fb47c8f0cd86f689e087bea4dfea8f0c87f3e0a9
[deliverable/linux.git] / net / ipv4 / route.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * ROUTE - implementation of the IP router.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
12 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
13 *
14 * Fixes:
15 * Alan Cox : Verify area fixes.
16 * Alan Cox : cli() protects routing changes
17 * Rui Oliveira : ICMP routing table updates
18 * (rco@di.uminho.pt) Routing table insertion and update
19 * Linus Torvalds : Rewrote bits to be sensible
20 * Alan Cox : Added BSD route gw semantics
21 * Alan Cox : Super /proc >4K
22 * Alan Cox : MTU in route table
23 * Alan Cox : MSS actually. Also added the window
24 * clamper.
25 * Sam Lantinga : Fixed route matching in rt_del()
26 * Alan Cox : Routing cache support.
27 * Alan Cox : Removed compatibility cruft.
28 * Alan Cox : RTF_REJECT support.
29 * Alan Cox : TCP irtt support.
30 * Jonathan Naylor : Added Metric support.
31 * Miquel van Smoorenburg : BSD API fixes.
32 * Miquel van Smoorenburg : Metrics.
33 * Alan Cox : Use __u32 properly
34 * Alan Cox : Aligned routing errors more closely with BSD
35 * our system is still very different.
36 * Alan Cox : Faster /proc handling
37 * Alexey Kuznetsov : Massive rework to support tree based routing,
38 * routing caches and better behaviour.
39 *
40 * Olaf Erb : irtt wasn't being copied right.
41 * Bjorn Ekwall : Kerneld route support.
42 * Alan Cox : Multicast fixed (I hope)
43 * Pavel Krauz : Limited broadcast fixed
44 * Mike McLagan : Routing by source
45 * Alexey Kuznetsov : End of old history. Split to fib.c and
46 * route.c and rewritten from scratch.
47 * Andi Kleen : Load-limit warning messages.
48 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
49 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
50 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
51 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
52 * Marc Boucher : routing by fwmark
53 * Robert Olsson : Added rt_cache statistics
54 * Arnaldo C. Melo : Convert proc stuff to seq_file
55 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
56 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
57 * Ilia Sotnikov : Removed TOS from hash calculations
58 *
59 * This program is free software; you can redistribute it and/or
60 * modify it under the terms of the GNU General Public License
61 * as published by the Free Software Foundation; either version
62 * 2 of the License, or (at your option) any later version.
63 */
64
65 #include <linux/module.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <linux/bitops.h>
69 #include <linux/types.h>
70 #include <linux/kernel.h>
71 #include <linux/mm.h>
72 #include <linux/bootmem.h>
73 #include <linux/string.h>
74 #include <linux/socket.h>
75 #include <linux/sockios.h>
76 #include <linux/errno.h>
77 #include <linux/in.h>
78 #include <linux/inet.h>
79 #include <linux/netdevice.h>
80 #include <linux/proc_fs.h>
81 #include <linux/init.h>
82 #include <linux/workqueue.h>
83 #include <linux/skbuff.h>
84 #include <linux/inetdevice.h>
85 #include <linux/igmp.h>
86 #include <linux/pkt_sched.h>
87 #include <linux/mroute.h>
88 #include <linux/netfilter_ipv4.h>
89 #include <linux/random.h>
90 #include <linux/jhash.h>
91 #include <linux/rcupdate.h>
92 #include <linux/times.h>
93 #include <linux/slab.h>
94 #include <net/dst.h>
95 #include <net/net_namespace.h>
96 #include <net/protocol.h>
97 #include <net/ip.h>
98 #include <net/route.h>
99 #include <net/inetpeer.h>
100 #include <net/sock.h>
101 #include <net/ip_fib.h>
102 #include <net/arp.h>
103 #include <net/tcp.h>
104 #include <net/icmp.h>
105 #include <net/xfrm.h>
106 #include <net/netevent.h>
107 #include <net/rtnetlink.h>
108 #ifdef CONFIG_SYSCTL
109 #include <linux/sysctl.h>
110 #endif
111 #include <net/atmclip.h>
112 #include <net/secure_seq.h>
113
114 #define RT_FL_TOS(oldflp4) \
115 ((u32)(oldflp4->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
116
117 #define IP_MAX_MTU 0xFFF0
118
119 #define RT_GC_TIMEOUT (300*HZ)
120
121 static int ip_rt_max_size;
122 static int ip_rt_gc_timeout __read_mostly = RT_GC_TIMEOUT;
123 static int ip_rt_gc_min_interval __read_mostly = HZ / 2;
124 static int ip_rt_redirect_number __read_mostly = 9;
125 static int ip_rt_redirect_load __read_mostly = HZ / 50;
126 static int ip_rt_redirect_silence __read_mostly = ((HZ / 50) << (9 + 1));
127 static int ip_rt_error_cost __read_mostly = HZ;
128 static int ip_rt_error_burst __read_mostly = 5 * HZ;
129 static int ip_rt_gc_elasticity __read_mostly = 8;
130 static int ip_rt_mtu_expires __read_mostly = 10 * 60 * HZ;
131 static int ip_rt_min_pmtu __read_mostly = 512 + 20 + 20;
132 static int ip_rt_min_advmss __read_mostly = 256;
133 static int rt_chain_length_max __read_mostly = 20;
134
135 /*
136 * Interface to generic destination cache.
137 */
138
139 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
140 static unsigned int ipv4_default_advmss(const struct dst_entry *dst);
141 static unsigned int ipv4_mtu(const struct dst_entry *dst);
142 static void ipv4_dst_destroy(struct dst_entry *dst);
143 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
144 static void ipv4_link_failure(struct sk_buff *skb);
145 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
146 static int rt_garbage_collect(struct dst_ops *ops);
147
148 static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
149 int how)
150 {
151 }
152
153 static u32 *ipv4_cow_metrics(struct dst_entry *dst, unsigned long old)
154 {
155 struct rtable *rt = (struct rtable *) dst;
156 struct inet_peer *peer;
157 u32 *p = NULL;
158
159 if (!rt->peer)
160 rt_bind_peer(rt, rt->rt_dst, 1);
161
162 peer = rt->peer;
163 if (peer) {
164 u32 *old_p = __DST_METRICS_PTR(old);
165 unsigned long prev, new;
166
167 p = peer->metrics;
168 if (inet_metrics_new(peer))
169 memcpy(p, old_p, sizeof(u32) * RTAX_MAX);
170
171 new = (unsigned long) p;
172 prev = cmpxchg(&dst->_metrics, old, new);
173
174 if (prev != old) {
175 p = __DST_METRICS_PTR(prev);
176 if (prev & DST_METRICS_READ_ONLY)
177 p = NULL;
178 } else {
179 if (rt->fi) {
180 fib_info_put(rt->fi);
181 rt->fi = NULL;
182 }
183 }
184 }
185 return p;
186 }
187
188 static struct neighbour *ipv4_neigh_lookup(const struct dst_entry *dst, const void *daddr);
189
190 static struct dst_ops ipv4_dst_ops = {
191 .family = AF_INET,
192 .protocol = cpu_to_be16(ETH_P_IP),
193 .gc = rt_garbage_collect,
194 .check = ipv4_dst_check,
195 .default_advmss = ipv4_default_advmss,
196 .mtu = ipv4_mtu,
197 .cow_metrics = ipv4_cow_metrics,
198 .destroy = ipv4_dst_destroy,
199 .ifdown = ipv4_dst_ifdown,
200 .negative_advice = ipv4_negative_advice,
201 .link_failure = ipv4_link_failure,
202 .update_pmtu = ip_rt_update_pmtu,
203 .local_out = __ip_local_out,
204 .neigh_lookup = ipv4_neigh_lookup,
205 };
206
207 #define ECN_OR_COST(class) TC_PRIO_##class
208
209 const __u8 ip_tos2prio[16] = {
210 TC_PRIO_BESTEFFORT,
211 ECN_OR_COST(BESTEFFORT),
212 TC_PRIO_BESTEFFORT,
213 ECN_OR_COST(BESTEFFORT),
214 TC_PRIO_BULK,
215 ECN_OR_COST(BULK),
216 TC_PRIO_BULK,
217 ECN_OR_COST(BULK),
218 TC_PRIO_INTERACTIVE,
219 ECN_OR_COST(INTERACTIVE),
220 TC_PRIO_INTERACTIVE,
221 ECN_OR_COST(INTERACTIVE),
222 TC_PRIO_INTERACTIVE_BULK,
223 ECN_OR_COST(INTERACTIVE_BULK),
224 TC_PRIO_INTERACTIVE_BULK,
225 ECN_OR_COST(INTERACTIVE_BULK)
226 };
227
228
229 /*
230 * Route cache.
231 */
232
233 /* The locking scheme is rather straight forward:
234 *
235 * 1) Read-Copy Update protects the buckets of the central route hash.
236 * 2) Only writers remove entries, and they hold the lock
237 * as they look at rtable reference counts.
238 * 3) Only readers acquire references to rtable entries,
239 * they do so with atomic increments and with the
240 * lock held.
241 */
242
243 struct rt_hash_bucket {
244 struct rtable __rcu *chain;
245 };
246
247 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
248 defined(CONFIG_PROVE_LOCKING)
249 /*
250 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
251 * The size of this table is a power of two and depends on the number of CPUS.
252 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
253 */
254 #ifdef CONFIG_LOCKDEP
255 # define RT_HASH_LOCK_SZ 256
256 #else
257 # if NR_CPUS >= 32
258 # define RT_HASH_LOCK_SZ 4096
259 # elif NR_CPUS >= 16
260 # define RT_HASH_LOCK_SZ 2048
261 # elif NR_CPUS >= 8
262 # define RT_HASH_LOCK_SZ 1024
263 # elif NR_CPUS >= 4
264 # define RT_HASH_LOCK_SZ 512
265 # else
266 # define RT_HASH_LOCK_SZ 256
267 # endif
268 #endif
269
270 static spinlock_t *rt_hash_locks;
271 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
272
273 static __init void rt_hash_lock_init(void)
274 {
275 int i;
276
277 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ,
278 GFP_KERNEL);
279 if (!rt_hash_locks)
280 panic("IP: failed to allocate rt_hash_locks\n");
281
282 for (i = 0; i < RT_HASH_LOCK_SZ; i++)
283 spin_lock_init(&rt_hash_locks[i]);
284 }
285 #else
286 # define rt_hash_lock_addr(slot) NULL
287
288 static inline void rt_hash_lock_init(void)
289 {
290 }
291 #endif
292
293 static struct rt_hash_bucket *rt_hash_table __read_mostly;
294 static unsigned rt_hash_mask __read_mostly;
295 static unsigned int rt_hash_log __read_mostly;
296
297 static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
298 #define RT_CACHE_STAT_INC(field) __this_cpu_inc(rt_cache_stat.field)
299
300 static inline unsigned int rt_hash(__be32 daddr, __be32 saddr, int idx,
301 int genid)
302 {
303 return jhash_3words((__force u32)daddr, (__force u32)saddr,
304 idx, genid)
305 & rt_hash_mask;
306 }
307
308 static inline int rt_genid(struct net *net)
309 {
310 return atomic_read(&net->ipv4.rt_genid);
311 }
312
313 #ifdef CONFIG_PROC_FS
314 struct rt_cache_iter_state {
315 struct seq_net_private p;
316 int bucket;
317 int genid;
318 };
319
320 static struct rtable *rt_cache_get_first(struct seq_file *seq)
321 {
322 struct rt_cache_iter_state *st = seq->private;
323 struct rtable *r = NULL;
324
325 for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
326 if (!rcu_access_pointer(rt_hash_table[st->bucket].chain))
327 continue;
328 rcu_read_lock_bh();
329 r = rcu_dereference_bh(rt_hash_table[st->bucket].chain);
330 while (r) {
331 if (dev_net(r->dst.dev) == seq_file_net(seq) &&
332 r->rt_genid == st->genid)
333 return r;
334 r = rcu_dereference_bh(r->dst.rt_next);
335 }
336 rcu_read_unlock_bh();
337 }
338 return r;
339 }
340
341 static struct rtable *__rt_cache_get_next(struct seq_file *seq,
342 struct rtable *r)
343 {
344 struct rt_cache_iter_state *st = seq->private;
345
346 r = rcu_dereference_bh(r->dst.rt_next);
347 while (!r) {
348 rcu_read_unlock_bh();
349 do {
350 if (--st->bucket < 0)
351 return NULL;
352 } while (!rcu_access_pointer(rt_hash_table[st->bucket].chain));
353 rcu_read_lock_bh();
354 r = rcu_dereference_bh(rt_hash_table[st->bucket].chain);
355 }
356 return r;
357 }
358
359 static struct rtable *rt_cache_get_next(struct seq_file *seq,
360 struct rtable *r)
361 {
362 struct rt_cache_iter_state *st = seq->private;
363 while ((r = __rt_cache_get_next(seq, r)) != NULL) {
364 if (dev_net(r->dst.dev) != seq_file_net(seq))
365 continue;
366 if (r->rt_genid == st->genid)
367 break;
368 }
369 return r;
370 }
371
372 static struct rtable *rt_cache_get_idx(struct seq_file *seq, loff_t pos)
373 {
374 struct rtable *r = rt_cache_get_first(seq);
375
376 if (r)
377 while (pos && (r = rt_cache_get_next(seq, r)))
378 --pos;
379 return pos ? NULL : r;
380 }
381
382 static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
383 {
384 struct rt_cache_iter_state *st = seq->private;
385 if (*pos)
386 return rt_cache_get_idx(seq, *pos - 1);
387 st->genid = rt_genid(seq_file_net(seq));
388 return SEQ_START_TOKEN;
389 }
390
391 static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
392 {
393 struct rtable *r;
394
395 if (v == SEQ_START_TOKEN)
396 r = rt_cache_get_first(seq);
397 else
398 r = rt_cache_get_next(seq, v);
399 ++*pos;
400 return r;
401 }
402
403 static void rt_cache_seq_stop(struct seq_file *seq, void *v)
404 {
405 if (v && v != SEQ_START_TOKEN)
406 rcu_read_unlock_bh();
407 }
408
409 static int rt_cache_seq_show(struct seq_file *seq, void *v)
410 {
411 if (v == SEQ_START_TOKEN)
412 seq_printf(seq, "%-127s\n",
413 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
414 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
415 "HHUptod\tSpecDst");
416 else {
417 struct rtable *r = v;
418 struct neighbour *n;
419 int len;
420
421 n = dst_get_neighbour(&r->dst);
422 seq_printf(seq, "%s\t%08X\t%08X\t%8X\t%d\t%u\t%d\t"
423 "%08X\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X%n",
424 r->dst.dev ? r->dst.dev->name : "*",
425 (__force u32)r->rt_dst,
426 (__force u32)r->rt_gateway,
427 r->rt_flags, atomic_read(&r->dst.__refcnt),
428 r->dst.__use, 0, (__force u32)r->rt_src,
429 dst_metric_advmss(&r->dst) + 40,
430 dst_metric(&r->dst, RTAX_WINDOW),
431 (int)((dst_metric(&r->dst, RTAX_RTT) >> 3) +
432 dst_metric(&r->dst, RTAX_RTTVAR)),
433 r->rt_key_tos,
434 -1,
435 (n && (n->nud_state & NUD_CONNECTED)) ? 1 : 0,
436 r->rt_spec_dst, &len);
437
438 seq_printf(seq, "%*s\n", 127 - len, "");
439 }
440 return 0;
441 }
442
443 static const struct seq_operations rt_cache_seq_ops = {
444 .start = rt_cache_seq_start,
445 .next = rt_cache_seq_next,
446 .stop = rt_cache_seq_stop,
447 .show = rt_cache_seq_show,
448 };
449
450 static int rt_cache_seq_open(struct inode *inode, struct file *file)
451 {
452 return seq_open_net(inode, file, &rt_cache_seq_ops,
453 sizeof(struct rt_cache_iter_state));
454 }
455
456 static const struct file_operations rt_cache_seq_fops = {
457 .owner = THIS_MODULE,
458 .open = rt_cache_seq_open,
459 .read = seq_read,
460 .llseek = seq_lseek,
461 .release = seq_release_net,
462 };
463
464
465 static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
466 {
467 int cpu;
468
469 if (*pos == 0)
470 return SEQ_START_TOKEN;
471
472 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
473 if (!cpu_possible(cpu))
474 continue;
475 *pos = cpu+1;
476 return &per_cpu(rt_cache_stat, cpu);
477 }
478 return NULL;
479 }
480
481 static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
482 {
483 int cpu;
484
485 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
486 if (!cpu_possible(cpu))
487 continue;
488 *pos = cpu+1;
489 return &per_cpu(rt_cache_stat, cpu);
490 }
491 return NULL;
492
493 }
494
495 static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
496 {
497
498 }
499
500 static int rt_cpu_seq_show(struct seq_file *seq, void *v)
501 {
502 struct rt_cache_stat *st = v;
503
504 if (v == SEQ_START_TOKEN) {
505 seq_printf(seq, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
506 return 0;
507 }
508
509 seq_printf(seq,"%08x %08x %08x %08x %08x %08x %08x %08x "
510 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
511 dst_entries_get_slow(&ipv4_dst_ops),
512 st->in_hit,
513 st->in_slow_tot,
514 st->in_slow_mc,
515 st->in_no_route,
516 st->in_brd,
517 st->in_martian_dst,
518 st->in_martian_src,
519
520 st->out_hit,
521 st->out_slow_tot,
522 st->out_slow_mc,
523
524 st->gc_total,
525 st->gc_ignored,
526 st->gc_goal_miss,
527 st->gc_dst_overflow,
528 st->in_hlist_search,
529 st->out_hlist_search
530 );
531 return 0;
532 }
533
534 static const struct seq_operations rt_cpu_seq_ops = {
535 .start = rt_cpu_seq_start,
536 .next = rt_cpu_seq_next,
537 .stop = rt_cpu_seq_stop,
538 .show = rt_cpu_seq_show,
539 };
540
541
542 static int rt_cpu_seq_open(struct inode *inode, struct file *file)
543 {
544 return seq_open(file, &rt_cpu_seq_ops);
545 }
546
547 static const struct file_operations rt_cpu_seq_fops = {
548 .owner = THIS_MODULE,
549 .open = rt_cpu_seq_open,
550 .read = seq_read,
551 .llseek = seq_lseek,
552 .release = seq_release,
553 };
554
555 #ifdef CONFIG_IP_ROUTE_CLASSID
556 static int rt_acct_proc_show(struct seq_file *m, void *v)
557 {
558 struct ip_rt_acct *dst, *src;
559 unsigned int i, j;
560
561 dst = kcalloc(256, sizeof(struct ip_rt_acct), GFP_KERNEL);
562 if (!dst)
563 return -ENOMEM;
564
565 for_each_possible_cpu(i) {
566 src = (struct ip_rt_acct *)per_cpu_ptr(ip_rt_acct, i);
567 for (j = 0; j < 256; j++) {
568 dst[j].o_bytes += src[j].o_bytes;
569 dst[j].o_packets += src[j].o_packets;
570 dst[j].i_bytes += src[j].i_bytes;
571 dst[j].i_packets += src[j].i_packets;
572 }
573 }
574
575 seq_write(m, dst, 256 * sizeof(struct ip_rt_acct));
576 kfree(dst);
577 return 0;
578 }
579
580 static int rt_acct_proc_open(struct inode *inode, struct file *file)
581 {
582 return single_open(file, rt_acct_proc_show, NULL);
583 }
584
585 static const struct file_operations rt_acct_proc_fops = {
586 .owner = THIS_MODULE,
587 .open = rt_acct_proc_open,
588 .read = seq_read,
589 .llseek = seq_lseek,
590 .release = single_release,
591 };
592 #endif
593
594 static int __net_init ip_rt_do_proc_init(struct net *net)
595 {
596 struct proc_dir_entry *pde;
597
598 pde = proc_net_fops_create(net, "rt_cache", S_IRUGO,
599 &rt_cache_seq_fops);
600 if (!pde)
601 goto err1;
602
603 pde = proc_create("rt_cache", S_IRUGO,
604 net->proc_net_stat, &rt_cpu_seq_fops);
605 if (!pde)
606 goto err2;
607
608 #ifdef CONFIG_IP_ROUTE_CLASSID
609 pde = proc_create("rt_acct", 0, net->proc_net, &rt_acct_proc_fops);
610 if (!pde)
611 goto err3;
612 #endif
613 return 0;
614
615 #ifdef CONFIG_IP_ROUTE_CLASSID
616 err3:
617 remove_proc_entry("rt_cache", net->proc_net_stat);
618 #endif
619 err2:
620 remove_proc_entry("rt_cache", net->proc_net);
621 err1:
622 return -ENOMEM;
623 }
624
625 static void __net_exit ip_rt_do_proc_exit(struct net *net)
626 {
627 remove_proc_entry("rt_cache", net->proc_net_stat);
628 remove_proc_entry("rt_cache", net->proc_net);
629 #ifdef CONFIG_IP_ROUTE_CLASSID
630 remove_proc_entry("rt_acct", net->proc_net);
631 #endif
632 }
633
634 static struct pernet_operations ip_rt_proc_ops __net_initdata = {
635 .init = ip_rt_do_proc_init,
636 .exit = ip_rt_do_proc_exit,
637 };
638
639 static int __init ip_rt_proc_init(void)
640 {
641 return register_pernet_subsys(&ip_rt_proc_ops);
642 }
643
644 #else
645 static inline int ip_rt_proc_init(void)
646 {
647 return 0;
648 }
649 #endif /* CONFIG_PROC_FS */
650
651 static inline void rt_free(struct rtable *rt)
652 {
653 call_rcu_bh(&rt->dst.rcu_head, dst_rcu_free);
654 }
655
656 static inline void rt_drop(struct rtable *rt)
657 {
658 ip_rt_put(rt);
659 call_rcu_bh(&rt->dst.rcu_head, dst_rcu_free);
660 }
661
662 static inline int rt_fast_clean(struct rtable *rth)
663 {
664 /* Kill broadcast/multicast entries very aggresively, if they
665 collide in hash table with more useful entries */
666 return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
667 rt_is_input_route(rth) && rth->dst.rt_next;
668 }
669
670 static inline int rt_valuable(struct rtable *rth)
671 {
672 return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
673 (rth->peer && rth->peer->pmtu_expires);
674 }
675
676 static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
677 {
678 unsigned long age;
679 int ret = 0;
680
681 if (atomic_read(&rth->dst.__refcnt))
682 goto out;
683
684 age = jiffies - rth->dst.lastuse;
685 if ((age <= tmo1 && !rt_fast_clean(rth)) ||
686 (age <= tmo2 && rt_valuable(rth)))
687 goto out;
688 ret = 1;
689 out: return ret;
690 }
691
692 /* Bits of score are:
693 * 31: very valuable
694 * 30: not quite useless
695 * 29..0: usage counter
696 */
697 static inline u32 rt_score(struct rtable *rt)
698 {
699 u32 score = jiffies - rt->dst.lastuse;
700
701 score = ~score & ~(3<<30);
702
703 if (rt_valuable(rt))
704 score |= (1<<31);
705
706 if (rt_is_output_route(rt) ||
707 !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
708 score |= (1<<30);
709
710 return score;
711 }
712
713 static inline bool rt_caching(const struct net *net)
714 {
715 return net->ipv4.current_rt_cache_rebuild_count <=
716 net->ipv4.sysctl_rt_cache_rebuild_count;
717 }
718
719 static inline bool compare_hash_inputs(const struct rtable *rt1,
720 const struct rtable *rt2)
721 {
722 return ((((__force u32)rt1->rt_key_dst ^ (__force u32)rt2->rt_key_dst) |
723 ((__force u32)rt1->rt_key_src ^ (__force u32)rt2->rt_key_src) |
724 (rt1->rt_route_iif ^ rt2->rt_route_iif)) == 0);
725 }
726
727 static inline int compare_keys(struct rtable *rt1, struct rtable *rt2)
728 {
729 return (((__force u32)rt1->rt_key_dst ^ (__force u32)rt2->rt_key_dst) |
730 ((__force u32)rt1->rt_key_src ^ (__force u32)rt2->rt_key_src) |
731 (rt1->rt_mark ^ rt2->rt_mark) |
732 (rt1->rt_key_tos ^ rt2->rt_key_tos) |
733 (rt1->rt_route_iif ^ rt2->rt_route_iif) |
734 (rt1->rt_oif ^ rt2->rt_oif)) == 0;
735 }
736
737 static inline int compare_netns(struct rtable *rt1, struct rtable *rt2)
738 {
739 return net_eq(dev_net(rt1->dst.dev), dev_net(rt2->dst.dev));
740 }
741
742 static inline int rt_is_expired(struct rtable *rth)
743 {
744 return rth->rt_genid != rt_genid(dev_net(rth->dst.dev));
745 }
746
747 /*
748 * Perform a full scan of hash table and free all entries.
749 * Can be called by a softirq or a process.
750 * In the later case, we want to be reschedule if necessary
751 */
752 static void rt_do_flush(struct net *net, int process_context)
753 {
754 unsigned int i;
755 struct rtable *rth, *next;
756
757 for (i = 0; i <= rt_hash_mask; i++) {
758 struct rtable __rcu **pprev;
759 struct rtable *list;
760
761 if (process_context && need_resched())
762 cond_resched();
763 rth = rcu_access_pointer(rt_hash_table[i].chain);
764 if (!rth)
765 continue;
766
767 spin_lock_bh(rt_hash_lock_addr(i));
768
769 list = NULL;
770 pprev = &rt_hash_table[i].chain;
771 rth = rcu_dereference_protected(*pprev,
772 lockdep_is_held(rt_hash_lock_addr(i)));
773
774 while (rth) {
775 next = rcu_dereference_protected(rth->dst.rt_next,
776 lockdep_is_held(rt_hash_lock_addr(i)));
777
778 if (!net ||
779 net_eq(dev_net(rth->dst.dev), net)) {
780 rcu_assign_pointer(*pprev, next);
781 rcu_assign_pointer(rth->dst.rt_next, list);
782 list = rth;
783 } else {
784 pprev = &rth->dst.rt_next;
785 }
786 rth = next;
787 }
788
789 spin_unlock_bh(rt_hash_lock_addr(i));
790
791 for (; list; list = next) {
792 next = rcu_dereference_protected(list->dst.rt_next, 1);
793 rt_free(list);
794 }
795 }
796 }
797
798 /*
799 * While freeing expired entries, we compute average chain length
800 * and standard deviation, using fixed-point arithmetic.
801 * This to have an estimation of rt_chain_length_max
802 * rt_chain_length_max = max(elasticity, AVG + 4*SD)
803 * We use 3 bits for frational part, and 29 (or 61) for magnitude.
804 */
805
806 #define FRACT_BITS 3
807 #define ONE (1UL << FRACT_BITS)
808
809 /*
810 * Given a hash chain and an item in this hash chain,
811 * find if a previous entry has the same hash_inputs
812 * (but differs on tos, mark or oif)
813 * Returns 0 if an alias is found.
814 * Returns ONE if rth has no alias before itself.
815 */
816 static int has_noalias(const struct rtable *head, const struct rtable *rth)
817 {
818 const struct rtable *aux = head;
819
820 while (aux != rth) {
821 if (compare_hash_inputs(aux, rth))
822 return 0;
823 aux = rcu_dereference_protected(aux->dst.rt_next, 1);
824 }
825 return ONE;
826 }
827
828 /*
829 * Perturbation of rt_genid by a small quantity [1..256]
830 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
831 * many times (2^24) without giving recent rt_genid.
832 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
833 */
834 static void rt_cache_invalidate(struct net *net)
835 {
836 unsigned char shuffle;
837
838 get_random_bytes(&shuffle, sizeof(shuffle));
839 atomic_add(shuffle + 1U, &net->ipv4.rt_genid);
840 }
841
842 /*
843 * delay < 0 : invalidate cache (fast : entries will be deleted later)
844 * delay >= 0 : invalidate & flush cache (can be long)
845 */
846 void rt_cache_flush(struct net *net, int delay)
847 {
848 rt_cache_invalidate(net);
849 if (delay >= 0)
850 rt_do_flush(net, !in_softirq());
851 }
852
853 /* Flush previous cache invalidated entries from the cache */
854 void rt_cache_flush_batch(struct net *net)
855 {
856 rt_do_flush(net, !in_softirq());
857 }
858
859 static void rt_emergency_hash_rebuild(struct net *net)
860 {
861 if (net_ratelimit())
862 printk(KERN_WARNING "Route hash chain too long!\n");
863 rt_cache_invalidate(net);
864 }
865
866 /*
867 Short description of GC goals.
868
869 We want to build algorithm, which will keep routing cache
870 at some equilibrium point, when number of aged off entries
871 is kept approximately equal to newly generated ones.
872
873 Current expiration strength is variable "expire".
874 We try to adjust it dynamically, so that if networking
875 is idle expires is large enough to keep enough of warm entries,
876 and when load increases it reduces to limit cache size.
877 */
878
879 static int rt_garbage_collect(struct dst_ops *ops)
880 {
881 static unsigned long expire = RT_GC_TIMEOUT;
882 static unsigned long last_gc;
883 static int rover;
884 static int equilibrium;
885 struct rtable *rth;
886 struct rtable __rcu **rthp;
887 unsigned long now = jiffies;
888 int goal;
889 int entries = dst_entries_get_fast(&ipv4_dst_ops);
890
891 /*
892 * Garbage collection is pretty expensive,
893 * do not make it too frequently.
894 */
895
896 RT_CACHE_STAT_INC(gc_total);
897
898 if (now - last_gc < ip_rt_gc_min_interval &&
899 entries < ip_rt_max_size) {
900 RT_CACHE_STAT_INC(gc_ignored);
901 goto out;
902 }
903
904 entries = dst_entries_get_slow(&ipv4_dst_ops);
905 /* Calculate number of entries, which we want to expire now. */
906 goal = entries - (ip_rt_gc_elasticity << rt_hash_log);
907 if (goal <= 0) {
908 if (equilibrium < ipv4_dst_ops.gc_thresh)
909 equilibrium = ipv4_dst_ops.gc_thresh;
910 goal = entries - equilibrium;
911 if (goal > 0) {
912 equilibrium += min_t(unsigned int, goal >> 1, rt_hash_mask + 1);
913 goal = entries - equilibrium;
914 }
915 } else {
916 /* We are in dangerous area. Try to reduce cache really
917 * aggressively.
918 */
919 goal = max_t(unsigned int, goal >> 1, rt_hash_mask + 1);
920 equilibrium = entries - goal;
921 }
922
923 if (now - last_gc >= ip_rt_gc_min_interval)
924 last_gc = now;
925
926 if (goal <= 0) {
927 equilibrium += goal;
928 goto work_done;
929 }
930
931 do {
932 int i, k;
933
934 for (i = rt_hash_mask, k = rover; i >= 0; i--) {
935 unsigned long tmo = expire;
936
937 k = (k + 1) & rt_hash_mask;
938 rthp = &rt_hash_table[k].chain;
939 spin_lock_bh(rt_hash_lock_addr(k));
940 while ((rth = rcu_dereference_protected(*rthp,
941 lockdep_is_held(rt_hash_lock_addr(k)))) != NULL) {
942 if (!rt_is_expired(rth) &&
943 !rt_may_expire(rth, tmo, expire)) {
944 tmo >>= 1;
945 rthp = &rth->dst.rt_next;
946 continue;
947 }
948 *rthp = rth->dst.rt_next;
949 rt_free(rth);
950 goal--;
951 }
952 spin_unlock_bh(rt_hash_lock_addr(k));
953 if (goal <= 0)
954 break;
955 }
956 rover = k;
957
958 if (goal <= 0)
959 goto work_done;
960
961 /* Goal is not achieved. We stop process if:
962
963 - if expire reduced to zero. Otherwise, expire is halfed.
964 - if table is not full.
965 - if we are called from interrupt.
966 - jiffies check is just fallback/debug loop breaker.
967 We will not spin here for long time in any case.
968 */
969
970 RT_CACHE_STAT_INC(gc_goal_miss);
971
972 if (expire == 0)
973 break;
974
975 expire >>= 1;
976
977 if (dst_entries_get_fast(&ipv4_dst_ops) < ip_rt_max_size)
978 goto out;
979 } while (!in_softirq() && time_before_eq(jiffies, now));
980
981 if (dst_entries_get_fast(&ipv4_dst_ops) < ip_rt_max_size)
982 goto out;
983 if (dst_entries_get_slow(&ipv4_dst_ops) < ip_rt_max_size)
984 goto out;
985 if (net_ratelimit())
986 printk(KERN_WARNING "dst cache overflow\n");
987 RT_CACHE_STAT_INC(gc_dst_overflow);
988 return 1;
989
990 work_done:
991 expire += ip_rt_gc_min_interval;
992 if (expire > ip_rt_gc_timeout ||
993 dst_entries_get_fast(&ipv4_dst_ops) < ipv4_dst_ops.gc_thresh ||
994 dst_entries_get_slow(&ipv4_dst_ops) < ipv4_dst_ops.gc_thresh)
995 expire = ip_rt_gc_timeout;
996 out: return 0;
997 }
998
999 /*
1000 * Returns number of entries in a hash chain that have different hash_inputs
1001 */
1002 static int slow_chain_length(const struct rtable *head)
1003 {
1004 int length = 0;
1005 const struct rtable *rth = head;
1006
1007 while (rth) {
1008 length += has_noalias(head, rth);
1009 rth = rcu_dereference_protected(rth->dst.rt_next, 1);
1010 }
1011 return length >> FRACT_BITS;
1012 }
1013
1014 static struct neighbour *ipv4_neigh_lookup(const struct dst_entry *dst, const void *daddr)
1015 {
1016 struct neigh_table *tbl = &arp_tbl;
1017 static const __be32 inaddr_any = 0;
1018 struct net_device *dev = dst->dev;
1019 const __be32 *pkey = daddr;
1020 struct neighbour *n;
1021
1022 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1023 if (dev->type == ARPHRD_ATM)
1024 tbl = clip_tbl_hook;
1025 #endif
1026 if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
1027 pkey = &inaddr_any;
1028
1029 n = __ipv4_neigh_lookup(tbl, dev, *(__force u32 *)pkey);
1030 if (n)
1031 return n;
1032 return neigh_create(tbl, pkey, dev);
1033 }
1034
1035 static int rt_bind_neighbour(struct rtable *rt)
1036 {
1037 struct neighbour *n = ipv4_neigh_lookup(&rt->dst, &rt->rt_gateway);
1038 if (IS_ERR(n))
1039 return PTR_ERR(n);
1040 dst_set_neighbour(&rt->dst, n);
1041
1042 return 0;
1043 }
1044
1045 static struct rtable *rt_intern_hash(unsigned hash, struct rtable *rt,
1046 struct sk_buff *skb, int ifindex)
1047 {
1048 struct rtable *rth, *cand;
1049 struct rtable __rcu **rthp, **candp;
1050 unsigned long now;
1051 u32 min_score;
1052 int chain_length;
1053 int attempts = !in_softirq();
1054
1055 restart:
1056 chain_length = 0;
1057 min_score = ~(u32)0;
1058 cand = NULL;
1059 candp = NULL;
1060 now = jiffies;
1061
1062 if (!rt_caching(dev_net(rt->dst.dev))) {
1063 /*
1064 * If we're not caching, just tell the caller we
1065 * were successful and don't touch the route. The
1066 * caller hold the sole reference to the cache entry, and
1067 * it will be released when the caller is done with it.
1068 * If we drop it here, the callers have no way to resolve routes
1069 * when we're not caching. Instead, just point *rp at rt, so
1070 * the caller gets a single use out of the route
1071 * Note that we do rt_free on this new route entry, so that
1072 * once its refcount hits zero, we are still able to reap it
1073 * (Thanks Alexey)
1074 * Note: To avoid expensive rcu stuff for this uncached dst,
1075 * we set DST_NOCACHE so that dst_release() can free dst without
1076 * waiting a grace period.
1077 */
1078
1079 rt->dst.flags |= DST_NOCACHE;
1080 if (rt->rt_type == RTN_UNICAST || rt_is_output_route(rt)) {
1081 int err = rt_bind_neighbour(rt);
1082 if (err) {
1083 if (net_ratelimit())
1084 printk(KERN_WARNING
1085 "Neighbour table failure & not caching routes.\n");
1086 ip_rt_put(rt);
1087 return ERR_PTR(err);
1088 }
1089 }
1090
1091 goto skip_hashing;
1092 }
1093
1094 rthp = &rt_hash_table[hash].chain;
1095
1096 spin_lock_bh(rt_hash_lock_addr(hash));
1097 while ((rth = rcu_dereference_protected(*rthp,
1098 lockdep_is_held(rt_hash_lock_addr(hash)))) != NULL) {
1099 if (rt_is_expired(rth)) {
1100 *rthp = rth->dst.rt_next;
1101 rt_free(rth);
1102 continue;
1103 }
1104 if (compare_keys(rth, rt) && compare_netns(rth, rt)) {
1105 /* Put it first */
1106 *rthp = rth->dst.rt_next;
1107 /*
1108 * Since lookup is lockfree, the deletion
1109 * must be visible to another weakly ordered CPU before
1110 * the insertion at the start of the hash chain.
1111 */
1112 rcu_assign_pointer(rth->dst.rt_next,
1113 rt_hash_table[hash].chain);
1114 /*
1115 * Since lookup is lockfree, the update writes
1116 * must be ordered for consistency on SMP.
1117 */
1118 rcu_assign_pointer(rt_hash_table[hash].chain, rth);
1119
1120 dst_use(&rth->dst, now);
1121 spin_unlock_bh(rt_hash_lock_addr(hash));
1122
1123 rt_drop(rt);
1124 if (skb)
1125 skb_dst_set(skb, &rth->dst);
1126 return rth;
1127 }
1128
1129 if (!atomic_read(&rth->dst.__refcnt)) {
1130 u32 score = rt_score(rth);
1131
1132 if (score <= min_score) {
1133 cand = rth;
1134 candp = rthp;
1135 min_score = score;
1136 }
1137 }
1138
1139 chain_length++;
1140
1141 rthp = &rth->dst.rt_next;
1142 }
1143
1144 if (cand) {
1145 /* ip_rt_gc_elasticity used to be average length of chain
1146 * length, when exceeded gc becomes really aggressive.
1147 *
1148 * The second limit is less certain. At the moment it allows
1149 * only 2 entries per bucket. We will see.
1150 */
1151 if (chain_length > ip_rt_gc_elasticity) {
1152 *candp = cand->dst.rt_next;
1153 rt_free(cand);
1154 }
1155 } else {
1156 if (chain_length > rt_chain_length_max &&
1157 slow_chain_length(rt_hash_table[hash].chain) > rt_chain_length_max) {
1158 struct net *net = dev_net(rt->dst.dev);
1159 int num = ++net->ipv4.current_rt_cache_rebuild_count;
1160 if (!rt_caching(net)) {
1161 printk(KERN_WARNING "%s: %d rebuilds is over limit, route caching disabled\n",
1162 rt->dst.dev->name, num);
1163 }
1164 rt_emergency_hash_rebuild(net);
1165 spin_unlock_bh(rt_hash_lock_addr(hash));
1166
1167 hash = rt_hash(rt->rt_key_dst, rt->rt_key_src,
1168 ifindex, rt_genid(net));
1169 goto restart;
1170 }
1171 }
1172
1173 /* Try to bind route to arp only if it is output
1174 route or unicast forwarding path.
1175 */
1176 if (rt->rt_type == RTN_UNICAST || rt_is_output_route(rt)) {
1177 int err = rt_bind_neighbour(rt);
1178 if (err) {
1179 spin_unlock_bh(rt_hash_lock_addr(hash));
1180
1181 if (err != -ENOBUFS) {
1182 rt_drop(rt);
1183 return ERR_PTR(err);
1184 }
1185
1186 /* Neighbour tables are full and nothing
1187 can be released. Try to shrink route cache,
1188 it is most likely it holds some neighbour records.
1189 */
1190 if (attempts-- > 0) {
1191 int saved_elasticity = ip_rt_gc_elasticity;
1192 int saved_int = ip_rt_gc_min_interval;
1193 ip_rt_gc_elasticity = 1;
1194 ip_rt_gc_min_interval = 0;
1195 rt_garbage_collect(&ipv4_dst_ops);
1196 ip_rt_gc_min_interval = saved_int;
1197 ip_rt_gc_elasticity = saved_elasticity;
1198 goto restart;
1199 }
1200
1201 if (net_ratelimit())
1202 printk(KERN_WARNING "ipv4: Neighbour table overflow.\n");
1203 rt_drop(rt);
1204 return ERR_PTR(-ENOBUFS);
1205 }
1206 }
1207
1208 rt->dst.rt_next = rt_hash_table[hash].chain;
1209
1210 /*
1211 * Since lookup is lockfree, we must make sure
1212 * previous writes to rt are committed to memory
1213 * before making rt visible to other CPUS.
1214 */
1215 rcu_assign_pointer(rt_hash_table[hash].chain, rt);
1216
1217 spin_unlock_bh(rt_hash_lock_addr(hash));
1218
1219 skip_hashing:
1220 if (skb)
1221 skb_dst_set(skb, &rt->dst);
1222 return rt;
1223 }
1224
1225 static atomic_t __rt_peer_genid = ATOMIC_INIT(0);
1226
1227 static u32 rt_peer_genid(void)
1228 {
1229 return atomic_read(&__rt_peer_genid);
1230 }
1231
1232 void rt_bind_peer(struct rtable *rt, __be32 daddr, int create)
1233 {
1234 struct inet_peer *peer;
1235
1236 peer = inet_getpeer_v4(daddr, create);
1237
1238 if (peer && cmpxchg(&rt->peer, NULL, peer) != NULL)
1239 inet_putpeer(peer);
1240 else
1241 rt->rt_peer_genid = rt_peer_genid();
1242 }
1243
1244 /*
1245 * Peer allocation may fail only in serious out-of-memory conditions. However
1246 * we still can generate some output.
1247 * Random ID selection looks a bit dangerous because we have no chances to
1248 * select ID being unique in a reasonable period of time.
1249 * But broken packet identifier may be better than no packet at all.
1250 */
1251 static void ip_select_fb_ident(struct iphdr *iph)
1252 {
1253 static DEFINE_SPINLOCK(ip_fb_id_lock);
1254 static u32 ip_fallback_id;
1255 u32 salt;
1256
1257 spin_lock_bh(&ip_fb_id_lock);
1258 salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
1259 iph->id = htons(salt & 0xFFFF);
1260 ip_fallback_id = salt;
1261 spin_unlock_bh(&ip_fb_id_lock);
1262 }
1263
1264 void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
1265 {
1266 struct rtable *rt = (struct rtable *) dst;
1267
1268 if (rt) {
1269 if (rt->peer == NULL)
1270 rt_bind_peer(rt, rt->rt_dst, 1);
1271
1272 /* If peer is attached to destination, it is never detached,
1273 so that we need not to grab a lock to dereference it.
1274 */
1275 if (rt->peer) {
1276 iph->id = htons(inet_getid(rt->peer, more));
1277 return;
1278 }
1279 } else
1280 printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",
1281 __builtin_return_address(0));
1282
1283 ip_select_fb_ident(iph);
1284 }
1285 EXPORT_SYMBOL(__ip_select_ident);
1286
1287 static void rt_del(unsigned hash, struct rtable *rt)
1288 {
1289 struct rtable __rcu **rthp;
1290 struct rtable *aux;
1291
1292 rthp = &rt_hash_table[hash].chain;
1293 spin_lock_bh(rt_hash_lock_addr(hash));
1294 ip_rt_put(rt);
1295 while ((aux = rcu_dereference_protected(*rthp,
1296 lockdep_is_held(rt_hash_lock_addr(hash)))) != NULL) {
1297 if (aux == rt || rt_is_expired(aux)) {
1298 *rthp = aux->dst.rt_next;
1299 rt_free(aux);
1300 continue;
1301 }
1302 rthp = &aux->dst.rt_next;
1303 }
1304 spin_unlock_bh(rt_hash_lock_addr(hash));
1305 }
1306
1307 static int check_peer_redir(struct dst_entry *dst, struct inet_peer *peer)
1308 {
1309 struct rtable *rt = (struct rtable *) dst;
1310 __be32 orig_gw = rt->rt_gateway;
1311 struct neighbour *n, *old_n;
1312
1313 dst_confirm(&rt->dst);
1314
1315 rt->rt_gateway = peer->redirect_learned.a4;
1316
1317 n = ipv4_neigh_lookup(&rt->dst, &rt->rt_gateway);
1318 if (IS_ERR(n))
1319 return PTR_ERR(n);
1320 old_n = xchg(&rt->dst._neighbour, n);
1321 if (old_n)
1322 neigh_release(old_n);
1323 if (!n || !(n->nud_state & NUD_VALID)) {
1324 if (n)
1325 neigh_event_send(n, NULL);
1326 rt->rt_gateway = orig_gw;
1327 return -EAGAIN;
1328 } else {
1329 rt->rt_flags |= RTCF_REDIRECTED;
1330 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, n);
1331 }
1332 return 0;
1333 }
1334
1335 /* called in rcu_read_lock() section */
1336 void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw,
1337 __be32 saddr, struct net_device *dev)
1338 {
1339 int s, i;
1340 struct in_device *in_dev = __in_dev_get_rcu(dev);
1341 __be32 skeys[2] = { saddr, 0 };
1342 int ikeys[2] = { dev->ifindex, 0 };
1343 struct inet_peer *peer;
1344 struct net *net;
1345
1346 if (!in_dev)
1347 return;
1348
1349 net = dev_net(dev);
1350 if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev) ||
1351 ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw) ||
1352 ipv4_is_zeronet(new_gw))
1353 goto reject_redirect;
1354
1355 if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1356 if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1357 goto reject_redirect;
1358 if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1359 goto reject_redirect;
1360 } else {
1361 if (inet_addr_type(net, new_gw) != RTN_UNICAST)
1362 goto reject_redirect;
1363 }
1364
1365 for (s = 0; s < 2; s++) {
1366 for (i = 0; i < 2; i++) {
1367 unsigned int hash;
1368 struct rtable __rcu **rthp;
1369 struct rtable *rt;
1370
1371 hash = rt_hash(daddr, skeys[s], ikeys[i], rt_genid(net));
1372
1373 rthp = &rt_hash_table[hash].chain;
1374
1375 while ((rt = rcu_dereference(*rthp)) != NULL) {
1376 rthp = &rt->dst.rt_next;
1377
1378 if (rt->rt_key_dst != daddr ||
1379 rt->rt_key_src != skeys[s] ||
1380 rt->rt_oif != ikeys[i] ||
1381 rt_is_input_route(rt) ||
1382 rt_is_expired(rt) ||
1383 !net_eq(dev_net(rt->dst.dev), net) ||
1384 rt->dst.error ||
1385 rt->dst.dev != dev ||
1386 rt->rt_gateway != old_gw)
1387 continue;
1388
1389 if (!rt->peer)
1390 rt_bind_peer(rt, rt->rt_dst, 1);
1391
1392 peer = rt->peer;
1393 if (peer) {
1394 if (peer->redirect_learned.a4 != new_gw) {
1395 peer->redirect_learned.a4 = new_gw;
1396 atomic_inc(&__rt_peer_genid);
1397 }
1398 check_peer_redir(&rt->dst, peer);
1399 }
1400 }
1401 }
1402 }
1403 return;
1404
1405 reject_redirect:
1406 #ifdef CONFIG_IP_ROUTE_VERBOSE
1407 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1408 printk(KERN_INFO "Redirect from %pI4 on %s about %pI4 ignored.\n"
1409 " Advised path = %pI4 -> %pI4\n",
1410 &old_gw, dev->name, &new_gw,
1411 &saddr, &daddr);
1412 #endif
1413 ;
1414 }
1415
1416 static bool peer_pmtu_expired(struct inet_peer *peer)
1417 {
1418 unsigned long orig = ACCESS_ONCE(peer->pmtu_expires);
1419
1420 return orig &&
1421 time_after_eq(jiffies, orig) &&
1422 cmpxchg(&peer->pmtu_expires, orig, 0) == orig;
1423 }
1424
1425 static bool peer_pmtu_cleaned(struct inet_peer *peer)
1426 {
1427 unsigned long orig = ACCESS_ONCE(peer->pmtu_expires);
1428
1429 return orig &&
1430 cmpxchg(&peer->pmtu_expires, orig, 0) == orig;
1431 }
1432
1433 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1434 {
1435 struct rtable *rt = (struct rtable *)dst;
1436 struct dst_entry *ret = dst;
1437
1438 if (rt) {
1439 if (dst->obsolete > 0) {
1440 ip_rt_put(rt);
1441 ret = NULL;
1442 } else if (rt->rt_flags & RTCF_REDIRECTED) {
1443 unsigned hash = rt_hash(rt->rt_key_dst, rt->rt_key_src,
1444 rt->rt_oif,
1445 rt_genid(dev_net(dst->dev)));
1446 rt_del(hash, rt);
1447 ret = NULL;
1448 } else if (rt->peer && peer_pmtu_expired(rt->peer)) {
1449 dst_metric_set(dst, RTAX_MTU, rt->peer->pmtu_orig);
1450 }
1451 }
1452 return ret;
1453 }
1454
1455 /*
1456 * Algorithm:
1457 * 1. The first ip_rt_redirect_number redirects are sent
1458 * with exponential backoff, then we stop sending them at all,
1459 * assuming that the host ignores our redirects.
1460 * 2. If we did not see packets requiring redirects
1461 * during ip_rt_redirect_silence, we assume that the host
1462 * forgot redirected route and start to send redirects again.
1463 *
1464 * This algorithm is much cheaper and more intelligent than dumb load limiting
1465 * in icmp.c.
1466 *
1467 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1468 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1469 */
1470
1471 void ip_rt_send_redirect(struct sk_buff *skb)
1472 {
1473 struct rtable *rt = skb_rtable(skb);
1474 struct in_device *in_dev;
1475 struct inet_peer *peer;
1476 int log_martians;
1477
1478 rcu_read_lock();
1479 in_dev = __in_dev_get_rcu(rt->dst.dev);
1480 if (!in_dev || !IN_DEV_TX_REDIRECTS(in_dev)) {
1481 rcu_read_unlock();
1482 return;
1483 }
1484 log_martians = IN_DEV_LOG_MARTIANS(in_dev);
1485 rcu_read_unlock();
1486
1487 if (!rt->peer)
1488 rt_bind_peer(rt, rt->rt_dst, 1);
1489 peer = rt->peer;
1490 if (!peer) {
1491 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1492 return;
1493 }
1494
1495 /* No redirected packets during ip_rt_redirect_silence;
1496 * reset the algorithm.
1497 */
1498 if (time_after(jiffies, peer->rate_last + ip_rt_redirect_silence))
1499 peer->rate_tokens = 0;
1500
1501 /* Too many ignored redirects; do not send anything
1502 * set dst.rate_last to the last seen redirected packet.
1503 */
1504 if (peer->rate_tokens >= ip_rt_redirect_number) {
1505 peer->rate_last = jiffies;
1506 return;
1507 }
1508
1509 /* Check for load limit; set rate_last to the latest sent
1510 * redirect.
1511 */
1512 if (peer->rate_tokens == 0 ||
1513 time_after(jiffies,
1514 (peer->rate_last +
1515 (ip_rt_redirect_load << peer->rate_tokens)))) {
1516 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1517 peer->rate_last = jiffies;
1518 ++peer->rate_tokens;
1519 #ifdef CONFIG_IP_ROUTE_VERBOSE
1520 if (log_martians &&
1521 peer->rate_tokens == ip_rt_redirect_number &&
1522 net_ratelimit())
1523 printk(KERN_WARNING "host %pI4/if%d ignores redirects for %pI4 to %pI4.\n",
1524 &ip_hdr(skb)->saddr, rt->rt_iif,
1525 &rt->rt_dst, &rt->rt_gateway);
1526 #endif
1527 }
1528 }
1529
1530 static int ip_error(struct sk_buff *skb)
1531 {
1532 struct rtable *rt = skb_rtable(skb);
1533 struct inet_peer *peer;
1534 unsigned long now;
1535 bool send;
1536 int code;
1537
1538 switch (rt->dst.error) {
1539 case EINVAL:
1540 default:
1541 goto out;
1542 case EHOSTUNREACH:
1543 code = ICMP_HOST_UNREACH;
1544 break;
1545 case ENETUNREACH:
1546 code = ICMP_NET_UNREACH;
1547 IP_INC_STATS_BH(dev_net(rt->dst.dev),
1548 IPSTATS_MIB_INNOROUTES);
1549 break;
1550 case EACCES:
1551 code = ICMP_PKT_FILTERED;
1552 break;
1553 }
1554
1555 if (!rt->peer)
1556 rt_bind_peer(rt, rt->rt_dst, 1);
1557 peer = rt->peer;
1558
1559 send = true;
1560 if (peer) {
1561 now = jiffies;
1562 peer->rate_tokens += now - peer->rate_last;
1563 if (peer->rate_tokens > ip_rt_error_burst)
1564 peer->rate_tokens = ip_rt_error_burst;
1565 peer->rate_last = now;
1566 if (peer->rate_tokens >= ip_rt_error_cost)
1567 peer->rate_tokens -= ip_rt_error_cost;
1568 else
1569 send = false;
1570 }
1571 if (send)
1572 icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1573
1574 out: kfree_skb(skb);
1575 return 0;
1576 }
1577
1578 /*
1579 * The last two values are not from the RFC but
1580 * are needed for AMPRnet AX.25 paths.
1581 */
1582
1583 static const unsigned short mtu_plateau[] =
1584 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1585
1586 static inline unsigned short guess_mtu(unsigned short old_mtu)
1587 {
1588 int i;
1589
1590 for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++)
1591 if (old_mtu > mtu_plateau[i])
1592 return mtu_plateau[i];
1593 return 68;
1594 }
1595
1596 unsigned short ip_rt_frag_needed(struct net *net, const struct iphdr *iph,
1597 unsigned short new_mtu,
1598 struct net_device *dev)
1599 {
1600 unsigned short old_mtu = ntohs(iph->tot_len);
1601 unsigned short est_mtu = 0;
1602 struct inet_peer *peer;
1603
1604 peer = inet_getpeer_v4(iph->daddr, 1);
1605 if (peer) {
1606 unsigned short mtu = new_mtu;
1607
1608 if (new_mtu < 68 || new_mtu >= old_mtu) {
1609 /* BSD 4.2 derived systems incorrectly adjust
1610 * tot_len by the IP header length, and report
1611 * a zero MTU in the ICMP message.
1612 */
1613 if (mtu == 0 &&
1614 old_mtu >= 68 + (iph->ihl << 2))
1615 old_mtu -= iph->ihl << 2;
1616 mtu = guess_mtu(old_mtu);
1617 }
1618
1619 if (mtu < ip_rt_min_pmtu)
1620 mtu = ip_rt_min_pmtu;
1621 if (!peer->pmtu_expires || mtu < peer->pmtu_learned) {
1622 unsigned long pmtu_expires;
1623
1624 pmtu_expires = jiffies + ip_rt_mtu_expires;
1625 if (!pmtu_expires)
1626 pmtu_expires = 1UL;
1627
1628 est_mtu = mtu;
1629 peer->pmtu_learned = mtu;
1630 peer->pmtu_expires = pmtu_expires;
1631 atomic_inc(&__rt_peer_genid);
1632 }
1633
1634 inet_putpeer(peer);
1635 }
1636 return est_mtu ? : new_mtu;
1637 }
1638
1639 static void check_peer_pmtu(struct dst_entry *dst, struct inet_peer *peer)
1640 {
1641 unsigned long expires = ACCESS_ONCE(peer->pmtu_expires);
1642
1643 if (!expires)
1644 return;
1645 if (time_before(jiffies, expires)) {
1646 u32 orig_dst_mtu = dst_mtu(dst);
1647 if (peer->pmtu_learned < orig_dst_mtu) {
1648 if (!peer->pmtu_orig)
1649 peer->pmtu_orig = dst_metric_raw(dst, RTAX_MTU);
1650 dst_metric_set(dst, RTAX_MTU, peer->pmtu_learned);
1651 }
1652 } else if (cmpxchg(&peer->pmtu_expires, expires, 0) == expires)
1653 dst_metric_set(dst, RTAX_MTU, peer->pmtu_orig);
1654 }
1655
1656 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1657 {
1658 struct rtable *rt = (struct rtable *) dst;
1659 struct inet_peer *peer;
1660
1661 dst_confirm(dst);
1662
1663 if (!rt->peer)
1664 rt_bind_peer(rt, rt->rt_dst, 1);
1665 peer = rt->peer;
1666 if (peer) {
1667 unsigned long pmtu_expires = ACCESS_ONCE(peer->pmtu_expires);
1668
1669 if (mtu < ip_rt_min_pmtu)
1670 mtu = ip_rt_min_pmtu;
1671 if (!pmtu_expires || mtu < peer->pmtu_learned) {
1672
1673 pmtu_expires = jiffies + ip_rt_mtu_expires;
1674 if (!pmtu_expires)
1675 pmtu_expires = 1UL;
1676
1677 peer->pmtu_learned = mtu;
1678 peer->pmtu_expires = pmtu_expires;
1679
1680 atomic_inc(&__rt_peer_genid);
1681 rt->rt_peer_genid = rt_peer_genid();
1682 }
1683 check_peer_pmtu(dst, peer);
1684 }
1685 }
1686
1687
1688 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1689 {
1690 struct rtable *rt = (struct rtable *) dst;
1691
1692 if (rt_is_expired(rt))
1693 return NULL;
1694 if (rt->rt_peer_genid != rt_peer_genid()) {
1695 struct inet_peer *peer;
1696
1697 if (!rt->peer)
1698 rt_bind_peer(rt, rt->rt_dst, 0);
1699
1700 peer = rt->peer;
1701 if (peer) {
1702 check_peer_pmtu(dst, peer);
1703
1704 if (peer->redirect_learned.a4 &&
1705 peer->redirect_learned.a4 != rt->rt_gateway) {
1706 if (check_peer_redir(dst, peer))
1707 return NULL;
1708 }
1709 }
1710
1711 rt->rt_peer_genid = rt_peer_genid();
1712 }
1713 return dst;
1714 }
1715
1716 static void ipv4_dst_destroy(struct dst_entry *dst)
1717 {
1718 struct rtable *rt = (struct rtable *) dst;
1719 struct inet_peer *peer = rt->peer;
1720
1721 if (rt->fi) {
1722 fib_info_put(rt->fi);
1723 rt->fi = NULL;
1724 }
1725 if (peer) {
1726 rt->peer = NULL;
1727 inet_putpeer(peer);
1728 }
1729 }
1730
1731
1732 static void ipv4_link_failure(struct sk_buff *skb)
1733 {
1734 struct rtable *rt;
1735
1736 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1737
1738 rt = skb_rtable(skb);
1739 if (rt && rt->peer && peer_pmtu_cleaned(rt->peer))
1740 dst_metric_set(&rt->dst, RTAX_MTU, rt->peer->pmtu_orig);
1741 }
1742
1743 static int ip_rt_bug(struct sk_buff *skb)
1744 {
1745 printk(KERN_DEBUG "ip_rt_bug: %pI4 -> %pI4, %s\n",
1746 &ip_hdr(skb)->saddr, &ip_hdr(skb)->daddr,
1747 skb->dev ? skb->dev->name : "?");
1748 kfree_skb(skb);
1749 WARN_ON(1);
1750 return 0;
1751 }
1752
1753 /*
1754 We do not cache source address of outgoing interface,
1755 because it is used only by IP RR, TS and SRR options,
1756 so that it out of fast path.
1757
1758 BTW remember: "addr" is allowed to be not aligned
1759 in IP options!
1760 */
1761
1762 void ip_rt_get_source(u8 *addr, struct sk_buff *skb, struct rtable *rt)
1763 {
1764 __be32 src;
1765
1766 if (rt_is_output_route(rt))
1767 src = ip_hdr(skb)->saddr;
1768 else {
1769 struct fib_result res;
1770 struct flowi4 fl4;
1771 struct iphdr *iph;
1772
1773 iph = ip_hdr(skb);
1774
1775 memset(&fl4, 0, sizeof(fl4));
1776 fl4.daddr = iph->daddr;
1777 fl4.saddr = iph->saddr;
1778 fl4.flowi4_tos = RT_TOS(iph->tos);
1779 fl4.flowi4_oif = rt->dst.dev->ifindex;
1780 fl4.flowi4_iif = skb->dev->ifindex;
1781 fl4.flowi4_mark = skb->mark;
1782
1783 rcu_read_lock();
1784 if (fib_lookup(dev_net(rt->dst.dev), &fl4, &res) == 0)
1785 src = FIB_RES_PREFSRC(dev_net(rt->dst.dev), res);
1786 else
1787 src = inet_select_addr(rt->dst.dev, rt->rt_gateway,
1788 RT_SCOPE_UNIVERSE);
1789 rcu_read_unlock();
1790 }
1791 memcpy(addr, &src, 4);
1792 }
1793
1794 #ifdef CONFIG_IP_ROUTE_CLASSID
1795 static void set_class_tag(struct rtable *rt, u32 tag)
1796 {
1797 if (!(rt->dst.tclassid & 0xFFFF))
1798 rt->dst.tclassid |= tag & 0xFFFF;
1799 if (!(rt->dst.tclassid & 0xFFFF0000))
1800 rt->dst.tclassid |= tag & 0xFFFF0000;
1801 }
1802 #endif
1803
1804 static unsigned int ipv4_default_advmss(const struct dst_entry *dst)
1805 {
1806 unsigned int advmss = dst_metric_raw(dst, RTAX_ADVMSS);
1807
1808 if (advmss == 0) {
1809 advmss = max_t(unsigned int, dst->dev->mtu - 40,
1810 ip_rt_min_advmss);
1811 if (advmss > 65535 - 40)
1812 advmss = 65535 - 40;
1813 }
1814 return advmss;
1815 }
1816
1817 static unsigned int ipv4_mtu(const struct dst_entry *dst)
1818 {
1819 const struct rtable *rt = (const struct rtable *) dst;
1820 unsigned int mtu = dst_metric_raw(dst, RTAX_MTU);
1821
1822 if (mtu && rt_is_output_route(rt))
1823 return mtu;
1824
1825 mtu = dst->dev->mtu;
1826
1827 if (unlikely(dst_metric_locked(dst, RTAX_MTU))) {
1828
1829 if (rt->rt_gateway != rt->rt_dst && mtu > 576)
1830 mtu = 576;
1831 }
1832
1833 if (mtu > IP_MAX_MTU)
1834 mtu = IP_MAX_MTU;
1835
1836 return mtu;
1837 }
1838
1839 static void rt_init_metrics(struct rtable *rt, const struct flowi4 *fl4,
1840 struct fib_info *fi)
1841 {
1842 struct inet_peer *peer;
1843 int create = 0;
1844
1845 /* If a peer entry exists for this destination, we must hook
1846 * it up in order to get at cached metrics.
1847 */
1848 if (fl4 && (fl4->flowi4_flags & FLOWI_FLAG_PRECOW_METRICS))
1849 create = 1;
1850
1851 rt->peer = peer = inet_getpeer_v4(rt->rt_dst, create);
1852 if (peer) {
1853 rt->rt_peer_genid = rt_peer_genid();
1854 if (inet_metrics_new(peer))
1855 memcpy(peer->metrics, fi->fib_metrics,
1856 sizeof(u32) * RTAX_MAX);
1857 dst_init_metrics(&rt->dst, peer->metrics, false);
1858
1859 check_peer_pmtu(&rt->dst, peer);
1860 if (peer->redirect_learned.a4 &&
1861 peer->redirect_learned.a4 != rt->rt_gateway) {
1862 rt->rt_gateway = peer->redirect_learned.a4;
1863 rt->rt_flags |= RTCF_REDIRECTED;
1864 }
1865 } else {
1866 if (fi->fib_metrics != (u32 *) dst_default_metrics) {
1867 rt->fi = fi;
1868 atomic_inc(&fi->fib_clntref);
1869 }
1870 dst_init_metrics(&rt->dst, fi->fib_metrics, true);
1871 }
1872 }
1873
1874 static void rt_set_nexthop(struct rtable *rt, const struct flowi4 *fl4,
1875 const struct fib_result *res,
1876 struct fib_info *fi, u16 type, u32 itag)
1877 {
1878 struct dst_entry *dst = &rt->dst;
1879
1880 if (fi) {
1881 if (FIB_RES_GW(*res) &&
1882 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1883 rt->rt_gateway = FIB_RES_GW(*res);
1884 rt_init_metrics(rt, fl4, fi);
1885 #ifdef CONFIG_IP_ROUTE_CLASSID
1886 dst->tclassid = FIB_RES_NH(*res).nh_tclassid;
1887 #endif
1888 }
1889
1890 if (dst_mtu(dst) > IP_MAX_MTU)
1891 dst_metric_set(dst, RTAX_MTU, IP_MAX_MTU);
1892 if (dst_metric_raw(dst, RTAX_ADVMSS) > 65535 - 40)
1893 dst_metric_set(dst, RTAX_ADVMSS, 65535 - 40);
1894
1895 #ifdef CONFIG_IP_ROUTE_CLASSID
1896 #ifdef CONFIG_IP_MULTIPLE_TABLES
1897 set_class_tag(rt, fib_rules_tclass(res));
1898 #endif
1899 set_class_tag(rt, itag);
1900 #endif
1901 }
1902
1903 static struct rtable *rt_dst_alloc(struct net_device *dev,
1904 bool nopolicy, bool noxfrm)
1905 {
1906 return dst_alloc(&ipv4_dst_ops, dev, 1, -1,
1907 DST_HOST |
1908 (nopolicy ? DST_NOPOLICY : 0) |
1909 (noxfrm ? DST_NOXFRM : 0));
1910 }
1911
1912 /* called in rcu_read_lock() section */
1913 static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1914 u8 tos, struct net_device *dev, int our)
1915 {
1916 unsigned int hash;
1917 struct rtable *rth;
1918 __be32 spec_dst;
1919 struct in_device *in_dev = __in_dev_get_rcu(dev);
1920 u32 itag = 0;
1921 int err;
1922
1923 /* Primary sanity checks. */
1924
1925 if (in_dev == NULL)
1926 return -EINVAL;
1927
1928 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1929 ipv4_is_loopback(saddr) || skb->protocol != htons(ETH_P_IP))
1930 goto e_inval;
1931
1932 if (ipv4_is_zeronet(saddr)) {
1933 if (!ipv4_is_local_multicast(daddr))
1934 goto e_inval;
1935 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1936 } else {
1937 err = fib_validate_source(skb, saddr, 0, tos, 0, dev, &spec_dst,
1938 &itag);
1939 if (err < 0)
1940 goto e_err;
1941 }
1942 rth = rt_dst_alloc(init_net.loopback_dev,
1943 IN_DEV_CONF_GET(in_dev, NOPOLICY), false);
1944 if (!rth)
1945 goto e_nobufs;
1946
1947 #ifdef CONFIG_IP_ROUTE_CLASSID
1948 rth->dst.tclassid = itag;
1949 #endif
1950 rth->dst.output = ip_rt_bug;
1951
1952 rth->rt_key_dst = daddr;
1953 rth->rt_key_src = saddr;
1954 rth->rt_genid = rt_genid(dev_net(dev));
1955 rth->rt_flags = RTCF_MULTICAST;
1956 rth->rt_type = RTN_MULTICAST;
1957 rth->rt_key_tos = tos;
1958 rth->rt_dst = daddr;
1959 rth->rt_src = saddr;
1960 rth->rt_route_iif = dev->ifindex;
1961 rth->rt_iif = dev->ifindex;
1962 rth->rt_oif = 0;
1963 rth->rt_mark = skb->mark;
1964 rth->rt_gateway = daddr;
1965 rth->rt_spec_dst= spec_dst;
1966 rth->rt_peer_genid = 0;
1967 rth->peer = NULL;
1968 rth->fi = NULL;
1969 if (our) {
1970 rth->dst.input= ip_local_deliver;
1971 rth->rt_flags |= RTCF_LOCAL;
1972 }
1973
1974 #ifdef CONFIG_IP_MROUTE
1975 if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev))
1976 rth->dst.input = ip_mr_input;
1977 #endif
1978 RT_CACHE_STAT_INC(in_slow_mc);
1979
1980 hash = rt_hash(daddr, saddr, dev->ifindex, rt_genid(dev_net(dev)));
1981 rth = rt_intern_hash(hash, rth, skb, dev->ifindex);
1982 return IS_ERR(rth) ? PTR_ERR(rth) : 0;
1983
1984 e_nobufs:
1985 return -ENOBUFS;
1986 e_inval:
1987 return -EINVAL;
1988 e_err:
1989 return err;
1990 }
1991
1992
1993 static void ip_handle_martian_source(struct net_device *dev,
1994 struct in_device *in_dev,
1995 struct sk_buff *skb,
1996 __be32 daddr,
1997 __be32 saddr)
1998 {
1999 RT_CACHE_STAT_INC(in_martian_src);
2000 #ifdef CONFIG_IP_ROUTE_VERBOSE
2001 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
2002 /*
2003 * RFC1812 recommendation, if source is martian,
2004 * the only hint is MAC header.
2005 */
2006 printk(KERN_WARNING "martian source %pI4 from %pI4, on dev %s\n",
2007 &daddr, &saddr, dev->name);
2008 if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
2009 int i;
2010 const unsigned char *p = skb_mac_header(skb);
2011 printk(KERN_WARNING "ll header: ");
2012 for (i = 0; i < dev->hard_header_len; i++, p++) {
2013 printk("%02x", *p);
2014 if (i < (dev->hard_header_len - 1))
2015 printk(":");
2016 }
2017 printk("\n");
2018 }
2019 }
2020 #endif
2021 }
2022
2023 /* called in rcu_read_lock() section */
2024 static int __mkroute_input(struct sk_buff *skb,
2025 const struct fib_result *res,
2026 struct in_device *in_dev,
2027 __be32 daddr, __be32 saddr, u32 tos,
2028 struct rtable **result)
2029 {
2030 struct rtable *rth;
2031 int err;
2032 struct in_device *out_dev;
2033 unsigned int flags = 0;
2034 __be32 spec_dst;
2035 u32 itag;
2036
2037 /* get a working reference to the output device */
2038 out_dev = __in_dev_get_rcu(FIB_RES_DEV(*res));
2039 if (out_dev == NULL) {
2040 if (net_ratelimit())
2041 printk(KERN_CRIT "Bug in ip_route_input" \
2042 "_slow(). Please, report\n");
2043 return -EINVAL;
2044 }
2045
2046
2047 err = fib_validate_source(skb, saddr, daddr, tos, FIB_RES_OIF(*res),
2048 in_dev->dev, &spec_dst, &itag);
2049 if (err < 0) {
2050 ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
2051 saddr);
2052
2053 goto cleanup;
2054 }
2055
2056 if (err)
2057 flags |= RTCF_DIRECTSRC;
2058
2059 if (out_dev == in_dev && err &&
2060 (IN_DEV_SHARED_MEDIA(out_dev) ||
2061 inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
2062 flags |= RTCF_DOREDIRECT;
2063
2064 if (skb->protocol != htons(ETH_P_IP)) {
2065 /* Not IP (i.e. ARP). Do not create route, if it is
2066 * invalid for proxy arp. DNAT routes are always valid.
2067 *
2068 * Proxy arp feature have been extended to allow, ARP
2069 * replies back to the same interface, to support
2070 * Private VLAN switch technologies. See arp.c.
2071 */
2072 if (out_dev == in_dev &&
2073 IN_DEV_PROXY_ARP_PVLAN(in_dev) == 0) {
2074 err = -EINVAL;
2075 goto cleanup;
2076 }
2077 }
2078
2079 rth = rt_dst_alloc(out_dev->dev,
2080 IN_DEV_CONF_GET(in_dev, NOPOLICY),
2081 IN_DEV_CONF_GET(out_dev, NOXFRM));
2082 if (!rth) {
2083 err = -ENOBUFS;
2084 goto cleanup;
2085 }
2086
2087 rth->rt_key_dst = daddr;
2088 rth->rt_key_src = saddr;
2089 rth->rt_genid = rt_genid(dev_net(rth->dst.dev));
2090 rth->rt_flags = flags;
2091 rth->rt_type = res->type;
2092 rth->rt_key_tos = tos;
2093 rth->rt_dst = daddr;
2094 rth->rt_src = saddr;
2095 rth->rt_route_iif = in_dev->dev->ifindex;
2096 rth->rt_iif = in_dev->dev->ifindex;
2097 rth->rt_oif = 0;
2098 rth->rt_mark = skb->mark;
2099 rth->rt_gateway = daddr;
2100 rth->rt_spec_dst= spec_dst;
2101 rth->rt_peer_genid = 0;
2102 rth->peer = NULL;
2103 rth->fi = NULL;
2104
2105 rth->dst.input = ip_forward;
2106 rth->dst.output = ip_output;
2107
2108 rt_set_nexthop(rth, NULL, res, res->fi, res->type, itag);
2109
2110 *result = rth;
2111 err = 0;
2112 cleanup:
2113 return err;
2114 }
2115
2116 static int ip_mkroute_input(struct sk_buff *skb,
2117 struct fib_result *res,
2118 const struct flowi4 *fl4,
2119 struct in_device *in_dev,
2120 __be32 daddr, __be32 saddr, u32 tos)
2121 {
2122 struct rtable* rth = NULL;
2123 int err;
2124 unsigned hash;
2125
2126 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2127 if (res->fi && res->fi->fib_nhs > 1)
2128 fib_select_multipath(res);
2129 #endif
2130
2131 /* create a routing cache entry */
2132 err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
2133 if (err)
2134 return err;
2135
2136 /* put it into the cache */
2137 hash = rt_hash(daddr, saddr, fl4->flowi4_iif,
2138 rt_genid(dev_net(rth->dst.dev)));
2139 rth = rt_intern_hash(hash, rth, skb, fl4->flowi4_iif);
2140 if (IS_ERR(rth))
2141 return PTR_ERR(rth);
2142 return 0;
2143 }
2144
2145 /*
2146 * NOTE. We drop all the packets that has local source
2147 * addresses, because every properly looped back packet
2148 * must have correct destination already attached by output routine.
2149 *
2150 * Such approach solves two big problems:
2151 * 1. Not simplex devices are handled properly.
2152 * 2. IP spoofing attempts are filtered with 100% of guarantee.
2153 * called with rcu_read_lock()
2154 */
2155
2156 static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2157 u8 tos, struct net_device *dev)
2158 {
2159 struct fib_result res;
2160 struct in_device *in_dev = __in_dev_get_rcu(dev);
2161 struct flowi4 fl4;
2162 unsigned flags = 0;
2163 u32 itag = 0;
2164 struct rtable * rth;
2165 unsigned hash;
2166 __be32 spec_dst;
2167 int err = -EINVAL;
2168 struct net * net = dev_net(dev);
2169
2170 /* IP on this device is disabled. */
2171
2172 if (!in_dev)
2173 goto out;
2174
2175 /* Check for the most weird martians, which can be not detected
2176 by fib_lookup.
2177 */
2178
2179 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
2180 ipv4_is_loopback(saddr))
2181 goto martian_source;
2182
2183 if (ipv4_is_lbcast(daddr) || (saddr == 0 && daddr == 0))
2184 goto brd_input;
2185
2186 /* Accept zero addresses only to limited broadcast;
2187 * I even do not know to fix it or not. Waiting for complains :-)
2188 */
2189 if (ipv4_is_zeronet(saddr))
2190 goto martian_source;
2191
2192 if (ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr))
2193 goto martian_destination;
2194
2195 /*
2196 * Now we are ready to route packet.
2197 */
2198 fl4.flowi4_oif = 0;
2199 fl4.flowi4_iif = dev->ifindex;
2200 fl4.flowi4_mark = skb->mark;
2201 fl4.flowi4_tos = tos;
2202 fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
2203 fl4.daddr = daddr;
2204 fl4.saddr = saddr;
2205 err = fib_lookup(net, &fl4, &res);
2206 if (err != 0) {
2207 if (!IN_DEV_FORWARD(in_dev))
2208 goto e_hostunreach;
2209 goto no_route;
2210 }
2211
2212 RT_CACHE_STAT_INC(in_slow_tot);
2213
2214 if (res.type == RTN_BROADCAST)
2215 goto brd_input;
2216
2217 if (res.type == RTN_LOCAL) {
2218 err = fib_validate_source(skb, saddr, daddr, tos,
2219 net->loopback_dev->ifindex,
2220 dev, &spec_dst, &itag);
2221 if (err < 0)
2222 goto martian_source_keep_err;
2223 if (err)
2224 flags |= RTCF_DIRECTSRC;
2225 spec_dst = daddr;
2226 goto local_input;
2227 }
2228
2229 if (!IN_DEV_FORWARD(in_dev))
2230 goto e_hostunreach;
2231 if (res.type != RTN_UNICAST)
2232 goto martian_destination;
2233
2234 err = ip_mkroute_input(skb, &res, &fl4, in_dev, daddr, saddr, tos);
2235 out: return err;
2236
2237 brd_input:
2238 if (skb->protocol != htons(ETH_P_IP))
2239 goto e_inval;
2240
2241 if (ipv4_is_zeronet(saddr))
2242 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
2243 else {
2244 err = fib_validate_source(skb, saddr, 0, tos, 0, dev, &spec_dst,
2245 &itag);
2246 if (err < 0)
2247 goto martian_source_keep_err;
2248 if (err)
2249 flags |= RTCF_DIRECTSRC;
2250 }
2251 flags |= RTCF_BROADCAST;
2252 res.type = RTN_BROADCAST;
2253 RT_CACHE_STAT_INC(in_brd);
2254
2255 local_input:
2256 rth = rt_dst_alloc(net->loopback_dev,
2257 IN_DEV_CONF_GET(in_dev, NOPOLICY), false);
2258 if (!rth)
2259 goto e_nobufs;
2260
2261 rth->dst.input= ip_local_deliver;
2262 rth->dst.output= ip_rt_bug;
2263 #ifdef CONFIG_IP_ROUTE_CLASSID
2264 rth->dst.tclassid = itag;
2265 #endif
2266
2267 rth->rt_key_dst = daddr;
2268 rth->rt_key_src = saddr;
2269 rth->rt_genid = rt_genid(net);
2270 rth->rt_flags = flags|RTCF_LOCAL;
2271 rth->rt_type = res.type;
2272 rth->rt_key_tos = tos;
2273 rth->rt_dst = daddr;
2274 rth->rt_src = saddr;
2275 #ifdef CONFIG_IP_ROUTE_CLASSID
2276 rth->dst.tclassid = itag;
2277 #endif
2278 rth->rt_route_iif = dev->ifindex;
2279 rth->rt_iif = dev->ifindex;
2280 rth->rt_oif = 0;
2281 rth->rt_mark = skb->mark;
2282 rth->rt_gateway = daddr;
2283 rth->rt_spec_dst= spec_dst;
2284 rth->rt_peer_genid = 0;
2285 rth->peer = NULL;
2286 rth->fi = NULL;
2287 if (res.type == RTN_UNREACHABLE) {
2288 rth->dst.input= ip_error;
2289 rth->dst.error= -err;
2290 rth->rt_flags &= ~RTCF_LOCAL;
2291 }
2292 hash = rt_hash(daddr, saddr, fl4.flowi4_iif, rt_genid(net));
2293 rth = rt_intern_hash(hash, rth, skb, fl4.flowi4_iif);
2294 err = 0;
2295 if (IS_ERR(rth))
2296 err = PTR_ERR(rth);
2297 goto out;
2298
2299 no_route:
2300 RT_CACHE_STAT_INC(in_no_route);
2301 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
2302 res.type = RTN_UNREACHABLE;
2303 if (err == -ESRCH)
2304 err = -ENETUNREACH;
2305 goto local_input;
2306
2307 /*
2308 * Do not cache martian addresses: they should be logged (RFC1812)
2309 */
2310 martian_destination:
2311 RT_CACHE_STAT_INC(in_martian_dst);
2312 #ifdef CONFIG_IP_ROUTE_VERBOSE
2313 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
2314 printk(KERN_WARNING "martian destination %pI4 from %pI4, dev %s\n",
2315 &daddr, &saddr, dev->name);
2316 #endif
2317
2318 e_hostunreach:
2319 err = -EHOSTUNREACH;
2320 goto out;
2321
2322 e_inval:
2323 err = -EINVAL;
2324 goto out;
2325
2326 e_nobufs:
2327 err = -ENOBUFS;
2328 goto out;
2329
2330 martian_source:
2331 err = -EINVAL;
2332 martian_source_keep_err:
2333 ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
2334 goto out;
2335 }
2336
2337 int ip_route_input_common(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2338 u8 tos, struct net_device *dev, bool noref)
2339 {
2340 struct rtable * rth;
2341 unsigned hash;
2342 int iif = dev->ifindex;
2343 struct net *net;
2344 int res;
2345
2346 net = dev_net(dev);
2347
2348 rcu_read_lock();
2349
2350 if (!rt_caching(net))
2351 goto skip_cache;
2352
2353 tos &= IPTOS_RT_MASK;
2354 hash = rt_hash(daddr, saddr, iif, rt_genid(net));
2355
2356 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2357 rth = rcu_dereference(rth->dst.rt_next)) {
2358 if ((((__force u32)rth->rt_key_dst ^ (__force u32)daddr) |
2359 ((__force u32)rth->rt_key_src ^ (__force u32)saddr) |
2360 (rth->rt_route_iif ^ iif) |
2361 (rth->rt_key_tos ^ tos)) == 0 &&
2362 rth->rt_mark == skb->mark &&
2363 net_eq(dev_net(rth->dst.dev), net) &&
2364 !rt_is_expired(rth)) {
2365 if (noref) {
2366 dst_use_noref(&rth->dst, jiffies);
2367 skb_dst_set_noref(skb, &rth->dst);
2368 } else {
2369 dst_use(&rth->dst, jiffies);
2370 skb_dst_set(skb, &rth->dst);
2371 }
2372 RT_CACHE_STAT_INC(in_hit);
2373 rcu_read_unlock();
2374 return 0;
2375 }
2376 RT_CACHE_STAT_INC(in_hlist_search);
2377 }
2378
2379 skip_cache:
2380 /* Multicast recognition logic is moved from route cache to here.
2381 The problem was that too many Ethernet cards have broken/missing
2382 hardware multicast filters :-( As result the host on multicasting
2383 network acquires a lot of useless route cache entries, sort of
2384 SDR messages from all the world. Now we try to get rid of them.
2385 Really, provided software IP multicast filter is organized
2386 reasonably (at least, hashed), it does not result in a slowdown
2387 comparing with route cache reject entries.
2388 Note, that multicast routers are not affected, because
2389 route cache entry is created eventually.
2390 */
2391 if (ipv4_is_multicast(daddr)) {
2392 struct in_device *in_dev = __in_dev_get_rcu(dev);
2393
2394 if (in_dev) {
2395 int our = ip_check_mc_rcu(in_dev, daddr, saddr,
2396 ip_hdr(skb)->protocol);
2397 if (our
2398 #ifdef CONFIG_IP_MROUTE
2399 ||
2400 (!ipv4_is_local_multicast(daddr) &&
2401 IN_DEV_MFORWARD(in_dev))
2402 #endif
2403 ) {
2404 int res = ip_route_input_mc(skb, daddr, saddr,
2405 tos, dev, our);
2406 rcu_read_unlock();
2407 return res;
2408 }
2409 }
2410 rcu_read_unlock();
2411 return -EINVAL;
2412 }
2413 res = ip_route_input_slow(skb, daddr, saddr, tos, dev);
2414 rcu_read_unlock();
2415 return res;
2416 }
2417 EXPORT_SYMBOL(ip_route_input_common);
2418
2419 /* called with rcu_read_lock() */
2420 static struct rtable *__mkroute_output(const struct fib_result *res,
2421 const struct flowi4 *fl4,
2422 __be32 orig_daddr, __be32 orig_saddr,
2423 int orig_oif, struct net_device *dev_out,
2424 unsigned int flags)
2425 {
2426 struct fib_info *fi = res->fi;
2427 u32 tos = RT_FL_TOS(fl4);
2428 struct in_device *in_dev;
2429 u16 type = res->type;
2430 struct rtable *rth;
2431
2432 if (ipv4_is_loopback(fl4->saddr) && !(dev_out->flags & IFF_LOOPBACK))
2433 return ERR_PTR(-EINVAL);
2434
2435 if (ipv4_is_lbcast(fl4->daddr))
2436 type = RTN_BROADCAST;
2437 else if (ipv4_is_multicast(fl4->daddr))
2438 type = RTN_MULTICAST;
2439 else if (ipv4_is_zeronet(fl4->daddr))
2440 return ERR_PTR(-EINVAL);
2441
2442 if (dev_out->flags & IFF_LOOPBACK)
2443 flags |= RTCF_LOCAL;
2444
2445 in_dev = __in_dev_get_rcu(dev_out);
2446 if (!in_dev)
2447 return ERR_PTR(-EINVAL);
2448
2449 if (type == RTN_BROADCAST) {
2450 flags |= RTCF_BROADCAST | RTCF_LOCAL;
2451 fi = NULL;
2452 } else if (type == RTN_MULTICAST) {
2453 flags |= RTCF_MULTICAST | RTCF_LOCAL;
2454 if (!ip_check_mc_rcu(in_dev, fl4->daddr, fl4->saddr,
2455 fl4->flowi4_proto))
2456 flags &= ~RTCF_LOCAL;
2457 /* If multicast route do not exist use
2458 * default one, but do not gateway in this case.
2459 * Yes, it is hack.
2460 */
2461 if (fi && res->prefixlen < 4)
2462 fi = NULL;
2463 }
2464
2465 rth = rt_dst_alloc(dev_out,
2466 IN_DEV_CONF_GET(in_dev, NOPOLICY),
2467 IN_DEV_CONF_GET(in_dev, NOXFRM));
2468 if (!rth)
2469 return ERR_PTR(-ENOBUFS);
2470
2471 rth->dst.output = ip_output;
2472
2473 rth->rt_key_dst = orig_daddr;
2474 rth->rt_key_src = orig_saddr;
2475 rth->rt_genid = rt_genid(dev_net(dev_out));
2476 rth->rt_flags = flags;
2477 rth->rt_type = type;
2478 rth->rt_key_tos = tos;
2479 rth->rt_dst = fl4->daddr;
2480 rth->rt_src = fl4->saddr;
2481 rth->rt_route_iif = 0;
2482 rth->rt_iif = orig_oif ? : dev_out->ifindex;
2483 rth->rt_oif = orig_oif;
2484 rth->rt_mark = fl4->flowi4_mark;
2485 rth->rt_gateway = fl4->daddr;
2486 rth->rt_spec_dst= fl4->saddr;
2487 rth->rt_peer_genid = 0;
2488 rth->peer = NULL;
2489 rth->fi = NULL;
2490
2491 RT_CACHE_STAT_INC(out_slow_tot);
2492
2493 if (flags & RTCF_LOCAL) {
2494 rth->dst.input = ip_local_deliver;
2495 rth->rt_spec_dst = fl4->daddr;
2496 }
2497 if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2498 rth->rt_spec_dst = fl4->saddr;
2499 if (flags & RTCF_LOCAL &&
2500 !(dev_out->flags & IFF_LOOPBACK)) {
2501 rth->dst.output = ip_mc_output;
2502 RT_CACHE_STAT_INC(out_slow_mc);
2503 }
2504 #ifdef CONFIG_IP_MROUTE
2505 if (type == RTN_MULTICAST) {
2506 if (IN_DEV_MFORWARD(in_dev) &&
2507 !ipv4_is_local_multicast(fl4->daddr)) {
2508 rth->dst.input = ip_mr_input;
2509 rth->dst.output = ip_mc_output;
2510 }
2511 }
2512 #endif
2513 }
2514
2515 rt_set_nexthop(rth, fl4, res, fi, type, 0);
2516
2517 return rth;
2518 }
2519
2520 /*
2521 * Major route resolver routine.
2522 * called with rcu_read_lock();
2523 */
2524
2525 static struct rtable *ip_route_output_slow(struct net *net, struct flowi4 *fl4)
2526 {
2527 struct net_device *dev_out = NULL;
2528 u32 tos = RT_FL_TOS(fl4);
2529 unsigned int flags = 0;
2530 struct fib_result res;
2531 struct rtable *rth;
2532 __be32 orig_daddr;
2533 __be32 orig_saddr;
2534 int orig_oif;
2535
2536 res.fi = NULL;
2537 #ifdef CONFIG_IP_MULTIPLE_TABLES
2538 res.r = NULL;
2539 #endif
2540
2541 orig_daddr = fl4->daddr;
2542 orig_saddr = fl4->saddr;
2543 orig_oif = fl4->flowi4_oif;
2544
2545 fl4->flowi4_iif = net->loopback_dev->ifindex;
2546 fl4->flowi4_tos = tos & IPTOS_RT_MASK;
2547 fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
2548 RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
2549
2550 rcu_read_lock();
2551 if (fl4->saddr) {
2552 rth = ERR_PTR(-EINVAL);
2553 if (ipv4_is_multicast(fl4->saddr) ||
2554 ipv4_is_lbcast(fl4->saddr) ||
2555 ipv4_is_zeronet(fl4->saddr))
2556 goto out;
2557
2558 /* I removed check for oif == dev_out->oif here.
2559 It was wrong for two reasons:
2560 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2561 is assigned to multiple interfaces.
2562 2. Moreover, we are allowed to send packets with saddr
2563 of another iface. --ANK
2564 */
2565
2566 if (fl4->flowi4_oif == 0 &&
2567 (ipv4_is_multicast(fl4->daddr) ||
2568 ipv4_is_lbcast(fl4->daddr))) {
2569 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2570 dev_out = __ip_dev_find(net, fl4->saddr, false);
2571 if (dev_out == NULL)
2572 goto out;
2573
2574 /* Special hack: user can direct multicasts
2575 and limited broadcast via necessary interface
2576 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2577 This hack is not just for fun, it allows
2578 vic,vat and friends to work.
2579 They bind socket to loopback, set ttl to zero
2580 and expect that it will work.
2581 From the viewpoint of routing cache they are broken,
2582 because we are not allowed to build multicast path
2583 with loopback source addr (look, routing cache
2584 cannot know, that ttl is zero, so that packet
2585 will not leave this host and route is valid).
2586 Luckily, this hack is good workaround.
2587 */
2588
2589 fl4->flowi4_oif = dev_out->ifindex;
2590 goto make_route;
2591 }
2592
2593 if (!(fl4->flowi4_flags & FLOWI_FLAG_ANYSRC)) {
2594 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2595 if (!__ip_dev_find(net, fl4->saddr, false))
2596 goto out;
2597 }
2598 }
2599
2600
2601 if (fl4->flowi4_oif) {
2602 dev_out = dev_get_by_index_rcu(net, fl4->flowi4_oif);
2603 rth = ERR_PTR(-ENODEV);
2604 if (dev_out == NULL)
2605 goto out;
2606
2607 /* RACE: Check return value of inet_select_addr instead. */
2608 if (!(dev_out->flags & IFF_UP) || !__in_dev_get_rcu(dev_out)) {
2609 rth = ERR_PTR(-ENETUNREACH);
2610 goto out;
2611 }
2612 if (ipv4_is_local_multicast(fl4->daddr) ||
2613 ipv4_is_lbcast(fl4->daddr)) {
2614 if (!fl4->saddr)
2615 fl4->saddr = inet_select_addr(dev_out, 0,
2616 RT_SCOPE_LINK);
2617 goto make_route;
2618 }
2619 if (fl4->saddr) {
2620 if (ipv4_is_multicast(fl4->daddr))
2621 fl4->saddr = inet_select_addr(dev_out, 0,
2622 fl4->flowi4_scope);
2623 else if (!fl4->daddr)
2624 fl4->saddr = inet_select_addr(dev_out, 0,
2625 RT_SCOPE_HOST);
2626 }
2627 }
2628
2629 if (!fl4->daddr) {
2630 fl4->daddr = fl4->saddr;
2631 if (!fl4->daddr)
2632 fl4->daddr = fl4->saddr = htonl(INADDR_LOOPBACK);
2633 dev_out = net->loopback_dev;
2634 fl4->flowi4_oif = net->loopback_dev->ifindex;
2635 res.type = RTN_LOCAL;
2636 flags |= RTCF_LOCAL;
2637 goto make_route;
2638 }
2639
2640 if (fib_lookup(net, fl4, &res)) {
2641 res.fi = NULL;
2642 if (fl4->flowi4_oif) {
2643 /* Apparently, routing tables are wrong. Assume,
2644 that the destination is on link.
2645
2646 WHY? DW.
2647 Because we are allowed to send to iface
2648 even if it has NO routes and NO assigned
2649 addresses. When oif is specified, routing
2650 tables are looked up with only one purpose:
2651 to catch if destination is gatewayed, rather than
2652 direct. Moreover, if MSG_DONTROUTE is set,
2653 we send packet, ignoring both routing tables
2654 and ifaddr state. --ANK
2655
2656
2657 We could make it even if oif is unknown,
2658 likely IPv6, but we do not.
2659 */
2660
2661 if (fl4->saddr == 0)
2662 fl4->saddr = inet_select_addr(dev_out, 0,
2663 RT_SCOPE_LINK);
2664 res.type = RTN_UNICAST;
2665 goto make_route;
2666 }
2667 rth = ERR_PTR(-ENETUNREACH);
2668 goto out;
2669 }
2670
2671 if (res.type == RTN_LOCAL) {
2672 if (!fl4->saddr) {
2673 if (res.fi->fib_prefsrc)
2674 fl4->saddr = res.fi->fib_prefsrc;
2675 else
2676 fl4->saddr = fl4->daddr;
2677 }
2678 dev_out = net->loopback_dev;
2679 fl4->flowi4_oif = dev_out->ifindex;
2680 res.fi = NULL;
2681 flags |= RTCF_LOCAL;
2682 goto make_route;
2683 }
2684
2685 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2686 if (res.fi->fib_nhs > 1 && fl4->flowi4_oif == 0)
2687 fib_select_multipath(&res);
2688 else
2689 #endif
2690 if (!res.prefixlen &&
2691 res.table->tb_num_default > 1 &&
2692 res.type == RTN_UNICAST && !fl4->flowi4_oif)
2693 fib_select_default(&res);
2694
2695 if (!fl4->saddr)
2696 fl4->saddr = FIB_RES_PREFSRC(net, res);
2697
2698 dev_out = FIB_RES_DEV(res);
2699 fl4->flowi4_oif = dev_out->ifindex;
2700
2701
2702 make_route:
2703 rth = __mkroute_output(&res, fl4, orig_daddr, orig_saddr, orig_oif,
2704 dev_out, flags);
2705 if (!IS_ERR(rth)) {
2706 unsigned int hash;
2707
2708 hash = rt_hash(orig_daddr, orig_saddr, orig_oif,
2709 rt_genid(dev_net(dev_out)));
2710 rth = rt_intern_hash(hash, rth, NULL, orig_oif);
2711 }
2712
2713 out:
2714 rcu_read_unlock();
2715 return rth;
2716 }
2717
2718 struct rtable *__ip_route_output_key(struct net *net, struct flowi4 *flp4)
2719 {
2720 struct rtable *rth;
2721 unsigned int hash;
2722
2723 if (!rt_caching(net))
2724 goto slow_output;
2725
2726 hash = rt_hash(flp4->daddr, flp4->saddr, flp4->flowi4_oif, rt_genid(net));
2727
2728 rcu_read_lock_bh();
2729 for (rth = rcu_dereference_bh(rt_hash_table[hash].chain); rth;
2730 rth = rcu_dereference_bh(rth->dst.rt_next)) {
2731 if (rth->rt_key_dst == flp4->daddr &&
2732 rth->rt_key_src == flp4->saddr &&
2733 rt_is_output_route(rth) &&
2734 rth->rt_oif == flp4->flowi4_oif &&
2735 rth->rt_mark == flp4->flowi4_mark &&
2736 !((rth->rt_key_tos ^ flp4->flowi4_tos) &
2737 (IPTOS_RT_MASK | RTO_ONLINK)) &&
2738 net_eq(dev_net(rth->dst.dev), net) &&
2739 !rt_is_expired(rth)) {
2740 dst_use(&rth->dst, jiffies);
2741 RT_CACHE_STAT_INC(out_hit);
2742 rcu_read_unlock_bh();
2743 if (!flp4->saddr)
2744 flp4->saddr = rth->rt_src;
2745 if (!flp4->daddr)
2746 flp4->daddr = rth->rt_dst;
2747 return rth;
2748 }
2749 RT_CACHE_STAT_INC(out_hlist_search);
2750 }
2751 rcu_read_unlock_bh();
2752
2753 slow_output:
2754 return ip_route_output_slow(net, flp4);
2755 }
2756 EXPORT_SYMBOL_GPL(__ip_route_output_key);
2757
2758 static struct dst_entry *ipv4_blackhole_dst_check(struct dst_entry *dst, u32 cookie)
2759 {
2760 return NULL;
2761 }
2762
2763 static unsigned int ipv4_blackhole_mtu(const struct dst_entry *dst)
2764 {
2765 unsigned int mtu = dst_metric_raw(dst, RTAX_MTU);
2766
2767 return mtu ? : dst->dev->mtu;
2768 }
2769
2770 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2771 {
2772 }
2773
2774 static u32 *ipv4_rt_blackhole_cow_metrics(struct dst_entry *dst,
2775 unsigned long old)
2776 {
2777 return NULL;
2778 }
2779
2780 static struct dst_ops ipv4_dst_blackhole_ops = {
2781 .family = AF_INET,
2782 .protocol = cpu_to_be16(ETH_P_IP),
2783 .destroy = ipv4_dst_destroy,
2784 .check = ipv4_blackhole_dst_check,
2785 .mtu = ipv4_blackhole_mtu,
2786 .default_advmss = ipv4_default_advmss,
2787 .update_pmtu = ipv4_rt_blackhole_update_pmtu,
2788 .cow_metrics = ipv4_rt_blackhole_cow_metrics,
2789 .neigh_lookup = ipv4_neigh_lookup,
2790 };
2791
2792 struct dst_entry *ipv4_blackhole_route(struct net *net, struct dst_entry *dst_orig)
2793 {
2794 struct rtable *rt = dst_alloc(&ipv4_dst_blackhole_ops, NULL, 1, 0, 0);
2795 struct rtable *ort = (struct rtable *) dst_orig;
2796
2797 if (rt) {
2798 struct dst_entry *new = &rt->dst;
2799
2800 new->__use = 1;
2801 new->input = dst_discard;
2802 new->output = dst_discard;
2803 dst_copy_metrics(new, &ort->dst);
2804
2805 new->dev = ort->dst.dev;
2806 if (new->dev)
2807 dev_hold(new->dev);
2808
2809 rt->rt_key_dst = ort->rt_key_dst;
2810 rt->rt_key_src = ort->rt_key_src;
2811 rt->rt_key_tos = ort->rt_key_tos;
2812 rt->rt_route_iif = ort->rt_route_iif;
2813 rt->rt_iif = ort->rt_iif;
2814 rt->rt_oif = ort->rt_oif;
2815 rt->rt_mark = ort->rt_mark;
2816
2817 rt->rt_genid = rt_genid(net);
2818 rt->rt_flags = ort->rt_flags;
2819 rt->rt_type = ort->rt_type;
2820 rt->rt_dst = ort->rt_dst;
2821 rt->rt_src = ort->rt_src;
2822 rt->rt_gateway = ort->rt_gateway;
2823 rt->rt_spec_dst = ort->rt_spec_dst;
2824 rt->peer = ort->peer;
2825 if (rt->peer)
2826 atomic_inc(&rt->peer->refcnt);
2827 rt->fi = ort->fi;
2828 if (rt->fi)
2829 atomic_inc(&rt->fi->fib_clntref);
2830
2831 dst_free(new);
2832 }
2833
2834 dst_release(dst_orig);
2835
2836 return rt ? &rt->dst : ERR_PTR(-ENOMEM);
2837 }
2838
2839 struct rtable *ip_route_output_flow(struct net *net, struct flowi4 *flp4,
2840 struct sock *sk)
2841 {
2842 struct rtable *rt = __ip_route_output_key(net, flp4);
2843
2844 if (IS_ERR(rt))
2845 return rt;
2846
2847 if (flp4->flowi4_proto)
2848 rt = (struct rtable *) xfrm_lookup(net, &rt->dst,
2849 flowi4_to_flowi(flp4),
2850 sk, 0);
2851
2852 return rt;
2853 }
2854 EXPORT_SYMBOL_GPL(ip_route_output_flow);
2855
2856 static int rt_fill_info(struct net *net,
2857 struct sk_buff *skb, u32 pid, u32 seq, int event,
2858 int nowait, unsigned int flags)
2859 {
2860 struct rtable *rt = skb_rtable(skb);
2861 struct rtmsg *r;
2862 struct nlmsghdr *nlh;
2863 unsigned long expires = 0;
2864 const struct inet_peer *peer = rt->peer;
2865 u32 id = 0, ts = 0, tsage = 0, error;
2866
2867 nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2868 if (nlh == NULL)
2869 return -EMSGSIZE;
2870
2871 r = nlmsg_data(nlh);
2872 r->rtm_family = AF_INET;
2873 r->rtm_dst_len = 32;
2874 r->rtm_src_len = 0;
2875 r->rtm_tos = rt->rt_key_tos;
2876 r->rtm_table = RT_TABLE_MAIN;
2877 NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN);
2878 r->rtm_type = rt->rt_type;
2879 r->rtm_scope = RT_SCOPE_UNIVERSE;
2880 r->rtm_protocol = RTPROT_UNSPEC;
2881 r->rtm_flags = (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2882 if (rt->rt_flags & RTCF_NOTIFY)
2883 r->rtm_flags |= RTM_F_NOTIFY;
2884
2885 NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst);
2886
2887 if (rt->rt_key_src) {
2888 r->rtm_src_len = 32;
2889 NLA_PUT_BE32(skb, RTA_SRC, rt->rt_key_src);
2890 }
2891 if (rt->dst.dev)
2892 NLA_PUT_U32(skb, RTA_OIF, rt->dst.dev->ifindex);
2893 #ifdef CONFIG_IP_ROUTE_CLASSID
2894 if (rt->dst.tclassid)
2895 NLA_PUT_U32(skb, RTA_FLOW, rt->dst.tclassid);
2896 #endif
2897 if (rt_is_input_route(rt))
2898 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst);
2899 else if (rt->rt_src != rt->rt_key_src)
2900 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src);
2901
2902 if (rt->rt_dst != rt->rt_gateway)
2903 NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway);
2904
2905 if (rtnetlink_put_metrics(skb, dst_metrics_ptr(&rt->dst)) < 0)
2906 goto nla_put_failure;
2907
2908 if (rt->rt_mark)
2909 NLA_PUT_BE32(skb, RTA_MARK, rt->rt_mark);
2910
2911 error = rt->dst.error;
2912 if (peer) {
2913 inet_peer_refcheck(rt->peer);
2914 id = atomic_read(&peer->ip_id_count) & 0xffff;
2915 if (peer->tcp_ts_stamp) {
2916 ts = peer->tcp_ts;
2917 tsage = get_seconds() - peer->tcp_ts_stamp;
2918 }
2919 expires = ACCESS_ONCE(peer->pmtu_expires);
2920 if (expires) {
2921 if (time_before(jiffies, expires))
2922 expires -= jiffies;
2923 else
2924 expires = 0;
2925 }
2926 }
2927
2928 if (rt_is_input_route(rt)) {
2929 #ifdef CONFIG_IP_MROUTE
2930 __be32 dst = rt->rt_dst;
2931
2932 if (ipv4_is_multicast(dst) && !ipv4_is_local_multicast(dst) &&
2933 IPV4_DEVCONF_ALL(net, MC_FORWARDING)) {
2934 int err = ipmr_get_route(net, skb,
2935 rt->rt_src, rt->rt_dst,
2936 r, nowait);
2937 if (err <= 0) {
2938 if (!nowait) {
2939 if (err == 0)
2940 return 0;
2941 goto nla_put_failure;
2942 } else {
2943 if (err == -EMSGSIZE)
2944 goto nla_put_failure;
2945 error = err;
2946 }
2947 }
2948 } else
2949 #endif
2950 NLA_PUT_U32(skb, RTA_IIF, rt->rt_iif);
2951 }
2952
2953 if (rtnl_put_cacheinfo(skb, &rt->dst, id, ts, tsage,
2954 expires, error) < 0)
2955 goto nla_put_failure;
2956
2957 return nlmsg_end(skb, nlh);
2958
2959 nla_put_failure:
2960 nlmsg_cancel(skb, nlh);
2961 return -EMSGSIZE;
2962 }
2963
2964 static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2965 {
2966 struct net *net = sock_net(in_skb->sk);
2967 struct rtmsg *rtm;
2968 struct nlattr *tb[RTA_MAX+1];
2969 struct rtable *rt = NULL;
2970 __be32 dst = 0;
2971 __be32 src = 0;
2972 u32 iif;
2973 int err;
2974 int mark;
2975 struct sk_buff *skb;
2976
2977 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2978 if (err < 0)
2979 goto errout;
2980
2981 rtm = nlmsg_data(nlh);
2982
2983 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2984 if (skb == NULL) {
2985 err = -ENOBUFS;
2986 goto errout;
2987 }
2988
2989 /* Reserve room for dummy headers, this skb can pass
2990 through good chunk of routing engine.
2991 */
2992 skb_reset_mac_header(skb);
2993 skb_reset_network_header(skb);
2994
2995 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2996 ip_hdr(skb)->protocol = IPPROTO_ICMP;
2997 skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2998
2999 src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
3000 dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
3001 iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
3002 mark = tb[RTA_MARK] ? nla_get_u32(tb[RTA_MARK]) : 0;
3003
3004 if (iif) {
3005 struct net_device *dev;
3006
3007 dev = __dev_get_by_index(net, iif);
3008 if (dev == NULL) {
3009 err = -ENODEV;
3010 goto errout_free;
3011 }
3012
3013 skb->protocol = htons(ETH_P_IP);
3014 skb->dev = dev;
3015 skb->mark = mark;
3016 local_bh_disable();
3017 err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
3018 local_bh_enable();
3019
3020 rt = skb_rtable(skb);
3021 if (err == 0 && rt->dst.error)
3022 err = -rt->dst.error;
3023 } else {
3024 struct flowi4 fl4 = {
3025 .daddr = dst,
3026 .saddr = src,
3027 .flowi4_tos = rtm->rtm_tos,
3028 .flowi4_oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
3029 .flowi4_mark = mark,
3030 };
3031 rt = ip_route_output_key(net, &fl4);
3032
3033 err = 0;
3034 if (IS_ERR(rt))
3035 err = PTR_ERR(rt);
3036 }
3037
3038 if (err)
3039 goto errout_free;
3040
3041 skb_dst_set(skb, &rt->dst);
3042 if (rtm->rtm_flags & RTM_F_NOTIFY)
3043 rt->rt_flags |= RTCF_NOTIFY;
3044
3045 err = rt_fill_info(net, skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
3046 RTM_NEWROUTE, 0, 0);
3047 if (err <= 0)
3048 goto errout_free;
3049
3050 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid);
3051 errout:
3052 return err;
3053
3054 errout_free:
3055 kfree_skb(skb);
3056 goto errout;
3057 }
3058
3059 int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb)
3060 {
3061 struct rtable *rt;
3062 int h, s_h;
3063 int idx, s_idx;
3064 struct net *net;
3065
3066 net = sock_net(skb->sk);
3067
3068 s_h = cb->args[0];
3069 if (s_h < 0)
3070 s_h = 0;
3071 s_idx = idx = cb->args[1];
3072 for (h = s_h; h <= rt_hash_mask; h++, s_idx = 0) {
3073 if (!rt_hash_table[h].chain)
3074 continue;
3075 rcu_read_lock_bh();
3076 for (rt = rcu_dereference_bh(rt_hash_table[h].chain), idx = 0; rt;
3077 rt = rcu_dereference_bh(rt->dst.rt_next), idx++) {
3078 if (!net_eq(dev_net(rt->dst.dev), net) || idx < s_idx)
3079 continue;
3080 if (rt_is_expired(rt))
3081 continue;
3082 skb_dst_set_noref(skb, &rt->dst);
3083 if (rt_fill_info(net, skb, NETLINK_CB(cb->skb).pid,
3084 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
3085 1, NLM_F_MULTI) <= 0) {
3086 skb_dst_drop(skb);
3087 rcu_read_unlock_bh();
3088 goto done;
3089 }
3090 skb_dst_drop(skb);
3091 }
3092 rcu_read_unlock_bh();
3093 }
3094
3095 done:
3096 cb->args[0] = h;
3097 cb->args[1] = idx;
3098 return skb->len;
3099 }
3100
3101 void ip_rt_multicast_event(struct in_device *in_dev)
3102 {
3103 rt_cache_flush(dev_net(in_dev->dev), 0);
3104 }
3105
3106 #ifdef CONFIG_SYSCTL
3107 static int ipv4_sysctl_rtcache_flush(ctl_table *__ctl, int write,
3108 void __user *buffer,
3109 size_t *lenp, loff_t *ppos)
3110 {
3111 if (write) {
3112 int flush_delay;
3113 ctl_table ctl;
3114 struct net *net;
3115
3116 memcpy(&ctl, __ctl, sizeof(ctl));
3117 ctl.data = &flush_delay;
3118 proc_dointvec(&ctl, write, buffer, lenp, ppos);
3119
3120 net = (struct net *)__ctl->extra1;
3121 rt_cache_flush(net, flush_delay);
3122 return 0;
3123 }
3124
3125 return -EINVAL;
3126 }
3127
3128 static ctl_table ipv4_route_table[] = {
3129 {
3130 .procname = "gc_thresh",
3131 .data = &ipv4_dst_ops.gc_thresh,
3132 .maxlen = sizeof(int),
3133 .mode = 0644,
3134 .proc_handler = proc_dointvec,
3135 },
3136 {
3137 .procname = "max_size",
3138 .data = &ip_rt_max_size,
3139 .maxlen = sizeof(int),
3140 .mode = 0644,
3141 .proc_handler = proc_dointvec,
3142 },
3143 {
3144 /* Deprecated. Use gc_min_interval_ms */
3145
3146 .procname = "gc_min_interval",
3147 .data = &ip_rt_gc_min_interval,
3148 .maxlen = sizeof(int),
3149 .mode = 0644,
3150 .proc_handler = proc_dointvec_jiffies,
3151 },
3152 {
3153 .procname = "gc_min_interval_ms",
3154 .data = &ip_rt_gc_min_interval,
3155 .maxlen = sizeof(int),
3156 .mode = 0644,
3157 .proc_handler = proc_dointvec_ms_jiffies,
3158 },
3159 {
3160 .procname = "gc_timeout",
3161 .data = &ip_rt_gc_timeout,
3162 .maxlen = sizeof(int),
3163 .mode = 0644,
3164 .proc_handler = proc_dointvec_jiffies,
3165 },
3166 {
3167 .procname = "redirect_load",
3168 .data = &ip_rt_redirect_load,
3169 .maxlen = sizeof(int),
3170 .mode = 0644,
3171 .proc_handler = proc_dointvec,
3172 },
3173 {
3174 .procname = "redirect_number",
3175 .data = &ip_rt_redirect_number,
3176 .maxlen = sizeof(int),
3177 .mode = 0644,
3178 .proc_handler = proc_dointvec,
3179 },
3180 {
3181 .procname = "redirect_silence",
3182 .data = &ip_rt_redirect_silence,
3183 .maxlen = sizeof(int),
3184 .mode = 0644,
3185 .proc_handler = proc_dointvec,
3186 },
3187 {
3188 .procname = "error_cost",
3189 .data = &ip_rt_error_cost,
3190 .maxlen = sizeof(int),
3191 .mode = 0644,
3192 .proc_handler = proc_dointvec,
3193 },
3194 {
3195 .procname = "error_burst",
3196 .data = &ip_rt_error_burst,
3197 .maxlen = sizeof(int),
3198 .mode = 0644,
3199 .proc_handler = proc_dointvec,
3200 },
3201 {
3202 .procname = "gc_elasticity",
3203 .data = &ip_rt_gc_elasticity,
3204 .maxlen = sizeof(int),
3205 .mode = 0644,
3206 .proc_handler = proc_dointvec,
3207 },
3208 {
3209 .procname = "mtu_expires",
3210 .data = &ip_rt_mtu_expires,
3211 .maxlen = sizeof(int),
3212 .mode = 0644,
3213 .proc_handler = proc_dointvec_jiffies,
3214 },
3215 {
3216 .procname = "min_pmtu",
3217 .data = &ip_rt_min_pmtu,
3218 .maxlen = sizeof(int),
3219 .mode = 0644,
3220 .proc_handler = proc_dointvec,
3221 },
3222 {
3223 .procname = "min_adv_mss",
3224 .data = &ip_rt_min_advmss,
3225 .maxlen = sizeof(int),
3226 .mode = 0644,
3227 .proc_handler = proc_dointvec,
3228 },
3229 { }
3230 };
3231
3232 static struct ctl_table empty[1];
3233
3234 static struct ctl_table ipv4_skeleton[] =
3235 {
3236 { .procname = "route",
3237 .mode = 0555, .child = ipv4_route_table},
3238 { .procname = "neigh",
3239 .mode = 0555, .child = empty},
3240 { }
3241 };
3242
3243 static __net_initdata struct ctl_path ipv4_path[] = {
3244 { .procname = "net", },
3245 { .procname = "ipv4", },
3246 { },
3247 };
3248
3249 static struct ctl_table ipv4_route_flush_table[] = {
3250 {
3251 .procname = "flush",
3252 .maxlen = sizeof(int),
3253 .mode = 0200,
3254 .proc_handler = ipv4_sysctl_rtcache_flush,
3255 },
3256 { },
3257 };
3258
3259 static __net_initdata struct ctl_path ipv4_route_path[] = {
3260 { .procname = "net", },
3261 { .procname = "ipv4", },
3262 { .procname = "route", },
3263 { },
3264 };
3265
3266 static __net_init int sysctl_route_net_init(struct net *net)
3267 {
3268 struct ctl_table *tbl;
3269
3270 tbl = ipv4_route_flush_table;
3271 if (!net_eq(net, &init_net)) {
3272 tbl = kmemdup(tbl, sizeof(ipv4_route_flush_table), GFP_KERNEL);
3273 if (tbl == NULL)
3274 goto err_dup;
3275 }
3276 tbl[0].extra1 = net;
3277
3278 net->ipv4.route_hdr =
3279 register_net_sysctl_table(net, ipv4_route_path, tbl);
3280 if (net->ipv4.route_hdr == NULL)
3281 goto err_reg;
3282 return 0;
3283
3284 err_reg:
3285 if (tbl != ipv4_route_flush_table)
3286 kfree(tbl);
3287 err_dup:
3288 return -ENOMEM;
3289 }
3290
3291 static __net_exit void sysctl_route_net_exit(struct net *net)
3292 {
3293 struct ctl_table *tbl;
3294
3295 tbl = net->ipv4.route_hdr->ctl_table_arg;
3296 unregister_net_sysctl_table(net->ipv4.route_hdr);
3297 BUG_ON(tbl == ipv4_route_flush_table);
3298 kfree(tbl);
3299 }
3300
3301 static __net_initdata struct pernet_operations sysctl_route_ops = {
3302 .init = sysctl_route_net_init,
3303 .exit = sysctl_route_net_exit,
3304 };
3305 #endif
3306
3307 static __net_init int rt_genid_init(struct net *net)
3308 {
3309 get_random_bytes(&net->ipv4.rt_genid,
3310 sizeof(net->ipv4.rt_genid));
3311 get_random_bytes(&net->ipv4.dev_addr_genid,
3312 sizeof(net->ipv4.dev_addr_genid));
3313 return 0;
3314 }
3315
3316 static __net_initdata struct pernet_operations rt_genid_ops = {
3317 .init = rt_genid_init,
3318 };
3319
3320
3321 #ifdef CONFIG_IP_ROUTE_CLASSID
3322 struct ip_rt_acct __percpu *ip_rt_acct __read_mostly;
3323 #endif /* CONFIG_IP_ROUTE_CLASSID */
3324
3325 static __initdata unsigned long rhash_entries;
3326 static int __init set_rhash_entries(char *str)
3327 {
3328 if (!str)
3329 return 0;
3330 rhash_entries = simple_strtoul(str, &str, 0);
3331 return 1;
3332 }
3333 __setup("rhash_entries=", set_rhash_entries);
3334
3335 int __init ip_rt_init(void)
3336 {
3337 int rc = 0;
3338
3339 #ifdef CONFIG_IP_ROUTE_CLASSID
3340 ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct), __alignof__(struct ip_rt_acct));
3341 if (!ip_rt_acct)
3342 panic("IP: failed to allocate ip_rt_acct\n");
3343 #endif
3344
3345 ipv4_dst_ops.kmem_cachep =
3346 kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
3347 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3348
3349 ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
3350
3351 if (dst_entries_init(&ipv4_dst_ops) < 0)
3352 panic("IP: failed to allocate ipv4_dst_ops counter\n");
3353
3354 if (dst_entries_init(&ipv4_dst_blackhole_ops) < 0)
3355 panic("IP: failed to allocate ipv4_dst_blackhole_ops counter\n");
3356
3357 rt_hash_table = (struct rt_hash_bucket *)
3358 alloc_large_system_hash("IP route cache",
3359 sizeof(struct rt_hash_bucket),
3360 rhash_entries,
3361 (totalram_pages >= 128 * 1024) ?
3362 15 : 17,
3363 0,
3364 &rt_hash_log,
3365 &rt_hash_mask,
3366 rhash_entries ? 0 : 512 * 1024);
3367 memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3368 rt_hash_lock_init();
3369
3370 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3371 ip_rt_max_size = (rt_hash_mask + 1) * 16;
3372
3373 devinet_init();
3374 ip_fib_init();
3375
3376 if (ip_rt_proc_init())
3377 printk(KERN_ERR "Unable to create route proc files\n");
3378 #ifdef CONFIG_XFRM
3379 xfrm_init();
3380 xfrm4_init(ip_rt_max_size);
3381 #endif
3382 rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL, NULL);
3383
3384 #ifdef CONFIG_SYSCTL
3385 register_pernet_subsys(&sysctl_route_ops);
3386 #endif
3387 register_pernet_subsys(&rt_genid_ops);
3388 return rc;
3389 }
3390
3391 #ifdef CONFIG_SYSCTL
3392 /*
3393 * We really need to sanitize the damn ipv4 init order, then all
3394 * this nonsense will go away.
3395 */
3396 void __init ip_static_sysctl_init(void)
3397 {
3398 register_sysctl_paths(ipv4_path, ipv4_skeleton);
3399 }
3400 #endif
This page took 0.0942229999999999 seconds and 4 git commands to generate.