[NETNS]: Process ip_rt_redirect in the correct namespace.
[deliverable/linux.git] / net / ipv4 / route.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * ROUTE - implementation of the IP router.
7 *
8 * Version: $Id: route.c,v 1.103 2002/01/12 07:44:09 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Alan Cox, <gw4pts@gw4pts.ampr.org>
13 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
14 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
15 *
16 * Fixes:
17 * Alan Cox : Verify area fixes.
18 * Alan Cox : cli() protects routing changes
19 * Rui Oliveira : ICMP routing table updates
20 * (rco@di.uminho.pt) Routing table insertion and update
21 * Linus Torvalds : Rewrote bits to be sensible
22 * Alan Cox : Added BSD route gw semantics
23 * Alan Cox : Super /proc >4K
24 * Alan Cox : MTU in route table
25 * Alan Cox : MSS actually. Also added the window
26 * clamper.
27 * Sam Lantinga : Fixed route matching in rt_del()
28 * Alan Cox : Routing cache support.
29 * Alan Cox : Removed compatibility cruft.
30 * Alan Cox : RTF_REJECT support.
31 * Alan Cox : TCP irtt support.
32 * Jonathan Naylor : Added Metric support.
33 * Miquel van Smoorenburg : BSD API fixes.
34 * Miquel van Smoorenburg : Metrics.
35 * Alan Cox : Use __u32 properly
36 * Alan Cox : Aligned routing errors more closely with BSD
37 * our system is still very different.
38 * Alan Cox : Faster /proc handling
39 * Alexey Kuznetsov : Massive rework to support tree based routing,
40 * routing caches and better behaviour.
41 *
42 * Olaf Erb : irtt wasn't being copied right.
43 * Bjorn Ekwall : Kerneld route support.
44 * Alan Cox : Multicast fixed (I hope)
45 * Pavel Krauz : Limited broadcast fixed
46 * Mike McLagan : Routing by source
47 * Alexey Kuznetsov : End of old history. Split to fib.c and
48 * route.c and rewritten from scratch.
49 * Andi Kleen : Load-limit warning messages.
50 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
51 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
52 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
53 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
54 * Marc Boucher : routing by fwmark
55 * Robert Olsson : Added rt_cache statistics
56 * Arnaldo C. Melo : Convert proc stuff to seq_file
57 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
58 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
59 * Ilia Sotnikov : Removed TOS from hash calculations
60 *
61 * This program is free software; you can redistribute it and/or
62 * modify it under the terms of the GNU General Public License
63 * as published by the Free Software Foundation; either version
64 * 2 of the License, or (at your option) any later version.
65 */
66
67 #include <linux/module.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <linux/bitops.h>
71 #include <linux/types.h>
72 #include <linux/kernel.h>
73 #include <linux/mm.h>
74 #include <linux/bootmem.h>
75 #include <linux/string.h>
76 #include <linux/socket.h>
77 #include <linux/sockios.h>
78 #include <linux/errno.h>
79 #include <linux/in.h>
80 #include <linux/inet.h>
81 #include <linux/netdevice.h>
82 #include <linux/proc_fs.h>
83 #include <linux/init.h>
84 #include <linux/workqueue.h>
85 #include <linux/skbuff.h>
86 #include <linux/inetdevice.h>
87 #include <linux/igmp.h>
88 #include <linux/pkt_sched.h>
89 #include <linux/mroute.h>
90 #include <linux/netfilter_ipv4.h>
91 #include <linux/random.h>
92 #include <linux/jhash.h>
93 #include <linux/rcupdate.h>
94 #include <linux/times.h>
95 #include <net/dst.h>
96 #include <net/net_namespace.h>
97 #include <net/protocol.h>
98 #include <net/ip.h>
99 #include <net/route.h>
100 #include <net/inetpeer.h>
101 #include <net/sock.h>
102 #include <net/ip_fib.h>
103 #include <net/arp.h>
104 #include <net/tcp.h>
105 #include <net/icmp.h>
106 #include <net/xfrm.h>
107 #include <net/netevent.h>
108 #include <net/rtnetlink.h>
109 #ifdef CONFIG_SYSCTL
110 #include <linux/sysctl.h>
111 #endif
112
113 #define RT_FL_TOS(oldflp) \
114 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
115
116 #define IP_MAX_MTU 0xFFF0
117
118 #define RT_GC_TIMEOUT (300*HZ)
119
120 static int ip_rt_max_size;
121 static int ip_rt_gc_timeout = RT_GC_TIMEOUT;
122 static int ip_rt_gc_interval = 60 * HZ;
123 static int ip_rt_gc_min_interval = HZ / 2;
124 static int ip_rt_redirect_number = 9;
125 static int ip_rt_redirect_load = HZ / 50;
126 static int ip_rt_redirect_silence = ((HZ / 50) << (9 + 1));
127 static int ip_rt_error_cost = HZ;
128 static int ip_rt_error_burst = 5 * HZ;
129 static int ip_rt_gc_elasticity = 8;
130 static int ip_rt_mtu_expires = 10 * 60 * HZ;
131 static int ip_rt_min_pmtu = 512 + 20 + 20;
132 static int ip_rt_min_advmss = 256;
133 static int ip_rt_secret_interval = 10 * 60 * HZ;
134
135 #define RTprint(a...) printk(KERN_DEBUG a)
136
137 static void rt_worker_func(struct work_struct *work);
138 static DECLARE_DELAYED_WORK(expires_work, rt_worker_func);
139 static struct timer_list rt_secret_timer;
140
141 /*
142 * Interface to generic destination cache.
143 */
144
145 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
146 static void ipv4_dst_destroy(struct dst_entry *dst);
147 static void ipv4_dst_ifdown(struct dst_entry *dst,
148 struct net_device *dev, int how);
149 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
150 static void ipv4_link_failure(struct sk_buff *skb);
151 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
152 static int rt_garbage_collect(struct dst_ops *ops);
153
154
155 static struct dst_ops ipv4_dst_ops = {
156 .family = AF_INET,
157 .protocol = __constant_htons(ETH_P_IP),
158 .gc = rt_garbage_collect,
159 .check = ipv4_dst_check,
160 .destroy = ipv4_dst_destroy,
161 .ifdown = ipv4_dst_ifdown,
162 .negative_advice = ipv4_negative_advice,
163 .link_failure = ipv4_link_failure,
164 .update_pmtu = ip_rt_update_pmtu,
165 .local_out = ip_local_out,
166 .entry_size = sizeof(struct rtable),
167 .entries = ATOMIC_INIT(0),
168 };
169
170 #define ECN_OR_COST(class) TC_PRIO_##class
171
172 const __u8 ip_tos2prio[16] = {
173 TC_PRIO_BESTEFFORT,
174 ECN_OR_COST(FILLER),
175 TC_PRIO_BESTEFFORT,
176 ECN_OR_COST(BESTEFFORT),
177 TC_PRIO_BULK,
178 ECN_OR_COST(BULK),
179 TC_PRIO_BULK,
180 ECN_OR_COST(BULK),
181 TC_PRIO_INTERACTIVE,
182 ECN_OR_COST(INTERACTIVE),
183 TC_PRIO_INTERACTIVE,
184 ECN_OR_COST(INTERACTIVE),
185 TC_PRIO_INTERACTIVE_BULK,
186 ECN_OR_COST(INTERACTIVE_BULK),
187 TC_PRIO_INTERACTIVE_BULK,
188 ECN_OR_COST(INTERACTIVE_BULK)
189 };
190
191
192 /*
193 * Route cache.
194 */
195
196 /* The locking scheme is rather straight forward:
197 *
198 * 1) Read-Copy Update protects the buckets of the central route hash.
199 * 2) Only writers remove entries, and they hold the lock
200 * as they look at rtable reference counts.
201 * 3) Only readers acquire references to rtable entries,
202 * they do so with atomic increments and with the
203 * lock held.
204 */
205
206 struct rt_hash_bucket {
207 struct rtable *chain;
208 };
209 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
210 defined(CONFIG_PROVE_LOCKING)
211 /*
212 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
213 * The size of this table is a power of two and depends on the number of CPUS.
214 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
215 */
216 #ifdef CONFIG_LOCKDEP
217 # define RT_HASH_LOCK_SZ 256
218 #else
219 # if NR_CPUS >= 32
220 # define RT_HASH_LOCK_SZ 4096
221 # elif NR_CPUS >= 16
222 # define RT_HASH_LOCK_SZ 2048
223 # elif NR_CPUS >= 8
224 # define RT_HASH_LOCK_SZ 1024
225 # elif NR_CPUS >= 4
226 # define RT_HASH_LOCK_SZ 512
227 # else
228 # define RT_HASH_LOCK_SZ 256
229 # endif
230 #endif
231
232 static spinlock_t *rt_hash_locks;
233 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
234
235 static __init void rt_hash_lock_init(void)
236 {
237 int i;
238
239 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ,
240 GFP_KERNEL);
241 if (!rt_hash_locks)
242 panic("IP: failed to allocate rt_hash_locks\n");
243
244 for (i = 0; i < RT_HASH_LOCK_SZ; i++)
245 spin_lock_init(&rt_hash_locks[i]);
246 }
247 #else
248 # define rt_hash_lock_addr(slot) NULL
249
250 static inline void rt_hash_lock_init(void)
251 {
252 }
253 #endif
254
255 static struct rt_hash_bucket *rt_hash_table;
256 static unsigned rt_hash_mask;
257 static unsigned int rt_hash_log;
258 static atomic_t rt_genid;
259
260 static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
261 #define RT_CACHE_STAT_INC(field) \
262 (__raw_get_cpu_var(rt_cache_stat).field++)
263
264 static unsigned int rt_hash_code(u32 daddr, u32 saddr)
265 {
266 return jhash_2words(daddr, saddr, atomic_read(&rt_genid))
267 & rt_hash_mask;
268 }
269
270 #define rt_hash(daddr, saddr, idx) \
271 rt_hash_code((__force u32)(__be32)(daddr),\
272 (__force u32)(__be32)(saddr) ^ ((idx) << 5))
273
274 #ifdef CONFIG_PROC_FS
275 struct rt_cache_iter_state {
276 int bucket;
277 int genid;
278 };
279
280 static struct rtable *rt_cache_get_first(struct rt_cache_iter_state *st)
281 {
282 struct rtable *r = NULL;
283
284 for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
285 rcu_read_lock_bh();
286 r = rcu_dereference(rt_hash_table[st->bucket].chain);
287 while (r) {
288 if (r->rt_genid == st->genid)
289 return r;
290 r = rcu_dereference(r->u.dst.rt_next);
291 }
292 rcu_read_unlock_bh();
293 }
294 return r;
295 }
296
297 static struct rtable *rt_cache_get_next(struct rt_cache_iter_state *st, struct rtable *r)
298 {
299 r = r->u.dst.rt_next;
300 while (!r) {
301 rcu_read_unlock_bh();
302 if (--st->bucket < 0)
303 break;
304 rcu_read_lock_bh();
305 r = rt_hash_table[st->bucket].chain;
306 }
307 return rcu_dereference(r);
308 }
309
310 static struct rtable *rt_cache_get_idx(struct rt_cache_iter_state *st, loff_t pos)
311 {
312 struct rtable *r = rt_cache_get_first(st);
313
314 if (r)
315 while (pos && (r = rt_cache_get_next(st, r))) {
316 if (r->rt_genid != st->genid)
317 continue;
318 --pos;
319 }
320 return pos ? NULL : r;
321 }
322
323 static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
324 {
325 struct rt_cache_iter_state *st = seq->private;
326
327 if (*pos)
328 return rt_cache_get_idx(st, *pos - 1);
329 st->genid = atomic_read(&rt_genid);
330 return SEQ_START_TOKEN;
331 }
332
333 static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
334 {
335 struct rtable *r;
336 struct rt_cache_iter_state *st = seq->private;
337
338 if (v == SEQ_START_TOKEN)
339 r = rt_cache_get_first(st);
340 else
341 r = rt_cache_get_next(st, v);
342 ++*pos;
343 return r;
344 }
345
346 static void rt_cache_seq_stop(struct seq_file *seq, void *v)
347 {
348 if (v && v != SEQ_START_TOKEN)
349 rcu_read_unlock_bh();
350 }
351
352 static int rt_cache_seq_show(struct seq_file *seq, void *v)
353 {
354 if (v == SEQ_START_TOKEN)
355 seq_printf(seq, "%-127s\n",
356 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
357 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
358 "HHUptod\tSpecDst");
359 else {
360 struct rtable *r = v;
361 char temp[256];
362
363 sprintf(temp, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
364 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X",
365 r->u.dst.dev ? r->u.dst.dev->name : "*",
366 (unsigned long)r->rt_dst, (unsigned long)r->rt_gateway,
367 r->rt_flags, atomic_read(&r->u.dst.__refcnt),
368 r->u.dst.__use, 0, (unsigned long)r->rt_src,
369 (dst_metric(&r->u.dst, RTAX_ADVMSS) ?
370 (int)dst_metric(&r->u.dst, RTAX_ADVMSS) + 40 : 0),
371 dst_metric(&r->u.dst, RTAX_WINDOW),
372 (int)((dst_metric(&r->u.dst, RTAX_RTT) >> 3) +
373 dst_metric(&r->u.dst, RTAX_RTTVAR)),
374 r->fl.fl4_tos,
375 r->u.dst.hh ? atomic_read(&r->u.dst.hh->hh_refcnt) : -1,
376 r->u.dst.hh ? (r->u.dst.hh->hh_output ==
377 dev_queue_xmit) : 0,
378 r->rt_spec_dst);
379 seq_printf(seq, "%-127s\n", temp);
380 }
381 return 0;
382 }
383
384 static const struct seq_operations rt_cache_seq_ops = {
385 .start = rt_cache_seq_start,
386 .next = rt_cache_seq_next,
387 .stop = rt_cache_seq_stop,
388 .show = rt_cache_seq_show,
389 };
390
391 static int rt_cache_seq_open(struct inode *inode, struct file *file)
392 {
393 return seq_open_private(file, &rt_cache_seq_ops,
394 sizeof(struct rt_cache_iter_state));
395 }
396
397 static const struct file_operations rt_cache_seq_fops = {
398 .owner = THIS_MODULE,
399 .open = rt_cache_seq_open,
400 .read = seq_read,
401 .llseek = seq_lseek,
402 .release = seq_release_private,
403 };
404
405
406 static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
407 {
408 int cpu;
409
410 if (*pos == 0)
411 return SEQ_START_TOKEN;
412
413 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
414 if (!cpu_possible(cpu))
415 continue;
416 *pos = cpu+1;
417 return &per_cpu(rt_cache_stat, cpu);
418 }
419 return NULL;
420 }
421
422 static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
423 {
424 int cpu;
425
426 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
427 if (!cpu_possible(cpu))
428 continue;
429 *pos = cpu+1;
430 return &per_cpu(rt_cache_stat, cpu);
431 }
432 return NULL;
433
434 }
435
436 static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
437 {
438
439 }
440
441 static int rt_cpu_seq_show(struct seq_file *seq, void *v)
442 {
443 struct rt_cache_stat *st = v;
444
445 if (v == SEQ_START_TOKEN) {
446 seq_printf(seq, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
447 return 0;
448 }
449
450 seq_printf(seq,"%08x %08x %08x %08x %08x %08x %08x %08x "
451 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
452 atomic_read(&ipv4_dst_ops.entries),
453 st->in_hit,
454 st->in_slow_tot,
455 st->in_slow_mc,
456 st->in_no_route,
457 st->in_brd,
458 st->in_martian_dst,
459 st->in_martian_src,
460
461 st->out_hit,
462 st->out_slow_tot,
463 st->out_slow_mc,
464
465 st->gc_total,
466 st->gc_ignored,
467 st->gc_goal_miss,
468 st->gc_dst_overflow,
469 st->in_hlist_search,
470 st->out_hlist_search
471 );
472 return 0;
473 }
474
475 static const struct seq_operations rt_cpu_seq_ops = {
476 .start = rt_cpu_seq_start,
477 .next = rt_cpu_seq_next,
478 .stop = rt_cpu_seq_stop,
479 .show = rt_cpu_seq_show,
480 };
481
482
483 static int rt_cpu_seq_open(struct inode *inode, struct file *file)
484 {
485 return seq_open(file, &rt_cpu_seq_ops);
486 }
487
488 static const struct file_operations rt_cpu_seq_fops = {
489 .owner = THIS_MODULE,
490 .open = rt_cpu_seq_open,
491 .read = seq_read,
492 .llseek = seq_lseek,
493 .release = seq_release,
494 };
495
496 #ifdef CONFIG_NET_CLS_ROUTE
497 static int ip_rt_acct_read(char *buffer, char **start, off_t offset,
498 int length, int *eof, void *data)
499 {
500 unsigned int i;
501
502 if ((offset & 3) || (length & 3))
503 return -EIO;
504
505 if (offset >= sizeof(struct ip_rt_acct) * 256) {
506 *eof = 1;
507 return 0;
508 }
509
510 if (offset + length >= sizeof(struct ip_rt_acct) * 256) {
511 length = sizeof(struct ip_rt_acct) * 256 - offset;
512 *eof = 1;
513 }
514
515 offset /= sizeof(u32);
516
517 if (length > 0) {
518 u32 *dst = (u32 *) buffer;
519
520 *start = buffer;
521 memset(dst, 0, length);
522
523 for_each_possible_cpu(i) {
524 unsigned int j;
525 u32 *src;
526
527 src = ((u32 *) per_cpu_ptr(ip_rt_acct, i)) + offset;
528 for (j = 0; j < length/4; j++)
529 dst[j] += src[j];
530 }
531 }
532 return length;
533 }
534 #endif
535
536 static __init int ip_rt_proc_init(struct net *net)
537 {
538 struct proc_dir_entry *pde;
539
540 pde = proc_net_fops_create(net, "rt_cache", S_IRUGO,
541 &rt_cache_seq_fops);
542 if (!pde)
543 goto err1;
544
545 pde = proc_create("rt_cache", S_IRUGO,
546 net->proc_net_stat, &rt_cpu_seq_fops);
547 if (!pde)
548 goto err2;
549
550 #ifdef CONFIG_NET_CLS_ROUTE
551 pde = create_proc_read_entry("rt_acct", 0, net->proc_net,
552 ip_rt_acct_read, NULL);
553 if (!pde)
554 goto err3;
555 #endif
556 return 0;
557
558 #ifdef CONFIG_NET_CLS_ROUTE
559 err3:
560 remove_proc_entry("rt_cache", net->proc_net_stat);
561 #endif
562 err2:
563 remove_proc_entry("rt_cache", net->proc_net);
564 err1:
565 return -ENOMEM;
566 }
567 #else
568 static inline int ip_rt_proc_init(struct net *net)
569 {
570 return 0;
571 }
572 #endif /* CONFIG_PROC_FS */
573
574 static __inline__ void rt_free(struct rtable *rt)
575 {
576 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
577 }
578
579 static __inline__ void rt_drop(struct rtable *rt)
580 {
581 ip_rt_put(rt);
582 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
583 }
584
585 static __inline__ int rt_fast_clean(struct rtable *rth)
586 {
587 /* Kill broadcast/multicast entries very aggresively, if they
588 collide in hash table with more useful entries */
589 return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
590 rth->fl.iif && rth->u.dst.rt_next;
591 }
592
593 static __inline__ int rt_valuable(struct rtable *rth)
594 {
595 return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
596 rth->u.dst.expires;
597 }
598
599 static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
600 {
601 unsigned long age;
602 int ret = 0;
603
604 if (atomic_read(&rth->u.dst.__refcnt))
605 goto out;
606
607 ret = 1;
608 if (rth->u.dst.expires &&
609 time_after_eq(jiffies, rth->u.dst.expires))
610 goto out;
611
612 age = jiffies - rth->u.dst.lastuse;
613 ret = 0;
614 if ((age <= tmo1 && !rt_fast_clean(rth)) ||
615 (age <= tmo2 && rt_valuable(rth)))
616 goto out;
617 ret = 1;
618 out: return ret;
619 }
620
621 /* Bits of score are:
622 * 31: very valuable
623 * 30: not quite useless
624 * 29..0: usage counter
625 */
626 static inline u32 rt_score(struct rtable *rt)
627 {
628 u32 score = jiffies - rt->u.dst.lastuse;
629
630 score = ~score & ~(3<<30);
631
632 if (rt_valuable(rt))
633 score |= (1<<31);
634
635 if (!rt->fl.iif ||
636 !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
637 score |= (1<<30);
638
639 return score;
640 }
641
642 static inline int compare_keys(struct flowi *fl1, struct flowi *fl2)
643 {
644 return ((__force u32)((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
645 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr)) |
646 (fl1->mark ^ fl2->mark) |
647 (*(u16 *)&fl1->nl_u.ip4_u.tos ^
648 *(u16 *)&fl2->nl_u.ip4_u.tos) |
649 (fl1->oif ^ fl2->oif) |
650 (fl1->iif ^ fl2->iif)) == 0;
651 }
652
653 static inline int compare_netns(struct rtable *rt1, struct rtable *rt2)
654 {
655 return rt1->u.dst.dev->nd_net == rt2->u.dst.dev->nd_net;
656 }
657
658 /*
659 * Perform a full scan of hash table and free all entries.
660 * Can be called by a softirq or a process.
661 * In the later case, we want to be reschedule if necessary
662 */
663 static void rt_do_flush(int process_context)
664 {
665 unsigned int i;
666 struct rtable *rth, *next;
667
668 for (i = 0; i <= rt_hash_mask; i++) {
669 if (process_context && need_resched())
670 cond_resched();
671 rth = rt_hash_table[i].chain;
672 if (!rth)
673 continue;
674
675 spin_lock_bh(rt_hash_lock_addr(i));
676 rth = rt_hash_table[i].chain;
677 rt_hash_table[i].chain = NULL;
678 spin_unlock_bh(rt_hash_lock_addr(i));
679
680 for (; rth; rth = next) {
681 next = rth->u.dst.rt_next;
682 rt_free(rth);
683 }
684 }
685 }
686
687 static void rt_check_expire(void)
688 {
689 static unsigned int rover;
690 unsigned int i = rover, goal;
691 struct rtable *rth, **rthp;
692 u64 mult;
693
694 mult = ((u64)ip_rt_gc_interval) << rt_hash_log;
695 if (ip_rt_gc_timeout > 1)
696 do_div(mult, ip_rt_gc_timeout);
697 goal = (unsigned int)mult;
698 if (goal > rt_hash_mask)
699 goal = rt_hash_mask + 1;
700 for (; goal > 0; goal--) {
701 unsigned long tmo = ip_rt_gc_timeout;
702
703 i = (i + 1) & rt_hash_mask;
704 rthp = &rt_hash_table[i].chain;
705
706 if (need_resched())
707 cond_resched();
708
709 if (*rthp == NULL)
710 continue;
711 spin_lock_bh(rt_hash_lock_addr(i));
712 while ((rth = *rthp) != NULL) {
713 if (rth->rt_genid != atomic_read(&rt_genid)) {
714 *rthp = rth->u.dst.rt_next;
715 rt_free(rth);
716 continue;
717 }
718 if (rth->u.dst.expires) {
719 /* Entry is expired even if it is in use */
720 if (time_before_eq(jiffies, rth->u.dst.expires)) {
721 tmo >>= 1;
722 rthp = &rth->u.dst.rt_next;
723 continue;
724 }
725 } else if (!rt_may_expire(rth, tmo, ip_rt_gc_timeout)) {
726 tmo >>= 1;
727 rthp = &rth->u.dst.rt_next;
728 continue;
729 }
730
731 /* Cleanup aged off entries. */
732 *rthp = rth->u.dst.rt_next;
733 rt_free(rth);
734 }
735 spin_unlock_bh(rt_hash_lock_addr(i));
736 }
737 rover = i;
738 }
739
740 /*
741 * rt_worker_func() is run in process context.
742 * we call rt_check_expire() to scan part of the hash table
743 */
744 static void rt_worker_func(struct work_struct *work)
745 {
746 rt_check_expire();
747 schedule_delayed_work(&expires_work, ip_rt_gc_interval);
748 }
749
750 /*
751 * Pertubation of rt_genid by a small quantity [1..256]
752 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
753 * many times (2^24) without giving recent rt_genid.
754 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
755 */
756 static void rt_cache_invalidate(void)
757 {
758 unsigned char shuffle;
759
760 get_random_bytes(&shuffle, sizeof(shuffle));
761 atomic_add(shuffle + 1U, &rt_genid);
762 }
763
764 /*
765 * delay < 0 : invalidate cache (fast : entries will be deleted later)
766 * delay >= 0 : invalidate & flush cache (can be long)
767 */
768 void rt_cache_flush(int delay)
769 {
770 rt_cache_invalidate();
771 if (delay >= 0)
772 rt_do_flush(!in_softirq());
773 }
774
775 /*
776 * We change rt_genid and let gc do the cleanup
777 */
778 static void rt_secret_rebuild(unsigned long dummy)
779 {
780 rt_cache_invalidate();
781 mod_timer(&rt_secret_timer, jiffies + ip_rt_secret_interval);
782 }
783
784 /*
785 Short description of GC goals.
786
787 We want to build algorithm, which will keep routing cache
788 at some equilibrium point, when number of aged off entries
789 is kept approximately equal to newly generated ones.
790
791 Current expiration strength is variable "expire".
792 We try to adjust it dynamically, so that if networking
793 is idle expires is large enough to keep enough of warm entries,
794 and when load increases it reduces to limit cache size.
795 */
796
797 static int rt_garbage_collect(struct dst_ops *ops)
798 {
799 static unsigned long expire = RT_GC_TIMEOUT;
800 static unsigned long last_gc;
801 static int rover;
802 static int equilibrium;
803 struct rtable *rth, **rthp;
804 unsigned long now = jiffies;
805 int goal;
806
807 /*
808 * Garbage collection is pretty expensive,
809 * do not make it too frequently.
810 */
811
812 RT_CACHE_STAT_INC(gc_total);
813
814 if (now - last_gc < ip_rt_gc_min_interval &&
815 atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size) {
816 RT_CACHE_STAT_INC(gc_ignored);
817 goto out;
818 }
819
820 /* Calculate number of entries, which we want to expire now. */
821 goal = atomic_read(&ipv4_dst_ops.entries) -
822 (ip_rt_gc_elasticity << rt_hash_log);
823 if (goal <= 0) {
824 if (equilibrium < ipv4_dst_ops.gc_thresh)
825 equilibrium = ipv4_dst_ops.gc_thresh;
826 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
827 if (goal > 0) {
828 equilibrium += min_t(unsigned int, goal >> 1, rt_hash_mask + 1);
829 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
830 }
831 } else {
832 /* We are in dangerous area. Try to reduce cache really
833 * aggressively.
834 */
835 goal = max_t(unsigned int, goal >> 1, rt_hash_mask + 1);
836 equilibrium = atomic_read(&ipv4_dst_ops.entries) - goal;
837 }
838
839 if (now - last_gc >= ip_rt_gc_min_interval)
840 last_gc = now;
841
842 if (goal <= 0) {
843 equilibrium += goal;
844 goto work_done;
845 }
846
847 do {
848 int i, k;
849
850 for (i = rt_hash_mask, k = rover; i >= 0; i--) {
851 unsigned long tmo = expire;
852
853 k = (k + 1) & rt_hash_mask;
854 rthp = &rt_hash_table[k].chain;
855 spin_lock_bh(rt_hash_lock_addr(k));
856 while ((rth = *rthp) != NULL) {
857 if (rth->rt_genid == atomic_read(&rt_genid) &&
858 !rt_may_expire(rth, tmo, expire)) {
859 tmo >>= 1;
860 rthp = &rth->u.dst.rt_next;
861 continue;
862 }
863 *rthp = rth->u.dst.rt_next;
864 rt_free(rth);
865 goal--;
866 }
867 spin_unlock_bh(rt_hash_lock_addr(k));
868 if (goal <= 0)
869 break;
870 }
871 rover = k;
872
873 if (goal <= 0)
874 goto work_done;
875
876 /* Goal is not achieved. We stop process if:
877
878 - if expire reduced to zero. Otherwise, expire is halfed.
879 - if table is not full.
880 - if we are called from interrupt.
881 - jiffies check is just fallback/debug loop breaker.
882 We will not spin here for long time in any case.
883 */
884
885 RT_CACHE_STAT_INC(gc_goal_miss);
886
887 if (expire == 0)
888 break;
889
890 expire >>= 1;
891 #if RT_CACHE_DEBUG >= 2
892 printk(KERN_DEBUG "expire>> %u %d %d %d\n", expire,
893 atomic_read(&ipv4_dst_ops.entries), goal, i);
894 #endif
895
896 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
897 goto out;
898 } while (!in_softirq() && time_before_eq(jiffies, now));
899
900 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
901 goto out;
902 if (net_ratelimit())
903 printk(KERN_WARNING "dst cache overflow\n");
904 RT_CACHE_STAT_INC(gc_dst_overflow);
905 return 1;
906
907 work_done:
908 expire += ip_rt_gc_min_interval;
909 if (expire > ip_rt_gc_timeout ||
910 atomic_read(&ipv4_dst_ops.entries) < ipv4_dst_ops.gc_thresh)
911 expire = ip_rt_gc_timeout;
912 #if RT_CACHE_DEBUG >= 2
913 printk(KERN_DEBUG "expire++ %u %d %d %d\n", expire,
914 atomic_read(&ipv4_dst_ops.entries), goal, rover);
915 #endif
916 out: return 0;
917 }
918
919 static int rt_intern_hash(unsigned hash, struct rtable *rt, struct rtable **rp)
920 {
921 struct rtable *rth, **rthp;
922 unsigned long now;
923 struct rtable *cand, **candp;
924 u32 min_score;
925 int chain_length;
926 int attempts = !in_softirq();
927
928 restart:
929 chain_length = 0;
930 min_score = ~(u32)0;
931 cand = NULL;
932 candp = NULL;
933 now = jiffies;
934
935 rthp = &rt_hash_table[hash].chain;
936
937 spin_lock_bh(rt_hash_lock_addr(hash));
938 while ((rth = *rthp) != NULL) {
939 if (rth->rt_genid != atomic_read(&rt_genid)) {
940 *rthp = rth->u.dst.rt_next;
941 rt_free(rth);
942 continue;
943 }
944 if (compare_keys(&rth->fl, &rt->fl) && compare_netns(rth, rt)) {
945 /* Put it first */
946 *rthp = rth->u.dst.rt_next;
947 /*
948 * Since lookup is lockfree, the deletion
949 * must be visible to another weakly ordered CPU before
950 * the insertion at the start of the hash chain.
951 */
952 rcu_assign_pointer(rth->u.dst.rt_next,
953 rt_hash_table[hash].chain);
954 /*
955 * Since lookup is lockfree, the update writes
956 * must be ordered for consistency on SMP.
957 */
958 rcu_assign_pointer(rt_hash_table[hash].chain, rth);
959
960 dst_use(&rth->u.dst, now);
961 spin_unlock_bh(rt_hash_lock_addr(hash));
962
963 rt_drop(rt);
964 *rp = rth;
965 return 0;
966 }
967
968 if (!atomic_read(&rth->u.dst.__refcnt)) {
969 u32 score = rt_score(rth);
970
971 if (score <= min_score) {
972 cand = rth;
973 candp = rthp;
974 min_score = score;
975 }
976 }
977
978 chain_length++;
979
980 rthp = &rth->u.dst.rt_next;
981 }
982
983 if (cand) {
984 /* ip_rt_gc_elasticity used to be average length of chain
985 * length, when exceeded gc becomes really aggressive.
986 *
987 * The second limit is less certain. At the moment it allows
988 * only 2 entries per bucket. We will see.
989 */
990 if (chain_length > ip_rt_gc_elasticity) {
991 *candp = cand->u.dst.rt_next;
992 rt_free(cand);
993 }
994 }
995
996 /* Try to bind route to arp only if it is output
997 route or unicast forwarding path.
998 */
999 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
1000 int err = arp_bind_neighbour(&rt->u.dst);
1001 if (err) {
1002 spin_unlock_bh(rt_hash_lock_addr(hash));
1003
1004 if (err != -ENOBUFS) {
1005 rt_drop(rt);
1006 return err;
1007 }
1008
1009 /* Neighbour tables are full and nothing
1010 can be released. Try to shrink route cache,
1011 it is most likely it holds some neighbour records.
1012 */
1013 if (attempts-- > 0) {
1014 int saved_elasticity = ip_rt_gc_elasticity;
1015 int saved_int = ip_rt_gc_min_interval;
1016 ip_rt_gc_elasticity = 1;
1017 ip_rt_gc_min_interval = 0;
1018 rt_garbage_collect(&ipv4_dst_ops);
1019 ip_rt_gc_min_interval = saved_int;
1020 ip_rt_gc_elasticity = saved_elasticity;
1021 goto restart;
1022 }
1023
1024 if (net_ratelimit())
1025 printk(KERN_WARNING "Neighbour table overflow.\n");
1026 rt_drop(rt);
1027 return -ENOBUFS;
1028 }
1029 }
1030
1031 rt->u.dst.rt_next = rt_hash_table[hash].chain;
1032 #if RT_CACHE_DEBUG >= 2
1033 if (rt->u.dst.rt_next) {
1034 struct rtable *trt;
1035 printk(KERN_DEBUG "rt_cache @%02x: %u.%u.%u.%u", hash,
1036 NIPQUAD(rt->rt_dst));
1037 for (trt = rt->u.dst.rt_next; trt; trt = trt->u.dst.rt_next)
1038 printk(" . %u.%u.%u.%u", NIPQUAD(trt->rt_dst));
1039 printk("\n");
1040 }
1041 #endif
1042 rt_hash_table[hash].chain = rt;
1043 spin_unlock_bh(rt_hash_lock_addr(hash));
1044 *rp = rt;
1045 return 0;
1046 }
1047
1048 void rt_bind_peer(struct rtable *rt, int create)
1049 {
1050 static DEFINE_SPINLOCK(rt_peer_lock);
1051 struct inet_peer *peer;
1052
1053 peer = inet_getpeer(rt->rt_dst, create);
1054
1055 spin_lock_bh(&rt_peer_lock);
1056 if (rt->peer == NULL) {
1057 rt->peer = peer;
1058 peer = NULL;
1059 }
1060 spin_unlock_bh(&rt_peer_lock);
1061 if (peer)
1062 inet_putpeer(peer);
1063 }
1064
1065 /*
1066 * Peer allocation may fail only in serious out-of-memory conditions. However
1067 * we still can generate some output.
1068 * Random ID selection looks a bit dangerous because we have no chances to
1069 * select ID being unique in a reasonable period of time.
1070 * But broken packet identifier may be better than no packet at all.
1071 */
1072 static void ip_select_fb_ident(struct iphdr *iph)
1073 {
1074 static DEFINE_SPINLOCK(ip_fb_id_lock);
1075 static u32 ip_fallback_id;
1076 u32 salt;
1077
1078 spin_lock_bh(&ip_fb_id_lock);
1079 salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
1080 iph->id = htons(salt & 0xFFFF);
1081 ip_fallback_id = salt;
1082 spin_unlock_bh(&ip_fb_id_lock);
1083 }
1084
1085 void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
1086 {
1087 struct rtable *rt = (struct rtable *) dst;
1088
1089 if (rt) {
1090 if (rt->peer == NULL)
1091 rt_bind_peer(rt, 1);
1092
1093 /* If peer is attached to destination, it is never detached,
1094 so that we need not to grab a lock to dereference it.
1095 */
1096 if (rt->peer) {
1097 iph->id = htons(inet_getid(rt->peer, more));
1098 return;
1099 }
1100 } else
1101 printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",
1102 __builtin_return_address(0));
1103
1104 ip_select_fb_ident(iph);
1105 }
1106
1107 static void rt_del(unsigned hash, struct rtable *rt)
1108 {
1109 struct rtable **rthp, *aux;
1110
1111 rthp = &rt_hash_table[hash].chain;
1112 spin_lock_bh(rt_hash_lock_addr(hash));
1113 ip_rt_put(rt);
1114 while ((aux = *rthp) != NULL) {
1115 if (aux == rt || (aux->rt_genid != atomic_read(&rt_genid))) {
1116 *rthp = aux->u.dst.rt_next;
1117 rt_free(aux);
1118 continue;
1119 }
1120 rthp = &aux->u.dst.rt_next;
1121 }
1122 spin_unlock_bh(rt_hash_lock_addr(hash));
1123 }
1124
1125 void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw,
1126 __be32 saddr, struct net_device *dev)
1127 {
1128 int i, k;
1129 struct in_device *in_dev = in_dev_get(dev);
1130 struct rtable *rth, **rthp;
1131 __be32 skeys[2] = { saddr, 0 };
1132 int ikeys[2] = { dev->ifindex, 0 };
1133 struct netevent_redirect netevent;
1134 struct net *net;
1135
1136 if (!in_dev)
1137 return;
1138
1139 net = dev->nd_net;
1140 if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev)
1141 || ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw)
1142 || ipv4_is_zeronet(new_gw))
1143 goto reject_redirect;
1144
1145 if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1146 if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1147 goto reject_redirect;
1148 if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1149 goto reject_redirect;
1150 } else {
1151 if (inet_addr_type(net, new_gw) != RTN_UNICAST)
1152 goto reject_redirect;
1153 }
1154
1155 for (i = 0; i < 2; i++) {
1156 for (k = 0; k < 2; k++) {
1157 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k]);
1158
1159 rthp=&rt_hash_table[hash].chain;
1160
1161 rcu_read_lock();
1162 while ((rth = rcu_dereference(*rthp)) != NULL) {
1163 struct rtable *rt;
1164
1165 if (rth->fl.fl4_dst != daddr ||
1166 rth->fl.fl4_src != skeys[i] ||
1167 rth->fl.oif != ikeys[k] ||
1168 rth->fl.iif != 0 ||
1169 rth->rt_genid != atomic_read(&rt_genid) ||
1170 rth->u.dst.dev->nd_net != net) {
1171 rthp = &rth->u.dst.rt_next;
1172 continue;
1173 }
1174
1175 if (rth->rt_dst != daddr ||
1176 rth->rt_src != saddr ||
1177 rth->u.dst.error ||
1178 rth->rt_gateway != old_gw ||
1179 rth->u.dst.dev != dev)
1180 break;
1181
1182 dst_hold(&rth->u.dst);
1183 rcu_read_unlock();
1184
1185 rt = dst_alloc(&ipv4_dst_ops);
1186 if (rt == NULL) {
1187 ip_rt_put(rth);
1188 in_dev_put(in_dev);
1189 return;
1190 }
1191
1192 /* Copy all the information. */
1193 *rt = *rth;
1194 INIT_RCU_HEAD(&rt->u.dst.rcu_head);
1195 rt->u.dst.__use = 1;
1196 atomic_set(&rt->u.dst.__refcnt, 1);
1197 rt->u.dst.child = NULL;
1198 if (rt->u.dst.dev)
1199 dev_hold(rt->u.dst.dev);
1200 if (rt->idev)
1201 in_dev_hold(rt->idev);
1202 rt->u.dst.obsolete = 0;
1203 rt->u.dst.lastuse = jiffies;
1204 rt->u.dst.path = &rt->u.dst;
1205 rt->u.dst.neighbour = NULL;
1206 rt->u.dst.hh = NULL;
1207 rt->u.dst.xfrm = NULL;
1208 rt->rt_genid = atomic_read(&rt_genid);
1209 rt->rt_flags |= RTCF_REDIRECTED;
1210
1211 /* Gateway is different ... */
1212 rt->rt_gateway = new_gw;
1213
1214 /* Redirect received -> path was valid */
1215 dst_confirm(&rth->u.dst);
1216
1217 if (rt->peer)
1218 atomic_inc(&rt->peer->refcnt);
1219
1220 if (arp_bind_neighbour(&rt->u.dst) ||
1221 !(rt->u.dst.neighbour->nud_state &
1222 NUD_VALID)) {
1223 if (rt->u.dst.neighbour)
1224 neigh_event_send(rt->u.dst.neighbour, NULL);
1225 ip_rt_put(rth);
1226 rt_drop(rt);
1227 goto do_next;
1228 }
1229
1230 netevent.old = &rth->u.dst;
1231 netevent.new = &rt->u.dst;
1232 call_netevent_notifiers(NETEVENT_REDIRECT,
1233 &netevent);
1234
1235 rt_del(hash, rth);
1236 if (!rt_intern_hash(hash, rt, &rt))
1237 ip_rt_put(rt);
1238 goto do_next;
1239 }
1240 rcu_read_unlock();
1241 do_next:
1242 ;
1243 }
1244 }
1245 in_dev_put(in_dev);
1246 return;
1247
1248 reject_redirect:
1249 #ifdef CONFIG_IP_ROUTE_VERBOSE
1250 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1251 printk(KERN_INFO "Redirect from %u.%u.%u.%u on %s about "
1252 "%u.%u.%u.%u ignored.\n"
1253 " Advised path = %u.%u.%u.%u -> %u.%u.%u.%u\n",
1254 NIPQUAD(old_gw), dev->name, NIPQUAD(new_gw),
1255 NIPQUAD(saddr), NIPQUAD(daddr));
1256 #endif
1257 in_dev_put(in_dev);
1258 }
1259
1260 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1261 {
1262 struct rtable *rt = (struct rtable*)dst;
1263 struct dst_entry *ret = dst;
1264
1265 if (rt) {
1266 if (dst->obsolete) {
1267 ip_rt_put(rt);
1268 ret = NULL;
1269 } else if ((rt->rt_flags & RTCF_REDIRECTED) ||
1270 rt->u.dst.expires) {
1271 unsigned hash = rt_hash(rt->fl.fl4_dst, rt->fl.fl4_src,
1272 rt->fl.oif);
1273 #if RT_CACHE_DEBUG >= 1
1274 printk(KERN_DEBUG "ipv4_negative_advice: redirect to "
1275 "%u.%u.%u.%u/%02x dropped\n",
1276 NIPQUAD(rt->rt_dst), rt->fl.fl4_tos);
1277 #endif
1278 rt_del(hash, rt);
1279 ret = NULL;
1280 }
1281 }
1282 return ret;
1283 }
1284
1285 /*
1286 * Algorithm:
1287 * 1. The first ip_rt_redirect_number redirects are sent
1288 * with exponential backoff, then we stop sending them at all,
1289 * assuming that the host ignores our redirects.
1290 * 2. If we did not see packets requiring redirects
1291 * during ip_rt_redirect_silence, we assume that the host
1292 * forgot redirected route and start to send redirects again.
1293 *
1294 * This algorithm is much cheaper and more intelligent than dumb load limiting
1295 * in icmp.c.
1296 *
1297 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1298 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1299 */
1300
1301 void ip_rt_send_redirect(struct sk_buff *skb)
1302 {
1303 struct rtable *rt = (struct rtable*)skb->dst;
1304 struct in_device *in_dev = in_dev_get(rt->u.dst.dev);
1305
1306 if (!in_dev)
1307 return;
1308
1309 if (!IN_DEV_TX_REDIRECTS(in_dev))
1310 goto out;
1311
1312 /* No redirected packets during ip_rt_redirect_silence;
1313 * reset the algorithm.
1314 */
1315 if (time_after(jiffies, rt->u.dst.rate_last + ip_rt_redirect_silence))
1316 rt->u.dst.rate_tokens = 0;
1317
1318 /* Too many ignored redirects; do not send anything
1319 * set u.dst.rate_last to the last seen redirected packet.
1320 */
1321 if (rt->u.dst.rate_tokens >= ip_rt_redirect_number) {
1322 rt->u.dst.rate_last = jiffies;
1323 goto out;
1324 }
1325
1326 /* Check for load limit; set rate_last to the latest sent
1327 * redirect.
1328 */
1329 if (rt->u.dst.rate_tokens == 0 ||
1330 time_after(jiffies,
1331 (rt->u.dst.rate_last +
1332 (ip_rt_redirect_load << rt->u.dst.rate_tokens)))) {
1333 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1334 rt->u.dst.rate_last = jiffies;
1335 ++rt->u.dst.rate_tokens;
1336 #ifdef CONFIG_IP_ROUTE_VERBOSE
1337 if (IN_DEV_LOG_MARTIANS(in_dev) &&
1338 rt->u.dst.rate_tokens == ip_rt_redirect_number &&
1339 net_ratelimit())
1340 printk(KERN_WARNING "host %u.%u.%u.%u/if%d ignores "
1341 "redirects for %u.%u.%u.%u to %u.%u.%u.%u.\n",
1342 NIPQUAD(rt->rt_src), rt->rt_iif,
1343 NIPQUAD(rt->rt_dst), NIPQUAD(rt->rt_gateway));
1344 #endif
1345 }
1346 out:
1347 in_dev_put(in_dev);
1348 }
1349
1350 static int ip_error(struct sk_buff *skb)
1351 {
1352 struct rtable *rt = (struct rtable*)skb->dst;
1353 unsigned long now;
1354 int code;
1355
1356 switch (rt->u.dst.error) {
1357 case EINVAL:
1358 default:
1359 goto out;
1360 case EHOSTUNREACH:
1361 code = ICMP_HOST_UNREACH;
1362 break;
1363 case ENETUNREACH:
1364 code = ICMP_NET_UNREACH;
1365 IP_INC_STATS_BH(IPSTATS_MIB_INNOROUTES);
1366 break;
1367 case EACCES:
1368 code = ICMP_PKT_FILTERED;
1369 break;
1370 }
1371
1372 now = jiffies;
1373 rt->u.dst.rate_tokens += now - rt->u.dst.rate_last;
1374 if (rt->u.dst.rate_tokens > ip_rt_error_burst)
1375 rt->u.dst.rate_tokens = ip_rt_error_burst;
1376 rt->u.dst.rate_last = now;
1377 if (rt->u.dst.rate_tokens >= ip_rt_error_cost) {
1378 rt->u.dst.rate_tokens -= ip_rt_error_cost;
1379 icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1380 }
1381
1382 out: kfree_skb(skb);
1383 return 0;
1384 }
1385
1386 /*
1387 * The last two values are not from the RFC but
1388 * are needed for AMPRnet AX.25 paths.
1389 */
1390
1391 static const unsigned short mtu_plateau[] =
1392 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1393
1394 static __inline__ unsigned short guess_mtu(unsigned short old_mtu)
1395 {
1396 int i;
1397
1398 for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++)
1399 if (old_mtu > mtu_plateau[i])
1400 return mtu_plateau[i];
1401 return 68;
1402 }
1403
1404 unsigned short ip_rt_frag_needed(struct net *net, struct iphdr *iph,
1405 unsigned short new_mtu)
1406 {
1407 int i;
1408 unsigned short old_mtu = ntohs(iph->tot_len);
1409 struct rtable *rth;
1410 __be32 skeys[2] = { iph->saddr, 0, };
1411 __be32 daddr = iph->daddr;
1412 unsigned short est_mtu = 0;
1413
1414 if (ipv4_config.no_pmtu_disc)
1415 return 0;
1416
1417 for (i = 0; i < 2; i++) {
1418 unsigned hash = rt_hash(daddr, skeys[i], 0);
1419
1420 rcu_read_lock();
1421 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
1422 rth = rcu_dereference(rth->u.dst.rt_next)) {
1423 if (rth->fl.fl4_dst == daddr &&
1424 rth->fl.fl4_src == skeys[i] &&
1425 rth->rt_dst == daddr &&
1426 rth->rt_src == iph->saddr &&
1427 rth->fl.iif == 0 &&
1428 !(dst_metric_locked(&rth->u.dst, RTAX_MTU)) &&
1429 rth->u.dst.dev->nd_net == net &&
1430 rth->rt_genid == atomic_read(&rt_genid)) {
1431 unsigned short mtu = new_mtu;
1432
1433 if (new_mtu < 68 || new_mtu >= old_mtu) {
1434
1435 /* BSD 4.2 compatibility hack :-( */
1436 if (mtu == 0 &&
1437 old_mtu >= rth->u.dst.metrics[RTAX_MTU-1] &&
1438 old_mtu >= 68 + (iph->ihl << 2))
1439 old_mtu -= iph->ihl << 2;
1440
1441 mtu = guess_mtu(old_mtu);
1442 }
1443 if (mtu <= rth->u.dst.metrics[RTAX_MTU-1]) {
1444 if (mtu < rth->u.dst.metrics[RTAX_MTU-1]) {
1445 dst_confirm(&rth->u.dst);
1446 if (mtu < ip_rt_min_pmtu) {
1447 mtu = ip_rt_min_pmtu;
1448 rth->u.dst.metrics[RTAX_LOCK-1] |=
1449 (1 << RTAX_MTU);
1450 }
1451 rth->u.dst.metrics[RTAX_MTU-1] = mtu;
1452 dst_set_expires(&rth->u.dst,
1453 ip_rt_mtu_expires);
1454 }
1455 est_mtu = mtu;
1456 }
1457 }
1458 }
1459 rcu_read_unlock();
1460 }
1461 return est_mtu ? : new_mtu;
1462 }
1463
1464 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1465 {
1466 if (dst->metrics[RTAX_MTU-1] > mtu && mtu >= 68 &&
1467 !(dst_metric_locked(dst, RTAX_MTU))) {
1468 if (mtu < ip_rt_min_pmtu) {
1469 mtu = ip_rt_min_pmtu;
1470 dst->metrics[RTAX_LOCK-1] |= (1 << RTAX_MTU);
1471 }
1472 dst->metrics[RTAX_MTU-1] = mtu;
1473 dst_set_expires(dst, ip_rt_mtu_expires);
1474 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
1475 }
1476 }
1477
1478 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1479 {
1480 return NULL;
1481 }
1482
1483 static void ipv4_dst_destroy(struct dst_entry *dst)
1484 {
1485 struct rtable *rt = (struct rtable *) dst;
1486 struct inet_peer *peer = rt->peer;
1487 struct in_device *idev = rt->idev;
1488
1489 if (peer) {
1490 rt->peer = NULL;
1491 inet_putpeer(peer);
1492 }
1493
1494 if (idev) {
1495 rt->idev = NULL;
1496 in_dev_put(idev);
1497 }
1498 }
1499
1500 static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
1501 int how)
1502 {
1503 struct rtable *rt = (struct rtable *) dst;
1504 struct in_device *idev = rt->idev;
1505 if (dev != dev->nd_net->loopback_dev && idev && idev->dev == dev) {
1506 struct in_device *loopback_idev =
1507 in_dev_get(dev->nd_net->loopback_dev);
1508 if (loopback_idev) {
1509 rt->idev = loopback_idev;
1510 in_dev_put(idev);
1511 }
1512 }
1513 }
1514
1515 static void ipv4_link_failure(struct sk_buff *skb)
1516 {
1517 struct rtable *rt;
1518
1519 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1520
1521 rt = (struct rtable *) skb->dst;
1522 if (rt)
1523 dst_set_expires(&rt->u.dst, 0);
1524 }
1525
1526 static int ip_rt_bug(struct sk_buff *skb)
1527 {
1528 printk(KERN_DEBUG "ip_rt_bug: %u.%u.%u.%u -> %u.%u.%u.%u, %s\n",
1529 NIPQUAD(ip_hdr(skb)->saddr), NIPQUAD(ip_hdr(skb)->daddr),
1530 skb->dev ? skb->dev->name : "?");
1531 kfree_skb(skb);
1532 return 0;
1533 }
1534
1535 /*
1536 We do not cache source address of outgoing interface,
1537 because it is used only by IP RR, TS and SRR options,
1538 so that it out of fast path.
1539
1540 BTW remember: "addr" is allowed to be not aligned
1541 in IP options!
1542 */
1543
1544 void ip_rt_get_source(u8 *addr, struct rtable *rt)
1545 {
1546 __be32 src;
1547 struct fib_result res;
1548
1549 if (rt->fl.iif == 0)
1550 src = rt->rt_src;
1551 else if (fib_lookup(rt->u.dst.dev->nd_net, &rt->fl, &res) == 0) {
1552 src = FIB_RES_PREFSRC(res);
1553 fib_res_put(&res);
1554 } else
1555 src = inet_select_addr(rt->u.dst.dev, rt->rt_gateway,
1556 RT_SCOPE_UNIVERSE);
1557 memcpy(addr, &src, 4);
1558 }
1559
1560 #ifdef CONFIG_NET_CLS_ROUTE
1561 static void set_class_tag(struct rtable *rt, u32 tag)
1562 {
1563 if (!(rt->u.dst.tclassid & 0xFFFF))
1564 rt->u.dst.tclassid |= tag & 0xFFFF;
1565 if (!(rt->u.dst.tclassid & 0xFFFF0000))
1566 rt->u.dst.tclassid |= tag & 0xFFFF0000;
1567 }
1568 #endif
1569
1570 static void rt_set_nexthop(struct rtable *rt, struct fib_result *res, u32 itag)
1571 {
1572 struct fib_info *fi = res->fi;
1573
1574 if (fi) {
1575 if (FIB_RES_GW(*res) &&
1576 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1577 rt->rt_gateway = FIB_RES_GW(*res);
1578 memcpy(rt->u.dst.metrics, fi->fib_metrics,
1579 sizeof(rt->u.dst.metrics));
1580 if (fi->fib_mtu == 0) {
1581 rt->u.dst.metrics[RTAX_MTU-1] = rt->u.dst.dev->mtu;
1582 if (rt->u.dst.metrics[RTAX_LOCK-1] & (1 << RTAX_MTU) &&
1583 rt->rt_gateway != rt->rt_dst &&
1584 rt->u.dst.dev->mtu > 576)
1585 rt->u.dst.metrics[RTAX_MTU-1] = 576;
1586 }
1587 #ifdef CONFIG_NET_CLS_ROUTE
1588 rt->u.dst.tclassid = FIB_RES_NH(*res).nh_tclassid;
1589 #endif
1590 } else
1591 rt->u.dst.metrics[RTAX_MTU-1]= rt->u.dst.dev->mtu;
1592
1593 if (rt->u.dst.metrics[RTAX_HOPLIMIT-1] == 0)
1594 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = sysctl_ip_default_ttl;
1595 if (rt->u.dst.metrics[RTAX_MTU-1] > IP_MAX_MTU)
1596 rt->u.dst.metrics[RTAX_MTU-1] = IP_MAX_MTU;
1597 if (rt->u.dst.metrics[RTAX_ADVMSS-1] == 0)
1598 rt->u.dst.metrics[RTAX_ADVMSS-1] = max_t(unsigned int, rt->u.dst.dev->mtu - 40,
1599 ip_rt_min_advmss);
1600 if (rt->u.dst.metrics[RTAX_ADVMSS-1] > 65535 - 40)
1601 rt->u.dst.metrics[RTAX_ADVMSS-1] = 65535 - 40;
1602
1603 #ifdef CONFIG_NET_CLS_ROUTE
1604 #ifdef CONFIG_IP_MULTIPLE_TABLES
1605 set_class_tag(rt, fib_rules_tclass(res));
1606 #endif
1607 set_class_tag(rt, itag);
1608 #endif
1609 rt->rt_type = res->type;
1610 }
1611
1612 static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1613 u8 tos, struct net_device *dev, int our)
1614 {
1615 unsigned hash;
1616 struct rtable *rth;
1617 __be32 spec_dst;
1618 struct in_device *in_dev = in_dev_get(dev);
1619 u32 itag = 0;
1620
1621 /* Primary sanity checks. */
1622
1623 if (in_dev == NULL)
1624 return -EINVAL;
1625
1626 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1627 ipv4_is_loopback(saddr) || skb->protocol != htons(ETH_P_IP))
1628 goto e_inval;
1629
1630 if (ipv4_is_zeronet(saddr)) {
1631 if (!ipv4_is_local_multicast(daddr))
1632 goto e_inval;
1633 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1634 } else if (fib_validate_source(saddr, 0, tos, 0,
1635 dev, &spec_dst, &itag) < 0)
1636 goto e_inval;
1637
1638 rth = dst_alloc(&ipv4_dst_ops);
1639 if (!rth)
1640 goto e_nobufs;
1641
1642 rth->u.dst.output= ip_rt_bug;
1643
1644 atomic_set(&rth->u.dst.__refcnt, 1);
1645 rth->u.dst.flags= DST_HOST;
1646 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1647 rth->u.dst.flags |= DST_NOPOLICY;
1648 rth->fl.fl4_dst = daddr;
1649 rth->rt_dst = daddr;
1650 rth->fl.fl4_tos = tos;
1651 rth->fl.mark = skb->mark;
1652 rth->fl.fl4_src = saddr;
1653 rth->rt_src = saddr;
1654 #ifdef CONFIG_NET_CLS_ROUTE
1655 rth->u.dst.tclassid = itag;
1656 #endif
1657 rth->rt_iif =
1658 rth->fl.iif = dev->ifindex;
1659 rth->u.dst.dev = init_net.loopback_dev;
1660 dev_hold(rth->u.dst.dev);
1661 rth->idev = in_dev_get(rth->u.dst.dev);
1662 rth->fl.oif = 0;
1663 rth->rt_gateway = daddr;
1664 rth->rt_spec_dst= spec_dst;
1665 rth->rt_genid = atomic_read(&rt_genid);
1666 rth->rt_flags = RTCF_MULTICAST;
1667 rth->rt_type = RTN_MULTICAST;
1668 if (our) {
1669 rth->u.dst.input= ip_local_deliver;
1670 rth->rt_flags |= RTCF_LOCAL;
1671 }
1672
1673 #ifdef CONFIG_IP_MROUTE
1674 if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev))
1675 rth->u.dst.input = ip_mr_input;
1676 #endif
1677 RT_CACHE_STAT_INC(in_slow_mc);
1678
1679 in_dev_put(in_dev);
1680 hash = rt_hash(daddr, saddr, dev->ifindex);
1681 return rt_intern_hash(hash, rth, (struct rtable**) &skb->dst);
1682
1683 e_nobufs:
1684 in_dev_put(in_dev);
1685 return -ENOBUFS;
1686
1687 e_inval:
1688 in_dev_put(in_dev);
1689 return -EINVAL;
1690 }
1691
1692
1693 static void ip_handle_martian_source(struct net_device *dev,
1694 struct in_device *in_dev,
1695 struct sk_buff *skb,
1696 __be32 daddr,
1697 __be32 saddr)
1698 {
1699 RT_CACHE_STAT_INC(in_martian_src);
1700 #ifdef CONFIG_IP_ROUTE_VERBOSE
1701 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
1702 /*
1703 * RFC1812 recommendation, if source is martian,
1704 * the only hint is MAC header.
1705 */
1706 printk(KERN_WARNING "martian source %u.%u.%u.%u from "
1707 "%u.%u.%u.%u, on dev %s\n",
1708 NIPQUAD(daddr), NIPQUAD(saddr), dev->name);
1709 if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
1710 int i;
1711 const unsigned char *p = skb_mac_header(skb);
1712 printk(KERN_WARNING "ll header: ");
1713 for (i = 0; i < dev->hard_header_len; i++, p++) {
1714 printk("%02x", *p);
1715 if (i < (dev->hard_header_len - 1))
1716 printk(":");
1717 }
1718 printk("\n");
1719 }
1720 }
1721 #endif
1722 }
1723
1724 static inline int __mkroute_input(struct sk_buff *skb,
1725 struct fib_result* res,
1726 struct in_device *in_dev,
1727 __be32 daddr, __be32 saddr, u32 tos,
1728 struct rtable **result)
1729 {
1730
1731 struct rtable *rth;
1732 int err;
1733 struct in_device *out_dev;
1734 unsigned flags = 0;
1735 __be32 spec_dst;
1736 u32 itag;
1737
1738 /* get a working reference to the output device */
1739 out_dev = in_dev_get(FIB_RES_DEV(*res));
1740 if (out_dev == NULL) {
1741 if (net_ratelimit())
1742 printk(KERN_CRIT "Bug in ip_route_input" \
1743 "_slow(). Please, report\n");
1744 return -EINVAL;
1745 }
1746
1747
1748 err = fib_validate_source(saddr, daddr, tos, FIB_RES_OIF(*res),
1749 in_dev->dev, &spec_dst, &itag);
1750 if (err < 0) {
1751 ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
1752 saddr);
1753
1754 err = -EINVAL;
1755 goto cleanup;
1756 }
1757
1758 if (err)
1759 flags |= RTCF_DIRECTSRC;
1760
1761 if (out_dev == in_dev && err && !(flags & RTCF_MASQ) &&
1762 (IN_DEV_SHARED_MEDIA(out_dev) ||
1763 inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
1764 flags |= RTCF_DOREDIRECT;
1765
1766 if (skb->protocol != htons(ETH_P_IP)) {
1767 /* Not IP (i.e. ARP). Do not create route, if it is
1768 * invalid for proxy arp. DNAT routes are always valid.
1769 */
1770 if (out_dev == in_dev) {
1771 err = -EINVAL;
1772 goto cleanup;
1773 }
1774 }
1775
1776
1777 rth = dst_alloc(&ipv4_dst_ops);
1778 if (!rth) {
1779 err = -ENOBUFS;
1780 goto cleanup;
1781 }
1782
1783 atomic_set(&rth->u.dst.__refcnt, 1);
1784 rth->u.dst.flags= DST_HOST;
1785 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1786 rth->u.dst.flags |= DST_NOPOLICY;
1787 if (IN_DEV_CONF_GET(out_dev, NOXFRM))
1788 rth->u.dst.flags |= DST_NOXFRM;
1789 rth->fl.fl4_dst = daddr;
1790 rth->rt_dst = daddr;
1791 rth->fl.fl4_tos = tos;
1792 rth->fl.mark = skb->mark;
1793 rth->fl.fl4_src = saddr;
1794 rth->rt_src = saddr;
1795 rth->rt_gateway = daddr;
1796 rth->rt_iif =
1797 rth->fl.iif = in_dev->dev->ifindex;
1798 rth->u.dst.dev = (out_dev)->dev;
1799 dev_hold(rth->u.dst.dev);
1800 rth->idev = in_dev_get(rth->u.dst.dev);
1801 rth->fl.oif = 0;
1802 rth->rt_spec_dst= spec_dst;
1803
1804 rth->u.dst.input = ip_forward;
1805 rth->u.dst.output = ip_output;
1806 rth->rt_genid = atomic_read(&rt_genid);
1807
1808 rt_set_nexthop(rth, res, itag);
1809
1810 rth->rt_flags = flags;
1811
1812 *result = rth;
1813 err = 0;
1814 cleanup:
1815 /* release the working reference to the output device */
1816 in_dev_put(out_dev);
1817 return err;
1818 }
1819
1820 static inline int ip_mkroute_input(struct sk_buff *skb,
1821 struct fib_result* res,
1822 const struct flowi *fl,
1823 struct in_device *in_dev,
1824 __be32 daddr, __be32 saddr, u32 tos)
1825 {
1826 struct rtable* rth = NULL;
1827 int err;
1828 unsigned hash;
1829
1830 #ifdef CONFIG_IP_ROUTE_MULTIPATH
1831 if (res->fi && res->fi->fib_nhs > 1 && fl->oif == 0)
1832 fib_select_multipath(fl, res);
1833 #endif
1834
1835 /* create a routing cache entry */
1836 err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
1837 if (err)
1838 return err;
1839
1840 /* put it into the cache */
1841 hash = rt_hash(daddr, saddr, fl->iif);
1842 return rt_intern_hash(hash, rth, (struct rtable**)&skb->dst);
1843 }
1844
1845 /*
1846 * NOTE. We drop all the packets that has local source
1847 * addresses, because every properly looped back packet
1848 * must have correct destination already attached by output routine.
1849 *
1850 * Such approach solves two big problems:
1851 * 1. Not simplex devices are handled properly.
1852 * 2. IP spoofing attempts are filtered with 100% of guarantee.
1853 */
1854
1855 static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1856 u8 tos, struct net_device *dev)
1857 {
1858 struct fib_result res;
1859 struct in_device *in_dev = in_dev_get(dev);
1860 struct flowi fl = { .nl_u = { .ip4_u =
1861 { .daddr = daddr,
1862 .saddr = saddr,
1863 .tos = tos,
1864 .scope = RT_SCOPE_UNIVERSE,
1865 } },
1866 .mark = skb->mark,
1867 .iif = dev->ifindex };
1868 unsigned flags = 0;
1869 u32 itag = 0;
1870 struct rtable * rth;
1871 unsigned hash;
1872 __be32 spec_dst;
1873 int err = -EINVAL;
1874 int free_res = 0;
1875 struct net * net = dev->nd_net;
1876
1877 /* IP on this device is disabled. */
1878
1879 if (!in_dev)
1880 goto out;
1881
1882 /* Check for the most weird martians, which can be not detected
1883 by fib_lookup.
1884 */
1885
1886 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1887 ipv4_is_loopback(saddr))
1888 goto martian_source;
1889
1890 if (daddr == htonl(0xFFFFFFFF) || (saddr == 0 && daddr == 0))
1891 goto brd_input;
1892
1893 /* Accept zero addresses only to limited broadcast;
1894 * I even do not know to fix it or not. Waiting for complains :-)
1895 */
1896 if (ipv4_is_zeronet(saddr))
1897 goto martian_source;
1898
1899 if (ipv4_is_lbcast(daddr) || ipv4_is_zeronet(daddr) ||
1900 ipv4_is_loopback(daddr))
1901 goto martian_destination;
1902
1903 /*
1904 * Now we are ready to route packet.
1905 */
1906 if ((err = fib_lookup(net, &fl, &res)) != 0) {
1907 if (!IN_DEV_FORWARD(in_dev))
1908 goto e_hostunreach;
1909 goto no_route;
1910 }
1911 free_res = 1;
1912
1913 RT_CACHE_STAT_INC(in_slow_tot);
1914
1915 if (res.type == RTN_BROADCAST)
1916 goto brd_input;
1917
1918 if (res.type == RTN_LOCAL) {
1919 int result;
1920 result = fib_validate_source(saddr, daddr, tos,
1921 net->loopback_dev->ifindex,
1922 dev, &spec_dst, &itag);
1923 if (result < 0)
1924 goto martian_source;
1925 if (result)
1926 flags |= RTCF_DIRECTSRC;
1927 spec_dst = daddr;
1928 goto local_input;
1929 }
1930
1931 if (!IN_DEV_FORWARD(in_dev))
1932 goto e_hostunreach;
1933 if (res.type != RTN_UNICAST)
1934 goto martian_destination;
1935
1936 err = ip_mkroute_input(skb, &res, &fl, in_dev, daddr, saddr, tos);
1937 done:
1938 in_dev_put(in_dev);
1939 if (free_res)
1940 fib_res_put(&res);
1941 out: return err;
1942
1943 brd_input:
1944 if (skb->protocol != htons(ETH_P_IP))
1945 goto e_inval;
1946
1947 if (ipv4_is_zeronet(saddr))
1948 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1949 else {
1950 err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst,
1951 &itag);
1952 if (err < 0)
1953 goto martian_source;
1954 if (err)
1955 flags |= RTCF_DIRECTSRC;
1956 }
1957 flags |= RTCF_BROADCAST;
1958 res.type = RTN_BROADCAST;
1959 RT_CACHE_STAT_INC(in_brd);
1960
1961 local_input:
1962 rth = dst_alloc(&ipv4_dst_ops);
1963 if (!rth)
1964 goto e_nobufs;
1965
1966 rth->u.dst.output= ip_rt_bug;
1967 rth->rt_genid = atomic_read(&rt_genid);
1968
1969 atomic_set(&rth->u.dst.__refcnt, 1);
1970 rth->u.dst.flags= DST_HOST;
1971 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1972 rth->u.dst.flags |= DST_NOPOLICY;
1973 rth->fl.fl4_dst = daddr;
1974 rth->rt_dst = daddr;
1975 rth->fl.fl4_tos = tos;
1976 rth->fl.mark = skb->mark;
1977 rth->fl.fl4_src = saddr;
1978 rth->rt_src = saddr;
1979 #ifdef CONFIG_NET_CLS_ROUTE
1980 rth->u.dst.tclassid = itag;
1981 #endif
1982 rth->rt_iif =
1983 rth->fl.iif = dev->ifindex;
1984 rth->u.dst.dev = net->loopback_dev;
1985 dev_hold(rth->u.dst.dev);
1986 rth->idev = in_dev_get(rth->u.dst.dev);
1987 rth->rt_gateway = daddr;
1988 rth->rt_spec_dst= spec_dst;
1989 rth->u.dst.input= ip_local_deliver;
1990 rth->rt_flags = flags|RTCF_LOCAL;
1991 if (res.type == RTN_UNREACHABLE) {
1992 rth->u.dst.input= ip_error;
1993 rth->u.dst.error= -err;
1994 rth->rt_flags &= ~RTCF_LOCAL;
1995 }
1996 rth->rt_type = res.type;
1997 hash = rt_hash(daddr, saddr, fl.iif);
1998 err = rt_intern_hash(hash, rth, (struct rtable**)&skb->dst);
1999 goto done;
2000
2001 no_route:
2002 RT_CACHE_STAT_INC(in_no_route);
2003 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
2004 res.type = RTN_UNREACHABLE;
2005 if (err == -ESRCH)
2006 err = -ENETUNREACH;
2007 goto local_input;
2008
2009 /*
2010 * Do not cache martian addresses: they should be logged (RFC1812)
2011 */
2012 martian_destination:
2013 RT_CACHE_STAT_INC(in_martian_dst);
2014 #ifdef CONFIG_IP_ROUTE_VERBOSE
2015 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
2016 printk(KERN_WARNING "martian destination %u.%u.%u.%u from "
2017 "%u.%u.%u.%u, dev %s\n",
2018 NIPQUAD(daddr), NIPQUAD(saddr), dev->name);
2019 #endif
2020
2021 e_hostunreach:
2022 err = -EHOSTUNREACH;
2023 goto done;
2024
2025 e_inval:
2026 err = -EINVAL;
2027 goto done;
2028
2029 e_nobufs:
2030 err = -ENOBUFS;
2031 goto done;
2032
2033 martian_source:
2034 ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
2035 goto e_inval;
2036 }
2037
2038 int ip_route_input(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2039 u8 tos, struct net_device *dev)
2040 {
2041 struct rtable * rth;
2042 unsigned hash;
2043 int iif = dev->ifindex;
2044 struct net *net;
2045
2046 net = dev->nd_net;
2047 tos &= IPTOS_RT_MASK;
2048 hash = rt_hash(daddr, saddr, iif);
2049
2050 rcu_read_lock();
2051 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2052 rth = rcu_dereference(rth->u.dst.rt_next)) {
2053 if (rth->fl.fl4_dst == daddr &&
2054 rth->fl.fl4_src == saddr &&
2055 rth->fl.iif == iif &&
2056 rth->fl.oif == 0 &&
2057 rth->fl.mark == skb->mark &&
2058 rth->fl.fl4_tos == tos &&
2059 rth->u.dst.dev->nd_net == net &&
2060 rth->rt_genid == atomic_read(&rt_genid)) {
2061 dst_use(&rth->u.dst, jiffies);
2062 RT_CACHE_STAT_INC(in_hit);
2063 rcu_read_unlock();
2064 skb->dst = (struct dst_entry*)rth;
2065 return 0;
2066 }
2067 RT_CACHE_STAT_INC(in_hlist_search);
2068 }
2069 rcu_read_unlock();
2070
2071 /* Multicast recognition logic is moved from route cache to here.
2072 The problem was that too many Ethernet cards have broken/missing
2073 hardware multicast filters :-( As result the host on multicasting
2074 network acquires a lot of useless route cache entries, sort of
2075 SDR messages from all the world. Now we try to get rid of them.
2076 Really, provided software IP multicast filter is organized
2077 reasonably (at least, hashed), it does not result in a slowdown
2078 comparing with route cache reject entries.
2079 Note, that multicast routers are not affected, because
2080 route cache entry is created eventually.
2081 */
2082 if (ipv4_is_multicast(daddr)) {
2083 struct in_device *in_dev;
2084
2085 rcu_read_lock();
2086 if ((in_dev = __in_dev_get_rcu(dev)) != NULL) {
2087 int our = ip_check_mc(in_dev, daddr, saddr,
2088 ip_hdr(skb)->protocol);
2089 if (our
2090 #ifdef CONFIG_IP_MROUTE
2091 || (!ipv4_is_local_multicast(daddr) &&
2092 IN_DEV_MFORWARD(in_dev))
2093 #endif
2094 ) {
2095 rcu_read_unlock();
2096 return ip_route_input_mc(skb, daddr, saddr,
2097 tos, dev, our);
2098 }
2099 }
2100 rcu_read_unlock();
2101 return -EINVAL;
2102 }
2103 return ip_route_input_slow(skb, daddr, saddr, tos, dev);
2104 }
2105
2106 static inline int __mkroute_output(struct rtable **result,
2107 struct fib_result* res,
2108 const struct flowi *fl,
2109 const struct flowi *oldflp,
2110 struct net_device *dev_out,
2111 unsigned flags)
2112 {
2113 struct rtable *rth;
2114 struct in_device *in_dev;
2115 u32 tos = RT_FL_TOS(oldflp);
2116 int err = 0;
2117
2118 if (ipv4_is_loopback(fl->fl4_src) && !(dev_out->flags&IFF_LOOPBACK))
2119 return -EINVAL;
2120
2121 if (fl->fl4_dst == htonl(0xFFFFFFFF))
2122 res->type = RTN_BROADCAST;
2123 else if (ipv4_is_multicast(fl->fl4_dst))
2124 res->type = RTN_MULTICAST;
2125 else if (ipv4_is_lbcast(fl->fl4_dst) || ipv4_is_zeronet(fl->fl4_dst))
2126 return -EINVAL;
2127
2128 if (dev_out->flags & IFF_LOOPBACK)
2129 flags |= RTCF_LOCAL;
2130
2131 /* get work reference to inet device */
2132 in_dev = in_dev_get(dev_out);
2133 if (!in_dev)
2134 return -EINVAL;
2135
2136 if (res->type == RTN_BROADCAST) {
2137 flags |= RTCF_BROADCAST | RTCF_LOCAL;
2138 if (res->fi) {
2139 fib_info_put(res->fi);
2140 res->fi = NULL;
2141 }
2142 } else if (res->type == RTN_MULTICAST) {
2143 flags |= RTCF_MULTICAST|RTCF_LOCAL;
2144 if (!ip_check_mc(in_dev, oldflp->fl4_dst, oldflp->fl4_src,
2145 oldflp->proto))
2146 flags &= ~RTCF_LOCAL;
2147 /* If multicast route do not exist use
2148 default one, but do not gateway in this case.
2149 Yes, it is hack.
2150 */
2151 if (res->fi && res->prefixlen < 4) {
2152 fib_info_put(res->fi);
2153 res->fi = NULL;
2154 }
2155 }
2156
2157
2158 rth = dst_alloc(&ipv4_dst_ops);
2159 if (!rth) {
2160 err = -ENOBUFS;
2161 goto cleanup;
2162 }
2163
2164 atomic_set(&rth->u.dst.__refcnt, 1);
2165 rth->u.dst.flags= DST_HOST;
2166 if (IN_DEV_CONF_GET(in_dev, NOXFRM))
2167 rth->u.dst.flags |= DST_NOXFRM;
2168 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2169 rth->u.dst.flags |= DST_NOPOLICY;
2170
2171 rth->fl.fl4_dst = oldflp->fl4_dst;
2172 rth->fl.fl4_tos = tos;
2173 rth->fl.fl4_src = oldflp->fl4_src;
2174 rth->fl.oif = oldflp->oif;
2175 rth->fl.mark = oldflp->mark;
2176 rth->rt_dst = fl->fl4_dst;
2177 rth->rt_src = fl->fl4_src;
2178 rth->rt_iif = oldflp->oif ? : dev_out->ifindex;
2179 /* get references to the devices that are to be hold by the routing
2180 cache entry */
2181 rth->u.dst.dev = dev_out;
2182 dev_hold(dev_out);
2183 rth->idev = in_dev_get(dev_out);
2184 rth->rt_gateway = fl->fl4_dst;
2185 rth->rt_spec_dst= fl->fl4_src;
2186
2187 rth->u.dst.output=ip_output;
2188 rth->rt_genid = atomic_read(&rt_genid);
2189
2190 RT_CACHE_STAT_INC(out_slow_tot);
2191
2192 if (flags & RTCF_LOCAL) {
2193 rth->u.dst.input = ip_local_deliver;
2194 rth->rt_spec_dst = fl->fl4_dst;
2195 }
2196 if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2197 rth->rt_spec_dst = fl->fl4_src;
2198 if (flags & RTCF_LOCAL &&
2199 !(dev_out->flags & IFF_LOOPBACK)) {
2200 rth->u.dst.output = ip_mc_output;
2201 RT_CACHE_STAT_INC(out_slow_mc);
2202 }
2203 #ifdef CONFIG_IP_MROUTE
2204 if (res->type == RTN_MULTICAST) {
2205 if (IN_DEV_MFORWARD(in_dev) &&
2206 !ipv4_is_local_multicast(oldflp->fl4_dst)) {
2207 rth->u.dst.input = ip_mr_input;
2208 rth->u.dst.output = ip_mc_output;
2209 }
2210 }
2211 #endif
2212 }
2213
2214 rt_set_nexthop(rth, res, 0);
2215
2216 rth->rt_flags = flags;
2217
2218 *result = rth;
2219 cleanup:
2220 /* release work reference to inet device */
2221 in_dev_put(in_dev);
2222
2223 return err;
2224 }
2225
2226 static inline int ip_mkroute_output(struct rtable **rp,
2227 struct fib_result* res,
2228 const struct flowi *fl,
2229 const struct flowi *oldflp,
2230 struct net_device *dev_out,
2231 unsigned flags)
2232 {
2233 struct rtable *rth = NULL;
2234 int err = __mkroute_output(&rth, res, fl, oldflp, dev_out, flags);
2235 unsigned hash;
2236 if (err == 0) {
2237 hash = rt_hash(oldflp->fl4_dst, oldflp->fl4_src, oldflp->oif);
2238 err = rt_intern_hash(hash, rth, rp);
2239 }
2240
2241 return err;
2242 }
2243
2244 /*
2245 * Major route resolver routine.
2246 */
2247
2248 static int ip_route_output_slow(struct net *net, struct rtable **rp,
2249 const struct flowi *oldflp)
2250 {
2251 u32 tos = RT_FL_TOS(oldflp);
2252 struct flowi fl = { .nl_u = { .ip4_u =
2253 { .daddr = oldflp->fl4_dst,
2254 .saddr = oldflp->fl4_src,
2255 .tos = tos & IPTOS_RT_MASK,
2256 .scope = ((tos & RTO_ONLINK) ?
2257 RT_SCOPE_LINK :
2258 RT_SCOPE_UNIVERSE),
2259 } },
2260 .mark = oldflp->mark,
2261 .iif = net->loopback_dev->ifindex,
2262 .oif = oldflp->oif };
2263 struct fib_result res;
2264 unsigned flags = 0;
2265 struct net_device *dev_out = NULL;
2266 int free_res = 0;
2267 int err;
2268
2269
2270 res.fi = NULL;
2271 #ifdef CONFIG_IP_MULTIPLE_TABLES
2272 res.r = NULL;
2273 #endif
2274
2275 if (oldflp->fl4_src) {
2276 err = -EINVAL;
2277 if (ipv4_is_multicast(oldflp->fl4_src) ||
2278 ipv4_is_lbcast(oldflp->fl4_src) ||
2279 ipv4_is_zeronet(oldflp->fl4_src))
2280 goto out;
2281
2282 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2283 dev_out = ip_dev_find(net, oldflp->fl4_src);
2284 if (dev_out == NULL)
2285 goto out;
2286
2287 /* I removed check for oif == dev_out->oif here.
2288 It was wrong for two reasons:
2289 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2290 is assigned to multiple interfaces.
2291 2. Moreover, we are allowed to send packets with saddr
2292 of another iface. --ANK
2293 */
2294
2295 if (oldflp->oif == 0
2296 && (ipv4_is_multicast(oldflp->fl4_dst) ||
2297 oldflp->fl4_dst == htonl(0xFFFFFFFF))) {
2298 /* Special hack: user can direct multicasts
2299 and limited broadcast via necessary interface
2300 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2301 This hack is not just for fun, it allows
2302 vic,vat and friends to work.
2303 They bind socket to loopback, set ttl to zero
2304 and expect that it will work.
2305 From the viewpoint of routing cache they are broken,
2306 because we are not allowed to build multicast path
2307 with loopback source addr (look, routing cache
2308 cannot know, that ttl is zero, so that packet
2309 will not leave this host and route is valid).
2310 Luckily, this hack is good workaround.
2311 */
2312
2313 fl.oif = dev_out->ifindex;
2314 goto make_route;
2315 }
2316 if (dev_out)
2317 dev_put(dev_out);
2318 dev_out = NULL;
2319 }
2320
2321
2322 if (oldflp->oif) {
2323 dev_out = dev_get_by_index(net, oldflp->oif);
2324 err = -ENODEV;
2325 if (dev_out == NULL)
2326 goto out;
2327
2328 /* RACE: Check return value of inet_select_addr instead. */
2329 if (__in_dev_get_rtnl(dev_out) == NULL) {
2330 dev_put(dev_out);
2331 goto out; /* Wrong error code */
2332 }
2333
2334 if (ipv4_is_local_multicast(oldflp->fl4_dst) ||
2335 oldflp->fl4_dst == htonl(0xFFFFFFFF)) {
2336 if (!fl.fl4_src)
2337 fl.fl4_src = inet_select_addr(dev_out, 0,
2338 RT_SCOPE_LINK);
2339 goto make_route;
2340 }
2341 if (!fl.fl4_src) {
2342 if (ipv4_is_multicast(oldflp->fl4_dst))
2343 fl.fl4_src = inet_select_addr(dev_out, 0,
2344 fl.fl4_scope);
2345 else if (!oldflp->fl4_dst)
2346 fl.fl4_src = inet_select_addr(dev_out, 0,
2347 RT_SCOPE_HOST);
2348 }
2349 }
2350
2351 if (!fl.fl4_dst) {
2352 fl.fl4_dst = fl.fl4_src;
2353 if (!fl.fl4_dst)
2354 fl.fl4_dst = fl.fl4_src = htonl(INADDR_LOOPBACK);
2355 if (dev_out)
2356 dev_put(dev_out);
2357 dev_out = net->loopback_dev;
2358 dev_hold(dev_out);
2359 fl.oif = net->loopback_dev->ifindex;
2360 res.type = RTN_LOCAL;
2361 flags |= RTCF_LOCAL;
2362 goto make_route;
2363 }
2364
2365 if (fib_lookup(net, &fl, &res)) {
2366 res.fi = NULL;
2367 if (oldflp->oif) {
2368 /* Apparently, routing tables are wrong. Assume,
2369 that the destination is on link.
2370
2371 WHY? DW.
2372 Because we are allowed to send to iface
2373 even if it has NO routes and NO assigned
2374 addresses. When oif is specified, routing
2375 tables are looked up with only one purpose:
2376 to catch if destination is gatewayed, rather than
2377 direct. Moreover, if MSG_DONTROUTE is set,
2378 we send packet, ignoring both routing tables
2379 and ifaddr state. --ANK
2380
2381
2382 We could make it even if oif is unknown,
2383 likely IPv6, but we do not.
2384 */
2385
2386 if (fl.fl4_src == 0)
2387 fl.fl4_src = inet_select_addr(dev_out, 0,
2388 RT_SCOPE_LINK);
2389 res.type = RTN_UNICAST;
2390 goto make_route;
2391 }
2392 if (dev_out)
2393 dev_put(dev_out);
2394 err = -ENETUNREACH;
2395 goto out;
2396 }
2397 free_res = 1;
2398
2399 if (res.type == RTN_LOCAL) {
2400 if (!fl.fl4_src)
2401 fl.fl4_src = fl.fl4_dst;
2402 if (dev_out)
2403 dev_put(dev_out);
2404 dev_out = net->loopback_dev;
2405 dev_hold(dev_out);
2406 fl.oif = dev_out->ifindex;
2407 if (res.fi)
2408 fib_info_put(res.fi);
2409 res.fi = NULL;
2410 flags |= RTCF_LOCAL;
2411 goto make_route;
2412 }
2413
2414 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2415 if (res.fi->fib_nhs > 1 && fl.oif == 0)
2416 fib_select_multipath(&fl, &res);
2417 else
2418 #endif
2419 if (!res.prefixlen && res.type == RTN_UNICAST && !fl.oif)
2420 fib_select_default(net, &fl, &res);
2421
2422 if (!fl.fl4_src)
2423 fl.fl4_src = FIB_RES_PREFSRC(res);
2424
2425 if (dev_out)
2426 dev_put(dev_out);
2427 dev_out = FIB_RES_DEV(res);
2428 dev_hold(dev_out);
2429 fl.oif = dev_out->ifindex;
2430
2431
2432 make_route:
2433 err = ip_mkroute_output(rp, &res, &fl, oldflp, dev_out, flags);
2434
2435
2436 if (free_res)
2437 fib_res_put(&res);
2438 if (dev_out)
2439 dev_put(dev_out);
2440 out: return err;
2441 }
2442
2443 int __ip_route_output_key(struct net *net, struct rtable **rp,
2444 const struct flowi *flp)
2445 {
2446 unsigned hash;
2447 struct rtable *rth;
2448
2449 hash = rt_hash(flp->fl4_dst, flp->fl4_src, flp->oif);
2450
2451 rcu_read_lock_bh();
2452 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2453 rth = rcu_dereference(rth->u.dst.rt_next)) {
2454 if (rth->fl.fl4_dst == flp->fl4_dst &&
2455 rth->fl.fl4_src == flp->fl4_src &&
2456 rth->fl.iif == 0 &&
2457 rth->fl.oif == flp->oif &&
2458 rth->fl.mark == flp->mark &&
2459 !((rth->fl.fl4_tos ^ flp->fl4_tos) &
2460 (IPTOS_RT_MASK | RTO_ONLINK)) &&
2461 rth->u.dst.dev->nd_net == net &&
2462 rth->rt_genid == atomic_read(&rt_genid)) {
2463 dst_use(&rth->u.dst, jiffies);
2464 RT_CACHE_STAT_INC(out_hit);
2465 rcu_read_unlock_bh();
2466 *rp = rth;
2467 return 0;
2468 }
2469 RT_CACHE_STAT_INC(out_hlist_search);
2470 }
2471 rcu_read_unlock_bh();
2472
2473 return ip_route_output_slow(net, rp, flp);
2474 }
2475
2476 EXPORT_SYMBOL_GPL(__ip_route_output_key);
2477
2478 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2479 {
2480 }
2481
2482 static struct dst_ops ipv4_dst_blackhole_ops = {
2483 .family = AF_INET,
2484 .protocol = __constant_htons(ETH_P_IP),
2485 .destroy = ipv4_dst_destroy,
2486 .check = ipv4_dst_check,
2487 .update_pmtu = ipv4_rt_blackhole_update_pmtu,
2488 .entry_size = sizeof(struct rtable),
2489 .entries = ATOMIC_INIT(0),
2490 };
2491
2492
2493 static int ipv4_dst_blackhole(struct rtable **rp, struct flowi *flp, struct sock *sk)
2494 {
2495 struct rtable *ort = *rp;
2496 struct rtable *rt = (struct rtable *)
2497 dst_alloc(&ipv4_dst_blackhole_ops);
2498
2499 if (rt) {
2500 struct dst_entry *new = &rt->u.dst;
2501
2502 atomic_set(&new->__refcnt, 1);
2503 new->__use = 1;
2504 new->input = dst_discard;
2505 new->output = dst_discard;
2506 memcpy(new->metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
2507
2508 new->dev = ort->u.dst.dev;
2509 if (new->dev)
2510 dev_hold(new->dev);
2511
2512 rt->fl = ort->fl;
2513
2514 rt->idev = ort->idev;
2515 if (rt->idev)
2516 in_dev_hold(rt->idev);
2517 rt->rt_genid = atomic_read(&rt_genid);
2518 rt->rt_flags = ort->rt_flags;
2519 rt->rt_type = ort->rt_type;
2520 rt->rt_dst = ort->rt_dst;
2521 rt->rt_src = ort->rt_src;
2522 rt->rt_iif = ort->rt_iif;
2523 rt->rt_gateway = ort->rt_gateway;
2524 rt->rt_spec_dst = ort->rt_spec_dst;
2525 rt->peer = ort->peer;
2526 if (rt->peer)
2527 atomic_inc(&rt->peer->refcnt);
2528
2529 dst_free(new);
2530 }
2531
2532 dst_release(&(*rp)->u.dst);
2533 *rp = rt;
2534 return (rt ? 0 : -ENOMEM);
2535 }
2536
2537 int ip_route_output_flow(struct net *net, struct rtable **rp, struct flowi *flp,
2538 struct sock *sk, int flags)
2539 {
2540 int err;
2541
2542 if ((err = __ip_route_output_key(net, rp, flp)) != 0)
2543 return err;
2544
2545 if (flp->proto) {
2546 if (!flp->fl4_src)
2547 flp->fl4_src = (*rp)->rt_src;
2548 if (!flp->fl4_dst)
2549 flp->fl4_dst = (*rp)->rt_dst;
2550 err = __xfrm_lookup((struct dst_entry **)rp, flp, sk,
2551 flags ? XFRM_LOOKUP_WAIT : 0);
2552 if (err == -EREMOTE)
2553 err = ipv4_dst_blackhole(rp, flp, sk);
2554
2555 return err;
2556 }
2557
2558 return 0;
2559 }
2560
2561 EXPORT_SYMBOL_GPL(ip_route_output_flow);
2562
2563 int ip_route_output_key(struct net *net, struct rtable **rp, struct flowi *flp)
2564 {
2565 return ip_route_output_flow(net, rp, flp, NULL, 0);
2566 }
2567
2568 static int rt_fill_info(struct sk_buff *skb, u32 pid, u32 seq, int event,
2569 int nowait, unsigned int flags)
2570 {
2571 struct rtable *rt = (struct rtable*)skb->dst;
2572 struct rtmsg *r;
2573 struct nlmsghdr *nlh;
2574 long expires;
2575 u32 id = 0, ts = 0, tsage = 0, error;
2576
2577 nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2578 if (nlh == NULL)
2579 return -EMSGSIZE;
2580
2581 r = nlmsg_data(nlh);
2582 r->rtm_family = AF_INET;
2583 r->rtm_dst_len = 32;
2584 r->rtm_src_len = 0;
2585 r->rtm_tos = rt->fl.fl4_tos;
2586 r->rtm_table = RT_TABLE_MAIN;
2587 NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN);
2588 r->rtm_type = rt->rt_type;
2589 r->rtm_scope = RT_SCOPE_UNIVERSE;
2590 r->rtm_protocol = RTPROT_UNSPEC;
2591 r->rtm_flags = (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2592 if (rt->rt_flags & RTCF_NOTIFY)
2593 r->rtm_flags |= RTM_F_NOTIFY;
2594
2595 NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst);
2596
2597 if (rt->fl.fl4_src) {
2598 r->rtm_src_len = 32;
2599 NLA_PUT_BE32(skb, RTA_SRC, rt->fl.fl4_src);
2600 }
2601 if (rt->u.dst.dev)
2602 NLA_PUT_U32(skb, RTA_OIF, rt->u.dst.dev->ifindex);
2603 #ifdef CONFIG_NET_CLS_ROUTE
2604 if (rt->u.dst.tclassid)
2605 NLA_PUT_U32(skb, RTA_FLOW, rt->u.dst.tclassid);
2606 #endif
2607 if (rt->fl.iif)
2608 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst);
2609 else if (rt->rt_src != rt->fl.fl4_src)
2610 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src);
2611
2612 if (rt->rt_dst != rt->rt_gateway)
2613 NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway);
2614
2615 if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2616 goto nla_put_failure;
2617
2618 error = rt->u.dst.error;
2619 expires = rt->u.dst.expires ? rt->u.dst.expires - jiffies : 0;
2620 if (rt->peer) {
2621 id = rt->peer->ip_id_count;
2622 if (rt->peer->tcp_ts_stamp) {
2623 ts = rt->peer->tcp_ts;
2624 tsage = get_seconds() - rt->peer->tcp_ts_stamp;
2625 }
2626 }
2627
2628 if (rt->fl.iif) {
2629 #ifdef CONFIG_IP_MROUTE
2630 __be32 dst = rt->rt_dst;
2631
2632 if (ipv4_is_multicast(dst) && !ipv4_is_local_multicast(dst) &&
2633 IPV4_DEVCONF_ALL(&init_net, MC_FORWARDING)) {
2634 int err = ipmr_get_route(skb, r, nowait);
2635 if (err <= 0) {
2636 if (!nowait) {
2637 if (err == 0)
2638 return 0;
2639 goto nla_put_failure;
2640 } else {
2641 if (err == -EMSGSIZE)
2642 goto nla_put_failure;
2643 error = err;
2644 }
2645 }
2646 } else
2647 #endif
2648 NLA_PUT_U32(skb, RTA_IIF, rt->fl.iif);
2649 }
2650
2651 if (rtnl_put_cacheinfo(skb, &rt->u.dst, id, ts, tsage,
2652 expires, error) < 0)
2653 goto nla_put_failure;
2654
2655 return nlmsg_end(skb, nlh);
2656
2657 nla_put_failure:
2658 nlmsg_cancel(skb, nlh);
2659 return -EMSGSIZE;
2660 }
2661
2662 static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2663 {
2664 struct net *net = in_skb->sk->sk_net;
2665 struct rtmsg *rtm;
2666 struct nlattr *tb[RTA_MAX+1];
2667 struct rtable *rt = NULL;
2668 __be32 dst = 0;
2669 __be32 src = 0;
2670 u32 iif;
2671 int err;
2672 struct sk_buff *skb;
2673
2674 if (net != &init_net)
2675 return -EINVAL;
2676
2677 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2678 if (err < 0)
2679 goto errout;
2680
2681 rtm = nlmsg_data(nlh);
2682
2683 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2684 if (skb == NULL) {
2685 err = -ENOBUFS;
2686 goto errout;
2687 }
2688
2689 /* Reserve room for dummy headers, this skb can pass
2690 through good chunk of routing engine.
2691 */
2692 skb_reset_mac_header(skb);
2693 skb_reset_network_header(skb);
2694
2695 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2696 ip_hdr(skb)->protocol = IPPROTO_ICMP;
2697 skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2698
2699 src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
2700 dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
2701 iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
2702
2703 if (iif) {
2704 struct net_device *dev;
2705
2706 dev = __dev_get_by_index(&init_net, iif);
2707 if (dev == NULL) {
2708 err = -ENODEV;
2709 goto errout_free;
2710 }
2711
2712 skb->protocol = htons(ETH_P_IP);
2713 skb->dev = dev;
2714 local_bh_disable();
2715 err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
2716 local_bh_enable();
2717
2718 rt = (struct rtable*) skb->dst;
2719 if (err == 0 && rt->u.dst.error)
2720 err = -rt->u.dst.error;
2721 } else {
2722 struct flowi fl = {
2723 .nl_u = {
2724 .ip4_u = {
2725 .daddr = dst,
2726 .saddr = src,
2727 .tos = rtm->rtm_tos,
2728 },
2729 },
2730 .oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
2731 };
2732 err = ip_route_output_key(&init_net, &rt, &fl);
2733 }
2734
2735 if (err)
2736 goto errout_free;
2737
2738 skb->dst = &rt->u.dst;
2739 if (rtm->rtm_flags & RTM_F_NOTIFY)
2740 rt->rt_flags |= RTCF_NOTIFY;
2741
2742 err = rt_fill_info(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
2743 RTM_NEWROUTE, 0, 0);
2744 if (err <= 0)
2745 goto errout_free;
2746
2747 err = rtnl_unicast(skb, &init_net, NETLINK_CB(in_skb).pid);
2748 errout:
2749 return err;
2750
2751 errout_free:
2752 kfree_skb(skb);
2753 goto errout;
2754 }
2755
2756 int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb)
2757 {
2758 struct rtable *rt;
2759 int h, s_h;
2760 int idx, s_idx;
2761
2762 s_h = cb->args[0];
2763 if (s_h < 0)
2764 s_h = 0;
2765 s_idx = idx = cb->args[1];
2766 for (h = s_h; h <= rt_hash_mask; h++) {
2767 rcu_read_lock_bh();
2768 for (rt = rcu_dereference(rt_hash_table[h].chain), idx = 0; rt;
2769 rt = rcu_dereference(rt->u.dst.rt_next), idx++) {
2770 if (idx < s_idx)
2771 continue;
2772 if (rt->rt_genid != atomic_read(&rt_genid))
2773 continue;
2774 skb->dst = dst_clone(&rt->u.dst);
2775 if (rt_fill_info(skb, NETLINK_CB(cb->skb).pid,
2776 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2777 1, NLM_F_MULTI) <= 0) {
2778 dst_release(xchg(&skb->dst, NULL));
2779 rcu_read_unlock_bh();
2780 goto done;
2781 }
2782 dst_release(xchg(&skb->dst, NULL));
2783 }
2784 rcu_read_unlock_bh();
2785 s_idx = 0;
2786 }
2787
2788 done:
2789 cb->args[0] = h;
2790 cb->args[1] = idx;
2791 return skb->len;
2792 }
2793
2794 void ip_rt_multicast_event(struct in_device *in_dev)
2795 {
2796 rt_cache_flush(0);
2797 }
2798
2799 #ifdef CONFIG_SYSCTL
2800 static int flush_delay;
2801
2802 static int ipv4_sysctl_rtcache_flush(ctl_table *ctl, int write,
2803 struct file *filp, void __user *buffer,
2804 size_t *lenp, loff_t *ppos)
2805 {
2806 if (write) {
2807 proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
2808 rt_cache_flush(flush_delay);
2809 return 0;
2810 }
2811
2812 return -EINVAL;
2813 }
2814
2815 static int ipv4_sysctl_rtcache_flush_strategy(ctl_table *table,
2816 int __user *name,
2817 int nlen,
2818 void __user *oldval,
2819 size_t __user *oldlenp,
2820 void __user *newval,
2821 size_t newlen)
2822 {
2823 int delay;
2824 if (newlen != sizeof(int))
2825 return -EINVAL;
2826 if (get_user(delay, (int __user *)newval))
2827 return -EFAULT;
2828 rt_cache_flush(delay);
2829 return 0;
2830 }
2831
2832 ctl_table ipv4_route_table[] = {
2833 {
2834 .ctl_name = NET_IPV4_ROUTE_FLUSH,
2835 .procname = "flush",
2836 .data = &flush_delay,
2837 .maxlen = sizeof(int),
2838 .mode = 0200,
2839 .proc_handler = &ipv4_sysctl_rtcache_flush,
2840 .strategy = &ipv4_sysctl_rtcache_flush_strategy,
2841 },
2842 {
2843 .ctl_name = NET_IPV4_ROUTE_GC_THRESH,
2844 .procname = "gc_thresh",
2845 .data = &ipv4_dst_ops.gc_thresh,
2846 .maxlen = sizeof(int),
2847 .mode = 0644,
2848 .proc_handler = &proc_dointvec,
2849 },
2850 {
2851 .ctl_name = NET_IPV4_ROUTE_MAX_SIZE,
2852 .procname = "max_size",
2853 .data = &ip_rt_max_size,
2854 .maxlen = sizeof(int),
2855 .mode = 0644,
2856 .proc_handler = &proc_dointvec,
2857 },
2858 {
2859 /* Deprecated. Use gc_min_interval_ms */
2860
2861 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL,
2862 .procname = "gc_min_interval",
2863 .data = &ip_rt_gc_min_interval,
2864 .maxlen = sizeof(int),
2865 .mode = 0644,
2866 .proc_handler = &proc_dointvec_jiffies,
2867 .strategy = &sysctl_jiffies,
2868 },
2869 {
2870 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS,
2871 .procname = "gc_min_interval_ms",
2872 .data = &ip_rt_gc_min_interval,
2873 .maxlen = sizeof(int),
2874 .mode = 0644,
2875 .proc_handler = &proc_dointvec_ms_jiffies,
2876 .strategy = &sysctl_ms_jiffies,
2877 },
2878 {
2879 .ctl_name = NET_IPV4_ROUTE_GC_TIMEOUT,
2880 .procname = "gc_timeout",
2881 .data = &ip_rt_gc_timeout,
2882 .maxlen = sizeof(int),
2883 .mode = 0644,
2884 .proc_handler = &proc_dointvec_jiffies,
2885 .strategy = &sysctl_jiffies,
2886 },
2887 {
2888 .ctl_name = NET_IPV4_ROUTE_GC_INTERVAL,
2889 .procname = "gc_interval",
2890 .data = &ip_rt_gc_interval,
2891 .maxlen = sizeof(int),
2892 .mode = 0644,
2893 .proc_handler = &proc_dointvec_jiffies,
2894 .strategy = &sysctl_jiffies,
2895 },
2896 {
2897 .ctl_name = NET_IPV4_ROUTE_REDIRECT_LOAD,
2898 .procname = "redirect_load",
2899 .data = &ip_rt_redirect_load,
2900 .maxlen = sizeof(int),
2901 .mode = 0644,
2902 .proc_handler = &proc_dointvec,
2903 },
2904 {
2905 .ctl_name = NET_IPV4_ROUTE_REDIRECT_NUMBER,
2906 .procname = "redirect_number",
2907 .data = &ip_rt_redirect_number,
2908 .maxlen = sizeof(int),
2909 .mode = 0644,
2910 .proc_handler = &proc_dointvec,
2911 },
2912 {
2913 .ctl_name = NET_IPV4_ROUTE_REDIRECT_SILENCE,
2914 .procname = "redirect_silence",
2915 .data = &ip_rt_redirect_silence,
2916 .maxlen = sizeof(int),
2917 .mode = 0644,
2918 .proc_handler = &proc_dointvec,
2919 },
2920 {
2921 .ctl_name = NET_IPV4_ROUTE_ERROR_COST,
2922 .procname = "error_cost",
2923 .data = &ip_rt_error_cost,
2924 .maxlen = sizeof(int),
2925 .mode = 0644,
2926 .proc_handler = &proc_dointvec,
2927 },
2928 {
2929 .ctl_name = NET_IPV4_ROUTE_ERROR_BURST,
2930 .procname = "error_burst",
2931 .data = &ip_rt_error_burst,
2932 .maxlen = sizeof(int),
2933 .mode = 0644,
2934 .proc_handler = &proc_dointvec,
2935 },
2936 {
2937 .ctl_name = NET_IPV4_ROUTE_GC_ELASTICITY,
2938 .procname = "gc_elasticity",
2939 .data = &ip_rt_gc_elasticity,
2940 .maxlen = sizeof(int),
2941 .mode = 0644,
2942 .proc_handler = &proc_dointvec,
2943 },
2944 {
2945 .ctl_name = NET_IPV4_ROUTE_MTU_EXPIRES,
2946 .procname = "mtu_expires",
2947 .data = &ip_rt_mtu_expires,
2948 .maxlen = sizeof(int),
2949 .mode = 0644,
2950 .proc_handler = &proc_dointvec_jiffies,
2951 .strategy = &sysctl_jiffies,
2952 },
2953 {
2954 .ctl_name = NET_IPV4_ROUTE_MIN_PMTU,
2955 .procname = "min_pmtu",
2956 .data = &ip_rt_min_pmtu,
2957 .maxlen = sizeof(int),
2958 .mode = 0644,
2959 .proc_handler = &proc_dointvec,
2960 },
2961 {
2962 .ctl_name = NET_IPV4_ROUTE_MIN_ADVMSS,
2963 .procname = "min_adv_mss",
2964 .data = &ip_rt_min_advmss,
2965 .maxlen = sizeof(int),
2966 .mode = 0644,
2967 .proc_handler = &proc_dointvec,
2968 },
2969 {
2970 .ctl_name = NET_IPV4_ROUTE_SECRET_INTERVAL,
2971 .procname = "secret_interval",
2972 .data = &ip_rt_secret_interval,
2973 .maxlen = sizeof(int),
2974 .mode = 0644,
2975 .proc_handler = &proc_dointvec_jiffies,
2976 .strategy = &sysctl_jiffies,
2977 },
2978 { .ctl_name = 0 }
2979 };
2980 #endif
2981
2982 #ifdef CONFIG_NET_CLS_ROUTE
2983 struct ip_rt_acct *ip_rt_acct __read_mostly;
2984 #endif /* CONFIG_NET_CLS_ROUTE */
2985
2986 static __initdata unsigned long rhash_entries;
2987 static int __init set_rhash_entries(char *str)
2988 {
2989 if (!str)
2990 return 0;
2991 rhash_entries = simple_strtoul(str, &str, 0);
2992 return 1;
2993 }
2994 __setup("rhash_entries=", set_rhash_entries);
2995
2996 int __init ip_rt_init(void)
2997 {
2998 int rc = 0;
2999
3000 atomic_set(&rt_genid, (int) ((num_physpages ^ (num_physpages>>8)) ^
3001 (jiffies ^ (jiffies >> 7))));
3002
3003 #ifdef CONFIG_NET_CLS_ROUTE
3004 ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct));
3005 if (!ip_rt_acct)
3006 panic("IP: failed to allocate ip_rt_acct\n");
3007 #endif
3008
3009 ipv4_dst_ops.kmem_cachep =
3010 kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
3011 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3012
3013 ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
3014
3015 rt_hash_table = (struct rt_hash_bucket *)
3016 alloc_large_system_hash("IP route cache",
3017 sizeof(struct rt_hash_bucket),
3018 rhash_entries,
3019 (num_physpages >= 128 * 1024) ?
3020 15 : 17,
3021 0,
3022 &rt_hash_log,
3023 &rt_hash_mask,
3024 0);
3025 memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3026 rt_hash_lock_init();
3027
3028 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3029 ip_rt_max_size = (rt_hash_mask + 1) * 16;
3030
3031 devinet_init();
3032 ip_fib_init();
3033
3034 setup_timer(&rt_secret_timer, rt_secret_rebuild, 0);
3035
3036 /* All the timers, started at system startup tend
3037 to synchronize. Perturb it a bit.
3038 */
3039 schedule_delayed_work(&expires_work,
3040 net_random() % ip_rt_gc_interval + ip_rt_gc_interval);
3041
3042 rt_secret_timer.expires = jiffies + net_random() % ip_rt_secret_interval +
3043 ip_rt_secret_interval;
3044 add_timer(&rt_secret_timer);
3045
3046 if (ip_rt_proc_init(&init_net))
3047 printk(KERN_ERR "Unable to create route proc files\n");
3048 #ifdef CONFIG_XFRM
3049 xfrm_init();
3050 xfrm4_init();
3051 #endif
3052 rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL);
3053
3054 return rc;
3055 }
3056
3057 EXPORT_SYMBOL(__ip_select_ident);
3058 EXPORT_SYMBOL(ip_route_input);
3059 EXPORT_SYMBOL(ip_route_output_key);
This page took 0.093286 seconds and 6 git commands to generate.