Merge branch 'for-linus' into for-next
[deliverable/linux.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/inet_diag.h>
256 #include <linux/init.h>
257 #include <linux/fs.h>
258 #include <linux/skbuff.h>
259 #include <linux/scatterlist.h>
260 #include <linux/splice.h>
261 #include <linux/net.h>
262 #include <linux/socket.h>
263 #include <linux/random.h>
264 #include <linux/bootmem.h>
265 #include <linux/highmem.h>
266 #include <linux/swap.h>
267 #include <linux/cache.h>
268 #include <linux/err.h>
269 #include <linux/crypto.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283
284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285
286 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287
288 int sysctl_tcp_autocorking __read_mostly = 1;
289
290 struct percpu_counter tcp_orphan_count;
291 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292
293 long sysctl_tcp_mem[3] __read_mostly;
294 int sysctl_tcp_wmem[3] __read_mostly;
295 int sysctl_tcp_rmem[3] __read_mostly;
296
297 EXPORT_SYMBOL(sysctl_tcp_mem);
298 EXPORT_SYMBOL(sysctl_tcp_rmem);
299 EXPORT_SYMBOL(sysctl_tcp_wmem);
300
301 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
302 EXPORT_SYMBOL(tcp_memory_allocated);
303
304 /*
305 * Current number of TCP sockets.
306 */
307 struct percpu_counter tcp_sockets_allocated;
308 EXPORT_SYMBOL(tcp_sockets_allocated);
309
310 /*
311 * TCP splice context
312 */
313 struct tcp_splice_state {
314 struct pipe_inode_info *pipe;
315 size_t len;
316 unsigned int flags;
317 };
318
319 /*
320 * Pressure flag: try to collapse.
321 * Technical note: it is used by multiple contexts non atomically.
322 * All the __sk_mem_schedule() is of this nature: accounting
323 * is strict, actions are advisory and have some latency.
324 */
325 int tcp_memory_pressure __read_mostly;
326 EXPORT_SYMBOL(tcp_memory_pressure);
327
328 void tcp_enter_memory_pressure(struct sock *sk)
329 {
330 if (!tcp_memory_pressure) {
331 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
332 tcp_memory_pressure = 1;
333 }
334 }
335 EXPORT_SYMBOL(tcp_enter_memory_pressure);
336
337 /* Convert seconds to retransmits based on initial and max timeout */
338 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
339 {
340 u8 res = 0;
341
342 if (seconds > 0) {
343 int period = timeout;
344
345 res = 1;
346 while (seconds > period && res < 255) {
347 res++;
348 timeout <<= 1;
349 if (timeout > rto_max)
350 timeout = rto_max;
351 period += timeout;
352 }
353 }
354 return res;
355 }
356
357 /* Convert retransmits to seconds based on initial and max timeout */
358 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359 {
360 int period = 0;
361
362 if (retrans > 0) {
363 period = timeout;
364 while (--retrans) {
365 timeout <<= 1;
366 if (timeout > rto_max)
367 timeout = rto_max;
368 period += timeout;
369 }
370 }
371 return period;
372 }
373
374 /* Address-family independent initialization for a tcp_sock.
375 *
376 * NOTE: A lot of things set to zero explicitly by call to
377 * sk_alloc() so need not be done here.
378 */
379 void tcp_init_sock(struct sock *sk)
380 {
381 struct inet_connection_sock *icsk = inet_csk(sk);
382 struct tcp_sock *tp = tcp_sk(sk);
383
384 __skb_queue_head_init(&tp->out_of_order_queue);
385 tcp_init_xmit_timers(sk);
386 tcp_prequeue_init(tp);
387 INIT_LIST_HEAD(&tp->tsq_node);
388
389 icsk->icsk_rto = TCP_TIMEOUT_INIT;
390 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
391
392 /* So many TCP implementations out there (incorrectly) count the
393 * initial SYN frame in their delayed-ACK and congestion control
394 * algorithms that we must have the following bandaid to talk
395 * efficiently to them. -DaveM
396 */
397 tp->snd_cwnd = TCP_INIT_CWND;
398
399 /* See draft-stevens-tcpca-spec-01 for discussion of the
400 * initialization of these values.
401 */
402 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 tp->snd_cwnd_clamp = ~0;
404 tp->mss_cache = TCP_MSS_DEFAULT;
405 u64_stats_init(&tp->syncp);
406
407 tp->reordering = sysctl_tcp_reordering;
408 tcp_enable_early_retrans(tp);
409 tcp_assign_congestion_control(sk);
410
411 tp->tsoffset = 0;
412
413 sk->sk_state = TCP_CLOSE;
414
415 sk->sk_write_space = sk_stream_write_space;
416 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
417
418 icsk->icsk_sync_mss = tcp_sync_mss;
419
420 sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
422
423 local_bh_disable();
424 sock_update_memcg(sk);
425 sk_sockets_allocated_inc(sk);
426 local_bh_enable();
427 }
428 EXPORT_SYMBOL(tcp_init_sock);
429
430 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
431 {
432 if (sk->sk_tsflags) {
433 struct skb_shared_info *shinfo = skb_shinfo(skb);
434
435 sock_tx_timestamp(sk, &shinfo->tx_flags);
436 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
437 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
438 }
439 }
440
441 /*
442 * Wait for a TCP event.
443 *
444 * Note that we don't need to lock the socket, as the upper poll layers
445 * take care of normal races (between the test and the event) and we don't
446 * go look at any of the socket buffers directly.
447 */
448 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
449 {
450 unsigned int mask;
451 struct sock *sk = sock->sk;
452 const struct tcp_sock *tp = tcp_sk(sk);
453
454 sock_rps_record_flow(sk);
455
456 sock_poll_wait(file, sk_sleep(sk), wait);
457 if (sk->sk_state == TCP_LISTEN)
458 return inet_csk_listen_poll(sk);
459
460 /* Socket is not locked. We are protected from async events
461 * by poll logic and correct handling of state changes
462 * made by other threads is impossible in any case.
463 */
464
465 mask = 0;
466
467 /*
468 * POLLHUP is certainly not done right. But poll() doesn't
469 * have a notion of HUP in just one direction, and for a
470 * socket the read side is more interesting.
471 *
472 * Some poll() documentation says that POLLHUP is incompatible
473 * with the POLLOUT/POLLWR flags, so somebody should check this
474 * all. But careful, it tends to be safer to return too many
475 * bits than too few, and you can easily break real applications
476 * if you don't tell them that something has hung up!
477 *
478 * Check-me.
479 *
480 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
481 * our fs/select.c). It means that after we received EOF,
482 * poll always returns immediately, making impossible poll() on write()
483 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
484 * if and only if shutdown has been made in both directions.
485 * Actually, it is interesting to look how Solaris and DUX
486 * solve this dilemma. I would prefer, if POLLHUP were maskable,
487 * then we could set it on SND_SHUTDOWN. BTW examples given
488 * in Stevens' books assume exactly this behaviour, it explains
489 * why POLLHUP is incompatible with POLLOUT. --ANK
490 *
491 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
492 * blocking on fresh not-connected or disconnected socket. --ANK
493 */
494 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
495 mask |= POLLHUP;
496 if (sk->sk_shutdown & RCV_SHUTDOWN)
497 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
498
499 /* Connected or passive Fast Open socket? */
500 if (sk->sk_state != TCP_SYN_SENT &&
501 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk)) {
502 int target = sock_rcvlowat(sk, 0, INT_MAX);
503
504 if (tp->urg_seq == tp->copied_seq &&
505 !sock_flag(sk, SOCK_URGINLINE) &&
506 tp->urg_data)
507 target++;
508
509 /* Potential race condition. If read of tp below will
510 * escape above sk->sk_state, we can be illegally awaken
511 * in SYN_* states. */
512 if (tp->rcv_nxt - tp->copied_seq >= target)
513 mask |= POLLIN | POLLRDNORM;
514
515 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
516 if (sk_stream_is_writeable(sk)) {
517 mask |= POLLOUT | POLLWRNORM;
518 } else { /* send SIGIO later */
519 set_bit(SOCK_ASYNC_NOSPACE,
520 &sk->sk_socket->flags);
521 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
522
523 /* Race breaker. If space is freed after
524 * wspace test but before the flags are set,
525 * IO signal will be lost. Memory barrier
526 * pairs with the input side.
527 */
528 smp_mb__after_atomic();
529 if (sk_stream_is_writeable(sk))
530 mask |= POLLOUT | POLLWRNORM;
531 }
532 } else
533 mask |= POLLOUT | POLLWRNORM;
534
535 if (tp->urg_data & TCP_URG_VALID)
536 mask |= POLLPRI;
537 }
538 /* This barrier is coupled with smp_wmb() in tcp_reset() */
539 smp_rmb();
540 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
541 mask |= POLLERR;
542
543 return mask;
544 }
545 EXPORT_SYMBOL(tcp_poll);
546
547 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
548 {
549 struct tcp_sock *tp = tcp_sk(sk);
550 int answ;
551 bool slow;
552
553 switch (cmd) {
554 case SIOCINQ:
555 if (sk->sk_state == TCP_LISTEN)
556 return -EINVAL;
557
558 slow = lock_sock_fast(sk);
559 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
560 answ = 0;
561 else if (sock_flag(sk, SOCK_URGINLINE) ||
562 !tp->urg_data ||
563 before(tp->urg_seq, tp->copied_seq) ||
564 !before(tp->urg_seq, tp->rcv_nxt)) {
565
566 answ = tp->rcv_nxt - tp->copied_seq;
567
568 /* Subtract 1, if FIN was received */
569 if (answ && sock_flag(sk, SOCK_DONE))
570 answ--;
571 } else
572 answ = tp->urg_seq - tp->copied_seq;
573 unlock_sock_fast(sk, slow);
574 break;
575 case SIOCATMARK:
576 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
577 break;
578 case SIOCOUTQ:
579 if (sk->sk_state == TCP_LISTEN)
580 return -EINVAL;
581
582 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
583 answ = 0;
584 else
585 answ = tp->write_seq - tp->snd_una;
586 break;
587 case SIOCOUTQNSD:
588 if (sk->sk_state == TCP_LISTEN)
589 return -EINVAL;
590
591 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
592 answ = 0;
593 else
594 answ = tp->write_seq - tp->snd_nxt;
595 break;
596 default:
597 return -ENOIOCTLCMD;
598 }
599
600 return put_user(answ, (int __user *)arg);
601 }
602 EXPORT_SYMBOL(tcp_ioctl);
603
604 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
605 {
606 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
607 tp->pushed_seq = tp->write_seq;
608 }
609
610 static inline bool forced_push(const struct tcp_sock *tp)
611 {
612 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
613 }
614
615 static void skb_entail(struct sock *sk, struct sk_buff *skb)
616 {
617 struct tcp_sock *tp = tcp_sk(sk);
618 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
619
620 skb->csum = 0;
621 tcb->seq = tcb->end_seq = tp->write_seq;
622 tcb->tcp_flags = TCPHDR_ACK;
623 tcb->sacked = 0;
624 __skb_header_release(skb);
625 tcp_add_write_queue_tail(sk, skb);
626 sk->sk_wmem_queued += skb->truesize;
627 sk_mem_charge(sk, skb->truesize);
628 if (tp->nonagle & TCP_NAGLE_PUSH)
629 tp->nonagle &= ~TCP_NAGLE_PUSH;
630
631 tcp_slow_start_after_idle_check(sk);
632 }
633
634 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
635 {
636 if (flags & MSG_OOB)
637 tp->snd_up = tp->write_seq;
638 }
639
640 /* If a not yet filled skb is pushed, do not send it if
641 * we have data packets in Qdisc or NIC queues :
642 * Because TX completion will happen shortly, it gives a chance
643 * to coalesce future sendmsg() payload into this skb, without
644 * need for a timer, and with no latency trade off.
645 * As packets containing data payload have a bigger truesize
646 * than pure acks (dataless) packets, the last checks prevent
647 * autocorking if we only have an ACK in Qdisc/NIC queues,
648 * or if TX completion was delayed after we processed ACK packet.
649 */
650 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
651 int size_goal)
652 {
653 return skb->len < size_goal &&
654 sysctl_tcp_autocorking &&
655 skb != tcp_write_queue_head(sk) &&
656 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
657 }
658
659 static void tcp_push(struct sock *sk, int flags, int mss_now,
660 int nonagle, int size_goal)
661 {
662 struct tcp_sock *tp = tcp_sk(sk);
663 struct sk_buff *skb;
664
665 if (!tcp_send_head(sk))
666 return;
667
668 skb = tcp_write_queue_tail(sk);
669 if (!(flags & MSG_MORE) || forced_push(tp))
670 tcp_mark_push(tp, skb);
671
672 tcp_mark_urg(tp, flags);
673
674 if (tcp_should_autocork(sk, skb, size_goal)) {
675
676 /* avoid atomic op if TSQ_THROTTLED bit is already set */
677 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
678 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
679 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
680 }
681 /* It is possible TX completion already happened
682 * before we set TSQ_THROTTLED.
683 */
684 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
685 return;
686 }
687
688 if (flags & MSG_MORE)
689 nonagle = TCP_NAGLE_CORK;
690
691 __tcp_push_pending_frames(sk, mss_now, nonagle);
692 }
693
694 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
695 unsigned int offset, size_t len)
696 {
697 struct tcp_splice_state *tss = rd_desc->arg.data;
698 int ret;
699
700 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
701 min(rd_desc->count, len), tss->flags,
702 skb_socket_splice);
703 if (ret > 0)
704 rd_desc->count -= ret;
705 return ret;
706 }
707
708 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
709 {
710 /* Store TCP splice context information in read_descriptor_t. */
711 read_descriptor_t rd_desc = {
712 .arg.data = tss,
713 .count = tss->len,
714 };
715
716 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
717 }
718
719 /**
720 * tcp_splice_read - splice data from TCP socket to a pipe
721 * @sock: socket to splice from
722 * @ppos: position (not valid)
723 * @pipe: pipe to splice to
724 * @len: number of bytes to splice
725 * @flags: splice modifier flags
726 *
727 * Description:
728 * Will read pages from given socket and fill them into a pipe.
729 *
730 **/
731 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
732 struct pipe_inode_info *pipe, size_t len,
733 unsigned int flags)
734 {
735 struct sock *sk = sock->sk;
736 struct tcp_splice_state tss = {
737 .pipe = pipe,
738 .len = len,
739 .flags = flags,
740 };
741 long timeo;
742 ssize_t spliced;
743 int ret;
744
745 sock_rps_record_flow(sk);
746 /*
747 * We can't seek on a socket input
748 */
749 if (unlikely(*ppos))
750 return -ESPIPE;
751
752 ret = spliced = 0;
753
754 lock_sock(sk);
755
756 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
757 while (tss.len) {
758 ret = __tcp_splice_read(sk, &tss);
759 if (ret < 0)
760 break;
761 else if (!ret) {
762 if (spliced)
763 break;
764 if (sock_flag(sk, SOCK_DONE))
765 break;
766 if (sk->sk_err) {
767 ret = sock_error(sk);
768 break;
769 }
770 if (sk->sk_shutdown & RCV_SHUTDOWN)
771 break;
772 if (sk->sk_state == TCP_CLOSE) {
773 /*
774 * This occurs when user tries to read
775 * from never connected socket.
776 */
777 if (!sock_flag(sk, SOCK_DONE))
778 ret = -ENOTCONN;
779 break;
780 }
781 if (!timeo) {
782 ret = -EAGAIN;
783 break;
784 }
785 sk_wait_data(sk, &timeo, NULL);
786 if (signal_pending(current)) {
787 ret = sock_intr_errno(timeo);
788 break;
789 }
790 continue;
791 }
792 tss.len -= ret;
793 spliced += ret;
794
795 if (!timeo)
796 break;
797 release_sock(sk);
798 lock_sock(sk);
799
800 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
801 (sk->sk_shutdown & RCV_SHUTDOWN) ||
802 signal_pending(current))
803 break;
804 }
805
806 release_sock(sk);
807
808 if (spliced)
809 return spliced;
810
811 return ret;
812 }
813 EXPORT_SYMBOL(tcp_splice_read);
814
815 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
816 bool force_schedule)
817 {
818 struct sk_buff *skb;
819
820 /* The TCP header must be at least 32-bit aligned. */
821 size = ALIGN(size, 4);
822
823 if (unlikely(tcp_under_memory_pressure(sk)))
824 sk_mem_reclaim_partial(sk);
825
826 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
827 if (likely(skb)) {
828 bool mem_scheduled;
829
830 if (force_schedule) {
831 mem_scheduled = true;
832 sk_forced_mem_schedule(sk, skb->truesize);
833 } else {
834 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
835 }
836 if (likely(mem_scheduled)) {
837 skb_reserve(skb, sk->sk_prot->max_header);
838 /*
839 * Make sure that we have exactly size bytes
840 * available to the caller, no more, no less.
841 */
842 skb->reserved_tailroom = skb->end - skb->tail - size;
843 return skb;
844 }
845 __kfree_skb(skb);
846 } else {
847 sk->sk_prot->enter_memory_pressure(sk);
848 sk_stream_moderate_sndbuf(sk);
849 }
850 return NULL;
851 }
852
853 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
854 int large_allowed)
855 {
856 struct tcp_sock *tp = tcp_sk(sk);
857 u32 new_size_goal, size_goal;
858
859 if (!large_allowed || !sk_can_gso(sk))
860 return mss_now;
861
862 /* Note : tcp_tso_autosize() will eventually split this later */
863 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
864 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
865
866 /* We try hard to avoid divides here */
867 size_goal = tp->gso_segs * mss_now;
868 if (unlikely(new_size_goal < size_goal ||
869 new_size_goal >= size_goal + mss_now)) {
870 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
871 sk->sk_gso_max_segs);
872 size_goal = tp->gso_segs * mss_now;
873 }
874
875 return max(size_goal, mss_now);
876 }
877
878 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
879 {
880 int mss_now;
881
882 mss_now = tcp_current_mss(sk);
883 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
884
885 return mss_now;
886 }
887
888 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
889 size_t size, int flags)
890 {
891 struct tcp_sock *tp = tcp_sk(sk);
892 int mss_now, size_goal;
893 int err;
894 ssize_t copied;
895 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
896
897 /* Wait for a connection to finish. One exception is TCP Fast Open
898 * (passive side) where data is allowed to be sent before a connection
899 * is fully established.
900 */
901 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
902 !tcp_passive_fastopen(sk)) {
903 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
904 goto out_err;
905 }
906
907 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
908
909 mss_now = tcp_send_mss(sk, &size_goal, flags);
910 copied = 0;
911
912 err = -EPIPE;
913 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
914 goto out_err;
915
916 while (size > 0) {
917 struct sk_buff *skb = tcp_write_queue_tail(sk);
918 int copy, i;
919 bool can_coalesce;
920
921 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
922 new_segment:
923 if (!sk_stream_memory_free(sk))
924 goto wait_for_sndbuf;
925
926 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
927 skb_queue_empty(&sk->sk_write_queue));
928 if (!skb)
929 goto wait_for_memory;
930
931 skb_entail(sk, skb);
932 copy = size_goal;
933 }
934
935 if (copy > size)
936 copy = size;
937
938 i = skb_shinfo(skb)->nr_frags;
939 can_coalesce = skb_can_coalesce(skb, i, page, offset);
940 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
941 tcp_mark_push(tp, skb);
942 goto new_segment;
943 }
944 if (!sk_wmem_schedule(sk, copy))
945 goto wait_for_memory;
946
947 if (can_coalesce) {
948 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
949 } else {
950 get_page(page);
951 skb_fill_page_desc(skb, i, page, offset, copy);
952 }
953 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
954
955 skb->len += copy;
956 skb->data_len += copy;
957 skb->truesize += copy;
958 sk->sk_wmem_queued += copy;
959 sk_mem_charge(sk, copy);
960 skb->ip_summed = CHECKSUM_PARTIAL;
961 tp->write_seq += copy;
962 TCP_SKB_CB(skb)->end_seq += copy;
963 tcp_skb_pcount_set(skb, 0);
964
965 if (!copied)
966 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
967
968 copied += copy;
969 offset += copy;
970 if (!(size -= copy)) {
971 tcp_tx_timestamp(sk, skb);
972 goto out;
973 }
974
975 if (skb->len < size_goal || (flags & MSG_OOB))
976 continue;
977
978 if (forced_push(tp)) {
979 tcp_mark_push(tp, skb);
980 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
981 } else if (skb == tcp_send_head(sk))
982 tcp_push_one(sk, mss_now);
983 continue;
984
985 wait_for_sndbuf:
986 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
987 wait_for_memory:
988 tcp_push(sk, flags & ~MSG_MORE, mss_now,
989 TCP_NAGLE_PUSH, size_goal);
990
991 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
992 goto do_error;
993
994 mss_now = tcp_send_mss(sk, &size_goal, flags);
995 }
996
997 out:
998 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
999 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1000 return copied;
1001
1002 do_error:
1003 if (copied)
1004 goto out;
1005 out_err:
1006 /* make sure we wake any epoll edge trigger waiter */
1007 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1008 sk->sk_write_space(sk);
1009 return sk_stream_error(sk, flags, err);
1010 }
1011
1012 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1013 size_t size, int flags)
1014 {
1015 ssize_t res;
1016
1017 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1018 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
1019 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1020 flags);
1021
1022 lock_sock(sk);
1023 res = do_tcp_sendpages(sk, page, offset, size, flags);
1024 release_sock(sk);
1025 return res;
1026 }
1027 EXPORT_SYMBOL(tcp_sendpage);
1028
1029 static inline int select_size(const struct sock *sk, bool sg)
1030 {
1031 const struct tcp_sock *tp = tcp_sk(sk);
1032 int tmp = tp->mss_cache;
1033
1034 if (sg) {
1035 if (sk_can_gso(sk)) {
1036 /* Small frames wont use a full page:
1037 * Payload will immediately follow tcp header.
1038 */
1039 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1040 } else {
1041 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1042
1043 if (tmp >= pgbreak &&
1044 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1045 tmp = pgbreak;
1046 }
1047 }
1048
1049 return tmp;
1050 }
1051
1052 void tcp_free_fastopen_req(struct tcp_sock *tp)
1053 {
1054 if (tp->fastopen_req) {
1055 kfree(tp->fastopen_req);
1056 tp->fastopen_req = NULL;
1057 }
1058 }
1059
1060 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1061 int *copied, size_t size)
1062 {
1063 struct tcp_sock *tp = tcp_sk(sk);
1064 int err, flags;
1065
1066 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1067 return -EOPNOTSUPP;
1068 if (tp->fastopen_req)
1069 return -EALREADY; /* Another Fast Open is in progress */
1070
1071 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1072 sk->sk_allocation);
1073 if (unlikely(!tp->fastopen_req))
1074 return -ENOBUFS;
1075 tp->fastopen_req->data = msg;
1076 tp->fastopen_req->size = size;
1077
1078 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1079 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1080 msg->msg_namelen, flags);
1081 *copied = tp->fastopen_req->copied;
1082 tcp_free_fastopen_req(tp);
1083 return err;
1084 }
1085
1086 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1087 {
1088 struct tcp_sock *tp = tcp_sk(sk);
1089 struct sk_buff *skb;
1090 int flags, err, copied = 0;
1091 int mss_now = 0, size_goal, copied_syn = 0;
1092 bool sg;
1093 long timeo;
1094
1095 lock_sock(sk);
1096
1097 flags = msg->msg_flags;
1098 if (flags & MSG_FASTOPEN) {
1099 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1100 if (err == -EINPROGRESS && copied_syn > 0)
1101 goto out;
1102 else if (err)
1103 goto out_err;
1104 }
1105
1106 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1107
1108 /* Wait for a connection to finish. One exception is TCP Fast Open
1109 * (passive side) where data is allowed to be sent before a connection
1110 * is fully established.
1111 */
1112 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1113 !tcp_passive_fastopen(sk)) {
1114 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1115 goto do_error;
1116 }
1117
1118 if (unlikely(tp->repair)) {
1119 if (tp->repair_queue == TCP_RECV_QUEUE) {
1120 copied = tcp_send_rcvq(sk, msg, size);
1121 goto out_nopush;
1122 }
1123
1124 err = -EINVAL;
1125 if (tp->repair_queue == TCP_NO_QUEUE)
1126 goto out_err;
1127
1128 /* 'common' sending to sendq */
1129 }
1130
1131 /* This should be in poll */
1132 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1133
1134 mss_now = tcp_send_mss(sk, &size_goal, flags);
1135
1136 /* Ok commence sending. */
1137 copied = 0;
1138
1139 err = -EPIPE;
1140 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1141 goto out_err;
1142
1143 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1144
1145 while (msg_data_left(msg)) {
1146 int copy = 0;
1147 int max = size_goal;
1148
1149 skb = tcp_write_queue_tail(sk);
1150 if (tcp_send_head(sk)) {
1151 if (skb->ip_summed == CHECKSUM_NONE)
1152 max = mss_now;
1153 copy = max - skb->len;
1154 }
1155
1156 if (copy <= 0) {
1157 new_segment:
1158 /* Allocate new segment. If the interface is SG,
1159 * allocate skb fitting to single page.
1160 */
1161 if (!sk_stream_memory_free(sk))
1162 goto wait_for_sndbuf;
1163
1164 skb = sk_stream_alloc_skb(sk,
1165 select_size(sk, sg),
1166 sk->sk_allocation,
1167 skb_queue_empty(&sk->sk_write_queue));
1168 if (!skb)
1169 goto wait_for_memory;
1170
1171 /*
1172 * Check whether we can use HW checksum.
1173 */
1174 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1175 skb->ip_summed = CHECKSUM_PARTIAL;
1176
1177 skb_entail(sk, skb);
1178 copy = size_goal;
1179 max = size_goal;
1180
1181 /* All packets are restored as if they have
1182 * already been sent. skb_mstamp isn't set to
1183 * avoid wrong rtt estimation.
1184 */
1185 if (tp->repair)
1186 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1187 }
1188
1189 /* Try to append data to the end of skb. */
1190 if (copy > msg_data_left(msg))
1191 copy = msg_data_left(msg);
1192
1193 /* Where to copy to? */
1194 if (skb_availroom(skb) > 0) {
1195 /* We have some space in skb head. Superb! */
1196 copy = min_t(int, copy, skb_availroom(skb));
1197 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1198 if (err)
1199 goto do_fault;
1200 } else {
1201 bool merge = true;
1202 int i = skb_shinfo(skb)->nr_frags;
1203 struct page_frag *pfrag = sk_page_frag(sk);
1204
1205 if (!sk_page_frag_refill(sk, pfrag))
1206 goto wait_for_memory;
1207
1208 if (!skb_can_coalesce(skb, i, pfrag->page,
1209 pfrag->offset)) {
1210 if (i == MAX_SKB_FRAGS || !sg) {
1211 tcp_mark_push(tp, skb);
1212 goto new_segment;
1213 }
1214 merge = false;
1215 }
1216
1217 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1218
1219 if (!sk_wmem_schedule(sk, copy))
1220 goto wait_for_memory;
1221
1222 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1223 pfrag->page,
1224 pfrag->offset,
1225 copy);
1226 if (err)
1227 goto do_error;
1228
1229 /* Update the skb. */
1230 if (merge) {
1231 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1232 } else {
1233 skb_fill_page_desc(skb, i, pfrag->page,
1234 pfrag->offset, copy);
1235 get_page(pfrag->page);
1236 }
1237 pfrag->offset += copy;
1238 }
1239
1240 if (!copied)
1241 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1242
1243 tp->write_seq += copy;
1244 TCP_SKB_CB(skb)->end_seq += copy;
1245 tcp_skb_pcount_set(skb, 0);
1246
1247 copied += copy;
1248 if (!msg_data_left(msg)) {
1249 tcp_tx_timestamp(sk, skb);
1250 goto out;
1251 }
1252
1253 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1254 continue;
1255
1256 if (forced_push(tp)) {
1257 tcp_mark_push(tp, skb);
1258 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1259 } else if (skb == tcp_send_head(sk))
1260 tcp_push_one(sk, mss_now);
1261 continue;
1262
1263 wait_for_sndbuf:
1264 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1265 wait_for_memory:
1266 if (copied)
1267 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1268 TCP_NAGLE_PUSH, size_goal);
1269
1270 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1271 goto do_error;
1272
1273 mss_now = tcp_send_mss(sk, &size_goal, flags);
1274 }
1275
1276 out:
1277 if (copied)
1278 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1279 out_nopush:
1280 release_sock(sk);
1281 return copied + copied_syn;
1282
1283 do_fault:
1284 if (!skb->len) {
1285 tcp_unlink_write_queue(skb, sk);
1286 /* It is the one place in all of TCP, except connection
1287 * reset, where we can be unlinking the send_head.
1288 */
1289 tcp_check_send_head(sk, skb);
1290 sk_wmem_free_skb(sk, skb);
1291 }
1292
1293 do_error:
1294 if (copied + copied_syn)
1295 goto out;
1296 out_err:
1297 err = sk_stream_error(sk, flags, err);
1298 /* make sure we wake any epoll edge trigger waiter */
1299 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1300 sk->sk_write_space(sk);
1301 release_sock(sk);
1302 return err;
1303 }
1304 EXPORT_SYMBOL(tcp_sendmsg);
1305
1306 /*
1307 * Handle reading urgent data. BSD has very simple semantics for
1308 * this, no blocking and very strange errors 8)
1309 */
1310
1311 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1312 {
1313 struct tcp_sock *tp = tcp_sk(sk);
1314
1315 /* No URG data to read. */
1316 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1317 tp->urg_data == TCP_URG_READ)
1318 return -EINVAL; /* Yes this is right ! */
1319
1320 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1321 return -ENOTCONN;
1322
1323 if (tp->urg_data & TCP_URG_VALID) {
1324 int err = 0;
1325 char c = tp->urg_data;
1326
1327 if (!(flags & MSG_PEEK))
1328 tp->urg_data = TCP_URG_READ;
1329
1330 /* Read urgent data. */
1331 msg->msg_flags |= MSG_OOB;
1332
1333 if (len > 0) {
1334 if (!(flags & MSG_TRUNC))
1335 err = memcpy_to_msg(msg, &c, 1);
1336 len = 1;
1337 } else
1338 msg->msg_flags |= MSG_TRUNC;
1339
1340 return err ? -EFAULT : len;
1341 }
1342
1343 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1344 return 0;
1345
1346 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1347 * the available implementations agree in this case:
1348 * this call should never block, independent of the
1349 * blocking state of the socket.
1350 * Mike <pall@rz.uni-karlsruhe.de>
1351 */
1352 return -EAGAIN;
1353 }
1354
1355 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1356 {
1357 struct sk_buff *skb;
1358 int copied = 0, err = 0;
1359
1360 /* XXX -- need to support SO_PEEK_OFF */
1361
1362 skb_queue_walk(&sk->sk_write_queue, skb) {
1363 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1364 if (err)
1365 break;
1366
1367 copied += skb->len;
1368 }
1369
1370 return err ?: copied;
1371 }
1372
1373 /* Clean up the receive buffer for full frames taken by the user,
1374 * then send an ACK if necessary. COPIED is the number of bytes
1375 * tcp_recvmsg has given to the user so far, it speeds up the
1376 * calculation of whether or not we must ACK for the sake of
1377 * a window update.
1378 */
1379 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1380 {
1381 struct tcp_sock *tp = tcp_sk(sk);
1382 bool time_to_ack = false;
1383
1384 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1385
1386 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1387 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1388 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1389
1390 if (inet_csk_ack_scheduled(sk)) {
1391 const struct inet_connection_sock *icsk = inet_csk(sk);
1392 /* Delayed ACKs frequently hit locked sockets during bulk
1393 * receive. */
1394 if (icsk->icsk_ack.blocked ||
1395 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1396 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1397 /*
1398 * If this read emptied read buffer, we send ACK, if
1399 * connection is not bidirectional, user drained
1400 * receive buffer and there was a small segment
1401 * in queue.
1402 */
1403 (copied > 0 &&
1404 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1405 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1406 !icsk->icsk_ack.pingpong)) &&
1407 !atomic_read(&sk->sk_rmem_alloc)))
1408 time_to_ack = true;
1409 }
1410
1411 /* We send an ACK if we can now advertise a non-zero window
1412 * which has been raised "significantly".
1413 *
1414 * Even if window raised up to infinity, do not send window open ACK
1415 * in states, where we will not receive more. It is useless.
1416 */
1417 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1418 __u32 rcv_window_now = tcp_receive_window(tp);
1419
1420 /* Optimize, __tcp_select_window() is not cheap. */
1421 if (2*rcv_window_now <= tp->window_clamp) {
1422 __u32 new_window = __tcp_select_window(sk);
1423
1424 /* Send ACK now, if this read freed lots of space
1425 * in our buffer. Certainly, new_window is new window.
1426 * We can advertise it now, if it is not less than current one.
1427 * "Lots" means "at least twice" here.
1428 */
1429 if (new_window && new_window >= 2 * rcv_window_now)
1430 time_to_ack = true;
1431 }
1432 }
1433 if (time_to_ack)
1434 tcp_send_ack(sk);
1435 }
1436
1437 static void tcp_prequeue_process(struct sock *sk)
1438 {
1439 struct sk_buff *skb;
1440 struct tcp_sock *tp = tcp_sk(sk);
1441
1442 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1443
1444 /* RX process wants to run with disabled BHs, though it is not
1445 * necessary */
1446 local_bh_disable();
1447 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1448 sk_backlog_rcv(sk, skb);
1449 local_bh_enable();
1450
1451 /* Clear memory counter. */
1452 tp->ucopy.memory = 0;
1453 }
1454
1455 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1456 {
1457 struct sk_buff *skb;
1458 u32 offset;
1459
1460 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1461 offset = seq - TCP_SKB_CB(skb)->seq;
1462 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1463 offset--;
1464 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1465 *off = offset;
1466 return skb;
1467 }
1468 /* This looks weird, but this can happen if TCP collapsing
1469 * splitted a fat GRO packet, while we released socket lock
1470 * in skb_splice_bits()
1471 */
1472 sk_eat_skb(sk, skb);
1473 }
1474 return NULL;
1475 }
1476
1477 /*
1478 * This routine provides an alternative to tcp_recvmsg() for routines
1479 * that would like to handle copying from skbuffs directly in 'sendfile'
1480 * fashion.
1481 * Note:
1482 * - It is assumed that the socket was locked by the caller.
1483 * - The routine does not block.
1484 * - At present, there is no support for reading OOB data
1485 * or for 'peeking' the socket using this routine
1486 * (although both would be easy to implement).
1487 */
1488 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1489 sk_read_actor_t recv_actor)
1490 {
1491 struct sk_buff *skb;
1492 struct tcp_sock *tp = tcp_sk(sk);
1493 u32 seq = tp->copied_seq;
1494 u32 offset;
1495 int copied = 0;
1496
1497 if (sk->sk_state == TCP_LISTEN)
1498 return -ENOTCONN;
1499 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1500 if (offset < skb->len) {
1501 int used;
1502 size_t len;
1503
1504 len = skb->len - offset;
1505 /* Stop reading if we hit a patch of urgent data */
1506 if (tp->urg_data) {
1507 u32 urg_offset = tp->urg_seq - seq;
1508 if (urg_offset < len)
1509 len = urg_offset;
1510 if (!len)
1511 break;
1512 }
1513 used = recv_actor(desc, skb, offset, len);
1514 if (used <= 0) {
1515 if (!copied)
1516 copied = used;
1517 break;
1518 } else if (used <= len) {
1519 seq += used;
1520 copied += used;
1521 offset += used;
1522 }
1523 /* If recv_actor drops the lock (e.g. TCP splice
1524 * receive) the skb pointer might be invalid when
1525 * getting here: tcp_collapse might have deleted it
1526 * while aggregating skbs from the socket queue.
1527 */
1528 skb = tcp_recv_skb(sk, seq - 1, &offset);
1529 if (!skb)
1530 break;
1531 /* TCP coalescing might have appended data to the skb.
1532 * Try to splice more frags
1533 */
1534 if (offset + 1 != skb->len)
1535 continue;
1536 }
1537 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1538 sk_eat_skb(sk, skb);
1539 ++seq;
1540 break;
1541 }
1542 sk_eat_skb(sk, skb);
1543 if (!desc->count)
1544 break;
1545 tp->copied_seq = seq;
1546 }
1547 tp->copied_seq = seq;
1548
1549 tcp_rcv_space_adjust(sk);
1550
1551 /* Clean up data we have read: This will do ACK frames. */
1552 if (copied > 0) {
1553 tcp_recv_skb(sk, seq, &offset);
1554 tcp_cleanup_rbuf(sk, copied);
1555 }
1556 return copied;
1557 }
1558 EXPORT_SYMBOL(tcp_read_sock);
1559
1560 /*
1561 * This routine copies from a sock struct into the user buffer.
1562 *
1563 * Technical note: in 2.3 we work on _locked_ socket, so that
1564 * tricks with *seq access order and skb->users are not required.
1565 * Probably, code can be easily improved even more.
1566 */
1567
1568 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1569 int flags, int *addr_len)
1570 {
1571 struct tcp_sock *tp = tcp_sk(sk);
1572 int copied = 0;
1573 u32 peek_seq;
1574 u32 *seq;
1575 unsigned long used;
1576 int err;
1577 int target; /* Read at least this many bytes */
1578 long timeo;
1579 struct task_struct *user_recv = NULL;
1580 struct sk_buff *skb, *last;
1581 u32 urg_hole = 0;
1582
1583 if (unlikely(flags & MSG_ERRQUEUE))
1584 return inet_recv_error(sk, msg, len, addr_len);
1585
1586 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1587 (sk->sk_state == TCP_ESTABLISHED))
1588 sk_busy_loop(sk, nonblock);
1589
1590 lock_sock(sk);
1591
1592 err = -ENOTCONN;
1593 if (sk->sk_state == TCP_LISTEN)
1594 goto out;
1595
1596 timeo = sock_rcvtimeo(sk, nonblock);
1597
1598 /* Urgent data needs to be handled specially. */
1599 if (flags & MSG_OOB)
1600 goto recv_urg;
1601
1602 if (unlikely(tp->repair)) {
1603 err = -EPERM;
1604 if (!(flags & MSG_PEEK))
1605 goto out;
1606
1607 if (tp->repair_queue == TCP_SEND_QUEUE)
1608 goto recv_sndq;
1609
1610 err = -EINVAL;
1611 if (tp->repair_queue == TCP_NO_QUEUE)
1612 goto out;
1613
1614 /* 'common' recv queue MSG_PEEK-ing */
1615 }
1616
1617 seq = &tp->copied_seq;
1618 if (flags & MSG_PEEK) {
1619 peek_seq = tp->copied_seq;
1620 seq = &peek_seq;
1621 }
1622
1623 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1624
1625 do {
1626 u32 offset;
1627
1628 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1629 if (tp->urg_data && tp->urg_seq == *seq) {
1630 if (copied)
1631 break;
1632 if (signal_pending(current)) {
1633 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1634 break;
1635 }
1636 }
1637
1638 /* Next get a buffer. */
1639
1640 last = skb_peek_tail(&sk->sk_receive_queue);
1641 skb_queue_walk(&sk->sk_receive_queue, skb) {
1642 last = skb;
1643 /* Now that we have two receive queues this
1644 * shouldn't happen.
1645 */
1646 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1647 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1648 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1649 flags))
1650 break;
1651
1652 offset = *seq - TCP_SKB_CB(skb)->seq;
1653 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1654 offset--;
1655 if (offset < skb->len)
1656 goto found_ok_skb;
1657 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1658 goto found_fin_ok;
1659 WARN(!(flags & MSG_PEEK),
1660 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1661 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1662 }
1663
1664 /* Well, if we have backlog, try to process it now yet. */
1665
1666 if (copied >= target && !sk->sk_backlog.tail)
1667 break;
1668
1669 if (copied) {
1670 if (sk->sk_err ||
1671 sk->sk_state == TCP_CLOSE ||
1672 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1673 !timeo ||
1674 signal_pending(current))
1675 break;
1676 } else {
1677 if (sock_flag(sk, SOCK_DONE))
1678 break;
1679
1680 if (sk->sk_err) {
1681 copied = sock_error(sk);
1682 break;
1683 }
1684
1685 if (sk->sk_shutdown & RCV_SHUTDOWN)
1686 break;
1687
1688 if (sk->sk_state == TCP_CLOSE) {
1689 if (!sock_flag(sk, SOCK_DONE)) {
1690 /* This occurs when user tries to read
1691 * from never connected socket.
1692 */
1693 copied = -ENOTCONN;
1694 break;
1695 }
1696 break;
1697 }
1698
1699 if (!timeo) {
1700 copied = -EAGAIN;
1701 break;
1702 }
1703
1704 if (signal_pending(current)) {
1705 copied = sock_intr_errno(timeo);
1706 break;
1707 }
1708 }
1709
1710 tcp_cleanup_rbuf(sk, copied);
1711
1712 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1713 /* Install new reader */
1714 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1715 user_recv = current;
1716 tp->ucopy.task = user_recv;
1717 tp->ucopy.msg = msg;
1718 }
1719
1720 tp->ucopy.len = len;
1721
1722 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1723 !(flags & (MSG_PEEK | MSG_TRUNC)));
1724
1725 /* Ugly... If prequeue is not empty, we have to
1726 * process it before releasing socket, otherwise
1727 * order will be broken at second iteration.
1728 * More elegant solution is required!!!
1729 *
1730 * Look: we have the following (pseudo)queues:
1731 *
1732 * 1. packets in flight
1733 * 2. backlog
1734 * 3. prequeue
1735 * 4. receive_queue
1736 *
1737 * Each queue can be processed only if the next ones
1738 * are empty. At this point we have empty receive_queue.
1739 * But prequeue _can_ be not empty after 2nd iteration,
1740 * when we jumped to start of loop because backlog
1741 * processing added something to receive_queue.
1742 * We cannot release_sock(), because backlog contains
1743 * packets arrived _after_ prequeued ones.
1744 *
1745 * Shortly, algorithm is clear --- to process all
1746 * the queues in order. We could make it more directly,
1747 * requeueing packets from backlog to prequeue, if
1748 * is not empty. It is more elegant, but eats cycles,
1749 * unfortunately.
1750 */
1751 if (!skb_queue_empty(&tp->ucopy.prequeue))
1752 goto do_prequeue;
1753
1754 /* __ Set realtime policy in scheduler __ */
1755 }
1756
1757 if (copied >= target) {
1758 /* Do not sleep, just process backlog. */
1759 release_sock(sk);
1760 lock_sock(sk);
1761 } else {
1762 sk_wait_data(sk, &timeo, last);
1763 }
1764
1765 if (user_recv) {
1766 int chunk;
1767
1768 /* __ Restore normal policy in scheduler __ */
1769
1770 if ((chunk = len - tp->ucopy.len) != 0) {
1771 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1772 len -= chunk;
1773 copied += chunk;
1774 }
1775
1776 if (tp->rcv_nxt == tp->copied_seq &&
1777 !skb_queue_empty(&tp->ucopy.prequeue)) {
1778 do_prequeue:
1779 tcp_prequeue_process(sk);
1780
1781 if ((chunk = len - tp->ucopy.len) != 0) {
1782 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1783 len -= chunk;
1784 copied += chunk;
1785 }
1786 }
1787 }
1788 if ((flags & MSG_PEEK) &&
1789 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1790 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1791 current->comm,
1792 task_pid_nr(current));
1793 peek_seq = tp->copied_seq;
1794 }
1795 continue;
1796
1797 found_ok_skb:
1798 /* Ok so how much can we use? */
1799 used = skb->len - offset;
1800 if (len < used)
1801 used = len;
1802
1803 /* Do we have urgent data here? */
1804 if (tp->urg_data) {
1805 u32 urg_offset = tp->urg_seq - *seq;
1806 if (urg_offset < used) {
1807 if (!urg_offset) {
1808 if (!sock_flag(sk, SOCK_URGINLINE)) {
1809 ++*seq;
1810 urg_hole++;
1811 offset++;
1812 used--;
1813 if (!used)
1814 goto skip_copy;
1815 }
1816 } else
1817 used = urg_offset;
1818 }
1819 }
1820
1821 if (!(flags & MSG_TRUNC)) {
1822 err = skb_copy_datagram_msg(skb, offset, msg, used);
1823 if (err) {
1824 /* Exception. Bailout! */
1825 if (!copied)
1826 copied = -EFAULT;
1827 break;
1828 }
1829 }
1830
1831 *seq += used;
1832 copied += used;
1833 len -= used;
1834
1835 tcp_rcv_space_adjust(sk);
1836
1837 skip_copy:
1838 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1839 tp->urg_data = 0;
1840 tcp_fast_path_check(sk);
1841 }
1842 if (used + offset < skb->len)
1843 continue;
1844
1845 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1846 goto found_fin_ok;
1847 if (!(flags & MSG_PEEK))
1848 sk_eat_skb(sk, skb);
1849 continue;
1850
1851 found_fin_ok:
1852 /* Process the FIN. */
1853 ++*seq;
1854 if (!(flags & MSG_PEEK))
1855 sk_eat_skb(sk, skb);
1856 break;
1857 } while (len > 0);
1858
1859 if (user_recv) {
1860 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1861 int chunk;
1862
1863 tp->ucopy.len = copied > 0 ? len : 0;
1864
1865 tcp_prequeue_process(sk);
1866
1867 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1868 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1869 len -= chunk;
1870 copied += chunk;
1871 }
1872 }
1873
1874 tp->ucopy.task = NULL;
1875 tp->ucopy.len = 0;
1876 }
1877
1878 /* According to UNIX98, msg_name/msg_namelen are ignored
1879 * on connected socket. I was just happy when found this 8) --ANK
1880 */
1881
1882 /* Clean up data we have read: This will do ACK frames. */
1883 tcp_cleanup_rbuf(sk, copied);
1884
1885 release_sock(sk);
1886 return copied;
1887
1888 out:
1889 release_sock(sk);
1890 return err;
1891
1892 recv_urg:
1893 err = tcp_recv_urg(sk, msg, len, flags);
1894 goto out;
1895
1896 recv_sndq:
1897 err = tcp_peek_sndq(sk, msg, len);
1898 goto out;
1899 }
1900 EXPORT_SYMBOL(tcp_recvmsg);
1901
1902 void tcp_set_state(struct sock *sk, int state)
1903 {
1904 int oldstate = sk->sk_state;
1905
1906 switch (state) {
1907 case TCP_ESTABLISHED:
1908 if (oldstate != TCP_ESTABLISHED)
1909 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1910 break;
1911
1912 case TCP_CLOSE:
1913 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1914 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1915
1916 sk->sk_prot->unhash(sk);
1917 if (inet_csk(sk)->icsk_bind_hash &&
1918 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1919 inet_put_port(sk);
1920 /* fall through */
1921 default:
1922 if (oldstate == TCP_ESTABLISHED)
1923 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1924 }
1925
1926 /* Change state AFTER socket is unhashed to avoid closed
1927 * socket sitting in hash tables.
1928 */
1929 sk->sk_state = state;
1930
1931 #ifdef STATE_TRACE
1932 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1933 #endif
1934 }
1935 EXPORT_SYMBOL_GPL(tcp_set_state);
1936
1937 /*
1938 * State processing on a close. This implements the state shift for
1939 * sending our FIN frame. Note that we only send a FIN for some
1940 * states. A shutdown() may have already sent the FIN, or we may be
1941 * closed.
1942 */
1943
1944 static const unsigned char new_state[16] = {
1945 /* current state: new state: action: */
1946 [0 /* (Invalid) */] = TCP_CLOSE,
1947 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1948 [TCP_SYN_SENT] = TCP_CLOSE,
1949 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1950 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
1951 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
1952 [TCP_TIME_WAIT] = TCP_CLOSE,
1953 [TCP_CLOSE] = TCP_CLOSE,
1954 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
1955 [TCP_LAST_ACK] = TCP_LAST_ACK,
1956 [TCP_LISTEN] = TCP_CLOSE,
1957 [TCP_CLOSING] = TCP_CLOSING,
1958 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
1959 };
1960
1961 static int tcp_close_state(struct sock *sk)
1962 {
1963 int next = (int)new_state[sk->sk_state];
1964 int ns = next & TCP_STATE_MASK;
1965
1966 tcp_set_state(sk, ns);
1967
1968 return next & TCP_ACTION_FIN;
1969 }
1970
1971 /*
1972 * Shutdown the sending side of a connection. Much like close except
1973 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1974 */
1975
1976 void tcp_shutdown(struct sock *sk, int how)
1977 {
1978 /* We need to grab some memory, and put together a FIN,
1979 * and then put it into the queue to be sent.
1980 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1981 */
1982 if (!(how & SEND_SHUTDOWN))
1983 return;
1984
1985 /* If we've already sent a FIN, or it's a closed state, skip this. */
1986 if ((1 << sk->sk_state) &
1987 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1988 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1989 /* Clear out any half completed packets. FIN if needed. */
1990 if (tcp_close_state(sk))
1991 tcp_send_fin(sk);
1992 }
1993 }
1994 EXPORT_SYMBOL(tcp_shutdown);
1995
1996 bool tcp_check_oom(struct sock *sk, int shift)
1997 {
1998 bool too_many_orphans, out_of_socket_memory;
1999
2000 too_many_orphans = tcp_too_many_orphans(sk, shift);
2001 out_of_socket_memory = tcp_out_of_memory(sk);
2002
2003 if (too_many_orphans)
2004 net_info_ratelimited("too many orphaned sockets\n");
2005 if (out_of_socket_memory)
2006 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2007 return too_many_orphans || out_of_socket_memory;
2008 }
2009
2010 void tcp_close(struct sock *sk, long timeout)
2011 {
2012 struct sk_buff *skb;
2013 int data_was_unread = 0;
2014 int state;
2015
2016 lock_sock(sk);
2017 sk->sk_shutdown = SHUTDOWN_MASK;
2018
2019 if (sk->sk_state == TCP_LISTEN) {
2020 tcp_set_state(sk, TCP_CLOSE);
2021
2022 /* Special case. */
2023 inet_csk_listen_stop(sk);
2024
2025 goto adjudge_to_death;
2026 }
2027
2028 /* We need to flush the recv. buffs. We do this only on the
2029 * descriptor close, not protocol-sourced closes, because the
2030 * reader process may not have drained the data yet!
2031 */
2032 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2033 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2034
2035 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2036 len--;
2037 data_was_unread += len;
2038 __kfree_skb(skb);
2039 }
2040
2041 sk_mem_reclaim(sk);
2042
2043 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2044 if (sk->sk_state == TCP_CLOSE)
2045 goto adjudge_to_death;
2046
2047 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2048 * data was lost. To witness the awful effects of the old behavior of
2049 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2050 * GET in an FTP client, suspend the process, wait for the client to
2051 * advertise a zero window, then kill -9 the FTP client, wheee...
2052 * Note: timeout is always zero in such a case.
2053 */
2054 if (unlikely(tcp_sk(sk)->repair)) {
2055 sk->sk_prot->disconnect(sk, 0);
2056 } else if (data_was_unread) {
2057 /* Unread data was tossed, zap the connection. */
2058 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2059 tcp_set_state(sk, TCP_CLOSE);
2060 tcp_send_active_reset(sk, sk->sk_allocation);
2061 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2062 /* Check zero linger _after_ checking for unread data. */
2063 sk->sk_prot->disconnect(sk, 0);
2064 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2065 } else if (tcp_close_state(sk)) {
2066 /* We FIN if the application ate all the data before
2067 * zapping the connection.
2068 */
2069
2070 /* RED-PEN. Formally speaking, we have broken TCP state
2071 * machine. State transitions:
2072 *
2073 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2074 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2075 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2076 *
2077 * are legal only when FIN has been sent (i.e. in window),
2078 * rather than queued out of window. Purists blame.
2079 *
2080 * F.e. "RFC state" is ESTABLISHED,
2081 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2082 *
2083 * The visible declinations are that sometimes
2084 * we enter time-wait state, when it is not required really
2085 * (harmless), do not send active resets, when they are
2086 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2087 * they look as CLOSING or LAST_ACK for Linux)
2088 * Probably, I missed some more holelets.
2089 * --ANK
2090 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2091 * in a single packet! (May consider it later but will
2092 * probably need API support or TCP_CORK SYN-ACK until
2093 * data is written and socket is closed.)
2094 */
2095 tcp_send_fin(sk);
2096 }
2097
2098 sk_stream_wait_close(sk, timeout);
2099
2100 adjudge_to_death:
2101 state = sk->sk_state;
2102 sock_hold(sk);
2103 sock_orphan(sk);
2104
2105 /* It is the last release_sock in its life. It will remove backlog. */
2106 release_sock(sk);
2107
2108
2109 /* Now socket is owned by kernel and we acquire BH lock
2110 to finish close. No need to check for user refs.
2111 */
2112 local_bh_disable();
2113 bh_lock_sock(sk);
2114 WARN_ON(sock_owned_by_user(sk));
2115
2116 percpu_counter_inc(sk->sk_prot->orphan_count);
2117
2118 /* Have we already been destroyed by a softirq or backlog? */
2119 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2120 goto out;
2121
2122 /* This is a (useful) BSD violating of the RFC. There is a
2123 * problem with TCP as specified in that the other end could
2124 * keep a socket open forever with no application left this end.
2125 * We use a 1 minute timeout (about the same as BSD) then kill
2126 * our end. If they send after that then tough - BUT: long enough
2127 * that we won't make the old 4*rto = almost no time - whoops
2128 * reset mistake.
2129 *
2130 * Nope, it was not mistake. It is really desired behaviour
2131 * f.e. on http servers, when such sockets are useless, but
2132 * consume significant resources. Let's do it with special
2133 * linger2 option. --ANK
2134 */
2135
2136 if (sk->sk_state == TCP_FIN_WAIT2) {
2137 struct tcp_sock *tp = tcp_sk(sk);
2138 if (tp->linger2 < 0) {
2139 tcp_set_state(sk, TCP_CLOSE);
2140 tcp_send_active_reset(sk, GFP_ATOMIC);
2141 NET_INC_STATS_BH(sock_net(sk),
2142 LINUX_MIB_TCPABORTONLINGER);
2143 } else {
2144 const int tmo = tcp_fin_time(sk);
2145
2146 if (tmo > TCP_TIMEWAIT_LEN) {
2147 inet_csk_reset_keepalive_timer(sk,
2148 tmo - TCP_TIMEWAIT_LEN);
2149 } else {
2150 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2151 goto out;
2152 }
2153 }
2154 }
2155 if (sk->sk_state != TCP_CLOSE) {
2156 sk_mem_reclaim(sk);
2157 if (tcp_check_oom(sk, 0)) {
2158 tcp_set_state(sk, TCP_CLOSE);
2159 tcp_send_active_reset(sk, GFP_ATOMIC);
2160 NET_INC_STATS_BH(sock_net(sk),
2161 LINUX_MIB_TCPABORTONMEMORY);
2162 }
2163 }
2164
2165 if (sk->sk_state == TCP_CLOSE) {
2166 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2167 /* We could get here with a non-NULL req if the socket is
2168 * aborted (e.g., closed with unread data) before 3WHS
2169 * finishes.
2170 */
2171 if (req)
2172 reqsk_fastopen_remove(sk, req, false);
2173 inet_csk_destroy_sock(sk);
2174 }
2175 /* Otherwise, socket is reprieved until protocol close. */
2176
2177 out:
2178 bh_unlock_sock(sk);
2179 local_bh_enable();
2180 sock_put(sk);
2181 }
2182 EXPORT_SYMBOL(tcp_close);
2183
2184 /* These states need RST on ABORT according to RFC793 */
2185
2186 static inline bool tcp_need_reset(int state)
2187 {
2188 return (1 << state) &
2189 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2190 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2191 }
2192
2193 int tcp_disconnect(struct sock *sk, int flags)
2194 {
2195 struct inet_sock *inet = inet_sk(sk);
2196 struct inet_connection_sock *icsk = inet_csk(sk);
2197 struct tcp_sock *tp = tcp_sk(sk);
2198 int err = 0;
2199 int old_state = sk->sk_state;
2200
2201 if (old_state != TCP_CLOSE)
2202 tcp_set_state(sk, TCP_CLOSE);
2203
2204 /* ABORT function of RFC793 */
2205 if (old_state == TCP_LISTEN) {
2206 inet_csk_listen_stop(sk);
2207 } else if (unlikely(tp->repair)) {
2208 sk->sk_err = ECONNABORTED;
2209 } else if (tcp_need_reset(old_state) ||
2210 (tp->snd_nxt != tp->write_seq &&
2211 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2212 /* The last check adjusts for discrepancy of Linux wrt. RFC
2213 * states
2214 */
2215 tcp_send_active_reset(sk, gfp_any());
2216 sk->sk_err = ECONNRESET;
2217 } else if (old_state == TCP_SYN_SENT)
2218 sk->sk_err = ECONNRESET;
2219
2220 tcp_clear_xmit_timers(sk);
2221 __skb_queue_purge(&sk->sk_receive_queue);
2222 tcp_write_queue_purge(sk);
2223 __skb_queue_purge(&tp->out_of_order_queue);
2224
2225 inet->inet_dport = 0;
2226
2227 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2228 inet_reset_saddr(sk);
2229
2230 sk->sk_shutdown = 0;
2231 sock_reset_flag(sk, SOCK_DONE);
2232 tp->srtt_us = 0;
2233 if ((tp->write_seq += tp->max_window + 2) == 0)
2234 tp->write_seq = 1;
2235 icsk->icsk_backoff = 0;
2236 tp->snd_cwnd = 2;
2237 icsk->icsk_probes_out = 0;
2238 tp->packets_out = 0;
2239 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2240 tp->snd_cwnd_cnt = 0;
2241 tp->window_clamp = 0;
2242 tcp_set_ca_state(sk, TCP_CA_Open);
2243 tcp_clear_retrans(tp);
2244 inet_csk_delack_init(sk);
2245 tcp_init_send_head(sk);
2246 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2247 __sk_dst_reset(sk);
2248
2249 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2250
2251 sk->sk_error_report(sk);
2252 return err;
2253 }
2254 EXPORT_SYMBOL(tcp_disconnect);
2255
2256 void tcp_sock_destruct(struct sock *sk)
2257 {
2258 inet_sock_destruct(sk);
2259
2260 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2261 }
2262
2263 static inline bool tcp_can_repair_sock(const struct sock *sk)
2264 {
2265 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2266 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2267 }
2268
2269 static int tcp_repair_options_est(struct tcp_sock *tp,
2270 struct tcp_repair_opt __user *optbuf, unsigned int len)
2271 {
2272 struct tcp_repair_opt opt;
2273
2274 while (len >= sizeof(opt)) {
2275 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2276 return -EFAULT;
2277
2278 optbuf++;
2279 len -= sizeof(opt);
2280
2281 switch (opt.opt_code) {
2282 case TCPOPT_MSS:
2283 tp->rx_opt.mss_clamp = opt.opt_val;
2284 break;
2285 case TCPOPT_WINDOW:
2286 {
2287 u16 snd_wscale = opt.opt_val & 0xFFFF;
2288 u16 rcv_wscale = opt.opt_val >> 16;
2289
2290 if (snd_wscale > 14 || rcv_wscale > 14)
2291 return -EFBIG;
2292
2293 tp->rx_opt.snd_wscale = snd_wscale;
2294 tp->rx_opt.rcv_wscale = rcv_wscale;
2295 tp->rx_opt.wscale_ok = 1;
2296 }
2297 break;
2298 case TCPOPT_SACK_PERM:
2299 if (opt.opt_val != 0)
2300 return -EINVAL;
2301
2302 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2303 if (sysctl_tcp_fack)
2304 tcp_enable_fack(tp);
2305 break;
2306 case TCPOPT_TIMESTAMP:
2307 if (opt.opt_val != 0)
2308 return -EINVAL;
2309
2310 tp->rx_opt.tstamp_ok = 1;
2311 break;
2312 }
2313 }
2314
2315 return 0;
2316 }
2317
2318 /*
2319 * Socket option code for TCP.
2320 */
2321 static int do_tcp_setsockopt(struct sock *sk, int level,
2322 int optname, char __user *optval, unsigned int optlen)
2323 {
2324 struct tcp_sock *tp = tcp_sk(sk);
2325 struct inet_connection_sock *icsk = inet_csk(sk);
2326 int val;
2327 int err = 0;
2328
2329 /* These are data/string values, all the others are ints */
2330 switch (optname) {
2331 case TCP_CONGESTION: {
2332 char name[TCP_CA_NAME_MAX];
2333
2334 if (optlen < 1)
2335 return -EINVAL;
2336
2337 val = strncpy_from_user(name, optval,
2338 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2339 if (val < 0)
2340 return -EFAULT;
2341 name[val] = 0;
2342
2343 lock_sock(sk);
2344 err = tcp_set_congestion_control(sk, name);
2345 release_sock(sk);
2346 return err;
2347 }
2348 default:
2349 /* fallthru */
2350 break;
2351 }
2352
2353 if (optlen < sizeof(int))
2354 return -EINVAL;
2355
2356 if (get_user(val, (int __user *)optval))
2357 return -EFAULT;
2358
2359 lock_sock(sk);
2360
2361 switch (optname) {
2362 case TCP_MAXSEG:
2363 /* Values greater than interface MTU won't take effect. However
2364 * at the point when this call is done we typically don't yet
2365 * know which interface is going to be used */
2366 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2367 err = -EINVAL;
2368 break;
2369 }
2370 tp->rx_opt.user_mss = val;
2371 break;
2372
2373 case TCP_NODELAY:
2374 if (val) {
2375 /* TCP_NODELAY is weaker than TCP_CORK, so that
2376 * this option on corked socket is remembered, but
2377 * it is not activated until cork is cleared.
2378 *
2379 * However, when TCP_NODELAY is set we make
2380 * an explicit push, which overrides even TCP_CORK
2381 * for currently queued segments.
2382 */
2383 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2384 tcp_push_pending_frames(sk);
2385 } else {
2386 tp->nonagle &= ~TCP_NAGLE_OFF;
2387 }
2388 break;
2389
2390 case TCP_THIN_LINEAR_TIMEOUTS:
2391 if (val < 0 || val > 1)
2392 err = -EINVAL;
2393 else
2394 tp->thin_lto = val;
2395 break;
2396
2397 case TCP_THIN_DUPACK:
2398 if (val < 0 || val > 1)
2399 err = -EINVAL;
2400 else {
2401 tp->thin_dupack = val;
2402 if (tp->thin_dupack)
2403 tcp_disable_early_retrans(tp);
2404 }
2405 break;
2406
2407 case TCP_REPAIR:
2408 if (!tcp_can_repair_sock(sk))
2409 err = -EPERM;
2410 else if (val == 1) {
2411 tp->repair = 1;
2412 sk->sk_reuse = SK_FORCE_REUSE;
2413 tp->repair_queue = TCP_NO_QUEUE;
2414 } else if (val == 0) {
2415 tp->repair = 0;
2416 sk->sk_reuse = SK_NO_REUSE;
2417 tcp_send_window_probe(sk);
2418 } else
2419 err = -EINVAL;
2420
2421 break;
2422
2423 case TCP_REPAIR_QUEUE:
2424 if (!tp->repair)
2425 err = -EPERM;
2426 else if (val < TCP_QUEUES_NR)
2427 tp->repair_queue = val;
2428 else
2429 err = -EINVAL;
2430 break;
2431
2432 case TCP_QUEUE_SEQ:
2433 if (sk->sk_state != TCP_CLOSE)
2434 err = -EPERM;
2435 else if (tp->repair_queue == TCP_SEND_QUEUE)
2436 tp->write_seq = val;
2437 else if (tp->repair_queue == TCP_RECV_QUEUE)
2438 tp->rcv_nxt = val;
2439 else
2440 err = -EINVAL;
2441 break;
2442
2443 case TCP_REPAIR_OPTIONS:
2444 if (!tp->repair)
2445 err = -EINVAL;
2446 else if (sk->sk_state == TCP_ESTABLISHED)
2447 err = tcp_repair_options_est(tp,
2448 (struct tcp_repair_opt __user *)optval,
2449 optlen);
2450 else
2451 err = -EPERM;
2452 break;
2453
2454 case TCP_CORK:
2455 /* When set indicates to always queue non-full frames.
2456 * Later the user clears this option and we transmit
2457 * any pending partial frames in the queue. This is
2458 * meant to be used alongside sendfile() to get properly
2459 * filled frames when the user (for example) must write
2460 * out headers with a write() call first and then use
2461 * sendfile to send out the data parts.
2462 *
2463 * TCP_CORK can be set together with TCP_NODELAY and it is
2464 * stronger than TCP_NODELAY.
2465 */
2466 if (val) {
2467 tp->nonagle |= TCP_NAGLE_CORK;
2468 } else {
2469 tp->nonagle &= ~TCP_NAGLE_CORK;
2470 if (tp->nonagle&TCP_NAGLE_OFF)
2471 tp->nonagle |= TCP_NAGLE_PUSH;
2472 tcp_push_pending_frames(sk);
2473 }
2474 break;
2475
2476 case TCP_KEEPIDLE:
2477 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2478 err = -EINVAL;
2479 else {
2480 tp->keepalive_time = val * HZ;
2481 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2482 !((1 << sk->sk_state) &
2483 (TCPF_CLOSE | TCPF_LISTEN))) {
2484 u32 elapsed = keepalive_time_elapsed(tp);
2485 if (tp->keepalive_time > elapsed)
2486 elapsed = tp->keepalive_time - elapsed;
2487 else
2488 elapsed = 0;
2489 inet_csk_reset_keepalive_timer(sk, elapsed);
2490 }
2491 }
2492 break;
2493 case TCP_KEEPINTVL:
2494 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2495 err = -EINVAL;
2496 else
2497 tp->keepalive_intvl = val * HZ;
2498 break;
2499 case TCP_KEEPCNT:
2500 if (val < 1 || val > MAX_TCP_KEEPCNT)
2501 err = -EINVAL;
2502 else
2503 tp->keepalive_probes = val;
2504 break;
2505 case TCP_SYNCNT:
2506 if (val < 1 || val > MAX_TCP_SYNCNT)
2507 err = -EINVAL;
2508 else
2509 icsk->icsk_syn_retries = val;
2510 break;
2511
2512 case TCP_SAVE_SYN:
2513 if (val < 0 || val > 1)
2514 err = -EINVAL;
2515 else
2516 tp->save_syn = val;
2517 break;
2518
2519 case TCP_LINGER2:
2520 if (val < 0)
2521 tp->linger2 = -1;
2522 else if (val > sysctl_tcp_fin_timeout / HZ)
2523 tp->linger2 = 0;
2524 else
2525 tp->linger2 = val * HZ;
2526 break;
2527
2528 case TCP_DEFER_ACCEPT:
2529 /* Translate value in seconds to number of retransmits */
2530 icsk->icsk_accept_queue.rskq_defer_accept =
2531 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2532 TCP_RTO_MAX / HZ);
2533 break;
2534
2535 case TCP_WINDOW_CLAMP:
2536 if (!val) {
2537 if (sk->sk_state != TCP_CLOSE) {
2538 err = -EINVAL;
2539 break;
2540 }
2541 tp->window_clamp = 0;
2542 } else
2543 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2544 SOCK_MIN_RCVBUF / 2 : val;
2545 break;
2546
2547 case TCP_QUICKACK:
2548 if (!val) {
2549 icsk->icsk_ack.pingpong = 1;
2550 } else {
2551 icsk->icsk_ack.pingpong = 0;
2552 if ((1 << sk->sk_state) &
2553 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2554 inet_csk_ack_scheduled(sk)) {
2555 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2556 tcp_cleanup_rbuf(sk, 1);
2557 if (!(val & 1))
2558 icsk->icsk_ack.pingpong = 1;
2559 }
2560 }
2561 break;
2562
2563 #ifdef CONFIG_TCP_MD5SIG
2564 case TCP_MD5SIG:
2565 /* Read the IP->Key mappings from userspace */
2566 err = tp->af_specific->md5_parse(sk, optval, optlen);
2567 break;
2568 #endif
2569 case TCP_USER_TIMEOUT:
2570 /* Cap the max time in ms TCP will retry or probe the window
2571 * before giving up and aborting (ETIMEDOUT) a connection.
2572 */
2573 if (val < 0)
2574 err = -EINVAL;
2575 else
2576 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2577 break;
2578
2579 case TCP_FASTOPEN:
2580 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2581 TCPF_LISTEN))) {
2582 tcp_fastopen_init_key_once(true);
2583
2584 err = fastopen_init_queue(sk, val);
2585 } else {
2586 err = -EINVAL;
2587 }
2588 break;
2589 case TCP_TIMESTAMP:
2590 if (!tp->repair)
2591 err = -EPERM;
2592 else
2593 tp->tsoffset = val - tcp_time_stamp;
2594 break;
2595 case TCP_NOTSENT_LOWAT:
2596 tp->notsent_lowat = val;
2597 sk->sk_write_space(sk);
2598 break;
2599 default:
2600 err = -ENOPROTOOPT;
2601 break;
2602 }
2603
2604 release_sock(sk);
2605 return err;
2606 }
2607
2608 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2609 unsigned int optlen)
2610 {
2611 const struct inet_connection_sock *icsk = inet_csk(sk);
2612
2613 if (level != SOL_TCP)
2614 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2615 optval, optlen);
2616 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2617 }
2618 EXPORT_SYMBOL(tcp_setsockopt);
2619
2620 #ifdef CONFIG_COMPAT
2621 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2622 char __user *optval, unsigned int optlen)
2623 {
2624 if (level != SOL_TCP)
2625 return inet_csk_compat_setsockopt(sk, level, optname,
2626 optval, optlen);
2627 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2628 }
2629 EXPORT_SYMBOL(compat_tcp_setsockopt);
2630 #endif
2631
2632 /* Return information about state of tcp endpoint in API format. */
2633 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2634 {
2635 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2636 const struct inet_connection_sock *icsk = inet_csk(sk);
2637 u32 now = tcp_time_stamp;
2638 unsigned int start;
2639 u32 rate;
2640
2641 memset(info, 0, sizeof(*info));
2642 if (sk->sk_type != SOCK_STREAM)
2643 return;
2644
2645 info->tcpi_state = sk->sk_state;
2646 info->tcpi_ca_state = icsk->icsk_ca_state;
2647 info->tcpi_retransmits = icsk->icsk_retransmits;
2648 info->tcpi_probes = icsk->icsk_probes_out;
2649 info->tcpi_backoff = icsk->icsk_backoff;
2650
2651 if (tp->rx_opt.tstamp_ok)
2652 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2653 if (tcp_is_sack(tp))
2654 info->tcpi_options |= TCPI_OPT_SACK;
2655 if (tp->rx_opt.wscale_ok) {
2656 info->tcpi_options |= TCPI_OPT_WSCALE;
2657 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2658 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2659 }
2660
2661 if (tp->ecn_flags & TCP_ECN_OK)
2662 info->tcpi_options |= TCPI_OPT_ECN;
2663 if (tp->ecn_flags & TCP_ECN_SEEN)
2664 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2665 if (tp->syn_data_acked)
2666 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2667
2668 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2669 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2670 info->tcpi_snd_mss = tp->mss_cache;
2671 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2672
2673 if (sk->sk_state == TCP_LISTEN) {
2674 info->tcpi_unacked = sk->sk_ack_backlog;
2675 info->tcpi_sacked = sk->sk_max_ack_backlog;
2676 } else {
2677 info->tcpi_unacked = tp->packets_out;
2678 info->tcpi_sacked = tp->sacked_out;
2679 }
2680 info->tcpi_lost = tp->lost_out;
2681 info->tcpi_retrans = tp->retrans_out;
2682 info->tcpi_fackets = tp->fackets_out;
2683
2684 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2685 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2686 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2687
2688 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2689 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2690 info->tcpi_rtt = tp->srtt_us >> 3;
2691 info->tcpi_rttvar = tp->mdev_us >> 2;
2692 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2693 info->tcpi_snd_cwnd = tp->snd_cwnd;
2694 info->tcpi_advmss = tp->advmss;
2695 info->tcpi_reordering = tp->reordering;
2696
2697 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2698 info->tcpi_rcv_space = tp->rcvq_space.space;
2699
2700 info->tcpi_total_retrans = tp->total_retrans;
2701
2702 rate = READ_ONCE(sk->sk_pacing_rate);
2703 info->tcpi_pacing_rate = rate != ~0U ? rate : ~0ULL;
2704
2705 rate = READ_ONCE(sk->sk_max_pacing_rate);
2706 info->tcpi_max_pacing_rate = rate != ~0U ? rate : ~0ULL;
2707
2708 do {
2709 start = u64_stats_fetch_begin_irq(&tp->syncp);
2710 info->tcpi_bytes_acked = tp->bytes_acked;
2711 info->tcpi_bytes_received = tp->bytes_received;
2712 } while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2713 info->tcpi_segs_out = tp->segs_out;
2714 info->tcpi_segs_in = tp->segs_in;
2715 }
2716 EXPORT_SYMBOL_GPL(tcp_get_info);
2717
2718 static int do_tcp_getsockopt(struct sock *sk, int level,
2719 int optname, char __user *optval, int __user *optlen)
2720 {
2721 struct inet_connection_sock *icsk = inet_csk(sk);
2722 struct tcp_sock *tp = tcp_sk(sk);
2723 int val, len;
2724
2725 if (get_user(len, optlen))
2726 return -EFAULT;
2727
2728 len = min_t(unsigned int, len, sizeof(int));
2729
2730 if (len < 0)
2731 return -EINVAL;
2732
2733 switch (optname) {
2734 case TCP_MAXSEG:
2735 val = tp->mss_cache;
2736 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2737 val = tp->rx_opt.user_mss;
2738 if (tp->repair)
2739 val = tp->rx_opt.mss_clamp;
2740 break;
2741 case TCP_NODELAY:
2742 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2743 break;
2744 case TCP_CORK:
2745 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2746 break;
2747 case TCP_KEEPIDLE:
2748 val = keepalive_time_when(tp) / HZ;
2749 break;
2750 case TCP_KEEPINTVL:
2751 val = keepalive_intvl_when(tp) / HZ;
2752 break;
2753 case TCP_KEEPCNT:
2754 val = keepalive_probes(tp);
2755 break;
2756 case TCP_SYNCNT:
2757 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2758 break;
2759 case TCP_LINGER2:
2760 val = tp->linger2;
2761 if (val >= 0)
2762 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2763 break;
2764 case TCP_DEFER_ACCEPT:
2765 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2766 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2767 break;
2768 case TCP_WINDOW_CLAMP:
2769 val = tp->window_clamp;
2770 break;
2771 case TCP_INFO: {
2772 struct tcp_info info;
2773
2774 if (get_user(len, optlen))
2775 return -EFAULT;
2776
2777 tcp_get_info(sk, &info);
2778
2779 len = min_t(unsigned int, len, sizeof(info));
2780 if (put_user(len, optlen))
2781 return -EFAULT;
2782 if (copy_to_user(optval, &info, len))
2783 return -EFAULT;
2784 return 0;
2785 }
2786 case TCP_CC_INFO: {
2787 const struct tcp_congestion_ops *ca_ops;
2788 union tcp_cc_info info;
2789 size_t sz = 0;
2790 int attr;
2791
2792 if (get_user(len, optlen))
2793 return -EFAULT;
2794
2795 ca_ops = icsk->icsk_ca_ops;
2796 if (ca_ops && ca_ops->get_info)
2797 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2798
2799 len = min_t(unsigned int, len, sz);
2800 if (put_user(len, optlen))
2801 return -EFAULT;
2802 if (copy_to_user(optval, &info, len))
2803 return -EFAULT;
2804 return 0;
2805 }
2806 case TCP_QUICKACK:
2807 val = !icsk->icsk_ack.pingpong;
2808 break;
2809
2810 case TCP_CONGESTION:
2811 if (get_user(len, optlen))
2812 return -EFAULT;
2813 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2814 if (put_user(len, optlen))
2815 return -EFAULT;
2816 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2817 return -EFAULT;
2818 return 0;
2819
2820 case TCP_THIN_LINEAR_TIMEOUTS:
2821 val = tp->thin_lto;
2822 break;
2823 case TCP_THIN_DUPACK:
2824 val = tp->thin_dupack;
2825 break;
2826
2827 case TCP_REPAIR:
2828 val = tp->repair;
2829 break;
2830
2831 case TCP_REPAIR_QUEUE:
2832 if (tp->repair)
2833 val = tp->repair_queue;
2834 else
2835 return -EINVAL;
2836 break;
2837
2838 case TCP_QUEUE_SEQ:
2839 if (tp->repair_queue == TCP_SEND_QUEUE)
2840 val = tp->write_seq;
2841 else if (tp->repair_queue == TCP_RECV_QUEUE)
2842 val = tp->rcv_nxt;
2843 else
2844 return -EINVAL;
2845 break;
2846
2847 case TCP_USER_TIMEOUT:
2848 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2849 break;
2850
2851 case TCP_FASTOPEN:
2852 if (icsk->icsk_accept_queue.fastopenq)
2853 val = icsk->icsk_accept_queue.fastopenq->max_qlen;
2854 else
2855 val = 0;
2856 break;
2857
2858 case TCP_TIMESTAMP:
2859 val = tcp_time_stamp + tp->tsoffset;
2860 break;
2861 case TCP_NOTSENT_LOWAT:
2862 val = tp->notsent_lowat;
2863 break;
2864 case TCP_SAVE_SYN:
2865 val = tp->save_syn;
2866 break;
2867 case TCP_SAVED_SYN: {
2868 if (get_user(len, optlen))
2869 return -EFAULT;
2870
2871 lock_sock(sk);
2872 if (tp->saved_syn) {
2873 if (len < tp->saved_syn[0]) {
2874 if (put_user(tp->saved_syn[0], optlen)) {
2875 release_sock(sk);
2876 return -EFAULT;
2877 }
2878 release_sock(sk);
2879 return -EINVAL;
2880 }
2881 len = tp->saved_syn[0];
2882 if (put_user(len, optlen)) {
2883 release_sock(sk);
2884 return -EFAULT;
2885 }
2886 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
2887 release_sock(sk);
2888 return -EFAULT;
2889 }
2890 tcp_saved_syn_free(tp);
2891 release_sock(sk);
2892 } else {
2893 release_sock(sk);
2894 len = 0;
2895 if (put_user(len, optlen))
2896 return -EFAULT;
2897 }
2898 return 0;
2899 }
2900 default:
2901 return -ENOPROTOOPT;
2902 }
2903
2904 if (put_user(len, optlen))
2905 return -EFAULT;
2906 if (copy_to_user(optval, &val, len))
2907 return -EFAULT;
2908 return 0;
2909 }
2910
2911 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2912 int __user *optlen)
2913 {
2914 struct inet_connection_sock *icsk = inet_csk(sk);
2915
2916 if (level != SOL_TCP)
2917 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2918 optval, optlen);
2919 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2920 }
2921 EXPORT_SYMBOL(tcp_getsockopt);
2922
2923 #ifdef CONFIG_COMPAT
2924 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2925 char __user *optval, int __user *optlen)
2926 {
2927 if (level != SOL_TCP)
2928 return inet_csk_compat_getsockopt(sk, level, optname,
2929 optval, optlen);
2930 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2931 }
2932 EXPORT_SYMBOL(compat_tcp_getsockopt);
2933 #endif
2934
2935 #ifdef CONFIG_TCP_MD5SIG
2936 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2937 static DEFINE_MUTEX(tcp_md5sig_mutex);
2938 static bool tcp_md5sig_pool_populated = false;
2939
2940 static void __tcp_alloc_md5sig_pool(void)
2941 {
2942 int cpu;
2943
2944 for_each_possible_cpu(cpu) {
2945 if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2946 struct crypto_hash *hash;
2947
2948 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2949 if (IS_ERR_OR_NULL(hash))
2950 return;
2951 per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2952 }
2953 }
2954 /* before setting tcp_md5sig_pool_populated, we must commit all writes
2955 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2956 */
2957 smp_wmb();
2958 tcp_md5sig_pool_populated = true;
2959 }
2960
2961 bool tcp_alloc_md5sig_pool(void)
2962 {
2963 if (unlikely(!tcp_md5sig_pool_populated)) {
2964 mutex_lock(&tcp_md5sig_mutex);
2965
2966 if (!tcp_md5sig_pool_populated)
2967 __tcp_alloc_md5sig_pool();
2968
2969 mutex_unlock(&tcp_md5sig_mutex);
2970 }
2971 return tcp_md5sig_pool_populated;
2972 }
2973 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2974
2975
2976 /**
2977 * tcp_get_md5sig_pool - get md5sig_pool for this user
2978 *
2979 * We use percpu structure, so if we succeed, we exit with preemption
2980 * and BH disabled, to make sure another thread or softirq handling
2981 * wont try to get same context.
2982 */
2983 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2984 {
2985 local_bh_disable();
2986
2987 if (tcp_md5sig_pool_populated) {
2988 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
2989 smp_rmb();
2990 return this_cpu_ptr(&tcp_md5sig_pool);
2991 }
2992 local_bh_enable();
2993 return NULL;
2994 }
2995 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2996
2997 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2998 const struct tcphdr *th)
2999 {
3000 struct scatterlist sg;
3001 struct tcphdr hdr;
3002 int err;
3003
3004 /* We are not allowed to change tcphdr, make a local copy */
3005 memcpy(&hdr, th, sizeof(hdr));
3006 hdr.check = 0;
3007
3008 /* options aren't included in the hash */
3009 sg_init_one(&sg, &hdr, sizeof(hdr));
3010 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3011 return err;
3012 }
3013 EXPORT_SYMBOL(tcp_md5_hash_header);
3014
3015 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3016 const struct sk_buff *skb, unsigned int header_len)
3017 {
3018 struct scatterlist sg;
3019 const struct tcphdr *tp = tcp_hdr(skb);
3020 struct hash_desc *desc = &hp->md5_desc;
3021 unsigned int i;
3022 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3023 skb_headlen(skb) - header_len : 0;
3024 const struct skb_shared_info *shi = skb_shinfo(skb);
3025 struct sk_buff *frag_iter;
3026
3027 sg_init_table(&sg, 1);
3028
3029 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3030 if (crypto_hash_update(desc, &sg, head_data_len))
3031 return 1;
3032
3033 for (i = 0; i < shi->nr_frags; ++i) {
3034 const struct skb_frag_struct *f = &shi->frags[i];
3035 unsigned int offset = f->page_offset;
3036 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3037
3038 sg_set_page(&sg, page, skb_frag_size(f),
3039 offset_in_page(offset));
3040 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3041 return 1;
3042 }
3043
3044 skb_walk_frags(skb, frag_iter)
3045 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3046 return 1;
3047
3048 return 0;
3049 }
3050 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3051
3052 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3053 {
3054 struct scatterlist sg;
3055
3056 sg_init_one(&sg, key->key, key->keylen);
3057 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3058 }
3059 EXPORT_SYMBOL(tcp_md5_hash_key);
3060
3061 #endif
3062
3063 void tcp_done(struct sock *sk)
3064 {
3065 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3066
3067 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3068 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3069
3070 tcp_set_state(sk, TCP_CLOSE);
3071 tcp_clear_xmit_timers(sk);
3072 if (req)
3073 reqsk_fastopen_remove(sk, req, false);
3074
3075 sk->sk_shutdown = SHUTDOWN_MASK;
3076
3077 if (!sock_flag(sk, SOCK_DEAD))
3078 sk->sk_state_change(sk);
3079 else
3080 inet_csk_destroy_sock(sk);
3081 }
3082 EXPORT_SYMBOL_GPL(tcp_done);
3083
3084 extern struct tcp_congestion_ops tcp_reno;
3085
3086 static __initdata unsigned long thash_entries;
3087 static int __init set_thash_entries(char *str)
3088 {
3089 ssize_t ret;
3090
3091 if (!str)
3092 return 0;
3093
3094 ret = kstrtoul(str, 0, &thash_entries);
3095 if (ret)
3096 return 0;
3097
3098 return 1;
3099 }
3100 __setup("thash_entries=", set_thash_entries);
3101
3102 static void __init tcp_init_mem(void)
3103 {
3104 unsigned long limit = nr_free_buffer_pages() / 16;
3105
3106 limit = max(limit, 128UL);
3107 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3108 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3109 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3110 }
3111
3112 void __init tcp_init(void)
3113 {
3114 unsigned long limit;
3115 int max_rshare, max_wshare, cnt;
3116 unsigned int i;
3117
3118 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3119
3120 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3121 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3122 tcp_hashinfo.bind_bucket_cachep =
3123 kmem_cache_create("tcp_bind_bucket",
3124 sizeof(struct inet_bind_bucket), 0,
3125 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3126
3127 /* Size and allocate the main established and bind bucket
3128 * hash tables.
3129 *
3130 * The methodology is similar to that of the buffer cache.
3131 */
3132 tcp_hashinfo.ehash =
3133 alloc_large_system_hash("TCP established",
3134 sizeof(struct inet_ehash_bucket),
3135 thash_entries,
3136 17, /* one slot per 128 KB of memory */
3137 0,
3138 NULL,
3139 &tcp_hashinfo.ehash_mask,
3140 0,
3141 thash_entries ? 0 : 512 * 1024);
3142 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3143 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3144
3145 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3146 panic("TCP: failed to alloc ehash_locks");
3147 tcp_hashinfo.bhash =
3148 alloc_large_system_hash("TCP bind",
3149 sizeof(struct inet_bind_hashbucket),
3150 tcp_hashinfo.ehash_mask + 1,
3151 17, /* one slot per 128 KB of memory */
3152 0,
3153 &tcp_hashinfo.bhash_size,
3154 NULL,
3155 0,
3156 64 * 1024);
3157 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3158 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3159 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3160 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3161 }
3162
3163
3164 cnt = tcp_hashinfo.ehash_mask + 1;
3165
3166 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3167 sysctl_tcp_max_orphans = cnt / 2;
3168 sysctl_max_syn_backlog = max(128, cnt / 256);
3169
3170 tcp_init_mem();
3171 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3172 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3173 max_wshare = min(4UL*1024*1024, limit);
3174 max_rshare = min(6UL*1024*1024, limit);
3175
3176 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3177 sysctl_tcp_wmem[1] = 16*1024;
3178 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3179
3180 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3181 sysctl_tcp_rmem[1] = 87380;
3182 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3183
3184 pr_info("Hash tables configured (established %u bind %u)\n",
3185 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3186
3187 tcp_metrics_init();
3188 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3189 tcp_tasklet_init();
3190 }
This page took 0.122396 seconds and 5 git commands to generate.