Merge branch 'xgene-channel-number'
[deliverable/linux.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <asm/unaligned.h>
283 #include <net/busy_poll.h>
284
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
286
287 int sysctl_tcp_autocorking __read_mostly = 1;
288
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
291
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
295
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
299
300 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
302
303 /*
304 * Current number of TCP sockets.
305 */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308
309 /*
310 * TCP splice context
311 */
312 struct tcp_splice_state {
313 struct pipe_inode_info *pipe;
314 size_t len;
315 unsigned int flags;
316 };
317
318 /*
319 * Pressure flag: try to collapse.
320 * Technical note: it is used by multiple contexts non atomically.
321 * All the __sk_mem_schedule() is of this nature: accounting
322 * is strict, actions are advisory and have some latency.
323 */
324 int tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL(tcp_memory_pressure);
326
327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 if (!tcp_memory_pressure) {
330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 tcp_memory_pressure = 1;
332 }
333 }
334 EXPORT_SYMBOL(tcp_enter_memory_pressure);
335
336 /* Convert seconds to retransmits based on initial and max timeout */
337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
338 {
339 u8 res = 0;
340
341 if (seconds > 0) {
342 int period = timeout;
343
344 res = 1;
345 while (seconds > period && res < 255) {
346 res++;
347 timeout <<= 1;
348 if (timeout > rto_max)
349 timeout = rto_max;
350 period += timeout;
351 }
352 }
353 return res;
354 }
355
356 /* Convert retransmits to seconds based on initial and max timeout */
357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
358 {
359 int period = 0;
360
361 if (retrans > 0) {
362 period = timeout;
363 while (--retrans) {
364 timeout <<= 1;
365 if (timeout > rto_max)
366 timeout = rto_max;
367 period += timeout;
368 }
369 }
370 return period;
371 }
372
373 /* Address-family independent initialization for a tcp_sock.
374 *
375 * NOTE: A lot of things set to zero explicitly by call to
376 * sk_alloc() so need not be done here.
377 */
378 void tcp_init_sock(struct sock *sk)
379 {
380 struct inet_connection_sock *icsk = inet_csk(sk);
381 struct tcp_sock *tp = tcp_sk(sk);
382
383 __skb_queue_head_init(&tp->out_of_order_queue);
384 tcp_init_xmit_timers(sk);
385 tcp_prequeue_init(tp);
386 INIT_LIST_HEAD(&tp->tsq_node);
387
388 icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
390 tp->rtt_min[0].rtt = ~0U;
391
392 /* So many TCP implementations out there (incorrectly) count the
393 * initial SYN frame in their delayed-ACK and congestion control
394 * algorithms that we must have the following bandaid to talk
395 * efficiently to them. -DaveM
396 */
397 tp->snd_cwnd = TCP_INIT_CWND;
398
399 /* See draft-stevens-tcpca-spec-01 for discussion of the
400 * initialization of these values.
401 */
402 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 tp->snd_cwnd_clamp = ~0;
404 tp->mss_cache = TCP_MSS_DEFAULT;
405 u64_stats_init(&tp->syncp);
406
407 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
408 tcp_enable_early_retrans(tp);
409 tcp_assign_congestion_control(sk);
410
411 tp->tsoffset = 0;
412
413 sk->sk_state = TCP_CLOSE;
414
415 sk->sk_write_space = sk_stream_write_space;
416 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
417
418 icsk->icsk_sync_mss = tcp_sync_mss;
419
420 sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
422
423 local_bh_disable();
424 if (mem_cgroup_sockets_enabled)
425 sock_update_memcg(sk);
426 sk_sockets_allocated_inc(sk);
427 local_bh_enable();
428 }
429 EXPORT_SYMBOL(tcp_init_sock);
430
431 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
432 {
433 if (tsflags) {
434 struct skb_shared_info *shinfo = skb_shinfo(skb);
435 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
436
437 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
438 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
439 tcb->txstamp_ack = 1;
440 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
441 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
442 }
443 }
444
445 /*
446 * Wait for a TCP event.
447 *
448 * Note that we don't need to lock the socket, as the upper poll layers
449 * take care of normal races (between the test and the event) and we don't
450 * go look at any of the socket buffers directly.
451 */
452 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
453 {
454 unsigned int mask;
455 struct sock *sk = sock->sk;
456 const struct tcp_sock *tp = tcp_sk(sk);
457 int state;
458
459 sock_rps_record_flow(sk);
460
461 sock_poll_wait(file, sk_sleep(sk), wait);
462
463 state = sk_state_load(sk);
464 if (state == TCP_LISTEN)
465 return inet_csk_listen_poll(sk);
466
467 /* Socket is not locked. We are protected from async events
468 * by poll logic and correct handling of state changes
469 * made by other threads is impossible in any case.
470 */
471
472 mask = 0;
473
474 /*
475 * POLLHUP is certainly not done right. But poll() doesn't
476 * have a notion of HUP in just one direction, and for a
477 * socket the read side is more interesting.
478 *
479 * Some poll() documentation says that POLLHUP is incompatible
480 * with the POLLOUT/POLLWR flags, so somebody should check this
481 * all. But careful, it tends to be safer to return too many
482 * bits than too few, and you can easily break real applications
483 * if you don't tell them that something has hung up!
484 *
485 * Check-me.
486 *
487 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
488 * our fs/select.c). It means that after we received EOF,
489 * poll always returns immediately, making impossible poll() on write()
490 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
491 * if and only if shutdown has been made in both directions.
492 * Actually, it is interesting to look how Solaris and DUX
493 * solve this dilemma. I would prefer, if POLLHUP were maskable,
494 * then we could set it on SND_SHUTDOWN. BTW examples given
495 * in Stevens' books assume exactly this behaviour, it explains
496 * why POLLHUP is incompatible with POLLOUT. --ANK
497 *
498 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
499 * blocking on fresh not-connected or disconnected socket. --ANK
500 */
501 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
502 mask |= POLLHUP;
503 if (sk->sk_shutdown & RCV_SHUTDOWN)
504 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
505
506 /* Connected or passive Fast Open socket? */
507 if (state != TCP_SYN_SENT &&
508 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
509 int target = sock_rcvlowat(sk, 0, INT_MAX);
510
511 if (tp->urg_seq == tp->copied_seq &&
512 !sock_flag(sk, SOCK_URGINLINE) &&
513 tp->urg_data)
514 target++;
515
516 if (tp->rcv_nxt - tp->copied_seq >= target)
517 mask |= POLLIN | POLLRDNORM;
518
519 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
520 if (sk_stream_is_writeable(sk)) {
521 mask |= POLLOUT | POLLWRNORM;
522 } else { /* send SIGIO later */
523 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
524 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
525
526 /* Race breaker. If space is freed after
527 * wspace test but before the flags are set,
528 * IO signal will be lost. Memory barrier
529 * pairs with the input side.
530 */
531 smp_mb__after_atomic();
532 if (sk_stream_is_writeable(sk))
533 mask |= POLLOUT | POLLWRNORM;
534 }
535 } else
536 mask |= POLLOUT | POLLWRNORM;
537
538 if (tp->urg_data & TCP_URG_VALID)
539 mask |= POLLPRI;
540 }
541 /* This barrier is coupled with smp_wmb() in tcp_reset() */
542 smp_rmb();
543 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
544 mask |= POLLERR;
545
546 return mask;
547 }
548 EXPORT_SYMBOL(tcp_poll);
549
550 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
551 {
552 struct tcp_sock *tp = tcp_sk(sk);
553 int answ;
554 bool slow;
555
556 switch (cmd) {
557 case SIOCINQ:
558 if (sk->sk_state == TCP_LISTEN)
559 return -EINVAL;
560
561 slow = lock_sock_fast(sk);
562 answ = tcp_inq(sk);
563 unlock_sock_fast(sk, slow);
564 break;
565 case SIOCATMARK:
566 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
567 break;
568 case SIOCOUTQ:
569 if (sk->sk_state == TCP_LISTEN)
570 return -EINVAL;
571
572 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
573 answ = 0;
574 else
575 answ = tp->write_seq - tp->snd_una;
576 break;
577 case SIOCOUTQNSD:
578 if (sk->sk_state == TCP_LISTEN)
579 return -EINVAL;
580
581 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
582 answ = 0;
583 else
584 answ = tp->write_seq - tp->snd_nxt;
585 break;
586 default:
587 return -ENOIOCTLCMD;
588 }
589
590 return put_user(answ, (int __user *)arg);
591 }
592 EXPORT_SYMBOL(tcp_ioctl);
593
594 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
595 {
596 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
597 tp->pushed_seq = tp->write_seq;
598 }
599
600 static inline bool forced_push(const struct tcp_sock *tp)
601 {
602 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
603 }
604
605 static void skb_entail(struct sock *sk, struct sk_buff *skb)
606 {
607 struct tcp_sock *tp = tcp_sk(sk);
608 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
609
610 skb->csum = 0;
611 tcb->seq = tcb->end_seq = tp->write_seq;
612 tcb->tcp_flags = TCPHDR_ACK;
613 tcb->sacked = 0;
614 __skb_header_release(skb);
615 tcp_add_write_queue_tail(sk, skb);
616 sk->sk_wmem_queued += skb->truesize;
617 sk_mem_charge(sk, skb->truesize);
618 if (tp->nonagle & TCP_NAGLE_PUSH)
619 tp->nonagle &= ~TCP_NAGLE_PUSH;
620
621 tcp_slow_start_after_idle_check(sk);
622 }
623
624 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
625 {
626 if (flags & MSG_OOB)
627 tp->snd_up = tp->write_seq;
628 }
629
630 /* If a not yet filled skb is pushed, do not send it if
631 * we have data packets in Qdisc or NIC queues :
632 * Because TX completion will happen shortly, it gives a chance
633 * to coalesce future sendmsg() payload into this skb, without
634 * need for a timer, and with no latency trade off.
635 * As packets containing data payload have a bigger truesize
636 * than pure acks (dataless) packets, the last checks prevent
637 * autocorking if we only have an ACK in Qdisc/NIC queues,
638 * or if TX completion was delayed after we processed ACK packet.
639 */
640 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
641 int size_goal)
642 {
643 return skb->len < size_goal &&
644 sysctl_tcp_autocorking &&
645 skb != tcp_write_queue_head(sk) &&
646 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
647 }
648
649 static void tcp_push(struct sock *sk, int flags, int mss_now,
650 int nonagle, int size_goal)
651 {
652 struct tcp_sock *tp = tcp_sk(sk);
653 struct sk_buff *skb;
654
655 if (!tcp_send_head(sk))
656 return;
657
658 skb = tcp_write_queue_tail(sk);
659 if (!(flags & MSG_MORE) || forced_push(tp))
660 tcp_mark_push(tp, skb);
661
662 tcp_mark_urg(tp, flags);
663
664 if (tcp_should_autocork(sk, skb, size_goal)) {
665
666 /* avoid atomic op if TSQ_THROTTLED bit is already set */
667 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
668 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
669 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
670 }
671 /* It is possible TX completion already happened
672 * before we set TSQ_THROTTLED.
673 */
674 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
675 return;
676 }
677
678 if (flags & MSG_MORE)
679 nonagle = TCP_NAGLE_CORK;
680
681 __tcp_push_pending_frames(sk, mss_now, nonagle);
682 }
683
684 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
685 unsigned int offset, size_t len)
686 {
687 struct tcp_splice_state *tss = rd_desc->arg.data;
688 int ret;
689
690 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
691 min(rd_desc->count, len), tss->flags,
692 skb_socket_splice);
693 if (ret > 0)
694 rd_desc->count -= ret;
695 return ret;
696 }
697
698 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
699 {
700 /* Store TCP splice context information in read_descriptor_t. */
701 read_descriptor_t rd_desc = {
702 .arg.data = tss,
703 .count = tss->len,
704 };
705
706 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
707 }
708
709 /**
710 * tcp_splice_read - splice data from TCP socket to a pipe
711 * @sock: socket to splice from
712 * @ppos: position (not valid)
713 * @pipe: pipe to splice to
714 * @len: number of bytes to splice
715 * @flags: splice modifier flags
716 *
717 * Description:
718 * Will read pages from given socket and fill them into a pipe.
719 *
720 **/
721 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
722 struct pipe_inode_info *pipe, size_t len,
723 unsigned int flags)
724 {
725 struct sock *sk = sock->sk;
726 struct tcp_splice_state tss = {
727 .pipe = pipe,
728 .len = len,
729 .flags = flags,
730 };
731 long timeo;
732 ssize_t spliced;
733 int ret;
734
735 sock_rps_record_flow(sk);
736 /*
737 * We can't seek on a socket input
738 */
739 if (unlikely(*ppos))
740 return -ESPIPE;
741
742 ret = spliced = 0;
743
744 lock_sock(sk);
745
746 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
747 while (tss.len) {
748 ret = __tcp_splice_read(sk, &tss);
749 if (ret < 0)
750 break;
751 else if (!ret) {
752 if (spliced)
753 break;
754 if (sock_flag(sk, SOCK_DONE))
755 break;
756 if (sk->sk_err) {
757 ret = sock_error(sk);
758 break;
759 }
760 if (sk->sk_shutdown & RCV_SHUTDOWN)
761 break;
762 if (sk->sk_state == TCP_CLOSE) {
763 /*
764 * This occurs when user tries to read
765 * from never connected socket.
766 */
767 if (!sock_flag(sk, SOCK_DONE))
768 ret = -ENOTCONN;
769 break;
770 }
771 if (!timeo) {
772 ret = -EAGAIN;
773 break;
774 }
775 sk_wait_data(sk, &timeo, NULL);
776 if (signal_pending(current)) {
777 ret = sock_intr_errno(timeo);
778 break;
779 }
780 continue;
781 }
782 tss.len -= ret;
783 spliced += ret;
784
785 if (!timeo)
786 break;
787 release_sock(sk);
788 lock_sock(sk);
789
790 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
791 (sk->sk_shutdown & RCV_SHUTDOWN) ||
792 signal_pending(current))
793 break;
794 }
795
796 release_sock(sk);
797
798 if (spliced)
799 return spliced;
800
801 return ret;
802 }
803 EXPORT_SYMBOL(tcp_splice_read);
804
805 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
806 bool force_schedule)
807 {
808 struct sk_buff *skb;
809
810 /* The TCP header must be at least 32-bit aligned. */
811 size = ALIGN(size, 4);
812
813 if (unlikely(tcp_under_memory_pressure(sk)))
814 sk_mem_reclaim_partial(sk);
815
816 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
817 if (likely(skb)) {
818 bool mem_scheduled;
819
820 if (force_schedule) {
821 mem_scheduled = true;
822 sk_forced_mem_schedule(sk, skb->truesize);
823 } else {
824 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
825 }
826 if (likely(mem_scheduled)) {
827 skb_reserve(skb, sk->sk_prot->max_header);
828 /*
829 * Make sure that we have exactly size bytes
830 * available to the caller, no more, no less.
831 */
832 skb->reserved_tailroom = skb->end - skb->tail - size;
833 return skb;
834 }
835 __kfree_skb(skb);
836 } else {
837 sk->sk_prot->enter_memory_pressure(sk);
838 sk_stream_moderate_sndbuf(sk);
839 }
840 return NULL;
841 }
842
843 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
844 int large_allowed)
845 {
846 struct tcp_sock *tp = tcp_sk(sk);
847 u32 new_size_goal, size_goal;
848
849 if (!large_allowed || !sk_can_gso(sk))
850 return mss_now;
851
852 /* Note : tcp_tso_autosize() will eventually split this later */
853 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
854 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
855
856 /* We try hard to avoid divides here */
857 size_goal = tp->gso_segs * mss_now;
858 if (unlikely(new_size_goal < size_goal ||
859 new_size_goal >= size_goal + mss_now)) {
860 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
861 sk->sk_gso_max_segs);
862 size_goal = tp->gso_segs * mss_now;
863 }
864
865 return max(size_goal, mss_now);
866 }
867
868 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
869 {
870 int mss_now;
871
872 mss_now = tcp_current_mss(sk);
873 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
874
875 return mss_now;
876 }
877
878 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
879 size_t size, int flags)
880 {
881 struct tcp_sock *tp = tcp_sk(sk);
882 int mss_now, size_goal;
883 int err;
884 ssize_t copied;
885 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
886
887 /* Wait for a connection to finish. One exception is TCP Fast Open
888 * (passive side) where data is allowed to be sent before a connection
889 * is fully established.
890 */
891 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
892 !tcp_passive_fastopen(sk)) {
893 err = sk_stream_wait_connect(sk, &timeo);
894 if (err != 0)
895 goto out_err;
896 }
897
898 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
899
900 mss_now = tcp_send_mss(sk, &size_goal, flags);
901 copied = 0;
902
903 err = -EPIPE;
904 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
905 goto out_err;
906
907 while (size > 0) {
908 struct sk_buff *skb = tcp_write_queue_tail(sk);
909 int copy, i;
910 bool can_coalesce;
911
912 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
913 !tcp_skb_can_collapse_to(skb)) {
914 new_segment:
915 if (!sk_stream_memory_free(sk))
916 goto wait_for_sndbuf;
917
918 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
919 skb_queue_empty(&sk->sk_write_queue));
920 if (!skb)
921 goto wait_for_memory;
922
923 skb_entail(sk, skb);
924 copy = size_goal;
925 }
926
927 if (copy > size)
928 copy = size;
929
930 i = skb_shinfo(skb)->nr_frags;
931 can_coalesce = skb_can_coalesce(skb, i, page, offset);
932 if (!can_coalesce && i >= sysctl_max_skb_frags) {
933 tcp_mark_push(tp, skb);
934 goto new_segment;
935 }
936 if (!sk_wmem_schedule(sk, copy))
937 goto wait_for_memory;
938
939 if (can_coalesce) {
940 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
941 } else {
942 get_page(page);
943 skb_fill_page_desc(skb, i, page, offset, copy);
944 }
945 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
946
947 skb->len += copy;
948 skb->data_len += copy;
949 skb->truesize += copy;
950 sk->sk_wmem_queued += copy;
951 sk_mem_charge(sk, copy);
952 skb->ip_summed = CHECKSUM_PARTIAL;
953 tp->write_seq += copy;
954 TCP_SKB_CB(skb)->end_seq += copy;
955 tcp_skb_pcount_set(skb, 0);
956
957 if (!copied)
958 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
959
960 copied += copy;
961 offset += copy;
962 size -= copy;
963 if (!size) {
964 tcp_tx_timestamp(sk, sk->sk_tsflags, skb);
965 goto out;
966 }
967
968 if (skb->len < size_goal || (flags & MSG_OOB))
969 continue;
970
971 if (forced_push(tp)) {
972 tcp_mark_push(tp, skb);
973 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
974 } else if (skb == tcp_send_head(sk))
975 tcp_push_one(sk, mss_now);
976 continue;
977
978 wait_for_sndbuf:
979 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
980 wait_for_memory:
981 tcp_push(sk, flags & ~MSG_MORE, mss_now,
982 TCP_NAGLE_PUSH, size_goal);
983
984 err = sk_stream_wait_memory(sk, &timeo);
985 if (err != 0)
986 goto do_error;
987
988 mss_now = tcp_send_mss(sk, &size_goal, flags);
989 }
990
991 out:
992 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
993 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
994 return copied;
995
996 do_error:
997 if (copied)
998 goto out;
999 out_err:
1000 /* make sure we wake any epoll edge trigger waiter */
1001 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1002 sk->sk_write_space(sk);
1003 return sk_stream_error(sk, flags, err);
1004 }
1005
1006 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1007 size_t size, int flags)
1008 {
1009 ssize_t res;
1010
1011 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1012 !sk_check_csum_caps(sk))
1013 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1014 flags);
1015
1016 lock_sock(sk);
1017 res = do_tcp_sendpages(sk, page, offset, size, flags);
1018 release_sock(sk);
1019 return res;
1020 }
1021 EXPORT_SYMBOL(tcp_sendpage);
1022
1023 static inline int select_size(const struct sock *sk, bool sg)
1024 {
1025 const struct tcp_sock *tp = tcp_sk(sk);
1026 int tmp = tp->mss_cache;
1027
1028 if (sg) {
1029 if (sk_can_gso(sk)) {
1030 /* Small frames wont use a full page:
1031 * Payload will immediately follow tcp header.
1032 */
1033 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1034 } else {
1035 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1036
1037 if (tmp >= pgbreak &&
1038 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1039 tmp = pgbreak;
1040 }
1041 }
1042
1043 return tmp;
1044 }
1045
1046 void tcp_free_fastopen_req(struct tcp_sock *tp)
1047 {
1048 if (tp->fastopen_req) {
1049 kfree(tp->fastopen_req);
1050 tp->fastopen_req = NULL;
1051 }
1052 }
1053
1054 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1055 int *copied, size_t size)
1056 {
1057 struct tcp_sock *tp = tcp_sk(sk);
1058 int err, flags;
1059
1060 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1061 return -EOPNOTSUPP;
1062 if (tp->fastopen_req)
1063 return -EALREADY; /* Another Fast Open is in progress */
1064
1065 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1066 sk->sk_allocation);
1067 if (unlikely(!tp->fastopen_req))
1068 return -ENOBUFS;
1069 tp->fastopen_req->data = msg;
1070 tp->fastopen_req->size = size;
1071
1072 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1073 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1074 msg->msg_namelen, flags);
1075 *copied = tp->fastopen_req->copied;
1076 tcp_free_fastopen_req(tp);
1077 return err;
1078 }
1079
1080 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1081 {
1082 struct tcp_sock *tp = tcp_sk(sk);
1083 struct sk_buff *skb;
1084 struct sockcm_cookie sockc;
1085 int flags, err, copied = 0;
1086 int mss_now = 0, size_goal, copied_syn = 0;
1087 bool sg;
1088 long timeo;
1089
1090 lock_sock(sk);
1091
1092 flags = msg->msg_flags;
1093 if (flags & MSG_FASTOPEN) {
1094 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1095 if (err == -EINPROGRESS && copied_syn > 0)
1096 goto out;
1097 else if (err)
1098 goto out_err;
1099 }
1100
1101 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1102
1103 /* Wait for a connection to finish. One exception is TCP Fast Open
1104 * (passive side) where data is allowed to be sent before a connection
1105 * is fully established.
1106 */
1107 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1108 !tcp_passive_fastopen(sk)) {
1109 err = sk_stream_wait_connect(sk, &timeo);
1110 if (err != 0)
1111 goto do_error;
1112 }
1113
1114 if (unlikely(tp->repair)) {
1115 if (tp->repair_queue == TCP_RECV_QUEUE) {
1116 copied = tcp_send_rcvq(sk, msg, size);
1117 goto out_nopush;
1118 }
1119
1120 err = -EINVAL;
1121 if (tp->repair_queue == TCP_NO_QUEUE)
1122 goto out_err;
1123
1124 /* 'common' sending to sendq */
1125 }
1126
1127 sockc.tsflags = sk->sk_tsflags;
1128 if (msg->msg_controllen) {
1129 err = sock_cmsg_send(sk, msg, &sockc);
1130 if (unlikely(err)) {
1131 err = -EINVAL;
1132 goto out_err;
1133 }
1134 }
1135
1136 /* This should be in poll */
1137 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1138
1139 mss_now = tcp_send_mss(sk, &size_goal, flags);
1140
1141 /* Ok commence sending. */
1142 copied = 0;
1143
1144 err = -EPIPE;
1145 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1146 goto out_err;
1147
1148 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1149
1150 while (msg_data_left(msg)) {
1151 int copy = 0;
1152 int max = size_goal;
1153
1154 skb = tcp_write_queue_tail(sk);
1155 if (tcp_send_head(sk)) {
1156 if (skb->ip_summed == CHECKSUM_NONE)
1157 max = mss_now;
1158 copy = max - skb->len;
1159 }
1160
1161 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1162 new_segment:
1163 /* Allocate new segment. If the interface is SG,
1164 * allocate skb fitting to single page.
1165 */
1166 if (!sk_stream_memory_free(sk))
1167 goto wait_for_sndbuf;
1168
1169 skb = sk_stream_alloc_skb(sk,
1170 select_size(sk, sg),
1171 sk->sk_allocation,
1172 skb_queue_empty(&sk->sk_write_queue));
1173 if (!skb)
1174 goto wait_for_memory;
1175
1176 /*
1177 * Check whether we can use HW checksum.
1178 */
1179 if (sk_check_csum_caps(sk))
1180 skb->ip_summed = CHECKSUM_PARTIAL;
1181
1182 skb_entail(sk, skb);
1183 copy = size_goal;
1184 max = size_goal;
1185
1186 /* All packets are restored as if they have
1187 * already been sent. skb_mstamp isn't set to
1188 * avoid wrong rtt estimation.
1189 */
1190 if (tp->repair)
1191 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1192 }
1193
1194 /* Try to append data to the end of skb. */
1195 if (copy > msg_data_left(msg))
1196 copy = msg_data_left(msg);
1197
1198 /* Where to copy to? */
1199 if (skb_availroom(skb) > 0) {
1200 /* We have some space in skb head. Superb! */
1201 copy = min_t(int, copy, skb_availroom(skb));
1202 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1203 if (err)
1204 goto do_fault;
1205 } else {
1206 bool merge = true;
1207 int i = skb_shinfo(skb)->nr_frags;
1208 struct page_frag *pfrag = sk_page_frag(sk);
1209
1210 if (!sk_page_frag_refill(sk, pfrag))
1211 goto wait_for_memory;
1212
1213 if (!skb_can_coalesce(skb, i, pfrag->page,
1214 pfrag->offset)) {
1215 if (i == sysctl_max_skb_frags || !sg) {
1216 tcp_mark_push(tp, skb);
1217 goto new_segment;
1218 }
1219 merge = false;
1220 }
1221
1222 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1223
1224 if (!sk_wmem_schedule(sk, copy))
1225 goto wait_for_memory;
1226
1227 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1228 pfrag->page,
1229 pfrag->offset,
1230 copy);
1231 if (err)
1232 goto do_error;
1233
1234 /* Update the skb. */
1235 if (merge) {
1236 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1237 } else {
1238 skb_fill_page_desc(skb, i, pfrag->page,
1239 pfrag->offset, copy);
1240 get_page(pfrag->page);
1241 }
1242 pfrag->offset += copy;
1243 }
1244
1245 if (!copied)
1246 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1247
1248 tp->write_seq += copy;
1249 TCP_SKB_CB(skb)->end_seq += copy;
1250 tcp_skb_pcount_set(skb, 0);
1251
1252 copied += copy;
1253 if (!msg_data_left(msg)) {
1254 tcp_tx_timestamp(sk, sockc.tsflags, skb);
1255 if (unlikely(flags & MSG_EOR))
1256 TCP_SKB_CB(skb)->eor = 1;
1257 goto out;
1258 }
1259
1260 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1261 continue;
1262
1263 if (forced_push(tp)) {
1264 tcp_mark_push(tp, skb);
1265 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1266 } else if (skb == tcp_send_head(sk))
1267 tcp_push_one(sk, mss_now);
1268 continue;
1269
1270 wait_for_sndbuf:
1271 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1272 wait_for_memory:
1273 if (copied)
1274 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1275 TCP_NAGLE_PUSH, size_goal);
1276
1277 err = sk_stream_wait_memory(sk, &timeo);
1278 if (err != 0)
1279 goto do_error;
1280
1281 mss_now = tcp_send_mss(sk, &size_goal, flags);
1282 }
1283
1284 out:
1285 if (copied)
1286 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1287 out_nopush:
1288 release_sock(sk);
1289 return copied + copied_syn;
1290
1291 do_fault:
1292 if (!skb->len) {
1293 tcp_unlink_write_queue(skb, sk);
1294 /* It is the one place in all of TCP, except connection
1295 * reset, where we can be unlinking the send_head.
1296 */
1297 tcp_check_send_head(sk, skb);
1298 sk_wmem_free_skb(sk, skb);
1299 }
1300
1301 do_error:
1302 if (copied + copied_syn)
1303 goto out;
1304 out_err:
1305 err = sk_stream_error(sk, flags, err);
1306 /* make sure we wake any epoll edge trigger waiter */
1307 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1308 sk->sk_write_space(sk);
1309 release_sock(sk);
1310 return err;
1311 }
1312 EXPORT_SYMBOL(tcp_sendmsg);
1313
1314 /*
1315 * Handle reading urgent data. BSD has very simple semantics for
1316 * this, no blocking and very strange errors 8)
1317 */
1318
1319 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1320 {
1321 struct tcp_sock *tp = tcp_sk(sk);
1322
1323 /* No URG data to read. */
1324 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1325 tp->urg_data == TCP_URG_READ)
1326 return -EINVAL; /* Yes this is right ! */
1327
1328 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1329 return -ENOTCONN;
1330
1331 if (tp->urg_data & TCP_URG_VALID) {
1332 int err = 0;
1333 char c = tp->urg_data;
1334
1335 if (!(flags & MSG_PEEK))
1336 tp->urg_data = TCP_URG_READ;
1337
1338 /* Read urgent data. */
1339 msg->msg_flags |= MSG_OOB;
1340
1341 if (len > 0) {
1342 if (!(flags & MSG_TRUNC))
1343 err = memcpy_to_msg(msg, &c, 1);
1344 len = 1;
1345 } else
1346 msg->msg_flags |= MSG_TRUNC;
1347
1348 return err ? -EFAULT : len;
1349 }
1350
1351 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1352 return 0;
1353
1354 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1355 * the available implementations agree in this case:
1356 * this call should never block, independent of the
1357 * blocking state of the socket.
1358 * Mike <pall@rz.uni-karlsruhe.de>
1359 */
1360 return -EAGAIN;
1361 }
1362
1363 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1364 {
1365 struct sk_buff *skb;
1366 int copied = 0, err = 0;
1367
1368 /* XXX -- need to support SO_PEEK_OFF */
1369
1370 skb_queue_walk(&sk->sk_write_queue, skb) {
1371 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1372 if (err)
1373 break;
1374
1375 copied += skb->len;
1376 }
1377
1378 return err ?: copied;
1379 }
1380
1381 /* Clean up the receive buffer for full frames taken by the user,
1382 * then send an ACK if necessary. COPIED is the number of bytes
1383 * tcp_recvmsg has given to the user so far, it speeds up the
1384 * calculation of whether or not we must ACK for the sake of
1385 * a window update.
1386 */
1387 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1388 {
1389 struct tcp_sock *tp = tcp_sk(sk);
1390 bool time_to_ack = false;
1391
1392 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1393
1394 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1395 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1396 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1397
1398 if (inet_csk_ack_scheduled(sk)) {
1399 const struct inet_connection_sock *icsk = inet_csk(sk);
1400 /* Delayed ACKs frequently hit locked sockets during bulk
1401 * receive. */
1402 if (icsk->icsk_ack.blocked ||
1403 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1404 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1405 /*
1406 * If this read emptied read buffer, we send ACK, if
1407 * connection is not bidirectional, user drained
1408 * receive buffer and there was a small segment
1409 * in queue.
1410 */
1411 (copied > 0 &&
1412 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1413 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1414 !icsk->icsk_ack.pingpong)) &&
1415 !atomic_read(&sk->sk_rmem_alloc)))
1416 time_to_ack = true;
1417 }
1418
1419 /* We send an ACK if we can now advertise a non-zero window
1420 * which has been raised "significantly".
1421 *
1422 * Even if window raised up to infinity, do not send window open ACK
1423 * in states, where we will not receive more. It is useless.
1424 */
1425 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1426 __u32 rcv_window_now = tcp_receive_window(tp);
1427
1428 /* Optimize, __tcp_select_window() is not cheap. */
1429 if (2*rcv_window_now <= tp->window_clamp) {
1430 __u32 new_window = __tcp_select_window(sk);
1431
1432 /* Send ACK now, if this read freed lots of space
1433 * in our buffer. Certainly, new_window is new window.
1434 * We can advertise it now, if it is not less than current one.
1435 * "Lots" means "at least twice" here.
1436 */
1437 if (new_window && new_window >= 2 * rcv_window_now)
1438 time_to_ack = true;
1439 }
1440 }
1441 if (time_to_ack)
1442 tcp_send_ack(sk);
1443 }
1444
1445 static void tcp_prequeue_process(struct sock *sk)
1446 {
1447 struct sk_buff *skb;
1448 struct tcp_sock *tp = tcp_sk(sk);
1449
1450 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1451
1452 /* RX process wants to run with disabled BHs, though it is not
1453 * necessary */
1454 local_bh_disable();
1455 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1456 sk_backlog_rcv(sk, skb);
1457 local_bh_enable();
1458
1459 /* Clear memory counter. */
1460 tp->ucopy.memory = 0;
1461 }
1462
1463 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1464 {
1465 struct sk_buff *skb;
1466 u32 offset;
1467
1468 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1469 offset = seq - TCP_SKB_CB(skb)->seq;
1470 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1471 pr_err_once("%s: found a SYN, please report !\n", __func__);
1472 offset--;
1473 }
1474 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1475 *off = offset;
1476 return skb;
1477 }
1478 /* This looks weird, but this can happen if TCP collapsing
1479 * splitted a fat GRO packet, while we released socket lock
1480 * in skb_splice_bits()
1481 */
1482 sk_eat_skb(sk, skb);
1483 }
1484 return NULL;
1485 }
1486
1487 /*
1488 * This routine provides an alternative to tcp_recvmsg() for routines
1489 * that would like to handle copying from skbuffs directly in 'sendfile'
1490 * fashion.
1491 * Note:
1492 * - It is assumed that the socket was locked by the caller.
1493 * - The routine does not block.
1494 * - At present, there is no support for reading OOB data
1495 * or for 'peeking' the socket using this routine
1496 * (although both would be easy to implement).
1497 */
1498 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1499 sk_read_actor_t recv_actor)
1500 {
1501 struct sk_buff *skb;
1502 struct tcp_sock *tp = tcp_sk(sk);
1503 u32 seq = tp->copied_seq;
1504 u32 offset;
1505 int copied = 0;
1506
1507 if (sk->sk_state == TCP_LISTEN)
1508 return -ENOTCONN;
1509 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1510 if (offset < skb->len) {
1511 int used;
1512 size_t len;
1513
1514 len = skb->len - offset;
1515 /* Stop reading if we hit a patch of urgent data */
1516 if (tp->urg_data) {
1517 u32 urg_offset = tp->urg_seq - seq;
1518 if (urg_offset < len)
1519 len = urg_offset;
1520 if (!len)
1521 break;
1522 }
1523 used = recv_actor(desc, skb, offset, len);
1524 if (used <= 0) {
1525 if (!copied)
1526 copied = used;
1527 break;
1528 } else if (used <= len) {
1529 seq += used;
1530 copied += used;
1531 offset += used;
1532 }
1533 /* If recv_actor drops the lock (e.g. TCP splice
1534 * receive) the skb pointer might be invalid when
1535 * getting here: tcp_collapse might have deleted it
1536 * while aggregating skbs from the socket queue.
1537 */
1538 skb = tcp_recv_skb(sk, seq - 1, &offset);
1539 if (!skb)
1540 break;
1541 /* TCP coalescing might have appended data to the skb.
1542 * Try to splice more frags
1543 */
1544 if (offset + 1 != skb->len)
1545 continue;
1546 }
1547 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1548 sk_eat_skb(sk, skb);
1549 ++seq;
1550 break;
1551 }
1552 sk_eat_skb(sk, skb);
1553 if (!desc->count)
1554 break;
1555 tp->copied_seq = seq;
1556 }
1557 tp->copied_seq = seq;
1558
1559 tcp_rcv_space_adjust(sk);
1560
1561 /* Clean up data we have read: This will do ACK frames. */
1562 if (copied > 0) {
1563 tcp_recv_skb(sk, seq, &offset);
1564 tcp_cleanup_rbuf(sk, copied);
1565 }
1566 return copied;
1567 }
1568 EXPORT_SYMBOL(tcp_read_sock);
1569
1570 /*
1571 * This routine copies from a sock struct into the user buffer.
1572 *
1573 * Technical note: in 2.3 we work on _locked_ socket, so that
1574 * tricks with *seq access order and skb->users are not required.
1575 * Probably, code can be easily improved even more.
1576 */
1577
1578 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1579 int flags, int *addr_len)
1580 {
1581 struct tcp_sock *tp = tcp_sk(sk);
1582 int copied = 0;
1583 u32 peek_seq;
1584 u32 *seq;
1585 unsigned long used;
1586 int err;
1587 int target; /* Read at least this many bytes */
1588 long timeo;
1589 struct task_struct *user_recv = NULL;
1590 struct sk_buff *skb, *last;
1591 u32 urg_hole = 0;
1592
1593 if (unlikely(flags & MSG_ERRQUEUE))
1594 return inet_recv_error(sk, msg, len, addr_len);
1595
1596 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1597 (sk->sk_state == TCP_ESTABLISHED))
1598 sk_busy_loop(sk, nonblock);
1599
1600 lock_sock(sk);
1601
1602 err = -ENOTCONN;
1603 if (sk->sk_state == TCP_LISTEN)
1604 goto out;
1605
1606 timeo = sock_rcvtimeo(sk, nonblock);
1607
1608 /* Urgent data needs to be handled specially. */
1609 if (flags & MSG_OOB)
1610 goto recv_urg;
1611
1612 if (unlikely(tp->repair)) {
1613 err = -EPERM;
1614 if (!(flags & MSG_PEEK))
1615 goto out;
1616
1617 if (tp->repair_queue == TCP_SEND_QUEUE)
1618 goto recv_sndq;
1619
1620 err = -EINVAL;
1621 if (tp->repair_queue == TCP_NO_QUEUE)
1622 goto out;
1623
1624 /* 'common' recv queue MSG_PEEK-ing */
1625 }
1626
1627 seq = &tp->copied_seq;
1628 if (flags & MSG_PEEK) {
1629 peek_seq = tp->copied_seq;
1630 seq = &peek_seq;
1631 }
1632
1633 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1634
1635 do {
1636 u32 offset;
1637
1638 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1639 if (tp->urg_data && tp->urg_seq == *seq) {
1640 if (copied)
1641 break;
1642 if (signal_pending(current)) {
1643 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1644 break;
1645 }
1646 }
1647
1648 /* Next get a buffer. */
1649
1650 last = skb_peek_tail(&sk->sk_receive_queue);
1651 skb_queue_walk(&sk->sk_receive_queue, skb) {
1652 last = skb;
1653 /* Now that we have two receive queues this
1654 * shouldn't happen.
1655 */
1656 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1657 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1658 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1659 flags))
1660 break;
1661
1662 offset = *seq - TCP_SKB_CB(skb)->seq;
1663 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1664 pr_err_once("%s: found a SYN, please report !\n", __func__);
1665 offset--;
1666 }
1667 if (offset < skb->len)
1668 goto found_ok_skb;
1669 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1670 goto found_fin_ok;
1671 WARN(!(flags & MSG_PEEK),
1672 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1673 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1674 }
1675
1676 /* Well, if we have backlog, try to process it now yet. */
1677
1678 if (copied >= target && !sk->sk_backlog.tail)
1679 break;
1680
1681 if (copied) {
1682 if (sk->sk_err ||
1683 sk->sk_state == TCP_CLOSE ||
1684 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1685 !timeo ||
1686 signal_pending(current))
1687 break;
1688 } else {
1689 if (sock_flag(sk, SOCK_DONE))
1690 break;
1691
1692 if (sk->sk_err) {
1693 copied = sock_error(sk);
1694 break;
1695 }
1696
1697 if (sk->sk_shutdown & RCV_SHUTDOWN)
1698 break;
1699
1700 if (sk->sk_state == TCP_CLOSE) {
1701 if (!sock_flag(sk, SOCK_DONE)) {
1702 /* This occurs when user tries to read
1703 * from never connected socket.
1704 */
1705 copied = -ENOTCONN;
1706 break;
1707 }
1708 break;
1709 }
1710
1711 if (!timeo) {
1712 copied = -EAGAIN;
1713 break;
1714 }
1715
1716 if (signal_pending(current)) {
1717 copied = sock_intr_errno(timeo);
1718 break;
1719 }
1720 }
1721
1722 tcp_cleanup_rbuf(sk, copied);
1723
1724 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1725 /* Install new reader */
1726 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1727 user_recv = current;
1728 tp->ucopy.task = user_recv;
1729 tp->ucopy.msg = msg;
1730 }
1731
1732 tp->ucopy.len = len;
1733
1734 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1735 !(flags & (MSG_PEEK | MSG_TRUNC)));
1736
1737 /* Ugly... If prequeue is not empty, we have to
1738 * process it before releasing socket, otherwise
1739 * order will be broken at second iteration.
1740 * More elegant solution is required!!!
1741 *
1742 * Look: we have the following (pseudo)queues:
1743 *
1744 * 1. packets in flight
1745 * 2. backlog
1746 * 3. prequeue
1747 * 4. receive_queue
1748 *
1749 * Each queue can be processed only if the next ones
1750 * are empty. At this point we have empty receive_queue.
1751 * But prequeue _can_ be not empty after 2nd iteration,
1752 * when we jumped to start of loop because backlog
1753 * processing added something to receive_queue.
1754 * We cannot release_sock(), because backlog contains
1755 * packets arrived _after_ prequeued ones.
1756 *
1757 * Shortly, algorithm is clear --- to process all
1758 * the queues in order. We could make it more directly,
1759 * requeueing packets from backlog to prequeue, if
1760 * is not empty. It is more elegant, but eats cycles,
1761 * unfortunately.
1762 */
1763 if (!skb_queue_empty(&tp->ucopy.prequeue))
1764 goto do_prequeue;
1765
1766 /* __ Set realtime policy in scheduler __ */
1767 }
1768
1769 if (copied >= target) {
1770 /* Do not sleep, just process backlog. */
1771 release_sock(sk);
1772 lock_sock(sk);
1773 } else {
1774 sk_wait_data(sk, &timeo, last);
1775 }
1776
1777 if (user_recv) {
1778 int chunk;
1779
1780 /* __ Restore normal policy in scheduler __ */
1781
1782 chunk = len - tp->ucopy.len;
1783 if (chunk != 0) {
1784 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1785 len -= chunk;
1786 copied += chunk;
1787 }
1788
1789 if (tp->rcv_nxt == tp->copied_seq &&
1790 !skb_queue_empty(&tp->ucopy.prequeue)) {
1791 do_prequeue:
1792 tcp_prequeue_process(sk);
1793
1794 chunk = len - tp->ucopy.len;
1795 if (chunk != 0) {
1796 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1797 len -= chunk;
1798 copied += chunk;
1799 }
1800 }
1801 }
1802 if ((flags & MSG_PEEK) &&
1803 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1804 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1805 current->comm,
1806 task_pid_nr(current));
1807 peek_seq = tp->copied_seq;
1808 }
1809 continue;
1810
1811 found_ok_skb:
1812 /* Ok so how much can we use? */
1813 used = skb->len - offset;
1814 if (len < used)
1815 used = len;
1816
1817 /* Do we have urgent data here? */
1818 if (tp->urg_data) {
1819 u32 urg_offset = tp->urg_seq - *seq;
1820 if (urg_offset < used) {
1821 if (!urg_offset) {
1822 if (!sock_flag(sk, SOCK_URGINLINE)) {
1823 ++*seq;
1824 urg_hole++;
1825 offset++;
1826 used--;
1827 if (!used)
1828 goto skip_copy;
1829 }
1830 } else
1831 used = urg_offset;
1832 }
1833 }
1834
1835 if (!(flags & MSG_TRUNC)) {
1836 err = skb_copy_datagram_msg(skb, offset, msg, used);
1837 if (err) {
1838 /* Exception. Bailout! */
1839 if (!copied)
1840 copied = -EFAULT;
1841 break;
1842 }
1843 }
1844
1845 *seq += used;
1846 copied += used;
1847 len -= used;
1848
1849 tcp_rcv_space_adjust(sk);
1850
1851 skip_copy:
1852 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1853 tp->urg_data = 0;
1854 tcp_fast_path_check(sk);
1855 }
1856 if (used + offset < skb->len)
1857 continue;
1858
1859 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1860 goto found_fin_ok;
1861 if (!(flags & MSG_PEEK))
1862 sk_eat_skb(sk, skb);
1863 continue;
1864
1865 found_fin_ok:
1866 /* Process the FIN. */
1867 ++*seq;
1868 if (!(flags & MSG_PEEK))
1869 sk_eat_skb(sk, skb);
1870 break;
1871 } while (len > 0);
1872
1873 if (user_recv) {
1874 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1875 int chunk;
1876
1877 tp->ucopy.len = copied > 0 ? len : 0;
1878
1879 tcp_prequeue_process(sk);
1880
1881 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1882 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1883 len -= chunk;
1884 copied += chunk;
1885 }
1886 }
1887
1888 tp->ucopy.task = NULL;
1889 tp->ucopy.len = 0;
1890 }
1891
1892 /* According to UNIX98, msg_name/msg_namelen are ignored
1893 * on connected socket. I was just happy when found this 8) --ANK
1894 */
1895
1896 /* Clean up data we have read: This will do ACK frames. */
1897 tcp_cleanup_rbuf(sk, copied);
1898
1899 release_sock(sk);
1900 return copied;
1901
1902 out:
1903 release_sock(sk);
1904 return err;
1905
1906 recv_urg:
1907 err = tcp_recv_urg(sk, msg, len, flags);
1908 goto out;
1909
1910 recv_sndq:
1911 err = tcp_peek_sndq(sk, msg, len);
1912 goto out;
1913 }
1914 EXPORT_SYMBOL(tcp_recvmsg);
1915
1916 void tcp_set_state(struct sock *sk, int state)
1917 {
1918 int oldstate = sk->sk_state;
1919
1920 switch (state) {
1921 case TCP_ESTABLISHED:
1922 if (oldstate != TCP_ESTABLISHED)
1923 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1924 break;
1925
1926 case TCP_CLOSE:
1927 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1928 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1929
1930 sk->sk_prot->unhash(sk);
1931 if (inet_csk(sk)->icsk_bind_hash &&
1932 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1933 inet_put_port(sk);
1934 /* fall through */
1935 default:
1936 if (oldstate == TCP_ESTABLISHED)
1937 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1938 }
1939
1940 /* Change state AFTER socket is unhashed to avoid closed
1941 * socket sitting in hash tables.
1942 */
1943 sk_state_store(sk, state);
1944
1945 #ifdef STATE_TRACE
1946 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1947 #endif
1948 }
1949 EXPORT_SYMBOL_GPL(tcp_set_state);
1950
1951 /*
1952 * State processing on a close. This implements the state shift for
1953 * sending our FIN frame. Note that we only send a FIN for some
1954 * states. A shutdown() may have already sent the FIN, or we may be
1955 * closed.
1956 */
1957
1958 static const unsigned char new_state[16] = {
1959 /* current state: new state: action: */
1960 [0 /* (Invalid) */] = TCP_CLOSE,
1961 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1962 [TCP_SYN_SENT] = TCP_CLOSE,
1963 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1964 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
1965 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
1966 [TCP_TIME_WAIT] = TCP_CLOSE,
1967 [TCP_CLOSE] = TCP_CLOSE,
1968 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
1969 [TCP_LAST_ACK] = TCP_LAST_ACK,
1970 [TCP_LISTEN] = TCP_CLOSE,
1971 [TCP_CLOSING] = TCP_CLOSING,
1972 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
1973 };
1974
1975 static int tcp_close_state(struct sock *sk)
1976 {
1977 int next = (int)new_state[sk->sk_state];
1978 int ns = next & TCP_STATE_MASK;
1979
1980 tcp_set_state(sk, ns);
1981
1982 return next & TCP_ACTION_FIN;
1983 }
1984
1985 /*
1986 * Shutdown the sending side of a connection. Much like close except
1987 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1988 */
1989
1990 void tcp_shutdown(struct sock *sk, int how)
1991 {
1992 /* We need to grab some memory, and put together a FIN,
1993 * and then put it into the queue to be sent.
1994 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1995 */
1996 if (!(how & SEND_SHUTDOWN))
1997 return;
1998
1999 /* If we've already sent a FIN, or it's a closed state, skip this. */
2000 if ((1 << sk->sk_state) &
2001 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2002 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2003 /* Clear out any half completed packets. FIN if needed. */
2004 if (tcp_close_state(sk))
2005 tcp_send_fin(sk);
2006 }
2007 }
2008 EXPORT_SYMBOL(tcp_shutdown);
2009
2010 bool tcp_check_oom(struct sock *sk, int shift)
2011 {
2012 bool too_many_orphans, out_of_socket_memory;
2013
2014 too_many_orphans = tcp_too_many_orphans(sk, shift);
2015 out_of_socket_memory = tcp_out_of_memory(sk);
2016
2017 if (too_many_orphans)
2018 net_info_ratelimited("too many orphaned sockets\n");
2019 if (out_of_socket_memory)
2020 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2021 return too_many_orphans || out_of_socket_memory;
2022 }
2023
2024 void tcp_close(struct sock *sk, long timeout)
2025 {
2026 struct sk_buff *skb;
2027 int data_was_unread = 0;
2028 int state;
2029
2030 lock_sock(sk);
2031 sk->sk_shutdown = SHUTDOWN_MASK;
2032
2033 if (sk->sk_state == TCP_LISTEN) {
2034 tcp_set_state(sk, TCP_CLOSE);
2035
2036 /* Special case. */
2037 inet_csk_listen_stop(sk);
2038
2039 goto adjudge_to_death;
2040 }
2041
2042 /* We need to flush the recv. buffs. We do this only on the
2043 * descriptor close, not protocol-sourced closes, because the
2044 * reader process may not have drained the data yet!
2045 */
2046 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2047 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2048
2049 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2050 len--;
2051 data_was_unread += len;
2052 __kfree_skb(skb);
2053 }
2054
2055 sk_mem_reclaim(sk);
2056
2057 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2058 if (sk->sk_state == TCP_CLOSE)
2059 goto adjudge_to_death;
2060
2061 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2062 * data was lost. To witness the awful effects of the old behavior of
2063 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2064 * GET in an FTP client, suspend the process, wait for the client to
2065 * advertise a zero window, then kill -9 the FTP client, wheee...
2066 * Note: timeout is always zero in such a case.
2067 */
2068 if (unlikely(tcp_sk(sk)->repair)) {
2069 sk->sk_prot->disconnect(sk, 0);
2070 } else if (data_was_unread) {
2071 /* Unread data was tossed, zap the connection. */
2072 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2073 tcp_set_state(sk, TCP_CLOSE);
2074 tcp_send_active_reset(sk, sk->sk_allocation);
2075 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2076 /* Check zero linger _after_ checking for unread data. */
2077 sk->sk_prot->disconnect(sk, 0);
2078 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2079 } else if (tcp_close_state(sk)) {
2080 /* We FIN if the application ate all the data before
2081 * zapping the connection.
2082 */
2083
2084 /* RED-PEN. Formally speaking, we have broken TCP state
2085 * machine. State transitions:
2086 *
2087 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2088 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2089 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2090 *
2091 * are legal only when FIN has been sent (i.e. in window),
2092 * rather than queued out of window. Purists blame.
2093 *
2094 * F.e. "RFC state" is ESTABLISHED,
2095 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2096 *
2097 * The visible declinations are that sometimes
2098 * we enter time-wait state, when it is not required really
2099 * (harmless), do not send active resets, when they are
2100 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2101 * they look as CLOSING or LAST_ACK for Linux)
2102 * Probably, I missed some more holelets.
2103 * --ANK
2104 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2105 * in a single packet! (May consider it later but will
2106 * probably need API support or TCP_CORK SYN-ACK until
2107 * data is written and socket is closed.)
2108 */
2109 tcp_send_fin(sk);
2110 }
2111
2112 sk_stream_wait_close(sk, timeout);
2113
2114 adjudge_to_death:
2115 state = sk->sk_state;
2116 sock_hold(sk);
2117 sock_orphan(sk);
2118
2119 /* It is the last release_sock in its life. It will remove backlog. */
2120 release_sock(sk);
2121
2122
2123 /* Now socket is owned by kernel and we acquire BH lock
2124 to finish close. No need to check for user refs.
2125 */
2126 local_bh_disable();
2127 bh_lock_sock(sk);
2128 WARN_ON(sock_owned_by_user(sk));
2129
2130 percpu_counter_inc(sk->sk_prot->orphan_count);
2131
2132 /* Have we already been destroyed by a softirq or backlog? */
2133 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2134 goto out;
2135
2136 /* This is a (useful) BSD violating of the RFC. There is a
2137 * problem with TCP as specified in that the other end could
2138 * keep a socket open forever with no application left this end.
2139 * We use a 1 minute timeout (about the same as BSD) then kill
2140 * our end. If they send after that then tough - BUT: long enough
2141 * that we won't make the old 4*rto = almost no time - whoops
2142 * reset mistake.
2143 *
2144 * Nope, it was not mistake. It is really desired behaviour
2145 * f.e. on http servers, when such sockets are useless, but
2146 * consume significant resources. Let's do it with special
2147 * linger2 option. --ANK
2148 */
2149
2150 if (sk->sk_state == TCP_FIN_WAIT2) {
2151 struct tcp_sock *tp = tcp_sk(sk);
2152 if (tp->linger2 < 0) {
2153 tcp_set_state(sk, TCP_CLOSE);
2154 tcp_send_active_reset(sk, GFP_ATOMIC);
2155 __NET_INC_STATS(sock_net(sk),
2156 LINUX_MIB_TCPABORTONLINGER);
2157 } else {
2158 const int tmo = tcp_fin_time(sk);
2159
2160 if (tmo > TCP_TIMEWAIT_LEN) {
2161 inet_csk_reset_keepalive_timer(sk,
2162 tmo - TCP_TIMEWAIT_LEN);
2163 } else {
2164 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2165 goto out;
2166 }
2167 }
2168 }
2169 if (sk->sk_state != TCP_CLOSE) {
2170 sk_mem_reclaim(sk);
2171 if (tcp_check_oom(sk, 0)) {
2172 tcp_set_state(sk, TCP_CLOSE);
2173 tcp_send_active_reset(sk, GFP_ATOMIC);
2174 __NET_INC_STATS(sock_net(sk),
2175 LINUX_MIB_TCPABORTONMEMORY);
2176 }
2177 }
2178
2179 if (sk->sk_state == TCP_CLOSE) {
2180 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2181 /* We could get here with a non-NULL req if the socket is
2182 * aborted (e.g., closed with unread data) before 3WHS
2183 * finishes.
2184 */
2185 if (req)
2186 reqsk_fastopen_remove(sk, req, false);
2187 inet_csk_destroy_sock(sk);
2188 }
2189 /* Otherwise, socket is reprieved until protocol close. */
2190
2191 out:
2192 bh_unlock_sock(sk);
2193 local_bh_enable();
2194 sock_put(sk);
2195 }
2196 EXPORT_SYMBOL(tcp_close);
2197
2198 /* These states need RST on ABORT according to RFC793 */
2199
2200 static inline bool tcp_need_reset(int state)
2201 {
2202 return (1 << state) &
2203 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2204 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2205 }
2206
2207 int tcp_disconnect(struct sock *sk, int flags)
2208 {
2209 struct inet_sock *inet = inet_sk(sk);
2210 struct inet_connection_sock *icsk = inet_csk(sk);
2211 struct tcp_sock *tp = tcp_sk(sk);
2212 int err = 0;
2213 int old_state = sk->sk_state;
2214
2215 if (old_state != TCP_CLOSE)
2216 tcp_set_state(sk, TCP_CLOSE);
2217
2218 /* ABORT function of RFC793 */
2219 if (old_state == TCP_LISTEN) {
2220 inet_csk_listen_stop(sk);
2221 } else if (unlikely(tp->repair)) {
2222 sk->sk_err = ECONNABORTED;
2223 } else if (tcp_need_reset(old_state) ||
2224 (tp->snd_nxt != tp->write_seq &&
2225 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2226 /* The last check adjusts for discrepancy of Linux wrt. RFC
2227 * states
2228 */
2229 tcp_send_active_reset(sk, gfp_any());
2230 sk->sk_err = ECONNRESET;
2231 } else if (old_state == TCP_SYN_SENT)
2232 sk->sk_err = ECONNRESET;
2233
2234 tcp_clear_xmit_timers(sk);
2235 __skb_queue_purge(&sk->sk_receive_queue);
2236 tcp_write_queue_purge(sk);
2237 __skb_queue_purge(&tp->out_of_order_queue);
2238
2239 inet->inet_dport = 0;
2240
2241 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2242 inet_reset_saddr(sk);
2243
2244 sk->sk_shutdown = 0;
2245 sock_reset_flag(sk, SOCK_DONE);
2246 tp->srtt_us = 0;
2247 tp->write_seq += tp->max_window + 2;
2248 if (tp->write_seq == 0)
2249 tp->write_seq = 1;
2250 icsk->icsk_backoff = 0;
2251 tp->snd_cwnd = 2;
2252 icsk->icsk_probes_out = 0;
2253 tp->packets_out = 0;
2254 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2255 tp->snd_cwnd_cnt = 0;
2256 tp->window_clamp = 0;
2257 tcp_set_ca_state(sk, TCP_CA_Open);
2258 tcp_clear_retrans(tp);
2259 inet_csk_delack_init(sk);
2260 tcp_init_send_head(sk);
2261 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2262 __sk_dst_reset(sk);
2263
2264 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2265
2266 sk->sk_error_report(sk);
2267 return err;
2268 }
2269 EXPORT_SYMBOL(tcp_disconnect);
2270
2271 static inline bool tcp_can_repair_sock(const struct sock *sk)
2272 {
2273 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2274 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2275 }
2276
2277 static int tcp_repair_options_est(struct tcp_sock *tp,
2278 struct tcp_repair_opt __user *optbuf, unsigned int len)
2279 {
2280 struct tcp_repair_opt opt;
2281
2282 while (len >= sizeof(opt)) {
2283 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2284 return -EFAULT;
2285
2286 optbuf++;
2287 len -= sizeof(opt);
2288
2289 switch (opt.opt_code) {
2290 case TCPOPT_MSS:
2291 tp->rx_opt.mss_clamp = opt.opt_val;
2292 break;
2293 case TCPOPT_WINDOW:
2294 {
2295 u16 snd_wscale = opt.opt_val & 0xFFFF;
2296 u16 rcv_wscale = opt.opt_val >> 16;
2297
2298 if (snd_wscale > 14 || rcv_wscale > 14)
2299 return -EFBIG;
2300
2301 tp->rx_opt.snd_wscale = snd_wscale;
2302 tp->rx_opt.rcv_wscale = rcv_wscale;
2303 tp->rx_opt.wscale_ok = 1;
2304 }
2305 break;
2306 case TCPOPT_SACK_PERM:
2307 if (opt.opt_val != 0)
2308 return -EINVAL;
2309
2310 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2311 if (sysctl_tcp_fack)
2312 tcp_enable_fack(tp);
2313 break;
2314 case TCPOPT_TIMESTAMP:
2315 if (opt.opt_val != 0)
2316 return -EINVAL;
2317
2318 tp->rx_opt.tstamp_ok = 1;
2319 break;
2320 }
2321 }
2322
2323 return 0;
2324 }
2325
2326 /*
2327 * Socket option code for TCP.
2328 */
2329 static int do_tcp_setsockopt(struct sock *sk, int level,
2330 int optname, char __user *optval, unsigned int optlen)
2331 {
2332 struct tcp_sock *tp = tcp_sk(sk);
2333 struct inet_connection_sock *icsk = inet_csk(sk);
2334 struct net *net = sock_net(sk);
2335 int val;
2336 int err = 0;
2337
2338 /* These are data/string values, all the others are ints */
2339 switch (optname) {
2340 case TCP_CONGESTION: {
2341 char name[TCP_CA_NAME_MAX];
2342
2343 if (optlen < 1)
2344 return -EINVAL;
2345
2346 val = strncpy_from_user(name, optval,
2347 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2348 if (val < 0)
2349 return -EFAULT;
2350 name[val] = 0;
2351
2352 lock_sock(sk);
2353 err = tcp_set_congestion_control(sk, name);
2354 release_sock(sk);
2355 return err;
2356 }
2357 default:
2358 /* fallthru */
2359 break;
2360 }
2361
2362 if (optlen < sizeof(int))
2363 return -EINVAL;
2364
2365 if (get_user(val, (int __user *)optval))
2366 return -EFAULT;
2367
2368 lock_sock(sk);
2369
2370 switch (optname) {
2371 case TCP_MAXSEG:
2372 /* Values greater than interface MTU won't take effect. However
2373 * at the point when this call is done we typically don't yet
2374 * know which interface is going to be used */
2375 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2376 err = -EINVAL;
2377 break;
2378 }
2379 tp->rx_opt.user_mss = val;
2380 break;
2381
2382 case TCP_NODELAY:
2383 if (val) {
2384 /* TCP_NODELAY is weaker than TCP_CORK, so that
2385 * this option on corked socket is remembered, but
2386 * it is not activated until cork is cleared.
2387 *
2388 * However, when TCP_NODELAY is set we make
2389 * an explicit push, which overrides even TCP_CORK
2390 * for currently queued segments.
2391 */
2392 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2393 tcp_push_pending_frames(sk);
2394 } else {
2395 tp->nonagle &= ~TCP_NAGLE_OFF;
2396 }
2397 break;
2398
2399 case TCP_THIN_LINEAR_TIMEOUTS:
2400 if (val < 0 || val > 1)
2401 err = -EINVAL;
2402 else
2403 tp->thin_lto = val;
2404 break;
2405
2406 case TCP_THIN_DUPACK:
2407 if (val < 0 || val > 1)
2408 err = -EINVAL;
2409 else {
2410 tp->thin_dupack = val;
2411 if (tp->thin_dupack)
2412 tcp_disable_early_retrans(tp);
2413 }
2414 break;
2415
2416 case TCP_REPAIR:
2417 if (!tcp_can_repair_sock(sk))
2418 err = -EPERM;
2419 else if (val == 1) {
2420 tp->repair = 1;
2421 sk->sk_reuse = SK_FORCE_REUSE;
2422 tp->repair_queue = TCP_NO_QUEUE;
2423 } else if (val == 0) {
2424 tp->repair = 0;
2425 sk->sk_reuse = SK_NO_REUSE;
2426 tcp_send_window_probe(sk);
2427 } else
2428 err = -EINVAL;
2429
2430 break;
2431
2432 case TCP_REPAIR_QUEUE:
2433 if (!tp->repair)
2434 err = -EPERM;
2435 else if (val < TCP_QUEUES_NR)
2436 tp->repair_queue = val;
2437 else
2438 err = -EINVAL;
2439 break;
2440
2441 case TCP_QUEUE_SEQ:
2442 if (sk->sk_state != TCP_CLOSE)
2443 err = -EPERM;
2444 else if (tp->repair_queue == TCP_SEND_QUEUE)
2445 tp->write_seq = val;
2446 else if (tp->repair_queue == TCP_RECV_QUEUE)
2447 tp->rcv_nxt = val;
2448 else
2449 err = -EINVAL;
2450 break;
2451
2452 case TCP_REPAIR_OPTIONS:
2453 if (!tp->repair)
2454 err = -EINVAL;
2455 else if (sk->sk_state == TCP_ESTABLISHED)
2456 err = tcp_repair_options_est(tp,
2457 (struct tcp_repair_opt __user *)optval,
2458 optlen);
2459 else
2460 err = -EPERM;
2461 break;
2462
2463 case TCP_CORK:
2464 /* When set indicates to always queue non-full frames.
2465 * Later the user clears this option and we transmit
2466 * any pending partial frames in the queue. This is
2467 * meant to be used alongside sendfile() to get properly
2468 * filled frames when the user (for example) must write
2469 * out headers with a write() call first and then use
2470 * sendfile to send out the data parts.
2471 *
2472 * TCP_CORK can be set together with TCP_NODELAY and it is
2473 * stronger than TCP_NODELAY.
2474 */
2475 if (val) {
2476 tp->nonagle |= TCP_NAGLE_CORK;
2477 } else {
2478 tp->nonagle &= ~TCP_NAGLE_CORK;
2479 if (tp->nonagle&TCP_NAGLE_OFF)
2480 tp->nonagle |= TCP_NAGLE_PUSH;
2481 tcp_push_pending_frames(sk);
2482 }
2483 break;
2484
2485 case TCP_KEEPIDLE:
2486 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2487 err = -EINVAL;
2488 else {
2489 tp->keepalive_time = val * HZ;
2490 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2491 !((1 << sk->sk_state) &
2492 (TCPF_CLOSE | TCPF_LISTEN))) {
2493 u32 elapsed = keepalive_time_elapsed(tp);
2494 if (tp->keepalive_time > elapsed)
2495 elapsed = tp->keepalive_time - elapsed;
2496 else
2497 elapsed = 0;
2498 inet_csk_reset_keepalive_timer(sk, elapsed);
2499 }
2500 }
2501 break;
2502 case TCP_KEEPINTVL:
2503 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2504 err = -EINVAL;
2505 else
2506 tp->keepalive_intvl = val * HZ;
2507 break;
2508 case TCP_KEEPCNT:
2509 if (val < 1 || val > MAX_TCP_KEEPCNT)
2510 err = -EINVAL;
2511 else
2512 tp->keepalive_probes = val;
2513 break;
2514 case TCP_SYNCNT:
2515 if (val < 1 || val > MAX_TCP_SYNCNT)
2516 err = -EINVAL;
2517 else
2518 icsk->icsk_syn_retries = val;
2519 break;
2520
2521 case TCP_SAVE_SYN:
2522 if (val < 0 || val > 1)
2523 err = -EINVAL;
2524 else
2525 tp->save_syn = val;
2526 break;
2527
2528 case TCP_LINGER2:
2529 if (val < 0)
2530 tp->linger2 = -1;
2531 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2532 tp->linger2 = 0;
2533 else
2534 tp->linger2 = val * HZ;
2535 break;
2536
2537 case TCP_DEFER_ACCEPT:
2538 /* Translate value in seconds to number of retransmits */
2539 icsk->icsk_accept_queue.rskq_defer_accept =
2540 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2541 TCP_RTO_MAX / HZ);
2542 break;
2543
2544 case TCP_WINDOW_CLAMP:
2545 if (!val) {
2546 if (sk->sk_state != TCP_CLOSE) {
2547 err = -EINVAL;
2548 break;
2549 }
2550 tp->window_clamp = 0;
2551 } else
2552 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2553 SOCK_MIN_RCVBUF / 2 : val;
2554 break;
2555
2556 case TCP_QUICKACK:
2557 if (!val) {
2558 icsk->icsk_ack.pingpong = 1;
2559 } else {
2560 icsk->icsk_ack.pingpong = 0;
2561 if ((1 << sk->sk_state) &
2562 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2563 inet_csk_ack_scheduled(sk)) {
2564 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2565 tcp_cleanup_rbuf(sk, 1);
2566 if (!(val & 1))
2567 icsk->icsk_ack.pingpong = 1;
2568 }
2569 }
2570 break;
2571
2572 #ifdef CONFIG_TCP_MD5SIG
2573 case TCP_MD5SIG:
2574 /* Read the IP->Key mappings from userspace */
2575 err = tp->af_specific->md5_parse(sk, optval, optlen);
2576 break;
2577 #endif
2578 case TCP_USER_TIMEOUT:
2579 /* Cap the max time in ms TCP will retry or probe the window
2580 * before giving up and aborting (ETIMEDOUT) a connection.
2581 */
2582 if (val < 0)
2583 err = -EINVAL;
2584 else
2585 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2586 break;
2587
2588 case TCP_FASTOPEN:
2589 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2590 TCPF_LISTEN))) {
2591 tcp_fastopen_init_key_once(true);
2592
2593 fastopen_queue_tune(sk, val);
2594 } else {
2595 err = -EINVAL;
2596 }
2597 break;
2598 case TCP_TIMESTAMP:
2599 if (!tp->repair)
2600 err = -EPERM;
2601 else
2602 tp->tsoffset = val - tcp_time_stamp;
2603 break;
2604 case TCP_NOTSENT_LOWAT:
2605 tp->notsent_lowat = val;
2606 sk->sk_write_space(sk);
2607 break;
2608 default:
2609 err = -ENOPROTOOPT;
2610 break;
2611 }
2612
2613 release_sock(sk);
2614 return err;
2615 }
2616
2617 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2618 unsigned int optlen)
2619 {
2620 const struct inet_connection_sock *icsk = inet_csk(sk);
2621
2622 if (level != SOL_TCP)
2623 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2624 optval, optlen);
2625 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2626 }
2627 EXPORT_SYMBOL(tcp_setsockopt);
2628
2629 #ifdef CONFIG_COMPAT
2630 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2631 char __user *optval, unsigned int optlen)
2632 {
2633 if (level != SOL_TCP)
2634 return inet_csk_compat_setsockopt(sk, level, optname,
2635 optval, optlen);
2636 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2637 }
2638 EXPORT_SYMBOL(compat_tcp_setsockopt);
2639 #endif
2640
2641 /* Return information about state of tcp endpoint in API format. */
2642 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2643 {
2644 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2645 const struct inet_connection_sock *icsk = inet_csk(sk);
2646 u32 now = tcp_time_stamp;
2647 unsigned int start;
2648 int notsent_bytes;
2649 u64 rate64;
2650 u32 rate;
2651
2652 memset(info, 0, sizeof(*info));
2653 if (sk->sk_type != SOCK_STREAM)
2654 return;
2655
2656 info->tcpi_state = sk_state_load(sk);
2657
2658 info->tcpi_ca_state = icsk->icsk_ca_state;
2659 info->tcpi_retransmits = icsk->icsk_retransmits;
2660 info->tcpi_probes = icsk->icsk_probes_out;
2661 info->tcpi_backoff = icsk->icsk_backoff;
2662
2663 if (tp->rx_opt.tstamp_ok)
2664 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2665 if (tcp_is_sack(tp))
2666 info->tcpi_options |= TCPI_OPT_SACK;
2667 if (tp->rx_opt.wscale_ok) {
2668 info->tcpi_options |= TCPI_OPT_WSCALE;
2669 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2670 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2671 }
2672
2673 if (tp->ecn_flags & TCP_ECN_OK)
2674 info->tcpi_options |= TCPI_OPT_ECN;
2675 if (tp->ecn_flags & TCP_ECN_SEEN)
2676 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2677 if (tp->syn_data_acked)
2678 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2679
2680 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2681 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2682 info->tcpi_snd_mss = tp->mss_cache;
2683 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2684
2685 if (info->tcpi_state == TCP_LISTEN) {
2686 info->tcpi_unacked = sk->sk_ack_backlog;
2687 info->tcpi_sacked = sk->sk_max_ack_backlog;
2688 } else {
2689 info->tcpi_unacked = tp->packets_out;
2690 info->tcpi_sacked = tp->sacked_out;
2691 }
2692 info->tcpi_lost = tp->lost_out;
2693 info->tcpi_retrans = tp->retrans_out;
2694 info->tcpi_fackets = tp->fackets_out;
2695
2696 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2697 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2698 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2699
2700 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2701 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2702 info->tcpi_rtt = tp->srtt_us >> 3;
2703 info->tcpi_rttvar = tp->mdev_us >> 2;
2704 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2705 info->tcpi_snd_cwnd = tp->snd_cwnd;
2706 info->tcpi_advmss = tp->advmss;
2707 info->tcpi_reordering = tp->reordering;
2708
2709 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2710 info->tcpi_rcv_space = tp->rcvq_space.space;
2711
2712 info->tcpi_total_retrans = tp->total_retrans;
2713
2714 rate = READ_ONCE(sk->sk_pacing_rate);
2715 rate64 = rate != ~0U ? rate : ~0ULL;
2716 put_unaligned(rate64, &info->tcpi_pacing_rate);
2717
2718 rate = READ_ONCE(sk->sk_max_pacing_rate);
2719 rate64 = rate != ~0U ? rate : ~0ULL;
2720 put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2721
2722 do {
2723 start = u64_stats_fetch_begin_irq(&tp->syncp);
2724 put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2725 put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2726 } while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2727 info->tcpi_segs_out = tp->segs_out;
2728 info->tcpi_segs_in = tp->segs_in;
2729
2730 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt);
2731 info->tcpi_notsent_bytes = max(0, notsent_bytes);
2732
2733 info->tcpi_min_rtt = tcp_min_rtt(tp);
2734 info->tcpi_data_segs_in = tp->data_segs_in;
2735 info->tcpi_data_segs_out = tp->data_segs_out;
2736 }
2737 EXPORT_SYMBOL_GPL(tcp_get_info);
2738
2739 static int do_tcp_getsockopt(struct sock *sk, int level,
2740 int optname, char __user *optval, int __user *optlen)
2741 {
2742 struct inet_connection_sock *icsk = inet_csk(sk);
2743 struct tcp_sock *tp = tcp_sk(sk);
2744 struct net *net = sock_net(sk);
2745 int val, len;
2746
2747 if (get_user(len, optlen))
2748 return -EFAULT;
2749
2750 len = min_t(unsigned int, len, sizeof(int));
2751
2752 if (len < 0)
2753 return -EINVAL;
2754
2755 switch (optname) {
2756 case TCP_MAXSEG:
2757 val = tp->mss_cache;
2758 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2759 val = tp->rx_opt.user_mss;
2760 if (tp->repair)
2761 val = tp->rx_opt.mss_clamp;
2762 break;
2763 case TCP_NODELAY:
2764 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2765 break;
2766 case TCP_CORK:
2767 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2768 break;
2769 case TCP_KEEPIDLE:
2770 val = keepalive_time_when(tp) / HZ;
2771 break;
2772 case TCP_KEEPINTVL:
2773 val = keepalive_intvl_when(tp) / HZ;
2774 break;
2775 case TCP_KEEPCNT:
2776 val = keepalive_probes(tp);
2777 break;
2778 case TCP_SYNCNT:
2779 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2780 break;
2781 case TCP_LINGER2:
2782 val = tp->linger2;
2783 if (val >= 0)
2784 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2785 break;
2786 case TCP_DEFER_ACCEPT:
2787 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2788 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2789 break;
2790 case TCP_WINDOW_CLAMP:
2791 val = tp->window_clamp;
2792 break;
2793 case TCP_INFO: {
2794 struct tcp_info info;
2795
2796 if (get_user(len, optlen))
2797 return -EFAULT;
2798
2799 tcp_get_info(sk, &info);
2800
2801 len = min_t(unsigned int, len, sizeof(info));
2802 if (put_user(len, optlen))
2803 return -EFAULT;
2804 if (copy_to_user(optval, &info, len))
2805 return -EFAULT;
2806 return 0;
2807 }
2808 case TCP_CC_INFO: {
2809 const struct tcp_congestion_ops *ca_ops;
2810 union tcp_cc_info info;
2811 size_t sz = 0;
2812 int attr;
2813
2814 if (get_user(len, optlen))
2815 return -EFAULT;
2816
2817 ca_ops = icsk->icsk_ca_ops;
2818 if (ca_ops && ca_ops->get_info)
2819 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2820
2821 len = min_t(unsigned int, len, sz);
2822 if (put_user(len, optlen))
2823 return -EFAULT;
2824 if (copy_to_user(optval, &info, len))
2825 return -EFAULT;
2826 return 0;
2827 }
2828 case TCP_QUICKACK:
2829 val = !icsk->icsk_ack.pingpong;
2830 break;
2831
2832 case TCP_CONGESTION:
2833 if (get_user(len, optlen))
2834 return -EFAULT;
2835 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2836 if (put_user(len, optlen))
2837 return -EFAULT;
2838 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2839 return -EFAULT;
2840 return 0;
2841
2842 case TCP_THIN_LINEAR_TIMEOUTS:
2843 val = tp->thin_lto;
2844 break;
2845 case TCP_THIN_DUPACK:
2846 val = tp->thin_dupack;
2847 break;
2848
2849 case TCP_REPAIR:
2850 val = tp->repair;
2851 break;
2852
2853 case TCP_REPAIR_QUEUE:
2854 if (tp->repair)
2855 val = tp->repair_queue;
2856 else
2857 return -EINVAL;
2858 break;
2859
2860 case TCP_QUEUE_SEQ:
2861 if (tp->repair_queue == TCP_SEND_QUEUE)
2862 val = tp->write_seq;
2863 else if (tp->repair_queue == TCP_RECV_QUEUE)
2864 val = tp->rcv_nxt;
2865 else
2866 return -EINVAL;
2867 break;
2868
2869 case TCP_USER_TIMEOUT:
2870 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2871 break;
2872
2873 case TCP_FASTOPEN:
2874 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
2875 break;
2876
2877 case TCP_TIMESTAMP:
2878 val = tcp_time_stamp + tp->tsoffset;
2879 break;
2880 case TCP_NOTSENT_LOWAT:
2881 val = tp->notsent_lowat;
2882 break;
2883 case TCP_SAVE_SYN:
2884 val = tp->save_syn;
2885 break;
2886 case TCP_SAVED_SYN: {
2887 if (get_user(len, optlen))
2888 return -EFAULT;
2889
2890 lock_sock(sk);
2891 if (tp->saved_syn) {
2892 if (len < tp->saved_syn[0]) {
2893 if (put_user(tp->saved_syn[0], optlen)) {
2894 release_sock(sk);
2895 return -EFAULT;
2896 }
2897 release_sock(sk);
2898 return -EINVAL;
2899 }
2900 len = tp->saved_syn[0];
2901 if (put_user(len, optlen)) {
2902 release_sock(sk);
2903 return -EFAULT;
2904 }
2905 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
2906 release_sock(sk);
2907 return -EFAULT;
2908 }
2909 tcp_saved_syn_free(tp);
2910 release_sock(sk);
2911 } else {
2912 release_sock(sk);
2913 len = 0;
2914 if (put_user(len, optlen))
2915 return -EFAULT;
2916 }
2917 return 0;
2918 }
2919 default:
2920 return -ENOPROTOOPT;
2921 }
2922
2923 if (put_user(len, optlen))
2924 return -EFAULT;
2925 if (copy_to_user(optval, &val, len))
2926 return -EFAULT;
2927 return 0;
2928 }
2929
2930 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2931 int __user *optlen)
2932 {
2933 struct inet_connection_sock *icsk = inet_csk(sk);
2934
2935 if (level != SOL_TCP)
2936 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2937 optval, optlen);
2938 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2939 }
2940 EXPORT_SYMBOL(tcp_getsockopt);
2941
2942 #ifdef CONFIG_COMPAT
2943 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2944 char __user *optval, int __user *optlen)
2945 {
2946 if (level != SOL_TCP)
2947 return inet_csk_compat_getsockopt(sk, level, optname,
2948 optval, optlen);
2949 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2950 }
2951 EXPORT_SYMBOL(compat_tcp_getsockopt);
2952 #endif
2953
2954 #ifdef CONFIG_TCP_MD5SIG
2955 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2956 static DEFINE_MUTEX(tcp_md5sig_mutex);
2957 static bool tcp_md5sig_pool_populated = false;
2958
2959 static void __tcp_alloc_md5sig_pool(void)
2960 {
2961 struct crypto_ahash *hash;
2962 int cpu;
2963
2964 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
2965 if (IS_ERR(hash))
2966 return;
2967
2968 for_each_possible_cpu(cpu) {
2969 struct ahash_request *req;
2970
2971 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
2972 continue;
2973
2974 req = ahash_request_alloc(hash, GFP_KERNEL);
2975 if (!req)
2976 return;
2977
2978 ahash_request_set_callback(req, 0, NULL, NULL);
2979
2980 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
2981 }
2982 /* before setting tcp_md5sig_pool_populated, we must commit all writes
2983 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2984 */
2985 smp_wmb();
2986 tcp_md5sig_pool_populated = true;
2987 }
2988
2989 bool tcp_alloc_md5sig_pool(void)
2990 {
2991 if (unlikely(!tcp_md5sig_pool_populated)) {
2992 mutex_lock(&tcp_md5sig_mutex);
2993
2994 if (!tcp_md5sig_pool_populated)
2995 __tcp_alloc_md5sig_pool();
2996
2997 mutex_unlock(&tcp_md5sig_mutex);
2998 }
2999 return tcp_md5sig_pool_populated;
3000 }
3001 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3002
3003
3004 /**
3005 * tcp_get_md5sig_pool - get md5sig_pool for this user
3006 *
3007 * We use percpu structure, so if we succeed, we exit with preemption
3008 * and BH disabled, to make sure another thread or softirq handling
3009 * wont try to get same context.
3010 */
3011 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3012 {
3013 local_bh_disable();
3014
3015 if (tcp_md5sig_pool_populated) {
3016 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3017 smp_rmb();
3018 return this_cpu_ptr(&tcp_md5sig_pool);
3019 }
3020 local_bh_enable();
3021 return NULL;
3022 }
3023 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3024
3025 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3026 const struct tcphdr *th)
3027 {
3028 struct scatterlist sg;
3029 struct tcphdr hdr;
3030
3031 /* We are not allowed to change tcphdr, make a local copy */
3032 memcpy(&hdr, th, sizeof(hdr));
3033 hdr.check = 0;
3034
3035 /* options aren't included in the hash */
3036 sg_init_one(&sg, &hdr, sizeof(hdr));
3037 ahash_request_set_crypt(hp->md5_req, &sg, NULL, sizeof(hdr));
3038 return crypto_ahash_update(hp->md5_req);
3039 }
3040 EXPORT_SYMBOL(tcp_md5_hash_header);
3041
3042 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3043 const struct sk_buff *skb, unsigned int header_len)
3044 {
3045 struct scatterlist sg;
3046 const struct tcphdr *tp = tcp_hdr(skb);
3047 struct ahash_request *req = hp->md5_req;
3048 unsigned int i;
3049 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3050 skb_headlen(skb) - header_len : 0;
3051 const struct skb_shared_info *shi = skb_shinfo(skb);
3052 struct sk_buff *frag_iter;
3053
3054 sg_init_table(&sg, 1);
3055
3056 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3057 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3058 if (crypto_ahash_update(req))
3059 return 1;
3060
3061 for (i = 0; i < shi->nr_frags; ++i) {
3062 const struct skb_frag_struct *f = &shi->frags[i];
3063 unsigned int offset = f->page_offset;
3064 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3065
3066 sg_set_page(&sg, page, skb_frag_size(f),
3067 offset_in_page(offset));
3068 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3069 if (crypto_ahash_update(req))
3070 return 1;
3071 }
3072
3073 skb_walk_frags(skb, frag_iter)
3074 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3075 return 1;
3076
3077 return 0;
3078 }
3079 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3080
3081 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3082 {
3083 struct scatterlist sg;
3084
3085 sg_init_one(&sg, key->key, key->keylen);
3086 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3087 return crypto_ahash_update(hp->md5_req);
3088 }
3089 EXPORT_SYMBOL(tcp_md5_hash_key);
3090
3091 #endif
3092
3093 void tcp_done(struct sock *sk)
3094 {
3095 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3096
3097 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3098 __TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3099
3100 tcp_set_state(sk, TCP_CLOSE);
3101 tcp_clear_xmit_timers(sk);
3102 if (req)
3103 reqsk_fastopen_remove(sk, req, false);
3104
3105 sk->sk_shutdown = SHUTDOWN_MASK;
3106
3107 if (!sock_flag(sk, SOCK_DEAD))
3108 sk->sk_state_change(sk);
3109 else
3110 inet_csk_destroy_sock(sk);
3111 }
3112 EXPORT_SYMBOL_GPL(tcp_done);
3113
3114 int tcp_abort(struct sock *sk, int err)
3115 {
3116 if (!sk_fullsock(sk)) {
3117 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3118 struct request_sock *req = inet_reqsk(sk);
3119
3120 local_bh_disable();
3121 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3122 req);
3123 local_bh_enable();
3124 return 0;
3125 }
3126 sock_gen_put(sk);
3127 return -EOPNOTSUPP;
3128 }
3129
3130 /* Don't race with userspace socket closes such as tcp_close. */
3131 lock_sock(sk);
3132
3133 if (sk->sk_state == TCP_LISTEN) {
3134 tcp_set_state(sk, TCP_CLOSE);
3135 inet_csk_listen_stop(sk);
3136 }
3137
3138 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3139 local_bh_disable();
3140 bh_lock_sock(sk);
3141
3142 if (!sock_flag(sk, SOCK_DEAD)) {
3143 sk->sk_err = err;
3144 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3145 smp_wmb();
3146 sk->sk_error_report(sk);
3147 if (tcp_need_reset(sk->sk_state))
3148 tcp_send_active_reset(sk, GFP_ATOMIC);
3149 tcp_done(sk);
3150 }
3151
3152 bh_unlock_sock(sk);
3153 local_bh_enable();
3154 release_sock(sk);
3155 sock_put(sk);
3156 return 0;
3157 }
3158 EXPORT_SYMBOL_GPL(tcp_abort);
3159
3160 extern struct tcp_congestion_ops tcp_reno;
3161
3162 static __initdata unsigned long thash_entries;
3163 static int __init set_thash_entries(char *str)
3164 {
3165 ssize_t ret;
3166
3167 if (!str)
3168 return 0;
3169
3170 ret = kstrtoul(str, 0, &thash_entries);
3171 if (ret)
3172 return 0;
3173
3174 return 1;
3175 }
3176 __setup("thash_entries=", set_thash_entries);
3177
3178 static void __init tcp_init_mem(void)
3179 {
3180 unsigned long limit = nr_free_buffer_pages() / 16;
3181
3182 limit = max(limit, 128UL);
3183 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3184 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3185 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3186 }
3187
3188 void __init tcp_init(void)
3189 {
3190 unsigned long limit;
3191 int max_rshare, max_wshare, cnt;
3192 unsigned int i;
3193
3194 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3195
3196 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3197 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3198 tcp_hashinfo.bind_bucket_cachep =
3199 kmem_cache_create("tcp_bind_bucket",
3200 sizeof(struct inet_bind_bucket), 0,
3201 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3202
3203 /* Size and allocate the main established and bind bucket
3204 * hash tables.
3205 *
3206 * The methodology is similar to that of the buffer cache.
3207 */
3208 tcp_hashinfo.ehash =
3209 alloc_large_system_hash("TCP established",
3210 sizeof(struct inet_ehash_bucket),
3211 thash_entries,
3212 17, /* one slot per 128 KB of memory */
3213 0,
3214 NULL,
3215 &tcp_hashinfo.ehash_mask,
3216 0,
3217 thash_entries ? 0 : 512 * 1024);
3218 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3219 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3220
3221 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3222 panic("TCP: failed to alloc ehash_locks");
3223 tcp_hashinfo.bhash =
3224 alloc_large_system_hash("TCP bind",
3225 sizeof(struct inet_bind_hashbucket),
3226 tcp_hashinfo.ehash_mask + 1,
3227 17, /* one slot per 128 KB of memory */
3228 0,
3229 &tcp_hashinfo.bhash_size,
3230 NULL,
3231 0,
3232 64 * 1024);
3233 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3234 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3235 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3236 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3237 }
3238
3239
3240 cnt = tcp_hashinfo.ehash_mask + 1;
3241
3242 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3243 sysctl_tcp_max_orphans = cnt / 2;
3244 sysctl_max_syn_backlog = max(128, cnt / 256);
3245
3246 tcp_init_mem();
3247 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3248 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3249 max_wshare = min(4UL*1024*1024, limit);
3250 max_rshare = min(6UL*1024*1024, limit);
3251
3252 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3253 sysctl_tcp_wmem[1] = 16*1024;
3254 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3255
3256 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3257 sysctl_tcp_rmem[1] = 87380;
3258 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3259
3260 pr_info("Hash tables configured (established %u bind %u)\n",
3261 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3262
3263 tcp_metrics_init();
3264 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3265 tcp_tasklet_init();
3266 }
This page took 0.187449 seconds and 5 git commands to generate.