Merge tag 'gfs2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2...
[deliverable/linux.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
279
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283
284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285
286 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287
288 int sysctl_tcp_autocorking __read_mostly = 1;
289
290 struct percpu_counter tcp_orphan_count;
291 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292
293 long sysctl_tcp_mem[3] __read_mostly;
294 int sysctl_tcp_wmem[3] __read_mostly;
295 int sysctl_tcp_rmem[3] __read_mostly;
296
297 EXPORT_SYMBOL(sysctl_tcp_mem);
298 EXPORT_SYMBOL(sysctl_tcp_rmem);
299 EXPORT_SYMBOL(sysctl_tcp_wmem);
300
301 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
302 EXPORT_SYMBOL(tcp_memory_allocated);
303
304 /*
305 * Current number of TCP sockets.
306 */
307 struct percpu_counter tcp_sockets_allocated;
308 EXPORT_SYMBOL(tcp_sockets_allocated);
309
310 /*
311 * TCP splice context
312 */
313 struct tcp_splice_state {
314 struct pipe_inode_info *pipe;
315 size_t len;
316 unsigned int flags;
317 };
318
319 /*
320 * Pressure flag: try to collapse.
321 * Technical note: it is used by multiple contexts non atomically.
322 * All the __sk_mem_schedule() is of this nature: accounting
323 * is strict, actions are advisory and have some latency.
324 */
325 int tcp_memory_pressure __read_mostly;
326 EXPORT_SYMBOL(tcp_memory_pressure);
327
328 void tcp_enter_memory_pressure(struct sock *sk)
329 {
330 if (!tcp_memory_pressure) {
331 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
332 tcp_memory_pressure = 1;
333 }
334 }
335 EXPORT_SYMBOL(tcp_enter_memory_pressure);
336
337 /* Convert seconds to retransmits based on initial and max timeout */
338 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
339 {
340 u8 res = 0;
341
342 if (seconds > 0) {
343 int period = timeout;
344
345 res = 1;
346 while (seconds > period && res < 255) {
347 res++;
348 timeout <<= 1;
349 if (timeout > rto_max)
350 timeout = rto_max;
351 period += timeout;
352 }
353 }
354 return res;
355 }
356
357 /* Convert retransmits to seconds based on initial and max timeout */
358 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359 {
360 int period = 0;
361
362 if (retrans > 0) {
363 period = timeout;
364 while (--retrans) {
365 timeout <<= 1;
366 if (timeout > rto_max)
367 timeout = rto_max;
368 period += timeout;
369 }
370 }
371 return period;
372 }
373
374 /* Address-family independent initialization for a tcp_sock.
375 *
376 * NOTE: A lot of things set to zero explicitly by call to
377 * sk_alloc() so need not be done here.
378 */
379 void tcp_init_sock(struct sock *sk)
380 {
381 struct inet_connection_sock *icsk = inet_csk(sk);
382 struct tcp_sock *tp = tcp_sk(sk);
383
384 __skb_queue_head_init(&tp->out_of_order_queue);
385 tcp_init_xmit_timers(sk);
386 tcp_prequeue_init(tp);
387 INIT_LIST_HEAD(&tp->tsq_node);
388
389 icsk->icsk_rto = TCP_TIMEOUT_INIT;
390 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
391
392 /* So many TCP implementations out there (incorrectly) count the
393 * initial SYN frame in their delayed-ACK and congestion control
394 * algorithms that we must have the following bandaid to talk
395 * efficiently to them. -DaveM
396 */
397 tp->snd_cwnd = TCP_INIT_CWND;
398
399 /* See draft-stevens-tcpca-spec-01 for discussion of the
400 * initialization of these values.
401 */
402 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 tp->snd_cwnd_clamp = ~0;
404 tp->mss_cache = TCP_MSS_DEFAULT;
405
406 tp->reordering = sysctl_tcp_reordering;
407 tcp_enable_early_retrans(tp);
408 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
409
410 tp->tsoffset = 0;
411
412 sk->sk_state = TCP_CLOSE;
413
414 sk->sk_write_space = sk_stream_write_space;
415 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
416
417 icsk->icsk_sync_mss = tcp_sync_mss;
418
419 sk->sk_sndbuf = sysctl_tcp_wmem[1];
420 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
421
422 local_bh_disable();
423 sock_update_memcg(sk);
424 sk_sockets_allocated_inc(sk);
425 local_bh_enable();
426 }
427 EXPORT_SYMBOL(tcp_init_sock);
428
429 /*
430 * Wait for a TCP event.
431 *
432 * Note that we don't need to lock the socket, as the upper poll layers
433 * take care of normal races (between the test and the event) and we don't
434 * go look at any of the socket buffers directly.
435 */
436 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
437 {
438 unsigned int mask;
439 struct sock *sk = sock->sk;
440 const struct tcp_sock *tp = tcp_sk(sk);
441
442 sock_rps_record_flow(sk);
443
444 sock_poll_wait(file, sk_sleep(sk), wait);
445 if (sk->sk_state == TCP_LISTEN)
446 return inet_csk_listen_poll(sk);
447
448 /* Socket is not locked. We are protected from async events
449 * by poll logic and correct handling of state changes
450 * made by other threads is impossible in any case.
451 */
452
453 mask = 0;
454
455 /*
456 * POLLHUP is certainly not done right. But poll() doesn't
457 * have a notion of HUP in just one direction, and for a
458 * socket the read side is more interesting.
459 *
460 * Some poll() documentation says that POLLHUP is incompatible
461 * with the POLLOUT/POLLWR flags, so somebody should check this
462 * all. But careful, it tends to be safer to return too many
463 * bits than too few, and you can easily break real applications
464 * if you don't tell them that something has hung up!
465 *
466 * Check-me.
467 *
468 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
469 * our fs/select.c). It means that after we received EOF,
470 * poll always returns immediately, making impossible poll() on write()
471 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
472 * if and only if shutdown has been made in both directions.
473 * Actually, it is interesting to look how Solaris and DUX
474 * solve this dilemma. I would prefer, if POLLHUP were maskable,
475 * then we could set it on SND_SHUTDOWN. BTW examples given
476 * in Stevens' books assume exactly this behaviour, it explains
477 * why POLLHUP is incompatible with POLLOUT. --ANK
478 *
479 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
480 * blocking on fresh not-connected or disconnected socket. --ANK
481 */
482 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
483 mask |= POLLHUP;
484 if (sk->sk_shutdown & RCV_SHUTDOWN)
485 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
486
487 /* Connected or passive Fast Open socket? */
488 if (sk->sk_state != TCP_SYN_SENT &&
489 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
490 int target = sock_rcvlowat(sk, 0, INT_MAX);
491
492 if (tp->urg_seq == tp->copied_seq &&
493 !sock_flag(sk, SOCK_URGINLINE) &&
494 tp->urg_data)
495 target++;
496
497 /* Potential race condition. If read of tp below will
498 * escape above sk->sk_state, we can be illegally awaken
499 * in SYN_* states. */
500 if (tp->rcv_nxt - tp->copied_seq >= target)
501 mask |= POLLIN | POLLRDNORM;
502
503 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
504 if (sk_stream_is_writeable(sk)) {
505 mask |= POLLOUT | POLLWRNORM;
506 } else { /* send SIGIO later */
507 set_bit(SOCK_ASYNC_NOSPACE,
508 &sk->sk_socket->flags);
509 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
510
511 /* Race breaker. If space is freed after
512 * wspace test but before the flags are set,
513 * IO signal will be lost.
514 */
515 if (sk_stream_is_writeable(sk))
516 mask |= POLLOUT | POLLWRNORM;
517 }
518 } else
519 mask |= POLLOUT | POLLWRNORM;
520
521 if (tp->urg_data & TCP_URG_VALID)
522 mask |= POLLPRI;
523 }
524 /* This barrier is coupled with smp_wmb() in tcp_reset() */
525 smp_rmb();
526 if (sk->sk_err)
527 mask |= POLLERR;
528
529 return mask;
530 }
531 EXPORT_SYMBOL(tcp_poll);
532
533 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
534 {
535 struct tcp_sock *tp = tcp_sk(sk);
536 int answ;
537 bool slow;
538
539 switch (cmd) {
540 case SIOCINQ:
541 if (sk->sk_state == TCP_LISTEN)
542 return -EINVAL;
543
544 slow = lock_sock_fast(sk);
545 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
546 answ = 0;
547 else if (sock_flag(sk, SOCK_URGINLINE) ||
548 !tp->urg_data ||
549 before(tp->urg_seq, tp->copied_seq) ||
550 !before(tp->urg_seq, tp->rcv_nxt)) {
551
552 answ = tp->rcv_nxt - tp->copied_seq;
553
554 /* Subtract 1, if FIN was received */
555 if (answ && sock_flag(sk, SOCK_DONE))
556 answ--;
557 } else
558 answ = tp->urg_seq - tp->copied_seq;
559 unlock_sock_fast(sk, slow);
560 break;
561 case SIOCATMARK:
562 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
563 break;
564 case SIOCOUTQ:
565 if (sk->sk_state == TCP_LISTEN)
566 return -EINVAL;
567
568 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
569 answ = 0;
570 else
571 answ = tp->write_seq - tp->snd_una;
572 break;
573 case SIOCOUTQNSD:
574 if (sk->sk_state == TCP_LISTEN)
575 return -EINVAL;
576
577 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
578 answ = 0;
579 else
580 answ = tp->write_seq - tp->snd_nxt;
581 break;
582 default:
583 return -ENOIOCTLCMD;
584 }
585
586 return put_user(answ, (int __user *)arg);
587 }
588 EXPORT_SYMBOL(tcp_ioctl);
589
590 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
591 {
592 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
593 tp->pushed_seq = tp->write_seq;
594 }
595
596 static inline bool forced_push(const struct tcp_sock *tp)
597 {
598 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
599 }
600
601 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
602 {
603 struct tcp_sock *tp = tcp_sk(sk);
604 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
605
606 skb->csum = 0;
607 tcb->seq = tcb->end_seq = tp->write_seq;
608 tcb->tcp_flags = TCPHDR_ACK;
609 tcb->sacked = 0;
610 skb_header_release(skb);
611 tcp_add_write_queue_tail(sk, skb);
612 sk->sk_wmem_queued += skb->truesize;
613 sk_mem_charge(sk, skb->truesize);
614 if (tp->nonagle & TCP_NAGLE_PUSH)
615 tp->nonagle &= ~TCP_NAGLE_PUSH;
616 }
617
618 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
619 {
620 if (flags & MSG_OOB)
621 tp->snd_up = tp->write_seq;
622 }
623
624 /* If a not yet filled skb is pushed, do not send it if
625 * we have data packets in Qdisc or NIC queues :
626 * Because TX completion will happen shortly, it gives a chance
627 * to coalesce future sendmsg() payload into this skb, without
628 * need for a timer, and with no latency trade off.
629 * As packets containing data payload have a bigger truesize
630 * than pure acks (dataless) packets, the last checks prevent
631 * autocorking if we only have an ACK in Qdisc/NIC queues,
632 * or if TX completion was delayed after we processed ACK packet.
633 */
634 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
635 int size_goal)
636 {
637 return skb->len < size_goal &&
638 sysctl_tcp_autocorking &&
639 skb != tcp_write_queue_head(sk) &&
640 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
641 }
642
643 static void tcp_push(struct sock *sk, int flags, int mss_now,
644 int nonagle, int size_goal)
645 {
646 struct tcp_sock *tp = tcp_sk(sk);
647 struct sk_buff *skb;
648
649 if (!tcp_send_head(sk))
650 return;
651
652 skb = tcp_write_queue_tail(sk);
653 if (!(flags & MSG_MORE) || forced_push(tp))
654 tcp_mark_push(tp, skb);
655
656 tcp_mark_urg(tp, flags);
657
658 if (tcp_should_autocork(sk, skb, size_goal)) {
659
660 /* avoid atomic op if TSQ_THROTTLED bit is already set */
661 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
662 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
663 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
664 }
665 /* It is possible TX completion already happened
666 * before we set TSQ_THROTTLED.
667 */
668 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
669 return;
670 }
671
672 if (flags & MSG_MORE)
673 nonagle = TCP_NAGLE_CORK;
674
675 __tcp_push_pending_frames(sk, mss_now, nonagle);
676 }
677
678 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
679 unsigned int offset, size_t len)
680 {
681 struct tcp_splice_state *tss = rd_desc->arg.data;
682 int ret;
683
684 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
685 tss->flags);
686 if (ret > 0)
687 rd_desc->count -= ret;
688 return ret;
689 }
690
691 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
692 {
693 /* Store TCP splice context information in read_descriptor_t. */
694 read_descriptor_t rd_desc = {
695 .arg.data = tss,
696 .count = tss->len,
697 };
698
699 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
700 }
701
702 /**
703 * tcp_splice_read - splice data from TCP socket to a pipe
704 * @sock: socket to splice from
705 * @ppos: position (not valid)
706 * @pipe: pipe to splice to
707 * @len: number of bytes to splice
708 * @flags: splice modifier flags
709 *
710 * Description:
711 * Will read pages from given socket and fill them into a pipe.
712 *
713 **/
714 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
715 struct pipe_inode_info *pipe, size_t len,
716 unsigned int flags)
717 {
718 struct sock *sk = sock->sk;
719 struct tcp_splice_state tss = {
720 .pipe = pipe,
721 .len = len,
722 .flags = flags,
723 };
724 long timeo;
725 ssize_t spliced;
726 int ret;
727
728 sock_rps_record_flow(sk);
729 /*
730 * We can't seek on a socket input
731 */
732 if (unlikely(*ppos))
733 return -ESPIPE;
734
735 ret = spliced = 0;
736
737 lock_sock(sk);
738
739 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
740 while (tss.len) {
741 ret = __tcp_splice_read(sk, &tss);
742 if (ret < 0)
743 break;
744 else if (!ret) {
745 if (spliced)
746 break;
747 if (sock_flag(sk, SOCK_DONE))
748 break;
749 if (sk->sk_err) {
750 ret = sock_error(sk);
751 break;
752 }
753 if (sk->sk_shutdown & RCV_SHUTDOWN)
754 break;
755 if (sk->sk_state == TCP_CLOSE) {
756 /*
757 * This occurs when user tries to read
758 * from never connected socket.
759 */
760 if (!sock_flag(sk, SOCK_DONE))
761 ret = -ENOTCONN;
762 break;
763 }
764 if (!timeo) {
765 ret = -EAGAIN;
766 break;
767 }
768 sk_wait_data(sk, &timeo);
769 if (signal_pending(current)) {
770 ret = sock_intr_errno(timeo);
771 break;
772 }
773 continue;
774 }
775 tss.len -= ret;
776 spliced += ret;
777
778 if (!timeo)
779 break;
780 release_sock(sk);
781 lock_sock(sk);
782
783 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
784 (sk->sk_shutdown & RCV_SHUTDOWN) ||
785 signal_pending(current))
786 break;
787 }
788
789 release_sock(sk);
790
791 if (spliced)
792 return spliced;
793
794 return ret;
795 }
796 EXPORT_SYMBOL(tcp_splice_read);
797
798 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
799 {
800 struct sk_buff *skb;
801
802 /* The TCP header must be at least 32-bit aligned. */
803 size = ALIGN(size, 4);
804
805 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
806 if (skb) {
807 if (sk_wmem_schedule(sk, skb->truesize)) {
808 skb_reserve(skb, sk->sk_prot->max_header);
809 /*
810 * Make sure that we have exactly size bytes
811 * available to the caller, no more, no less.
812 */
813 skb->reserved_tailroom = skb->end - skb->tail - size;
814 return skb;
815 }
816 __kfree_skb(skb);
817 } else {
818 sk->sk_prot->enter_memory_pressure(sk);
819 sk_stream_moderate_sndbuf(sk);
820 }
821 return NULL;
822 }
823
824 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
825 int large_allowed)
826 {
827 struct tcp_sock *tp = tcp_sk(sk);
828 u32 xmit_size_goal, old_size_goal;
829
830 xmit_size_goal = mss_now;
831
832 if (large_allowed && sk_can_gso(sk)) {
833 u32 gso_size, hlen;
834
835 /* Maybe we should/could use sk->sk_prot->max_header here ? */
836 hlen = inet_csk(sk)->icsk_af_ops->net_header_len +
837 inet_csk(sk)->icsk_ext_hdr_len +
838 tp->tcp_header_len;
839
840 /* Goal is to send at least one packet per ms,
841 * not one big TSO packet every 100 ms.
842 * This preserves ACK clocking and is consistent
843 * with tcp_tso_should_defer() heuristic.
844 */
845 gso_size = sk->sk_pacing_rate / (2 * MSEC_PER_SEC);
846 gso_size = max_t(u32, gso_size,
847 sysctl_tcp_min_tso_segs * mss_now);
848
849 xmit_size_goal = min_t(u32, gso_size,
850 sk->sk_gso_max_size - 1 - hlen);
851
852 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
853
854 /* We try hard to avoid divides here */
855 old_size_goal = tp->xmit_size_goal_segs * mss_now;
856
857 if (likely(old_size_goal <= xmit_size_goal &&
858 old_size_goal + mss_now > xmit_size_goal)) {
859 xmit_size_goal = old_size_goal;
860 } else {
861 tp->xmit_size_goal_segs =
862 min_t(u16, xmit_size_goal / mss_now,
863 sk->sk_gso_max_segs);
864 xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
865 }
866 }
867
868 return max(xmit_size_goal, mss_now);
869 }
870
871 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
872 {
873 int mss_now;
874
875 mss_now = tcp_current_mss(sk);
876 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
877
878 return mss_now;
879 }
880
881 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
882 size_t size, int flags)
883 {
884 struct tcp_sock *tp = tcp_sk(sk);
885 int mss_now, size_goal;
886 int err;
887 ssize_t copied;
888 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
889
890 /* Wait for a connection to finish. One exception is TCP Fast Open
891 * (passive side) where data is allowed to be sent before a connection
892 * is fully established.
893 */
894 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
895 !tcp_passive_fastopen(sk)) {
896 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
897 goto out_err;
898 }
899
900 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
901
902 mss_now = tcp_send_mss(sk, &size_goal, flags);
903 copied = 0;
904
905 err = -EPIPE;
906 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
907 goto out_err;
908
909 while (size > 0) {
910 struct sk_buff *skb = tcp_write_queue_tail(sk);
911 int copy, i;
912 bool can_coalesce;
913
914 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
915 new_segment:
916 if (!sk_stream_memory_free(sk))
917 goto wait_for_sndbuf;
918
919 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
920 if (!skb)
921 goto wait_for_memory;
922
923 skb_entail(sk, skb);
924 copy = size_goal;
925 }
926
927 if (copy > size)
928 copy = size;
929
930 i = skb_shinfo(skb)->nr_frags;
931 can_coalesce = skb_can_coalesce(skb, i, page, offset);
932 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
933 tcp_mark_push(tp, skb);
934 goto new_segment;
935 }
936 if (!sk_wmem_schedule(sk, copy))
937 goto wait_for_memory;
938
939 if (can_coalesce) {
940 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
941 } else {
942 get_page(page);
943 skb_fill_page_desc(skb, i, page, offset, copy);
944 }
945 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
946
947 skb->len += copy;
948 skb->data_len += copy;
949 skb->truesize += copy;
950 sk->sk_wmem_queued += copy;
951 sk_mem_charge(sk, copy);
952 skb->ip_summed = CHECKSUM_PARTIAL;
953 tp->write_seq += copy;
954 TCP_SKB_CB(skb)->end_seq += copy;
955 skb_shinfo(skb)->gso_segs = 0;
956
957 if (!copied)
958 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
959
960 copied += copy;
961 offset += copy;
962 if (!(size -= copy))
963 goto out;
964
965 if (skb->len < size_goal || (flags & MSG_OOB))
966 continue;
967
968 if (forced_push(tp)) {
969 tcp_mark_push(tp, skb);
970 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
971 } else if (skb == tcp_send_head(sk))
972 tcp_push_one(sk, mss_now);
973 continue;
974
975 wait_for_sndbuf:
976 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
977 wait_for_memory:
978 tcp_push(sk, flags & ~MSG_MORE, mss_now,
979 TCP_NAGLE_PUSH, size_goal);
980
981 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
982 goto do_error;
983
984 mss_now = tcp_send_mss(sk, &size_goal, flags);
985 }
986
987 out:
988 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
989 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
990 return copied;
991
992 do_error:
993 if (copied)
994 goto out;
995 out_err:
996 return sk_stream_error(sk, flags, err);
997 }
998
999 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1000 size_t size, int flags)
1001 {
1002 ssize_t res;
1003
1004 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1005 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
1006 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1007 flags);
1008
1009 lock_sock(sk);
1010 res = do_tcp_sendpages(sk, page, offset, size, flags);
1011 release_sock(sk);
1012 return res;
1013 }
1014 EXPORT_SYMBOL(tcp_sendpage);
1015
1016 static inline int select_size(const struct sock *sk, bool sg)
1017 {
1018 const struct tcp_sock *tp = tcp_sk(sk);
1019 int tmp = tp->mss_cache;
1020
1021 if (sg) {
1022 if (sk_can_gso(sk)) {
1023 /* Small frames wont use a full page:
1024 * Payload will immediately follow tcp header.
1025 */
1026 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1027 } else {
1028 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1029
1030 if (tmp >= pgbreak &&
1031 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1032 tmp = pgbreak;
1033 }
1034 }
1035
1036 return tmp;
1037 }
1038
1039 void tcp_free_fastopen_req(struct tcp_sock *tp)
1040 {
1041 if (tp->fastopen_req != NULL) {
1042 kfree(tp->fastopen_req);
1043 tp->fastopen_req = NULL;
1044 }
1045 }
1046
1047 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1048 int *copied, size_t size)
1049 {
1050 struct tcp_sock *tp = tcp_sk(sk);
1051 int err, flags;
1052
1053 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1054 return -EOPNOTSUPP;
1055 if (tp->fastopen_req != NULL)
1056 return -EALREADY; /* Another Fast Open is in progress */
1057
1058 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1059 sk->sk_allocation);
1060 if (unlikely(tp->fastopen_req == NULL))
1061 return -ENOBUFS;
1062 tp->fastopen_req->data = msg;
1063 tp->fastopen_req->size = size;
1064
1065 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1066 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1067 msg->msg_namelen, flags);
1068 *copied = tp->fastopen_req->copied;
1069 tcp_free_fastopen_req(tp);
1070 return err;
1071 }
1072
1073 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1074 size_t size)
1075 {
1076 struct iovec *iov;
1077 struct tcp_sock *tp = tcp_sk(sk);
1078 struct sk_buff *skb;
1079 int iovlen, flags, err, copied = 0;
1080 int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1081 bool sg;
1082 long timeo;
1083
1084 lock_sock(sk);
1085
1086 flags = msg->msg_flags;
1087 if (flags & MSG_FASTOPEN) {
1088 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1089 if (err == -EINPROGRESS && copied_syn > 0)
1090 goto out;
1091 else if (err)
1092 goto out_err;
1093 offset = copied_syn;
1094 }
1095
1096 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1097
1098 /* Wait for a connection to finish. One exception is TCP Fast Open
1099 * (passive side) where data is allowed to be sent before a connection
1100 * is fully established.
1101 */
1102 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1103 !tcp_passive_fastopen(sk)) {
1104 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1105 goto do_error;
1106 }
1107
1108 if (unlikely(tp->repair)) {
1109 if (tp->repair_queue == TCP_RECV_QUEUE) {
1110 copied = tcp_send_rcvq(sk, msg, size);
1111 goto out_nopush;
1112 }
1113
1114 err = -EINVAL;
1115 if (tp->repair_queue == TCP_NO_QUEUE)
1116 goto out_err;
1117
1118 /* 'common' sending to sendq */
1119 }
1120
1121 /* This should be in poll */
1122 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1123
1124 mss_now = tcp_send_mss(sk, &size_goal, flags);
1125
1126 /* Ok commence sending. */
1127 iovlen = msg->msg_iovlen;
1128 iov = msg->msg_iov;
1129 copied = 0;
1130
1131 err = -EPIPE;
1132 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1133 goto out_err;
1134
1135 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1136
1137 while (--iovlen >= 0) {
1138 size_t seglen = iov->iov_len;
1139 unsigned char __user *from = iov->iov_base;
1140
1141 iov++;
1142 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */
1143 if (offset >= seglen) {
1144 offset -= seglen;
1145 continue;
1146 }
1147 seglen -= offset;
1148 from += offset;
1149 offset = 0;
1150 }
1151
1152 while (seglen > 0) {
1153 int copy = 0;
1154 int max = size_goal;
1155
1156 skb = tcp_write_queue_tail(sk);
1157 if (tcp_send_head(sk)) {
1158 if (skb->ip_summed == CHECKSUM_NONE)
1159 max = mss_now;
1160 copy = max - skb->len;
1161 }
1162
1163 if (copy <= 0) {
1164 new_segment:
1165 /* Allocate new segment. If the interface is SG,
1166 * allocate skb fitting to single page.
1167 */
1168 if (!sk_stream_memory_free(sk))
1169 goto wait_for_sndbuf;
1170
1171 skb = sk_stream_alloc_skb(sk,
1172 select_size(sk, sg),
1173 sk->sk_allocation);
1174 if (!skb)
1175 goto wait_for_memory;
1176
1177 /*
1178 * All packets are restored as if they have
1179 * already been sent.
1180 */
1181 if (tp->repair)
1182 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1183
1184 /*
1185 * Check whether we can use HW checksum.
1186 */
1187 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1188 skb->ip_summed = CHECKSUM_PARTIAL;
1189
1190 skb_entail(sk, skb);
1191 copy = size_goal;
1192 max = size_goal;
1193 }
1194
1195 /* Try to append data to the end of skb. */
1196 if (copy > seglen)
1197 copy = seglen;
1198
1199 /* Where to copy to? */
1200 if (skb_availroom(skb) > 0) {
1201 /* We have some space in skb head. Superb! */
1202 copy = min_t(int, copy, skb_availroom(skb));
1203 err = skb_add_data_nocache(sk, skb, from, copy);
1204 if (err)
1205 goto do_fault;
1206 } else {
1207 bool merge = true;
1208 int i = skb_shinfo(skb)->nr_frags;
1209 struct page_frag *pfrag = sk_page_frag(sk);
1210
1211 if (!sk_page_frag_refill(sk, pfrag))
1212 goto wait_for_memory;
1213
1214 if (!skb_can_coalesce(skb, i, pfrag->page,
1215 pfrag->offset)) {
1216 if (i == MAX_SKB_FRAGS || !sg) {
1217 tcp_mark_push(tp, skb);
1218 goto new_segment;
1219 }
1220 merge = false;
1221 }
1222
1223 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1224
1225 if (!sk_wmem_schedule(sk, copy))
1226 goto wait_for_memory;
1227
1228 err = skb_copy_to_page_nocache(sk, from, skb,
1229 pfrag->page,
1230 pfrag->offset,
1231 copy);
1232 if (err)
1233 goto do_error;
1234
1235 /* Update the skb. */
1236 if (merge) {
1237 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1238 } else {
1239 skb_fill_page_desc(skb, i, pfrag->page,
1240 pfrag->offset, copy);
1241 get_page(pfrag->page);
1242 }
1243 pfrag->offset += copy;
1244 }
1245
1246 if (!copied)
1247 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1248
1249 tp->write_seq += copy;
1250 TCP_SKB_CB(skb)->end_seq += copy;
1251 skb_shinfo(skb)->gso_segs = 0;
1252
1253 from += copy;
1254 copied += copy;
1255 if ((seglen -= copy) == 0 && iovlen == 0)
1256 goto out;
1257
1258 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1259 continue;
1260
1261 if (forced_push(tp)) {
1262 tcp_mark_push(tp, skb);
1263 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1264 } else if (skb == tcp_send_head(sk))
1265 tcp_push_one(sk, mss_now);
1266 continue;
1267
1268 wait_for_sndbuf:
1269 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1270 wait_for_memory:
1271 if (copied)
1272 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1273 TCP_NAGLE_PUSH, size_goal);
1274
1275 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1276 goto do_error;
1277
1278 mss_now = tcp_send_mss(sk, &size_goal, flags);
1279 }
1280 }
1281
1282 out:
1283 if (copied)
1284 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1285 out_nopush:
1286 release_sock(sk);
1287 return copied + copied_syn;
1288
1289 do_fault:
1290 if (!skb->len) {
1291 tcp_unlink_write_queue(skb, sk);
1292 /* It is the one place in all of TCP, except connection
1293 * reset, where we can be unlinking the send_head.
1294 */
1295 tcp_check_send_head(sk, skb);
1296 sk_wmem_free_skb(sk, skb);
1297 }
1298
1299 do_error:
1300 if (copied + copied_syn)
1301 goto out;
1302 out_err:
1303 err = sk_stream_error(sk, flags, err);
1304 release_sock(sk);
1305 return err;
1306 }
1307 EXPORT_SYMBOL(tcp_sendmsg);
1308
1309 /*
1310 * Handle reading urgent data. BSD has very simple semantics for
1311 * this, no blocking and very strange errors 8)
1312 */
1313
1314 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1315 {
1316 struct tcp_sock *tp = tcp_sk(sk);
1317
1318 /* No URG data to read. */
1319 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1320 tp->urg_data == TCP_URG_READ)
1321 return -EINVAL; /* Yes this is right ! */
1322
1323 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1324 return -ENOTCONN;
1325
1326 if (tp->urg_data & TCP_URG_VALID) {
1327 int err = 0;
1328 char c = tp->urg_data;
1329
1330 if (!(flags & MSG_PEEK))
1331 tp->urg_data = TCP_URG_READ;
1332
1333 /* Read urgent data. */
1334 msg->msg_flags |= MSG_OOB;
1335
1336 if (len > 0) {
1337 if (!(flags & MSG_TRUNC))
1338 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1339 len = 1;
1340 } else
1341 msg->msg_flags |= MSG_TRUNC;
1342
1343 return err ? -EFAULT : len;
1344 }
1345
1346 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1347 return 0;
1348
1349 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1350 * the available implementations agree in this case:
1351 * this call should never block, independent of the
1352 * blocking state of the socket.
1353 * Mike <pall@rz.uni-karlsruhe.de>
1354 */
1355 return -EAGAIN;
1356 }
1357
1358 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1359 {
1360 struct sk_buff *skb;
1361 int copied = 0, err = 0;
1362
1363 /* XXX -- need to support SO_PEEK_OFF */
1364
1365 skb_queue_walk(&sk->sk_write_queue, skb) {
1366 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1367 if (err)
1368 break;
1369
1370 copied += skb->len;
1371 }
1372
1373 return err ?: copied;
1374 }
1375
1376 /* Clean up the receive buffer for full frames taken by the user,
1377 * then send an ACK if necessary. COPIED is the number of bytes
1378 * tcp_recvmsg has given to the user so far, it speeds up the
1379 * calculation of whether or not we must ACK for the sake of
1380 * a window update.
1381 */
1382 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1383 {
1384 struct tcp_sock *tp = tcp_sk(sk);
1385 bool time_to_ack = false;
1386
1387 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1388
1389 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1390 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1391 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1392
1393 if (inet_csk_ack_scheduled(sk)) {
1394 const struct inet_connection_sock *icsk = inet_csk(sk);
1395 /* Delayed ACKs frequently hit locked sockets during bulk
1396 * receive. */
1397 if (icsk->icsk_ack.blocked ||
1398 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1399 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1400 /*
1401 * If this read emptied read buffer, we send ACK, if
1402 * connection is not bidirectional, user drained
1403 * receive buffer and there was a small segment
1404 * in queue.
1405 */
1406 (copied > 0 &&
1407 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1408 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1409 !icsk->icsk_ack.pingpong)) &&
1410 !atomic_read(&sk->sk_rmem_alloc)))
1411 time_to_ack = true;
1412 }
1413
1414 /* We send an ACK if we can now advertise a non-zero window
1415 * which has been raised "significantly".
1416 *
1417 * Even if window raised up to infinity, do not send window open ACK
1418 * in states, where we will not receive more. It is useless.
1419 */
1420 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1421 __u32 rcv_window_now = tcp_receive_window(tp);
1422
1423 /* Optimize, __tcp_select_window() is not cheap. */
1424 if (2*rcv_window_now <= tp->window_clamp) {
1425 __u32 new_window = __tcp_select_window(sk);
1426
1427 /* Send ACK now, if this read freed lots of space
1428 * in our buffer. Certainly, new_window is new window.
1429 * We can advertise it now, if it is not less than current one.
1430 * "Lots" means "at least twice" here.
1431 */
1432 if (new_window && new_window >= 2 * rcv_window_now)
1433 time_to_ack = true;
1434 }
1435 }
1436 if (time_to_ack)
1437 tcp_send_ack(sk);
1438 }
1439
1440 static void tcp_prequeue_process(struct sock *sk)
1441 {
1442 struct sk_buff *skb;
1443 struct tcp_sock *tp = tcp_sk(sk);
1444
1445 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1446
1447 /* RX process wants to run with disabled BHs, though it is not
1448 * necessary */
1449 local_bh_disable();
1450 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1451 sk_backlog_rcv(sk, skb);
1452 local_bh_enable();
1453
1454 /* Clear memory counter. */
1455 tp->ucopy.memory = 0;
1456 }
1457
1458 #ifdef CONFIG_NET_DMA
1459 static void tcp_service_net_dma(struct sock *sk, bool wait)
1460 {
1461 dma_cookie_t done, used;
1462 dma_cookie_t last_issued;
1463 struct tcp_sock *tp = tcp_sk(sk);
1464
1465 if (!tp->ucopy.dma_chan)
1466 return;
1467
1468 last_issued = tp->ucopy.dma_cookie;
1469 dma_async_issue_pending(tp->ucopy.dma_chan);
1470
1471 do {
1472 if (dma_async_is_tx_complete(tp->ucopy.dma_chan,
1473 last_issued, &done,
1474 &used) == DMA_COMPLETE) {
1475 /* Safe to free early-copied skbs now */
1476 __skb_queue_purge(&sk->sk_async_wait_queue);
1477 break;
1478 } else {
1479 struct sk_buff *skb;
1480 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1481 (dma_async_is_complete(skb->dma_cookie, done,
1482 used) == DMA_COMPLETE)) {
1483 __skb_dequeue(&sk->sk_async_wait_queue);
1484 kfree_skb(skb);
1485 }
1486 }
1487 } while (wait);
1488 }
1489 #endif
1490
1491 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1492 {
1493 struct sk_buff *skb;
1494 u32 offset;
1495
1496 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1497 offset = seq - TCP_SKB_CB(skb)->seq;
1498 if (tcp_hdr(skb)->syn)
1499 offset--;
1500 if (offset < skb->len || tcp_hdr(skb)->fin) {
1501 *off = offset;
1502 return skb;
1503 }
1504 /* This looks weird, but this can happen if TCP collapsing
1505 * splitted a fat GRO packet, while we released socket lock
1506 * in skb_splice_bits()
1507 */
1508 sk_eat_skb(sk, skb, false);
1509 }
1510 return NULL;
1511 }
1512
1513 /*
1514 * This routine provides an alternative to tcp_recvmsg() for routines
1515 * that would like to handle copying from skbuffs directly in 'sendfile'
1516 * fashion.
1517 * Note:
1518 * - It is assumed that the socket was locked by the caller.
1519 * - The routine does not block.
1520 * - At present, there is no support for reading OOB data
1521 * or for 'peeking' the socket using this routine
1522 * (although both would be easy to implement).
1523 */
1524 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1525 sk_read_actor_t recv_actor)
1526 {
1527 struct sk_buff *skb;
1528 struct tcp_sock *tp = tcp_sk(sk);
1529 u32 seq = tp->copied_seq;
1530 u32 offset;
1531 int copied = 0;
1532
1533 if (sk->sk_state == TCP_LISTEN)
1534 return -ENOTCONN;
1535 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1536 if (offset < skb->len) {
1537 int used;
1538 size_t len;
1539
1540 len = skb->len - offset;
1541 /* Stop reading if we hit a patch of urgent data */
1542 if (tp->urg_data) {
1543 u32 urg_offset = tp->urg_seq - seq;
1544 if (urg_offset < len)
1545 len = urg_offset;
1546 if (!len)
1547 break;
1548 }
1549 used = recv_actor(desc, skb, offset, len);
1550 if (used <= 0) {
1551 if (!copied)
1552 copied = used;
1553 break;
1554 } else if (used <= len) {
1555 seq += used;
1556 copied += used;
1557 offset += used;
1558 }
1559 /* If recv_actor drops the lock (e.g. TCP splice
1560 * receive) the skb pointer might be invalid when
1561 * getting here: tcp_collapse might have deleted it
1562 * while aggregating skbs from the socket queue.
1563 */
1564 skb = tcp_recv_skb(sk, seq - 1, &offset);
1565 if (!skb)
1566 break;
1567 /* TCP coalescing might have appended data to the skb.
1568 * Try to splice more frags
1569 */
1570 if (offset + 1 != skb->len)
1571 continue;
1572 }
1573 if (tcp_hdr(skb)->fin) {
1574 sk_eat_skb(sk, skb, false);
1575 ++seq;
1576 break;
1577 }
1578 sk_eat_skb(sk, skb, false);
1579 if (!desc->count)
1580 break;
1581 tp->copied_seq = seq;
1582 }
1583 tp->copied_seq = seq;
1584
1585 tcp_rcv_space_adjust(sk);
1586
1587 /* Clean up data we have read: This will do ACK frames. */
1588 if (copied > 0) {
1589 tcp_recv_skb(sk, seq, &offset);
1590 tcp_cleanup_rbuf(sk, copied);
1591 }
1592 return copied;
1593 }
1594 EXPORT_SYMBOL(tcp_read_sock);
1595
1596 /*
1597 * This routine copies from a sock struct into the user buffer.
1598 *
1599 * Technical note: in 2.3 we work on _locked_ socket, so that
1600 * tricks with *seq access order and skb->users are not required.
1601 * Probably, code can be easily improved even more.
1602 */
1603
1604 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1605 size_t len, int nonblock, int flags, int *addr_len)
1606 {
1607 struct tcp_sock *tp = tcp_sk(sk);
1608 int copied = 0;
1609 u32 peek_seq;
1610 u32 *seq;
1611 unsigned long used;
1612 int err;
1613 int target; /* Read at least this many bytes */
1614 long timeo;
1615 struct task_struct *user_recv = NULL;
1616 bool copied_early = false;
1617 struct sk_buff *skb;
1618 u32 urg_hole = 0;
1619
1620 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1621 (sk->sk_state == TCP_ESTABLISHED))
1622 sk_busy_loop(sk, nonblock);
1623
1624 lock_sock(sk);
1625
1626 err = -ENOTCONN;
1627 if (sk->sk_state == TCP_LISTEN)
1628 goto out;
1629
1630 timeo = sock_rcvtimeo(sk, nonblock);
1631
1632 /* Urgent data needs to be handled specially. */
1633 if (flags & MSG_OOB)
1634 goto recv_urg;
1635
1636 if (unlikely(tp->repair)) {
1637 err = -EPERM;
1638 if (!(flags & MSG_PEEK))
1639 goto out;
1640
1641 if (tp->repair_queue == TCP_SEND_QUEUE)
1642 goto recv_sndq;
1643
1644 err = -EINVAL;
1645 if (tp->repair_queue == TCP_NO_QUEUE)
1646 goto out;
1647
1648 /* 'common' recv queue MSG_PEEK-ing */
1649 }
1650
1651 seq = &tp->copied_seq;
1652 if (flags & MSG_PEEK) {
1653 peek_seq = tp->copied_seq;
1654 seq = &peek_seq;
1655 }
1656
1657 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1658
1659 #ifdef CONFIG_NET_DMA
1660 tp->ucopy.dma_chan = NULL;
1661 preempt_disable();
1662 skb = skb_peek_tail(&sk->sk_receive_queue);
1663 {
1664 int available = 0;
1665
1666 if (skb)
1667 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1668 if ((available < target) &&
1669 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1670 !sysctl_tcp_low_latency &&
1671 net_dma_find_channel()) {
1672 preempt_enable();
1673 tp->ucopy.pinned_list =
1674 dma_pin_iovec_pages(msg->msg_iov, len);
1675 } else {
1676 preempt_enable();
1677 }
1678 }
1679 #endif
1680
1681 do {
1682 u32 offset;
1683
1684 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1685 if (tp->urg_data && tp->urg_seq == *seq) {
1686 if (copied)
1687 break;
1688 if (signal_pending(current)) {
1689 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1690 break;
1691 }
1692 }
1693
1694 /* Next get a buffer. */
1695
1696 skb_queue_walk(&sk->sk_receive_queue, skb) {
1697 /* Now that we have two receive queues this
1698 * shouldn't happen.
1699 */
1700 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1701 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1702 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1703 flags))
1704 break;
1705
1706 offset = *seq - TCP_SKB_CB(skb)->seq;
1707 if (tcp_hdr(skb)->syn)
1708 offset--;
1709 if (offset < skb->len)
1710 goto found_ok_skb;
1711 if (tcp_hdr(skb)->fin)
1712 goto found_fin_ok;
1713 WARN(!(flags & MSG_PEEK),
1714 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1715 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1716 }
1717
1718 /* Well, if we have backlog, try to process it now yet. */
1719
1720 if (copied >= target && !sk->sk_backlog.tail)
1721 break;
1722
1723 if (copied) {
1724 if (sk->sk_err ||
1725 sk->sk_state == TCP_CLOSE ||
1726 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1727 !timeo ||
1728 signal_pending(current))
1729 break;
1730 } else {
1731 if (sock_flag(sk, SOCK_DONE))
1732 break;
1733
1734 if (sk->sk_err) {
1735 copied = sock_error(sk);
1736 break;
1737 }
1738
1739 if (sk->sk_shutdown & RCV_SHUTDOWN)
1740 break;
1741
1742 if (sk->sk_state == TCP_CLOSE) {
1743 if (!sock_flag(sk, SOCK_DONE)) {
1744 /* This occurs when user tries to read
1745 * from never connected socket.
1746 */
1747 copied = -ENOTCONN;
1748 break;
1749 }
1750 break;
1751 }
1752
1753 if (!timeo) {
1754 copied = -EAGAIN;
1755 break;
1756 }
1757
1758 if (signal_pending(current)) {
1759 copied = sock_intr_errno(timeo);
1760 break;
1761 }
1762 }
1763
1764 tcp_cleanup_rbuf(sk, copied);
1765
1766 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1767 /* Install new reader */
1768 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1769 user_recv = current;
1770 tp->ucopy.task = user_recv;
1771 tp->ucopy.iov = msg->msg_iov;
1772 }
1773
1774 tp->ucopy.len = len;
1775
1776 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1777 !(flags & (MSG_PEEK | MSG_TRUNC)));
1778
1779 /* Ugly... If prequeue is not empty, we have to
1780 * process it before releasing socket, otherwise
1781 * order will be broken at second iteration.
1782 * More elegant solution is required!!!
1783 *
1784 * Look: we have the following (pseudo)queues:
1785 *
1786 * 1. packets in flight
1787 * 2. backlog
1788 * 3. prequeue
1789 * 4. receive_queue
1790 *
1791 * Each queue can be processed only if the next ones
1792 * are empty. At this point we have empty receive_queue.
1793 * But prequeue _can_ be not empty after 2nd iteration,
1794 * when we jumped to start of loop because backlog
1795 * processing added something to receive_queue.
1796 * We cannot release_sock(), because backlog contains
1797 * packets arrived _after_ prequeued ones.
1798 *
1799 * Shortly, algorithm is clear --- to process all
1800 * the queues in order. We could make it more directly,
1801 * requeueing packets from backlog to prequeue, if
1802 * is not empty. It is more elegant, but eats cycles,
1803 * unfortunately.
1804 */
1805 if (!skb_queue_empty(&tp->ucopy.prequeue))
1806 goto do_prequeue;
1807
1808 /* __ Set realtime policy in scheduler __ */
1809 }
1810
1811 #ifdef CONFIG_NET_DMA
1812 if (tp->ucopy.dma_chan) {
1813 if (tp->rcv_wnd == 0 &&
1814 !skb_queue_empty(&sk->sk_async_wait_queue)) {
1815 tcp_service_net_dma(sk, true);
1816 tcp_cleanup_rbuf(sk, copied);
1817 } else
1818 dma_async_issue_pending(tp->ucopy.dma_chan);
1819 }
1820 #endif
1821 if (copied >= target) {
1822 /* Do not sleep, just process backlog. */
1823 release_sock(sk);
1824 lock_sock(sk);
1825 } else
1826 sk_wait_data(sk, &timeo);
1827
1828 #ifdef CONFIG_NET_DMA
1829 tcp_service_net_dma(sk, false); /* Don't block */
1830 tp->ucopy.wakeup = 0;
1831 #endif
1832
1833 if (user_recv) {
1834 int chunk;
1835
1836 /* __ Restore normal policy in scheduler __ */
1837
1838 if ((chunk = len - tp->ucopy.len) != 0) {
1839 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1840 len -= chunk;
1841 copied += chunk;
1842 }
1843
1844 if (tp->rcv_nxt == tp->copied_seq &&
1845 !skb_queue_empty(&tp->ucopy.prequeue)) {
1846 do_prequeue:
1847 tcp_prequeue_process(sk);
1848
1849 if ((chunk = len - tp->ucopy.len) != 0) {
1850 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1851 len -= chunk;
1852 copied += chunk;
1853 }
1854 }
1855 }
1856 if ((flags & MSG_PEEK) &&
1857 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1858 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1859 current->comm,
1860 task_pid_nr(current));
1861 peek_seq = tp->copied_seq;
1862 }
1863 continue;
1864
1865 found_ok_skb:
1866 /* Ok so how much can we use? */
1867 used = skb->len - offset;
1868 if (len < used)
1869 used = len;
1870
1871 /* Do we have urgent data here? */
1872 if (tp->urg_data) {
1873 u32 urg_offset = tp->urg_seq - *seq;
1874 if (urg_offset < used) {
1875 if (!urg_offset) {
1876 if (!sock_flag(sk, SOCK_URGINLINE)) {
1877 ++*seq;
1878 urg_hole++;
1879 offset++;
1880 used--;
1881 if (!used)
1882 goto skip_copy;
1883 }
1884 } else
1885 used = urg_offset;
1886 }
1887 }
1888
1889 if (!(flags & MSG_TRUNC)) {
1890 #ifdef CONFIG_NET_DMA
1891 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1892 tp->ucopy.dma_chan = net_dma_find_channel();
1893
1894 if (tp->ucopy.dma_chan) {
1895 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1896 tp->ucopy.dma_chan, skb, offset,
1897 msg->msg_iov, used,
1898 tp->ucopy.pinned_list);
1899
1900 if (tp->ucopy.dma_cookie < 0) {
1901
1902 pr_alert("%s: dma_cookie < 0\n",
1903 __func__);
1904
1905 /* Exception. Bailout! */
1906 if (!copied)
1907 copied = -EFAULT;
1908 break;
1909 }
1910
1911 dma_async_issue_pending(tp->ucopy.dma_chan);
1912
1913 if ((offset + used) == skb->len)
1914 copied_early = true;
1915
1916 } else
1917 #endif
1918 {
1919 err = skb_copy_datagram_iovec(skb, offset,
1920 msg->msg_iov, used);
1921 if (err) {
1922 /* Exception. Bailout! */
1923 if (!copied)
1924 copied = -EFAULT;
1925 break;
1926 }
1927 }
1928 }
1929
1930 *seq += used;
1931 copied += used;
1932 len -= used;
1933
1934 tcp_rcv_space_adjust(sk);
1935
1936 skip_copy:
1937 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1938 tp->urg_data = 0;
1939 tcp_fast_path_check(sk);
1940 }
1941 if (used + offset < skb->len)
1942 continue;
1943
1944 if (tcp_hdr(skb)->fin)
1945 goto found_fin_ok;
1946 if (!(flags & MSG_PEEK)) {
1947 sk_eat_skb(sk, skb, copied_early);
1948 copied_early = false;
1949 }
1950 continue;
1951
1952 found_fin_ok:
1953 /* Process the FIN. */
1954 ++*seq;
1955 if (!(flags & MSG_PEEK)) {
1956 sk_eat_skb(sk, skb, copied_early);
1957 copied_early = false;
1958 }
1959 break;
1960 } while (len > 0);
1961
1962 if (user_recv) {
1963 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1964 int chunk;
1965
1966 tp->ucopy.len = copied > 0 ? len : 0;
1967
1968 tcp_prequeue_process(sk);
1969
1970 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1971 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1972 len -= chunk;
1973 copied += chunk;
1974 }
1975 }
1976
1977 tp->ucopy.task = NULL;
1978 tp->ucopy.len = 0;
1979 }
1980
1981 #ifdef CONFIG_NET_DMA
1982 tcp_service_net_dma(sk, true); /* Wait for queue to drain */
1983 tp->ucopy.dma_chan = NULL;
1984
1985 if (tp->ucopy.pinned_list) {
1986 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1987 tp->ucopy.pinned_list = NULL;
1988 }
1989 #endif
1990
1991 /* According to UNIX98, msg_name/msg_namelen are ignored
1992 * on connected socket. I was just happy when found this 8) --ANK
1993 */
1994
1995 /* Clean up data we have read: This will do ACK frames. */
1996 tcp_cleanup_rbuf(sk, copied);
1997
1998 release_sock(sk);
1999 return copied;
2000
2001 out:
2002 release_sock(sk);
2003 return err;
2004
2005 recv_urg:
2006 err = tcp_recv_urg(sk, msg, len, flags);
2007 goto out;
2008
2009 recv_sndq:
2010 err = tcp_peek_sndq(sk, msg, len);
2011 goto out;
2012 }
2013 EXPORT_SYMBOL(tcp_recvmsg);
2014
2015 void tcp_set_state(struct sock *sk, int state)
2016 {
2017 int oldstate = sk->sk_state;
2018
2019 switch (state) {
2020 case TCP_ESTABLISHED:
2021 if (oldstate != TCP_ESTABLISHED)
2022 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2023 break;
2024
2025 case TCP_CLOSE:
2026 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2027 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2028
2029 sk->sk_prot->unhash(sk);
2030 if (inet_csk(sk)->icsk_bind_hash &&
2031 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2032 inet_put_port(sk);
2033 /* fall through */
2034 default:
2035 if (oldstate == TCP_ESTABLISHED)
2036 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2037 }
2038
2039 /* Change state AFTER socket is unhashed to avoid closed
2040 * socket sitting in hash tables.
2041 */
2042 sk->sk_state = state;
2043
2044 #ifdef STATE_TRACE
2045 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2046 #endif
2047 }
2048 EXPORT_SYMBOL_GPL(tcp_set_state);
2049
2050 /*
2051 * State processing on a close. This implements the state shift for
2052 * sending our FIN frame. Note that we only send a FIN for some
2053 * states. A shutdown() may have already sent the FIN, or we may be
2054 * closed.
2055 */
2056
2057 static const unsigned char new_state[16] = {
2058 /* current state: new state: action: */
2059 /* (Invalid) */ TCP_CLOSE,
2060 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2061 /* TCP_SYN_SENT */ TCP_CLOSE,
2062 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2063 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
2064 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
2065 /* TCP_TIME_WAIT */ TCP_CLOSE,
2066 /* TCP_CLOSE */ TCP_CLOSE,
2067 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
2068 /* TCP_LAST_ACK */ TCP_LAST_ACK,
2069 /* TCP_LISTEN */ TCP_CLOSE,
2070 /* TCP_CLOSING */ TCP_CLOSING,
2071 };
2072
2073 static int tcp_close_state(struct sock *sk)
2074 {
2075 int next = (int)new_state[sk->sk_state];
2076 int ns = next & TCP_STATE_MASK;
2077
2078 tcp_set_state(sk, ns);
2079
2080 return next & TCP_ACTION_FIN;
2081 }
2082
2083 /*
2084 * Shutdown the sending side of a connection. Much like close except
2085 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2086 */
2087
2088 void tcp_shutdown(struct sock *sk, int how)
2089 {
2090 /* We need to grab some memory, and put together a FIN,
2091 * and then put it into the queue to be sent.
2092 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2093 */
2094 if (!(how & SEND_SHUTDOWN))
2095 return;
2096
2097 /* If we've already sent a FIN, or it's a closed state, skip this. */
2098 if ((1 << sk->sk_state) &
2099 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2100 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2101 /* Clear out any half completed packets. FIN if needed. */
2102 if (tcp_close_state(sk))
2103 tcp_send_fin(sk);
2104 }
2105 }
2106 EXPORT_SYMBOL(tcp_shutdown);
2107
2108 bool tcp_check_oom(struct sock *sk, int shift)
2109 {
2110 bool too_many_orphans, out_of_socket_memory;
2111
2112 too_many_orphans = tcp_too_many_orphans(sk, shift);
2113 out_of_socket_memory = tcp_out_of_memory(sk);
2114
2115 if (too_many_orphans)
2116 net_info_ratelimited("too many orphaned sockets\n");
2117 if (out_of_socket_memory)
2118 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2119 return too_many_orphans || out_of_socket_memory;
2120 }
2121
2122 void tcp_close(struct sock *sk, long timeout)
2123 {
2124 struct sk_buff *skb;
2125 int data_was_unread = 0;
2126 int state;
2127
2128 lock_sock(sk);
2129 sk->sk_shutdown = SHUTDOWN_MASK;
2130
2131 if (sk->sk_state == TCP_LISTEN) {
2132 tcp_set_state(sk, TCP_CLOSE);
2133
2134 /* Special case. */
2135 inet_csk_listen_stop(sk);
2136
2137 goto adjudge_to_death;
2138 }
2139
2140 /* We need to flush the recv. buffs. We do this only on the
2141 * descriptor close, not protocol-sourced closes, because the
2142 * reader process may not have drained the data yet!
2143 */
2144 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2145 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2146 tcp_hdr(skb)->fin;
2147 data_was_unread += len;
2148 __kfree_skb(skb);
2149 }
2150
2151 sk_mem_reclaim(sk);
2152
2153 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2154 if (sk->sk_state == TCP_CLOSE)
2155 goto adjudge_to_death;
2156
2157 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2158 * data was lost. To witness the awful effects of the old behavior of
2159 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2160 * GET in an FTP client, suspend the process, wait for the client to
2161 * advertise a zero window, then kill -9 the FTP client, wheee...
2162 * Note: timeout is always zero in such a case.
2163 */
2164 if (unlikely(tcp_sk(sk)->repair)) {
2165 sk->sk_prot->disconnect(sk, 0);
2166 } else if (data_was_unread) {
2167 /* Unread data was tossed, zap the connection. */
2168 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2169 tcp_set_state(sk, TCP_CLOSE);
2170 tcp_send_active_reset(sk, sk->sk_allocation);
2171 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2172 /* Check zero linger _after_ checking for unread data. */
2173 sk->sk_prot->disconnect(sk, 0);
2174 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2175 } else if (tcp_close_state(sk)) {
2176 /* We FIN if the application ate all the data before
2177 * zapping the connection.
2178 */
2179
2180 /* RED-PEN. Formally speaking, we have broken TCP state
2181 * machine. State transitions:
2182 *
2183 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2184 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2185 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2186 *
2187 * are legal only when FIN has been sent (i.e. in window),
2188 * rather than queued out of window. Purists blame.
2189 *
2190 * F.e. "RFC state" is ESTABLISHED,
2191 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2192 *
2193 * The visible declinations are that sometimes
2194 * we enter time-wait state, when it is not required really
2195 * (harmless), do not send active resets, when they are
2196 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2197 * they look as CLOSING or LAST_ACK for Linux)
2198 * Probably, I missed some more holelets.
2199 * --ANK
2200 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2201 * in a single packet! (May consider it later but will
2202 * probably need API support or TCP_CORK SYN-ACK until
2203 * data is written and socket is closed.)
2204 */
2205 tcp_send_fin(sk);
2206 }
2207
2208 sk_stream_wait_close(sk, timeout);
2209
2210 adjudge_to_death:
2211 state = sk->sk_state;
2212 sock_hold(sk);
2213 sock_orphan(sk);
2214
2215 /* It is the last release_sock in its life. It will remove backlog. */
2216 release_sock(sk);
2217
2218
2219 /* Now socket is owned by kernel and we acquire BH lock
2220 to finish close. No need to check for user refs.
2221 */
2222 local_bh_disable();
2223 bh_lock_sock(sk);
2224 WARN_ON(sock_owned_by_user(sk));
2225
2226 percpu_counter_inc(sk->sk_prot->orphan_count);
2227
2228 /* Have we already been destroyed by a softirq or backlog? */
2229 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2230 goto out;
2231
2232 /* This is a (useful) BSD violating of the RFC. There is a
2233 * problem with TCP as specified in that the other end could
2234 * keep a socket open forever with no application left this end.
2235 * We use a 1 minute timeout (about the same as BSD) then kill
2236 * our end. If they send after that then tough - BUT: long enough
2237 * that we won't make the old 4*rto = almost no time - whoops
2238 * reset mistake.
2239 *
2240 * Nope, it was not mistake. It is really desired behaviour
2241 * f.e. on http servers, when such sockets are useless, but
2242 * consume significant resources. Let's do it with special
2243 * linger2 option. --ANK
2244 */
2245
2246 if (sk->sk_state == TCP_FIN_WAIT2) {
2247 struct tcp_sock *tp = tcp_sk(sk);
2248 if (tp->linger2 < 0) {
2249 tcp_set_state(sk, TCP_CLOSE);
2250 tcp_send_active_reset(sk, GFP_ATOMIC);
2251 NET_INC_STATS_BH(sock_net(sk),
2252 LINUX_MIB_TCPABORTONLINGER);
2253 } else {
2254 const int tmo = tcp_fin_time(sk);
2255
2256 if (tmo > TCP_TIMEWAIT_LEN) {
2257 inet_csk_reset_keepalive_timer(sk,
2258 tmo - TCP_TIMEWAIT_LEN);
2259 } else {
2260 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2261 goto out;
2262 }
2263 }
2264 }
2265 if (sk->sk_state != TCP_CLOSE) {
2266 sk_mem_reclaim(sk);
2267 if (tcp_check_oom(sk, 0)) {
2268 tcp_set_state(sk, TCP_CLOSE);
2269 tcp_send_active_reset(sk, GFP_ATOMIC);
2270 NET_INC_STATS_BH(sock_net(sk),
2271 LINUX_MIB_TCPABORTONMEMORY);
2272 }
2273 }
2274
2275 if (sk->sk_state == TCP_CLOSE) {
2276 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2277 /* We could get here with a non-NULL req if the socket is
2278 * aborted (e.g., closed with unread data) before 3WHS
2279 * finishes.
2280 */
2281 if (req != NULL)
2282 reqsk_fastopen_remove(sk, req, false);
2283 inet_csk_destroy_sock(sk);
2284 }
2285 /* Otherwise, socket is reprieved until protocol close. */
2286
2287 out:
2288 bh_unlock_sock(sk);
2289 local_bh_enable();
2290 sock_put(sk);
2291 }
2292 EXPORT_SYMBOL(tcp_close);
2293
2294 /* These states need RST on ABORT according to RFC793 */
2295
2296 static inline bool tcp_need_reset(int state)
2297 {
2298 return (1 << state) &
2299 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2300 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2301 }
2302
2303 int tcp_disconnect(struct sock *sk, int flags)
2304 {
2305 struct inet_sock *inet = inet_sk(sk);
2306 struct inet_connection_sock *icsk = inet_csk(sk);
2307 struct tcp_sock *tp = tcp_sk(sk);
2308 int err = 0;
2309 int old_state = sk->sk_state;
2310
2311 if (old_state != TCP_CLOSE)
2312 tcp_set_state(sk, TCP_CLOSE);
2313
2314 /* ABORT function of RFC793 */
2315 if (old_state == TCP_LISTEN) {
2316 inet_csk_listen_stop(sk);
2317 } else if (unlikely(tp->repair)) {
2318 sk->sk_err = ECONNABORTED;
2319 } else if (tcp_need_reset(old_state) ||
2320 (tp->snd_nxt != tp->write_seq &&
2321 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2322 /* The last check adjusts for discrepancy of Linux wrt. RFC
2323 * states
2324 */
2325 tcp_send_active_reset(sk, gfp_any());
2326 sk->sk_err = ECONNRESET;
2327 } else if (old_state == TCP_SYN_SENT)
2328 sk->sk_err = ECONNRESET;
2329
2330 tcp_clear_xmit_timers(sk);
2331 __skb_queue_purge(&sk->sk_receive_queue);
2332 tcp_write_queue_purge(sk);
2333 __skb_queue_purge(&tp->out_of_order_queue);
2334 #ifdef CONFIG_NET_DMA
2335 __skb_queue_purge(&sk->sk_async_wait_queue);
2336 #endif
2337
2338 inet->inet_dport = 0;
2339
2340 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2341 inet_reset_saddr(sk);
2342
2343 sk->sk_shutdown = 0;
2344 sock_reset_flag(sk, SOCK_DONE);
2345 tp->srtt_us = 0;
2346 if ((tp->write_seq += tp->max_window + 2) == 0)
2347 tp->write_seq = 1;
2348 icsk->icsk_backoff = 0;
2349 tp->snd_cwnd = 2;
2350 icsk->icsk_probes_out = 0;
2351 tp->packets_out = 0;
2352 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2353 tp->snd_cwnd_cnt = 0;
2354 tp->window_clamp = 0;
2355 tcp_set_ca_state(sk, TCP_CA_Open);
2356 tcp_clear_retrans(tp);
2357 inet_csk_delack_init(sk);
2358 tcp_init_send_head(sk);
2359 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2360 __sk_dst_reset(sk);
2361
2362 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2363
2364 sk->sk_error_report(sk);
2365 return err;
2366 }
2367 EXPORT_SYMBOL(tcp_disconnect);
2368
2369 void tcp_sock_destruct(struct sock *sk)
2370 {
2371 inet_sock_destruct(sk);
2372
2373 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2374 }
2375
2376 static inline bool tcp_can_repair_sock(const struct sock *sk)
2377 {
2378 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2379 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2380 }
2381
2382 static int tcp_repair_options_est(struct tcp_sock *tp,
2383 struct tcp_repair_opt __user *optbuf, unsigned int len)
2384 {
2385 struct tcp_repair_opt opt;
2386
2387 while (len >= sizeof(opt)) {
2388 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2389 return -EFAULT;
2390
2391 optbuf++;
2392 len -= sizeof(opt);
2393
2394 switch (opt.opt_code) {
2395 case TCPOPT_MSS:
2396 tp->rx_opt.mss_clamp = opt.opt_val;
2397 break;
2398 case TCPOPT_WINDOW:
2399 {
2400 u16 snd_wscale = opt.opt_val & 0xFFFF;
2401 u16 rcv_wscale = opt.opt_val >> 16;
2402
2403 if (snd_wscale > 14 || rcv_wscale > 14)
2404 return -EFBIG;
2405
2406 tp->rx_opt.snd_wscale = snd_wscale;
2407 tp->rx_opt.rcv_wscale = rcv_wscale;
2408 tp->rx_opt.wscale_ok = 1;
2409 }
2410 break;
2411 case TCPOPT_SACK_PERM:
2412 if (opt.opt_val != 0)
2413 return -EINVAL;
2414
2415 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2416 if (sysctl_tcp_fack)
2417 tcp_enable_fack(tp);
2418 break;
2419 case TCPOPT_TIMESTAMP:
2420 if (opt.opt_val != 0)
2421 return -EINVAL;
2422
2423 tp->rx_opt.tstamp_ok = 1;
2424 break;
2425 }
2426 }
2427
2428 return 0;
2429 }
2430
2431 /*
2432 * Socket option code for TCP.
2433 */
2434 static int do_tcp_setsockopt(struct sock *sk, int level,
2435 int optname, char __user *optval, unsigned int optlen)
2436 {
2437 struct tcp_sock *tp = tcp_sk(sk);
2438 struct inet_connection_sock *icsk = inet_csk(sk);
2439 int val;
2440 int err = 0;
2441
2442 /* These are data/string values, all the others are ints */
2443 switch (optname) {
2444 case TCP_CONGESTION: {
2445 char name[TCP_CA_NAME_MAX];
2446
2447 if (optlen < 1)
2448 return -EINVAL;
2449
2450 val = strncpy_from_user(name, optval,
2451 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2452 if (val < 0)
2453 return -EFAULT;
2454 name[val] = 0;
2455
2456 lock_sock(sk);
2457 err = tcp_set_congestion_control(sk, name);
2458 release_sock(sk);
2459 return err;
2460 }
2461 default:
2462 /* fallthru */
2463 break;
2464 }
2465
2466 if (optlen < sizeof(int))
2467 return -EINVAL;
2468
2469 if (get_user(val, (int __user *)optval))
2470 return -EFAULT;
2471
2472 lock_sock(sk);
2473
2474 switch (optname) {
2475 case TCP_MAXSEG:
2476 /* Values greater than interface MTU won't take effect. However
2477 * at the point when this call is done we typically don't yet
2478 * know which interface is going to be used */
2479 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2480 err = -EINVAL;
2481 break;
2482 }
2483 tp->rx_opt.user_mss = val;
2484 break;
2485
2486 case TCP_NODELAY:
2487 if (val) {
2488 /* TCP_NODELAY is weaker than TCP_CORK, so that
2489 * this option on corked socket is remembered, but
2490 * it is not activated until cork is cleared.
2491 *
2492 * However, when TCP_NODELAY is set we make
2493 * an explicit push, which overrides even TCP_CORK
2494 * for currently queued segments.
2495 */
2496 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2497 tcp_push_pending_frames(sk);
2498 } else {
2499 tp->nonagle &= ~TCP_NAGLE_OFF;
2500 }
2501 break;
2502
2503 case TCP_THIN_LINEAR_TIMEOUTS:
2504 if (val < 0 || val > 1)
2505 err = -EINVAL;
2506 else
2507 tp->thin_lto = val;
2508 break;
2509
2510 case TCP_THIN_DUPACK:
2511 if (val < 0 || val > 1)
2512 err = -EINVAL;
2513 else {
2514 tp->thin_dupack = val;
2515 if (tp->thin_dupack)
2516 tcp_disable_early_retrans(tp);
2517 }
2518 break;
2519
2520 case TCP_REPAIR:
2521 if (!tcp_can_repair_sock(sk))
2522 err = -EPERM;
2523 else if (val == 1) {
2524 tp->repair = 1;
2525 sk->sk_reuse = SK_FORCE_REUSE;
2526 tp->repair_queue = TCP_NO_QUEUE;
2527 } else if (val == 0) {
2528 tp->repair = 0;
2529 sk->sk_reuse = SK_NO_REUSE;
2530 tcp_send_window_probe(sk);
2531 } else
2532 err = -EINVAL;
2533
2534 break;
2535
2536 case TCP_REPAIR_QUEUE:
2537 if (!tp->repair)
2538 err = -EPERM;
2539 else if (val < TCP_QUEUES_NR)
2540 tp->repair_queue = val;
2541 else
2542 err = -EINVAL;
2543 break;
2544
2545 case TCP_QUEUE_SEQ:
2546 if (sk->sk_state != TCP_CLOSE)
2547 err = -EPERM;
2548 else if (tp->repair_queue == TCP_SEND_QUEUE)
2549 tp->write_seq = val;
2550 else if (tp->repair_queue == TCP_RECV_QUEUE)
2551 tp->rcv_nxt = val;
2552 else
2553 err = -EINVAL;
2554 break;
2555
2556 case TCP_REPAIR_OPTIONS:
2557 if (!tp->repair)
2558 err = -EINVAL;
2559 else if (sk->sk_state == TCP_ESTABLISHED)
2560 err = tcp_repair_options_est(tp,
2561 (struct tcp_repair_opt __user *)optval,
2562 optlen);
2563 else
2564 err = -EPERM;
2565 break;
2566
2567 case TCP_CORK:
2568 /* When set indicates to always queue non-full frames.
2569 * Later the user clears this option and we transmit
2570 * any pending partial frames in the queue. This is
2571 * meant to be used alongside sendfile() to get properly
2572 * filled frames when the user (for example) must write
2573 * out headers with a write() call first and then use
2574 * sendfile to send out the data parts.
2575 *
2576 * TCP_CORK can be set together with TCP_NODELAY and it is
2577 * stronger than TCP_NODELAY.
2578 */
2579 if (val) {
2580 tp->nonagle |= TCP_NAGLE_CORK;
2581 } else {
2582 tp->nonagle &= ~TCP_NAGLE_CORK;
2583 if (tp->nonagle&TCP_NAGLE_OFF)
2584 tp->nonagle |= TCP_NAGLE_PUSH;
2585 tcp_push_pending_frames(sk);
2586 }
2587 break;
2588
2589 case TCP_KEEPIDLE:
2590 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2591 err = -EINVAL;
2592 else {
2593 tp->keepalive_time = val * HZ;
2594 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2595 !((1 << sk->sk_state) &
2596 (TCPF_CLOSE | TCPF_LISTEN))) {
2597 u32 elapsed = keepalive_time_elapsed(tp);
2598 if (tp->keepalive_time > elapsed)
2599 elapsed = tp->keepalive_time - elapsed;
2600 else
2601 elapsed = 0;
2602 inet_csk_reset_keepalive_timer(sk, elapsed);
2603 }
2604 }
2605 break;
2606 case TCP_KEEPINTVL:
2607 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2608 err = -EINVAL;
2609 else
2610 tp->keepalive_intvl = val * HZ;
2611 break;
2612 case TCP_KEEPCNT:
2613 if (val < 1 || val > MAX_TCP_KEEPCNT)
2614 err = -EINVAL;
2615 else
2616 tp->keepalive_probes = val;
2617 break;
2618 case TCP_SYNCNT:
2619 if (val < 1 || val > MAX_TCP_SYNCNT)
2620 err = -EINVAL;
2621 else
2622 icsk->icsk_syn_retries = val;
2623 break;
2624
2625 case TCP_LINGER2:
2626 if (val < 0)
2627 tp->linger2 = -1;
2628 else if (val > sysctl_tcp_fin_timeout / HZ)
2629 tp->linger2 = 0;
2630 else
2631 tp->linger2 = val * HZ;
2632 break;
2633
2634 case TCP_DEFER_ACCEPT:
2635 /* Translate value in seconds to number of retransmits */
2636 icsk->icsk_accept_queue.rskq_defer_accept =
2637 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2638 TCP_RTO_MAX / HZ);
2639 break;
2640
2641 case TCP_WINDOW_CLAMP:
2642 if (!val) {
2643 if (sk->sk_state != TCP_CLOSE) {
2644 err = -EINVAL;
2645 break;
2646 }
2647 tp->window_clamp = 0;
2648 } else
2649 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2650 SOCK_MIN_RCVBUF / 2 : val;
2651 break;
2652
2653 case TCP_QUICKACK:
2654 if (!val) {
2655 icsk->icsk_ack.pingpong = 1;
2656 } else {
2657 icsk->icsk_ack.pingpong = 0;
2658 if ((1 << sk->sk_state) &
2659 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2660 inet_csk_ack_scheduled(sk)) {
2661 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2662 tcp_cleanup_rbuf(sk, 1);
2663 if (!(val & 1))
2664 icsk->icsk_ack.pingpong = 1;
2665 }
2666 }
2667 break;
2668
2669 #ifdef CONFIG_TCP_MD5SIG
2670 case TCP_MD5SIG:
2671 /* Read the IP->Key mappings from userspace */
2672 err = tp->af_specific->md5_parse(sk, optval, optlen);
2673 break;
2674 #endif
2675 case TCP_USER_TIMEOUT:
2676 /* Cap the max timeout in ms TCP will retry/retrans
2677 * before giving up and aborting (ETIMEDOUT) a connection.
2678 */
2679 if (val < 0)
2680 err = -EINVAL;
2681 else
2682 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2683 break;
2684
2685 case TCP_FASTOPEN:
2686 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2687 TCPF_LISTEN)))
2688 err = fastopen_init_queue(sk, val);
2689 else
2690 err = -EINVAL;
2691 break;
2692 case TCP_TIMESTAMP:
2693 if (!tp->repair)
2694 err = -EPERM;
2695 else
2696 tp->tsoffset = val - tcp_time_stamp;
2697 break;
2698 case TCP_NOTSENT_LOWAT:
2699 tp->notsent_lowat = val;
2700 sk->sk_write_space(sk);
2701 break;
2702 default:
2703 err = -ENOPROTOOPT;
2704 break;
2705 }
2706
2707 release_sock(sk);
2708 return err;
2709 }
2710
2711 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2712 unsigned int optlen)
2713 {
2714 const struct inet_connection_sock *icsk = inet_csk(sk);
2715
2716 if (level != SOL_TCP)
2717 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2718 optval, optlen);
2719 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2720 }
2721 EXPORT_SYMBOL(tcp_setsockopt);
2722
2723 #ifdef CONFIG_COMPAT
2724 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2725 char __user *optval, unsigned int optlen)
2726 {
2727 if (level != SOL_TCP)
2728 return inet_csk_compat_setsockopt(sk, level, optname,
2729 optval, optlen);
2730 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2731 }
2732 EXPORT_SYMBOL(compat_tcp_setsockopt);
2733 #endif
2734
2735 /* Return information about state of tcp endpoint in API format. */
2736 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2737 {
2738 const struct tcp_sock *tp = tcp_sk(sk);
2739 const struct inet_connection_sock *icsk = inet_csk(sk);
2740 u32 now = tcp_time_stamp;
2741
2742 memset(info, 0, sizeof(*info));
2743
2744 info->tcpi_state = sk->sk_state;
2745 info->tcpi_ca_state = icsk->icsk_ca_state;
2746 info->tcpi_retransmits = icsk->icsk_retransmits;
2747 info->tcpi_probes = icsk->icsk_probes_out;
2748 info->tcpi_backoff = icsk->icsk_backoff;
2749
2750 if (tp->rx_opt.tstamp_ok)
2751 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2752 if (tcp_is_sack(tp))
2753 info->tcpi_options |= TCPI_OPT_SACK;
2754 if (tp->rx_opt.wscale_ok) {
2755 info->tcpi_options |= TCPI_OPT_WSCALE;
2756 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2757 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2758 }
2759
2760 if (tp->ecn_flags & TCP_ECN_OK)
2761 info->tcpi_options |= TCPI_OPT_ECN;
2762 if (tp->ecn_flags & TCP_ECN_SEEN)
2763 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2764 if (tp->syn_data_acked)
2765 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2766
2767 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2768 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2769 info->tcpi_snd_mss = tp->mss_cache;
2770 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2771
2772 if (sk->sk_state == TCP_LISTEN) {
2773 info->tcpi_unacked = sk->sk_ack_backlog;
2774 info->tcpi_sacked = sk->sk_max_ack_backlog;
2775 } else {
2776 info->tcpi_unacked = tp->packets_out;
2777 info->tcpi_sacked = tp->sacked_out;
2778 }
2779 info->tcpi_lost = tp->lost_out;
2780 info->tcpi_retrans = tp->retrans_out;
2781 info->tcpi_fackets = tp->fackets_out;
2782
2783 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2784 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2785 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2786
2787 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2788 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2789 info->tcpi_rtt = tp->srtt_us >> 3;
2790 info->tcpi_rttvar = tp->mdev_us >> 2;
2791 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2792 info->tcpi_snd_cwnd = tp->snd_cwnd;
2793 info->tcpi_advmss = tp->advmss;
2794 info->tcpi_reordering = tp->reordering;
2795
2796 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2797 info->tcpi_rcv_space = tp->rcvq_space.space;
2798
2799 info->tcpi_total_retrans = tp->total_retrans;
2800
2801 info->tcpi_pacing_rate = sk->sk_pacing_rate != ~0U ?
2802 sk->sk_pacing_rate : ~0ULL;
2803 info->tcpi_max_pacing_rate = sk->sk_max_pacing_rate != ~0U ?
2804 sk->sk_max_pacing_rate : ~0ULL;
2805 }
2806 EXPORT_SYMBOL_GPL(tcp_get_info);
2807
2808 static int do_tcp_getsockopt(struct sock *sk, int level,
2809 int optname, char __user *optval, int __user *optlen)
2810 {
2811 struct inet_connection_sock *icsk = inet_csk(sk);
2812 struct tcp_sock *tp = tcp_sk(sk);
2813 int val, len;
2814
2815 if (get_user(len, optlen))
2816 return -EFAULT;
2817
2818 len = min_t(unsigned int, len, sizeof(int));
2819
2820 if (len < 0)
2821 return -EINVAL;
2822
2823 switch (optname) {
2824 case TCP_MAXSEG:
2825 val = tp->mss_cache;
2826 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2827 val = tp->rx_opt.user_mss;
2828 if (tp->repair)
2829 val = tp->rx_opt.mss_clamp;
2830 break;
2831 case TCP_NODELAY:
2832 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2833 break;
2834 case TCP_CORK:
2835 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2836 break;
2837 case TCP_KEEPIDLE:
2838 val = keepalive_time_when(tp) / HZ;
2839 break;
2840 case TCP_KEEPINTVL:
2841 val = keepalive_intvl_when(tp) / HZ;
2842 break;
2843 case TCP_KEEPCNT:
2844 val = keepalive_probes(tp);
2845 break;
2846 case TCP_SYNCNT:
2847 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2848 break;
2849 case TCP_LINGER2:
2850 val = tp->linger2;
2851 if (val >= 0)
2852 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2853 break;
2854 case TCP_DEFER_ACCEPT:
2855 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2856 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2857 break;
2858 case TCP_WINDOW_CLAMP:
2859 val = tp->window_clamp;
2860 break;
2861 case TCP_INFO: {
2862 struct tcp_info info;
2863
2864 if (get_user(len, optlen))
2865 return -EFAULT;
2866
2867 tcp_get_info(sk, &info);
2868
2869 len = min_t(unsigned int, len, sizeof(info));
2870 if (put_user(len, optlen))
2871 return -EFAULT;
2872 if (copy_to_user(optval, &info, len))
2873 return -EFAULT;
2874 return 0;
2875 }
2876 case TCP_QUICKACK:
2877 val = !icsk->icsk_ack.pingpong;
2878 break;
2879
2880 case TCP_CONGESTION:
2881 if (get_user(len, optlen))
2882 return -EFAULT;
2883 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2884 if (put_user(len, optlen))
2885 return -EFAULT;
2886 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2887 return -EFAULT;
2888 return 0;
2889
2890 case TCP_THIN_LINEAR_TIMEOUTS:
2891 val = tp->thin_lto;
2892 break;
2893 case TCP_THIN_DUPACK:
2894 val = tp->thin_dupack;
2895 break;
2896
2897 case TCP_REPAIR:
2898 val = tp->repair;
2899 break;
2900
2901 case TCP_REPAIR_QUEUE:
2902 if (tp->repair)
2903 val = tp->repair_queue;
2904 else
2905 return -EINVAL;
2906 break;
2907
2908 case TCP_QUEUE_SEQ:
2909 if (tp->repair_queue == TCP_SEND_QUEUE)
2910 val = tp->write_seq;
2911 else if (tp->repair_queue == TCP_RECV_QUEUE)
2912 val = tp->rcv_nxt;
2913 else
2914 return -EINVAL;
2915 break;
2916
2917 case TCP_USER_TIMEOUT:
2918 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2919 break;
2920
2921 case TCP_FASTOPEN:
2922 if (icsk->icsk_accept_queue.fastopenq != NULL)
2923 val = icsk->icsk_accept_queue.fastopenq->max_qlen;
2924 else
2925 val = 0;
2926 break;
2927
2928 case TCP_TIMESTAMP:
2929 val = tcp_time_stamp + tp->tsoffset;
2930 break;
2931 case TCP_NOTSENT_LOWAT:
2932 val = tp->notsent_lowat;
2933 break;
2934 default:
2935 return -ENOPROTOOPT;
2936 }
2937
2938 if (put_user(len, optlen))
2939 return -EFAULT;
2940 if (copy_to_user(optval, &val, len))
2941 return -EFAULT;
2942 return 0;
2943 }
2944
2945 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2946 int __user *optlen)
2947 {
2948 struct inet_connection_sock *icsk = inet_csk(sk);
2949
2950 if (level != SOL_TCP)
2951 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2952 optval, optlen);
2953 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2954 }
2955 EXPORT_SYMBOL(tcp_getsockopt);
2956
2957 #ifdef CONFIG_COMPAT
2958 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2959 char __user *optval, int __user *optlen)
2960 {
2961 if (level != SOL_TCP)
2962 return inet_csk_compat_getsockopt(sk, level, optname,
2963 optval, optlen);
2964 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2965 }
2966 EXPORT_SYMBOL(compat_tcp_getsockopt);
2967 #endif
2968
2969 #ifdef CONFIG_TCP_MD5SIG
2970 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool __read_mostly;
2971 static DEFINE_MUTEX(tcp_md5sig_mutex);
2972
2973 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
2974 {
2975 int cpu;
2976
2977 for_each_possible_cpu(cpu) {
2978 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
2979
2980 if (p->md5_desc.tfm)
2981 crypto_free_hash(p->md5_desc.tfm);
2982 }
2983 free_percpu(pool);
2984 }
2985
2986 static void __tcp_alloc_md5sig_pool(void)
2987 {
2988 int cpu;
2989 struct tcp_md5sig_pool __percpu *pool;
2990
2991 pool = alloc_percpu(struct tcp_md5sig_pool);
2992 if (!pool)
2993 return;
2994
2995 for_each_possible_cpu(cpu) {
2996 struct crypto_hash *hash;
2997
2998 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2999 if (IS_ERR_OR_NULL(hash))
3000 goto out_free;
3001
3002 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3003 }
3004 /* before setting tcp_md5sig_pool, we must commit all writes
3005 * to memory. See ACCESS_ONCE() in tcp_get_md5sig_pool()
3006 */
3007 smp_wmb();
3008 tcp_md5sig_pool = pool;
3009 return;
3010 out_free:
3011 __tcp_free_md5sig_pool(pool);
3012 }
3013
3014 bool tcp_alloc_md5sig_pool(void)
3015 {
3016 if (unlikely(!tcp_md5sig_pool)) {
3017 mutex_lock(&tcp_md5sig_mutex);
3018
3019 if (!tcp_md5sig_pool)
3020 __tcp_alloc_md5sig_pool();
3021
3022 mutex_unlock(&tcp_md5sig_mutex);
3023 }
3024 return tcp_md5sig_pool != NULL;
3025 }
3026 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3027
3028
3029 /**
3030 * tcp_get_md5sig_pool - get md5sig_pool for this user
3031 *
3032 * We use percpu structure, so if we succeed, we exit with preemption
3033 * and BH disabled, to make sure another thread or softirq handling
3034 * wont try to get same context.
3035 */
3036 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3037 {
3038 struct tcp_md5sig_pool __percpu *p;
3039
3040 local_bh_disable();
3041 p = ACCESS_ONCE(tcp_md5sig_pool);
3042 if (p)
3043 return __this_cpu_ptr(p);
3044
3045 local_bh_enable();
3046 return NULL;
3047 }
3048 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3049
3050 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3051 const struct tcphdr *th)
3052 {
3053 struct scatterlist sg;
3054 struct tcphdr hdr;
3055 int err;
3056
3057 /* We are not allowed to change tcphdr, make a local copy */
3058 memcpy(&hdr, th, sizeof(hdr));
3059 hdr.check = 0;
3060
3061 /* options aren't included in the hash */
3062 sg_init_one(&sg, &hdr, sizeof(hdr));
3063 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3064 return err;
3065 }
3066 EXPORT_SYMBOL(tcp_md5_hash_header);
3067
3068 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3069 const struct sk_buff *skb, unsigned int header_len)
3070 {
3071 struct scatterlist sg;
3072 const struct tcphdr *tp = tcp_hdr(skb);
3073 struct hash_desc *desc = &hp->md5_desc;
3074 unsigned int i;
3075 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3076 skb_headlen(skb) - header_len : 0;
3077 const struct skb_shared_info *shi = skb_shinfo(skb);
3078 struct sk_buff *frag_iter;
3079
3080 sg_init_table(&sg, 1);
3081
3082 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3083 if (crypto_hash_update(desc, &sg, head_data_len))
3084 return 1;
3085
3086 for (i = 0; i < shi->nr_frags; ++i) {
3087 const struct skb_frag_struct *f = &shi->frags[i];
3088 unsigned int offset = f->page_offset;
3089 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3090
3091 sg_set_page(&sg, page, skb_frag_size(f),
3092 offset_in_page(offset));
3093 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3094 return 1;
3095 }
3096
3097 skb_walk_frags(skb, frag_iter)
3098 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3099 return 1;
3100
3101 return 0;
3102 }
3103 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3104
3105 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3106 {
3107 struct scatterlist sg;
3108
3109 sg_init_one(&sg, key->key, key->keylen);
3110 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3111 }
3112 EXPORT_SYMBOL(tcp_md5_hash_key);
3113
3114 #endif
3115
3116 void tcp_done(struct sock *sk)
3117 {
3118 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3119
3120 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3121 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3122
3123 tcp_set_state(sk, TCP_CLOSE);
3124 tcp_clear_xmit_timers(sk);
3125 if (req != NULL)
3126 reqsk_fastopen_remove(sk, req, false);
3127
3128 sk->sk_shutdown = SHUTDOWN_MASK;
3129
3130 if (!sock_flag(sk, SOCK_DEAD))
3131 sk->sk_state_change(sk);
3132 else
3133 inet_csk_destroy_sock(sk);
3134 }
3135 EXPORT_SYMBOL_GPL(tcp_done);
3136
3137 extern struct tcp_congestion_ops tcp_reno;
3138
3139 static __initdata unsigned long thash_entries;
3140 static int __init set_thash_entries(char *str)
3141 {
3142 ssize_t ret;
3143
3144 if (!str)
3145 return 0;
3146
3147 ret = kstrtoul(str, 0, &thash_entries);
3148 if (ret)
3149 return 0;
3150
3151 return 1;
3152 }
3153 __setup("thash_entries=", set_thash_entries);
3154
3155 static void tcp_init_mem(void)
3156 {
3157 unsigned long limit = nr_free_buffer_pages() / 8;
3158 limit = max(limit, 128UL);
3159 sysctl_tcp_mem[0] = limit / 4 * 3;
3160 sysctl_tcp_mem[1] = limit;
3161 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3162 }
3163
3164 void __init tcp_init(void)
3165 {
3166 struct sk_buff *skb = NULL;
3167 unsigned long limit;
3168 int max_rshare, max_wshare, cnt;
3169 unsigned int i;
3170
3171 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3172
3173 percpu_counter_init(&tcp_sockets_allocated, 0);
3174 percpu_counter_init(&tcp_orphan_count, 0);
3175 tcp_hashinfo.bind_bucket_cachep =
3176 kmem_cache_create("tcp_bind_bucket",
3177 sizeof(struct inet_bind_bucket), 0,
3178 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3179
3180 /* Size and allocate the main established and bind bucket
3181 * hash tables.
3182 *
3183 * The methodology is similar to that of the buffer cache.
3184 */
3185 tcp_hashinfo.ehash =
3186 alloc_large_system_hash("TCP established",
3187 sizeof(struct inet_ehash_bucket),
3188 thash_entries,
3189 17, /* one slot per 128 KB of memory */
3190 0,
3191 NULL,
3192 &tcp_hashinfo.ehash_mask,
3193 0,
3194 thash_entries ? 0 : 512 * 1024);
3195 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3196 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3197
3198 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3199 panic("TCP: failed to alloc ehash_locks");
3200 tcp_hashinfo.bhash =
3201 alloc_large_system_hash("TCP bind",
3202 sizeof(struct inet_bind_hashbucket),
3203 tcp_hashinfo.ehash_mask + 1,
3204 17, /* one slot per 128 KB of memory */
3205 0,
3206 &tcp_hashinfo.bhash_size,
3207 NULL,
3208 0,
3209 64 * 1024);
3210 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3211 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3212 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3213 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3214 }
3215
3216
3217 cnt = tcp_hashinfo.ehash_mask + 1;
3218
3219 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3220 sysctl_tcp_max_orphans = cnt / 2;
3221 sysctl_max_syn_backlog = max(128, cnt / 256);
3222
3223 tcp_init_mem();
3224 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3225 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3226 max_wshare = min(4UL*1024*1024, limit);
3227 max_rshare = min(6UL*1024*1024, limit);
3228
3229 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3230 sysctl_tcp_wmem[1] = 16*1024;
3231 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3232
3233 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3234 sysctl_tcp_rmem[1] = 87380;
3235 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3236
3237 pr_info("Hash tables configured (established %u bind %u)\n",
3238 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3239
3240 tcp_metrics_init();
3241
3242 tcp_register_congestion_control(&tcp_reno);
3243
3244 tcp_tasklet_init();
3245 }
This page took 0.102891 seconds and 5 git commands to generate.