Merge branch 'davem-next' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[deliverable/linux.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #include <linux/kernel.h>
249 #include <linux/module.h>
250 #include <linux/types.h>
251 #include <linux/fcntl.h>
252 #include <linux/poll.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/splice.h>
257 #include <linux/net.h>
258 #include <linux/socket.h>
259 #include <linux/random.h>
260 #include <linux/bootmem.h>
261 #include <linux/cache.h>
262 #include <linux/err.h>
263 #include <linux/crypto.h>
264
265 #include <net/icmp.h>
266 #include <net/tcp.h>
267 #include <net/xfrm.h>
268 #include <net/ip.h>
269 #include <net/netdma.h>
270 #include <net/sock.h>
271
272 #include <asm/uaccess.h>
273 #include <asm/ioctls.h>
274
275 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
276
277 DEFINE_SNMP_STAT(struct tcp_mib, tcp_statistics) __read_mostly;
278
279 atomic_t tcp_orphan_count = ATOMIC_INIT(0);
280
281 EXPORT_SYMBOL_GPL(tcp_orphan_count);
282
283 int sysctl_tcp_mem[3] __read_mostly;
284 int sysctl_tcp_wmem[3] __read_mostly;
285 int sysctl_tcp_rmem[3] __read_mostly;
286
287 EXPORT_SYMBOL(sysctl_tcp_mem);
288 EXPORT_SYMBOL(sysctl_tcp_rmem);
289 EXPORT_SYMBOL(sysctl_tcp_wmem);
290
291 atomic_t tcp_memory_allocated; /* Current allocated memory. */
292 atomic_t tcp_sockets_allocated; /* Current number of TCP sockets. */
293
294 EXPORT_SYMBOL(tcp_memory_allocated);
295 EXPORT_SYMBOL(tcp_sockets_allocated);
296
297 /*
298 * TCP splice context
299 */
300 struct tcp_splice_state {
301 struct pipe_inode_info *pipe;
302 size_t len;
303 unsigned int flags;
304 };
305
306 /*
307 * Pressure flag: try to collapse.
308 * Technical note: it is used by multiple contexts non atomically.
309 * All the __sk_mem_schedule() is of this nature: accounting
310 * is strict, actions are advisory and have some latency.
311 */
312 int tcp_memory_pressure __read_mostly;
313
314 EXPORT_SYMBOL(tcp_memory_pressure);
315
316 void tcp_enter_memory_pressure(void)
317 {
318 if (!tcp_memory_pressure) {
319 NET_INC_STATS(LINUX_MIB_TCPMEMORYPRESSURES);
320 tcp_memory_pressure = 1;
321 }
322 }
323
324 EXPORT_SYMBOL(tcp_enter_memory_pressure);
325
326 /*
327 * Wait for a TCP event.
328 *
329 * Note that we don't need to lock the socket, as the upper poll layers
330 * take care of normal races (between the test and the event) and we don't
331 * go look at any of the socket buffers directly.
332 */
333 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
334 {
335 unsigned int mask;
336 struct sock *sk = sock->sk;
337 struct tcp_sock *tp = tcp_sk(sk);
338
339 poll_wait(file, sk->sk_sleep, wait);
340 if (sk->sk_state == TCP_LISTEN)
341 return inet_csk_listen_poll(sk);
342
343 /* Socket is not locked. We are protected from async events
344 by poll logic and correct handling of state changes
345 made by another threads is impossible in any case.
346 */
347
348 mask = 0;
349 if (sk->sk_err)
350 mask = POLLERR;
351
352 /*
353 * POLLHUP is certainly not done right. But poll() doesn't
354 * have a notion of HUP in just one direction, and for a
355 * socket the read side is more interesting.
356 *
357 * Some poll() documentation says that POLLHUP is incompatible
358 * with the POLLOUT/POLLWR flags, so somebody should check this
359 * all. But careful, it tends to be safer to return too many
360 * bits than too few, and you can easily break real applications
361 * if you don't tell them that something has hung up!
362 *
363 * Check-me.
364 *
365 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
366 * our fs/select.c). It means that after we received EOF,
367 * poll always returns immediately, making impossible poll() on write()
368 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
369 * if and only if shutdown has been made in both directions.
370 * Actually, it is interesting to look how Solaris and DUX
371 * solve this dilemma. I would prefer, if PULLHUP were maskable,
372 * then we could set it on SND_SHUTDOWN. BTW examples given
373 * in Stevens' books assume exactly this behaviour, it explains
374 * why PULLHUP is incompatible with POLLOUT. --ANK
375 *
376 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
377 * blocking on fresh not-connected or disconnected socket. --ANK
378 */
379 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
380 mask |= POLLHUP;
381 if (sk->sk_shutdown & RCV_SHUTDOWN)
382 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
383
384 /* Connected? */
385 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
386 /* Potential race condition. If read of tp below will
387 * escape above sk->sk_state, we can be illegally awaken
388 * in SYN_* states. */
389 if ((tp->rcv_nxt != tp->copied_seq) &&
390 (tp->urg_seq != tp->copied_seq ||
391 tp->rcv_nxt != tp->copied_seq + 1 ||
392 sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data))
393 mask |= POLLIN | POLLRDNORM;
394
395 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
396 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
397 mask |= POLLOUT | POLLWRNORM;
398 } else { /* send SIGIO later */
399 set_bit(SOCK_ASYNC_NOSPACE,
400 &sk->sk_socket->flags);
401 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
402
403 /* Race breaker. If space is freed after
404 * wspace test but before the flags are set,
405 * IO signal will be lost.
406 */
407 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
408 mask |= POLLOUT | POLLWRNORM;
409 }
410 }
411
412 if (tp->urg_data & TCP_URG_VALID)
413 mask |= POLLPRI;
414 }
415 return mask;
416 }
417
418 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
419 {
420 struct tcp_sock *tp = tcp_sk(sk);
421 int answ;
422
423 switch (cmd) {
424 case SIOCINQ:
425 if (sk->sk_state == TCP_LISTEN)
426 return -EINVAL;
427
428 lock_sock(sk);
429 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
430 answ = 0;
431 else if (sock_flag(sk, SOCK_URGINLINE) ||
432 !tp->urg_data ||
433 before(tp->urg_seq, tp->copied_seq) ||
434 !before(tp->urg_seq, tp->rcv_nxt)) {
435 answ = tp->rcv_nxt - tp->copied_seq;
436
437 /* Subtract 1, if FIN is in queue. */
438 if (answ && !skb_queue_empty(&sk->sk_receive_queue))
439 answ -=
440 tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin;
441 } else
442 answ = tp->urg_seq - tp->copied_seq;
443 release_sock(sk);
444 break;
445 case SIOCATMARK:
446 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
447 break;
448 case SIOCOUTQ:
449 if (sk->sk_state == TCP_LISTEN)
450 return -EINVAL;
451
452 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
453 answ = 0;
454 else
455 answ = tp->write_seq - tp->snd_una;
456 break;
457 default:
458 return -ENOIOCTLCMD;
459 }
460
461 return put_user(answ, (int __user *)arg);
462 }
463
464 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
465 {
466 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
467 tp->pushed_seq = tp->write_seq;
468 }
469
470 static inline int forced_push(struct tcp_sock *tp)
471 {
472 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
473 }
474
475 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
476 {
477 struct tcp_sock *tp = tcp_sk(sk);
478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
479
480 skb->csum = 0;
481 tcb->seq = tcb->end_seq = tp->write_seq;
482 tcb->flags = TCPCB_FLAG_ACK;
483 tcb->sacked = 0;
484 skb_header_release(skb);
485 tcp_add_write_queue_tail(sk, skb);
486 sk->sk_wmem_queued += skb->truesize;
487 sk_mem_charge(sk, skb->truesize);
488 if (tp->nonagle & TCP_NAGLE_PUSH)
489 tp->nonagle &= ~TCP_NAGLE_PUSH;
490 }
491
492 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
493 struct sk_buff *skb)
494 {
495 if (flags & MSG_OOB) {
496 tp->urg_mode = 1;
497 tp->snd_up = tp->write_seq;
498 }
499 }
500
501 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
502 int nonagle)
503 {
504 struct tcp_sock *tp = tcp_sk(sk);
505
506 if (tcp_send_head(sk)) {
507 struct sk_buff *skb = tcp_write_queue_tail(sk);
508 if (!(flags & MSG_MORE) || forced_push(tp))
509 tcp_mark_push(tp, skb);
510 tcp_mark_urg(tp, flags, skb);
511 __tcp_push_pending_frames(sk, mss_now,
512 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
513 }
514 }
515
516 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
517 unsigned int offset, size_t len)
518 {
519 struct tcp_splice_state *tss = rd_desc->arg.data;
520
521 return skb_splice_bits(skb, offset, tss->pipe, tss->len, tss->flags);
522 }
523
524 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
525 {
526 /* Store TCP splice context information in read_descriptor_t. */
527 read_descriptor_t rd_desc = {
528 .arg.data = tss,
529 };
530
531 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
532 }
533
534 /**
535 * tcp_splice_read - splice data from TCP socket to a pipe
536 * @sock: socket to splice from
537 * @ppos: position (not valid)
538 * @pipe: pipe to splice to
539 * @len: number of bytes to splice
540 * @flags: splice modifier flags
541 *
542 * Description:
543 * Will read pages from given socket and fill them into a pipe.
544 *
545 **/
546 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
547 struct pipe_inode_info *pipe, size_t len,
548 unsigned int flags)
549 {
550 struct sock *sk = sock->sk;
551 struct tcp_splice_state tss = {
552 .pipe = pipe,
553 .len = len,
554 .flags = flags,
555 };
556 long timeo;
557 ssize_t spliced;
558 int ret;
559
560 /*
561 * We can't seek on a socket input
562 */
563 if (unlikely(*ppos))
564 return -ESPIPE;
565
566 ret = spliced = 0;
567
568 lock_sock(sk);
569
570 timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
571 while (tss.len) {
572 ret = __tcp_splice_read(sk, &tss);
573 if (ret < 0)
574 break;
575 else if (!ret) {
576 if (spliced)
577 break;
578 if (flags & SPLICE_F_NONBLOCK) {
579 ret = -EAGAIN;
580 break;
581 }
582 if (sock_flag(sk, SOCK_DONE))
583 break;
584 if (sk->sk_err) {
585 ret = sock_error(sk);
586 break;
587 }
588 if (sk->sk_shutdown & RCV_SHUTDOWN)
589 break;
590 if (sk->sk_state == TCP_CLOSE) {
591 /*
592 * This occurs when user tries to read
593 * from never connected socket.
594 */
595 if (!sock_flag(sk, SOCK_DONE))
596 ret = -ENOTCONN;
597 break;
598 }
599 if (!timeo) {
600 ret = -EAGAIN;
601 break;
602 }
603 sk_wait_data(sk, &timeo);
604 if (signal_pending(current)) {
605 ret = sock_intr_errno(timeo);
606 break;
607 }
608 continue;
609 }
610 tss.len -= ret;
611 spliced += ret;
612
613 release_sock(sk);
614 lock_sock(sk);
615
616 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
617 (sk->sk_shutdown & RCV_SHUTDOWN) || !timeo ||
618 signal_pending(current))
619 break;
620 }
621
622 release_sock(sk);
623
624 if (spliced)
625 return spliced;
626
627 return ret;
628 }
629
630 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
631 {
632 struct sk_buff *skb;
633
634 /* The TCP header must be at least 32-bit aligned. */
635 size = ALIGN(size, 4);
636
637 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
638 if (skb) {
639 if (sk_wmem_schedule(sk, skb->truesize)) {
640 /*
641 * Make sure that we have exactly size bytes
642 * available to the caller, no more, no less.
643 */
644 skb_reserve(skb, skb_tailroom(skb) - size);
645 return skb;
646 }
647 __kfree_skb(skb);
648 } else {
649 sk->sk_prot->enter_memory_pressure();
650 sk_stream_moderate_sndbuf(sk);
651 }
652 return NULL;
653 }
654
655 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
656 size_t psize, int flags)
657 {
658 struct tcp_sock *tp = tcp_sk(sk);
659 int mss_now, size_goal;
660 int err;
661 ssize_t copied;
662 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
663
664 /* Wait for a connection to finish. */
665 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
666 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
667 goto out_err;
668
669 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
670
671 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
672 size_goal = tp->xmit_size_goal;
673 copied = 0;
674
675 err = -EPIPE;
676 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
677 goto do_error;
678
679 while (psize > 0) {
680 struct sk_buff *skb = tcp_write_queue_tail(sk);
681 struct page *page = pages[poffset / PAGE_SIZE];
682 int copy, i, can_coalesce;
683 int offset = poffset % PAGE_SIZE;
684 int size = min_t(size_t, psize, PAGE_SIZE - offset);
685
686 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
687 new_segment:
688 if (!sk_stream_memory_free(sk))
689 goto wait_for_sndbuf;
690
691 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
692 if (!skb)
693 goto wait_for_memory;
694
695 skb_entail(sk, skb);
696 copy = size_goal;
697 }
698
699 if (copy > size)
700 copy = size;
701
702 i = skb_shinfo(skb)->nr_frags;
703 can_coalesce = skb_can_coalesce(skb, i, page, offset);
704 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
705 tcp_mark_push(tp, skb);
706 goto new_segment;
707 }
708 if (!sk_wmem_schedule(sk, copy))
709 goto wait_for_memory;
710
711 if (can_coalesce) {
712 skb_shinfo(skb)->frags[i - 1].size += copy;
713 } else {
714 get_page(page);
715 skb_fill_page_desc(skb, i, page, offset, copy);
716 }
717
718 skb->len += copy;
719 skb->data_len += copy;
720 skb->truesize += copy;
721 sk->sk_wmem_queued += copy;
722 sk_mem_charge(sk, copy);
723 skb->ip_summed = CHECKSUM_PARTIAL;
724 tp->write_seq += copy;
725 TCP_SKB_CB(skb)->end_seq += copy;
726 skb_shinfo(skb)->gso_segs = 0;
727
728 if (!copied)
729 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
730
731 copied += copy;
732 poffset += copy;
733 if (!(psize -= copy))
734 goto out;
735
736 if (skb->len < size_goal || (flags & MSG_OOB))
737 continue;
738
739 if (forced_push(tp)) {
740 tcp_mark_push(tp, skb);
741 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
742 } else if (skb == tcp_send_head(sk))
743 tcp_push_one(sk, mss_now);
744 continue;
745
746 wait_for_sndbuf:
747 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
748 wait_for_memory:
749 if (copied)
750 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
751
752 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
753 goto do_error;
754
755 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
756 size_goal = tp->xmit_size_goal;
757 }
758
759 out:
760 if (copied)
761 tcp_push(sk, flags, mss_now, tp->nonagle);
762 return copied;
763
764 do_error:
765 if (copied)
766 goto out;
767 out_err:
768 return sk_stream_error(sk, flags, err);
769 }
770
771 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
772 size_t size, int flags)
773 {
774 ssize_t res;
775 struct sock *sk = sock->sk;
776
777 if (!(sk->sk_route_caps & NETIF_F_SG) ||
778 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
779 return sock_no_sendpage(sock, page, offset, size, flags);
780
781 lock_sock(sk);
782 TCP_CHECK_TIMER(sk);
783 res = do_tcp_sendpages(sk, &page, offset, size, flags);
784 TCP_CHECK_TIMER(sk);
785 release_sock(sk);
786 return res;
787 }
788
789 #define TCP_PAGE(sk) (sk->sk_sndmsg_page)
790 #define TCP_OFF(sk) (sk->sk_sndmsg_off)
791
792 static inline int select_size(struct sock *sk)
793 {
794 struct tcp_sock *tp = tcp_sk(sk);
795 int tmp = tp->mss_cache;
796
797 if (sk->sk_route_caps & NETIF_F_SG) {
798 if (sk_can_gso(sk))
799 tmp = 0;
800 else {
801 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
802
803 if (tmp >= pgbreak &&
804 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
805 tmp = pgbreak;
806 }
807 }
808
809 return tmp;
810 }
811
812 int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
813 size_t size)
814 {
815 struct sock *sk = sock->sk;
816 struct iovec *iov;
817 struct tcp_sock *tp = tcp_sk(sk);
818 struct sk_buff *skb;
819 int iovlen, flags;
820 int mss_now, size_goal;
821 int err, copied;
822 long timeo;
823
824 lock_sock(sk);
825 TCP_CHECK_TIMER(sk);
826
827 flags = msg->msg_flags;
828 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
829
830 /* Wait for a connection to finish. */
831 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
832 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
833 goto out_err;
834
835 /* This should be in poll */
836 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
837
838 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
839 size_goal = tp->xmit_size_goal;
840
841 /* Ok commence sending. */
842 iovlen = msg->msg_iovlen;
843 iov = msg->msg_iov;
844 copied = 0;
845
846 err = -EPIPE;
847 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
848 goto do_error;
849
850 while (--iovlen >= 0) {
851 int seglen = iov->iov_len;
852 unsigned char __user *from = iov->iov_base;
853
854 iov++;
855
856 while (seglen > 0) {
857 int copy;
858
859 skb = tcp_write_queue_tail(sk);
860
861 if (!tcp_send_head(sk) ||
862 (copy = size_goal - skb->len) <= 0) {
863
864 new_segment:
865 /* Allocate new segment. If the interface is SG,
866 * allocate skb fitting to single page.
867 */
868 if (!sk_stream_memory_free(sk))
869 goto wait_for_sndbuf;
870
871 skb = sk_stream_alloc_skb(sk, select_size(sk),
872 sk->sk_allocation);
873 if (!skb)
874 goto wait_for_memory;
875
876 /*
877 * Check whether we can use HW checksum.
878 */
879 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
880 skb->ip_summed = CHECKSUM_PARTIAL;
881
882 skb_entail(sk, skb);
883 copy = size_goal;
884 }
885
886 /* Try to append data to the end of skb. */
887 if (copy > seglen)
888 copy = seglen;
889
890 /* Where to copy to? */
891 if (skb_tailroom(skb) > 0) {
892 /* We have some space in skb head. Superb! */
893 if (copy > skb_tailroom(skb))
894 copy = skb_tailroom(skb);
895 if ((err = skb_add_data(skb, from, copy)) != 0)
896 goto do_fault;
897 } else {
898 int merge = 0;
899 int i = skb_shinfo(skb)->nr_frags;
900 struct page *page = TCP_PAGE(sk);
901 int off = TCP_OFF(sk);
902
903 if (skb_can_coalesce(skb, i, page, off) &&
904 off != PAGE_SIZE) {
905 /* We can extend the last page
906 * fragment. */
907 merge = 1;
908 } else if (i == MAX_SKB_FRAGS ||
909 (!i &&
910 !(sk->sk_route_caps & NETIF_F_SG))) {
911 /* Need to add new fragment and cannot
912 * do this because interface is non-SG,
913 * or because all the page slots are
914 * busy. */
915 tcp_mark_push(tp, skb);
916 goto new_segment;
917 } else if (page) {
918 if (off == PAGE_SIZE) {
919 put_page(page);
920 TCP_PAGE(sk) = page = NULL;
921 off = 0;
922 }
923 } else
924 off = 0;
925
926 if (copy > PAGE_SIZE - off)
927 copy = PAGE_SIZE - off;
928
929 if (!sk_wmem_schedule(sk, copy))
930 goto wait_for_memory;
931
932 if (!page) {
933 /* Allocate new cache page. */
934 if (!(page = sk_stream_alloc_page(sk)))
935 goto wait_for_memory;
936 }
937
938 /* Time to copy data. We are close to
939 * the end! */
940 err = skb_copy_to_page(sk, from, skb, page,
941 off, copy);
942 if (err) {
943 /* If this page was new, give it to the
944 * socket so it does not get leaked.
945 */
946 if (!TCP_PAGE(sk)) {
947 TCP_PAGE(sk) = page;
948 TCP_OFF(sk) = 0;
949 }
950 goto do_error;
951 }
952
953 /* Update the skb. */
954 if (merge) {
955 skb_shinfo(skb)->frags[i - 1].size +=
956 copy;
957 } else {
958 skb_fill_page_desc(skb, i, page, off, copy);
959 if (TCP_PAGE(sk)) {
960 get_page(page);
961 } else if (off + copy < PAGE_SIZE) {
962 get_page(page);
963 TCP_PAGE(sk) = page;
964 }
965 }
966
967 TCP_OFF(sk) = off + copy;
968 }
969
970 if (!copied)
971 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
972
973 tp->write_seq += copy;
974 TCP_SKB_CB(skb)->end_seq += copy;
975 skb_shinfo(skb)->gso_segs = 0;
976
977 from += copy;
978 copied += copy;
979 if ((seglen -= copy) == 0 && iovlen == 0)
980 goto out;
981
982 if (skb->len < size_goal || (flags & MSG_OOB))
983 continue;
984
985 if (forced_push(tp)) {
986 tcp_mark_push(tp, skb);
987 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
988 } else if (skb == tcp_send_head(sk))
989 tcp_push_one(sk, mss_now);
990 continue;
991
992 wait_for_sndbuf:
993 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
994 wait_for_memory:
995 if (copied)
996 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
997
998 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
999 goto do_error;
1000
1001 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
1002 size_goal = tp->xmit_size_goal;
1003 }
1004 }
1005
1006 out:
1007 if (copied)
1008 tcp_push(sk, flags, mss_now, tp->nonagle);
1009 TCP_CHECK_TIMER(sk);
1010 release_sock(sk);
1011 return copied;
1012
1013 do_fault:
1014 if (!skb->len) {
1015 tcp_unlink_write_queue(skb, sk);
1016 /* It is the one place in all of TCP, except connection
1017 * reset, where we can be unlinking the send_head.
1018 */
1019 tcp_check_send_head(sk, skb);
1020 sk_wmem_free_skb(sk, skb);
1021 }
1022
1023 do_error:
1024 if (copied)
1025 goto out;
1026 out_err:
1027 err = sk_stream_error(sk, flags, err);
1028 TCP_CHECK_TIMER(sk);
1029 release_sock(sk);
1030 return err;
1031 }
1032
1033 /*
1034 * Handle reading urgent data. BSD has very simple semantics for
1035 * this, no blocking and very strange errors 8)
1036 */
1037
1038 static int tcp_recv_urg(struct sock *sk, long timeo,
1039 struct msghdr *msg, int len, int flags,
1040 int *addr_len)
1041 {
1042 struct tcp_sock *tp = tcp_sk(sk);
1043
1044 /* No URG data to read. */
1045 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1046 tp->urg_data == TCP_URG_READ)
1047 return -EINVAL; /* Yes this is right ! */
1048
1049 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1050 return -ENOTCONN;
1051
1052 if (tp->urg_data & TCP_URG_VALID) {
1053 int err = 0;
1054 char c = tp->urg_data;
1055
1056 if (!(flags & MSG_PEEK))
1057 tp->urg_data = TCP_URG_READ;
1058
1059 /* Read urgent data. */
1060 msg->msg_flags |= MSG_OOB;
1061
1062 if (len > 0) {
1063 if (!(flags & MSG_TRUNC))
1064 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1065 len = 1;
1066 } else
1067 msg->msg_flags |= MSG_TRUNC;
1068
1069 return err ? -EFAULT : len;
1070 }
1071
1072 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1073 return 0;
1074
1075 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1076 * the available implementations agree in this case:
1077 * this call should never block, independent of the
1078 * blocking state of the socket.
1079 * Mike <pall@rz.uni-karlsruhe.de>
1080 */
1081 return -EAGAIN;
1082 }
1083
1084 /* Clean up the receive buffer for full frames taken by the user,
1085 * then send an ACK if necessary. COPIED is the number of bytes
1086 * tcp_recvmsg has given to the user so far, it speeds up the
1087 * calculation of whether or not we must ACK for the sake of
1088 * a window update.
1089 */
1090 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1091 {
1092 struct tcp_sock *tp = tcp_sk(sk);
1093 int time_to_ack = 0;
1094
1095 #if TCP_DEBUG
1096 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1097
1098 BUG_TRAP(!skb || before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
1099 #endif
1100
1101 if (inet_csk_ack_scheduled(sk)) {
1102 const struct inet_connection_sock *icsk = inet_csk(sk);
1103 /* Delayed ACKs frequently hit locked sockets during bulk
1104 * receive. */
1105 if (icsk->icsk_ack.blocked ||
1106 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1107 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1108 /*
1109 * If this read emptied read buffer, we send ACK, if
1110 * connection is not bidirectional, user drained
1111 * receive buffer and there was a small segment
1112 * in queue.
1113 */
1114 (copied > 0 &&
1115 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1116 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1117 !icsk->icsk_ack.pingpong)) &&
1118 !atomic_read(&sk->sk_rmem_alloc)))
1119 time_to_ack = 1;
1120 }
1121
1122 /* We send an ACK if we can now advertise a non-zero window
1123 * which has been raised "significantly".
1124 *
1125 * Even if window raised up to infinity, do not send window open ACK
1126 * in states, where we will not receive more. It is useless.
1127 */
1128 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1129 __u32 rcv_window_now = tcp_receive_window(tp);
1130
1131 /* Optimize, __tcp_select_window() is not cheap. */
1132 if (2*rcv_window_now <= tp->window_clamp) {
1133 __u32 new_window = __tcp_select_window(sk);
1134
1135 /* Send ACK now, if this read freed lots of space
1136 * in our buffer. Certainly, new_window is new window.
1137 * We can advertise it now, if it is not less than current one.
1138 * "Lots" means "at least twice" here.
1139 */
1140 if (new_window && new_window >= 2 * rcv_window_now)
1141 time_to_ack = 1;
1142 }
1143 }
1144 if (time_to_ack)
1145 tcp_send_ack(sk);
1146 }
1147
1148 static void tcp_prequeue_process(struct sock *sk)
1149 {
1150 struct sk_buff *skb;
1151 struct tcp_sock *tp = tcp_sk(sk);
1152
1153 NET_INC_STATS_USER(LINUX_MIB_TCPPREQUEUED);
1154
1155 /* RX process wants to run with disabled BHs, though it is not
1156 * necessary */
1157 local_bh_disable();
1158 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1159 sk->sk_backlog_rcv(sk, skb);
1160 local_bh_enable();
1161
1162 /* Clear memory counter. */
1163 tp->ucopy.memory = 0;
1164 }
1165
1166 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1167 {
1168 struct sk_buff *skb;
1169 u32 offset;
1170
1171 skb_queue_walk(&sk->sk_receive_queue, skb) {
1172 offset = seq - TCP_SKB_CB(skb)->seq;
1173 if (tcp_hdr(skb)->syn)
1174 offset--;
1175 if (offset < skb->len || tcp_hdr(skb)->fin) {
1176 *off = offset;
1177 return skb;
1178 }
1179 }
1180 return NULL;
1181 }
1182
1183 /*
1184 * This routine provides an alternative to tcp_recvmsg() for routines
1185 * that would like to handle copying from skbuffs directly in 'sendfile'
1186 * fashion.
1187 * Note:
1188 * - It is assumed that the socket was locked by the caller.
1189 * - The routine does not block.
1190 * - At present, there is no support for reading OOB data
1191 * or for 'peeking' the socket using this routine
1192 * (although both would be easy to implement).
1193 */
1194 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1195 sk_read_actor_t recv_actor)
1196 {
1197 struct sk_buff *skb;
1198 struct tcp_sock *tp = tcp_sk(sk);
1199 u32 seq = tp->copied_seq;
1200 u32 offset;
1201 int copied = 0;
1202
1203 if (sk->sk_state == TCP_LISTEN)
1204 return -ENOTCONN;
1205 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1206 if (offset < skb->len) {
1207 size_t used, len;
1208
1209 len = skb->len - offset;
1210 /* Stop reading if we hit a patch of urgent data */
1211 if (tp->urg_data) {
1212 u32 urg_offset = tp->urg_seq - seq;
1213 if (urg_offset < len)
1214 len = urg_offset;
1215 if (!len)
1216 break;
1217 }
1218 used = recv_actor(desc, skb, offset, len);
1219 if (used < 0) {
1220 if (!copied)
1221 copied = used;
1222 break;
1223 } else if (used <= len) {
1224 seq += used;
1225 copied += used;
1226 offset += used;
1227 }
1228 /*
1229 * If recv_actor drops the lock (e.g. TCP splice
1230 * receive) the skb pointer might be invalid when
1231 * getting here: tcp_collapse might have deleted it
1232 * while aggregating skbs from the socket queue.
1233 */
1234 skb = tcp_recv_skb(sk, seq-1, &offset);
1235 if (!skb || (offset+1 != skb->len))
1236 break;
1237 }
1238 if (tcp_hdr(skb)->fin) {
1239 sk_eat_skb(sk, skb, 0);
1240 ++seq;
1241 break;
1242 }
1243 sk_eat_skb(sk, skb, 0);
1244 if (!desc->count)
1245 break;
1246 }
1247 tp->copied_seq = seq;
1248
1249 tcp_rcv_space_adjust(sk);
1250
1251 /* Clean up data we have read: This will do ACK frames. */
1252 if (copied > 0)
1253 tcp_cleanup_rbuf(sk, copied);
1254 return copied;
1255 }
1256
1257 /*
1258 * This routine copies from a sock struct into the user buffer.
1259 *
1260 * Technical note: in 2.3 we work on _locked_ socket, so that
1261 * tricks with *seq access order and skb->users are not required.
1262 * Probably, code can be easily improved even more.
1263 */
1264
1265 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1266 size_t len, int nonblock, int flags, int *addr_len)
1267 {
1268 struct tcp_sock *tp = tcp_sk(sk);
1269 int copied = 0;
1270 u32 peek_seq;
1271 u32 *seq;
1272 unsigned long used;
1273 int err;
1274 int target; /* Read at least this many bytes */
1275 long timeo;
1276 struct task_struct *user_recv = NULL;
1277 int copied_early = 0;
1278 struct sk_buff *skb;
1279
1280 lock_sock(sk);
1281
1282 TCP_CHECK_TIMER(sk);
1283
1284 err = -ENOTCONN;
1285 if (sk->sk_state == TCP_LISTEN)
1286 goto out;
1287
1288 timeo = sock_rcvtimeo(sk, nonblock);
1289
1290 /* Urgent data needs to be handled specially. */
1291 if (flags & MSG_OOB)
1292 goto recv_urg;
1293
1294 seq = &tp->copied_seq;
1295 if (flags & MSG_PEEK) {
1296 peek_seq = tp->copied_seq;
1297 seq = &peek_seq;
1298 }
1299
1300 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1301
1302 #ifdef CONFIG_NET_DMA
1303 tp->ucopy.dma_chan = NULL;
1304 preempt_disable();
1305 skb = skb_peek_tail(&sk->sk_receive_queue);
1306 {
1307 int available = 0;
1308
1309 if (skb)
1310 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1311 if ((available < target) &&
1312 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1313 !sysctl_tcp_low_latency &&
1314 __get_cpu_var(softnet_data).net_dma) {
1315 preempt_enable_no_resched();
1316 tp->ucopy.pinned_list =
1317 dma_pin_iovec_pages(msg->msg_iov, len);
1318 } else {
1319 preempt_enable_no_resched();
1320 }
1321 }
1322 #endif
1323
1324 do {
1325 u32 offset;
1326
1327 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1328 if (tp->urg_data && tp->urg_seq == *seq) {
1329 if (copied)
1330 break;
1331 if (signal_pending(current)) {
1332 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1333 break;
1334 }
1335 }
1336
1337 /* Next get a buffer. */
1338
1339 skb = skb_peek(&sk->sk_receive_queue);
1340 do {
1341 if (!skb)
1342 break;
1343
1344 /* Now that we have two receive queues this
1345 * shouldn't happen.
1346 */
1347 if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1348 printk(KERN_INFO "recvmsg bug: copied %X "
1349 "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1350 break;
1351 }
1352 offset = *seq - TCP_SKB_CB(skb)->seq;
1353 if (tcp_hdr(skb)->syn)
1354 offset--;
1355 if (offset < skb->len)
1356 goto found_ok_skb;
1357 if (tcp_hdr(skb)->fin)
1358 goto found_fin_ok;
1359 BUG_TRAP(flags & MSG_PEEK);
1360 skb = skb->next;
1361 } while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1362
1363 /* Well, if we have backlog, try to process it now yet. */
1364
1365 if (copied >= target && !sk->sk_backlog.tail)
1366 break;
1367
1368 if (copied) {
1369 if (sk->sk_err ||
1370 sk->sk_state == TCP_CLOSE ||
1371 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1372 !timeo ||
1373 signal_pending(current) ||
1374 (flags & MSG_PEEK))
1375 break;
1376 } else {
1377 if (sock_flag(sk, SOCK_DONE))
1378 break;
1379
1380 if (sk->sk_err) {
1381 copied = sock_error(sk);
1382 break;
1383 }
1384
1385 if (sk->sk_shutdown & RCV_SHUTDOWN)
1386 break;
1387
1388 if (sk->sk_state == TCP_CLOSE) {
1389 if (!sock_flag(sk, SOCK_DONE)) {
1390 /* This occurs when user tries to read
1391 * from never connected socket.
1392 */
1393 copied = -ENOTCONN;
1394 break;
1395 }
1396 break;
1397 }
1398
1399 if (!timeo) {
1400 copied = -EAGAIN;
1401 break;
1402 }
1403
1404 if (signal_pending(current)) {
1405 copied = sock_intr_errno(timeo);
1406 break;
1407 }
1408 }
1409
1410 tcp_cleanup_rbuf(sk, copied);
1411
1412 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1413 /* Install new reader */
1414 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1415 user_recv = current;
1416 tp->ucopy.task = user_recv;
1417 tp->ucopy.iov = msg->msg_iov;
1418 }
1419
1420 tp->ucopy.len = len;
1421
1422 BUG_TRAP(tp->copied_seq == tp->rcv_nxt ||
1423 (flags & (MSG_PEEK | MSG_TRUNC)));
1424
1425 /* Ugly... If prequeue is not empty, we have to
1426 * process it before releasing socket, otherwise
1427 * order will be broken at second iteration.
1428 * More elegant solution is required!!!
1429 *
1430 * Look: we have the following (pseudo)queues:
1431 *
1432 * 1. packets in flight
1433 * 2. backlog
1434 * 3. prequeue
1435 * 4. receive_queue
1436 *
1437 * Each queue can be processed only if the next ones
1438 * are empty. At this point we have empty receive_queue.
1439 * But prequeue _can_ be not empty after 2nd iteration,
1440 * when we jumped to start of loop because backlog
1441 * processing added something to receive_queue.
1442 * We cannot release_sock(), because backlog contains
1443 * packets arrived _after_ prequeued ones.
1444 *
1445 * Shortly, algorithm is clear --- to process all
1446 * the queues in order. We could make it more directly,
1447 * requeueing packets from backlog to prequeue, if
1448 * is not empty. It is more elegant, but eats cycles,
1449 * unfortunately.
1450 */
1451 if (!skb_queue_empty(&tp->ucopy.prequeue))
1452 goto do_prequeue;
1453
1454 /* __ Set realtime policy in scheduler __ */
1455 }
1456
1457 if (copied >= target) {
1458 /* Do not sleep, just process backlog. */
1459 release_sock(sk);
1460 lock_sock(sk);
1461 } else
1462 sk_wait_data(sk, &timeo);
1463
1464 #ifdef CONFIG_NET_DMA
1465 tp->ucopy.wakeup = 0;
1466 #endif
1467
1468 if (user_recv) {
1469 int chunk;
1470
1471 /* __ Restore normal policy in scheduler __ */
1472
1473 if ((chunk = len - tp->ucopy.len) != 0) {
1474 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1475 len -= chunk;
1476 copied += chunk;
1477 }
1478
1479 if (tp->rcv_nxt == tp->copied_seq &&
1480 !skb_queue_empty(&tp->ucopy.prequeue)) {
1481 do_prequeue:
1482 tcp_prequeue_process(sk);
1483
1484 if ((chunk = len - tp->ucopy.len) != 0) {
1485 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1486 len -= chunk;
1487 copied += chunk;
1488 }
1489 }
1490 }
1491 if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1492 if (net_ratelimit())
1493 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1494 current->comm, task_pid_nr(current));
1495 peek_seq = tp->copied_seq;
1496 }
1497 continue;
1498
1499 found_ok_skb:
1500 /* Ok so how much can we use? */
1501 used = skb->len - offset;
1502 if (len < used)
1503 used = len;
1504
1505 /* Do we have urgent data here? */
1506 if (tp->urg_data) {
1507 u32 urg_offset = tp->urg_seq - *seq;
1508 if (urg_offset < used) {
1509 if (!urg_offset) {
1510 if (!sock_flag(sk, SOCK_URGINLINE)) {
1511 ++*seq;
1512 offset++;
1513 used--;
1514 if (!used)
1515 goto skip_copy;
1516 }
1517 } else
1518 used = urg_offset;
1519 }
1520 }
1521
1522 if (!(flags & MSG_TRUNC)) {
1523 #ifdef CONFIG_NET_DMA
1524 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1525 tp->ucopy.dma_chan = get_softnet_dma();
1526
1527 if (tp->ucopy.dma_chan) {
1528 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1529 tp->ucopy.dma_chan, skb, offset,
1530 msg->msg_iov, used,
1531 tp->ucopy.pinned_list);
1532
1533 if (tp->ucopy.dma_cookie < 0) {
1534
1535 printk(KERN_ALERT "dma_cookie < 0\n");
1536
1537 /* Exception. Bailout! */
1538 if (!copied)
1539 copied = -EFAULT;
1540 break;
1541 }
1542 if ((offset + used) == skb->len)
1543 copied_early = 1;
1544
1545 } else
1546 #endif
1547 {
1548 err = skb_copy_datagram_iovec(skb, offset,
1549 msg->msg_iov, used);
1550 if (err) {
1551 /* Exception. Bailout! */
1552 if (!copied)
1553 copied = -EFAULT;
1554 break;
1555 }
1556 }
1557 }
1558
1559 *seq += used;
1560 copied += used;
1561 len -= used;
1562
1563 tcp_rcv_space_adjust(sk);
1564
1565 skip_copy:
1566 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1567 tp->urg_data = 0;
1568 tcp_fast_path_check(sk);
1569 }
1570 if (used + offset < skb->len)
1571 continue;
1572
1573 if (tcp_hdr(skb)->fin)
1574 goto found_fin_ok;
1575 if (!(flags & MSG_PEEK)) {
1576 sk_eat_skb(sk, skb, copied_early);
1577 copied_early = 0;
1578 }
1579 continue;
1580
1581 found_fin_ok:
1582 /* Process the FIN. */
1583 ++*seq;
1584 if (!(flags & MSG_PEEK)) {
1585 sk_eat_skb(sk, skb, copied_early);
1586 copied_early = 0;
1587 }
1588 break;
1589 } while (len > 0);
1590
1591 if (user_recv) {
1592 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1593 int chunk;
1594
1595 tp->ucopy.len = copied > 0 ? len : 0;
1596
1597 tcp_prequeue_process(sk);
1598
1599 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1600 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1601 len -= chunk;
1602 copied += chunk;
1603 }
1604 }
1605
1606 tp->ucopy.task = NULL;
1607 tp->ucopy.len = 0;
1608 }
1609
1610 #ifdef CONFIG_NET_DMA
1611 if (tp->ucopy.dma_chan) {
1612 dma_cookie_t done, used;
1613
1614 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1615
1616 while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1617 tp->ucopy.dma_cookie, &done,
1618 &used) == DMA_IN_PROGRESS) {
1619 /* do partial cleanup of sk_async_wait_queue */
1620 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1621 (dma_async_is_complete(skb->dma_cookie, done,
1622 used) == DMA_SUCCESS)) {
1623 __skb_dequeue(&sk->sk_async_wait_queue);
1624 kfree_skb(skb);
1625 }
1626 }
1627
1628 /* Safe to free early-copied skbs now */
1629 __skb_queue_purge(&sk->sk_async_wait_queue);
1630 dma_chan_put(tp->ucopy.dma_chan);
1631 tp->ucopy.dma_chan = NULL;
1632 }
1633 if (tp->ucopy.pinned_list) {
1634 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1635 tp->ucopy.pinned_list = NULL;
1636 }
1637 #endif
1638
1639 /* According to UNIX98, msg_name/msg_namelen are ignored
1640 * on connected socket. I was just happy when found this 8) --ANK
1641 */
1642
1643 /* Clean up data we have read: This will do ACK frames. */
1644 tcp_cleanup_rbuf(sk, copied);
1645
1646 TCP_CHECK_TIMER(sk);
1647 release_sock(sk);
1648 return copied;
1649
1650 out:
1651 TCP_CHECK_TIMER(sk);
1652 release_sock(sk);
1653 return err;
1654
1655 recv_urg:
1656 err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1657 goto out;
1658 }
1659
1660 void tcp_set_state(struct sock *sk, int state)
1661 {
1662 int oldstate = sk->sk_state;
1663
1664 switch (state) {
1665 case TCP_ESTABLISHED:
1666 if (oldstate != TCP_ESTABLISHED)
1667 TCP_INC_STATS(TCP_MIB_CURRESTAB);
1668 break;
1669
1670 case TCP_CLOSE:
1671 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1672 TCP_INC_STATS(TCP_MIB_ESTABRESETS);
1673
1674 sk->sk_prot->unhash(sk);
1675 if (inet_csk(sk)->icsk_bind_hash &&
1676 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1677 inet_put_port(sk);
1678 /* fall through */
1679 default:
1680 if (oldstate==TCP_ESTABLISHED)
1681 TCP_DEC_STATS(TCP_MIB_CURRESTAB);
1682 }
1683
1684 /* Change state AFTER socket is unhashed to avoid closed
1685 * socket sitting in hash tables.
1686 */
1687 sk->sk_state = state;
1688
1689 #ifdef STATE_TRACE
1690 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n",sk, statename[oldstate],statename[state]);
1691 #endif
1692 }
1693 EXPORT_SYMBOL_GPL(tcp_set_state);
1694
1695 /*
1696 * State processing on a close. This implements the state shift for
1697 * sending our FIN frame. Note that we only send a FIN for some
1698 * states. A shutdown() may have already sent the FIN, or we may be
1699 * closed.
1700 */
1701
1702 static const unsigned char new_state[16] = {
1703 /* current state: new state: action: */
1704 /* (Invalid) */ TCP_CLOSE,
1705 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1706 /* TCP_SYN_SENT */ TCP_CLOSE,
1707 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1708 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1709 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1710 /* TCP_TIME_WAIT */ TCP_CLOSE,
1711 /* TCP_CLOSE */ TCP_CLOSE,
1712 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1713 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1714 /* TCP_LISTEN */ TCP_CLOSE,
1715 /* TCP_CLOSING */ TCP_CLOSING,
1716 };
1717
1718 static int tcp_close_state(struct sock *sk)
1719 {
1720 int next = (int)new_state[sk->sk_state];
1721 int ns = next & TCP_STATE_MASK;
1722
1723 tcp_set_state(sk, ns);
1724
1725 return next & TCP_ACTION_FIN;
1726 }
1727
1728 /*
1729 * Shutdown the sending side of a connection. Much like close except
1730 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1731 */
1732
1733 void tcp_shutdown(struct sock *sk, int how)
1734 {
1735 /* We need to grab some memory, and put together a FIN,
1736 * and then put it into the queue to be sent.
1737 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1738 */
1739 if (!(how & SEND_SHUTDOWN))
1740 return;
1741
1742 /* If we've already sent a FIN, or it's a closed state, skip this. */
1743 if ((1 << sk->sk_state) &
1744 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1745 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1746 /* Clear out any half completed packets. FIN if needed. */
1747 if (tcp_close_state(sk))
1748 tcp_send_fin(sk);
1749 }
1750 }
1751
1752 void tcp_close(struct sock *sk, long timeout)
1753 {
1754 struct sk_buff *skb;
1755 int data_was_unread = 0;
1756 int state;
1757
1758 lock_sock(sk);
1759 sk->sk_shutdown = SHUTDOWN_MASK;
1760
1761 if (sk->sk_state == TCP_LISTEN) {
1762 tcp_set_state(sk, TCP_CLOSE);
1763
1764 /* Special case. */
1765 inet_csk_listen_stop(sk);
1766
1767 goto adjudge_to_death;
1768 }
1769
1770 /* We need to flush the recv. buffs. We do this only on the
1771 * descriptor close, not protocol-sourced closes, because the
1772 * reader process may not have drained the data yet!
1773 */
1774 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1775 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1776 tcp_hdr(skb)->fin;
1777 data_was_unread += len;
1778 __kfree_skb(skb);
1779 }
1780
1781 sk_mem_reclaim(sk);
1782
1783 /* As outlined in RFC 2525, section 2.17, we send a RST here because
1784 * data was lost. To witness the awful effects of the old behavior of
1785 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1786 * GET in an FTP client, suspend the process, wait for the client to
1787 * advertise a zero window, then kill -9 the FTP client, wheee...
1788 * Note: timeout is always zero in such a case.
1789 */
1790 if (data_was_unread) {
1791 /* Unread data was tossed, zap the connection. */
1792 NET_INC_STATS_USER(LINUX_MIB_TCPABORTONCLOSE);
1793 tcp_set_state(sk, TCP_CLOSE);
1794 tcp_send_active_reset(sk, GFP_KERNEL);
1795 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1796 /* Check zero linger _after_ checking for unread data. */
1797 sk->sk_prot->disconnect(sk, 0);
1798 NET_INC_STATS_USER(LINUX_MIB_TCPABORTONDATA);
1799 } else if (tcp_close_state(sk)) {
1800 /* We FIN if the application ate all the data before
1801 * zapping the connection.
1802 */
1803
1804 /* RED-PEN. Formally speaking, we have broken TCP state
1805 * machine. State transitions:
1806 *
1807 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1808 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
1809 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1810 *
1811 * are legal only when FIN has been sent (i.e. in window),
1812 * rather than queued out of window. Purists blame.
1813 *
1814 * F.e. "RFC state" is ESTABLISHED,
1815 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1816 *
1817 * The visible declinations are that sometimes
1818 * we enter time-wait state, when it is not required really
1819 * (harmless), do not send active resets, when they are
1820 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1821 * they look as CLOSING or LAST_ACK for Linux)
1822 * Probably, I missed some more holelets.
1823 * --ANK
1824 */
1825 tcp_send_fin(sk);
1826 }
1827
1828 sk_stream_wait_close(sk, timeout);
1829
1830 adjudge_to_death:
1831 state = sk->sk_state;
1832 sock_hold(sk);
1833 sock_orphan(sk);
1834 atomic_inc(sk->sk_prot->orphan_count);
1835
1836 /* It is the last release_sock in its life. It will remove backlog. */
1837 release_sock(sk);
1838
1839
1840 /* Now socket is owned by kernel and we acquire BH lock
1841 to finish close. No need to check for user refs.
1842 */
1843 local_bh_disable();
1844 bh_lock_sock(sk);
1845 BUG_TRAP(!sock_owned_by_user(sk));
1846
1847 /* Have we already been destroyed by a softirq or backlog? */
1848 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1849 goto out;
1850
1851 /* This is a (useful) BSD violating of the RFC. There is a
1852 * problem with TCP as specified in that the other end could
1853 * keep a socket open forever with no application left this end.
1854 * We use a 3 minute timeout (about the same as BSD) then kill
1855 * our end. If they send after that then tough - BUT: long enough
1856 * that we won't make the old 4*rto = almost no time - whoops
1857 * reset mistake.
1858 *
1859 * Nope, it was not mistake. It is really desired behaviour
1860 * f.e. on http servers, when such sockets are useless, but
1861 * consume significant resources. Let's do it with special
1862 * linger2 option. --ANK
1863 */
1864
1865 if (sk->sk_state == TCP_FIN_WAIT2) {
1866 struct tcp_sock *tp = tcp_sk(sk);
1867 if (tp->linger2 < 0) {
1868 tcp_set_state(sk, TCP_CLOSE);
1869 tcp_send_active_reset(sk, GFP_ATOMIC);
1870 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONLINGER);
1871 } else {
1872 const int tmo = tcp_fin_time(sk);
1873
1874 if (tmo > TCP_TIMEWAIT_LEN) {
1875 inet_csk_reset_keepalive_timer(sk,
1876 tmo - TCP_TIMEWAIT_LEN);
1877 } else {
1878 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1879 goto out;
1880 }
1881 }
1882 }
1883 if (sk->sk_state != TCP_CLOSE) {
1884 sk_mem_reclaim(sk);
1885 if (tcp_too_many_orphans(sk,
1886 atomic_read(sk->sk_prot->orphan_count))) {
1887 if (net_ratelimit())
1888 printk(KERN_INFO "TCP: too many of orphaned "
1889 "sockets\n");
1890 tcp_set_state(sk, TCP_CLOSE);
1891 tcp_send_active_reset(sk, GFP_ATOMIC);
1892 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONMEMORY);
1893 }
1894 }
1895
1896 if (sk->sk_state == TCP_CLOSE)
1897 inet_csk_destroy_sock(sk);
1898 /* Otherwise, socket is reprieved until protocol close. */
1899
1900 out:
1901 bh_unlock_sock(sk);
1902 local_bh_enable();
1903 sock_put(sk);
1904 }
1905
1906 /* These states need RST on ABORT according to RFC793 */
1907
1908 static inline int tcp_need_reset(int state)
1909 {
1910 return (1 << state) &
1911 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1912 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1913 }
1914
1915 int tcp_disconnect(struct sock *sk, int flags)
1916 {
1917 struct inet_sock *inet = inet_sk(sk);
1918 struct inet_connection_sock *icsk = inet_csk(sk);
1919 struct tcp_sock *tp = tcp_sk(sk);
1920 int err = 0;
1921 int old_state = sk->sk_state;
1922
1923 if (old_state != TCP_CLOSE)
1924 tcp_set_state(sk, TCP_CLOSE);
1925
1926 /* ABORT function of RFC793 */
1927 if (old_state == TCP_LISTEN) {
1928 inet_csk_listen_stop(sk);
1929 } else if (tcp_need_reset(old_state) ||
1930 (tp->snd_nxt != tp->write_seq &&
1931 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1932 /* The last check adjusts for discrepancy of Linux wrt. RFC
1933 * states
1934 */
1935 tcp_send_active_reset(sk, gfp_any());
1936 sk->sk_err = ECONNRESET;
1937 } else if (old_state == TCP_SYN_SENT)
1938 sk->sk_err = ECONNRESET;
1939
1940 tcp_clear_xmit_timers(sk);
1941 __skb_queue_purge(&sk->sk_receive_queue);
1942 tcp_write_queue_purge(sk);
1943 __skb_queue_purge(&tp->out_of_order_queue);
1944 #ifdef CONFIG_NET_DMA
1945 __skb_queue_purge(&sk->sk_async_wait_queue);
1946 #endif
1947
1948 inet->dport = 0;
1949
1950 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1951 inet_reset_saddr(sk);
1952
1953 sk->sk_shutdown = 0;
1954 sock_reset_flag(sk, SOCK_DONE);
1955 tp->srtt = 0;
1956 if ((tp->write_seq += tp->max_window + 2) == 0)
1957 tp->write_seq = 1;
1958 icsk->icsk_backoff = 0;
1959 tp->snd_cwnd = 2;
1960 icsk->icsk_probes_out = 0;
1961 tp->packets_out = 0;
1962 tp->snd_ssthresh = 0x7fffffff;
1963 tp->snd_cwnd_cnt = 0;
1964 tp->bytes_acked = 0;
1965 tcp_set_ca_state(sk, TCP_CA_Open);
1966 tcp_clear_retrans(tp);
1967 inet_csk_delack_init(sk);
1968 tcp_init_send_head(sk);
1969 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
1970 __sk_dst_reset(sk);
1971
1972 BUG_TRAP(!inet->num || icsk->icsk_bind_hash);
1973
1974 sk->sk_error_report(sk);
1975 return err;
1976 }
1977
1978 /*
1979 * Socket option code for TCP.
1980 */
1981 static int do_tcp_setsockopt(struct sock *sk, int level,
1982 int optname, char __user *optval, int optlen)
1983 {
1984 struct tcp_sock *tp = tcp_sk(sk);
1985 struct inet_connection_sock *icsk = inet_csk(sk);
1986 int val;
1987 int err = 0;
1988
1989 /* This is a string value all the others are int's */
1990 if (optname == TCP_CONGESTION) {
1991 char name[TCP_CA_NAME_MAX];
1992
1993 if (optlen < 1)
1994 return -EINVAL;
1995
1996 val = strncpy_from_user(name, optval,
1997 min(TCP_CA_NAME_MAX-1, optlen));
1998 if (val < 0)
1999 return -EFAULT;
2000 name[val] = 0;
2001
2002 lock_sock(sk);
2003 err = tcp_set_congestion_control(sk, name);
2004 release_sock(sk);
2005 return err;
2006 }
2007
2008 if (optlen < sizeof(int))
2009 return -EINVAL;
2010
2011 if (get_user(val, (int __user *)optval))
2012 return -EFAULT;
2013
2014 lock_sock(sk);
2015
2016 switch (optname) {
2017 case TCP_MAXSEG:
2018 /* Values greater than interface MTU won't take effect. However
2019 * at the point when this call is done we typically don't yet
2020 * know which interface is going to be used */
2021 if (val < 8 || val > MAX_TCP_WINDOW) {
2022 err = -EINVAL;
2023 break;
2024 }
2025 tp->rx_opt.user_mss = val;
2026 break;
2027
2028 case TCP_NODELAY:
2029 if (val) {
2030 /* TCP_NODELAY is weaker than TCP_CORK, so that
2031 * this option on corked socket is remembered, but
2032 * it is not activated until cork is cleared.
2033 *
2034 * However, when TCP_NODELAY is set we make
2035 * an explicit push, which overrides even TCP_CORK
2036 * for currently queued segments.
2037 */
2038 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2039 tcp_push_pending_frames(sk);
2040 } else {
2041 tp->nonagle &= ~TCP_NAGLE_OFF;
2042 }
2043 break;
2044
2045 case TCP_CORK:
2046 /* When set indicates to always queue non-full frames.
2047 * Later the user clears this option and we transmit
2048 * any pending partial frames in the queue. This is
2049 * meant to be used alongside sendfile() to get properly
2050 * filled frames when the user (for example) must write
2051 * out headers with a write() call first and then use
2052 * sendfile to send out the data parts.
2053 *
2054 * TCP_CORK can be set together with TCP_NODELAY and it is
2055 * stronger than TCP_NODELAY.
2056 */
2057 if (val) {
2058 tp->nonagle |= TCP_NAGLE_CORK;
2059 } else {
2060 tp->nonagle &= ~TCP_NAGLE_CORK;
2061 if (tp->nonagle&TCP_NAGLE_OFF)
2062 tp->nonagle |= TCP_NAGLE_PUSH;
2063 tcp_push_pending_frames(sk);
2064 }
2065 break;
2066
2067 case TCP_KEEPIDLE:
2068 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2069 err = -EINVAL;
2070 else {
2071 tp->keepalive_time = val * HZ;
2072 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2073 !((1 << sk->sk_state) &
2074 (TCPF_CLOSE | TCPF_LISTEN))) {
2075 __u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2076 if (tp->keepalive_time > elapsed)
2077 elapsed = tp->keepalive_time - elapsed;
2078 else
2079 elapsed = 0;
2080 inet_csk_reset_keepalive_timer(sk, elapsed);
2081 }
2082 }
2083 break;
2084 case TCP_KEEPINTVL:
2085 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2086 err = -EINVAL;
2087 else
2088 tp->keepalive_intvl = val * HZ;
2089 break;
2090 case TCP_KEEPCNT:
2091 if (val < 1 || val > MAX_TCP_KEEPCNT)
2092 err = -EINVAL;
2093 else
2094 tp->keepalive_probes = val;
2095 break;
2096 case TCP_SYNCNT:
2097 if (val < 1 || val > MAX_TCP_SYNCNT)
2098 err = -EINVAL;
2099 else
2100 icsk->icsk_syn_retries = val;
2101 break;
2102
2103 case TCP_LINGER2:
2104 if (val < 0)
2105 tp->linger2 = -1;
2106 else if (val > sysctl_tcp_fin_timeout / HZ)
2107 tp->linger2 = 0;
2108 else
2109 tp->linger2 = val * HZ;
2110 break;
2111
2112 case TCP_DEFER_ACCEPT:
2113 if (val < 0) {
2114 err = -EINVAL;
2115 } else {
2116 if (val > MAX_TCP_ACCEPT_DEFERRED)
2117 val = MAX_TCP_ACCEPT_DEFERRED;
2118 icsk->icsk_accept_queue.rskq_defer_accept = val;
2119 }
2120 break;
2121
2122 case TCP_WINDOW_CLAMP:
2123 if (!val) {
2124 if (sk->sk_state != TCP_CLOSE) {
2125 err = -EINVAL;
2126 break;
2127 }
2128 tp->window_clamp = 0;
2129 } else
2130 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2131 SOCK_MIN_RCVBUF / 2 : val;
2132 break;
2133
2134 case TCP_QUICKACK:
2135 if (!val) {
2136 icsk->icsk_ack.pingpong = 1;
2137 } else {
2138 icsk->icsk_ack.pingpong = 0;
2139 if ((1 << sk->sk_state) &
2140 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2141 inet_csk_ack_scheduled(sk)) {
2142 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2143 tcp_cleanup_rbuf(sk, 1);
2144 if (!(val & 1))
2145 icsk->icsk_ack.pingpong = 1;
2146 }
2147 }
2148 break;
2149
2150 #ifdef CONFIG_TCP_MD5SIG
2151 case TCP_MD5SIG:
2152 /* Read the IP->Key mappings from userspace */
2153 err = tp->af_specific->md5_parse(sk, optval, optlen);
2154 break;
2155 #endif
2156
2157 default:
2158 err = -ENOPROTOOPT;
2159 break;
2160 }
2161
2162 release_sock(sk);
2163 return err;
2164 }
2165
2166 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2167 int optlen)
2168 {
2169 struct inet_connection_sock *icsk = inet_csk(sk);
2170
2171 if (level != SOL_TCP)
2172 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2173 optval, optlen);
2174 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2175 }
2176
2177 #ifdef CONFIG_COMPAT
2178 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2179 char __user *optval, int optlen)
2180 {
2181 if (level != SOL_TCP)
2182 return inet_csk_compat_setsockopt(sk, level, optname,
2183 optval, optlen);
2184 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2185 }
2186
2187 EXPORT_SYMBOL(compat_tcp_setsockopt);
2188 #endif
2189
2190 /* Return information about state of tcp endpoint in API format. */
2191 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2192 {
2193 struct tcp_sock *tp = tcp_sk(sk);
2194 const struct inet_connection_sock *icsk = inet_csk(sk);
2195 u32 now = tcp_time_stamp;
2196
2197 memset(info, 0, sizeof(*info));
2198
2199 info->tcpi_state = sk->sk_state;
2200 info->tcpi_ca_state = icsk->icsk_ca_state;
2201 info->tcpi_retransmits = icsk->icsk_retransmits;
2202 info->tcpi_probes = icsk->icsk_probes_out;
2203 info->tcpi_backoff = icsk->icsk_backoff;
2204
2205 if (tp->rx_opt.tstamp_ok)
2206 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2207 if (tcp_is_sack(tp))
2208 info->tcpi_options |= TCPI_OPT_SACK;
2209 if (tp->rx_opt.wscale_ok) {
2210 info->tcpi_options |= TCPI_OPT_WSCALE;
2211 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2212 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2213 }
2214
2215 if (tp->ecn_flags&TCP_ECN_OK)
2216 info->tcpi_options |= TCPI_OPT_ECN;
2217
2218 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2219 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2220 info->tcpi_snd_mss = tp->mss_cache;
2221 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2222
2223 if (sk->sk_state == TCP_LISTEN) {
2224 info->tcpi_unacked = sk->sk_ack_backlog;
2225 info->tcpi_sacked = sk->sk_max_ack_backlog;
2226 } else {
2227 info->tcpi_unacked = tp->packets_out;
2228 info->tcpi_sacked = tp->sacked_out;
2229 }
2230 info->tcpi_lost = tp->lost_out;
2231 info->tcpi_retrans = tp->retrans_out;
2232 info->tcpi_fackets = tp->fackets_out;
2233
2234 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2235 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2236 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2237
2238 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2239 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2240 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2241 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2242 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2243 info->tcpi_snd_cwnd = tp->snd_cwnd;
2244 info->tcpi_advmss = tp->advmss;
2245 info->tcpi_reordering = tp->reordering;
2246
2247 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2248 info->tcpi_rcv_space = tp->rcvq_space.space;
2249
2250 info->tcpi_total_retrans = tp->total_retrans;
2251 }
2252
2253 EXPORT_SYMBOL_GPL(tcp_get_info);
2254
2255 static int do_tcp_getsockopt(struct sock *sk, int level,
2256 int optname, char __user *optval, int __user *optlen)
2257 {
2258 struct inet_connection_sock *icsk = inet_csk(sk);
2259 struct tcp_sock *tp = tcp_sk(sk);
2260 int val, len;
2261
2262 if (get_user(len, optlen))
2263 return -EFAULT;
2264
2265 len = min_t(unsigned int, len, sizeof(int));
2266
2267 if (len < 0)
2268 return -EINVAL;
2269
2270 switch (optname) {
2271 case TCP_MAXSEG:
2272 val = tp->mss_cache;
2273 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2274 val = tp->rx_opt.user_mss;
2275 break;
2276 case TCP_NODELAY:
2277 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2278 break;
2279 case TCP_CORK:
2280 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2281 break;
2282 case TCP_KEEPIDLE:
2283 val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2284 break;
2285 case TCP_KEEPINTVL:
2286 val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2287 break;
2288 case TCP_KEEPCNT:
2289 val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2290 break;
2291 case TCP_SYNCNT:
2292 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2293 break;
2294 case TCP_LINGER2:
2295 val = tp->linger2;
2296 if (val >= 0)
2297 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2298 break;
2299 case TCP_DEFER_ACCEPT:
2300 val = icsk->icsk_accept_queue.rskq_defer_accept;
2301 break;
2302 case TCP_WINDOW_CLAMP:
2303 val = tp->window_clamp;
2304 break;
2305 case TCP_INFO: {
2306 struct tcp_info info;
2307
2308 if (get_user(len, optlen))
2309 return -EFAULT;
2310
2311 tcp_get_info(sk, &info);
2312
2313 len = min_t(unsigned int, len, sizeof(info));
2314 if (put_user(len, optlen))
2315 return -EFAULT;
2316 if (copy_to_user(optval, &info, len))
2317 return -EFAULT;
2318 return 0;
2319 }
2320 case TCP_QUICKACK:
2321 val = !icsk->icsk_ack.pingpong;
2322 break;
2323
2324 case TCP_CONGESTION:
2325 if (get_user(len, optlen))
2326 return -EFAULT;
2327 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2328 if (put_user(len, optlen))
2329 return -EFAULT;
2330 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2331 return -EFAULT;
2332 return 0;
2333 default:
2334 return -ENOPROTOOPT;
2335 }
2336
2337 if (put_user(len, optlen))
2338 return -EFAULT;
2339 if (copy_to_user(optval, &val, len))
2340 return -EFAULT;
2341 return 0;
2342 }
2343
2344 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2345 int __user *optlen)
2346 {
2347 struct inet_connection_sock *icsk = inet_csk(sk);
2348
2349 if (level != SOL_TCP)
2350 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2351 optval, optlen);
2352 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2353 }
2354
2355 #ifdef CONFIG_COMPAT
2356 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2357 char __user *optval, int __user *optlen)
2358 {
2359 if (level != SOL_TCP)
2360 return inet_csk_compat_getsockopt(sk, level, optname,
2361 optval, optlen);
2362 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2363 }
2364
2365 EXPORT_SYMBOL(compat_tcp_getsockopt);
2366 #endif
2367
2368 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2369 {
2370 struct sk_buff *segs = ERR_PTR(-EINVAL);
2371 struct tcphdr *th;
2372 unsigned thlen;
2373 unsigned int seq;
2374 __be32 delta;
2375 unsigned int oldlen;
2376 unsigned int len;
2377
2378 if (!pskb_may_pull(skb, sizeof(*th)))
2379 goto out;
2380
2381 th = tcp_hdr(skb);
2382 thlen = th->doff * 4;
2383 if (thlen < sizeof(*th))
2384 goto out;
2385
2386 if (!pskb_may_pull(skb, thlen))
2387 goto out;
2388
2389 oldlen = (u16)~skb->len;
2390 __skb_pull(skb, thlen);
2391
2392 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2393 /* Packet is from an untrusted source, reset gso_segs. */
2394 int type = skb_shinfo(skb)->gso_type;
2395 int mss;
2396
2397 if (unlikely(type &
2398 ~(SKB_GSO_TCPV4 |
2399 SKB_GSO_DODGY |
2400 SKB_GSO_TCP_ECN |
2401 SKB_GSO_TCPV6 |
2402 0) ||
2403 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2404 goto out;
2405
2406 mss = skb_shinfo(skb)->gso_size;
2407 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2408
2409 segs = NULL;
2410 goto out;
2411 }
2412
2413 segs = skb_segment(skb, features);
2414 if (IS_ERR(segs))
2415 goto out;
2416
2417 len = skb_shinfo(skb)->gso_size;
2418 delta = htonl(oldlen + (thlen + len));
2419
2420 skb = segs;
2421 th = tcp_hdr(skb);
2422 seq = ntohl(th->seq);
2423
2424 do {
2425 th->fin = th->psh = 0;
2426
2427 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2428 (__force u32)delta));
2429 if (skb->ip_summed != CHECKSUM_PARTIAL)
2430 th->check =
2431 csum_fold(csum_partial(skb_transport_header(skb),
2432 thlen, skb->csum));
2433
2434 seq += len;
2435 skb = skb->next;
2436 th = tcp_hdr(skb);
2437
2438 th->seq = htonl(seq);
2439 th->cwr = 0;
2440 } while (skb->next);
2441
2442 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2443 skb->data_len);
2444 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2445 (__force u32)delta));
2446 if (skb->ip_summed != CHECKSUM_PARTIAL)
2447 th->check = csum_fold(csum_partial(skb_transport_header(skb),
2448 thlen, skb->csum));
2449
2450 out:
2451 return segs;
2452 }
2453 EXPORT_SYMBOL(tcp_tso_segment);
2454
2455 #ifdef CONFIG_TCP_MD5SIG
2456 static unsigned long tcp_md5sig_users;
2457 static struct tcp_md5sig_pool **tcp_md5sig_pool;
2458 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2459
2460 int tcp_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
2461 int bplen,
2462 struct tcphdr *th, unsigned int tcplen,
2463 struct tcp_md5sig_pool *hp)
2464 {
2465 struct scatterlist sg[4];
2466 __u16 data_len;
2467 int block = 0;
2468 __sum16 cksum;
2469 struct hash_desc *desc = &hp->md5_desc;
2470 int err;
2471 unsigned int nbytes = 0;
2472
2473 sg_init_table(sg, 4);
2474
2475 /* 1. The TCP pseudo-header */
2476 sg_set_buf(&sg[block++], &hp->md5_blk, bplen);
2477 nbytes += bplen;
2478
2479 /* 2. The TCP header, excluding options, and assuming a
2480 * checksum of zero
2481 */
2482 cksum = th->check;
2483 th->check = 0;
2484 sg_set_buf(&sg[block++], th, sizeof(*th));
2485 nbytes += sizeof(*th);
2486
2487 /* 3. The TCP segment data (if any) */
2488 data_len = tcplen - (th->doff << 2);
2489 if (data_len > 0) {
2490 u8 *data = (u8 *)th + (th->doff << 2);
2491 sg_set_buf(&sg[block++], data, data_len);
2492 nbytes += data_len;
2493 }
2494
2495 /* 4. an independently-specified key or password, known to both
2496 * TCPs and presumably connection-specific
2497 */
2498 sg_set_buf(&sg[block++], key->key, key->keylen);
2499 nbytes += key->keylen;
2500
2501 sg_mark_end(&sg[block - 1]);
2502
2503 /* Now store the hash into the packet */
2504 err = crypto_hash_init(desc);
2505 if (err) {
2506 if (net_ratelimit())
2507 printk(KERN_WARNING "%s(): hash_init failed\n", __func__);
2508 return -1;
2509 }
2510 err = crypto_hash_update(desc, sg, nbytes);
2511 if (err) {
2512 if (net_ratelimit())
2513 printk(KERN_WARNING "%s(): hash_update failed\n", __func__);
2514 return -1;
2515 }
2516 err = crypto_hash_final(desc, md5_hash);
2517 if (err) {
2518 if (net_ratelimit())
2519 printk(KERN_WARNING "%s(): hash_final failed\n", __func__);
2520 return -1;
2521 }
2522
2523 /* Reset header */
2524 th->check = cksum;
2525
2526 return 0;
2527 }
2528 EXPORT_SYMBOL(tcp_calc_md5_hash);
2529
2530 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
2531 {
2532 int cpu;
2533 for_each_possible_cpu(cpu) {
2534 struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2535 if (p) {
2536 if (p->md5_desc.tfm)
2537 crypto_free_hash(p->md5_desc.tfm);
2538 kfree(p);
2539 p = NULL;
2540 }
2541 }
2542 free_percpu(pool);
2543 }
2544
2545 void tcp_free_md5sig_pool(void)
2546 {
2547 struct tcp_md5sig_pool **pool = NULL;
2548
2549 spin_lock_bh(&tcp_md5sig_pool_lock);
2550 if (--tcp_md5sig_users == 0) {
2551 pool = tcp_md5sig_pool;
2552 tcp_md5sig_pool = NULL;
2553 }
2554 spin_unlock_bh(&tcp_md5sig_pool_lock);
2555 if (pool)
2556 __tcp_free_md5sig_pool(pool);
2557 }
2558
2559 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2560
2561 static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void)
2562 {
2563 int cpu;
2564 struct tcp_md5sig_pool **pool;
2565
2566 pool = alloc_percpu(struct tcp_md5sig_pool *);
2567 if (!pool)
2568 return NULL;
2569
2570 for_each_possible_cpu(cpu) {
2571 struct tcp_md5sig_pool *p;
2572 struct crypto_hash *hash;
2573
2574 p = kzalloc(sizeof(*p), GFP_KERNEL);
2575 if (!p)
2576 goto out_free;
2577 *per_cpu_ptr(pool, cpu) = p;
2578
2579 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2580 if (!hash || IS_ERR(hash))
2581 goto out_free;
2582
2583 p->md5_desc.tfm = hash;
2584 }
2585 return pool;
2586 out_free:
2587 __tcp_free_md5sig_pool(pool);
2588 return NULL;
2589 }
2590
2591 struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void)
2592 {
2593 struct tcp_md5sig_pool **pool;
2594 int alloc = 0;
2595
2596 retry:
2597 spin_lock_bh(&tcp_md5sig_pool_lock);
2598 pool = tcp_md5sig_pool;
2599 if (tcp_md5sig_users++ == 0) {
2600 alloc = 1;
2601 spin_unlock_bh(&tcp_md5sig_pool_lock);
2602 } else if (!pool) {
2603 tcp_md5sig_users--;
2604 spin_unlock_bh(&tcp_md5sig_pool_lock);
2605 cpu_relax();
2606 goto retry;
2607 } else
2608 spin_unlock_bh(&tcp_md5sig_pool_lock);
2609
2610 if (alloc) {
2611 /* we cannot hold spinlock here because this may sleep. */
2612 struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool();
2613 spin_lock_bh(&tcp_md5sig_pool_lock);
2614 if (!p) {
2615 tcp_md5sig_users--;
2616 spin_unlock_bh(&tcp_md5sig_pool_lock);
2617 return NULL;
2618 }
2619 pool = tcp_md5sig_pool;
2620 if (pool) {
2621 /* oops, it has already been assigned. */
2622 spin_unlock_bh(&tcp_md5sig_pool_lock);
2623 __tcp_free_md5sig_pool(p);
2624 } else {
2625 tcp_md5sig_pool = pool = p;
2626 spin_unlock_bh(&tcp_md5sig_pool_lock);
2627 }
2628 }
2629 return pool;
2630 }
2631
2632 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2633
2634 struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2635 {
2636 struct tcp_md5sig_pool **p;
2637 spin_lock_bh(&tcp_md5sig_pool_lock);
2638 p = tcp_md5sig_pool;
2639 if (p)
2640 tcp_md5sig_users++;
2641 spin_unlock_bh(&tcp_md5sig_pool_lock);
2642 return (p ? *per_cpu_ptr(p, cpu) : NULL);
2643 }
2644
2645 EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2646
2647 void __tcp_put_md5sig_pool(void)
2648 {
2649 tcp_free_md5sig_pool();
2650 }
2651
2652 EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2653 #endif
2654
2655 void tcp_done(struct sock *sk)
2656 {
2657 if(sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2658 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
2659
2660 tcp_set_state(sk, TCP_CLOSE);
2661 tcp_clear_xmit_timers(sk);
2662
2663 sk->sk_shutdown = SHUTDOWN_MASK;
2664
2665 if (!sock_flag(sk, SOCK_DEAD))
2666 sk->sk_state_change(sk);
2667 else
2668 inet_csk_destroy_sock(sk);
2669 }
2670 EXPORT_SYMBOL_GPL(tcp_done);
2671
2672 extern struct tcp_congestion_ops tcp_reno;
2673
2674 static __initdata unsigned long thash_entries;
2675 static int __init set_thash_entries(char *str)
2676 {
2677 if (!str)
2678 return 0;
2679 thash_entries = simple_strtoul(str, &str, 0);
2680 return 1;
2681 }
2682 __setup("thash_entries=", set_thash_entries);
2683
2684 void __init tcp_init(void)
2685 {
2686 struct sk_buff *skb = NULL;
2687 unsigned long limit;
2688 int order, i, max_share;
2689
2690 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
2691
2692 tcp_hashinfo.bind_bucket_cachep =
2693 kmem_cache_create("tcp_bind_bucket",
2694 sizeof(struct inet_bind_bucket), 0,
2695 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2696
2697 /* Size and allocate the main established and bind bucket
2698 * hash tables.
2699 *
2700 * The methodology is similar to that of the buffer cache.
2701 */
2702 tcp_hashinfo.ehash =
2703 alloc_large_system_hash("TCP established",
2704 sizeof(struct inet_ehash_bucket),
2705 thash_entries,
2706 (num_physpages >= 128 * 1024) ?
2707 13 : 15,
2708 0,
2709 &tcp_hashinfo.ehash_size,
2710 NULL,
2711 thash_entries ? 0 : 512 * 1024);
2712 tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size;
2713 for (i = 0; i < tcp_hashinfo.ehash_size; i++) {
2714 INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].chain);
2715 INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].twchain);
2716 }
2717 if (inet_ehash_locks_alloc(&tcp_hashinfo))
2718 panic("TCP: failed to alloc ehash_locks");
2719 tcp_hashinfo.bhash =
2720 alloc_large_system_hash("TCP bind",
2721 sizeof(struct inet_bind_hashbucket),
2722 tcp_hashinfo.ehash_size,
2723 (num_physpages >= 128 * 1024) ?
2724 13 : 15,
2725 0,
2726 &tcp_hashinfo.bhash_size,
2727 NULL,
2728 64 * 1024);
2729 tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2730 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2731 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2732 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2733 }
2734
2735 /* Try to be a bit smarter and adjust defaults depending
2736 * on available memory.
2737 */
2738 for (order = 0; ((1 << order) << PAGE_SHIFT) <
2739 (tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2740 order++)
2741 ;
2742 if (order >= 4) {
2743 tcp_death_row.sysctl_max_tw_buckets = 180000;
2744 sysctl_tcp_max_orphans = 4096 << (order - 4);
2745 sysctl_max_syn_backlog = 1024;
2746 } else if (order < 3) {
2747 tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2748 sysctl_tcp_max_orphans >>= (3 - order);
2749 sysctl_max_syn_backlog = 128;
2750 }
2751
2752 /* Set the pressure threshold to be a fraction of global memory that
2753 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
2754 * memory, with a floor of 128 pages.
2755 */
2756 limit = min(nr_all_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2757 limit = (limit * (nr_all_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2758 limit = max(limit, 128UL);
2759 sysctl_tcp_mem[0] = limit / 4 * 3;
2760 sysctl_tcp_mem[1] = limit;
2761 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
2762
2763 /* Set per-socket limits to no more than 1/128 the pressure threshold */
2764 limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2765 max_share = min(4UL*1024*1024, limit);
2766
2767 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
2768 sysctl_tcp_wmem[1] = 16*1024;
2769 sysctl_tcp_wmem[2] = max(64*1024, max_share);
2770
2771 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
2772 sysctl_tcp_rmem[1] = 87380;
2773 sysctl_tcp_rmem[2] = max(87380, max_share);
2774
2775 printk(KERN_INFO "TCP: Hash tables configured "
2776 "(established %d bind %d)\n",
2777 tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size);
2778
2779 tcp_register_congestion_control(&tcp_reno);
2780 }
2781
2782 EXPORT_SYMBOL(tcp_close);
2783 EXPORT_SYMBOL(tcp_disconnect);
2784 EXPORT_SYMBOL(tcp_getsockopt);
2785 EXPORT_SYMBOL(tcp_ioctl);
2786 EXPORT_SYMBOL(tcp_poll);
2787 EXPORT_SYMBOL(tcp_read_sock);
2788 EXPORT_SYMBOL(tcp_recvmsg);
2789 EXPORT_SYMBOL(tcp_sendmsg);
2790 EXPORT_SYMBOL(tcp_splice_read);
2791 EXPORT_SYMBOL(tcp_sendpage);
2792 EXPORT_SYMBOL(tcp_setsockopt);
2793 EXPORT_SYMBOL(tcp_shutdown);
2794 EXPORT_SYMBOL(tcp_statistics);
This page took 0.11848 seconds and 5 git commands to generate.