udp: introduce struct udp_table and multiple spinlocks
[deliverable/linux.git] / net / ipv4 / route.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * ROUTE - implementation of the IP router.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
12 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
13 *
14 * Fixes:
15 * Alan Cox : Verify area fixes.
16 * Alan Cox : cli() protects routing changes
17 * Rui Oliveira : ICMP routing table updates
18 * (rco@di.uminho.pt) Routing table insertion and update
19 * Linus Torvalds : Rewrote bits to be sensible
20 * Alan Cox : Added BSD route gw semantics
21 * Alan Cox : Super /proc >4K
22 * Alan Cox : MTU in route table
23 * Alan Cox : MSS actually. Also added the window
24 * clamper.
25 * Sam Lantinga : Fixed route matching in rt_del()
26 * Alan Cox : Routing cache support.
27 * Alan Cox : Removed compatibility cruft.
28 * Alan Cox : RTF_REJECT support.
29 * Alan Cox : TCP irtt support.
30 * Jonathan Naylor : Added Metric support.
31 * Miquel van Smoorenburg : BSD API fixes.
32 * Miquel van Smoorenburg : Metrics.
33 * Alan Cox : Use __u32 properly
34 * Alan Cox : Aligned routing errors more closely with BSD
35 * our system is still very different.
36 * Alan Cox : Faster /proc handling
37 * Alexey Kuznetsov : Massive rework to support tree based routing,
38 * routing caches and better behaviour.
39 *
40 * Olaf Erb : irtt wasn't being copied right.
41 * Bjorn Ekwall : Kerneld route support.
42 * Alan Cox : Multicast fixed (I hope)
43 * Pavel Krauz : Limited broadcast fixed
44 * Mike McLagan : Routing by source
45 * Alexey Kuznetsov : End of old history. Split to fib.c and
46 * route.c and rewritten from scratch.
47 * Andi Kleen : Load-limit warning messages.
48 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
49 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
50 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
51 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
52 * Marc Boucher : routing by fwmark
53 * Robert Olsson : Added rt_cache statistics
54 * Arnaldo C. Melo : Convert proc stuff to seq_file
55 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
56 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
57 * Ilia Sotnikov : Removed TOS from hash calculations
58 *
59 * This program is free software; you can redistribute it and/or
60 * modify it under the terms of the GNU General Public License
61 * as published by the Free Software Foundation; either version
62 * 2 of the License, or (at your option) any later version.
63 */
64
65 #include <linux/module.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <linux/bitops.h>
69 #include <linux/types.h>
70 #include <linux/kernel.h>
71 #include <linux/mm.h>
72 #include <linux/bootmem.h>
73 #include <linux/string.h>
74 #include <linux/socket.h>
75 #include <linux/sockios.h>
76 #include <linux/errno.h>
77 #include <linux/in.h>
78 #include <linux/inet.h>
79 #include <linux/netdevice.h>
80 #include <linux/proc_fs.h>
81 #include <linux/init.h>
82 #include <linux/workqueue.h>
83 #include <linux/skbuff.h>
84 #include <linux/inetdevice.h>
85 #include <linux/igmp.h>
86 #include <linux/pkt_sched.h>
87 #include <linux/mroute.h>
88 #include <linux/netfilter_ipv4.h>
89 #include <linux/random.h>
90 #include <linux/jhash.h>
91 #include <linux/rcupdate.h>
92 #include <linux/times.h>
93 #include <net/dst.h>
94 #include <net/net_namespace.h>
95 #include <net/protocol.h>
96 #include <net/ip.h>
97 #include <net/route.h>
98 #include <net/inetpeer.h>
99 #include <net/sock.h>
100 #include <net/ip_fib.h>
101 #include <net/arp.h>
102 #include <net/tcp.h>
103 #include <net/icmp.h>
104 #include <net/xfrm.h>
105 #include <net/netevent.h>
106 #include <net/rtnetlink.h>
107 #ifdef CONFIG_SYSCTL
108 #include <linux/sysctl.h>
109 #endif
110
111 #define RT_FL_TOS(oldflp) \
112 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
113
114 #define IP_MAX_MTU 0xFFF0
115
116 #define RT_GC_TIMEOUT (300*HZ)
117
118 static int ip_rt_max_size;
119 static int ip_rt_gc_timeout __read_mostly = RT_GC_TIMEOUT;
120 static int ip_rt_gc_interval __read_mostly = 60 * HZ;
121 static int ip_rt_gc_min_interval __read_mostly = HZ / 2;
122 static int ip_rt_redirect_number __read_mostly = 9;
123 static int ip_rt_redirect_load __read_mostly = HZ / 50;
124 static int ip_rt_redirect_silence __read_mostly = ((HZ / 50) << (9 + 1));
125 static int ip_rt_error_cost __read_mostly = HZ;
126 static int ip_rt_error_burst __read_mostly = 5 * HZ;
127 static int ip_rt_gc_elasticity __read_mostly = 8;
128 static int ip_rt_mtu_expires __read_mostly = 10 * 60 * HZ;
129 static int ip_rt_min_pmtu __read_mostly = 512 + 20 + 20;
130 static int ip_rt_min_advmss __read_mostly = 256;
131 static int ip_rt_secret_interval __read_mostly = 10 * 60 * HZ;
132 static int rt_chain_length_max __read_mostly = 20;
133
134 static void rt_worker_func(struct work_struct *work);
135 static DECLARE_DELAYED_WORK(expires_work, rt_worker_func);
136
137 /*
138 * Interface to generic destination cache.
139 */
140
141 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
142 static void ipv4_dst_destroy(struct dst_entry *dst);
143 static void ipv4_dst_ifdown(struct dst_entry *dst,
144 struct net_device *dev, int how);
145 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
146 static void ipv4_link_failure(struct sk_buff *skb);
147 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
148 static int rt_garbage_collect(struct dst_ops *ops);
149 static void rt_emergency_hash_rebuild(struct net *net);
150
151
152 static struct dst_ops ipv4_dst_ops = {
153 .family = AF_INET,
154 .protocol = __constant_htons(ETH_P_IP),
155 .gc = rt_garbage_collect,
156 .check = ipv4_dst_check,
157 .destroy = ipv4_dst_destroy,
158 .ifdown = ipv4_dst_ifdown,
159 .negative_advice = ipv4_negative_advice,
160 .link_failure = ipv4_link_failure,
161 .update_pmtu = ip_rt_update_pmtu,
162 .local_out = __ip_local_out,
163 .entry_size = sizeof(struct rtable),
164 .entries = ATOMIC_INIT(0),
165 };
166
167 #define ECN_OR_COST(class) TC_PRIO_##class
168
169 const __u8 ip_tos2prio[16] = {
170 TC_PRIO_BESTEFFORT,
171 ECN_OR_COST(FILLER),
172 TC_PRIO_BESTEFFORT,
173 ECN_OR_COST(BESTEFFORT),
174 TC_PRIO_BULK,
175 ECN_OR_COST(BULK),
176 TC_PRIO_BULK,
177 ECN_OR_COST(BULK),
178 TC_PRIO_INTERACTIVE,
179 ECN_OR_COST(INTERACTIVE),
180 TC_PRIO_INTERACTIVE,
181 ECN_OR_COST(INTERACTIVE),
182 TC_PRIO_INTERACTIVE_BULK,
183 ECN_OR_COST(INTERACTIVE_BULK),
184 TC_PRIO_INTERACTIVE_BULK,
185 ECN_OR_COST(INTERACTIVE_BULK)
186 };
187
188
189 /*
190 * Route cache.
191 */
192
193 /* The locking scheme is rather straight forward:
194 *
195 * 1) Read-Copy Update protects the buckets of the central route hash.
196 * 2) Only writers remove entries, and they hold the lock
197 * as they look at rtable reference counts.
198 * 3) Only readers acquire references to rtable entries,
199 * they do so with atomic increments and with the
200 * lock held.
201 */
202
203 struct rt_hash_bucket {
204 struct rtable *chain;
205 };
206
207 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
208 defined(CONFIG_PROVE_LOCKING)
209 /*
210 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
211 * The size of this table is a power of two and depends on the number of CPUS.
212 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
213 */
214 #ifdef CONFIG_LOCKDEP
215 # define RT_HASH_LOCK_SZ 256
216 #else
217 # if NR_CPUS >= 32
218 # define RT_HASH_LOCK_SZ 4096
219 # elif NR_CPUS >= 16
220 # define RT_HASH_LOCK_SZ 2048
221 # elif NR_CPUS >= 8
222 # define RT_HASH_LOCK_SZ 1024
223 # elif NR_CPUS >= 4
224 # define RT_HASH_LOCK_SZ 512
225 # else
226 # define RT_HASH_LOCK_SZ 256
227 # endif
228 #endif
229
230 static spinlock_t *rt_hash_locks;
231 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
232
233 static __init void rt_hash_lock_init(void)
234 {
235 int i;
236
237 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ,
238 GFP_KERNEL);
239 if (!rt_hash_locks)
240 panic("IP: failed to allocate rt_hash_locks\n");
241
242 for (i = 0; i < RT_HASH_LOCK_SZ; i++)
243 spin_lock_init(&rt_hash_locks[i]);
244 }
245 #else
246 # define rt_hash_lock_addr(slot) NULL
247
248 static inline void rt_hash_lock_init(void)
249 {
250 }
251 #endif
252
253 static struct rt_hash_bucket *rt_hash_table __read_mostly;
254 static unsigned rt_hash_mask __read_mostly;
255 static unsigned int rt_hash_log __read_mostly;
256
257 static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
258 #define RT_CACHE_STAT_INC(field) \
259 (__raw_get_cpu_var(rt_cache_stat).field++)
260
261 static inline unsigned int rt_hash(__be32 daddr, __be32 saddr, int idx,
262 int genid)
263 {
264 return jhash_3words((__force u32)(__be32)(daddr),
265 (__force u32)(__be32)(saddr),
266 idx, genid)
267 & rt_hash_mask;
268 }
269
270 static inline int rt_genid(struct net *net)
271 {
272 return atomic_read(&net->ipv4.rt_genid);
273 }
274
275 #ifdef CONFIG_PROC_FS
276 struct rt_cache_iter_state {
277 struct seq_net_private p;
278 int bucket;
279 int genid;
280 };
281
282 static struct rtable *rt_cache_get_first(struct seq_file *seq)
283 {
284 struct rt_cache_iter_state *st = seq->private;
285 struct rtable *r = NULL;
286
287 for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
288 if (!rt_hash_table[st->bucket].chain)
289 continue;
290 rcu_read_lock_bh();
291 r = rcu_dereference(rt_hash_table[st->bucket].chain);
292 while (r) {
293 if (dev_net(r->u.dst.dev) == seq_file_net(seq) &&
294 r->rt_genid == st->genid)
295 return r;
296 r = rcu_dereference(r->u.dst.rt_next);
297 }
298 rcu_read_unlock_bh();
299 }
300 return r;
301 }
302
303 static struct rtable *__rt_cache_get_next(struct seq_file *seq,
304 struct rtable *r)
305 {
306 struct rt_cache_iter_state *st = seq->private;
307
308 r = r->u.dst.rt_next;
309 while (!r) {
310 rcu_read_unlock_bh();
311 do {
312 if (--st->bucket < 0)
313 return NULL;
314 } while (!rt_hash_table[st->bucket].chain);
315 rcu_read_lock_bh();
316 r = rt_hash_table[st->bucket].chain;
317 }
318 return rcu_dereference(r);
319 }
320
321 static struct rtable *rt_cache_get_next(struct seq_file *seq,
322 struct rtable *r)
323 {
324 struct rt_cache_iter_state *st = seq->private;
325 while ((r = __rt_cache_get_next(seq, r)) != NULL) {
326 if (dev_net(r->u.dst.dev) != seq_file_net(seq))
327 continue;
328 if (r->rt_genid == st->genid)
329 break;
330 }
331 return r;
332 }
333
334 static struct rtable *rt_cache_get_idx(struct seq_file *seq, loff_t pos)
335 {
336 struct rtable *r = rt_cache_get_first(seq);
337
338 if (r)
339 while (pos && (r = rt_cache_get_next(seq, r)))
340 --pos;
341 return pos ? NULL : r;
342 }
343
344 static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
345 {
346 struct rt_cache_iter_state *st = seq->private;
347 if (*pos)
348 return rt_cache_get_idx(seq, *pos - 1);
349 st->genid = rt_genid(seq_file_net(seq));
350 return SEQ_START_TOKEN;
351 }
352
353 static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
354 {
355 struct rtable *r;
356
357 if (v == SEQ_START_TOKEN)
358 r = rt_cache_get_first(seq);
359 else
360 r = rt_cache_get_next(seq, v);
361 ++*pos;
362 return r;
363 }
364
365 static void rt_cache_seq_stop(struct seq_file *seq, void *v)
366 {
367 if (v && v != SEQ_START_TOKEN)
368 rcu_read_unlock_bh();
369 }
370
371 static int rt_cache_seq_show(struct seq_file *seq, void *v)
372 {
373 if (v == SEQ_START_TOKEN)
374 seq_printf(seq, "%-127s\n",
375 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
376 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
377 "HHUptod\tSpecDst");
378 else {
379 struct rtable *r = v;
380 int len;
381
382 seq_printf(seq, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
383 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X%n",
384 r->u.dst.dev ? r->u.dst.dev->name : "*",
385 (unsigned long)r->rt_dst, (unsigned long)r->rt_gateway,
386 r->rt_flags, atomic_read(&r->u.dst.__refcnt),
387 r->u.dst.__use, 0, (unsigned long)r->rt_src,
388 (dst_metric(&r->u.dst, RTAX_ADVMSS) ?
389 (int)dst_metric(&r->u.dst, RTAX_ADVMSS) + 40 : 0),
390 dst_metric(&r->u.dst, RTAX_WINDOW),
391 (int)((dst_metric(&r->u.dst, RTAX_RTT) >> 3) +
392 dst_metric(&r->u.dst, RTAX_RTTVAR)),
393 r->fl.fl4_tos,
394 r->u.dst.hh ? atomic_read(&r->u.dst.hh->hh_refcnt) : -1,
395 r->u.dst.hh ? (r->u.dst.hh->hh_output ==
396 dev_queue_xmit) : 0,
397 r->rt_spec_dst, &len);
398
399 seq_printf(seq, "%*s\n", 127 - len, "");
400 }
401 return 0;
402 }
403
404 static const struct seq_operations rt_cache_seq_ops = {
405 .start = rt_cache_seq_start,
406 .next = rt_cache_seq_next,
407 .stop = rt_cache_seq_stop,
408 .show = rt_cache_seq_show,
409 };
410
411 static int rt_cache_seq_open(struct inode *inode, struct file *file)
412 {
413 return seq_open_net(inode, file, &rt_cache_seq_ops,
414 sizeof(struct rt_cache_iter_state));
415 }
416
417 static const struct file_operations rt_cache_seq_fops = {
418 .owner = THIS_MODULE,
419 .open = rt_cache_seq_open,
420 .read = seq_read,
421 .llseek = seq_lseek,
422 .release = seq_release_net,
423 };
424
425
426 static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
427 {
428 int cpu;
429
430 if (*pos == 0)
431 return SEQ_START_TOKEN;
432
433 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
434 if (!cpu_possible(cpu))
435 continue;
436 *pos = cpu+1;
437 return &per_cpu(rt_cache_stat, cpu);
438 }
439 return NULL;
440 }
441
442 static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
443 {
444 int cpu;
445
446 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
447 if (!cpu_possible(cpu))
448 continue;
449 *pos = cpu+1;
450 return &per_cpu(rt_cache_stat, cpu);
451 }
452 return NULL;
453
454 }
455
456 static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
457 {
458
459 }
460
461 static int rt_cpu_seq_show(struct seq_file *seq, void *v)
462 {
463 struct rt_cache_stat *st = v;
464
465 if (v == SEQ_START_TOKEN) {
466 seq_printf(seq, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
467 return 0;
468 }
469
470 seq_printf(seq,"%08x %08x %08x %08x %08x %08x %08x %08x "
471 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
472 atomic_read(&ipv4_dst_ops.entries),
473 st->in_hit,
474 st->in_slow_tot,
475 st->in_slow_mc,
476 st->in_no_route,
477 st->in_brd,
478 st->in_martian_dst,
479 st->in_martian_src,
480
481 st->out_hit,
482 st->out_slow_tot,
483 st->out_slow_mc,
484
485 st->gc_total,
486 st->gc_ignored,
487 st->gc_goal_miss,
488 st->gc_dst_overflow,
489 st->in_hlist_search,
490 st->out_hlist_search
491 );
492 return 0;
493 }
494
495 static const struct seq_operations rt_cpu_seq_ops = {
496 .start = rt_cpu_seq_start,
497 .next = rt_cpu_seq_next,
498 .stop = rt_cpu_seq_stop,
499 .show = rt_cpu_seq_show,
500 };
501
502
503 static int rt_cpu_seq_open(struct inode *inode, struct file *file)
504 {
505 return seq_open(file, &rt_cpu_seq_ops);
506 }
507
508 static const struct file_operations rt_cpu_seq_fops = {
509 .owner = THIS_MODULE,
510 .open = rt_cpu_seq_open,
511 .read = seq_read,
512 .llseek = seq_lseek,
513 .release = seq_release,
514 };
515
516 #ifdef CONFIG_NET_CLS_ROUTE
517 static int ip_rt_acct_read(char *buffer, char **start, off_t offset,
518 int length, int *eof, void *data)
519 {
520 unsigned int i;
521
522 if ((offset & 3) || (length & 3))
523 return -EIO;
524
525 if (offset >= sizeof(struct ip_rt_acct) * 256) {
526 *eof = 1;
527 return 0;
528 }
529
530 if (offset + length >= sizeof(struct ip_rt_acct) * 256) {
531 length = sizeof(struct ip_rt_acct) * 256 - offset;
532 *eof = 1;
533 }
534
535 offset /= sizeof(u32);
536
537 if (length > 0) {
538 u32 *dst = (u32 *) buffer;
539
540 *start = buffer;
541 memset(dst, 0, length);
542
543 for_each_possible_cpu(i) {
544 unsigned int j;
545 u32 *src;
546
547 src = ((u32 *) per_cpu_ptr(ip_rt_acct, i)) + offset;
548 for (j = 0; j < length/4; j++)
549 dst[j] += src[j];
550 }
551 }
552 return length;
553 }
554 #endif
555
556 static int __net_init ip_rt_do_proc_init(struct net *net)
557 {
558 struct proc_dir_entry *pde;
559
560 pde = proc_net_fops_create(net, "rt_cache", S_IRUGO,
561 &rt_cache_seq_fops);
562 if (!pde)
563 goto err1;
564
565 pde = proc_create("rt_cache", S_IRUGO,
566 net->proc_net_stat, &rt_cpu_seq_fops);
567 if (!pde)
568 goto err2;
569
570 #ifdef CONFIG_NET_CLS_ROUTE
571 pde = create_proc_read_entry("rt_acct", 0, net->proc_net,
572 ip_rt_acct_read, NULL);
573 if (!pde)
574 goto err3;
575 #endif
576 return 0;
577
578 #ifdef CONFIG_NET_CLS_ROUTE
579 err3:
580 remove_proc_entry("rt_cache", net->proc_net_stat);
581 #endif
582 err2:
583 remove_proc_entry("rt_cache", net->proc_net);
584 err1:
585 return -ENOMEM;
586 }
587
588 static void __net_exit ip_rt_do_proc_exit(struct net *net)
589 {
590 remove_proc_entry("rt_cache", net->proc_net_stat);
591 remove_proc_entry("rt_cache", net->proc_net);
592 remove_proc_entry("rt_acct", net->proc_net);
593 }
594
595 static struct pernet_operations ip_rt_proc_ops __net_initdata = {
596 .init = ip_rt_do_proc_init,
597 .exit = ip_rt_do_proc_exit,
598 };
599
600 static int __init ip_rt_proc_init(void)
601 {
602 return register_pernet_subsys(&ip_rt_proc_ops);
603 }
604
605 #else
606 static inline int ip_rt_proc_init(void)
607 {
608 return 0;
609 }
610 #endif /* CONFIG_PROC_FS */
611
612 static inline void rt_free(struct rtable *rt)
613 {
614 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
615 }
616
617 static inline void rt_drop(struct rtable *rt)
618 {
619 ip_rt_put(rt);
620 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
621 }
622
623 static inline int rt_fast_clean(struct rtable *rth)
624 {
625 /* Kill broadcast/multicast entries very aggresively, if they
626 collide in hash table with more useful entries */
627 return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
628 rth->fl.iif && rth->u.dst.rt_next;
629 }
630
631 static inline int rt_valuable(struct rtable *rth)
632 {
633 return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
634 rth->u.dst.expires;
635 }
636
637 static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
638 {
639 unsigned long age;
640 int ret = 0;
641
642 if (atomic_read(&rth->u.dst.__refcnt))
643 goto out;
644
645 ret = 1;
646 if (rth->u.dst.expires &&
647 time_after_eq(jiffies, rth->u.dst.expires))
648 goto out;
649
650 age = jiffies - rth->u.dst.lastuse;
651 ret = 0;
652 if ((age <= tmo1 && !rt_fast_clean(rth)) ||
653 (age <= tmo2 && rt_valuable(rth)))
654 goto out;
655 ret = 1;
656 out: return ret;
657 }
658
659 /* Bits of score are:
660 * 31: very valuable
661 * 30: not quite useless
662 * 29..0: usage counter
663 */
664 static inline u32 rt_score(struct rtable *rt)
665 {
666 u32 score = jiffies - rt->u.dst.lastuse;
667
668 score = ~score & ~(3<<30);
669
670 if (rt_valuable(rt))
671 score |= (1<<31);
672
673 if (!rt->fl.iif ||
674 !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
675 score |= (1<<30);
676
677 return score;
678 }
679
680 static inline bool rt_caching(const struct net *net)
681 {
682 return net->ipv4.current_rt_cache_rebuild_count <=
683 net->ipv4.sysctl_rt_cache_rebuild_count;
684 }
685
686 static inline bool compare_hash_inputs(const struct flowi *fl1,
687 const struct flowi *fl2)
688 {
689 return (__force u32)(((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
690 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr) |
691 (fl1->iif ^ fl2->iif)) == 0);
692 }
693
694 static inline int compare_keys(struct flowi *fl1, struct flowi *fl2)
695 {
696 return ((__force u32)((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
697 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr)) |
698 (fl1->mark ^ fl2->mark) |
699 (*(u16 *)&fl1->nl_u.ip4_u.tos ^
700 *(u16 *)&fl2->nl_u.ip4_u.tos) |
701 (fl1->oif ^ fl2->oif) |
702 (fl1->iif ^ fl2->iif)) == 0;
703 }
704
705 static inline int compare_netns(struct rtable *rt1, struct rtable *rt2)
706 {
707 return dev_net(rt1->u.dst.dev) == dev_net(rt2->u.dst.dev);
708 }
709
710 static inline int rt_is_expired(struct rtable *rth)
711 {
712 return rth->rt_genid != rt_genid(dev_net(rth->u.dst.dev));
713 }
714
715 /*
716 * Perform a full scan of hash table and free all entries.
717 * Can be called by a softirq or a process.
718 * In the later case, we want to be reschedule if necessary
719 */
720 static void rt_do_flush(int process_context)
721 {
722 unsigned int i;
723 struct rtable *rth, *next;
724 struct rtable * tail;
725
726 for (i = 0; i <= rt_hash_mask; i++) {
727 if (process_context && need_resched())
728 cond_resched();
729 rth = rt_hash_table[i].chain;
730 if (!rth)
731 continue;
732
733 spin_lock_bh(rt_hash_lock_addr(i));
734 #ifdef CONFIG_NET_NS
735 {
736 struct rtable ** prev, * p;
737
738 rth = rt_hash_table[i].chain;
739
740 /* defer releasing the head of the list after spin_unlock */
741 for (tail = rth; tail; tail = tail->u.dst.rt_next)
742 if (!rt_is_expired(tail))
743 break;
744 if (rth != tail)
745 rt_hash_table[i].chain = tail;
746
747 /* call rt_free on entries after the tail requiring flush */
748 prev = &rt_hash_table[i].chain;
749 for (p = *prev; p; p = next) {
750 next = p->u.dst.rt_next;
751 if (!rt_is_expired(p)) {
752 prev = &p->u.dst.rt_next;
753 } else {
754 *prev = next;
755 rt_free(p);
756 }
757 }
758 }
759 #else
760 rth = rt_hash_table[i].chain;
761 rt_hash_table[i].chain = NULL;
762 tail = NULL;
763 #endif
764 spin_unlock_bh(rt_hash_lock_addr(i));
765
766 for (; rth != tail; rth = next) {
767 next = rth->u.dst.rt_next;
768 rt_free(rth);
769 }
770 }
771 }
772
773 /*
774 * While freeing expired entries, we compute average chain length
775 * and standard deviation, using fixed-point arithmetic.
776 * This to have an estimation of rt_chain_length_max
777 * rt_chain_length_max = max(elasticity, AVG + 4*SD)
778 * We use 3 bits for frational part, and 29 (or 61) for magnitude.
779 */
780
781 #define FRACT_BITS 3
782 #define ONE (1UL << FRACT_BITS)
783
784 static void rt_check_expire(void)
785 {
786 static unsigned int rover;
787 unsigned int i = rover, goal;
788 struct rtable *rth, **rthp;
789 unsigned long length = 0, samples = 0;
790 unsigned long sum = 0, sum2 = 0;
791 u64 mult;
792
793 mult = ((u64)ip_rt_gc_interval) << rt_hash_log;
794 if (ip_rt_gc_timeout > 1)
795 do_div(mult, ip_rt_gc_timeout);
796 goal = (unsigned int)mult;
797 if (goal > rt_hash_mask)
798 goal = rt_hash_mask + 1;
799 length = 0;
800 for (; goal > 0; goal--) {
801 unsigned long tmo = ip_rt_gc_timeout;
802
803 i = (i + 1) & rt_hash_mask;
804 rthp = &rt_hash_table[i].chain;
805
806 if (need_resched())
807 cond_resched();
808
809 samples++;
810
811 if (*rthp == NULL)
812 continue;
813 spin_lock_bh(rt_hash_lock_addr(i));
814 while ((rth = *rthp) != NULL) {
815 if (rt_is_expired(rth)) {
816 *rthp = rth->u.dst.rt_next;
817 rt_free(rth);
818 continue;
819 }
820 if (rth->u.dst.expires) {
821 /* Entry is expired even if it is in use */
822 if (time_before_eq(jiffies, rth->u.dst.expires)) {
823 tmo >>= 1;
824 rthp = &rth->u.dst.rt_next;
825 /*
826 * Only bump our length if the hash
827 * inputs on entries n and n+1 are not
828 * the same, we only count entries on
829 * a chain with equal hash inputs once
830 * so that entries for different QOS
831 * levels, and other non-hash input
832 * attributes don't unfairly skew
833 * the length computation
834 */
835 if ((*rthp == NULL) ||
836 !compare_hash_inputs(&(*rthp)->fl,
837 &rth->fl))
838 length += ONE;
839 continue;
840 }
841 } else if (!rt_may_expire(rth, tmo, ip_rt_gc_timeout)) {
842 tmo >>= 1;
843 rthp = &rth->u.dst.rt_next;
844 if ((*rthp == NULL) ||
845 !compare_hash_inputs(&(*rthp)->fl,
846 &rth->fl))
847 length += ONE;
848 continue;
849 }
850
851 /* Cleanup aged off entries. */
852 *rthp = rth->u.dst.rt_next;
853 rt_free(rth);
854 }
855 spin_unlock_bh(rt_hash_lock_addr(i));
856 sum += length;
857 sum2 += length*length;
858 }
859 if (samples) {
860 unsigned long avg = sum / samples;
861 unsigned long sd = int_sqrt(sum2 / samples - avg*avg);
862 rt_chain_length_max = max_t(unsigned long,
863 ip_rt_gc_elasticity,
864 (avg + 4*sd) >> FRACT_BITS);
865 }
866 rover = i;
867 }
868
869 /*
870 * rt_worker_func() is run in process context.
871 * we call rt_check_expire() to scan part of the hash table
872 */
873 static void rt_worker_func(struct work_struct *work)
874 {
875 rt_check_expire();
876 schedule_delayed_work(&expires_work, ip_rt_gc_interval);
877 }
878
879 /*
880 * Pertubation of rt_genid by a small quantity [1..256]
881 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
882 * many times (2^24) without giving recent rt_genid.
883 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
884 */
885 static void rt_cache_invalidate(struct net *net)
886 {
887 unsigned char shuffle;
888
889 get_random_bytes(&shuffle, sizeof(shuffle));
890 atomic_add(shuffle + 1U, &net->ipv4.rt_genid);
891 }
892
893 /*
894 * delay < 0 : invalidate cache (fast : entries will be deleted later)
895 * delay >= 0 : invalidate & flush cache (can be long)
896 */
897 void rt_cache_flush(struct net *net, int delay)
898 {
899 rt_cache_invalidate(net);
900 if (delay >= 0)
901 rt_do_flush(!in_softirq());
902 }
903
904 /*
905 * We change rt_genid and let gc do the cleanup
906 */
907 static void rt_secret_rebuild(unsigned long __net)
908 {
909 struct net *net = (struct net *)__net;
910 rt_cache_invalidate(net);
911 mod_timer(&net->ipv4.rt_secret_timer, jiffies + ip_rt_secret_interval);
912 }
913
914 static void rt_secret_rebuild_oneshot(struct net *net)
915 {
916 del_timer_sync(&net->ipv4.rt_secret_timer);
917 rt_cache_invalidate(net);
918 if (ip_rt_secret_interval) {
919 net->ipv4.rt_secret_timer.expires += ip_rt_secret_interval;
920 add_timer(&net->ipv4.rt_secret_timer);
921 }
922 }
923
924 static void rt_emergency_hash_rebuild(struct net *net)
925 {
926 if (net_ratelimit()) {
927 printk(KERN_WARNING "Route hash chain too long!\n");
928 printk(KERN_WARNING "Adjust your secret_interval!\n");
929 }
930
931 rt_secret_rebuild_oneshot(net);
932 }
933
934 /*
935 Short description of GC goals.
936
937 We want to build algorithm, which will keep routing cache
938 at some equilibrium point, when number of aged off entries
939 is kept approximately equal to newly generated ones.
940
941 Current expiration strength is variable "expire".
942 We try to adjust it dynamically, so that if networking
943 is idle expires is large enough to keep enough of warm entries,
944 and when load increases it reduces to limit cache size.
945 */
946
947 static int rt_garbage_collect(struct dst_ops *ops)
948 {
949 static unsigned long expire = RT_GC_TIMEOUT;
950 static unsigned long last_gc;
951 static int rover;
952 static int equilibrium;
953 struct rtable *rth, **rthp;
954 unsigned long now = jiffies;
955 int goal;
956
957 /*
958 * Garbage collection is pretty expensive,
959 * do not make it too frequently.
960 */
961
962 RT_CACHE_STAT_INC(gc_total);
963
964 if (now - last_gc < ip_rt_gc_min_interval &&
965 atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size) {
966 RT_CACHE_STAT_INC(gc_ignored);
967 goto out;
968 }
969
970 /* Calculate number of entries, which we want to expire now. */
971 goal = atomic_read(&ipv4_dst_ops.entries) -
972 (ip_rt_gc_elasticity << rt_hash_log);
973 if (goal <= 0) {
974 if (equilibrium < ipv4_dst_ops.gc_thresh)
975 equilibrium = ipv4_dst_ops.gc_thresh;
976 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
977 if (goal > 0) {
978 equilibrium += min_t(unsigned int, goal >> 1, rt_hash_mask + 1);
979 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
980 }
981 } else {
982 /* We are in dangerous area. Try to reduce cache really
983 * aggressively.
984 */
985 goal = max_t(unsigned int, goal >> 1, rt_hash_mask + 1);
986 equilibrium = atomic_read(&ipv4_dst_ops.entries) - goal;
987 }
988
989 if (now - last_gc >= ip_rt_gc_min_interval)
990 last_gc = now;
991
992 if (goal <= 0) {
993 equilibrium += goal;
994 goto work_done;
995 }
996
997 do {
998 int i, k;
999
1000 for (i = rt_hash_mask, k = rover; i >= 0; i--) {
1001 unsigned long tmo = expire;
1002
1003 k = (k + 1) & rt_hash_mask;
1004 rthp = &rt_hash_table[k].chain;
1005 spin_lock_bh(rt_hash_lock_addr(k));
1006 while ((rth = *rthp) != NULL) {
1007 if (!rt_is_expired(rth) &&
1008 !rt_may_expire(rth, tmo, expire)) {
1009 tmo >>= 1;
1010 rthp = &rth->u.dst.rt_next;
1011 continue;
1012 }
1013 *rthp = rth->u.dst.rt_next;
1014 rt_free(rth);
1015 goal--;
1016 }
1017 spin_unlock_bh(rt_hash_lock_addr(k));
1018 if (goal <= 0)
1019 break;
1020 }
1021 rover = k;
1022
1023 if (goal <= 0)
1024 goto work_done;
1025
1026 /* Goal is not achieved. We stop process if:
1027
1028 - if expire reduced to zero. Otherwise, expire is halfed.
1029 - if table is not full.
1030 - if we are called from interrupt.
1031 - jiffies check is just fallback/debug loop breaker.
1032 We will not spin here for long time in any case.
1033 */
1034
1035 RT_CACHE_STAT_INC(gc_goal_miss);
1036
1037 if (expire == 0)
1038 break;
1039
1040 expire >>= 1;
1041 #if RT_CACHE_DEBUG >= 2
1042 printk(KERN_DEBUG "expire>> %u %d %d %d\n", expire,
1043 atomic_read(&ipv4_dst_ops.entries), goal, i);
1044 #endif
1045
1046 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
1047 goto out;
1048 } while (!in_softirq() && time_before_eq(jiffies, now));
1049
1050 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
1051 goto out;
1052 if (net_ratelimit())
1053 printk(KERN_WARNING "dst cache overflow\n");
1054 RT_CACHE_STAT_INC(gc_dst_overflow);
1055 return 1;
1056
1057 work_done:
1058 expire += ip_rt_gc_min_interval;
1059 if (expire > ip_rt_gc_timeout ||
1060 atomic_read(&ipv4_dst_ops.entries) < ipv4_dst_ops.gc_thresh)
1061 expire = ip_rt_gc_timeout;
1062 #if RT_CACHE_DEBUG >= 2
1063 printk(KERN_DEBUG "expire++ %u %d %d %d\n", expire,
1064 atomic_read(&ipv4_dst_ops.entries), goal, rover);
1065 #endif
1066 out: return 0;
1067 }
1068
1069 static int rt_intern_hash(unsigned hash, struct rtable *rt, struct rtable **rp)
1070 {
1071 struct rtable *rth, **rthp;
1072 struct rtable *rthi;
1073 unsigned long now;
1074 struct rtable *cand, **candp;
1075 u32 min_score;
1076 int chain_length;
1077 int attempts = !in_softirq();
1078
1079 restart:
1080 chain_length = 0;
1081 min_score = ~(u32)0;
1082 cand = NULL;
1083 candp = NULL;
1084 now = jiffies;
1085
1086 if (!rt_caching(dev_net(rt->u.dst.dev))) {
1087 rt_drop(rt);
1088 return 0;
1089 }
1090
1091 rthp = &rt_hash_table[hash].chain;
1092 rthi = NULL;
1093
1094 spin_lock_bh(rt_hash_lock_addr(hash));
1095 while ((rth = *rthp) != NULL) {
1096 if (rt_is_expired(rth)) {
1097 *rthp = rth->u.dst.rt_next;
1098 rt_free(rth);
1099 continue;
1100 }
1101 if (compare_keys(&rth->fl, &rt->fl) && compare_netns(rth, rt)) {
1102 /* Put it first */
1103 *rthp = rth->u.dst.rt_next;
1104 /*
1105 * Since lookup is lockfree, the deletion
1106 * must be visible to another weakly ordered CPU before
1107 * the insertion at the start of the hash chain.
1108 */
1109 rcu_assign_pointer(rth->u.dst.rt_next,
1110 rt_hash_table[hash].chain);
1111 /*
1112 * Since lookup is lockfree, the update writes
1113 * must be ordered for consistency on SMP.
1114 */
1115 rcu_assign_pointer(rt_hash_table[hash].chain, rth);
1116
1117 dst_use(&rth->u.dst, now);
1118 spin_unlock_bh(rt_hash_lock_addr(hash));
1119
1120 rt_drop(rt);
1121 *rp = rth;
1122 return 0;
1123 }
1124
1125 if (!atomic_read(&rth->u.dst.__refcnt)) {
1126 u32 score = rt_score(rth);
1127
1128 if (score <= min_score) {
1129 cand = rth;
1130 candp = rthp;
1131 min_score = score;
1132 }
1133 }
1134
1135 chain_length++;
1136
1137 rthp = &rth->u.dst.rt_next;
1138
1139 /*
1140 * check to see if the next entry in the chain
1141 * contains the same hash input values as rt. If it does
1142 * This is where we will insert into the list, instead of
1143 * at the head. This groups entries that differ by aspects not
1144 * relvant to the hash function together, which we use to adjust
1145 * our chain length
1146 */
1147 if (*rthp && compare_hash_inputs(&(*rthp)->fl, &rt->fl))
1148 rthi = rth;
1149 }
1150
1151 if (cand) {
1152 /* ip_rt_gc_elasticity used to be average length of chain
1153 * length, when exceeded gc becomes really aggressive.
1154 *
1155 * The second limit is less certain. At the moment it allows
1156 * only 2 entries per bucket. We will see.
1157 */
1158 if (chain_length > ip_rt_gc_elasticity) {
1159 *candp = cand->u.dst.rt_next;
1160 rt_free(cand);
1161 }
1162 } else {
1163 if (chain_length > rt_chain_length_max) {
1164 struct net *net = dev_net(rt->u.dst.dev);
1165 int num = ++net->ipv4.current_rt_cache_rebuild_count;
1166 if (!rt_caching(dev_net(rt->u.dst.dev))) {
1167 printk(KERN_WARNING "%s: %d rebuilds is over limit, route caching disabled\n",
1168 rt->u.dst.dev->name, num);
1169 }
1170 rt_emergency_hash_rebuild(dev_net(rt->u.dst.dev));
1171 }
1172 }
1173
1174 /* Try to bind route to arp only if it is output
1175 route or unicast forwarding path.
1176 */
1177 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
1178 int err = arp_bind_neighbour(&rt->u.dst);
1179 if (err) {
1180 spin_unlock_bh(rt_hash_lock_addr(hash));
1181
1182 if (err != -ENOBUFS) {
1183 rt_drop(rt);
1184 return err;
1185 }
1186
1187 /* Neighbour tables are full and nothing
1188 can be released. Try to shrink route cache,
1189 it is most likely it holds some neighbour records.
1190 */
1191 if (attempts-- > 0) {
1192 int saved_elasticity = ip_rt_gc_elasticity;
1193 int saved_int = ip_rt_gc_min_interval;
1194 ip_rt_gc_elasticity = 1;
1195 ip_rt_gc_min_interval = 0;
1196 rt_garbage_collect(&ipv4_dst_ops);
1197 ip_rt_gc_min_interval = saved_int;
1198 ip_rt_gc_elasticity = saved_elasticity;
1199 goto restart;
1200 }
1201
1202 if (net_ratelimit())
1203 printk(KERN_WARNING "Neighbour table overflow.\n");
1204 rt_drop(rt);
1205 return -ENOBUFS;
1206 }
1207 }
1208
1209 if (rthi)
1210 rt->u.dst.rt_next = rthi->u.dst.rt_next;
1211 else
1212 rt->u.dst.rt_next = rt_hash_table[hash].chain;
1213
1214 #if RT_CACHE_DEBUG >= 2
1215 if (rt->u.dst.rt_next) {
1216 struct rtable *trt;
1217 printk(KERN_DEBUG "rt_cache @%02x: " NIPQUAD_FMT, hash,
1218 NIPQUAD(rt->rt_dst));
1219 for (trt = rt->u.dst.rt_next; trt; trt = trt->u.dst.rt_next)
1220 printk(" . " NIPQUAD_FMT, NIPQUAD(trt->rt_dst));
1221 printk("\n");
1222 }
1223 #endif
1224 /*
1225 * Since lookup is lockfree, we must make sure
1226 * previous writes to rt are comitted to memory
1227 * before making rt visible to other CPUS.
1228 */
1229 if (rthi)
1230 rcu_assign_pointer(rthi->u.dst.rt_next, rt);
1231 else
1232 rcu_assign_pointer(rt_hash_table[hash].chain, rt);
1233
1234 spin_unlock_bh(rt_hash_lock_addr(hash));
1235 *rp = rt;
1236 return 0;
1237 }
1238
1239 void rt_bind_peer(struct rtable *rt, int create)
1240 {
1241 static DEFINE_SPINLOCK(rt_peer_lock);
1242 struct inet_peer *peer;
1243
1244 peer = inet_getpeer(rt->rt_dst, create);
1245
1246 spin_lock_bh(&rt_peer_lock);
1247 if (rt->peer == NULL) {
1248 rt->peer = peer;
1249 peer = NULL;
1250 }
1251 spin_unlock_bh(&rt_peer_lock);
1252 if (peer)
1253 inet_putpeer(peer);
1254 }
1255
1256 /*
1257 * Peer allocation may fail only in serious out-of-memory conditions. However
1258 * we still can generate some output.
1259 * Random ID selection looks a bit dangerous because we have no chances to
1260 * select ID being unique in a reasonable period of time.
1261 * But broken packet identifier may be better than no packet at all.
1262 */
1263 static void ip_select_fb_ident(struct iphdr *iph)
1264 {
1265 static DEFINE_SPINLOCK(ip_fb_id_lock);
1266 static u32 ip_fallback_id;
1267 u32 salt;
1268
1269 spin_lock_bh(&ip_fb_id_lock);
1270 salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
1271 iph->id = htons(salt & 0xFFFF);
1272 ip_fallback_id = salt;
1273 spin_unlock_bh(&ip_fb_id_lock);
1274 }
1275
1276 void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
1277 {
1278 struct rtable *rt = (struct rtable *) dst;
1279
1280 if (rt) {
1281 if (rt->peer == NULL)
1282 rt_bind_peer(rt, 1);
1283
1284 /* If peer is attached to destination, it is never detached,
1285 so that we need not to grab a lock to dereference it.
1286 */
1287 if (rt->peer) {
1288 iph->id = htons(inet_getid(rt->peer, more));
1289 return;
1290 }
1291 } else
1292 printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",
1293 __builtin_return_address(0));
1294
1295 ip_select_fb_ident(iph);
1296 }
1297
1298 static void rt_del(unsigned hash, struct rtable *rt)
1299 {
1300 struct rtable **rthp, *aux;
1301
1302 rthp = &rt_hash_table[hash].chain;
1303 spin_lock_bh(rt_hash_lock_addr(hash));
1304 ip_rt_put(rt);
1305 while ((aux = *rthp) != NULL) {
1306 if (aux == rt || rt_is_expired(aux)) {
1307 *rthp = aux->u.dst.rt_next;
1308 rt_free(aux);
1309 continue;
1310 }
1311 rthp = &aux->u.dst.rt_next;
1312 }
1313 spin_unlock_bh(rt_hash_lock_addr(hash));
1314 }
1315
1316 void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw,
1317 __be32 saddr, struct net_device *dev)
1318 {
1319 int i, k;
1320 struct in_device *in_dev = in_dev_get(dev);
1321 struct rtable *rth, **rthp;
1322 __be32 skeys[2] = { saddr, 0 };
1323 int ikeys[2] = { dev->ifindex, 0 };
1324 struct netevent_redirect netevent;
1325 struct net *net;
1326
1327 if (!in_dev)
1328 return;
1329
1330 net = dev_net(dev);
1331 if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev)
1332 || ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw)
1333 || ipv4_is_zeronet(new_gw))
1334 goto reject_redirect;
1335
1336 if (!rt_caching(net))
1337 goto reject_redirect;
1338
1339 if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1340 if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1341 goto reject_redirect;
1342 if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1343 goto reject_redirect;
1344 } else {
1345 if (inet_addr_type(net, new_gw) != RTN_UNICAST)
1346 goto reject_redirect;
1347 }
1348
1349 for (i = 0; i < 2; i++) {
1350 for (k = 0; k < 2; k++) {
1351 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k],
1352 rt_genid(net));
1353
1354 rthp=&rt_hash_table[hash].chain;
1355
1356 rcu_read_lock();
1357 while ((rth = rcu_dereference(*rthp)) != NULL) {
1358 struct rtable *rt;
1359
1360 if (rth->fl.fl4_dst != daddr ||
1361 rth->fl.fl4_src != skeys[i] ||
1362 rth->fl.oif != ikeys[k] ||
1363 rth->fl.iif != 0 ||
1364 rt_is_expired(rth) ||
1365 !net_eq(dev_net(rth->u.dst.dev), net)) {
1366 rthp = &rth->u.dst.rt_next;
1367 continue;
1368 }
1369
1370 if (rth->rt_dst != daddr ||
1371 rth->rt_src != saddr ||
1372 rth->u.dst.error ||
1373 rth->rt_gateway != old_gw ||
1374 rth->u.dst.dev != dev)
1375 break;
1376
1377 dst_hold(&rth->u.dst);
1378 rcu_read_unlock();
1379
1380 rt = dst_alloc(&ipv4_dst_ops);
1381 if (rt == NULL) {
1382 ip_rt_put(rth);
1383 in_dev_put(in_dev);
1384 return;
1385 }
1386
1387 /* Copy all the information. */
1388 *rt = *rth;
1389 rt->u.dst.__use = 1;
1390 atomic_set(&rt->u.dst.__refcnt, 1);
1391 rt->u.dst.child = NULL;
1392 if (rt->u.dst.dev)
1393 dev_hold(rt->u.dst.dev);
1394 if (rt->idev)
1395 in_dev_hold(rt->idev);
1396 rt->u.dst.obsolete = 0;
1397 rt->u.dst.lastuse = jiffies;
1398 rt->u.dst.path = &rt->u.dst;
1399 rt->u.dst.neighbour = NULL;
1400 rt->u.dst.hh = NULL;
1401 #ifdef CONFIG_XFRM
1402 rt->u.dst.xfrm = NULL;
1403 #endif
1404 rt->rt_genid = rt_genid(net);
1405 rt->rt_flags |= RTCF_REDIRECTED;
1406
1407 /* Gateway is different ... */
1408 rt->rt_gateway = new_gw;
1409
1410 /* Redirect received -> path was valid */
1411 dst_confirm(&rth->u.dst);
1412
1413 if (rt->peer)
1414 atomic_inc(&rt->peer->refcnt);
1415
1416 if (arp_bind_neighbour(&rt->u.dst) ||
1417 !(rt->u.dst.neighbour->nud_state &
1418 NUD_VALID)) {
1419 if (rt->u.dst.neighbour)
1420 neigh_event_send(rt->u.dst.neighbour, NULL);
1421 ip_rt_put(rth);
1422 rt_drop(rt);
1423 goto do_next;
1424 }
1425
1426 netevent.old = &rth->u.dst;
1427 netevent.new = &rt->u.dst;
1428 call_netevent_notifiers(NETEVENT_REDIRECT,
1429 &netevent);
1430
1431 rt_del(hash, rth);
1432 if (!rt_intern_hash(hash, rt, &rt))
1433 ip_rt_put(rt);
1434 goto do_next;
1435 }
1436 rcu_read_unlock();
1437 do_next:
1438 ;
1439 }
1440 }
1441 in_dev_put(in_dev);
1442 return;
1443
1444 reject_redirect:
1445 #ifdef CONFIG_IP_ROUTE_VERBOSE
1446 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1447 printk(KERN_INFO "Redirect from " NIPQUAD_FMT " on %s about "
1448 NIPQUAD_FMT " ignored.\n"
1449 " Advised path = " NIPQUAD_FMT " -> " NIPQUAD_FMT "\n",
1450 NIPQUAD(old_gw), dev->name, NIPQUAD(new_gw),
1451 NIPQUAD(saddr), NIPQUAD(daddr));
1452 #endif
1453 in_dev_put(in_dev);
1454 }
1455
1456 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1457 {
1458 struct rtable *rt = (struct rtable *)dst;
1459 struct dst_entry *ret = dst;
1460
1461 if (rt) {
1462 if (dst->obsolete) {
1463 ip_rt_put(rt);
1464 ret = NULL;
1465 } else if ((rt->rt_flags & RTCF_REDIRECTED) ||
1466 rt->u.dst.expires) {
1467 unsigned hash = rt_hash(rt->fl.fl4_dst, rt->fl.fl4_src,
1468 rt->fl.oif,
1469 rt_genid(dev_net(dst->dev)));
1470 #if RT_CACHE_DEBUG >= 1
1471 printk(KERN_DEBUG "ipv4_negative_advice: redirect to "
1472 NIPQUAD_FMT "/%02x dropped\n",
1473 NIPQUAD(rt->rt_dst), rt->fl.fl4_tos);
1474 #endif
1475 rt_del(hash, rt);
1476 ret = NULL;
1477 }
1478 }
1479 return ret;
1480 }
1481
1482 /*
1483 * Algorithm:
1484 * 1. The first ip_rt_redirect_number redirects are sent
1485 * with exponential backoff, then we stop sending them at all,
1486 * assuming that the host ignores our redirects.
1487 * 2. If we did not see packets requiring redirects
1488 * during ip_rt_redirect_silence, we assume that the host
1489 * forgot redirected route and start to send redirects again.
1490 *
1491 * This algorithm is much cheaper and more intelligent than dumb load limiting
1492 * in icmp.c.
1493 *
1494 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1495 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1496 */
1497
1498 void ip_rt_send_redirect(struct sk_buff *skb)
1499 {
1500 struct rtable *rt = skb->rtable;
1501 struct in_device *in_dev = in_dev_get(rt->u.dst.dev);
1502
1503 if (!in_dev)
1504 return;
1505
1506 if (!IN_DEV_TX_REDIRECTS(in_dev))
1507 goto out;
1508
1509 /* No redirected packets during ip_rt_redirect_silence;
1510 * reset the algorithm.
1511 */
1512 if (time_after(jiffies, rt->u.dst.rate_last + ip_rt_redirect_silence))
1513 rt->u.dst.rate_tokens = 0;
1514
1515 /* Too many ignored redirects; do not send anything
1516 * set u.dst.rate_last to the last seen redirected packet.
1517 */
1518 if (rt->u.dst.rate_tokens >= ip_rt_redirect_number) {
1519 rt->u.dst.rate_last = jiffies;
1520 goto out;
1521 }
1522
1523 /* Check for load limit; set rate_last to the latest sent
1524 * redirect.
1525 */
1526 if (rt->u.dst.rate_tokens == 0 ||
1527 time_after(jiffies,
1528 (rt->u.dst.rate_last +
1529 (ip_rt_redirect_load << rt->u.dst.rate_tokens)))) {
1530 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1531 rt->u.dst.rate_last = jiffies;
1532 ++rt->u.dst.rate_tokens;
1533 #ifdef CONFIG_IP_ROUTE_VERBOSE
1534 if (IN_DEV_LOG_MARTIANS(in_dev) &&
1535 rt->u.dst.rate_tokens == ip_rt_redirect_number &&
1536 net_ratelimit())
1537 printk(KERN_WARNING "host " NIPQUAD_FMT "/if%d ignores "
1538 "redirects for " NIPQUAD_FMT " to " NIPQUAD_FMT ".\n",
1539 NIPQUAD(rt->rt_src), rt->rt_iif,
1540 NIPQUAD(rt->rt_dst), NIPQUAD(rt->rt_gateway));
1541 #endif
1542 }
1543 out:
1544 in_dev_put(in_dev);
1545 }
1546
1547 static int ip_error(struct sk_buff *skb)
1548 {
1549 struct rtable *rt = skb->rtable;
1550 unsigned long now;
1551 int code;
1552
1553 switch (rt->u.dst.error) {
1554 case EINVAL:
1555 default:
1556 goto out;
1557 case EHOSTUNREACH:
1558 code = ICMP_HOST_UNREACH;
1559 break;
1560 case ENETUNREACH:
1561 code = ICMP_NET_UNREACH;
1562 IP_INC_STATS_BH(dev_net(rt->u.dst.dev),
1563 IPSTATS_MIB_INNOROUTES);
1564 break;
1565 case EACCES:
1566 code = ICMP_PKT_FILTERED;
1567 break;
1568 }
1569
1570 now = jiffies;
1571 rt->u.dst.rate_tokens += now - rt->u.dst.rate_last;
1572 if (rt->u.dst.rate_tokens > ip_rt_error_burst)
1573 rt->u.dst.rate_tokens = ip_rt_error_burst;
1574 rt->u.dst.rate_last = now;
1575 if (rt->u.dst.rate_tokens >= ip_rt_error_cost) {
1576 rt->u.dst.rate_tokens -= ip_rt_error_cost;
1577 icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1578 }
1579
1580 out: kfree_skb(skb);
1581 return 0;
1582 }
1583
1584 /*
1585 * The last two values are not from the RFC but
1586 * are needed for AMPRnet AX.25 paths.
1587 */
1588
1589 static const unsigned short mtu_plateau[] =
1590 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1591
1592 static inline unsigned short guess_mtu(unsigned short old_mtu)
1593 {
1594 int i;
1595
1596 for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++)
1597 if (old_mtu > mtu_plateau[i])
1598 return mtu_plateau[i];
1599 return 68;
1600 }
1601
1602 unsigned short ip_rt_frag_needed(struct net *net, struct iphdr *iph,
1603 unsigned short new_mtu,
1604 struct net_device *dev)
1605 {
1606 int i, k;
1607 unsigned short old_mtu = ntohs(iph->tot_len);
1608 struct rtable *rth;
1609 int ikeys[2] = { dev->ifindex, 0 };
1610 __be32 skeys[2] = { iph->saddr, 0, };
1611 __be32 daddr = iph->daddr;
1612 unsigned short est_mtu = 0;
1613
1614 if (ipv4_config.no_pmtu_disc)
1615 return 0;
1616
1617 for (k = 0; k < 2; k++) {
1618 for (i = 0; i < 2; i++) {
1619 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k],
1620 rt_genid(net));
1621
1622 rcu_read_lock();
1623 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
1624 rth = rcu_dereference(rth->u.dst.rt_next)) {
1625 unsigned short mtu = new_mtu;
1626
1627 if (rth->fl.fl4_dst != daddr ||
1628 rth->fl.fl4_src != skeys[i] ||
1629 rth->rt_dst != daddr ||
1630 rth->rt_src != iph->saddr ||
1631 rth->fl.oif != ikeys[k] ||
1632 rth->fl.iif != 0 ||
1633 dst_metric_locked(&rth->u.dst, RTAX_MTU) ||
1634 !net_eq(dev_net(rth->u.dst.dev), net) ||
1635 rt_is_expired(rth))
1636 continue;
1637
1638 if (new_mtu < 68 || new_mtu >= old_mtu) {
1639
1640 /* BSD 4.2 compatibility hack :-( */
1641 if (mtu == 0 &&
1642 old_mtu >= dst_mtu(&rth->u.dst) &&
1643 old_mtu >= 68 + (iph->ihl << 2))
1644 old_mtu -= iph->ihl << 2;
1645
1646 mtu = guess_mtu(old_mtu);
1647 }
1648 if (mtu <= dst_mtu(&rth->u.dst)) {
1649 if (mtu < dst_mtu(&rth->u.dst)) {
1650 dst_confirm(&rth->u.dst);
1651 if (mtu < ip_rt_min_pmtu) {
1652 mtu = ip_rt_min_pmtu;
1653 rth->u.dst.metrics[RTAX_LOCK-1] |=
1654 (1 << RTAX_MTU);
1655 }
1656 rth->u.dst.metrics[RTAX_MTU-1] = mtu;
1657 dst_set_expires(&rth->u.dst,
1658 ip_rt_mtu_expires);
1659 }
1660 est_mtu = mtu;
1661 }
1662 }
1663 rcu_read_unlock();
1664 }
1665 }
1666 return est_mtu ? : new_mtu;
1667 }
1668
1669 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1670 {
1671 if (dst_mtu(dst) > mtu && mtu >= 68 &&
1672 !(dst_metric_locked(dst, RTAX_MTU))) {
1673 if (mtu < ip_rt_min_pmtu) {
1674 mtu = ip_rt_min_pmtu;
1675 dst->metrics[RTAX_LOCK-1] |= (1 << RTAX_MTU);
1676 }
1677 dst->metrics[RTAX_MTU-1] = mtu;
1678 dst_set_expires(dst, ip_rt_mtu_expires);
1679 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
1680 }
1681 }
1682
1683 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1684 {
1685 return NULL;
1686 }
1687
1688 static void ipv4_dst_destroy(struct dst_entry *dst)
1689 {
1690 struct rtable *rt = (struct rtable *) dst;
1691 struct inet_peer *peer = rt->peer;
1692 struct in_device *idev = rt->idev;
1693
1694 if (peer) {
1695 rt->peer = NULL;
1696 inet_putpeer(peer);
1697 }
1698
1699 if (idev) {
1700 rt->idev = NULL;
1701 in_dev_put(idev);
1702 }
1703 }
1704
1705 static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
1706 int how)
1707 {
1708 struct rtable *rt = (struct rtable *) dst;
1709 struct in_device *idev = rt->idev;
1710 if (dev != dev_net(dev)->loopback_dev && idev && idev->dev == dev) {
1711 struct in_device *loopback_idev =
1712 in_dev_get(dev_net(dev)->loopback_dev);
1713 if (loopback_idev) {
1714 rt->idev = loopback_idev;
1715 in_dev_put(idev);
1716 }
1717 }
1718 }
1719
1720 static void ipv4_link_failure(struct sk_buff *skb)
1721 {
1722 struct rtable *rt;
1723
1724 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1725
1726 rt = skb->rtable;
1727 if (rt)
1728 dst_set_expires(&rt->u.dst, 0);
1729 }
1730
1731 static int ip_rt_bug(struct sk_buff *skb)
1732 {
1733 printk(KERN_DEBUG "ip_rt_bug: " NIPQUAD_FMT " -> " NIPQUAD_FMT ", %s\n",
1734 NIPQUAD(ip_hdr(skb)->saddr), NIPQUAD(ip_hdr(skb)->daddr),
1735 skb->dev ? skb->dev->name : "?");
1736 kfree_skb(skb);
1737 return 0;
1738 }
1739
1740 /*
1741 We do not cache source address of outgoing interface,
1742 because it is used only by IP RR, TS and SRR options,
1743 so that it out of fast path.
1744
1745 BTW remember: "addr" is allowed to be not aligned
1746 in IP options!
1747 */
1748
1749 void ip_rt_get_source(u8 *addr, struct rtable *rt)
1750 {
1751 __be32 src;
1752 struct fib_result res;
1753
1754 if (rt->fl.iif == 0)
1755 src = rt->rt_src;
1756 else if (fib_lookup(dev_net(rt->u.dst.dev), &rt->fl, &res) == 0) {
1757 src = FIB_RES_PREFSRC(res);
1758 fib_res_put(&res);
1759 } else
1760 src = inet_select_addr(rt->u.dst.dev, rt->rt_gateway,
1761 RT_SCOPE_UNIVERSE);
1762 memcpy(addr, &src, 4);
1763 }
1764
1765 #ifdef CONFIG_NET_CLS_ROUTE
1766 static void set_class_tag(struct rtable *rt, u32 tag)
1767 {
1768 if (!(rt->u.dst.tclassid & 0xFFFF))
1769 rt->u.dst.tclassid |= tag & 0xFFFF;
1770 if (!(rt->u.dst.tclassid & 0xFFFF0000))
1771 rt->u.dst.tclassid |= tag & 0xFFFF0000;
1772 }
1773 #endif
1774
1775 static void rt_set_nexthop(struct rtable *rt, struct fib_result *res, u32 itag)
1776 {
1777 struct fib_info *fi = res->fi;
1778
1779 if (fi) {
1780 if (FIB_RES_GW(*res) &&
1781 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1782 rt->rt_gateway = FIB_RES_GW(*res);
1783 memcpy(rt->u.dst.metrics, fi->fib_metrics,
1784 sizeof(rt->u.dst.metrics));
1785 if (fi->fib_mtu == 0) {
1786 rt->u.dst.metrics[RTAX_MTU-1] = rt->u.dst.dev->mtu;
1787 if (dst_metric_locked(&rt->u.dst, RTAX_MTU) &&
1788 rt->rt_gateway != rt->rt_dst &&
1789 rt->u.dst.dev->mtu > 576)
1790 rt->u.dst.metrics[RTAX_MTU-1] = 576;
1791 }
1792 #ifdef CONFIG_NET_CLS_ROUTE
1793 rt->u.dst.tclassid = FIB_RES_NH(*res).nh_tclassid;
1794 #endif
1795 } else
1796 rt->u.dst.metrics[RTAX_MTU-1]= rt->u.dst.dev->mtu;
1797
1798 if (dst_metric(&rt->u.dst, RTAX_HOPLIMIT) == 0)
1799 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = sysctl_ip_default_ttl;
1800 if (dst_mtu(&rt->u.dst) > IP_MAX_MTU)
1801 rt->u.dst.metrics[RTAX_MTU-1] = IP_MAX_MTU;
1802 if (dst_metric(&rt->u.dst, RTAX_ADVMSS) == 0)
1803 rt->u.dst.metrics[RTAX_ADVMSS-1] = max_t(unsigned int, rt->u.dst.dev->mtu - 40,
1804 ip_rt_min_advmss);
1805 if (dst_metric(&rt->u.dst, RTAX_ADVMSS) > 65535 - 40)
1806 rt->u.dst.metrics[RTAX_ADVMSS-1] = 65535 - 40;
1807
1808 #ifdef CONFIG_NET_CLS_ROUTE
1809 #ifdef CONFIG_IP_MULTIPLE_TABLES
1810 set_class_tag(rt, fib_rules_tclass(res));
1811 #endif
1812 set_class_tag(rt, itag);
1813 #endif
1814 rt->rt_type = res->type;
1815 }
1816
1817 static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1818 u8 tos, struct net_device *dev, int our)
1819 {
1820 unsigned hash;
1821 struct rtable *rth;
1822 __be32 spec_dst;
1823 struct in_device *in_dev = in_dev_get(dev);
1824 u32 itag = 0;
1825
1826 /* Primary sanity checks. */
1827
1828 if (in_dev == NULL)
1829 return -EINVAL;
1830
1831 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1832 ipv4_is_loopback(saddr) || skb->protocol != htons(ETH_P_IP))
1833 goto e_inval;
1834
1835 if (ipv4_is_zeronet(saddr)) {
1836 if (!ipv4_is_local_multicast(daddr))
1837 goto e_inval;
1838 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1839 } else if (fib_validate_source(saddr, 0, tos, 0,
1840 dev, &spec_dst, &itag) < 0)
1841 goto e_inval;
1842
1843 rth = dst_alloc(&ipv4_dst_ops);
1844 if (!rth)
1845 goto e_nobufs;
1846
1847 rth->u.dst.output= ip_rt_bug;
1848
1849 atomic_set(&rth->u.dst.__refcnt, 1);
1850 rth->u.dst.flags= DST_HOST;
1851 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1852 rth->u.dst.flags |= DST_NOPOLICY;
1853 rth->fl.fl4_dst = daddr;
1854 rth->rt_dst = daddr;
1855 rth->fl.fl4_tos = tos;
1856 rth->fl.mark = skb->mark;
1857 rth->fl.fl4_src = saddr;
1858 rth->rt_src = saddr;
1859 #ifdef CONFIG_NET_CLS_ROUTE
1860 rth->u.dst.tclassid = itag;
1861 #endif
1862 rth->rt_iif =
1863 rth->fl.iif = dev->ifindex;
1864 rth->u.dst.dev = init_net.loopback_dev;
1865 dev_hold(rth->u.dst.dev);
1866 rth->idev = in_dev_get(rth->u.dst.dev);
1867 rth->fl.oif = 0;
1868 rth->rt_gateway = daddr;
1869 rth->rt_spec_dst= spec_dst;
1870 rth->rt_genid = rt_genid(dev_net(dev));
1871 rth->rt_flags = RTCF_MULTICAST;
1872 rth->rt_type = RTN_MULTICAST;
1873 if (our) {
1874 rth->u.dst.input= ip_local_deliver;
1875 rth->rt_flags |= RTCF_LOCAL;
1876 }
1877
1878 #ifdef CONFIG_IP_MROUTE
1879 if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev))
1880 rth->u.dst.input = ip_mr_input;
1881 #endif
1882 RT_CACHE_STAT_INC(in_slow_mc);
1883
1884 in_dev_put(in_dev);
1885 hash = rt_hash(daddr, saddr, dev->ifindex, rt_genid(dev_net(dev)));
1886 return rt_intern_hash(hash, rth, &skb->rtable);
1887
1888 e_nobufs:
1889 in_dev_put(in_dev);
1890 return -ENOBUFS;
1891
1892 e_inval:
1893 in_dev_put(in_dev);
1894 return -EINVAL;
1895 }
1896
1897
1898 static void ip_handle_martian_source(struct net_device *dev,
1899 struct in_device *in_dev,
1900 struct sk_buff *skb,
1901 __be32 daddr,
1902 __be32 saddr)
1903 {
1904 RT_CACHE_STAT_INC(in_martian_src);
1905 #ifdef CONFIG_IP_ROUTE_VERBOSE
1906 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
1907 /*
1908 * RFC1812 recommendation, if source is martian,
1909 * the only hint is MAC header.
1910 */
1911 printk(KERN_WARNING "martian source " NIPQUAD_FMT " from "
1912 NIPQUAD_FMT", on dev %s\n",
1913 NIPQUAD(daddr), NIPQUAD(saddr), dev->name);
1914 if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
1915 int i;
1916 const unsigned char *p = skb_mac_header(skb);
1917 printk(KERN_WARNING "ll header: ");
1918 for (i = 0; i < dev->hard_header_len; i++, p++) {
1919 printk("%02x", *p);
1920 if (i < (dev->hard_header_len - 1))
1921 printk(":");
1922 }
1923 printk("\n");
1924 }
1925 }
1926 #endif
1927 }
1928
1929 static int __mkroute_input(struct sk_buff *skb,
1930 struct fib_result *res,
1931 struct in_device *in_dev,
1932 __be32 daddr, __be32 saddr, u32 tos,
1933 struct rtable **result)
1934 {
1935
1936 struct rtable *rth;
1937 int err;
1938 struct in_device *out_dev;
1939 unsigned flags = 0;
1940 __be32 spec_dst;
1941 u32 itag;
1942
1943 /* get a working reference to the output device */
1944 out_dev = in_dev_get(FIB_RES_DEV(*res));
1945 if (out_dev == NULL) {
1946 if (net_ratelimit())
1947 printk(KERN_CRIT "Bug in ip_route_input" \
1948 "_slow(). Please, report\n");
1949 return -EINVAL;
1950 }
1951
1952
1953 err = fib_validate_source(saddr, daddr, tos, FIB_RES_OIF(*res),
1954 in_dev->dev, &spec_dst, &itag);
1955 if (err < 0) {
1956 ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
1957 saddr);
1958
1959 err = -EINVAL;
1960 goto cleanup;
1961 }
1962
1963 if (err)
1964 flags |= RTCF_DIRECTSRC;
1965
1966 if (out_dev == in_dev && err &&
1967 (IN_DEV_SHARED_MEDIA(out_dev) ||
1968 inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
1969 flags |= RTCF_DOREDIRECT;
1970
1971 if (skb->protocol != htons(ETH_P_IP)) {
1972 /* Not IP (i.e. ARP). Do not create route, if it is
1973 * invalid for proxy arp. DNAT routes are always valid.
1974 */
1975 if (out_dev == in_dev) {
1976 err = -EINVAL;
1977 goto cleanup;
1978 }
1979 }
1980
1981
1982 rth = dst_alloc(&ipv4_dst_ops);
1983 if (!rth) {
1984 err = -ENOBUFS;
1985 goto cleanup;
1986 }
1987
1988 atomic_set(&rth->u.dst.__refcnt, 1);
1989 rth->u.dst.flags= DST_HOST;
1990 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1991 rth->u.dst.flags |= DST_NOPOLICY;
1992 if (IN_DEV_CONF_GET(out_dev, NOXFRM))
1993 rth->u.dst.flags |= DST_NOXFRM;
1994 rth->fl.fl4_dst = daddr;
1995 rth->rt_dst = daddr;
1996 rth->fl.fl4_tos = tos;
1997 rth->fl.mark = skb->mark;
1998 rth->fl.fl4_src = saddr;
1999 rth->rt_src = saddr;
2000 rth->rt_gateway = daddr;
2001 rth->rt_iif =
2002 rth->fl.iif = in_dev->dev->ifindex;
2003 rth->u.dst.dev = (out_dev)->dev;
2004 dev_hold(rth->u.dst.dev);
2005 rth->idev = in_dev_get(rth->u.dst.dev);
2006 rth->fl.oif = 0;
2007 rth->rt_spec_dst= spec_dst;
2008
2009 rth->u.dst.input = ip_forward;
2010 rth->u.dst.output = ip_output;
2011 rth->rt_genid = rt_genid(dev_net(rth->u.dst.dev));
2012
2013 rt_set_nexthop(rth, res, itag);
2014
2015 rth->rt_flags = flags;
2016
2017 *result = rth;
2018 err = 0;
2019 cleanup:
2020 /* release the working reference to the output device */
2021 in_dev_put(out_dev);
2022 return err;
2023 }
2024
2025 static int ip_mkroute_input(struct sk_buff *skb,
2026 struct fib_result *res,
2027 const struct flowi *fl,
2028 struct in_device *in_dev,
2029 __be32 daddr, __be32 saddr, u32 tos)
2030 {
2031 struct rtable* rth = NULL;
2032 int err;
2033 unsigned hash;
2034
2035 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2036 if (res->fi && res->fi->fib_nhs > 1 && fl->oif == 0)
2037 fib_select_multipath(fl, res);
2038 #endif
2039
2040 /* create a routing cache entry */
2041 err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
2042 if (err)
2043 return err;
2044
2045 /* put it into the cache */
2046 hash = rt_hash(daddr, saddr, fl->iif,
2047 rt_genid(dev_net(rth->u.dst.dev)));
2048 return rt_intern_hash(hash, rth, &skb->rtable);
2049 }
2050
2051 /*
2052 * NOTE. We drop all the packets that has local source
2053 * addresses, because every properly looped back packet
2054 * must have correct destination already attached by output routine.
2055 *
2056 * Such approach solves two big problems:
2057 * 1. Not simplex devices are handled properly.
2058 * 2. IP spoofing attempts are filtered with 100% of guarantee.
2059 */
2060
2061 static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2062 u8 tos, struct net_device *dev)
2063 {
2064 struct fib_result res;
2065 struct in_device *in_dev = in_dev_get(dev);
2066 struct flowi fl = { .nl_u = { .ip4_u =
2067 { .daddr = daddr,
2068 .saddr = saddr,
2069 .tos = tos,
2070 .scope = RT_SCOPE_UNIVERSE,
2071 } },
2072 .mark = skb->mark,
2073 .iif = dev->ifindex };
2074 unsigned flags = 0;
2075 u32 itag = 0;
2076 struct rtable * rth;
2077 unsigned hash;
2078 __be32 spec_dst;
2079 int err = -EINVAL;
2080 int free_res = 0;
2081 struct net * net = dev_net(dev);
2082
2083 /* IP on this device is disabled. */
2084
2085 if (!in_dev)
2086 goto out;
2087
2088 /* Check for the most weird martians, which can be not detected
2089 by fib_lookup.
2090 */
2091
2092 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
2093 ipv4_is_loopback(saddr))
2094 goto martian_source;
2095
2096 if (daddr == htonl(0xFFFFFFFF) || (saddr == 0 && daddr == 0))
2097 goto brd_input;
2098
2099 /* Accept zero addresses only to limited broadcast;
2100 * I even do not know to fix it or not. Waiting for complains :-)
2101 */
2102 if (ipv4_is_zeronet(saddr))
2103 goto martian_source;
2104
2105 if (ipv4_is_lbcast(daddr) || ipv4_is_zeronet(daddr) ||
2106 ipv4_is_loopback(daddr))
2107 goto martian_destination;
2108
2109 /*
2110 * Now we are ready to route packet.
2111 */
2112 if ((err = fib_lookup(net, &fl, &res)) != 0) {
2113 if (!IN_DEV_FORWARD(in_dev))
2114 goto e_hostunreach;
2115 goto no_route;
2116 }
2117 free_res = 1;
2118
2119 RT_CACHE_STAT_INC(in_slow_tot);
2120
2121 if (res.type == RTN_BROADCAST)
2122 goto brd_input;
2123
2124 if (res.type == RTN_LOCAL) {
2125 int result;
2126 result = fib_validate_source(saddr, daddr, tos,
2127 net->loopback_dev->ifindex,
2128 dev, &spec_dst, &itag);
2129 if (result < 0)
2130 goto martian_source;
2131 if (result)
2132 flags |= RTCF_DIRECTSRC;
2133 spec_dst = daddr;
2134 goto local_input;
2135 }
2136
2137 if (!IN_DEV_FORWARD(in_dev))
2138 goto e_hostunreach;
2139 if (res.type != RTN_UNICAST)
2140 goto martian_destination;
2141
2142 err = ip_mkroute_input(skb, &res, &fl, in_dev, daddr, saddr, tos);
2143 done:
2144 in_dev_put(in_dev);
2145 if (free_res)
2146 fib_res_put(&res);
2147 out: return err;
2148
2149 brd_input:
2150 if (skb->protocol != htons(ETH_P_IP))
2151 goto e_inval;
2152
2153 if (ipv4_is_zeronet(saddr))
2154 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
2155 else {
2156 err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst,
2157 &itag);
2158 if (err < 0)
2159 goto martian_source;
2160 if (err)
2161 flags |= RTCF_DIRECTSRC;
2162 }
2163 flags |= RTCF_BROADCAST;
2164 res.type = RTN_BROADCAST;
2165 RT_CACHE_STAT_INC(in_brd);
2166
2167 local_input:
2168 rth = dst_alloc(&ipv4_dst_ops);
2169 if (!rth)
2170 goto e_nobufs;
2171
2172 rth->u.dst.output= ip_rt_bug;
2173 rth->rt_genid = rt_genid(net);
2174
2175 atomic_set(&rth->u.dst.__refcnt, 1);
2176 rth->u.dst.flags= DST_HOST;
2177 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2178 rth->u.dst.flags |= DST_NOPOLICY;
2179 rth->fl.fl4_dst = daddr;
2180 rth->rt_dst = daddr;
2181 rth->fl.fl4_tos = tos;
2182 rth->fl.mark = skb->mark;
2183 rth->fl.fl4_src = saddr;
2184 rth->rt_src = saddr;
2185 #ifdef CONFIG_NET_CLS_ROUTE
2186 rth->u.dst.tclassid = itag;
2187 #endif
2188 rth->rt_iif =
2189 rth->fl.iif = dev->ifindex;
2190 rth->u.dst.dev = net->loopback_dev;
2191 dev_hold(rth->u.dst.dev);
2192 rth->idev = in_dev_get(rth->u.dst.dev);
2193 rth->rt_gateway = daddr;
2194 rth->rt_spec_dst= spec_dst;
2195 rth->u.dst.input= ip_local_deliver;
2196 rth->rt_flags = flags|RTCF_LOCAL;
2197 if (res.type == RTN_UNREACHABLE) {
2198 rth->u.dst.input= ip_error;
2199 rth->u.dst.error= -err;
2200 rth->rt_flags &= ~RTCF_LOCAL;
2201 }
2202 rth->rt_type = res.type;
2203 hash = rt_hash(daddr, saddr, fl.iif, rt_genid(net));
2204 err = rt_intern_hash(hash, rth, &skb->rtable);
2205 goto done;
2206
2207 no_route:
2208 RT_CACHE_STAT_INC(in_no_route);
2209 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
2210 res.type = RTN_UNREACHABLE;
2211 if (err == -ESRCH)
2212 err = -ENETUNREACH;
2213 goto local_input;
2214
2215 /*
2216 * Do not cache martian addresses: they should be logged (RFC1812)
2217 */
2218 martian_destination:
2219 RT_CACHE_STAT_INC(in_martian_dst);
2220 #ifdef CONFIG_IP_ROUTE_VERBOSE
2221 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
2222 printk(KERN_WARNING "martian destination " NIPQUAD_FMT " from "
2223 NIPQUAD_FMT ", dev %s\n",
2224 NIPQUAD(daddr), NIPQUAD(saddr), dev->name);
2225 #endif
2226
2227 e_hostunreach:
2228 err = -EHOSTUNREACH;
2229 goto done;
2230
2231 e_inval:
2232 err = -EINVAL;
2233 goto done;
2234
2235 e_nobufs:
2236 err = -ENOBUFS;
2237 goto done;
2238
2239 martian_source:
2240 ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
2241 goto e_inval;
2242 }
2243
2244 int ip_route_input(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2245 u8 tos, struct net_device *dev)
2246 {
2247 struct rtable * rth;
2248 unsigned hash;
2249 int iif = dev->ifindex;
2250 struct net *net;
2251
2252 net = dev_net(dev);
2253
2254 if (!rt_caching(net))
2255 goto skip_cache;
2256
2257 tos &= IPTOS_RT_MASK;
2258 hash = rt_hash(daddr, saddr, iif, rt_genid(net));
2259
2260 rcu_read_lock();
2261 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2262 rth = rcu_dereference(rth->u.dst.rt_next)) {
2263 if (((rth->fl.fl4_dst ^ daddr) |
2264 (rth->fl.fl4_src ^ saddr) |
2265 (rth->fl.iif ^ iif) |
2266 rth->fl.oif |
2267 (rth->fl.fl4_tos ^ tos)) == 0 &&
2268 rth->fl.mark == skb->mark &&
2269 net_eq(dev_net(rth->u.dst.dev), net) &&
2270 !rt_is_expired(rth)) {
2271 dst_use(&rth->u.dst, jiffies);
2272 RT_CACHE_STAT_INC(in_hit);
2273 rcu_read_unlock();
2274 skb->rtable = rth;
2275 return 0;
2276 }
2277 RT_CACHE_STAT_INC(in_hlist_search);
2278 }
2279 rcu_read_unlock();
2280
2281 skip_cache:
2282 /* Multicast recognition logic is moved from route cache to here.
2283 The problem was that too many Ethernet cards have broken/missing
2284 hardware multicast filters :-( As result the host on multicasting
2285 network acquires a lot of useless route cache entries, sort of
2286 SDR messages from all the world. Now we try to get rid of them.
2287 Really, provided software IP multicast filter is organized
2288 reasonably (at least, hashed), it does not result in a slowdown
2289 comparing with route cache reject entries.
2290 Note, that multicast routers are not affected, because
2291 route cache entry is created eventually.
2292 */
2293 if (ipv4_is_multicast(daddr)) {
2294 struct in_device *in_dev;
2295
2296 rcu_read_lock();
2297 if ((in_dev = __in_dev_get_rcu(dev)) != NULL) {
2298 int our = ip_check_mc(in_dev, daddr, saddr,
2299 ip_hdr(skb)->protocol);
2300 if (our
2301 #ifdef CONFIG_IP_MROUTE
2302 || (!ipv4_is_local_multicast(daddr) &&
2303 IN_DEV_MFORWARD(in_dev))
2304 #endif
2305 ) {
2306 rcu_read_unlock();
2307 return ip_route_input_mc(skb, daddr, saddr,
2308 tos, dev, our);
2309 }
2310 }
2311 rcu_read_unlock();
2312 return -EINVAL;
2313 }
2314 return ip_route_input_slow(skb, daddr, saddr, tos, dev);
2315 }
2316
2317 static int __mkroute_output(struct rtable **result,
2318 struct fib_result *res,
2319 const struct flowi *fl,
2320 const struct flowi *oldflp,
2321 struct net_device *dev_out,
2322 unsigned flags)
2323 {
2324 struct rtable *rth;
2325 struct in_device *in_dev;
2326 u32 tos = RT_FL_TOS(oldflp);
2327 int err = 0;
2328
2329 if (ipv4_is_loopback(fl->fl4_src) && !(dev_out->flags&IFF_LOOPBACK))
2330 return -EINVAL;
2331
2332 if (fl->fl4_dst == htonl(0xFFFFFFFF))
2333 res->type = RTN_BROADCAST;
2334 else if (ipv4_is_multicast(fl->fl4_dst))
2335 res->type = RTN_MULTICAST;
2336 else if (ipv4_is_lbcast(fl->fl4_dst) || ipv4_is_zeronet(fl->fl4_dst))
2337 return -EINVAL;
2338
2339 if (dev_out->flags & IFF_LOOPBACK)
2340 flags |= RTCF_LOCAL;
2341
2342 /* get work reference to inet device */
2343 in_dev = in_dev_get(dev_out);
2344 if (!in_dev)
2345 return -EINVAL;
2346
2347 if (res->type == RTN_BROADCAST) {
2348 flags |= RTCF_BROADCAST | RTCF_LOCAL;
2349 if (res->fi) {
2350 fib_info_put(res->fi);
2351 res->fi = NULL;
2352 }
2353 } else if (res->type == RTN_MULTICAST) {
2354 flags |= RTCF_MULTICAST|RTCF_LOCAL;
2355 if (!ip_check_mc(in_dev, oldflp->fl4_dst, oldflp->fl4_src,
2356 oldflp->proto))
2357 flags &= ~RTCF_LOCAL;
2358 /* If multicast route do not exist use
2359 default one, but do not gateway in this case.
2360 Yes, it is hack.
2361 */
2362 if (res->fi && res->prefixlen < 4) {
2363 fib_info_put(res->fi);
2364 res->fi = NULL;
2365 }
2366 }
2367
2368
2369 rth = dst_alloc(&ipv4_dst_ops);
2370 if (!rth) {
2371 err = -ENOBUFS;
2372 goto cleanup;
2373 }
2374
2375 atomic_set(&rth->u.dst.__refcnt, 1);
2376 rth->u.dst.flags= DST_HOST;
2377 if (IN_DEV_CONF_GET(in_dev, NOXFRM))
2378 rth->u.dst.flags |= DST_NOXFRM;
2379 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2380 rth->u.dst.flags |= DST_NOPOLICY;
2381
2382 rth->fl.fl4_dst = oldflp->fl4_dst;
2383 rth->fl.fl4_tos = tos;
2384 rth->fl.fl4_src = oldflp->fl4_src;
2385 rth->fl.oif = oldflp->oif;
2386 rth->fl.mark = oldflp->mark;
2387 rth->rt_dst = fl->fl4_dst;
2388 rth->rt_src = fl->fl4_src;
2389 rth->rt_iif = oldflp->oif ? : dev_out->ifindex;
2390 /* get references to the devices that are to be hold by the routing
2391 cache entry */
2392 rth->u.dst.dev = dev_out;
2393 dev_hold(dev_out);
2394 rth->idev = in_dev_get(dev_out);
2395 rth->rt_gateway = fl->fl4_dst;
2396 rth->rt_spec_dst= fl->fl4_src;
2397
2398 rth->u.dst.output=ip_output;
2399 rth->rt_genid = rt_genid(dev_net(dev_out));
2400
2401 RT_CACHE_STAT_INC(out_slow_tot);
2402
2403 if (flags & RTCF_LOCAL) {
2404 rth->u.dst.input = ip_local_deliver;
2405 rth->rt_spec_dst = fl->fl4_dst;
2406 }
2407 if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2408 rth->rt_spec_dst = fl->fl4_src;
2409 if (flags & RTCF_LOCAL &&
2410 !(dev_out->flags & IFF_LOOPBACK)) {
2411 rth->u.dst.output = ip_mc_output;
2412 RT_CACHE_STAT_INC(out_slow_mc);
2413 }
2414 #ifdef CONFIG_IP_MROUTE
2415 if (res->type == RTN_MULTICAST) {
2416 if (IN_DEV_MFORWARD(in_dev) &&
2417 !ipv4_is_local_multicast(oldflp->fl4_dst)) {
2418 rth->u.dst.input = ip_mr_input;
2419 rth->u.dst.output = ip_mc_output;
2420 }
2421 }
2422 #endif
2423 }
2424
2425 rt_set_nexthop(rth, res, 0);
2426
2427 rth->rt_flags = flags;
2428
2429 *result = rth;
2430 cleanup:
2431 /* release work reference to inet device */
2432 in_dev_put(in_dev);
2433
2434 return err;
2435 }
2436
2437 static int ip_mkroute_output(struct rtable **rp,
2438 struct fib_result *res,
2439 const struct flowi *fl,
2440 const struct flowi *oldflp,
2441 struct net_device *dev_out,
2442 unsigned flags)
2443 {
2444 struct rtable *rth = NULL;
2445 int err = __mkroute_output(&rth, res, fl, oldflp, dev_out, flags);
2446 unsigned hash;
2447 if (err == 0) {
2448 hash = rt_hash(oldflp->fl4_dst, oldflp->fl4_src, oldflp->oif,
2449 rt_genid(dev_net(dev_out)));
2450 err = rt_intern_hash(hash, rth, rp);
2451 }
2452
2453 return err;
2454 }
2455
2456 /*
2457 * Major route resolver routine.
2458 */
2459
2460 static int ip_route_output_slow(struct net *net, struct rtable **rp,
2461 const struct flowi *oldflp)
2462 {
2463 u32 tos = RT_FL_TOS(oldflp);
2464 struct flowi fl = { .nl_u = { .ip4_u =
2465 { .daddr = oldflp->fl4_dst,
2466 .saddr = oldflp->fl4_src,
2467 .tos = tos & IPTOS_RT_MASK,
2468 .scope = ((tos & RTO_ONLINK) ?
2469 RT_SCOPE_LINK :
2470 RT_SCOPE_UNIVERSE),
2471 } },
2472 .mark = oldflp->mark,
2473 .iif = net->loopback_dev->ifindex,
2474 .oif = oldflp->oif };
2475 struct fib_result res;
2476 unsigned flags = 0;
2477 struct net_device *dev_out = NULL;
2478 int free_res = 0;
2479 int err;
2480
2481
2482 res.fi = NULL;
2483 #ifdef CONFIG_IP_MULTIPLE_TABLES
2484 res.r = NULL;
2485 #endif
2486
2487 if (oldflp->fl4_src) {
2488 err = -EINVAL;
2489 if (ipv4_is_multicast(oldflp->fl4_src) ||
2490 ipv4_is_lbcast(oldflp->fl4_src) ||
2491 ipv4_is_zeronet(oldflp->fl4_src))
2492 goto out;
2493
2494 /* I removed check for oif == dev_out->oif here.
2495 It was wrong for two reasons:
2496 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2497 is assigned to multiple interfaces.
2498 2. Moreover, we are allowed to send packets with saddr
2499 of another iface. --ANK
2500 */
2501
2502 if (oldflp->oif == 0
2503 && (ipv4_is_multicast(oldflp->fl4_dst) ||
2504 oldflp->fl4_dst == htonl(0xFFFFFFFF))) {
2505 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2506 dev_out = ip_dev_find(net, oldflp->fl4_src);
2507 if (dev_out == NULL)
2508 goto out;
2509
2510 /* Special hack: user can direct multicasts
2511 and limited broadcast via necessary interface
2512 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2513 This hack is not just for fun, it allows
2514 vic,vat and friends to work.
2515 They bind socket to loopback, set ttl to zero
2516 and expect that it will work.
2517 From the viewpoint of routing cache they are broken,
2518 because we are not allowed to build multicast path
2519 with loopback source addr (look, routing cache
2520 cannot know, that ttl is zero, so that packet
2521 will not leave this host and route is valid).
2522 Luckily, this hack is good workaround.
2523 */
2524
2525 fl.oif = dev_out->ifindex;
2526 goto make_route;
2527 }
2528
2529 if (!(oldflp->flags & FLOWI_FLAG_ANYSRC)) {
2530 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2531 dev_out = ip_dev_find(net, oldflp->fl4_src);
2532 if (dev_out == NULL)
2533 goto out;
2534 dev_put(dev_out);
2535 dev_out = NULL;
2536 }
2537 }
2538
2539
2540 if (oldflp->oif) {
2541 dev_out = dev_get_by_index(net, oldflp->oif);
2542 err = -ENODEV;
2543 if (dev_out == NULL)
2544 goto out;
2545
2546 /* RACE: Check return value of inet_select_addr instead. */
2547 if (__in_dev_get_rtnl(dev_out) == NULL) {
2548 dev_put(dev_out);
2549 goto out; /* Wrong error code */
2550 }
2551
2552 if (ipv4_is_local_multicast(oldflp->fl4_dst) ||
2553 oldflp->fl4_dst == htonl(0xFFFFFFFF)) {
2554 if (!fl.fl4_src)
2555 fl.fl4_src = inet_select_addr(dev_out, 0,
2556 RT_SCOPE_LINK);
2557 goto make_route;
2558 }
2559 if (!fl.fl4_src) {
2560 if (ipv4_is_multicast(oldflp->fl4_dst))
2561 fl.fl4_src = inet_select_addr(dev_out, 0,
2562 fl.fl4_scope);
2563 else if (!oldflp->fl4_dst)
2564 fl.fl4_src = inet_select_addr(dev_out, 0,
2565 RT_SCOPE_HOST);
2566 }
2567 }
2568
2569 if (!fl.fl4_dst) {
2570 fl.fl4_dst = fl.fl4_src;
2571 if (!fl.fl4_dst)
2572 fl.fl4_dst = fl.fl4_src = htonl(INADDR_LOOPBACK);
2573 if (dev_out)
2574 dev_put(dev_out);
2575 dev_out = net->loopback_dev;
2576 dev_hold(dev_out);
2577 fl.oif = net->loopback_dev->ifindex;
2578 res.type = RTN_LOCAL;
2579 flags |= RTCF_LOCAL;
2580 goto make_route;
2581 }
2582
2583 if (fib_lookup(net, &fl, &res)) {
2584 res.fi = NULL;
2585 if (oldflp->oif) {
2586 /* Apparently, routing tables are wrong. Assume,
2587 that the destination is on link.
2588
2589 WHY? DW.
2590 Because we are allowed to send to iface
2591 even if it has NO routes and NO assigned
2592 addresses. When oif is specified, routing
2593 tables are looked up with only one purpose:
2594 to catch if destination is gatewayed, rather than
2595 direct. Moreover, if MSG_DONTROUTE is set,
2596 we send packet, ignoring both routing tables
2597 and ifaddr state. --ANK
2598
2599
2600 We could make it even if oif is unknown,
2601 likely IPv6, but we do not.
2602 */
2603
2604 if (fl.fl4_src == 0)
2605 fl.fl4_src = inet_select_addr(dev_out, 0,
2606 RT_SCOPE_LINK);
2607 res.type = RTN_UNICAST;
2608 goto make_route;
2609 }
2610 if (dev_out)
2611 dev_put(dev_out);
2612 err = -ENETUNREACH;
2613 goto out;
2614 }
2615 free_res = 1;
2616
2617 if (res.type == RTN_LOCAL) {
2618 if (!fl.fl4_src)
2619 fl.fl4_src = fl.fl4_dst;
2620 if (dev_out)
2621 dev_put(dev_out);
2622 dev_out = net->loopback_dev;
2623 dev_hold(dev_out);
2624 fl.oif = dev_out->ifindex;
2625 if (res.fi)
2626 fib_info_put(res.fi);
2627 res.fi = NULL;
2628 flags |= RTCF_LOCAL;
2629 goto make_route;
2630 }
2631
2632 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2633 if (res.fi->fib_nhs > 1 && fl.oif == 0)
2634 fib_select_multipath(&fl, &res);
2635 else
2636 #endif
2637 if (!res.prefixlen && res.type == RTN_UNICAST && !fl.oif)
2638 fib_select_default(net, &fl, &res);
2639
2640 if (!fl.fl4_src)
2641 fl.fl4_src = FIB_RES_PREFSRC(res);
2642
2643 if (dev_out)
2644 dev_put(dev_out);
2645 dev_out = FIB_RES_DEV(res);
2646 dev_hold(dev_out);
2647 fl.oif = dev_out->ifindex;
2648
2649
2650 make_route:
2651 err = ip_mkroute_output(rp, &res, &fl, oldflp, dev_out, flags);
2652
2653
2654 if (free_res)
2655 fib_res_put(&res);
2656 if (dev_out)
2657 dev_put(dev_out);
2658 out: return err;
2659 }
2660
2661 int __ip_route_output_key(struct net *net, struct rtable **rp,
2662 const struct flowi *flp)
2663 {
2664 unsigned hash;
2665 struct rtable *rth;
2666
2667 if (!rt_caching(net))
2668 goto slow_output;
2669
2670 hash = rt_hash(flp->fl4_dst, flp->fl4_src, flp->oif, rt_genid(net));
2671
2672 rcu_read_lock_bh();
2673 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2674 rth = rcu_dereference(rth->u.dst.rt_next)) {
2675 if (rth->fl.fl4_dst == flp->fl4_dst &&
2676 rth->fl.fl4_src == flp->fl4_src &&
2677 rth->fl.iif == 0 &&
2678 rth->fl.oif == flp->oif &&
2679 rth->fl.mark == flp->mark &&
2680 !((rth->fl.fl4_tos ^ flp->fl4_tos) &
2681 (IPTOS_RT_MASK | RTO_ONLINK)) &&
2682 net_eq(dev_net(rth->u.dst.dev), net) &&
2683 !rt_is_expired(rth)) {
2684 dst_use(&rth->u.dst, jiffies);
2685 RT_CACHE_STAT_INC(out_hit);
2686 rcu_read_unlock_bh();
2687 *rp = rth;
2688 return 0;
2689 }
2690 RT_CACHE_STAT_INC(out_hlist_search);
2691 }
2692 rcu_read_unlock_bh();
2693
2694 slow_output:
2695 return ip_route_output_slow(net, rp, flp);
2696 }
2697
2698 EXPORT_SYMBOL_GPL(__ip_route_output_key);
2699
2700 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2701 {
2702 }
2703
2704 static struct dst_ops ipv4_dst_blackhole_ops = {
2705 .family = AF_INET,
2706 .protocol = __constant_htons(ETH_P_IP),
2707 .destroy = ipv4_dst_destroy,
2708 .check = ipv4_dst_check,
2709 .update_pmtu = ipv4_rt_blackhole_update_pmtu,
2710 .entry_size = sizeof(struct rtable),
2711 .entries = ATOMIC_INIT(0),
2712 };
2713
2714
2715 static int ipv4_dst_blackhole(struct net *net, struct rtable **rp, struct flowi *flp)
2716 {
2717 struct rtable *ort = *rp;
2718 struct rtable *rt = (struct rtable *)
2719 dst_alloc(&ipv4_dst_blackhole_ops);
2720
2721 if (rt) {
2722 struct dst_entry *new = &rt->u.dst;
2723
2724 atomic_set(&new->__refcnt, 1);
2725 new->__use = 1;
2726 new->input = dst_discard;
2727 new->output = dst_discard;
2728 memcpy(new->metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
2729
2730 new->dev = ort->u.dst.dev;
2731 if (new->dev)
2732 dev_hold(new->dev);
2733
2734 rt->fl = ort->fl;
2735
2736 rt->idev = ort->idev;
2737 if (rt->idev)
2738 in_dev_hold(rt->idev);
2739 rt->rt_genid = rt_genid(net);
2740 rt->rt_flags = ort->rt_flags;
2741 rt->rt_type = ort->rt_type;
2742 rt->rt_dst = ort->rt_dst;
2743 rt->rt_src = ort->rt_src;
2744 rt->rt_iif = ort->rt_iif;
2745 rt->rt_gateway = ort->rt_gateway;
2746 rt->rt_spec_dst = ort->rt_spec_dst;
2747 rt->peer = ort->peer;
2748 if (rt->peer)
2749 atomic_inc(&rt->peer->refcnt);
2750
2751 dst_free(new);
2752 }
2753
2754 dst_release(&(*rp)->u.dst);
2755 *rp = rt;
2756 return (rt ? 0 : -ENOMEM);
2757 }
2758
2759 int ip_route_output_flow(struct net *net, struct rtable **rp, struct flowi *flp,
2760 struct sock *sk, int flags)
2761 {
2762 int err;
2763
2764 if ((err = __ip_route_output_key(net, rp, flp)) != 0)
2765 return err;
2766
2767 if (flp->proto) {
2768 if (!flp->fl4_src)
2769 flp->fl4_src = (*rp)->rt_src;
2770 if (!flp->fl4_dst)
2771 flp->fl4_dst = (*rp)->rt_dst;
2772 err = __xfrm_lookup((struct dst_entry **)rp, flp, sk,
2773 flags ? XFRM_LOOKUP_WAIT : 0);
2774 if (err == -EREMOTE)
2775 err = ipv4_dst_blackhole(net, rp, flp);
2776
2777 return err;
2778 }
2779
2780 return 0;
2781 }
2782
2783 EXPORT_SYMBOL_GPL(ip_route_output_flow);
2784
2785 int ip_route_output_key(struct net *net, struct rtable **rp, struct flowi *flp)
2786 {
2787 return ip_route_output_flow(net, rp, flp, NULL, 0);
2788 }
2789
2790 static int rt_fill_info(struct sk_buff *skb, u32 pid, u32 seq, int event,
2791 int nowait, unsigned int flags)
2792 {
2793 struct rtable *rt = skb->rtable;
2794 struct rtmsg *r;
2795 struct nlmsghdr *nlh;
2796 long expires;
2797 u32 id = 0, ts = 0, tsage = 0, error;
2798
2799 nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2800 if (nlh == NULL)
2801 return -EMSGSIZE;
2802
2803 r = nlmsg_data(nlh);
2804 r->rtm_family = AF_INET;
2805 r->rtm_dst_len = 32;
2806 r->rtm_src_len = 0;
2807 r->rtm_tos = rt->fl.fl4_tos;
2808 r->rtm_table = RT_TABLE_MAIN;
2809 NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN);
2810 r->rtm_type = rt->rt_type;
2811 r->rtm_scope = RT_SCOPE_UNIVERSE;
2812 r->rtm_protocol = RTPROT_UNSPEC;
2813 r->rtm_flags = (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2814 if (rt->rt_flags & RTCF_NOTIFY)
2815 r->rtm_flags |= RTM_F_NOTIFY;
2816
2817 NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst);
2818
2819 if (rt->fl.fl4_src) {
2820 r->rtm_src_len = 32;
2821 NLA_PUT_BE32(skb, RTA_SRC, rt->fl.fl4_src);
2822 }
2823 if (rt->u.dst.dev)
2824 NLA_PUT_U32(skb, RTA_OIF, rt->u.dst.dev->ifindex);
2825 #ifdef CONFIG_NET_CLS_ROUTE
2826 if (rt->u.dst.tclassid)
2827 NLA_PUT_U32(skb, RTA_FLOW, rt->u.dst.tclassid);
2828 #endif
2829 if (rt->fl.iif)
2830 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst);
2831 else if (rt->rt_src != rt->fl.fl4_src)
2832 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src);
2833
2834 if (rt->rt_dst != rt->rt_gateway)
2835 NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway);
2836
2837 if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2838 goto nla_put_failure;
2839
2840 error = rt->u.dst.error;
2841 expires = rt->u.dst.expires ? rt->u.dst.expires - jiffies : 0;
2842 if (rt->peer) {
2843 id = rt->peer->ip_id_count;
2844 if (rt->peer->tcp_ts_stamp) {
2845 ts = rt->peer->tcp_ts;
2846 tsage = get_seconds() - rt->peer->tcp_ts_stamp;
2847 }
2848 }
2849
2850 if (rt->fl.iif) {
2851 #ifdef CONFIG_IP_MROUTE
2852 __be32 dst = rt->rt_dst;
2853
2854 if (ipv4_is_multicast(dst) && !ipv4_is_local_multicast(dst) &&
2855 IPV4_DEVCONF_ALL(&init_net, MC_FORWARDING)) {
2856 int err = ipmr_get_route(skb, r, nowait);
2857 if (err <= 0) {
2858 if (!nowait) {
2859 if (err == 0)
2860 return 0;
2861 goto nla_put_failure;
2862 } else {
2863 if (err == -EMSGSIZE)
2864 goto nla_put_failure;
2865 error = err;
2866 }
2867 }
2868 } else
2869 #endif
2870 NLA_PUT_U32(skb, RTA_IIF, rt->fl.iif);
2871 }
2872
2873 if (rtnl_put_cacheinfo(skb, &rt->u.dst, id, ts, tsage,
2874 expires, error) < 0)
2875 goto nla_put_failure;
2876
2877 return nlmsg_end(skb, nlh);
2878
2879 nla_put_failure:
2880 nlmsg_cancel(skb, nlh);
2881 return -EMSGSIZE;
2882 }
2883
2884 static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2885 {
2886 struct net *net = sock_net(in_skb->sk);
2887 struct rtmsg *rtm;
2888 struct nlattr *tb[RTA_MAX+1];
2889 struct rtable *rt = NULL;
2890 __be32 dst = 0;
2891 __be32 src = 0;
2892 u32 iif;
2893 int err;
2894 struct sk_buff *skb;
2895
2896 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2897 if (err < 0)
2898 goto errout;
2899
2900 rtm = nlmsg_data(nlh);
2901
2902 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2903 if (skb == NULL) {
2904 err = -ENOBUFS;
2905 goto errout;
2906 }
2907
2908 /* Reserve room for dummy headers, this skb can pass
2909 through good chunk of routing engine.
2910 */
2911 skb_reset_mac_header(skb);
2912 skb_reset_network_header(skb);
2913
2914 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2915 ip_hdr(skb)->protocol = IPPROTO_ICMP;
2916 skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2917
2918 src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
2919 dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
2920 iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
2921
2922 if (iif) {
2923 struct net_device *dev;
2924
2925 dev = __dev_get_by_index(net, iif);
2926 if (dev == NULL) {
2927 err = -ENODEV;
2928 goto errout_free;
2929 }
2930
2931 skb->protocol = htons(ETH_P_IP);
2932 skb->dev = dev;
2933 local_bh_disable();
2934 err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
2935 local_bh_enable();
2936
2937 rt = skb->rtable;
2938 if (err == 0 && rt->u.dst.error)
2939 err = -rt->u.dst.error;
2940 } else {
2941 struct flowi fl = {
2942 .nl_u = {
2943 .ip4_u = {
2944 .daddr = dst,
2945 .saddr = src,
2946 .tos = rtm->rtm_tos,
2947 },
2948 },
2949 .oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
2950 };
2951 err = ip_route_output_key(net, &rt, &fl);
2952 }
2953
2954 if (err)
2955 goto errout_free;
2956
2957 skb->rtable = rt;
2958 if (rtm->rtm_flags & RTM_F_NOTIFY)
2959 rt->rt_flags |= RTCF_NOTIFY;
2960
2961 err = rt_fill_info(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
2962 RTM_NEWROUTE, 0, 0);
2963 if (err <= 0)
2964 goto errout_free;
2965
2966 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid);
2967 errout:
2968 return err;
2969
2970 errout_free:
2971 kfree_skb(skb);
2972 goto errout;
2973 }
2974
2975 int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb)
2976 {
2977 struct rtable *rt;
2978 int h, s_h;
2979 int idx, s_idx;
2980 struct net *net;
2981
2982 net = sock_net(skb->sk);
2983
2984 s_h = cb->args[0];
2985 if (s_h < 0)
2986 s_h = 0;
2987 s_idx = idx = cb->args[1];
2988 for (h = s_h; h <= rt_hash_mask; h++, s_idx = 0) {
2989 if (!rt_hash_table[h].chain)
2990 continue;
2991 rcu_read_lock_bh();
2992 for (rt = rcu_dereference(rt_hash_table[h].chain), idx = 0; rt;
2993 rt = rcu_dereference(rt->u.dst.rt_next), idx++) {
2994 if (!net_eq(dev_net(rt->u.dst.dev), net) || idx < s_idx)
2995 continue;
2996 if (rt_is_expired(rt))
2997 continue;
2998 skb->dst = dst_clone(&rt->u.dst);
2999 if (rt_fill_info(skb, NETLINK_CB(cb->skb).pid,
3000 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
3001 1, NLM_F_MULTI) <= 0) {
3002 dst_release(xchg(&skb->dst, NULL));
3003 rcu_read_unlock_bh();
3004 goto done;
3005 }
3006 dst_release(xchg(&skb->dst, NULL));
3007 }
3008 rcu_read_unlock_bh();
3009 }
3010
3011 done:
3012 cb->args[0] = h;
3013 cb->args[1] = idx;
3014 return skb->len;
3015 }
3016
3017 void ip_rt_multicast_event(struct in_device *in_dev)
3018 {
3019 rt_cache_flush(dev_net(in_dev->dev), 0);
3020 }
3021
3022 #ifdef CONFIG_SYSCTL
3023 static int ipv4_sysctl_rtcache_flush(ctl_table *__ctl, int write,
3024 struct file *filp, void __user *buffer,
3025 size_t *lenp, loff_t *ppos)
3026 {
3027 if (write) {
3028 int flush_delay;
3029 ctl_table ctl;
3030 struct net *net;
3031
3032 memcpy(&ctl, __ctl, sizeof(ctl));
3033 ctl.data = &flush_delay;
3034 proc_dointvec(&ctl, write, filp, buffer, lenp, ppos);
3035
3036 net = (struct net *)__ctl->extra1;
3037 rt_cache_flush(net, flush_delay);
3038 return 0;
3039 }
3040
3041 return -EINVAL;
3042 }
3043
3044 static int ipv4_sysctl_rtcache_flush_strategy(ctl_table *table,
3045 void __user *oldval,
3046 size_t __user *oldlenp,
3047 void __user *newval,
3048 size_t newlen)
3049 {
3050 int delay;
3051 struct net *net;
3052 if (newlen != sizeof(int))
3053 return -EINVAL;
3054 if (get_user(delay, (int __user *)newval))
3055 return -EFAULT;
3056 net = (struct net *)table->extra1;
3057 rt_cache_flush(net, delay);
3058 return 0;
3059 }
3060
3061 static void rt_secret_reschedule(int old)
3062 {
3063 struct net *net;
3064 int new = ip_rt_secret_interval;
3065 int diff = new - old;
3066
3067 if (!diff)
3068 return;
3069
3070 rtnl_lock();
3071 for_each_net(net) {
3072 int deleted = del_timer_sync(&net->ipv4.rt_secret_timer);
3073
3074 if (!new)
3075 continue;
3076
3077 if (deleted) {
3078 long time = net->ipv4.rt_secret_timer.expires - jiffies;
3079
3080 if (time <= 0 || (time += diff) <= 0)
3081 time = 0;
3082
3083 net->ipv4.rt_secret_timer.expires = time;
3084 } else
3085 net->ipv4.rt_secret_timer.expires = new;
3086
3087 net->ipv4.rt_secret_timer.expires += jiffies;
3088 add_timer(&net->ipv4.rt_secret_timer);
3089 }
3090 rtnl_unlock();
3091 }
3092
3093 static int ipv4_sysctl_rt_secret_interval(ctl_table *ctl, int write,
3094 struct file *filp,
3095 void __user *buffer, size_t *lenp,
3096 loff_t *ppos)
3097 {
3098 int old = ip_rt_secret_interval;
3099 int ret = proc_dointvec_jiffies(ctl, write, filp, buffer, lenp, ppos);
3100
3101 rt_secret_reschedule(old);
3102
3103 return ret;
3104 }
3105
3106 static int ipv4_sysctl_rt_secret_interval_strategy(ctl_table *table,
3107 void __user *oldval,
3108 size_t __user *oldlenp,
3109 void __user *newval,
3110 size_t newlen)
3111 {
3112 int old = ip_rt_secret_interval;
3113 int ret = sysctl_jiffies(table, oldval, oldlenp, newval, newlen);
3114
3115 rt_secret_reschedule(old);
3116
3117 return ret;
3118 }
3119
3120 static ctl_table ipv4_route_table[] = {
3121 {
3122 .ctl_name = NET_IPV4_ROUTE_GC_THRESH,
3123 .procname = "gc_thresh",
3124 .data = &ipv4_dst_ops.gc_thresh,
3125 .maxlen = sizeof(int),
3126 .mode = 0644,
3127 .proc_handler = &proc_dointvec,
3128 },
3129 {
3130 .ctl_name = NET_IPV4_ROUTE_MAX_SIZE,
3131 .procname = "max_size",
3132 .data = &ip_rt_max_size,
3133 .maxlen = sizeof(int),
3134 .mode = 0644,
3135 .proc_handler = &proc_dointvec,
3136 },
3137 {
3138 /* Deprecated. Use gc_min_interval_ms */
3139
3140 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL,
3141 .procname = "gc_min_interval",
3142 .data = &ip_rt_gc_min_interval,
3143 .maxlen = sizeof(int),
3144 .mode = 0644,
3145 .proc_handler = &proc_dointvec_jiffies,
3146 .strategy = &sysctl_jiffies,
3147 },
3148 {
3149 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS,
3150 .procname = "gc_min_interval_ms",
3151 .data = &ip_rt_gc_min_interval,
3152 .maxlen = sizeof(int),
3153 .mode = 0644,
3154 .proc_handler = &proc_dointvec_ms_jiffies,
3155 .strategy = &sysctl_ms_jiffies,
3156 },
3157 {
3158 .ctl_name = NET_IPV4_ROUTE_GC_TIMEOUT,
3159 .procname = "gc_timeout",
3160 .data = &ip_rt_gc_timeout,
3161 .maxlen = sizeof(int),
3162 .mode = 0644,
3163 .proc_handler = &proc_dointvec_jiffies,
3164 .strategy = &sysctl_jiffies,
3165 },
3166 {
3167 .ctl_name = NET_IPV4_ROUTE_GC_INTERVAL,
3168 .procname = "gc_interval",
3169 .data = &ip_rt_gc_interval,
3170 .maxlen = sizeof(int),
3171 .mode = 0644,
3172 .proc_handler = &proc_dointvec_jiffies,
3173 .strategy = &sysctl_jiffies,
3174 },
3175 {
3176 .ctl_name = NET_IPV4_ROUTE_REDIRECT_LOAD,
3177 .procname = "redirect_load",
3178 .data = &ip_rt_redirect_load,
3179 .maxlen = sizeof(int),
3180 .mode = 0644,
3181 .proc_handler = &proc_dointvec,
3182 },
3183 {
3184 .ctl_name = NET_IPV4_ROUTE_REDIRECT_NUMBER,
3185 .procname = "redirect_number",
3186 .data = &ip_rt_redirect_number,
3187 .maxlen = sizeof(int),
3188 .mode = 0644,
3189 .proc_handler = &proc_dointvec,
3190 },
3191 {
3192 .ctl_name = NET_IPV4_ROUTE_REDIRECT_SILENCE,
3193 .procname = "redirect_silence",
3194 .data = &ip_rt_redirect_silence,
3195 .maxlen = sizeof(int),
3196 .mode = 0644,
3197 .proc_handler = &proc_dointvec,
3198 },
3199 {
3200 .ctl_name = NET_IPV4_ROUTE_ERROR_COST,
3201 .procname = "error_cost",
3202 .data = &ip_rt_error_cost,
3203 .maxlen = sizeof(int),
3204 .mode = 0644,
3205 .proc_handler = &proc_dointvec,
3206 },
3207 {
3208 .ctl_name = NET_IPV4_ROUTE_ERROR_BURST,
3209 .procname = "error_burst",
3210 .data = &ip_rt_error_burst,
3211 .maxlen = sizeof(int),
3212 .mode = 0644,
3213 .proc_handler = &proc_dointvec,
3214 },
3215 {
3216 .ctl_name = NET_IPV4_ROUTE_GC_ELASTICITY,
3217 .procname = "gc_elasticity",
3218 .data = &ip_rt_gc_elasticity,
3219 .maxlen = sizeof(int),
3220 .mode = 0644,
3221 .proc_handler = &proc_dointvec,
3222 },
3223 {
3224 .ctl_name = NET_IPV4_ROUTE_MTU_EXPIRES,
3225 .procname = "mtu_expires",
3226 .data = &ip_rt_mtu_expires,
3227 .maxlen = sizeof(int),
3228 .mode = 0644,
3229 .proc_handler = &proc_dointvec_jiffies,
3230 .strategy = &sysctl_jiffies,
3231 },
3232 {
3233 .ctl_name = NET_IPV4_ROUTE_MIN_PMTU,
3234 .procname = "min_pmtu",
3235 .data = &ip_rt_min_pmtu,
3236 .maxlen = sizeof(int),
3237 .mode = 0644,
3238 .proc_handler = &proc_dointvec,
3239 },
3240 {
3241 .ctl_name = NET_IPV4_ROUTE_MIN_ADVMSS,
3242 .procname = "min_adv_mss",
3243 .data = &ip_rt_min_advmss,
3244 .maxlen = sizeof(int),
3245 .mode = 0644,
3246 .proc_handler = &proc_dointvec,
3247 },
3248 {
3249 .ctl_name = NET_IPV4_ROUTE_SECRET_INTERVAL,
3250 .procname = "secret_interval",
3251 .data = &ip_rt_secret_interval,
3252 .maxlen = sizeof(int),
3253 .mode = 0644,
3254 .proc_handler = &ipv4_sysctl_rt_secret_interval,
3255 .strategy = &ipv4_sysctl_rt_secret_interval_strategy,
3256 },
3257 { .ctl_name = 0 }
3258 };
3259
3260 static struct ctl_table empty[1];
3261
3262 static struct ctl_table ipv4_skeleton[] =
3263 {
3264 { .procname = "route", .ctl_name = NET_IPV4_ROUTE,
3265 .mode = 0555, .child = ipv4_route_table},
3266 { .procname = "neigh", .ctl_name = NET_IPV4_NEIGH,
3267 .mode = 0555, .child = empty},
3268 { }
3269 };
3270
3271 static __net_initdata struct ctl_path ipv4_path[] = {
3272 { .procname = "net", .ctl_name = CTL_NET, },
3273 { .procname = "ipv4", .ctl_name = NET_IPV4, },
3274 { },
3275 };
3276
3277 static struct ctl_table ipv4_route_flush_table[] = {
3278 {
3279 .ctl_name = NET_IPV4_ROUTE_FLUSH,
3280 .procname = "flush",
3281 .maxlen = sizeof(int),
3282 .mode = 0200,
3283 .proc_handler = &ipv4_sysctl_rtcache_flush,
3284 .strategy = &ipv4_sysctl_rtcache_flush_strategy,
3285 },
3286 { .ctl_name = 0 },
3287 };
3288
3289 static __net_initdata struct ctl_path ipv4_route_path[] = {
3290 { .procname = "net", .ctl_name = CTL_NET, },
3291 { .procname = "ipv4", .ctl_name = NET_IPV4, },
3292 { .procname = "route", .ctl_name = NET_IPV4_ROUTE, },
3293 { },
3294 };
3295
3296 static __net_init int sysctl_route_net_init(struct net *net)
3297 {
3298 struct ctl_table *tbl;
3299
3300 tbl = ipv4_route_flush_table;
3301 if (net != &init_net) {
3302 tbl = kmemdup(tbl, sizeof(ipv4_route_flush_table), GFP_KERNEL);
3303 if (tbl == NULL)
3304 goto err_dup;
3305 }
3306 tbl[0].extra1 = net;
3307
3308 net->ipv4.route_hdr =
3309 register_net_sysctl_table(net, ipv4_route_path, tbl);
3310 if (net->ipv4.route_hdr == NULL)
3311 goto err_reg;
3312 return 0;
3313
3314 err_reg:
3315 if (tbl != ipv4_route_flush_table)
3316 kfree(tbl);
3317 err_dup:
3318 return -ENOMEM;
3319 }
3320
3321 static __net_exit void sysctl_route_net_exit(struct net *net)
3322 {
3323 struct ctl_table *tbl;
3324
3325 tbl = net->ipv4.route_hdr->ctl_table_arg;
3326 unregister_net_sysctl_table(net->ipv4.route_hdr);
3327 BUG_ON(tbl == ipv4_route_flush_table);
3328 kfree(tbl);
3329 }
3330
3331 static __net_initdata struct pernet_operations sysctl_route_ops = {
3332 .init = sysctl_route_net_init,
3333 .exit = sysctl_route_net_exit,
3334 };
3335 #endif
3336
3337
3338 static __net_init int rt_secret_timer_init(struct net *net)
3339 {
3340 atomic_set(&net->ipv4.rt_genid,
3341 (int) ((num_physpages ^ (num_physpages>>8)) ^
3342 (jiffies ^ (jiffies >> 7))));
3343
3344 net->ipv4.rt_secret_timer.function = rt_secret_rebuild;
3345 net->ipv4.rt_secret_timer.data = (unsigned long)net;
3346 init_timer_deferrable(&net->ipv4.rt_secret_timer);
3347
3348 if (ip_rt_secret_interval) {
3349 net->ipv4.rt_secret_timer.expires =
3350 jiffies + net_random() % ip_rt_secret_interval +
3351 ip_rt_secret_interval;
3352 add_timer(&net->ipv4.rt_secret_timer);
3353 }
3354 return 0;
3355 }
3356
3357 static __net_exit void rt_secret_timer_exit(struct net *net)
3358 {
3359 del_timer_sync(&net->ipv4.rt_secret_timer);
3360 }
3361
3362 static __net_initdata struct pernet_operations rt_secret_timer_ops = {
3363 .init = rt_secret_timer_init,
3364 .exit = rt_secret_timer_exit,
3365 };
3366
3367
3368 #ifdef CONFIG_NET_CLS_ROUTE
3369 struct ip_rt_acct *ip_rt_acct __read_mostly;
3370 #endif /* CONFIG_NET_CLS_ROUTE */
3371
3372 static __initdata unsigned long rhash_entries;
3373 static int __init set_rhash_entries(char *str)
3374 {
3375 if (!str)
3376 return 0;
3377 rhash_entries = simple_strtoul(str, &str, 0);
3378 return 1;
3379 }
3380 __setup("rhash_entries=", set_rhash_entries);
3381
3382 int __init ip_rt_init(void)
3383 {
3384 int rc = 0;
3385
3386 #ifdef CONFIG_NET_CLS_ROUTE
3387 ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct));
3388 if (!ip_rt_acct)
3389 panic("IP: failed to allocate ip_rt_acct\n");
3390 #endif
3391
3392 ipv4_dst_ops.kmem_cachep =
3393 kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
3394 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3395
3396 ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
3397
3398 rt_hash_table = (struct rt_hash_bucket *)
3399 alloc_large_system_hash("IP route cache",
3400 sizeof(struct rt_hash_bucket),
3401 rhash_entries,
3402 (num_physpages >= 128 * 1024) ?
3403 15 : 17,
3404 0,
3405 &rt_hash_log,
3406 &rt_hash_mask,
3407 0);
3408 memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3409 rt_hash_lock_init();
3410
3411 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3412 ip_rt_max_size = (rt_hash_mask + 1) * 16;
3413
3414 devinet_init();
3415 ip_fib_init();
3416
3417 /* All the timers, started at system startup tend
3418 to synchronize. Perturb it a bit.
3419 */
3420 schedule_delayed_work(&expires_work,
3421 net_random() % ip_rt_gc_interval + ip_rt_gc_interval);
3422
3423 if (register_pernet_subsys(&rt_secret_timer_ops))
3424 printk(KERN_ERR "Unable to setup rt_secret_timer\n");
3425
3426 if (ip_rt_proc_init())
3427 printk(KERN_ERR "Unable to create route proc files\n");
3428 #ifdef CONFIG_XFRM
3429 xfrm_init();
3430 xfrm4_init();
3431 #endif
3432 rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL);
3433
3434 #ifdef CONFIG_SYSCTL
3435 register_pernet_subsys(&sysctl_route_ops);
3436 #endif
3437 return rc;
3438 }
3439
3440 #ifdef CONFIG_SYSCTL
3441 /*
3442 * We really need to sanitize the damn ipv4 init order, then all
3443 * this nonsense will go away.
3444 */
3445 void __init ip_static_sysctl_init(void)
3446 {
3447 register_sysctl_paths(ipv4_path, ipv4_skeleton);
3448 }
3449 #endif
3450
3451 EXPORT_SYMBOL(__ip_select_ident);
3452 EXPORT_SYMBOL(ip_route_input);
3453 EXPORT_SYMBOL(ip_route_output_key);
This page took 0.103351 seconds and 5 git commands to generate.