Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[deliverable/linux.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/inet_diag.h>
256 #include <linux/init.h>
257 #include <linux/fs.h>
258 #include <linux/skbuff.h>
259 #include <linux/scatterlist.h>
260 #include <linux/splice.h>
261 #include <linux/net.h>
262 #include <linux/socket.h>
263 #include <linux/random.h>
264 #include <linux/bootmem.h>
265 #include <linux/highmem.h>
266 #include <linux/swap.h>
267 #include <linux/cache.h>
268 #include <linux/err.h>
269 #include <linux/crypto.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283
284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285
286 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287
288 int sysctl_tcp_autocorking __read_mostly = 1;
289
290 struct percpu_counter tcp_orphan_count;
291 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292
293 long sysctl_tcp_mem[3] __read_mostly;
294 int sysctl_tcp_wmem[3] __read_mostly;
295 int sysctl_tcp_rmem[3] __read_mostly;
296
297 EXPORT_SYMBOL(sysctl_tcp_mem);
298 EXPORT_SYMBOL(sysctl_tcp_rmem);
299 EXPORT_SYMBOL(sysctl_tcp_wmem);
300
301 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
302 EXPORT_SYMBOL(tcp_memory_allocated);
303
304 /*
305 * Current number of TCP sockets.
306 */
307 struct percpu_counter tcp_sockets_allocated;
308 EXPORT_SYMBOL(tcp_sockets_allocated);
309
310 /*
311 * TCP splice context
312 */
313 struct tcp_splice_state {
314 struct pipe_inode_info *pipe;
315 size_t len;
316 unsigned int flags;
317 };
318
319 /*
320 * Pressure flag: try to collapse.
321 * Technical note: it is used by multiple contexts non atomically.
322 * All the __sk_mem_schedule() is of this nature: accounting
323 * is strict, actions are advisory and have some latency.
324 */
325 int tcp_memory_pressure __read_mostly;
326 EXPORT_SYMBOL(tcp_memory_pressure);
327
328 void tcp_enter_memory_pressure(struct sock *sk)
329 {
330 if (!tcp_memory_pressure) {
331 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
332 tcp_memory_pressure = 1;
333 }
334 }
335 EXPORT_SYMBOL(tcp_enter_memory_pressure);
336
337 /* Convert seconds to retransmits based on initial and max timeout */
338 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
339 {
340 u8 res = 0;
341
342 if (seconds > 0) {
343 int period = timeout;
344
345 res = 1;
346 while (seconds > period && res < 255) {
347 res++;
348 timeout <<= 1;
349 if (timeout > rto_max)
350 timeout = rto_max;
351 period += timeout;
352 }
353 }
354 return res;
355 }
356
357 /* Convert retransmits to seconds based on initial and max timeout */
358 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359 {
360 int period = 0;
361
362 if (retrans > 0) {
363 period = timeout;
364 while (--retrans) {
365 timeout <<= 1;
366 if (timeout > rto_max)
367 timeout = rto_max;
368 period += timeout;
369 }
370 }
371 return period;
372 }
373
374 /* Address-family independent initialization for a tcp_sock.
375 *
376 * NOTE: A lot of things set to zero explicitly by call to
377 * sk_alloc() so need not be done here.
378 */
379 void tcp_init_sock(struct sock *sk)
380 {
381 struct inet_connection_sock *icsk = inet_csk(sk);
382 struct tcp_sock *tp = tcp_sk(sk);
383
384 __skb_queue_head_init(&tp->out_of_order_queue);
385 tcp_init_xmit_timers(sk);
386 tcp_prequeue_init(tp);
387 INIT_LIST_HEAD(&tp->tsq_node);
388
389 icsk->icsk_rto = TCP_TIMEOUT_INIT;
390 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
391
392 /* So many TCP implementations out there (incorrectly) count the
393 * initial SYN frame in their delayed-ACK and congestion control
394 * algorithms that we must have the following bandaid to talk
395 * efficiently to them. -DaveM
396 */
397 tp->snd_cwnd = TCP_INIT_CWND;
398
399 /* See draft-stevens-tcpca-spec-01 for discussion of the
400 * initialization of these values.
401 */
402 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 tp->snd_cwnd_clamp = ~0;
404 tp->mss_cache = TCP_MSS_DEFAULT;
405 u64_stats_init(&tp->syncp);
406
407 tp->reordering = sysctl_tcp_reordering;
408 tcp_enable_early_retrans(tp);
409 tcp_assign_congestion_control(sk);
410
411 tp->tsoffset = 0;
412
413 sk->sk_state = TCP_CLOSE;
414
415 sk->sk_write_space = sk_stream_write_space;
416 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
417
418 icsk->icsk_sync_mss = tcp_sync_mss;
419
420 sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
422
423 local_bh_disable();
424 sock_update_memcg(sk);
425 sk_sockets_allocated_inc(sk);
426 local_bh_enable();
427 }
428 EXPORT_SYMBOL(tcp_init_sock);
429
430 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
431 {
432 if (sk->sk_tsflags) {
433 struct skb_shared_info *shinfo = skb_shinfo(skb);
434
435 sock_tx_timestamp(sk, &shinfo->tx_flags);
436 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
437 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
438 }
439 }
440
441 /*
442 * Wait for a TCP event.
443 *
444 * Note that we don't need to lock the socket, as the upper poll layers
445 * take care of normal races (between the test and the event) and we don't
446 * go look at any of the socket buffers directly.
447 */
448 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
449 {
450 unsigned int mask;
451 struct sock *sk = sock->sk;
452 const struct tcp_sock *tp = tcp_sk(sk);
453
454 sock_rps_record_flow(sk);
455
456 sock_poll_wait(file, sk_sleep(sk), wait);
457 if (sk->sk_state == TCP_LISTEN)
458 return inet_csk_listen_poll(sk);
459
460 /* Socket is not locked. We are protected from async events
461 * by poll logic and correct handling of state changes
462 * made by other threads is impossible in any case.
463 */
464
465 mask = 0;
466
467 /*
468 * POLLHUP is certainly not done right. But poll() doesn't
469 * have a notion of HUP in just one direction, and for a
470 * socket the read side is more interesting.
471 *
472 * Some poll() documentation says that POLLHUP is incompatible
473 * with the POLLOUT/POLLWR flags, so somebody should check this
474 * all. But careful, it tends to be safer to return too many
475 * bits than too few, and you can easily break real applications
476 * if you don't tell them that something has hung up!
477 *
478 * Check-me.
479 *
480 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
481 * our fs/select.c). It means that after we received EOF,
482 * poll always returns immediately, making impossible poll() on write()
483 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
484 * if and only if shutdown has been made in both directions.
485 * Actually, it is interesting to look how Solaris and DUX
486 * solve this dilemma. I would prefer, if POLLHUP were maskable,
487 * then we could set it on SND_SHUTDOWN. BTW examples given
488 * in Stevens' books assume exactly this behaviour, it explains
489 * why POLLHUP is incompatible with POLLOUT. --ANK
490 *
491 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
492 * blocking on fresh not-connected or disconnected socket. --ANK
493 */
494 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
495 mask |= POLLHUP;
496 if (sk->sk_shutdown & RCV_SHUTDOWN)
497 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
498
499 /* Connected or passive Fast Open socket? */
500 if (sk->sk_state != TCP_SYN_SENT &&
501 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk)) {
502 int target = sock_rcvlowat(sk, 0, INT_MAX);
503
504 if (tp->urg_seq == tp->copied_seq &&
505 !sock_flag(sk, SOCK_URGINLINE) &&
506 tp->urg_data)
507 target++;
508
509 /* Potential race condition. If read of tp below will
510 * escape above sk->sk_state, we can be illegally awaken
511 * in SYN_* states. */
512 if (tp->rcv_nxt - tp->copied_seq >= target)
513 mask |= POLLIN | POLLRDNORM;
514
515 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
516 if (sk_stream_is_writeable(sk)) {
517 mask |= POLLOUT | POLLWRNORM;
518 } else { /* send SIGIO later */
519 set_bit(SOCK_ASYNC_NOSPACE,
520 &sk->sk_socket->flags);
521 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
522
523 /* Race breaker. If space is freed after
524 * wspace test but before the flags are set,
525 * IO signal will be lost. Memory barrier
526 * pairs with the input side.
527 */
528 smp_mb__after_atomic();
529 if (sk_stream_is_writeable(sk))
530 mask |= POLLOUT | POLLWRNORM;
531 }
532 } else
533 mask |= POLLOUT | POLLWRNORM;
534
535 if (tp->urg_data & TCP_URG_VALID)
536 mask |= POLLPRI;
537 }
538 /* This barrier is coupled with smp_wmb() in tcp_reset() */
539 smp_rmb();
540 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
541 mask |= POLLERR;
542
543 return mask;
544 }
545 EXPORT_SYMBOL(tcp_poll);
546
547 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
548 {
549 struct tcp_sock *tp = tcp_sk(sk);
550 int answ;
551 bool slow;
552
553 switch (cmd) {
554 case SIOCINQ:
555 if (sk->sk_state == TCP_LISTEN)
556 return -EINVAL;
557
558 slow = lock_sock_fast(sk);
559 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
560 answ = 0;
561 else if (sock_flag(sk, SOCK_URGINLINE) ||
562 !tp->urg_data ||
563 before(tp->urg_seq, tp->copied_seq) ||
564 !before(tp->urg_seq, tp->rcv_nxt)) {
565
566 answ = tp->rcv_nxt - tp->copied_seq;
567
568 /* Subtract 1, if FIN was received */
569 if (answ && sock_flag(sk, SOCK_DONE))
570 answ--;
571 } else
572 answ = tp->urg_seq - tp->copied_seq;
573 unlock_sock_fast(sk, slow);
574 break;
575 case SIOCATMARK:
576 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
577 break;
578 case SIOCOUTQ:
579 if (sk->sk_state == TCP_LISTEN)
580 return -EINVAL;
581
582 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
583 answ = 0;
584 else
585 answ = tp->write_seq - tp->snd_una;
586 break;
587 case SIOCOUTQNSD:
588 if (sk->sk_state == TCP_LISTEN)
589 return -EINVAL;
590
591 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
592 answ = 0;
593 else
594 answ = tp->write_seq - tp->snd_nxt;
595 break;
596 default:
597 return -ENOIOCTLCMD;
598 }
599
600 return put_user(answ, (int __user *)arg);
601 }
602 EXPORT_SYMBOL(tcp_ioctl);
603
604 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
605 {
606 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
607 tp->pushed_seq = tp->write_seq;
608 }
609
610 static inline bool forced_push(const struct tcp_sock *tp)
611 {
612 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
613 }
614
615 static void skb_entail(struct sock *sk, struct sk_buff *skb)
616 {
617 struct tcp_sock *tp = tcp_sk(sk);
618 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
619
620 skb->csum = 0;
621 tcb->seq = tcb->end_seq = tp->write_seq;
622 tcb->tcp_flags = TCPHDR_ACK;
623 tcb->sacked = 0;
624 __skb_header_release(skb);
625 tcp_add_write_queue_tail(sk, skb);
626 sk->sk_wmem_queued += skb->truesize;
627 sk_mem_charge(sk, skb->truesize);
628 if (tp->nonagle & TCP_NAGLE_PUSH)
629 tp->nonagle &= ~TCP_NAGLE_PUSH;
630 }
631
632 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
633 {
634 if (flags & MSG_OOB)
635 tp->snd_up = tp->write_seq;
636 }
637
638 /* If a not yet filled skb is pushed, do not send it if
639 * we have data packets in Qdisc or NIC queues :
640 * Because TX completion will happen shortly, it gives a chance
641 * to coalesce future sendmsg() payload into this skb, without
642 * need for a timer, and with no latency trade off.
643 * As packets containing data payload have a bigger truesize
644 * than pure acks (dataless) packets, the last checks prevent
645 * autocorking if we only have an ACK in Qdisc/NIC queues,
646 * or if TX completion was delayed after we processed ACK packet.
647 */
648 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
649 int size_goal)
650 {
651 return skb->len < size_goal &&
652 sysctl_tcp_autocorking &&
653 skb != tcp_write_queue_head(sk) &&
654 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
655 }
656
657 static void tcp_push(struct sock *sk, int flags, int mss_now,
658 int nonagle, int size_goal)
659 {
660 struct tcp_sock *tp = tcp_sk(sk);
661 struct sk_buff *skb;
662
663 if (!tcp_send_head(sk))
664 return;
665
666 skb = tcp_write_queue_tail(sk);
667 if (!(flags & MSG_MORE) || forced_push(tp))
668 tcp_mark_push(tp, skb);
669
670 tcp_mark_urg(tp, flags);
671
672 if (tcp_should_autocork(sk, skb, size_goal)) {
673
674 /* avoid atomic op if TSQ_THROTTLED bit is already set */
675 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
676 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
677 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
678 }
679 /* It is possible TX completion already happened
680 * before we set TSQ_THROTTLED.
681 */
682 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
683 return;
684 }
685
686 if (flags & MSG_MORE)
687 nonagle = TCP_NAGLE_CORK;
688
689 __tcp_push_pending_frames(sk, mss_now, nonagle);
690 }
691
692 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
693 unsigned int offset, size_t len)
694 {
695 struct tcp_splice_state *tss = rd_desc->arg.data;
696 int ret;
697
698 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
699 min(rd_desc->count, len), tss->flags,
700 skb_socket_splice);
701 if (ret > 0)
702 rd_desc->count -= ret;
703 return ret;
704 }
705
706 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
707 {
708 /* Store TCP splice context information in read_descriptor_t. */
709 read_descriptor_t rd_desc = {
710 .arg.data = tss,
711 .count = tss->len,
712 };
713
714 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
715 }
716
717 /**
718 * tcp_splice_read - splice data from TCP socket to a pipe
719 * @sock: socket to splice from
720 * @ppos: position (not valid)
721 * @pipe: pipe to splice to
722 * @len: number of bytes to splice
723 * @flags: splice modifier flags
724 *
725 * Description:
726 * Will read pages from given socket and fill them into a pipe.
727 *
728 **/
729 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
730 struct pipe_inode_info *pipe, size_t len,
731 unsigned int flags)
732 {
733 struct sock *sk = sock->sk;
734 struct tcp_splice_state tss = {
735 .pipe = pipe,
736 .len = len,
737 .flags = flags,
738 };
739 long timeo;
740 ssize_t spliced;
741 int ret;
742
743 sock_rps_record_flow(sk);
744 /*
745 * We can't seek on a socket input
746 */
747 if (unlikely(*ppos))
748 return -ESPIPE;
749
750 ret = spliced = 0;
751
752 lock_sock(sk);
753
754 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
755 while (tss.len) {
756 ret = __tcp_splice_read(sk, &tss);
757 if (ret < 0)
758 break;
759 else if (!ret) {
760 if (spliced)
761 break;
762 if (sock_flag(sk, SOCK_DONE))
763 break;
764 if (sk->sk_err) {
765 ret = sock_error(sk);
766 break;
767 }
768 if (sk->sk_shutdown & RCV_SHUTDOWN)
769 break;
770 if (sk->sk_state == TCP_CLOSE) {
771 /*
772 * This occurs when user tries to read
773 * from never connected socket.
774 */
775 if (!sock_flag(sk, SOCK_DONE))
776 ret = -ENOTCONN;
777 break;
778 }
779 if (!timeo) {
780 ret = -EAGAIN;
781 break;
782 }
783 sk_wait_data(sk, &timeo);
784 if (signal_pending(current)) {
785 ret = sock_intr_errno(timeo);
786 break;
787 }
788 continue;
789 }
790 tss.len -= ret;
791 spliced += ret;
792
793 if (!timeo)
794 break;
795 release_sock(sk);
796 lock_sock(sk);
797
798 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
799 (sk->sk_shutdown & RCV_SHUTDOWN) ||
800 signal_pending(current))
801 break;
802 }
803
804 release_sock(sk);
805
806 if (spliced)
807 return spliced;
808
809 return ret;
810 }
811 EXPORT_SYMBOL(tcp_splice_read);
812
813 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
814 bool force_schedule)
815 {
816 struct sk_buff *skb;
817
818 /* The TCP header must be at least 32-bit aligned. */
819 size = ALIGN(size, 4);
820
821 if (unlikely(tcp_under_memory_pressure(sk)))
822 sk_mem_reclaim_partial(sk);
823
824 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
825 if (likely(skb)) {
826 bool mem_scheduled;
827
828 if (force_schedule) {
829 mem_scheduled = true;
830 sk_forced_mem_schedule(sk, skb->truesize);
831 } else {
832 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
833 }
834 if (likely(mem_scheduled)) {
835 skb_reserve(skb, sk->sk_prot->max_header);
836 /*
837 * Make sure that we have exactly size bytes
838 * available to the caller, no more, no less.
839 */
840 skb->reserved_tailroom = skb->end - skb->tail - size;
841 return skb;
842 }
843 __kfree_skb(skb);
844 } else {
845 sk->sk_prot->enter_memory_pressure(sk);
846 sk_stream_moderate_sndbuf(sk);
847 }
848 return NULL;
849 }
850
851 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
852 int large_allowed)
853 {
854 struct tcp_sock *tp = tcp_sk(sk);
855 u32 new_size_goal, size_goal;
856
857 if (!large_allowed || !sk_can_gso(sk))
858 return mss_now;
859
860 /* Note : tcp_tso_autosize() will eventually split this later */
861 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
862 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
863
864 /* We try hard to avoid divides here */
865 size_goal = tp->gso_segs * mss_now;
866 if (unlikely(new_size_goal < size_goal ||
867 new_size_goal >= size_goal + mss_now)) {
868 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
869 sk->sk_gso_max_segs);
870 size_goal = tp->gso_segs * mss_now;
871 }
872
873 return max(size_goal, mss_now);
874 }
875
876 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
877 {
878 int mss_now;
879
880 mss_now = tcp_current_mss(sk);
881 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
882
883 return mss_now;
884 }
885
886 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
887 size_t size, int flags)
888 {
889 struct tcp_sock *tp = tcp_sk(sk);
890 int mss_now, size_goal;
891 int err;
892 ssize_t copied;
893 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
894
895 /* Wait for a connection to finish. One exception is TCP Fast Open
896 * (passive side) where data is allowed to be sent before a connection
897 * is fully established.
898 */
899 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
900 !tcp_passive_fastopen(sk)) {
901 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
902 goto out_err;
903 }
904
905 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
906
907 mss_now = tcp_send_mss(sk, &size_goal, flags);
908 copied = 0;
909
910 err = -EPIPE;
911 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
912 goto out_err;
913
914 while (size > 0) {
915 struct sk_buff *skb = tcp_write_queue_tail(sk);
916 int copy, i;
917 bool can_coalesce;
918
919 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
920 new_segment:
921 if (!sk_stream_memory_free(sk))
922 goto wait_for_sndbuf;
923
924 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
925 skb_queue_empty(&sk->sk_write_queue));
926 if (!skb)
927 goto wait_for_memory;
928
929 skb_entail(sk, skb);
930 copy = size_goal;
931 }
932
933 if (copy > size)
934 copy = size;
935
936 i = skb_shinfo(skb)->nr_frags;
937 can_coalesce = skb_can_coalesce(skb, i, page, offset);
938 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
939 tcp_mark_push(tp, skb);
940 goto new_segment;
941 }
942 if (!sk_wmem_schedule(sk, copy))
943 goto wait_for_memory;
944
945 if (can_coalesce) {
946 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
947 } else {
948 get_page(page);
949 skb_fill_page_desc(skb, i, page, offset, copy);
950 }
951 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
952
953 skb->len += copy;
954 skb->data_len += copy;
955 skb->truesize += copy;
956 sk->sk_wmem_queued += copy;
957 sk_mem_charge(sk, copy);
958 skb->ip_summed = CHECKSUM_PARTIAL;
959 tp->write_seq += copy;
960 TCP_SKB_CB(skb)->end_seq += copy;
961 tcp_skb_pcount_set(skb, 0);
962
963 if (!copied)
964 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
965
966 copied += copy;
967 offset += copy;
968 if (!(size -= copy)) {
969 tcp_tx_timestamp(sk, skb);
970 goto out;
971 }
972
973 if (skb->len < size_goal || (flags & MSG_OOB))
974 continue;
975
976 if (forced_push(tp)) {
977 tcp_mark_push(tp, skb);
978 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
979 } else if (skb == tcp_send_head(sk))
980 tcp_push_one(sk, mss_now);
981 continue;
982
983 wait_for_sndbuf:
984 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
985 wait_for_memory:
986 tcp_push(sk, flags & ~MSG_MORE, mss_now,
987 TCP_NAGLE_PUSH, size_goal);
988
989 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
990 goto do_error;
991
992 mss_now = tcp_send_mss(sk, &size_goal, flags);
993 }
994
995 out:
996 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
997 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
998 return copied;
999
1000 do_error:
1001 if (copied)
1002 goto out;
1003 out_err:
1004 /* make sure we wake any epoll edge trigger waiter */
1005 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1006 sk->sk_write_space(sk);
1007 return sk_stream_error(sk, flags, err);
1008 }
1009
1010 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1011 size_t size, int flags)
1012 {
1013 ssize_t res;
1014
1015 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1016 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
1017 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1018 flags);
1019
1020 lock_sock(sk);
1021 res = do_tcp_sendpages(sk, page, offset, size, flags);
1022 release_sock(sk);
1023 return res;
1024 }
1025 EXPORT_SYMBOL(tcp_sendpage);
1026
1027 static inline int select_size(const struct sock *sk, bool sg)
1028 {
1029 const struct tcp_sock *tp = tcp_sk(sk);
1030 int tmp = tp->mss_cache;
1031
1032 if (sg) {
1033 if (sk_can_gso(sk)) {
1034 /* Small frames wont use a full page:
1035 * Payload will immediately follow tcp header.
1036 */
1037 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1038 } else {
1039 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1040
1041 if (tmp >= pgbreak &&
1042 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1043 tmp = pgbreak;
1044 }
1045 }
1046
1047 return tmp;
1048 }
1049
1050 void tcp_free_fastopen_req(struct tcp_sock *tp)
1051 {
1052 if (tp->fastopen_req) {
1053 kfree(tp->fastopen_req);
1054 tp->fastopen_req = NULL;
1055 }
1056 }
1057
1058 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1059 int *copied, size_t size)
1060 {
1061 struct tcp_sock *tp = tcp_sk(sk);
1062 int err, flags;
1063
1064 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1065 return -EOPNOTSUPP;
1066 if (tp->fastopen_req)
1067 return -EALREADY; /* Another Fast Open is in progress */
1068
1069 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1070 sk->sk_allocation);
1071 if (unlikely(!tp->fastopen_req))
1072 return -ENOBUFS;
1073 tp->fastopen_req->data = msg;
1074 tp->fastopen_req->size = size;
1075
1076 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1077 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1078 msg->msg_namelen, flags);
1079 *copied = tp->fastopen_req->copied;
1080 tcp_free_fastopen_req(tp);
1081 return err;
1082 }
1083
1084 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1085 {
1086 struct tcp_sock *tp = tcp_sk(sk);
1087 struct sk_buff *skb;
1088 int flags, err, copied = 0;
1089 int mss_now = 0, size_goal, copied_syn = 0;
1090 bool sg;
1091 long timeo;
1092
1093 lock_sock(sk);
1094
1095 flags = msg->msg_flags;
1096 if (flags & MSG_FASTOPEN) {
1097 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1098 if (err == -EINPROGRESS && copied_syn > 0)
1099 goto out;
1100 else if (err)
1101 goto out_err;
1102 }
1103
1104 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1105
1106 /* Wait for a connection to finish. One exception is TCP Fast Open
1107 * (passive side) where data is allowed to be sent before a connection
1108 * is fully established.
1109 */
1110 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1111 !tcp_passive_fastopen(sk)) {
1112 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1113 goto do_error;
1114 }
1115
1116 if (unlikely(tp->repair)) {
1117 if (tp->repair_queue == TCP_RECV_QUEUE) {
1118 copied = tcp_send_rcvq(sk, msg, size);
1119 goto out_nopush;
1120 }
1121
1122 err = -EINVAL;
1123 if (tp->repair_queue == TCP_NO_QUEUE)
1124 goto out_err;
1125
1126 /* 'common' sending to sendq */
1127 }
1128
1129 /* This should be in poll */
1130 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1131
1132 mss_now = tcp_send_mss(sk, &size_goal, flags);
1133
1134 /* Ok commence sending. */
1135 copied = 0;
1136
1137 err = -EPIPE;
1138 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1139 goto out_err;
1140
1141 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1142
1143 while (msg_data_left(msg)) {
1144 int copy = 0;
1145 int max = size_goal;
1146
1147 skb = tcp_write_queue_tail(sk);
1148 if (tcp_send_head(sk)) {
1149 if (skb->ip_summed == CHECKSUM_NONE)
1150 max = mss_now;
1151 copy = max - skb->len;
1152 }
1153
1154 if (copy <= 0) {
1155 new_segment:
1156 /* Allocate new segment. If the interface is SG,
1157 * allocate skb fitting to single page.
1158 */
1159 if (!sk_stream_memory_free(sk))
1160 goto wait_for_sndbuf;
1161
1162 skb = sk_stream_alloc_skb(sk,
1163 select_size(sk, sg),
1164 sk->sk_allocation,
1165 skb_queue_empty(&sk->sk_write_queue));
1166 if (!skb)
1167 goto wait_for_memory;
1168
1169 /*
1170 * Check whether we can use HW checksum.
1171 */
1172 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1173 skb->ip_summed = CHECKSUM_PARTIAL;
1174
1175 skb_entail(sk, skb);
1176 copy = size_goal;
1177 max = size_goal;
1178
1179 /* All packets are restored as if they have
1180 * already been sent. skb_mstamp isn't set to
1181 * avoid wrong rtt estimation.
1182 */
1183 if (tp->repair)
1184 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1185 }
1186
1187 /* Try to append data to the end of skb. */
1188 if (copy > msg_data_left(msg))
1189 copy = msg_data_left(msg);
1190
1191 /* Where to copy to? */
1192 if (skb_availroom(skb) > 0) {
1193 /* We have some space in skb head. Superb! */
1194 copy = min_t(int, copy, skb_availroom(skb));
1195 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1196 if (err)
1197 goto do_fault;
1198 } else {
1199 bool merge = true;
1200 int i = skb_shinfo(skb)->nr_frags;
1201 struct page_frag *pfrag = sk_page_frag(sk);
1202
1203 if (!sk_page_frag_refill(sk, pfrag))
1204 goto wait_for_memory;
1205
1206 if (!skb_can_coalesce(skb, i, pfrag->page,
1207 pfrag->offset)) {
1208 if (i == MAX_SKB_FRAGS || !sg) {
1209 tcp_mark_push(tp, skb);
1210 goto new_segment;
1211 }
1212 merge = false;
1213 }
1214
1215 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1216
1217 if (!sk_wmem_schedule(sk, copy))
1218 goto wait_for_memory;
1219
1220 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1221 pfrag->page,
1222 pfrag->offset,
1223 copy);
1224 if (err)
1225 goto do_error;
1226
1227 /* Update the skb. */
1228 if (merge) {
1229 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1230 } else {
1231 skb_fill_page_desc(skb, i, pfrag->page,
1232 pfrag->offset, copy);
1233 get_page(pfrag->page);
1234 }
1235 pfrag->offset += copy;
1236 }
1237
1238 if (!copied)
1239 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1240
1241 tp->write_seq += copy;
1242 TCP_SKB_CB(skb)->end_seq += copy;
1243 tcp_skb_pcount_set(skb, 0);
1244
1245 copied += copy;
1246 if (!msg_data_left(msg)) {
1247 tcp_tx_timestamp(sk, skb);
1248 goto out;
1249 }
1250
1251 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1252 continue;
1253
1254 if (forced_push(tp)) {
1255 tcp_mark_push(tp, skb);
1256 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1257 } else if (skb == tcp_send_head(sk))
1258 tcp_push_one(sk, mss_now);
1259 continue;
1260
1261 wait_for_sndbuf:
1262 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1263 wait_for_memory:
1264 if (copied)
1265 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1266 TCP_NAGLE_PUSH, size_goal);
1267
1268 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1269 goto do_error;
1270
1271 mss_now = tcp_send_mss(sk, &size_goal, flags);
1272 }
1273
1274 out:
1275 if (copied)
1276 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1277 out_nopush:
1278 release_sock(sk);
1279 return copied + copied_syn;
1280
1281 do_fault:
1282 if (!skb->len) {
1283 tcp_unlink_write_queue(skb, sk);
1284 /* It is the one place in all of TCP, except connection
1285 * reset, where we can be unlinking the send_head.
1286 */
1287 tcp_check_send_head(sk, skb);
1288 sk_wmem_free_skb(sk, skb);
1289 }
1290
1291 do_error:
1292 if (copied + copied_syn)
1293 goto out;
1294 out_err:
1295 err = sk_stream_error(sk, flags, err);
1296 /* make sure we wake any epoll edge trigger waiter */
1297 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1298 sk->sk_write_space(sk);
1299 release_sock(sk);
1300 return err;
1301 }
1302 EXPORT_SYMBOL(tcp_sendmsg);
1303
1304 /*
1305 * Handle reading urgent data. BSD has very simple semantics for
1306 * this, no blocking and very strange errors 8)
1307 */
1308
1309 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1310 {
1311 struct tcp_sock *tp = tcp_sk(sk);
1312
1313 /* No URG data to read. */
1314 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1315 tp->urg_data == TCP_URG_READ)
1316 return -EINVAL; /* Yes this is right ! */
1317
1318 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1319 return -ENOTCONN;
1320
1321 if (tp->urg_data & TCP_URG_VALID) {
1322 int err = 0;
1323 char c = tp->urg_data;
1324
1325 if (!(flags & MSG_PEEK))
1326 tp->urg_data = TCP_URG_READ;
1327
1328 /* Read urgent data. */
1329 msg->msg_flags |= MSG_OOB;
1330
1331 if (len > 0) {
1332 if (!(flags & MSG_TRUNC))
1333 err = memcpy_to_msg(msg, &c, 1);
1334 len = 1;
1335 } else
1336 msg->msg_flags |= MSG_TRUNC;
1337
1338 return err ? -EFAULT : len;
1339 }
1340
1341 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1342 return 0;
1343
1344 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1345 * the available implementations agree in this case:
1346 * this call should never block, independent of the
1347 * blocking state of the socket.
1348 * Mike <pall@rz.uni-karlsruhe.de>
1349 */
1350 return -EAGAIN;
1351 }
1352
1353 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1354 {
1355 struct sk_buff *skb;
1356 int copied = 0, err = 0;
1357
1358 /* XXX -- need to support SO_PEEK_OFF */
1359
1360 skb_queue_walk(&sk->sk_write_queue, skb) {
1361 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1362 if (err)
1363 break;
1364
1365 copied += skb->len;
1366 }
1367
1368 return err ?: copied;
1369 }
1370
1371 /* Clean up the receive buffer for full frames taken by the user,
1372 * then send an ACK if necessary. COPIED is the number of bytes
1373 * tcp_recvmsg has given to the user so far, it speeds up the
1374 * calculation of whether or not we must ACK for the sake of
1375 * a window update.
1376 */
1377 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1378 {
1379 struct tcp_sock *tp = tcp_sk(sk);
1380 bool time_to_ack = false;
1381
1382 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1383
1384 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1385 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1386 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1387
1388 if (inet_csk_ack_scheduled(sk)) {
1389 const struct inet_connection_sock *icsk = inet_csk(sk);
1390 /* Delayed ACKs frequently hit locked sockets during bulk
1391 * receive. */
1392 if (icsk->icsk_ack.blocked ||
1393 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1394 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1395 /*
1396 * If this read emptied read buffer, we send ACK, if
1397 * connection is not bidirectional, user drained
1398 * receive buffer and there was a small segment
1399 * in queue.
1400 */
1401 (copied > 0 &&
1402 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1403 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1404 !icsk->icsk_ack.pingpong)) &&
1405 !atomic_read(&sk->sk_rmem_alloc)))
1406 time_to_ack = true;
1407 }
1408
1409 /* We send an ACK if we can now advertise a non-zero window
1410 * which has been raised "significantly".
1411 *
1412 * Even if window raised up to infinity, do not send window open ACK
1413 * in states, where we will not receive more. It is useless.
1414 */
1415 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1416 __u32 rcv_window_now = tcp_receive_window(tp);
1417
1418 /* Optimize, __tcp_select_window() is not cheap. */
1419 if (2*rcv_window_now <= tp->window_clamp) {
1420 __u32 new_window = __tcp_select_window(sk);
1421
1422 /* Send ACK now, if this read freed lots of space
1423 * in our buffer. Certainly, new_window is new window.
1424 * We can advertise it now, if it is not less than current one.
1425 * "Lots" means "at least twice" here.
1426 */
1427 if (new_window && new_window >= 2 * rcv_window_now)
1428 time_to_ack = true;
1429 }
1430 }
1431 if (time_to_ack)
1432 tcp_send_ack(sk);
1433 }
1434
1435 static void tcp_prequeue_process(struct sock *sk)
1436 {
1437 struct sk_buff *skb;
1438 struct tcp_sock *tp = tcp_sk(sk);
1439
1440 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1441
1442 /* RX process wants to run with disabled BHs, though it is not
1443 * necessary */
1444 local_bh_disable();
1445 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1446 sk_backlog_rcv(sk, skb);
1447 local_bh_enable();
1448
1449 /* Clear memory counter. */
1450 tp->ucopy.memory = 0;
1451 }
1452
1453 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1454 {
1455 struct sk_buff *skb;
1456 u32 offset;
1457
1458 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1459 offset = seq - TCP_SKB_CB(skb)->seq;
1460 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1461 offset--;
1462 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1463 *off = offset;
1464 return skb;
1465 }
1466 /* This looks weird, but this can happen if TCP collapsing
1467 * splitted a fat GRO packet, while we released socket lock
1468 * in skb_splice_bits()
1469 */
1470 sk_eat_skb(sk, skb);
1471 }
1472 return NULL;
1473 }
1474
1475 /*
1476 * This routine provides an alternative to tcp_recvmsg() for routines
1477 * that would like to handle copying from skbuffs directly in 'sendfile'
1478 * fashion.
1479 * Note:
1480 * - It is assumed that the socket was locked by the caller.
1481 * - The routine does not block.
1482 * - At present, there is no support for reading OOB data
1483 * or for 'peeking' the socket using this routine
1484 * (although both would be easy to implement).
1485 */
1486 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1487 sk_read_actor_t recv_actor)
1488 {
1489 struct sk_buff *skb;
1490 struct tcp_sock *tp = tcp_sk(sk);
1491 u32 seq = tp->copied_seq;
1492 u32 offset;
1493 int copied = 0;
1494
1495 if (sk->sk_state == TCP_LISTEN)
1496 return -ENOTCONN;
1497 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1498 if (offset < skb->len) {
1499 int used;
1500 size_t len;
1501
1502 len = skb->len - offset;
1503 /* Stop reading if we hit a patch of urgent data */
1504 if (tp->urg_data) {
1505 u32 urg_offset = tp->urg_seq - seq;
1506 if (urg_offset < len)
1507 len = urg_offset;
1508 if (!len)
1509 break;
1510 }
1511 used = recv_actor(desc, skb, offset, len);
1512 if (used <= 0) {
1513 if (!copied)
1514 copied = used;
1515 break;
1516 } else if (used <= len) {
1517 seq += used;
1518 copied += used;
1519 offset += used;
1520 }
1521 /* If recv_actor drops the lock (e.g. TCP splice
1522 * receive) the skb pointer might be invalid when
1523 * getting here: tcp_collapse might have deleted it
1524 * while aggregating skbs from the socket queue.
1525 */
1526 skb = tcp_recv_skb(sk, seq - 1, &offset);
1527 if (!skb)
1528 break;
1529 /* TCP coalescing might have appended data to the skb.
1530 * Try to splice more frags
1531 */
1532 if (offset + 1 != skb->len)
1533 continue;
1534 }
1535 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1536 sk_eat_skb(sk, skb);
1537 ++seq;
1538 break;
1539 }
1540 sk_eat_skb(sk, skb);
1541 if (!desc->count)
1542 break;
1543 tp->copied_seq = seq;
1544 }
1545 tp->copied_seq = seq;
1546
1547 tcp_rcv_space_adjust(sk);
1548
1549 /* Clean up data we have read: This will do ACK frames. */
1550 if (copied > 0) {
1551 tcp_recv_skb(sk, seq, &offset);
1552 tcp_cleanup_rbuf(sk, copied);
1553 }
1554 return copied;
1555 }
1556 EXPORT_SYMBOL(tcp_read_sock);
1557
1558 /*
1559 * This routine copies from a sock struct into the user buffer.
1560 *
1561 * Technical note: in 2.3 we work on _locked_ socket, so that
1562 * tricks with *seq access order and skb->users are not required.
1563 * Probably, code can be easily improved even more.
1564 */
1565
1566 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1567 int flags, int *addr_len)
1568 {
1569 struct tcp_sock *tp = tcp_sk(sk);
1570 int copied = 0;
1571 u32 peek_seq;
1572 u32 *seq;
1573 unsigned long used;
1574 int err;
1575 int target; /* Read at least this many bytes */
1576 long timeo;
1577 struct task_struct *user_recv = NULL;
1578 struct sk_buff *skb;
1579 u32 urg_hole = 0;
1580
1581 if (unlikely(flags & MSG_ERRQUEUE))
1582 return inet_recv_error(sk, msg, len, addr_len);
1583
1584 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1585 (sk->sk_state == TCP_ESTABLISHED))
1586 sk_busy_loop(sk, nonblock);
1587
1588 lock_sock(sk);
1589
1590 err = -ENOTCONN;
1591 if (sk->sk_state == TCP_LISTEN)
1592 goto out;
1593
1594 timeo = sock_rcvtimeo(sk, nonblock);
1595
1596 /* Urgent data needs to be handled specially. */
1597 if (flags & MSG_OOB)
1598 goto recv_urg;
1599
1600 if (unlikely(tp->repair)) {
1601 err = -EPERM;
1602 if (!(flags & MSG_PEEK))
1603 goto out;
1604
1605 if (tp->repair_queue == TCP_SEND_QUEUE)
1606 goto recv_sndq;
1607
1608 err = -EINVAL;
1609 if (tp->repair_queue == TCP_NO_QUEUE)
1610 goto out;
1611
1612 /* 'common' recv queue MSG_PEEK-ing */
1613 }
1614
1615 seq = &tp->copied_seq;
1616 if (flags & MSG_PEEK) {
1617 peek_seq = tp->copied_seq;
1618 seq = &peek_seq;
1619 }
1620
1621 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1622
1623 do {
1624 u32 offset;
1625
1626 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1627 if (tp->urg_data && tp->urg_seq == *seq) {
1628 if (copied)
1629 break;
1630 if (signal_pending(current)) {
1631 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1632 break;
1633 }
1634 }
1635
1636 /* Next get a buffer. */
1637
1638 skb_queue_walk(&sk->sk_receive_queue, skb) {
1639 /* Now that we have two receive queues this
1640 * shouldn't happen.
1641 */
1642 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1643 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1644 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1645 flags))
1646 break;
1647
1648 offset = *seq - TCP_SKB_CB(skb)->seq;
1649 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1650 offset--;
1651 if (offset < skb->len)
1652 goto found_ok_skb;
1653 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1654 goto found_fin_ok;
1655 WARN(!(flags & MSG_PEEK),
1656 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1657 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1658 }
1659
1660 /* Well, if we have backlog, try to process it now yet. */
1661
1662 if (copied >= target && !sk->sk_backlog.tail)
1663 break;
1664
1665 if (copied) {
1666 if (sk->sk_err ||
1667 sk->sk_state == TCP_CLOSE ||
1668 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1669 !timeo ||
1670 signal_pending(current))
1671 break;
1672 } else {
1673 if (sock_flag(sk, SOCK_DONE))
1674 break;
1675
1676 if (sk->sk_err) {
1677 copied = sock_error(sk);
1678 break;
1679 }
1680
1681 if (sk->sk_shutdown & RCV_SHUTDOWN)
1682 break;
1683
1684 if (sk->sk_state == TCP_CLOSE) {
1685 if (!sock_flag(sk, SOCK_DONE)) {
1686 /* This occurs when user tries to read
1687 * from never connected socket.
1688 */
1689 copied = -ENOTCONN;
1690 break;
1691 }
1692 break;
1693 }
1694
1695 if (!timeo) {
1696 copied = -EAGAIN;
1697 break;
1698 }
1699
1700 if (signal_pending(current)) {
1701 copied = sock_intr_errno(timeo);
1702 break;
1703 }
1704 }
1705
1706 tcp_cleanup_rbuf(sk, copied);
1707
1708 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1709 /* Install new reader */
1710 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1711 user_recv = current;
1712 tp->ucopy.task = user_recv;
1713 tp->ucopy.msg = msg;
1714 }
1715
1716 tp->ucopy.len = len;
1717
1718 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1719 !(flags & (MSG_PEEK | MSG_TRUNC)));
1720
1721 /* Ugly... If prequeue is not empty, we have to
1722 * process it before releasing socket, otherwise
1723 * order will be broken at second iteration.
1724 * More elegant solution is required!!!
1725 *
1726 * Look: we have the following (pseudo)queues:
1727 *
1728 * 1. packets in flight
1729 * 2. backlog
1730 * 3. prequeue
1731 * 4. receive_queue
1732 *
1733 * Each queue can be processed only if the next ones
1734 * are empty. At this point we have empty receive_queue.
1735 * But prequeue _can_ be not empty after 2nd iteration,
1736 * when we jumped to start of loop because backlog
1737 * processing added something to receive_queue.
1738 * We cannot release_sock(), because backlog contains
1739 * packets arrived _after_ prequeued ones.
1740 *
1741 * Shortly, algorithm is clear --- to process all
1742 * the queues in order. We could make it more directly,
1743 * requeueing packets from backlog to prequeue, if
1744 * is not empty. It is more elegant, but eats cycles,
1745 * unfortunately.
1746 */
1747 if (!skb_queue_empty(&tp->ucopy.prequeue))
1748 goto do_prequeue;
1749
1750 /* __ Set realtime policy in scheduler __ */
1751 }
1752
1753 if (copied >= target) {
1754 /* Do not sleep, just process backlog. */
1755 release_sock(sk);
1756 lock_sock(sk);
1757 } else
1758 sk_wait_data(sk, &timeo);
1759
1760 if (user_recv) {
1761 int chunk;
1762
1763 /* __ Restore normal policy in scheduler __ */
1764
1765 if ((chunk = len - tp->ucopy.len) != 0) {
1766 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1767 len -= chunk;
1768 copied += chunk;
1769 }
1770
1771 if (tp->rcv_nxt == tp->copied_seq &&
1772 !skb_queue_empty(&tp->ucopy.prequeue)) {
1773 do_prequeue:
1774 tcp_prequeue_process(sk);
1775
1776 if ((chunk = len - tp->ucopy.len) != 0) {
1777 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1778 len -= chunk;
1779 copied += chunk;
1780 }
1781 }
1782 }
1783 if ((flags & MSG_PEEK) &&
1784 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1785 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1786 current->comm,
1787 task_pid_nr(current));
1788 peek_seq = tp->copied_seq;
1789 }
1790 continue;
1791
1792 found_ok_skb:
1793 /* Ok so how much can we use? */
1794 used = skb->len - offset;
1795 if (len < used)
1796 used = len;
1797
1798 /* Do we have urgent data here? */
1799 if (tp->urg_data) {
1800 u32 urg_offset = tp->urg_seq - *seq;
1801 if (urg_offset < used) {
1802 if (!urg_offset) {
1803 if (!sock_flag(sk, SOCK_URGINLINE)) {
1804 ++*seq;
1805 urg_hole++;
1806 offset++;
1807 used--;
1808 if (!used)
1809 goto skip_copy;
1810 }
1811 } else
1812 used = urg_offset;
1813 }
1814 }
1815
1816 if (!(flags & MSG_TRUNC)) {
1817 err = skb_copy_datagram_msg(skb, offset, msg, used);
1818 if (err) {
1819 /* Exception. Bailout! */
1820 if (!copied)
1821 copied = -EFAULT;
1822 break;
1823 }
1824 }
1825
1826 *seq += used;
1827 copied += used;
1828 len -= used;
1829
1830 tcp_rcv_space_adjust(sk);
1831
1832 skip_copy:
1833 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1834 tp->urg_data = 0;
1835 tcp_fast_path_check(sk);
1836 }
1837 if (used + offset < skb->len)
1838 continue;
1839
1840 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1841 goto found_fin_ok;
1842 if (!(flags & MSG_PEEK))
1843 sk_eat_skb(sk, skb);
1844 continue;
1845
1846 found_fin_ok:
1847 /* Process the FIN. */
1848 ++*seq;
1849 if (!(flags & MSG_PEEK))
1850 sk_eat_skb(sk, skb);
1851 break;
1852 } while (len > 0);
1853
1854 if (user_recv) {
1855 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1856 int chunk;
1857
1858 tp->ucopy.len = copied > 0 ? len : 0;
1859
1860 tcp_prequeue_process(sk);
1861
1862 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1863 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1864 len -= chunk;
1865 copied += chunk;
1866 }
1867 }
1868
1869 tp->ucopy.task = NULL;
1870 tp->ucopy.len = 0;
1871 }
1872
1873 /* According to UNIX98, msg_name/msg_namelen are ignored
1874 * on connected socket. I was just happy when found this 8) --ANK
1875 */
1876
1877 /* Clean up data we have read: This will do ACK frames. */
1878 tcp_cleanup_rbuf(sk, copied);
1879
1880 release_sock(sk);
1881 return copied;
1882
1883 out:
1884 release_sock(sk);
1885 return err;
1886
1887 recv_urg:
1888 err = tcp_recv_urg(sk, msg, len, flags);
1889 goto out;
1890
1891 recv_sndq:
1892 err = tcp_peek_sndq(sk, msg, len);
1893 goto out;
1894 }
1895 EXPORT_SYMBOL(tcp_recvmsg);
1896
1897 void tcp_set_state(struct sock *sk, int state)
1898 {
1899 int oldstate = sk->sk_state;
1900
1901 switch (state) {
1902 case TCP_ESTABLISHED:
1903 if (oldstate != TCP_ESTABLISHED)
1904 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1905 break;
1906
1907 case TCP_CLOSE:
1908 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1909 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1910
1911 sk->sk_prot->unhash(sk);
1912 if (inet_csk(sk)->icsk_bind_hash &&
1913 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1914 inet_put_port(sk);
1915 /* fall through */
1916 default:
1917 if (oldstate == TCP_ESTABLISHED)
1918 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1919 }
1920
1921 /* Change state AFTER socket is unhashed to avoid closed
1922 * socket sitting in hash tables.
1923 */
1924 sk->sk_state = state;
1925
1926 #ifdef STATE_TRACE
1927 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1928 #endif
1929 }
1930 EXPORT_SYMBOL_GPL(tcp_set_state);
1931
1932 /*
1933 * State processing on a close. This implements the state shift for
1934 * sending our FIN frame. Note that we only send a FIN for some
1935 * states. A shutdown() may have already sent the FIN, or we may be
1936 * closed.
1937 */
1938
1939 static const unsigned char new_state[16] = {
1940 /* current state: new state: action: */
1941 [0 /* (Invalid) */] = TCP_CLOSE,
1942 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1943 [TCP_SYN_SENT] = TCP_CLOSE,
1944 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1945 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
1946 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
1947 [TCP_TIME_WAIT] = TCP_CLOSE,
1948 [TCP_CLOSE] = TCP_CLOSE,
1949 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
1950 [TCP_LAST_ACK] = TCP_LAST_ACK,
1951 [TCP_LISTEN] = TCP_CLOSE,
1952 [TCP_CLOSING] = TCP_CLOSING,
1953 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
1954 };
1955
1956 static int tcp_close_state(struct sock *sk)
1957 {
1958 int next = (int)new_state[sk->sk_state];
1959 int ns = next & TCP_STATE_MASK;
1960
1961 tcp_set_state(sk, ns);
1962
1963 return next & TCP_ACTION_FIN;
1964 }
1965
1966 /*
1967 * Shutdown the sending side of a connection. Much like close except
1968 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1969 */
1970
1971 void tcp_shutdown(struct sock *sk, int how)
1972 {
1973 /* We need to grab some memory, and put together a FIN,
1974 * and then put it into the queue to be sent.
1975 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1976 */
1977 if (!(how & SEND_SHUTDOWN))
1978 return;
1979
1980 /* If we've already sent a FIN, or it's a closed state, skip this. */
1981 if ((1 << sk->sk_state) &
1982 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1983 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1984 /* Clear out any half completed packets. FIN if needed. */
1985 if (tcp_close_state(sk))
1986 tcp_send_fin(sk);
1987 }
1988 }
1989 EXPORT_SYMBOL(tcp_shutdown);
1990
1991 bool tcp_check_oom(struct sock *sk, int shift)
1992 {
1993 bool too_many_orphans, out_of_socket_memory;
1994
1995 too_many_orphans = tcp_too_many_orphans(sk, shift);
1996 out_of_socket_memory = tcp_out_of_memory(sk);
1997
1998 if (too_many_orphans)
1999 net_info_ratelimited("too many orphaned sockets\n");
2000 if (out_of_socket_memory)
2001 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2002 return too_many_orphans || out_of_socket_memory;
2003 }
2004
2005 void tcp_close(struct sock *sk, long timeout)
2006 {
2007 struct sk_buff *skb;
2008 int data_was_unread = 0;
2009 int state;
2010
2011 lock_sock(sk);
2012 sk->sk_shutdown = SHUTDOWN_MASK;
2013
2014 if (sk->sk_state == TCP_LISTEN) {
2015 tcp_set_state(sk, TCP_CLOSE);
2016
2017 /* Special case. */
2018 inet_csk_listen_stop(sk);
2019
2020 goto adjudge_to_death;
2021 }
2022
2023 /* We need to flush the recv. buffs. We do this only on the
2024 * descriptor close, not protocol-sourced closes, because the
2025 * reader process may not have drained the data yet!
2026 */
2027 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2028 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2029
2030 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2031 len--;
2032 data_was_unread += len;
2033 __kfree_skb(skb);
2034 }
2035
2036 sk_mem_reclaim(sk);
2037
2038 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2039 if (sk->sk_state == TCP_CLOSE)
2040 goto adjudge_to_death;
2041
2042 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2043 * data was lost. To witness the awful effects of the old behavior of
2044 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2045 * GET in an FTP client, suspend the process, wait for the client to
2046 * advertise a zero window, then kill -9 the FTP client, wheee...
2047 * Note: timeout is always zero in such a case.
2048 */
2049 if (unlikely(tcp_sk(sk)->repair)) {
2050 sk->sk_prot->disconnect(sk, 0);
2051 } else if (data_was_unread) {
2052 /* Unread data was tossed, zap the connection. */
2053 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2054 tcp_set_state(sk, TCP_CLOSE);
2055 tcp_send_active_reset(sk, sk->sk_allocation);
2056 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2057 /* Check zero linger _after_ checking for unread data. */
2058 sk->sk_prot->disconnect(sk, 0);
2059 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2060 } else if (tcp_close_state(sk)) {
2061 /* We FIN if the application ate all the data before
2062 * zapping the connection.
2063 */
2064
2065 /* RED-PEN. Formally speaking, we have broken TCP state
2066 * machine. State transitions:
2067 *
2068 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2069 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2070 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2071 *
2072 * are legal only when FIN has been sent (i.e. in window),
2073 * rather than queued out of window. Purists blame.
2074 *
2075 * F.e. "RFC state" is ESTABLISHED,
2076 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2077 *
2078 * The visible declinations are that sometimes
2079 * we enter time-wait state, when it is not required really
2080 * (harmless), do not send active resets, when they are
2081 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2082 * they look as CLOSING or LAST_ACK for Linux)
2083 * Probably, I missed some more holelets.
2084 * --ANK
2085 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2086 * in a single packet! (May consider it later but will
2087 * probably need API support or TCP_CORK SYN-ACK until
2088 * data is written and socket is closed.)
2089 */
2090 tcp_send_fin(sk);
2091 }
2092
2093 sk_stream_wait_close(sk, timeout);
2094
2095 adjudge_to_death:
2096 state = sk->sk_state;
2097 sock_hold(sk);
2098 sock_orphan(sk);
2099
2100 /* It is the last release_sock in its life. It will remove backlog. */
2101 release_sock(sk);
2102
2103
2104 /* Now socket is owned by kernel and we acquire BH lock
2105 to finish close. No need to check for user refs.
2106 */
2107 local_bh_disable();
2108 bh_lock_sock(sk);
2109 WARN_ON(sock_owned_by_user(sk));
2110
2111 percpu_counter_inc(sk->sk_prot->orphan_count);
2112
2113 /* Have we already been destroyed by a softirq or backlog? */
2114 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2115 goto out;
2116
2117 /* This is a (useful) BSD violating of the RFC. There is a
2118 * problem with TCP as specified in that the other end could
2119 * keep a socket open forever with no application left this end.
2120 * We use a 1 minute timeout (about the same as BSD) then kill
2121 * our end. If they send after that then tough - BUT: long enough
2122 * that we won't make the old 4*rto = almost no time - whoops
2123 * reset mistake.
2124 *
2125 * Nope, it was not mistake. It is really desired behaviour
2126 * f.e. on http servers, when such sockets are useless, but
2127 * consume significant resources. Let's do it with special
2128 * linger2 option. --ANK
2129 */
2130
2131 if (sk->sk_state == TCP_FIN_WAIT2) {
2132 struct tcp_sock *tp = tcp_sk(sk);
2133 if (tp->linger2 < 0) {
2134 tcp_set_state(sk, TCP_CLOSE);
2135 tcp_send_active_reset(sk, GFP_ATOMIC);
2136 NET_INC_STATS_BH(sock_net(sk),
2137 LINUX_MIB_TCPABORTONLINGER);
2138 } else {
2139 const int tmo = tcp_fin_time(sk);
2140
2141 if (tmo > TCP_TIMEWAIT_LEN) {
2142 inet_csk_reset_keepalive_timer(sk,
2143 tmo - TCP_TIMEWAIT_LEN);
2144 } else {
2145 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2146 goto out;
2147 }
2148 }
2149 }
2150 if (sk->sk_state != TCP_CLOSE) {
2151 sk_mem_reclaim(sk);
2152 if (tcp_check_oom(sk, 0)) {
2153 tcp_set_state(sk, TCP_CLOSE);
2154 tcp_send_active_reset(sk, GFP_ATOMIC);
2155 NET_INC_STATS_BH(sock_net(sk),
2156 LINUX_MIB_TCPABORTONMEMORY);
2157 }
2158 }
2159
2160 if (sk->sk_state == TCP_CLOSE) {
2161 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2162 /* We could get here with a non-NULL req if the socket is
2163 * aborted (e.g., closed with unread data) before 3WHS
2164 * finishes.
2165 */
2166 if (req)
2167 reqsk_fastopen_remove(sk, req, false);
2168 inet_csk_destroy_sock(sk);
2169 }
2170 /* Otherwise, socket is reprieved until protocol close. */
2171
2172 out:
2173 bh_unlock_sock(sk);
2174 local_bh_enable();
2175 sock_put(sk);
2176 }
2177 EXPORT_SYMBOL(tcp_close);
2178
2179 /* These states need RST on ABORT according to RFC793 */
2180
2181 static inline bool tcp_need_reset(int state)
2182 {
2183 return (1 << state) &
2184 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2185 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2186 }
2187
2188 int tcp_disconnect(struct sock *sk, int flags)
2189 {
2190 struct inet_sock *inet = inet_sk(sk);
2191 struct inet_connection_sock *icsk = inet_csk(sk);
2192 struct tcp_sock *tp = tcp_sk(sk);
2193 int err = 0;
2194 int old_state = sk->sk_state;
2195
2196 if (old_state != TCP_CLOSE)
2197 tcp_set_state(sk, TCP_CLOSE);
2198
2199 /* ABORT function of RFC793 */
2200 if (old_state == TCP_LISTEN) {
2201 inet_csk_listen_stop(sk);
2202 } else if (unlikely(tp->repair)) {
2203 sk->sk_err = ECONNABORTED;
2204 } else if (tcp_need_reset(old_state) ||
2205 (tp->snd_nxt != tp->write_seq &&
2206 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2207 /* The last check adjusts for discrepancy of Linux wrt. RFC
2208 * states
2209 */
2210 tcp_send_active_reset(sk, gfp_any());
2211 sk->sk_err = ECONNRESET;
2212 } else if (old_state == TCP_SYN_SENT)
2213 sk->sk_err = ECONNRESET;
2214
2215 tcp_clear_xmit_timers(sk);
2216 __skb_queue_purge(&sk->sk_receive_queue);
2217 tcp_write_queue_purge(sk);
2218 __skb_queue_purge(&tp->out_of_order_queue);
2219
2220 inet->inet_dport = 0;
2221
2222 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2223 inet_reset_saddr(sk);
2224
2225 sk->sk_shutdown = 0;
2226 sock_reset_flag(sk, SOCK_DONE);
2227 tp->srtt_us = 0;
2228 if ((tp->write_seq += tp->max_window + 2) == 0)
2229 tp->write_seq = 1;
2230 icsk->icsk_backoff = 0;
2231 tp->snd_cwnd = 2;
2232 icsk->icsk_probes_out = 0;
2233 tp->packets_out = 0;
2234 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2235 tp->snd_cwnd_cnt = 0;
2236 tp->window_clamp = 0;
2237 tcp_set_ca_state(sk, TCP_CA_Open);
2238 tcp_clear_retrans(tp);
2239 inet_csk_delack_init(sk);
2240 tcp_init_send_head(sk);
2241 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2242 __sk_dst_reset(sk);
2243
2244 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2245
2246 sk->sk_error_report(sk);
2247 return err;
2248 }
2249 EXPORT_SYMBOL(tcp_disconnect);
2250
2251 void tcp_sock_destruct(struct sock *sk)
2252 {
2253 inet_sock_destruct(sk);
2254
2255 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2256 }
2257
2258 static inline bool tcp_can_repair_sock(const struct sock *sk)
2259 {
2260 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2261 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2262 }
2263
2264 static int tcp_repair_options_est(struct tcp_sock *tp,
2265 struct tcp_repair_opt __user *optbuf, unsigned int len)
2266 {
2267 struct tcp_repair_opt opt;
2268
2269 while (len >= sizeof(opt)) {
2270 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2271 return -EFAULT;
2272
2273 optbuf++;
2274 len -= sizeof(opt);
2275
2276 switch (opt.opt_code) {
2277 case TCPOPT_MSS:
2278 tp->rx_opt.mss_clamp = opt.opt_val;
2279 break;
2280 case TCPOPT_WINDOW:
2281 {
2282 u16 snd_wscale = opt.opt_val & 0xFFFF;
2283 u16 rcv_wscale = opt.opt_val >> 16;
2284
2285 if (snd_wscale > 14 || rcv_wscale > 14)
2286 return -EFBIG;
2287
2288 tp->rx_opt.snd_wscale = snd_wscale;
2289 tp->rx_opt.rcv_wscale = rcv_wscale;
2290 tp->rx_opt.wscale_ok = 1;
2291 }
2292 break;
2293 case TCPOPT_SACK_PERM:
2294 if (opt.opt_val != 0)
2295 return -EINVAL;
2296
2297 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2298 if (sysctl_tcp_fack)
2299 tcp_enable_fack(tp);
2300 break;
2301 case TCPOPT_TIMESTAMP:
2302 if (opt.opt_val != 0)
2303 return -EINVAL;
2304
2305 tp->rx_opt.tstamp_ok = 1;
2306 break;
2307 }
2308 }
2309
2310 return 0;
2311 }
2312
2313 /*
2314 * Socket option code for TCP.
2315 */
2316 static int do_tcp_setsockopt(struct sock *sk, int level,
2317 int optname, char __user *optval, unsigned int optlen)
2318 {
2319 struct tcp_sock *tp = tcp_sk(sk);
2320 struct inet_connection_sock *icsk = inet_csk(sk);
2321 int val;
2322 int err = 0;
2323
2324 /* These are data/string values, all the others are ints */
2325 switch (optname) {
2326 case TCP_CONGESTION: {
2327 char name[TCP_CA_NAME_MAX];
2328
2329 if (optlen < 1)
2330 return -EINVAL;
2331
2332 val = strncpy_from_user(name, optval,
2333 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2334 if (val < 0)
2335 return -EFAULT;
2336 name[val] = 0;
2337
2338 lock_sock(sk);
2339 err = tcp_set_congestion_control(sk, name);
2340 release_sock(sk);
2341 return err;
2342 }
2343 default:
2344 /* fallthru */
2345 break;
2346 }
2347
2348 if (optlen < sizeof(int))
2349 return -EINVAL;
2350
2351 if (get_user(val, (int __user *)optval))
2352 return -EFAULT;
2353
2354 lock_sock(sk);
2355
2356 switch (optname) {
2357 case TCP_MAXSEG:
2358 /* Values greater than interface MTU won't take effect. However
2359 * at the point when this call is done we typically don't yet
2360 * know which interface is going to be used */
2361 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2362 err = -EINVAL;
2363 break;
2364 }
2365 tp->rx_opt.user_mss = val;
2366 break;
2367
2368 case TCP_NODELAY:
2369 if (val) {
2370 /* TCP_NODELAY is weaker than TCP_CORK, so that
2371 * this option on corked socket is remembered, but
2372 * it is not activated until cork is cleared.
2373 *
2374 * However, when TCP_NODELAY is set we make
2375 * an explicit push, which overrides even TCP_CORK
2376 * for currently queued segments.
2377 */
2378 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2379 tcp_push_pending_frames(sk);
2380 } else {
2381 tp->nonagle &= ~TCP_NAGLE_OFF;
2382 }
2383 break;
2384
2385 case TCP_THIN_LINEAR_TIMEOUTS:
2386 if (val < 0 || val > 1)
2387 err = -EINVAL;
2388 else
2389 tp->thin_lto = val;
2390 break;
2391
2392 case TCP_THIN_DUPACK:
2393 if (val < 0 || val > 1)
2394 err = -EINVAL;
2395 else {
2396 tp->thin_dupack = val;
2397 if (tp->thin_dupack)
2398 tcp_disable_early_retrans(tp);
2399 }
2400 break;
2401
2402 case TCP_REPAIR:
2403 if (!tcp_can_repair_sock(sk))
2404 err = -EPERM;
2405 else if (val == 1) {
2406 tp->repair = 1;
2407 sk->sk_reuse = SK_FORCE_REUSE;
2408 tp->repair_queue = TCP_NO_QUEUE;
2409 } else if (val == 0) {
2410 tp->repair = 0;
2411 sk->sk_reuse = SK_NO_REUSE;
2412 tcp_send_window_probe(sk);
2413 } else
2414 err = -EINVAL;
2415
2416 break;
2417
2418 case TCP_REPAIR_QUEUE:
2419 if (!tp->repair)
2420 err = -EPERM;
2421 else if (val < TCP_QUEUES_NR)
2422 tp->repair_queue = val;
2423 else
2424 err = -EINVAL;
2425 break;
2426
2427 case TCP_QUEUE_SEQ:
2428 if (sk->sk_state != TCP_CLOSE)
2429 err = -EPERM;
2430 else if (tp->repair_queue == TCP_SEND_QUEUE)
2431 tp->write_seq = val;
2432 else if (tp->repair_queue == TCP_RECV_QUEUE)
2433 tp->rcv_nxt = val;
2434 else
2435 err = -EINVAL;
2436 break;
2437
2438 case TCP_REPAIR_OPTIONS:
2439 if (!tp->repair)
2440 err = -EINVAL;
2441 else if (sk->sk_state == TCP_ESTABLISHED)
2442 err = tcp_repair_options_est(tp,
2443 (struct tcp_repair_opt __user *)optval,
2444 optlen);
2445 else
2446 err = -EPERM;
2447 break;
2448
2449 case TCP_CORK:
2450 /* When set indicates to always queue non-full frames.
2451 * Later the user clears this option and we transmit
2452 * any pending partial frames in the queue. This is
2453 * meant to be used alongside sendfile() to get properly
2454 * filled frames when the user (for example) must write
2455 * out headers with a write() call first and then use
2456 * sendfile to send out the data parts.
2457 *
2458 * TCP_CORK can be set together with TCP_NODELAY and it is
2459 * stronger than TCP_NODELAY.
2460 */
2461 if (val) {
2462 tp->nonagle |= TCP_NAGLE_CORK;
2463 } else {
2464 tp->nonagle &= ~TCP_NAGLE_CORK;
2465 if (tp->nonagle&TCP_NAGLE_OFF)
2466 tp->nonagle |= TCP_NAGLE_PUSH;
2467 tcp_push_pending_frames(sk);
2468 }
2469 break;
2470
2471 case TCP_KEEPIDLE:
2472 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2473 err = -EINVAL;
2474 else {
2475 tp->keepalive_time = val * HZ;
2476 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2477 !((1 << sk->sk_state) &
2478 (TCPF_CLOSE | TCPF_LISTEN))) {
2479 u32 elapsed = keepalive_time_elapsed(tp);
2480 if (tp->keepalive_time > elapsed)
2481 elapsed = tp->keepalive_time - elapsed;
2482 else
2483 elapsed = 0;
2484 inet_csk_reset_keepalive_timer(sk, elapsed);
2485 }
2486 }
2487 break;
2488 case TCP_KEEPINTVL:
2489 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2490 err = -EINVAL;
2491 else
2492 tp->keepalive_intvl = val * HZ;
2493 break;
2494 case TCP_KEEPCNT:
2495 if (val < 1 || val > MAX_TCP_KEEPCNT)
2496 err = -EINVAL;
2497 else
2498 tp->keepalive_probes = val;
2499 break;
2500 case TCP_SYNCNT:
2501 if (val < 1 || val > MAX_TCP_SYNCNT)
2502 err = -EINVAL;
2503 else
2504 icsk->icsk_syn_retries = val;
2505 break;
2506
2507 case TCP_SAVE_SYN:
2508 if (val < 0 || val > 1)
2509 err = -EINVAL;
2510 else
2511 tp->save_syn = val;
2512 break;
2513
2514 case TCP_LINGER2:
2515 if (val < 0)
2516 tp->linger2 = -1;
2517 else if (val > sysctl_tcp_fin_timeout / HZ)
2518 tp->linger2 = 0;
2519 else
2520 tp->linger2 = val * HZ;
2521 break;
2522
2523 case TCP_DEFER_ACCEPT:
2524 /* Translate value in seconds to number of retransmits */
2525 icsk->icsk_accept_queue.rskq_defer_accept =
2526 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2527 TCP_RTO_MAX / HZ);
2528 break;
2529
2530 case TCP_WINDOW_CLAMP:
2531 if (!val) {
2532 if (sk->sk_state != TCP_CLOSE) {
2533 err = -EINVAL;
2534 break;
2535 }
2536 tp->window_clamp = 0;
2537 } else
2538 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2539 SOCK_MIN_RCVBUF / 2 : val;
2540 break;
2541
2542 case TCP_QUICKACK:
2543 if (!val) {
2544 icsk->icsk_ack.pingpong = 1;
2545 } else {
2546 icsk->icsk_ack.pingpong = 0;
2547 if ((1 << sk->sk_state) &
2548 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2549 inet_csk_ack_scheduled(sk)) {
2550 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2551 tcp_cleanup_rbuf(sk, 1);
2552 if (!(val & 1))
2553 icsk->icsk_ack.pingpong = 1;
2554 }
2555 }
2556 break;
2557
2558 #ifdef CONFIG_TCP_MD5SIG
2559 case TCP_MD5SIG:
2560 /* Read the IP->Key mappings from userspace */
2561 err = tp->af_specific->md5_parse(sk, optval, optlen);
2562 break;
2563 #endif
2564 case TCP_USER_TIMEOUT:
2565 /* Cap the max time in ms TCP will retry or probe the window
2566 * before giving up and aborting (ETIMEDOUT) a connection.
2567 */
2568 if (val < 0)
2569 err = -EINVAL;
2570 else
2571 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2572 break;
2573
2574 case TCP_FASTOPEN:
2575 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2576 TCPF_LISTEN))) {
2577 tcp_fastopen_init_key_once(true);
2578
2579 err = fastopen_init_queue(sk, val);
2580 } else {
2581 err = -EINVAL;
2582 }
2583 break;
2584 case TCP_TIMESTAMP:
2585 if (!tp->repair)
2586 err = -EPERM;
2587 else
2588 tp->tsoffset = val - tcp_time_stamp;
2589 break;
2590 case TCP_NOTSENT_LOWAT:
2591 tp->notsent_lowat = val;
2592 sk->sk_write_space(sk);
2593 break;
2594 default:
2595 err = -ENOPROTOOPT;
2596 break;
2597 }
2598
2599 release_sock(sk);
2600 return err;
2601 }
2602
2603 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2604 unsigned int optlen)
2605 {
2606 const struct inet_connection_sock *icsk = inet_csk(sk);
2607
2608 if (level != SOL_TCP)
2609 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2610 optval, optlen);
2611 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2612 }
2613 EXPORT_SYMBOL(tcp_setsockopt);
2614
2615 #ifdef CONFIG_COMPAT
2616 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2617 char __user *optval, unsigned int optlen)
2618 {
2619 if (level != SOL_TCP)
2620 return inet_csk_compat_setsockopt(sk, level, optname,
2621 optval, optlen);
2622 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2623 }
2624 EXPORT_SYMBOL(compat_tcp_setsockopt);
2625 #endif
2626
2627 /* Return information about state of tcp endpoint in API format. */
2628 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2629 {
2630 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2631 const struct inet_connection_sock *icsk = inet_csk(sk);
2632 u32 now = tcp_time_stamp;
2633 unsigned int start;
2634 u32 rate;
2635
2636 memset(info, 0, sizeof(*info));
2637 if (sk->sk_type != SOCK_STREAM)
2638 return;
2639
2640 info->tcpi_state = sk->sk_state;
2641 info->tcpi_ca_state = icsk->icsk_ca_state;
2642 info->tcpi_retransmits = icsk->icsk_retransmits;
2643 info->tcpi_probes = icsk->icsk_probes_out;
2644 info->tcpi_backoff = icsk->icsk_backoff;
2645
2646 if (tp->rx_opt.tstamp_ok)
2647 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2648 if (tcp_is_sack(tp))
2649 info->tcpi_options |= TCPI_OPT_SACK;
2650 if (tp->rx_opt.wscale_ok) {
2651 info->tcpi_options |= TCPI_OPT_WSCALE;
2652 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2653 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2654 }
2655
2656 if (tp->ecn_flags & TCP_ECN_OK)
2657 info->tcpi_options |= TCPI_OPT_ECN;
2658 if (tp->ecn_flags & TCP_ECN_SEEN)
2659 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2660 if (tp->syn_data_acked)
2661 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2662
2663 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2664 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2665 info->tcpi_snd_mss = tp->mss_cache;
2666 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2667
2668 if (sk->sk_state == TCP_LISTEN) {
2669 info->tcpi_unacked = sk->sk_ack_backlog;
2670 info->tcpi_sacked = sk->sk_max_ack_backlog;
2671 } else {
2672 info->tcpi_unacked = tp->packets_out;
2673 info->tcpi_sacked = tp->sacked_out;
2674 }
2675 info->tcpi_lost = tp->lost_out;
2676 info->tcpi_retrans = tp->retrans_out;
2677 info->tcpi_fackets = tp->fackets_out;
2678
2679 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2680 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2681 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2682
2683 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2684 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2685 info->tcpi_rtt = tp->srtt_us >> 3;
2686 info->tcpi_rttvar = tp->mdev_us >> 2;
2687 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2688 info->tcpi_snd_cwnd = tp->snd_cwnd;
2689 info->tcpi_advmss = tp->advmss;
2690 info->tcpi_reordering = tp->reordering;
2691
2692 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2693 info->tcpi_rcv_space = tp->rcvq_space.space;
2694
2695 info->tcpi_total_retrans = tp->total_retrans;
2696
2697 rate = READ_ONCE(sk->sk_pacing_rate);
2698 info->tcpi_pacing_rate = rate != ~0U ? rate : ~0ULL;
2699
2700 rate = READ_ONCE(sk->sk_max_pacing_rate);
2701 info->tcpi_max_pacing_rate = rate != ~0U ? rate : ~0ULL;
2702
2703 do {
2704 start = u64_stats_fetch_begin_irq(&tp->syncp);
2705 info->tcpi_bytes_acked = tp->bytes_acked;
2706 info->tcpi_bytes_received = tp->bytes_received;
2707 } while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2708 info->tcpi_segs_out = tp->segs_out;
2709 info->tcpi_segs_in = tp->segs_in;
2710 }
2711 EXPORT_SYMBOL_GPL(tcp_get_info);
2712
2713 static int do_tcp_getsockopt(struct sock *sk, int level,
2714 int optname, char __user *optval, int __user *optlen)
2715 {
2716 struct inet_connection_sock *icsk = inet_csk(sk);
2717 struct tcp_sock *tp = tcp_sk(sk);
2718 int val, len;
2719
2720 if (get_user(len, optlen))
2721 return -EFAULT;
2722
2723 len = min_t(unsigned int, len, sizeof(int));
2724
2725 if (len < 0)
2726 return -EINVAL;
2727
2728 switch (optname) {
2729 case TCP_MAXSEG:
2730 val = tp->mss_cache;
2731 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2732 val = tp->rx_opt.user_mss;
2733 if (tp->repair)
2734 val = tp->rx_opt.mss_clamp;
2735 break;
2736 case TCP_NODELAY:
2737 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2738 break;
2739 case TCP_CORK:
2740 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2741 break;
2742 case TCP_KEEPIDLE:
2743 val = keepalive_time_when(tp) / HZ;
2744 break;
2745 case TCP_KEEPINTVL:
2746 val = keepalive_intvl_when(tp) / HZ;
2747 break;
2748 case TCP_KEEPCNT:
2749 val = keepalive_probes(tp);
2750 break;
2751 case TCP_SYNCNT:
2752 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2753 break;
2754 case TCP_LINGER2:
2755 val = tp->linger2;
2756 if (val >= 0)
2757 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2758 break;
2759 case TCP_DEFER_ACCEPT:
2760 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2761 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2762 break;
2763 case TCP_WINDOW_CLAMP:
2764 val = tp->window_clamp;
2765 break;
2766 case TCP_INFO: {
2767 struct tcp_info info;
2768
2769 if (get_user(len, optlen))
2770 return -EFAULT;
2771
2772 tcp_get_info(sk, &info);
2773
2774 len = min_t(unsigned int, len, sizeof(info));
2775 if (put_user(len, optlen))
2776 return -EFAULT;
2777 if (copy_to_user(optval, &info, len))
2778 return -EFAULT;
2779 return 0;
2780 }
2781 case TCP_CC_INFO: {
2782 const struct tcp_congestion_ops *ca_ops;
2783 union tcp_cc_info info;
2784 size_t sz = 0;
2785 int attr;
2786
2787 if (get_user(len, optlen))
2788 return -EFAULT;
2789
2790 ca_ops = icsk->icsk_ca_ops;
2791 if (ca_ops && ca_ops->get_info)
2792 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2793
2794 len = min_t(unsigned int, len, sz);
2795 if (put_user(len, optlen))
2796 return -EFAULT;
2797 if (copy_to_user(optval, &info, len))
2798 return -EFAULT;
2799 return 0;
2800 }
2801 case TCP_QUICKACK:
2802 val = !icsk->icsk_ack.pingpong;
2803 break;
2804
2805 case TCP_CONGESTION:
2806 if (get_user(len, optlen))
2807 return -EFAULT;
2808 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2809 if (put_user(len, optlen))
2810 return -EFAULT;
2811 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2812 return -EFAULT;
2813 return 0;
2814
2815 case TCP_THIN_LINEAR_TIMEOUTS:
2816 val = tp->thin_lto;
2817 break;
2818 case TCP_THIN_DUPACK:
2819 val = tp->thin_dupack;
2820 break;
2821
2822 case TCP_REPAIR:
2823 val = tp->repair;
2824 break;
2825
2826 case TCP_REPAIR_QUEUE:
2827 if (tp->repair)
2828 val = tp->repair_queue;
2829 else
2830 return -EINVAL;
2831 break;
2832
2833 case TCP_QUEUE_SEQ:
2834 if (tp->repair_queue == TCP_SEND_QUEUE)
2835 val = tp->write_seq;
2836 else if (tp->repair_queue == TCP_RECV_QUEUE)
2837 val = tp->rcv_nxt;
2838 else
2839 return -EINVAL;
2840 break;
2841
2842 case TCP_USER_TIMEOUT:
2843 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2844 break;
2845
2846 case TCP_FASTOPEN:
2847 if (icsk->icsk_accept_queue.fastopenq)
2848 val = icsk->icsk_accept_queue.fastopenq->max_qlen;
2849 else
2850 val = 0;
2851 break;
2852
2853 case TCP_TIMESTAMP:
2854 val = tcp_time_stamp + tp->tsoffset;
2855 break;
2856 case TCP_NOTSENT_LOWAT:
2857 val = tp->notsent_lowat;
2858 break;
2859 case TCP_SAVE_SYN:
2860 val = tp->save_syn;
2861 break;
2862 case TCP_SAVED_SYN: {
2863 if (get_user(len, optlen))
2864 return -EFAULT;
2865
2866 lock_sock(sk);
2867 if (tp->saved_syn) {
2868 if (len < tp->saved_syn[0]) {
2869 if (put_user(tp->saved_syn[0], optlen)) {
2870 release_sock(sk);
2871 return -EFAULT;
2872 }
2873 release_sock(sk);
2874 return -EINVAL;
2875 }
2876 len = tp->saved_syn[0];
2877 if (put_user(len, optlen)) {
2878 release_sock(sk);
2879 return -EFAULT;
2880 }
2881 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
2882 release_sock(sk);
2883 return -EFAULT;
2884 }
2885 tcp_saved_syn_free(tp);
2886 release_sock(sk);
2887 } else {
2888 release_sock(sk);
2889 len = 0;
2890 if (put_user(len, optlen))
2891 return -EFAULT;
2892 }
2893 return 0;
2894 }
2895 default:
2896 return -ENOPROTOOPT;
2897 }
2898
2899 if (put_user(len, optlen))
2900 return -EFAULT;
2901 if (copy_to_user(optval, &val, len))
2902 return -EFAULT;
2903 return 0;
2904 }
2905
2906 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2907 int __user *optlen)
2908 {
2909 struct inet_connection_sock *icsk = inet_csk(sk);
2910
2911 if (level != SOL_TCP)
2912 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2913 optval, optlen);
2914 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2915 }
2916 EXPORT_SYMBOL(tcp_getsockopt);
2917
2918 #ifdef CONFIG_COMPAT
2919 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2920 char __user *optval, int __user *optlen)
2921 {
2922 if (level != SOL_TCP)
2923 return inet_csk_compat_getsockopt(sk, level, optname,
2924 optval, optlen);
2925 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2926 }
2927 EXPORT_SYMBOL(compat_tcp_getsockopt);
2928 #endif
2929
2930 #ifdef CONFIG_TCP_MD5SIG
2931 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2932 static DEFINE_MUTEX(tcp_md5sig_mutex);
2933 static bool tcp_md5sig_pool_populated = false;
2934
2935 static void __tcp_alloc_md5sig_pool(void)
2936 {
2937 int cpu;
2938
2939 for_each_possible_cpu(cpu) {
2940 if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2941 struct crypto_hash *hash;
2942
2943 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2944 if (IS_ERR_OR_NULL(hash))
2945 return;
2946 per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2947 }
2948 }
2949 /* before setting tcp_md5sig_pool_populated, we must commit all writes
2950 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2951 */
2952 smp_wmb();
2953 tcp_md5sig_pool_populated = true;
2954 }
2955
2956 bool tcp_alloc_md5sig_pool(void)
2957 {
2958 if (unlikely(!tcp_md5sig_pool_populated)) {
2959 mutex_lock(&tcp_md5sig_mutex);
2960
2961 if (!tcp_md5sig_pool_populated)
2962 __tcp_alloc_md5sig_pool();
2963
2964 mutex_unlock(&tcp_md5sig_mutex);
2965 }
2966 return tcp_md5sig_pool_populated;
2967 }
2968 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2969
2970
2971 /**
2972 * tcp_get_md5sig_pool - get md5sig_pool for this user
2973 *
2974 * We use percpu structure, so if we succeed, we exit with preemption
2975 * and BH disabled, to make sure another thread or softirq handling
2976 * wont try to get same context.
2977 */
2978 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2979 {
2980 local_bh_disable();
2981
2982 if (tcp_md5sig_pool_populated) {
2983 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
2984 smp_rmb();
2985 return this_cpu_ptr(&tcp_md5sig_pool);
2986 }
2987 local_bh_enable();
2988 return NULL;
2989 }
2990 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2991
2992 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2993 const struct tcphdr *th)
2994 {
2995 struct scatterlist sg;
2996 struct tcphdr hdr;
2997 int err;
2998
2999 /* We are not allowed to change tcphdr, make a local copy */
3000 memcpy(&hdr, th, sizeof(hdr));
3001 hdr.check = 0;
3002
3003 /* options aren't included in the hash */
3004 sg_init_one(&sg, &hdr, sizeof(hdr));
3005 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3006 return err;
3007 }
3008 EXPORT_SYMBOL(tcp_md5_hash_header);
3009
3010 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3011 const struct sk_buff *skb, unsigned int header_len)
3012 {
3013 struct scatterlist sg;
3014 const struct tcphdr *tp = tcp_hdr(skb);
3015 struct hash_desc *desc = &hp->md5_desc;
3016 unsigned int i;
3017 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3018 skb_headlen(skb) - header_len : 0;
3019 const struct skb_shared_info *shi = skb_shinfo(skb);
3020 struct sk_buff *frag_iter;
3021
3022 sg_init_table(&sg, 1);
3023
3024 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3025 if (crypto_hash_update(desc, &sg, head_data_len))
3026 return 1;
3027
3028 for (i = 0; i < shi->nr_frags; ++i) {
3029 const struct skb_frag_struct *f = &shi->frags[i];
3030 unsigned int offset = f->page_offset;
3031 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3032
3033 sg_set_page(&sg, page, skb_frag_size(f),
3034 offset_in_page(offset));
3035 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3036 return 1;
3037 }
3038
3039 skb_walk_frags(skb, frag_iter)
3040 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3041 return 1;
3042
3043 return 0;
3044 }
3045 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3046
3047 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3048 {
3049 struct scatterlist sg;
3050
3051 sg_init_one(&sg, key->key, key->keylen);
3052 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3053 }
3054 EXPORT_SYMBOL(tcp_md5_hash_key);
3055
3056 #endif
3057
3058 void tcp_done(struct sock *sk)
3059 {
3060 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3061
3062 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3063 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3064
3065 tcp_set_state(sk, TCP_CLOSE);
3066 tcp_clear_xmit_timers(sk);
3067 if (req)
3068 reqsk_fastopen_remove(sk, req, false);
3069
3070 sk->sk_shutdown = SHUTDOWN_MASK;
3071
3072 if (!sock_flag(sk, SOCK_DEAD))
3073 sk->sk_state_change(sk);
3074 else
3075 inet_csk_destroy_sock(sk);
3076 }
3077 EXPORT_SYMBOL_GPL(tcp_done);
3078
3079 extern struct tcp_congestion_ops tcp_reno;
3080
3081 static __initdata unsigned long thash_entries;
3082 static int __init set_thash_entries(char *str)
3083 {
3084 ssize_t ret;
3085
3086 if (!str)
3087 return 0;
3088
3089 ret = kstrtoul(str, 0, &thash_entries);
3090 if (ret)
3091 return 0;
3092
3093 return 1;
3094 }
3095 __setup("thash_entries=", set_thash_entries);
3096
3097 static void __init tcp_init_mem(void)
3098 {
3099 unsigned long limit = nr_free_buffer_pages() / 16;
3100
3101 limit = max(limit, 128UL);
3102 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3103 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3104 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3105 }
3106
3107 void __init tcp_init(void)
3108 {
3109 unsigned long limit;
3110 int max_rshare, max_wshare, cnt;
3111 unsigned int i;
3112
3113 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3114
3115 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3116 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3117 tcp_hashinfo.bind_bucket_cachep =
3118 kmem_cache_create("tcp_bind_bucket",
3119 sizeof(struct inet_bind_bucket), 0,
3120 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3121
3122 /* Size and allocate the main established and bind bucket
3123 * hash tables.
3124 *
3125 * The methodology is similar to that of the buffer cache.
3126 */
3127 tcp_hashinfo.ehash =
3128 alloc_large_system_hash("TCP established",
3129 sizeof(struct inet_ehash_bucket),
3130 thash_entries,
3131 17, /* one slot per 128 KB of memory */
3132 0,
3133 NULL,
3134 &tcp_hashinfo.ehash_mask,
3135 0,
3136 thash_entries ? 0 : 512 * 1024);
3137 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3138 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3139
3140 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3141 panic("TCP: failed to alloc ehash_locks");
3142 tcp_hashinfo.bhash =
3143 alloc_large_system_hash("TCP bind",
3144 sizeof(struct inet_bind_hashbucket),
3145 tcp_hashinfo.ehash_mask + 1,
3146 17, /* one slot per 128 KB of memory */
3147 0,
3148 &tcp_hashinfo.bhash_size,
3149 NULL,
3150 0,
3151 64 * 1024);
3152 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3153 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3154 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3155 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3156 }
3157
3158
3159 cnt = tcp_hashinfo.ehash_mask + 1;
3160
3161 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3162 sysctl_tcp_max_orphans = cnt / 2;
3163 sysctl_max_syn_backlog = max(128, cnt / 256);
3164
3165 tcp_init_mem();
3166 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3167 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3168 max_wshare = min(4UL*1024*1024, limit);
3169 max_rshare = min(6UL*1024*1024, limit);
3170
3171 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3172 sysctl_tcp_wmem[1] = 16*1024;
3173 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3174
3175 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3176 sysctl_tcp_rmem[1] = 87380;
3177 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3178
3179 pr_info("Hash tables configured (established %u bind %u)\n",
3180 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3181
3182 tcp_metrics_init();
3183 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3184 tcp_tasklet_init();
3185 }
This page took 0.409416 seconds and 5 git commands to generate.