
2326 comparing with route cache reject entries.
2327 Note, that multicast routers are not affected, because
2328 route cache entry is created eventually.
2329 */
2330 if (ipv4_is_multicast(daddr)) {
2331 struct in_device *in_dev = __in_dev_get_rcu(dev);
2332
2333 if (in_dev) {
2334 int our = ip_check_mc(in_dev, daddr, saddr,
2335 ip_hdr(skb)->protocol);
2336 if (our
2337 #ifdef CONFIG_IP_MROUTE
2338 ||
2339 (!ipv4_is_local_multicast(daddr) &&
2340 IN_DEV_MFORWARD(in_dev))
2341 #endif
2342 ) {
2343 int res = ip_route_input_mc(skb, daddr, saddr,
2344 tos, dev, our);
2345 rcu_read_unlock();
2346 return res;
2347 }
2348 }
2349 rcu_read_unlock();
2350 return -EINVAL;
2351 }
2352 res = ip_route_input_slow(skb, daddr, saddr, tos, dev);
2353 rcu_read_unlock();
2354 return res;
2355 }
2356 EXPORT_SYMBOL(ip_route_input_common);
2357
2358 static int __mkroute_output(struct rtable **result,
2359 struct fib_result *res,
2360 const struct flowi *fl,
2361 const struct flowi *oldflp,
2362 struct net_device *dev_out,
2363 unsigned flags)
2364 {
2365 struct rtable *rth;
2366 struct in_device *in_dev;
2367 u32 tos = RT_FL_TOS(oldflp);
2368 int err = 0;
2369
2370 if (ipv4_is_loopback(fl->fl4_src) && !(dev_out->flags&IFF_LOOPBACK))
2371 return -EINVAL;
2372
2373 if (fl->fl4_dst == htonl(0xFFFFFFFF))
2374 res->type = RTN_BROADCAST;
2375 else if (ipv4_is_multicast(fl->fl4_dst))
2376 res->type = RTN_MULTICAST;
2377 else if (ipv4_is_lbcast(fl->fl4_dst) || ipv4_is_zeronet(fl->fl4_dst))
2378 return -EINVAL;
2379
2380 if (dev_out->flags & IFF_LOOPBACK)
2381 flags |= RTCF_LOCAL;
2382
2383 /* get work reference to inet device */
2384 in_dev = in_dev_get(dev_out);
2385 if (!in_dev)
2386 return -EINVAL;
2387
2388 if (res->type == RTN_BROADCAST) {
2389 flags |= RTCF_BROADCAST | RTCF_LOCAL;
2390 if (res->fi) {
2391 fib_info_put(res->fi);
2392 res->fi = NULL;
2393 }
2394 } else if (res->type == RTN_MULTICAST) {
2395 flags |= RTCF_MULTICAST|RTCF_LOCAL;
2396 if (!ip_check_mc(in_dev, oldflp->fl4_dst, oldflp->fl4_src,
2397 oldflp->proto))
2398 flags &= ~RTCF_LOCAL;
2399 /* If multicast route do not exist use
2400 default one, but do not gateway in this case.
2401 Yes, it is hack.
2402 */
2403 if (res->fi && res->prefixlen < 4) {
2404 fib_info_put(res->fi);
2405 res->fi = NULL;
2406 }
2407 }
2408
2409
2410 rth = dst_alloc(&ipv4_dst_ops);
2411 if (!rth) {
2412 err = -ENOBUFS;
2413 goto cleanup;
2414 }
2415
2416 atomic_set(&rth->dst.__refcnt, 1);
2417 rth->dst.flags= DST_HOST;
2418 if (IN_DEV_CONF_GET(in_dev, NOXFRM))
2419 rth->dst.flags |= DST_NOXFRM;
2420 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2421 rth->dst.flags |= DST_NOPOLICY;
2422
2423 rth->fl.fl4_dst = oldflp->fl4_dst;
2424 rth->fl.fl4_tos = tos;
2425 rth->fl.fl4_src = oldflp->fl4_src;
2426 rth->fl.oif = oldflp->oif;
2427 rth->fl.mark = oldflp->mark;
2428 rth->rt_dst = fl->fl4_dst;
2429 rth->rt_src = fl->fl4_src;
2430 rth->rt_iif = oldflp->oif ? : dev_out->ifindex;
2431 /* get references to the devices that are to be hold by the routing
2432 cache entry */
2433 rth->dst.dev = dev_out;
2434 dev_hold(dev_out);
2435 rth->idev = in_dev_get(dev_out);
2436 rth->rt_gateway = fl->fl4_dst;
2437 rth->rt_spec_dst= fl->fl4_src;
2438
2439 rth->dst.output=ip_output;
2440 rth->dst.obsolete = -1;
2441 rth->rt_genid = rt_genid(dev_net(dev_out));
2442
2443 RT_CACHE_STAT_INC(out_slow_tot);
2444
2445 if (flags & RTCF_LOCAL) {
2446 rth->dst.input = ip_local_deliver;
2447 rth->rt_spec_dst = fl->fl4_dst;
2448 }
2449 if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2450 rth->rt_spec_dst = fl->fl4_src;
2451 if (flags & RTCF_LOCAL &&
2452 !(dev_out->flags & IFF_LOOPBACK)) {
2453 rth->dst.output = ip_mc_output;
2454 RT_CACHE_STAT_INC(out_slow_mc);
2455 }
2456 #ifdef CONFIG_IP_MROUTE
2457 if (res->type == RTN_MULTICAST) {
2458 if (IN_DEV_MFORWARD(in_dev) &&
2459 !ipv4_is_local_multicast(oldflp->fl4_dst)) {
2460 rth->dst.input = ip_mr_input;
2461 rth->dst.output = ip_mc_output;
2462 }
2463 }
2464 #endif
2465 }
2466
2467 rt_set_nexthop(rth, res, 0);
2468
2469 rth->rt_flags = flags;
2470
2471 *result = rth;
2472 cleanup:
2473 /* release work reference to inet device */
2474 in_dev_put(in_dev);
2475
2476 return err;
2477 }
2478
2479 static int ip_mkroute_output(struct rtable **rp,
2480 struct fib_result *res,
2481 const struct flowi *fl,
2482 const struct flowi *oldflp,
2483 struct net_device *dev_out,
2484 unsigned flags)
2485 {
2486 struct rtable *rth = NULL;
2487 int err = __mkroute_output(&rth, res, fl, oldflp, dev_out, flags);
2488 unsigned hash;
2489 if (err == 0) {
2490 hash = rt_hash(oldflp->fl4_dst, oldflp->fl4_src, oldflp->oif,
2491 rt_genid(dev_net(dev_out)));
2492 err = rt_intern_hash(hash, rth, rp, NULL, oldflp->oif);
2493 }
2494
2495 return err;
2496 }
2497
2498 /*
2499 * Major route resolver routine.
2500 */
2501
2502 static int ip_route_output_slow(struct net *net, struct rtable **rp,
2503 const struct flowi *oldflp)
2504 {
2505 u32 tos = RT_FL_TOS(oldflp);
2506 struct flowi fl = { .nl_u = { .ip4_u =
2507 { .daddr = oldflp->fl4_dst,
2508 .saddr = oldflp->fl4_src,
2509 .tos = tos & IPTOS_RT_MASK,
2510 .scope = ((tos & RTO_ONLINK) ?
2511 RT_SCOPE_LINK :
2512 RT_SCOPE_UNIVERSE),
2513 } },
2514 .mark = oldflp->mark,
2515 .iif = net->loopback_dev->ifindex,
2516 .oif = oldflp->oif };
2517 struct fib_result res;
2518 unsigned flags = 0;
2519 struct net_device *dev_out = NULL;
2520 int free_res = 0;
2521 int err;
2522
2523
2524 res.fi = NULL;
2525 #ifdef CONFIG_IP_MULTIPLE_TABLES
2526 res.r = NULL;
2527 #endif
2528
2529 if (oldflp->fl4_src) {
2530 err = -EINVAL;
2531 if (ipv4_is_multicast(oldflp->fl4_src) ||
2532 ipv4_is_lbcast(oldflp->fl4_src) ||
2533 ipv4_is_zeronet(oldflp->fl4_src))
2534 goto out;
2535
2536 /* I removed check for oif == dev_out->oif here.
2537 It was wrong for two reasons:
2538 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2539 is assigned to multiple interfaces.
2540 2. Moreover, we are allowed to send packets with saddr
2541 of another iface. --ANK
2542 */
2543
2544 if (oldflp->oif == 0 &&
2545 (ipv4_is_multicast(oldflp->fl4_dst) ||
2546 oldflp->fl4_dst == htonl(0xFFFFFFFF))) {
2547 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2548 dev_out = ip_dev_find(net, oldflp->fl4_src);
2549 if (dev_out == NULL)
2550 goto out;
2551
2552 /* Special hack: user can direct multicasts
2553 and limited broadcast via necessary interface
2554 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2555 This hack is not just for fun, it allows
2556 vic,vat and friends to work.
2557 They bind socket to loopback, set ttl to zero
2558 and expect that it will work.
2559 From the viewpoint of routing cache they are broken,
2560 because we are not allowed to build multicast path
2561 with loopback source addr (look, routing cache
2562 cannot know, that ttl is zero, so that packet
2563 will not leave this host and route is valid).
2564 Luckily, this hack is good workaround.
2565 */
2566
2567 fl.oif = dev_out->ifindex;
2568 goto make_route;
2569 }
2570
2571 if (!(oldflp->flags & FLOWI_FLAG_ANYSRC)) {
2572 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2573 dev_out = ip_dev_find(net, oldflp->fl4_src);
2574 if (dev_out == NULL)
2575 goto out;
2576 dev_put(dev_out);
2577 dev_out = NULL;
2578 }
2579 }
2580
2581
2582 if (oldflp->oif) {
2583 dev_out = dev_get_by_index(net, oldflp->oif);
2584 err = -ENODEV;
2585 if (dev_out == NULL)
2586 goto out;
2587
2588 /* RACE: Check return value of inet_select_addr instead. */
2589 if (__in_dev_get_rtnl(dev_out) == NULL) {
2590 dev_put(dev_out);
2591 goto out; /* Wrong error code */
2592 }
2593
2594 if (ipv4_is_local_multicast(oldflp->fl4_dst) ||
2595 oldflp->fl4_dst == htonl(0xFFFFFFFF)) {
2596 if (!fl.fl4_src)
2597 fl.fl4_src = inet_select_addr(dev_out, 0,
2598 RT_SCOPE_LINK);
2599 goto make_route;
2600 }
2601 if (!fl.fl4_src) {
2602 if (ipv4_is_multicast(oldflp->fl4_dst))
2603 fl.fl4_src = inet_select_addr(dev_out, 0,
2604 fl.fl4_scope);
2605 else if (!oldflp->fl4_dst)
2606 fl.fl4_src = inet_select_addr(dev_out, 0,
2607 RT_SCOPE_HOST);
2608 }
2609 }
2610
2611 if (!fl.fl4_dst) {
2612 fl.fl4_dst = fl.fl4_src;
2613 if (!fl.fl4_dst)
2614 fl.fl4_dst = fl.fl4_src = htonl(INADDR_LOOPBACK);
2615 if (dev_out)
2616 dev_put(dev_out);
2617 dev_out = net->loopback_dev;
2618 dev_hold(dev_out);
2619 fl.oif = net->loopback_dev->ifindex;
2620 res.type = RTN_LOCAL;
2621 flags |= RTCF_LOCAL;
2622 goto make_route;
2623 }
2624
2625 if (fib_lookup(net, &fl, &res)) {
2626 res.fi = NULL;
2627 if (oldflp->oif) {
2628 /* Apparently, routing tables are wrong. Assume,
2629 that the destination is on link.
2630
2631 WHY? DW.
2632 Because we are allowed to send to iface
2633 even if it has NO routes and NO assigned
2634 addresses. When oif is specified, routing
2635 tables are looked up with only one purpose:
2636 to catch if destination is gatewayed, rather than
2637 direct. Moreover, if MSG_DONTROUTE is set,
2638 we send packet, ignoring both routing tables
2639 and ifaddr state. --ANK
2640
2641
2642 We could make it even if oif is unknown,
2643 likely IPv6, but we do not.
2644 */
2645
2646 if (fl.fl4_src == 0)
2647 fl.fl4_src = inet_select_addr(dev_out, 0,
2648 RT_SCOPE_LINK);
2649 res.type = RTN_UNICAST;
2650 goto make_route;
2651 }
2652 if (dev_out)
2653 dev_put(dev_out);
2654 err = -ENETUNREACH;
2655 goto out;
2656 }
2657 free_res = 1;
2658
2659 if (res.type == RTN_LOCAL) {
2660 if (!fl.fl4_src)
2661 fl.fl4_src = fl.fl4_dst;
2662 if (dev_out)
2663 dev_put(dev_out);
2664 dev_out = net->loopback_dev;
2665 dev_hold(dev_out);
2666 fl.oif = dev_out->ifindex;
2667 if (res.fi)
2668 fib_info_put(res.fi);
2669 res.fi = NULL;
2670 flags |= RTCF_LOCAL;
2671 goto make_route;
2672 }
2673
2674 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2675 if (res.fi->fib_nhs > 1 && fl.oif == 0)
2676 fib_select_multipath(&fl, &res);
2677 else
2678 #endif
2679 if (!res.prefixlen && res.type == RTN_UNICAST && !fl.oif)
2680 fib_select_default(net, &fl, &res);
2681
2682 if (!fl.fl4_src)
2683 fl.fl4_src = FIB_RES_PREFSRC(res);
2684
2685 if (dev_out)
2686 dev_put(dev_out);
2687 dev_out = FIB_RES_DEV(res);
2688 dev_hold(dev_out);
2689 fl.oif = dev_out->ifindex;
2690
2691
2692 make_route:
2693 err = ip_mkroute_output(rp, &res, &fl, oldflp, dev_out, flags);
2694
2695
2696 if (free_res)
2697 fib_res_put(&res);
2698 if (dev_out)
2699 dev_put(dev_out);
2700 out: return err;
2701 }
2702
2703 int __ip_route_output_key(struct net *net, struct rtable **rp,
2704 const struct flowi *flp)
2705 {
2706 unsigned hash;
2707 struct rtable *rth;
2708
2709 if (!rt_caching(net))
2710 goto slow_output;
2711
2712 hash = rt_hash(flp->fl4_dst, flp->fl4_src, flp->oif, rt_genid(net));
2713
2714 rcu_read_lock_bh();
2715 for (rth = rcu_dereference_bh(rt_hash_table[hash].chain); rth;
2716 rth = rcu_dereference_bh(rth->dst.rt_next)) {
2717 if (rth->fl.fl4_dst == flp->fl4_dst &&
2718 rth->fl.fl4_src == flp->fl4_src &&
2719 rth->fl.iif == 0 &&
2720 rth->fl.oif == flp->oif &&
2721 rth->fl.mark == flp->mark &&
2722 !((rth->fl.fl4_tos ^ flp->fl4_tos) &
2723 (IPTOS_RT_MASK | RTO_ONLINK)) &&
2724 net_eq(dev_net(rth->dst.dev), net) &&
2725 !rt_is_expired(rth)) {
2726 dst_use(&rth->dst, jiffies);
2727 RT_CACHE_STAT_INC(out_hit);
2728 rcu_read_unlock_bh();
2729 *rp = rth;
2730 return 0;
2731 }
2732 RT_CACHE_STAT_INC(out_hlist_search);
2733 }
2734 rcu_read_unlock_bh();
2735
2736 slow_output:
2737 return ip_route_output_slow(net, rp, flp);
2738 }
2739 EXPORT_SYMBOL_GPL(__ip_route_output_key);
2740
2741 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2742 {
2743 }
2744
2745 static struct dst_ops ipv4_dst_blackhole_ops = {
2746 .family = AF_INET,
2747 .protocol = cpu_to_be16(ETH_P_IP),
2748 .destroy = ipv4_dst_destroy,
2749 .check = ipv4_dst_check,
2750 .update_pmtu = ipv4_rt_blackhole_update_pmtu,
2751 .entries = ATOMIC_INIT(0),
2752 };
2753
2754
2755 static int ipv4_dst_blackhole(struct net *net, struct rtable **rp, struct flowi *flp)
2756 {
2757 struct rtable *ort = *rp;
2758 struct rtable *rt = (struct rtable *)
2759 dst_alloc(&ipv4_dst_blackhole_ops);
2760
2761 if (rt) {
2762 struct dst_entry *new = &rt->dst;
2763
2764 atomic_set(&new->__refcnt, 1);
2765 new->__use = 1;
2766 new->input = dst_discard;
2767 new->output = dst_discard;
2768 memcpy(new->metrics, ort->dst.metrics, RTAX_MAX*sizeof(u32));
2769
2770 new->dev = ort->dst.dev;
2771 if (new->dev)
2772 dev_hold(new->dev);
2773
2774 rt->fl = ort->fl;
2775
2776 rt->idev = ort->idev;
2777 if (rt->idev)
2778 in_dev_hold(rt->idev);
2779 rt->rt_genid = rt_genid(net);
2780 rt->rt_flags = ort->rt_flags;
2781 rt->rt_type = ort->rt_type;
2782 rt->rt_dst = ort->rt_dst;
2783 rt->rt_src = ort->rt_src;
2784 rt->rt_iif = ort->rt_iif;
2785 rt->rt_gateway = ort->rt_gateway;
2786 rt->rt_spec_dst = ort->rt_spec_dst;
2787 rt->peer = ort->peer;
2788 if (rt->peer)
2789 atomic_inc(&rt->peer->refcnt);
2790
2791 dst_free(new);
2792 }
2793
2794 dst_release(&(*rp)->dst);
2795 *rp = rt;
2796 return (rt ? 0 : -ENOMEM);
2797 }
2798
2799 int ip_route_output_flow(struct net *net, struct rtable **rp, struct flowi *flp,
2800 struct sock *sk, int flags)
2801 {
2802 int err;
2803
2804 if ((err = __ip_route_output_key(net, rp, flp)) != 0)
2805 return err;
2806
2807 if (flp->proto) {
2808 if (!flp->fl4_src)
2809 flp->fl4_src = (*rp)->rt_src;
2810 if (!flp->fl4_dst)
2811 flp->fl4_dst = (*rp)->rt_dst;
2812 err = __xfrm_lookup(net, (struct dst_entry **)rp, flp, sk,
2813 flags ? XFRM_LOOKUP_WAIT : 0);
2814 if (err == -EREMOTE)
2815 err = ipv4_dst_blackhole(net, rp, flp);
2816
2817 return err;
2818 }
2819
2820 return 0;
2821 }
2822 EXPORT_SYMBOL_GPL(ip_route_output_flow);
2823
2824 int ip_route_output_key(struct net *net, struct rtable **rp, struct flowi *flp)
2825 {
2826 return ip_route_output_flow(net, rp, flp, NULL, 0);
2827 }
2828 EXPORT_SYMBOL(ip_route_output_key);
2829
2830 static int rt_fill_info(struct net *net,
2831 struct sk_buff *skb, u32 pid, u32 seq, int event,
2832 int nowait, unsigned int flags)
2833 {
2834 struct rtable *rt = skb_rtable(skb);
2835 struct rtmsg *r;
2836 struct nlmsghdr *nlh;
2837 long expires;
2838 u32 id = 0, ts = 0, tsage = 0, error;
2839
2840 nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2841 if (nlh == NULL)
2842 return -EMSGSIZE;
2843
2844 r = nlmsg_data(nlh);
2845 r->rtm_family = AF_INET;
2846 r->rtm_dst_len = 32;
2847 r->rtm_src_len = 0;
2848 r->rtm_tos = rt->fl.fl4_tos;
2849 r->rtm_table = RT_TABLE_MAIN;
2850 NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN);
2851 r->rtm_type = rt->rt_type;
2852 r->rtm_scope = RT_SCOPE_UNIVERSE;
2853 r->rtm_protocol = RTPROT_UNSPEC;
2854 r->rtm_flags = (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2855 if (rt->rt_flags & RTCF_NOTIFY)
2856 r->rtm_flags |= RTM_F_NOTIFY;
2857
2858 NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst);
2859
2860 if (rt->fl.fl4_src) {
2861 r->rtm_src_len = 32;
2862 NLA_PUT_BE32(skb, RTA_SRC, rt->fl.fl4_src);
2863 }
2864 if (rt->dst.dev)
2865 NLA_PUT_U32(skb, RTA_OIF, rt->dst.dev->ifindex);
2866 #ifdef CONFIG_NET_CLS_ROUTE
2867 if (rt->dst.tclassid)
2868 NLA_PUT_U32(skb, RTA_FLOW, rt->dst.tclassid);
2869 #endif
2870 if (rt->fl.iif)
2871 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst);
2872 else if (rt->rt_src != rt->fl.fl4_src)
2873 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src);
2874
2875 if (rt->rt_dst != rt->rt_gateway)
2876 NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway);
2877
2878 if (rtnetlink_put_metrics(skb, rt->dst.metrics) < 0)
2879 goto nla_put_failure;
2880
2881 if (rt->fl.mark)
2882 NLA_PUT_BE32(skb, RTA_MARK, rt->fl.mark);
2883
2884 error = rt->dst.error;
2885 expires = rt->dst.expires ? rt->dst.expires - jiffies : 0;
2886 if (rt->peer) {
2887 inet_peer_refcheck(rt->peer);
2888 id = atomic_read(&rt->peer->ip_id_count) & 0xffff;
2889 if (rt->peer->tcp_ts_stamp) {
2890 ts = rt->peer->tcp_ts;
2891 tsage = get_seconds() - rt->peer->tcp_ts_stamp;
2892 }
2893 }
2894
2895 if (rt->fl.iif) {
2896 #ifdef CONFIG_IP_MROUTE
2897 __be32 dst = rt->rt_dst;
2898
2899 if (ipv4_is_multicast(dst) && !ipv4_is_local_multicast(dst) &&
2900 IPV4_DEVCONF_ALL(net, MC_FORWARDING)) {
2901 int err = ipmr_get_route(net, skb, r, nowait);
2902 if (err <= 0) {
2903 if (!nowait) {
2904 if (err == 0)
2905 return 0;
2906 goto nla_put_failure;
2907 } else {
2908 if (err == -EMSGSIZE)
2909 goto nla_put_failure;
2910 error = err;
2911 }
2912 }
2913 } else
2914 #endif
2915 NLA_PUT_U32(skb, RTA_IIF, rt->fl.iif);
2916 }
2917
2918 if (rtnl_put_cacheinfo(skb, &rt->dst, id, ts, tsage,
2919 expires, error) < 0)
2920 goto nla_put_failure;
2921
2922 return nlmsg_end(skb, nlh);
2923
2924 nla_put_failure:
2925 nlmsg_cancel(skb, nlh);
2926 return -EMSGSIZE;
2927 }
2928
2929 static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2930 {
2931 struct net *net = sock_net(in_skb->sk);
2932 struct rtmsg *rtm;
2933 struct nlattr *tb[RTA_MAX+1];
2934 struct rtable *rt = NULL;
2935 __be32 dst = 0;
2936 __be32 src = 0;
2937 u32 iif;
2938 int err;
2939 int mark;
2940 struct sk_buff *skb;
2941
2942 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2943 if (err < 0)
2944 goto errout;
2945
2946 rtm = nlmsg_data(nlh);
2947
2948 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2949 if (skb == NULL) {
2950 err = -ENOBUFS;
2951 goto errout;
2952 }
2953
2954 /* Reserve room for dummy headers, this skb can pass
2955 through good chunk of routing engine.
2956 */
2957 skb_reset_mac_header(skb);
2958 skb_reset_network_header(skb);
2959
2960 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2961 ip_hdr(skb)->protocol = IPPROTO_ICMP;
2962 skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2963
2964 src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
2965 dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
2966 iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
2967 mark = tb[RTA_MARK] ? nla_get_u32(tb[RTA_MARK]) : 0;
2968
2969 if (iif) {
2970 struct net_device *dev;
2971
2972 dev = __dev_get_by_index(net, iif);
2973 if (dev == NULL) {
2974 err = -ENODEV;
2975 goto errout_free;
2976 }
2977
2978 skb->protocol = htons(ETH_P_IP);
2979 skb->dev = dev;
2980 skb->mark = mark;
2981 local_bh_disable();
2982 err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
2983 local_bh_enable();
2984
2985 rt = skb_rtable(skb);
2986 if (err == 0 && rt->dst.error)
2987 err = -rt->dst.error;
2988 } else {
2989 struct flowi fl = {
2990 .nl_u = {
2991 .ip4_u = {
2992 .daddr = dst,
2993 .saddr = src,
2994 .tos = rtm->rtm_tos,
2995 },
2996 },
2997 .oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
2998 .mark = mark,
2999 };
3000 err = ip_route_output_key(net, &rt, &fl);
3001 }
3002
3003 if (err)
3004 goto errout_free;
3005
3006 skb_dst_set(skb, &rt->dst);
3007 if (rtm->rtm_flags & RTM_F_NOTIFY)
3008 rt->rt_flags |= RTCF_NOTIFY;
3009
3010 err = rt_fill_info(net, skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
3011 RTM_NEWROUTE, 0, 0);
3012 if (err <= 0)
3013 goto errout_free;
3014
3015 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid);
3016 errout:
3017 return err;
3018
3019 errout_free:
3020 kfree_skb(skb);
3021 goto errout;
3022 }
3023
3024 int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb)
3025 {
3026 struct rtable *rt;
3027 int h, s_h;
3028 int idx, s_idx;
3029 struct net *net;
3030
3031 net = sock_net(skb->sk);
3032
3033 s_h = cb->args[0];
3034 if (s_h < 0)
3035 s_h = 0;
3036 s_idx = idx = cb->args[1];
3037 for (h = s_h; h <= rt_hash_mask; h++, s_idx = 0) {
3038 if (!rt_hash_table[h].chain)
3039 continue;
3040 rcu_read_lock_bh();
3041 for (rt = rcu_dereference_bh(rt_hash_table[h].chain), idx = 0; rt;
3042 rt = rcu_dereference_bh(rt->dst.rt_next), idx++) {
3043 if (!net_eq(dev_net(rt->dst.dev), net) || idx < s_idx)
3044 continue;
3045 if (rt_is_expired(rt))
3046 continue;
3047 skb_dst_set_noref(skb, &rt->dst);
3048 if (rt_fill_info(net, skb, NETLINK_CB(cb->skb).pid,
3049 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
3050 1, NLM_F_MULTI) <= 0) {
3051 skb_dst_drop(skb);
3052 rcu_read_unlock_bh();
3053 goto done;
3054 }
3055 skb_dst_drop(skb);
3056 }
3057 rcu_read_unlock_bh();
3058 }
3059
3060 done:
3061 cb->args[0] = h;
3062 cb->args[1] = idx;
3063 return skb->len;
3064 }
3065
3066 void ip_rt_multicast_event(struct in_device *in_dev)
3067 {
3068 rt_cache_flush(dev_net(in_dev->dev), 0);
3069 }
3070
3071 #ifdef CONFIG_SYSCTL
3072 static int ipv4_sysctl_rtcache_flush(ctl_table *__ctl, int write,
3073 void __user *buffer,
3074 size_t *lenp, loff_t *ppos)
3075 {
3076 if (write) {
3077 int flush_delay;
3078 ctl_table ctl;
3079 struct net *net;
3080
3081 memcpy(&ctl, __ctl, sizeof(ctl));
3082 ctl.data = &flush_delay;
3083 proc_dointvec(&ctl, write, buffer, lenp, ppos);
3084
3085 net = (struct net *)__ctl->extra1;
3086 rt_cache_flush(net, flush_delay);
3087 return 0;
3088 }
3089
3090 return -EINVAL;
3091 }
3092
3093 static ctl_table ipv4_route_table[] = {
3094 {
3095 .procname = "gc_thresh",
3096 .data = &ipv4_dst_ops.gc_thresh,
3097 .maxlen = sizeof(int),
3098 .mode = 0644,
3099 .proc_handler = proc_dointvec,
3100 },
3101 {
3102 .procname = "max_size",
3103 .data = &ip_rt_max_size,
3104 .maxlen = sizeof(int),
3105 .mode = 0644,
3106 .proc_handler = proc_dointvec,
3107 },
3108 {
3109 /* Deprecated. Use gc_min_interval_ms */
3110
3111 .procname = "gc_min_interval",
3112 .data = &ip_rt_gc_min_interval,
3113 .maxlen = sizeof(int),
3114 .mode = 0644,
3115 .proc_handler = proc_dointvec_jiffies,
3116 },
3117 {
3118 .procname = "gc_min_interval_ms",
3119 .data = &ip_rt_gc_min_interval,
3120 .maxlen = sizeof(int),
3121 .mode = 0644,
3122 .proc_handler = proc_dointvec_ms_jiffies,
3123 },
3124 {
3125 .procname = "gc_timeout",
3126 .data = &ip_rt_gc_timeout,
3127 .maxlen = sizeof(int),
3128 .mode = 0644,
3129 .proc_handler = proc_dointvec_jiffies,
3130 },
3131 {
3132 .procname = "gc_interval",
3133 .data = &ip_rt_gc_interval,
3134 .maxlen = sizeof(int),
3135 .mode = 0644,
3136 .proc_handler = proc_dointvec_jiffies,
3137 },
3138 {
3139 .procname = "redirect_load",
3140 .data = &ip_rt_redirect_load,
3141 .maxlen = sizeof(int),
3142 .mode = 0644,
3143 .proc_handler = proc_dointvec,
3144 },
3145 {
3146 .procname = "redirect_number",
3147 .data = &ip_rt_redirect_number,
3148 .maxlen = sizeof(int),
3149 .mode = 0644,
3150 .proc_handler = proc_dointvec,
3151 },
3152 {
3153 .procname = "redirect_silence",
3154 .data = &ip_rt_redirect_silence,
3155 .maxlen = sizeof(int),
3156 .mode = 0644,
3157 .proc_handler = proc_dointvec,
3158 },
3159 {
3160 .procname = "error_cost",
3161 .data = &ip_rt_error_cost,
3162 .maxlen = sizeof(int),
3163 .mode = 0644,
3164 .proc_handler = proc_dointvec,
3165 },
3166 {
3167 .procname = "error_burst",
3168 .data = &ip_rt_error_burst,
3169 .maxlen = sizeof(int),
3170 .mode = 0644,
3171 .proc_handler = proc_dointvec,
3172 },
3173 {
3174 .procname = "gc_elasticity",
3175 .data = &ip_rt_gc_elasticity,
3176 .maxlen = sizeof(int),
3177 .mode = 0644,
3178 .proc_handler = proc_dointvec,
3179 },
3180 {
3181 .procname = "mtu_expires",
3182 .data = &ip_rt_mtu_expires,
3183 .maxlen = sizeof(int),
3184 .mode = 0644,
3185 .proc_handler = proc_dointvec_jiffies,
3186 },
3187 {
3188 .procname = "min_pmtu",
3189 .data = &ip_rt_min_pmtu,
3190 .maxlen = sizeof(int),
3191 .mode = 0644,
3192 .proc_handler = proc_dointvec,
3193 },
3194 {
3195 .procname = "min_adv_mss",
3196 .data = &ip_rt_min_advmss,
3197 .maxlen = sizeof(int),
3198 .mode = 0644,
3199 .proc_handler = proc_dointvec,
3200 },
3201 { }
3202 };
3203
3204 static struct ctl_table empty[1];
3205
3206 static struct ctl_table ipv4_skeleton[] =
3207 {
3208 { .procname = "route",
3209 .mode = 0555, .child = ipv4_route_table},
3210 { .procname = "neigh",
3211 .mode = 0555, .child = empty},
3212 { }
3213 };
3214
3215 static __net_initdata struct ctl_path ipv4_path[] = {
3216 { .procname = "net", },
3217 { .procname = "ipv4", },
3218 { },
3219 };
3220
3221 static struct ctl_table ipv4_route_flush_table[] = {
3222 {
3223 .procname = "flush",
3224 .maxlen = sizeof(int),
3225 .mode = 0200,
3226 .proc_handler = ipv4_sysctl_rtcache_flush,
3227 },
3228 { },
3229 };
3230
3231 static __net_initdata struct ctl_path ipv4_route_path[] = {
3232 { .procname = "net", },
3233 { .procname = "ipv4", },
3234 { .procname = "route", },
3235 { },
3236 };
3237
3238 static __net_init int sysctl_route_net_init(struct net *net)
3239 {
3240 struct ctl_table *tbl;
3241
3242 tbl = ipv4_route_flush_table;
3243 if (!net_eq(net, &init_net)) {
3244 tbl = kmemdup(tbl, sizeof(ipv4_route_flush_table), GFP_KERNEL);
3245 if (tbl == NULL)
3246 goto err_dup;
3247 }
3248 tbl[0].extra1 = net;
3249
3250 net->ipv4.route_hdr =
3251 register_net_sysctl_table(net, ipv4_route_path, tbl);
3252 if (net->ipv4.route_hdr == NULL)
3253 goto err_reg;
3254 return 0;
3255
3256 err_reg:
3257 if (tbl != ipv4_route_flush_table)
3258 kfree(tbl);
3259 err_dup:
3260 return -ENOMEM;
3261 }
3262
3263 static __net_exit void sysctl_route_net_exit(struct net *net)
3264 {
3265 struct ctl_table *tbl;
3266
3267 tbl = net->ipv4.route_hdr->ctl_table_arg;
3268 unregister_net_sysctl_table(net->ipv4.route_hdr);
3269 BUG_ON(tbl == ipv4_route_flush_table);
3270 kfree(tbl);
3271 }
3272
3273 static __net_initdata struct pernet_operations sysctl_route_ops = {
3274 .init = sysctl_route_net_init,
3275 .exit = sysctl_route_net_exit,
3276 };
3277 #endif
3278
3279 static __net_init int rt_genid_init(struct net *net)
3280 {
3281 get_random_bytes(&net->ipv4.rt_genid,
3282 sizeof(net->ipv4.rt_genid));
3283 return 0;
3284 }
3285
3286 static __net_initdata struct pernet_operations rt_genid_ops = {
3287 .init = rt_genid_init,
3288 };
3289
3290
3291 #ifdef CONFIG_NET_CLS_ROUTE
3292 struct ip_rt_acct __percpu *ip_rt_acct __read_mostly;
3293 #endif /* CONFIG_NET_CLS_ROUTE */
3294
3295 static __initdata unsigned long rhash_entries;
3296 static int __init set_rhash_entries(char *str)
3297 {
3298 if (!str)
3299 return 0;
3300 rhash_entries = simple_strtoul(str, &str, 0);
3301 return 1;
3302 }
3303 __setup("rhash_entries=", set_rhash_entries);
3304
3305 int __init ip_rt_init(void)
3306 {
3307 int rc = 0;
3308
3309 #ifdef CONFIG_NET_CLS_ROUTE
3310 ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct), __alignof__(struct ip_rt_acct));
3311 if (!ip_rt_acct)
3312 panic("IP: failed to allocate ip_rt_acct\n");
3313 #endif
3314
3315 ipv4_dst_ops.kmem_cachep =
3316 kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
3317 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3318
3319 ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
3320
3321 rt_hash_table = (struct rt_hash_bucket *)
3322 alloc_large_system_hash("IP route cache",
3323 sizeof(struct rt_hash_bucket),
3324 rhash_entries,
3325 (totalram_pages >= 128 * 1024) ?
3326 15 : 17,
3327 0,
3328 &rt_hash_log,
3329 &rt_hash_mask,
3330 rhash_entries ? 0 : 512 * 1024);
3331 memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3332 rt_hash_lock_init();
3333
3334 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3335 ip_rt_max_size = (rt_hash_mask + 1) * 16;
3336
3337 devinet_init();
3338 ip_fib_init();
3339
3340 /* All the timers, started at system startup tend
3341 to synchronize. Perturb it a bit.
3342 */
3343 INIT_DELAYED_WORK_DEFERRABLE(&expires_work, rt_worker_func);
3344 expires_ljiffies = jiffies;
3345 schedule_delayed_work(&expires_work,
3346 net_random() % ip_rt_gc_interval + ip_rt_gc_interval);
3347
3348 if (ip_rt_proc_init())
3349 printk(KERN_ERR "Unable to create route proc files\n");
3350 #ifdef CONFIG_XFRM
3351 xfrm_init();
3352 xfrm4_init(ip_rt_max_size);
3353 #endif
3354 rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL);
3355
3356 #ifdef CONFIG_SYSCTL
3357 register_pernet_subsys(&sysctl_route_ops);
3358 #endif
3359 register_pernet_subsys(&rt_genid_ops);
3360 return rc;
3361 }
3362
3363 #ifdef CONFIG_SYSCTL
3364 /*
3365 * We really need to sanitize the damn ipv4 init order, then all
3366 * this nonsense will go away.
3367 */
3368 void __init ip_static_sysctl_init(void)
3369 {
3370 register_sysctl_paths(ipv4_path, ipv4_skeleton);
3371 }
3372 #endif
This page took 0.107981 seconds and 5 git commands to generate.