Merge branch 'genirq' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux...
[deliverable/linux.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp.c,v 1.216 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 *
22 * Fixes:
23 * Alan Cox : Numerous verify_area() calls
24 * Alan Cox : Set the ACK bit on a reset
25 * Alan Cox : Stopped it crashing if it closed while
26 * sk->inuse=1 and was trying to connect
27 * (tcp_err()).
28 * Alan Cox : All icmp error handling was broken
29 * pointers passed where wrong and the
30 * socket was looked up backwards. Nobody
31 * tested any icmp error code obviously.
32 * Alan Cox : tcp_err() now handled properly. It
33 * wakes people on errors. poll
34 * behaves and the icmp error race
35 * has gone by moving it into sock.c
36 * Alan Cox : tcp_send_reset() fixed to work for
37 * everything not just packets for
38 * unknown sockets.
39 * Alan Cox : tcp option processing.
40 * Alan Cox : Reset tweaked (still not 100%) [Had
41 * syn rule wrong]
42 * Herp Rosmanith : More reset fixes
43 * Alan Cox : No longer acks invalid rst frames.
44 * Acking any kind of RST is right out.
45 * Alan Cox : Sets an ignore me flag on an rst
46 * receive otherwise odd bits of prattle
47 * escape still
48 * Alan Cox : Fixed another acking RST frame bug.
49 * Should stop LAN workplace lockups.
50 * Alan Cox : Some tidyups using the new skb list
51 * facilities
52 * Alan Cox : sk->keepopen now seems to work
53 * Alan Cox : Pulls options out correctly on accepts
54 * Alan Cox : Fixed assorted sk->rqueue->next errors
55 * Alan Cox : PSH doesn't end a TCP read. Switched a
56 * bit to skb ops.
57 * Alan Cox : Tidied tcp_data to avoid a potential
58 * nasty.
59 * Alan Cox : Added some better commenting, as the
60 * tcp is hard to follow
61 * Alan Cox : Removed incorrect check for 20 * psh
62 * Michael O'Reilly : ack < copied bug fix.
63 * Johannes Stille : Misc tcp fixes (not all in yet).
64 * Alan Cox : FIN with no memory -> CRASH
65 * Alan Cox : Added socket option proto entries.
66 * Also added awareness of them to accept.
67 * Alan Cox : Added TCP options (SOL_TCP)
68 * Alan Cox : Switched wakeup calls to callbacks,
69 * so the kernel can layer network
70 * sockets.
71 * Alan Cox : Use ip_tos/ip_ttl settings.
72 * Alan Cox : Handle FIN (more) properly (we hope).
73 * Alan Cox : RST frames sent on unsynchronised
74 * state ack error.
75 * Alan Cox : Put in missing check for SYN bit.
76 * Alan Cox : Added tcp_select_window() aka NET2E
77 * window non shrink trick.
78 * Alan Cox : Added a couple of small NET2E timer
79 * fixes
80 * Charles Hedrick : TCP fixes
81 * Toomas Tamm : TCP window fixes
82 * Alan Cox : Small URG fix to rlogin ^C ack fight
83 * Charles Hedrick : Rewrote most of it to actually work
84 * Linus : Rewrote tcp_read() and URG handling
85 * completely
86 * Gerhard Koerting: Fixed some missing timer handling
87 * Matthew Dillon : Reworked TCP machine states as per RFC
88 * Gerhard Koerting: PC/TCP workarounds
89 * Adam Caldwell : Assorted timer/timing errors
90 * Matthew Dillon : Fixed another RST bug
91 * Alan Cox : Move to kernel side addressing changes.
92 * Alan Cox : Beginning work on TCP fastpathing
93 * (not yet usable)
94 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
95 * Alan Cox : TCP fast path debugging
96 * Alan Cox : Window clamping
97 * Michael Riepe : Bug in tcp_check()
98 * Matt Dillon : More TCP improvements and RST bug fixes
99 * Matt Dillon : Yet more small nasties remove from the
100 * TCP code (Be very nice to this man if
101 * tcp finally works 100%) 8)
102 * Alan Cox : BSD accept semantics.
103 * Alan Cox : Reset on closedown bug.
104 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
105 * Michael Pall : Handle poll() after URG properly in
106 * all cases.
107 * Michael Pall : Undo the last fix in tcp_read_urg()
108 * (multi URG PUSH broke rlogin).
109 * Michael Pall : Fix the multi URG PUSH problem in
110 * tcp_readable(), poll() after URG
111 * works now.
112 * Michael Pall : recv(...,MSG_OOB) never blocks in the
113 * BSD api.
114 * Alan Cox : Changed the semantics of sk->socket to
115 * fix a race and a signal problem with
116 * accept() and async I/O.
117 * Alan Cox : Relaxed the rules on tcp_sendto().
118 * Yury Shevchuk : Really fixed accept() blocking problem.
119 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
120 * clients/servers which listen in on
121 * fixed ports.
122 * Alan Cox : Cleaned the above up and shrank it to
123 * a sensible code size.
124 * Alan Cox : Self connect lockup fix.
125 * Alan Cox : No connect to multicast.
126 * Ross Biro : Close unaccepted children on master
127 * socket close.
128 * Alan Cox : Reset tracing code.
129 * Alan Cox : Spurious resets on shutdown.
130 * Alan Cox : Giant 15 minute/60 second timer error
131 * Alan Cox : Small whoops in polling before an
132 * accept.
133 * Alan Cox : Kept the state trace facility since
134 * it's handy for debugging.
135 * Alan Cox : More reset handler fixes.
136 * Alan Cox : Started rewriting the code based on
137 * the RFC's for other useful protocol
138 * references see: Comer, KA9Q NOS, and
139 * for a reference on the difference
140 * between specifications and how BSD
141 * works see the 4.4lite source.
142 * A.N.Kuznetsov : Don't time wait on completion of tidy
143 * close.
144 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
145 * Linus Torvalds : Fixed BSD port reuse to work first syn
146 * Alan Cox : Reimplemented timers as per the RFC
147 * and using multiple timers for sanity.
148 * Alan Cox : Small bug fixes, and a lot of new
149 * comments.
150 * Alan Cox : Fixed dual reader crash by locking
151 * the buffers (much like datagram.c)
152 * Alan Cox : Fixed stuck sockets in probe. A probe
153 * now gets fed up of retrying without
154 * (even a no space) answer.
155 * Alan Cox : Extracted closing code better
156 * Alan Cox : Fixed the closing state machine to
157 * resemble the RFC.
158 * Alan Cox : More 'per spec' fixes.
159 * Jorge Cwik : Even faster checksumming.
160 * Alan Cox : tcp_data() doesn't ack illegal PSH
161 * only frames. At least one pc tcp stack
162 * generates them.
163 * Alan Cox : Cache last socket.
164 * Alan Cox : Per route irtt.
165 * Matt Day : poll()->select() match BSD precisely on error
166 * Alan Cox : New buffers
167 * Marc Tamsky : Various sk->prot->retransmits and
168 * sk->retransmits misupdating fixed.
169 * Fixed tcp_write_timeout: stuck close,
170 * and TCP syn retries gets used now.
171 * Mark Yarvis : In tcp_read_wakeup(), don't send an
172 * ack if state is TCP_CLOSED.
173 * Alan Cox : Look up device on a retransmit - routes may
174 * change. Doesn't yet cope with MSS shrink right
175 * but it's a start!
176 * Marc Tamsky : Closing in closing fixes.
177 * Mike Shaver : RFC1122 verifications.
178 * Alan Cox : rcv_saddr errors.
179 * Alan Cox : Block double connect().
180 * Alan Cox : Small hooks for enSKIP.
181 * Alexey Kuznetsov: Path MTU discovery.
182 * Alan Cox : Support soft errors.
183 * Alan Cox : Fix MTU discovery pathological case
184 * when the remote claims no mtu!
185 * Marc Tamsky : TCP_CLOSE fix.
186 * Colin (G3TNE) : Send a reset on syn ack replies in
187 * window but wrong (fixes NT lpd problems)
188 * Pedro Roque : Better TCP window handling, delayed ack.
189 * Joerg Reuter : No modification of locked buffers in
190 * tcp_do_retransmit()
191 * Eric Schenk : Changed receiver side silly window
192 * avoidance algorithm to BSD style
193 * algorithm. This doubles throughput
194 * against machines running Solaris,
195 * and seems to result in general
196 * improvement.
197 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
198 * Willy Konynenberg : Transparent proxying support.
199 * Mike McLagan : Routing by source
200 * Keith Owens : Do proper merging with partial SKB's in
201 * tcp_do_sendmsg to avoid burstiness.
202 * Eric Schenk : Fix fast close down bug with
203 * shutdown() followed by close().
204 * Andi Kleen : Make poll agree with SIGIO
205 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
206 * lingertime == 0 (RFC 793 ABORT Call)
207 * Hirokazu Takahashi : Use copy_from_user() instead of
208 * csum_and_copy_from_user() if possible.
209 *
210 * This program is free software; you can redistribute it and/or
211 * modify it under the terms of the GNU General Public License
212 * as published by the Free Software Foundation; either version
213 * 2 of the License, or(at your option) any later version.
214 *
215 * Description of States:
216 *
217 * TCP_SYN_SENT sent a connection request, waiting for ack
218 *
219 * TCP_SYN_RECV received a connection request, sent ack,
220 * waiting for final ack in three-way handshake.
221 *
222 * TCP_ESTABLISHED connection established
223 *
224 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
225 * transmission of remaining buffered data
226 *
227 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
228 * to shutdown
229 *
230 * TCP_CLOSING both sides have shutdown but we still have
231 * data we have to finish sending
232 *
233 * TCP_TIME_WAIT timeout to catch resent junk before entering
234 * closed, can only be entered from FIN_WAIT2
235 * or CLOSING. Required because the other end
236 * may not have gotten our last ACK causing it
237 * to retransmit the data packet (which we ignore)
238 *
239 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
240 * us to finish writing our data and to shutdown
241 * (we have to close() to move on to LAST_ACK)
242 *
243 * TCP_LAST_ACK out side has shutdown after remote has
244 * shutdown. There may still be data in our
245 * buffer that we have to finish sending
246 *
247 * TCP_CLOSE socket is finished
248 */
249
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269
270 #include <net/icmp.h>
271 #include <net/tcp.h>
272 #include <net/xfrm.h>
273 #include <net/ip.h>
274 #include <net/netdma.h>
275 #include <net/sock.h>
276
277 #include <asm/uaccess.h>
278 #include <asm/ioctls.h>
279
280 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
281
282 DEFINE_SNMP_STAT(struct tcp_mib, tcp_statistics) __read_mostly;
283
284 atomic_t tcp_orphan_count = ATOMIC_INIT(0);
285
286 EXPORT_SYMBOL_GPL(tcp_orphan_count);
287
288 int sysctl_tcp_mem[3] __read_mostly;
289 int sysctl_tcp_wmem[3] __read_mostly;
290 int sysctl_tcp_rmem[3] __read_mostly;
291
292 EXPORT_SYMBOL(sysctl_tcp_mem);
293 EXPORT_SYMBOL(sysctl_tcp_rmem);
294 EXPORT_SYMBOL(sysctl_tcp_wmem);
295
296 atomic_t tcp_memory_allocated; /* Current allocated memory. */
297 atomic_t tcp_sockets_allocated; /* Current number of TCP sockets. */
298
299 EXPORT_SYMBOL(tcp_memory_allocated);
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301
302 /*
303 * TCP splice context
304 */
305 struct tcp_splice_state {
306 struct pipe_inode_info *pipe;
307 size_t len;
308 unsigned int flags;
309 };
310
311 /*
312 * Pressure flag: try to collapse.
313 * Technical note: it is used by multiple contexts non atomically.
314 * All the __sk_mem_schedule() is of this nature: accounting
315 * is strict, actions are advisory and have some latency.
316 */
317 int tcp_memory_pressure __read_mostly;
318
319 EXPORT_SYMBOL(tcp_memory_pressure);
320
321 void tcp_enter_memory_pressure(void)
322 {
323 if (!tcp_memory_pressure) {
324 NET_INC_STATS(LINUX_MIB_TCPMEMORYPRESSURES);
325 tcp_memory_pressure = 1;
326 }
327 }
328
329 EXPORT_SYMBOL(tcp_enter_memory_pressure);
330
331 /*
332 * Wait for a TCP event.
333 *
334 * Note that we don't need to lock the socket, as the upper poll layers
335 * take care of normal races (between the test and the event) and we don't
336 * go look at any of the socket buffers directly.
337 */
338 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
339 {
340 unsigned int mask;
341 struct sock *sk = sock->sk;
342 struct tcp_sock *tp = tcp_sk(sk);
343
344 poll_wait(file, sk->sk_sleep, wait);
345 if (sk->sk_state == TCP_LISTEN)
346 return inet_csk_listen_poll(sk);
347
348 /* Socket is not locked. We are protected from async events
349 by poll logic and correct handling of state changes
350 made by another threads is impossible in any case.
351 */
352
353 mask = 0;
354 if (sk->sk_err)
355 mask = POLLERR;
356
357 /*
358 * POLLHUP is certainly not done right. But poll() doesn't
359 * have a notion of HUP in just one direction, and for a
360 * socket the read side is more interesting.
361 *
362 * Some poll() documentation says that POLLHUP is incompatible
363 * with the POLLOUT/POLLWR flags, so somebody should check this
364 * all. But careful, it tends to be safer to return too many
365 * bits than too few, and you can easily break real applications
366 * if you don't tell them that something has hung up!
367 *
368 * Check-me.
369 *
370 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
371 * our fs/select.c). It means that after we received EOF,
372 * poll always returns immediately, making impossible poll() on write()
373 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
374 * if and only if shutdown has been made in both directions.
375 * Actually, it is interesting to look how Solaris and DUX
376 * solve this dilemma. I would prefer, if PULLHUP were maskable,
377 * then we could set it on SND_SHUTDOWN. BTW examples given
378 * in Stevens' books assume exactly this behaviour, it explains
379 * why PULLHUP is incompatible with POLLOUT. --ANK
380 *
381 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
382 * blocking on fresh not-connected or disconnected socket. --ANK
383 */
384 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
385 mask |= POLLHUP;
386 if (sk->sk_shutdown & RCV_SHUTDOWN)
387 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
388
389 /* Connected? */
390 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
391 /* Potential race condition. If read of tp below will
392 * escape above sk->sk_state, we can be illegally awaken
393 * in SYN_* states. */
394 if ((tp->rcv_nxt != tp->copied_seq) &&
395 (tp->urg_seq != tp->copied_seq ||
396 tp->rcv_nxt != tp->copied_seq + 1 ||
397 sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data))
398 mask |= POLLIN | POLLRDNORM;
399
400 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
401 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
402 mask |= POLLOUT | POLLWRNORM;
403 } else { /* send SIGIO later */
404 set_bit(SOCK_ASYNC_NOSPACE,
405 &sk->sk_socket->flags);
406 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
407
408 /* Race breaker. If space is freed after
409 * wspace test but before the flags are set,
410 * IO signal will be lost.
411 */
412 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
413 mask |= POLLOUT | POLLWRNORM;
414 }
415 }
416
417 if (tp->urg_data & TCP_URG_VALID)
418 mask |= POLLPRI;
419 }
420 return mask;
421 }
422
423 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
424 {
425 struct tcp_sock *tp = tcp_sk(sk);
426 int answ;
427
428 switch (cmd) {
429 case SIOCINQ:
430 if (sk->sk_state == TCP_LISTEN)
431 return -EINVAL;
432
433 lock_sock(sk);
434 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
435 answ = 0;
436 else if (sock_flag(sk, SOCK_URGINLINE) ||
437 !tp->urg_data ||
438 before(tp->urg_seq, tp->copied_seq) ||
439 !before(tp->urg_seq, tp->rcv_nxt)) {
440 answ = tp->rcv_nxt - tp->copied_seq;
441
442 /* Subtract 1, if FIN is in queue. */
443 if (answ && !skb_queue_empty(&sk->sk_receive_queue))
444 answ -=
445 tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin;
446 } else
447 answ = tp->urg_seq - tp->copied_seq;
448 release_sock(sk);
449 break;
450 case SIOCATMARK:
451 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
452 break;
453 case SIOCOUTQ:
454 if (sk->sk_state == TCP_LISTEN)
455 return -EINVAL;
456
457 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
458 answ = 0;
459 else
460 answ = tp->write_seq - tp->snd_una;
461 break;
462 default:
463 return -ENOIOCTLCMD;
464 }
465
466 return put_user(answ, (int __user *)arg);
467 }
468
469 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
470 {
471 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
472 tp->pushed_seq = tp->write_seq;
473 }
474
475 static inline int forced_push(struct tcp_sock *tp)
476 {
477 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
478 }
479
480 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
481 {
482 struct tcp_sock *tp = tcp_sk(sk);
483 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
484
485 skb->csum = 0;
486 tcb->seq = tcb->end_seq = tp->write_seq;
487 tcb->flags = TCPCB_FLAG_ACK;
488 tcb->sacked = 0;
489 skb_header_release(skb);
490 tcp_add_write_queue_tail(sk, skb);
491 sk->sk_wmem_queued += skb->truesize;
492 sk_mem_charge(sk, skb->truesize);
493 if (tp->nonagle & TCP_NAGLE_PUSH)
494 tp->nonagle &= ~TCP_NAGLE_PUSH;
495 }
496
497 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
498 struct sk_buff *skb)
499 {
500 if (flags & MSG_OOB) {
501 tp->urg_mode = 1;
502 tp->snd_up = tp->write_seq;
503 }
504 }
505
506 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
507 int nonagle)
508 {
509 struct tcp_sock *tp = tcp_sk(sk);
510
511 if (tcp_send_head(sk)) {
512 struct sk_buff *skb = tcp_write_queue_tail(sk);
513 if (!(flags & MSG_MORE) || forced_push(tp))
514 tcp_mark_push(tp, skb);
515 tcp_mark_urg(tp, flags, skb);
516 __tcp_push_pending_frames(sk, mss_now,
517 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
518 }
519 }
520
521 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
522 unsigned int offset, size_t len)
523 {
524 struct tcp_splice_state *tss = rd_desc->arg.data;
525
526 return skb_splice_bits(skb, offset, tss->pipe, tss->len, tss->flags);
527 }
528
529 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
530 {
531 /* Store TCP splice context information in read_descriptor_t. */
532 read_descriptor_t rd_desc = {
533 .arg.data = tss,
534 };
535
536 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
537 }
538
539 /**
540 * tcp_splice_read - splice data from TCP socket to a pipe
541 * @sock: socket to splice from
542 * @ppos: position (not valid)
543 * @pipe: pipe to splice to
544 * @len: number of bytes to splice
545 * @flags: splice modifier flags
546 *
547 * Description:
548 * Will read pages from given socket and fill them into a pipe.
549 *
550 **/
551 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
552 struct pipe_inode_info *pipe, size_t len,
553 unsigned int flags)
554 {
555 struct sock *sk = sock->sk;
556 struct tcp_splice_state tss = {
557 .pipe = pipe,
558 .len = len,
559 .flags = flags,
560 };
561 long timeo;
562 ssize_t spliced;
563 int ret;
564
565 /*
566 * We can't seek on a socket input
567 */
568 if (unlikely(*ppos))
569 return -ESPIPE;
570
571 ret = spliced = 0;
572
573 lock_sock(sk);
574
575 timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
576 while (tss.len) {
577 ret = __tcp_splice_read(sk, &tss);
578 if (ret < 0)
579 break;
580 else if (!ret) {
581 if (spliced)
582 break;
583 if (flags & SPLICE_F_NONBLOCK) {
584 ret = -EAGAIN;
585 break;
586 }
587 if (sock_flag(sk, SOCK_DONE))
588 break;
589 if (sk->sk_err) {
590 ret = sock_error(sk);
591 break;
592 }
593 if (sk->sk_shutdown & RCV_SHUTDOWN)
594 break;
595 if (sk->sk_state == TCP_CLOSE) {
596 /*
597 * This occurs when user tries to read
598 * from never connected socket.
599 */
600 if (!sock_flag(sk, SOCK_DONE))
601 ret = -ENOTCONN;
602 break;
603 }
604 if (!timeo) {
605 ret = -EAGAIN;
606 break;
607 }
608 sk_wait_data(sk, &timeo);
609 if (signal_pending(current)) {
610 ret = sock_intr_errno(timeo);
611 break;
612 }
613 continue;
614 }
615 tss.len -= ret;
616 spliced += ret;
617
618 release_sock(sk);
619 lock_sock(sk);
620
621 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
622 (sk->sk_shutdown & RCV_SHUTDOWN) || !timeo ||
623 signal_pending(current))
624 break;
625 }
626
627 release_sock(sk);
628
629 if (spliced)
630 return spliced;
631
632 return ret;
633 }
634
635 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
636 {
637 struct sk_buff *skb;
638
639 /* The TCP header must be at least 32-bit aligned. */
640 size = ALIGN(size, 4);
641
642 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
643 if (skb) {
644 if (sk_wmem_schedule(sk, skb->truesize)) {
645 /*
646 * Make sure that we have exactly size bytes
647 * available to the caller, no more, no less.
648 */
649 skb_reserve(skb, skb_tailroom(skb) - size);
650 return skb;
651 }
652 __kfree_skb(skb);
653 } else {
654 sk->sk_prot->enter_memory_pressure();
655 sk_stream_moderate_sndbuf(sk);
656 }
657 return NULL;
658 }
659
660 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
661 size_t psize, int flags)
662 {
663 struct tcp_sock *tp = tcp_sk(sk);
664 int mss_now, size_goal;
665 int err;
666 ssize_t copied;
667 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
668
669 /* Wait for a connection to finish. */
670 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
671 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
672 goto out_err;
673
674 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
675
676 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
677 size_goal = tp->xmit_size_goal;
678 copied = 0;
679
680 err = -EPIPE;
681 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
682 goto do_error;
683
684 while (psize > 0) {
685 struct sk_buff *skb = tcp_write_queue_tail(sk);
686 struct page *page = pages[poffset / PAGE_SIZE];
687 int copy, i, can_coalesce;
688 int offset = poffset % PAGE_SIZE;
689 int size = min_t(size_t, psize, PAGE_SIZE - offset);
690
691 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
692 new_segment:
693 if (!sk_stream_memory_free(sk))
694 goto wait_for_sndbuf;
695
696 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
697 if (!skb)
698 goto wait_for_memory;
699
700 skb_entail(sk, skb);
701 copy = size_goal;
702 }
703
704 if (copy > size)
705 copy = size;
706
707 i = skb_shinfo(skb)->nr_frags;
708 can_coalesce = skb_can_coalesce(skb, i, page, offset);
709 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
710 tcp_mark_push(tp, skb);
711 goto new_segment;
712 }
713 if (!sk_wmem_schedule(sk, copy))
714 goto wait_for_memory;
715
716 if (can_coalesce) {
717 skb_shinfo(skb)->frags[i - 1].size += copy;
718 } else {
719 get_page(page);
720 skb_fill_page_desc(skb, i, page, offset, copy);
721 }
722
723 skb->len += copy;
724 skb->data_len += copy;
725 skb->truesize += copy;
726 sk->sk_wmem_queued += copy;
727 sk_mem_charge(sk, copy);
728 skb->ip_summed = CHECKSUM_PARTIAL;
729 tp->write_seq += copy;
730 TCP_SKB_CB(skb)->end_seq += copy;
731 skb_shinfo(skb)->gso_segs = 0;
732
733 if (!copied)
734 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
735
736 copied += copy;
737 poffset += copy;
738 if (!(psize -= copy))
739 goto out;
740
741 if (skb->len < size_goal || (flags & MSG_OOB))
742 continue;
743
744 if (forced_push(tp)) {
745 tcp_mark_push(tp, skb);
746 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
747 } else if (skb == tcp_send_head(sk))
748 tcp_push_one(sk, mss_now);
749 continue;
750
751 wait_for_sndbuf:
752 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
753 wait_for_memory:
754 if (copied)
755 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
756
757 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
758 goto do_error;
759
760 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
761 size_goal = tp->xmit_size_goal;
762 }
763
764 out:
765 if (copied)
766 tcp_push(sk, flags, mss_now, tp->nonagle);
767 return copied;
768
769 do_error:
770 if (copied)
771 goto out;
772 out_err:
773 return sk_stream_error(sk, flags, err);
774 }
775
776 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
777 size_t size, int flags)
778 {
779 ssize_t res;
780 struct sock *sk = sock->sk;
781
782 if (!(sk->sk_route_caps & NETIF_F_SG) ||
783 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
784 return sock_no_sendpage(sock, page, offset, size, flags);
785
786 lock_sock(sk);
787 TCP_CHECK_TIMER(sk);
788 res = do_tcp_sendpages(sk, &page, offset, size, flags);
789 TCP_CHECK_TIMER(sk);
790 release_sock(sk);
791 return res;
792 }
793
794 #define TCP_PAGE(sk) (sk->sk_sndmsg_page)
795 #define TCP_OFF(sk) (sk->sk_sndmsg_off)
796
797 static inline int select_size(struct sock *sk)
798 {
799 struct tcp_sock *tp = tcp_sk(sk);
800 int tmp = tp->mss_cache;
801
802 if (sk->sk_route_caps & NETIF_F_SG) {
803 if (sk_can_gso(sk))
804 tmp = 0;
805 else {
806 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
807
808 if (tmp >= pgbreak &&
809 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
810 tmp = pgbreak;
811 }
812 }
813
814 return tmp;
815 }
816
817 int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
818 size_t size)
819 {
820 struct sock *sk = sock->sk;
821 struct iovec *iov;
822 struct tcp_sock *tp = tcp_sk(sk);
823 struct sk_buff *skb;
824 int iovlen, flags;
825 int mss_now, size_goal;
826 int err, copied;
827 long timeo;
828
829 lock_sock(sk);
830 TCP_CHECK_TIMER(sk);
831
832 flags = msg->msg_flags;
833 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
834
835 /* Wait for a connection to finish. */
836 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
837 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
838 goto out_err;
839
840 /* This should be in poll */
841 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
842
843 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
844 size_goal = tp->xmit_size_goal;
845
846 /* Ok commence sending. */
847 iovlen = msg->msg_iovlen;
848 iov = msg->msg_iov;
849 copied = 0;
850
851 err = -EPIPE;
852 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
853 goto do_error;
854
855 while (--iovlen >= 0) {
856 int seglen = iov->iov_len;
857 unsigned char __user *from = iov->iov_base;
858
859 iov++;
860
861 while (seglen > 0) {
862 int copy;
863
864 skb = tcp_write_queue_tail(sk);
865
866 if (!tcp_send_head(sk) ||
867 (copy = size_goal - skb->len) <= 0) {
868
869 new_segment:
870 /* Allocate new segment. If the interface is SG,
871 * allocate skb fitting to single page.
872 */
873 if (!sk_stream_memory_free(sk))
874 goto wait_for_sndbuf;
875
876 skb = sk_stream_alloc_skb(sk, select_size(sk),
877 sk->sk_allocation);
878 if (!skb)
879 goto wait_for_memory;
880
881 /*
882 * Check whether we can use HW checksum.
883 */
884 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
885 skb->ip_summed = CHECKSUM_PARTIAL;
886
887 skb_entail(sk, skb);
888 copy = size_goal;
889 }
890
891 /* Try to append data to the end of skb. */
892 if (copy > seglen)
893 copy = seglen;
894
895 /* Where to copy to? */
896 if (skb_tailroom(skb) > 0) {
897 /* We have some space in skb head. Superb! */
898 if (copy > skb_tailroom(skb))
899 copy = skb_tailroom(skb);
900 if ((err = skb_add_data(skb, from, copy)) != 0)
901 goto do_fault;
902 } else {
903 int merge = 0;
904 int i = skb_shinfo(skb)->nr_frags;
905 struct page *page = TCP_PAGE(sk);
906 int off = TCP_OFF(sk);
907
908 if (skb_can_coalesce(skb, i, page, off) &&
909 off != PAGE_SIZE) {
910 /* We can extend the last page
911 * fragment. */
912 merge = 1;
913 } else if (i == MAX_SKB_FRAGS ||
914 (!i &&
915 !(sk->sk_route_caps & NETIF_F_SG))) {
916 /* Need to add new fragment and cannot
917 * do this because interface is non-SG,
918 * or because all the page slots are
919 * busy. */
920 tcp_mark_push(tp, skb);
921 goto new_segment;
922 } else if (page) {
923 if (off == PAGE_SIZE) {
924 put_page(page);
925 TCP_PAGE(sk) = page = NULL;
926 off = 0;
927 }
928 } else
929 off = 0;
930
931 if (copy > PAGE_SIZE - off)
932 copy = PAGE_SIZE - off;
933
934 if (!sk_wmem_schedule(sk, copy))
935 goto wait_for_memory;
936
937 if (!page) {
938 /* Allocate new cache page. */
939 if (!(page = sk_stream_alloc_page(sk)))
940 goto wait_for_memory;
941 }
942
943 /* Time to copy data. We are close to
944 * the end! */
945 err = skb_copy_to_page(sk, from, skb, page,
946 off, copy);
947 if (err) {
948 /* If this page was new, give it to the
949 * socket so it does not get leaked.
950 */
951 if (!TCP_PAGE(sk)) {
952 TCP_PAGE(sk) = page;
953 TCP_OFF(sk) = 0;
954 }
955 goto do_error;
956 }
957
958 /* Update the skb. */
959 if (merge) {
960 skb_shinfo(skb)->frags[i - 1].size +=
961 copy;
962 } else {
963 skb_fill_page_desc(skb, i, page, off, copy);
964 if (TCP_PAGE(sk)) {
965 get_page(page);
966 } else if (off + copy < PAGE_SIZE) {
967 get_page(page);
968 TCP_PAGE(sk) = page;
969 }
970 }
971
972 TCP_OFF(sk) = off + copy;
973 }
974
975 if (!copied)
976 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
977
978 tp->write_seq += copy;
979 TCP_SKB_CB(skb)->end_seq += copy;
980 skb_shinfo(skb)->gso_segs = 0;
981
982 from += copy;
983 copied += copy;
984 if ((seglen -= copy) == 0 && iovlen == 0)
985 goto out;
986
987 if (skb->len < size_goal || (flags & MSG_OOB))
988 continue;
989
990 if (forced_push(tp)) {
991 tcp_mark_push(tp, skb);
992 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
993 } else if (skb == tcp_send_head(sk))
994 tcp_push_one(sk, mss_now);
995 continue;
996
997 wait_for_sndbuf:
998 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
999 wait_for_memory:
1000 if (copied)
1001 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1002
1003 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1004 goto do_error;
1005
1006 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
1007 size_goal = tp->xmit_size_goal;
1008 }
1009 }
1010
1011 out:
1012 if (copied)
1013 tcp_push(sk, flags, mss_now, tp->nonagle);
1014 TCP_CHECK_TIMER(sk);
1015 release_sock(sk);
1016 return copied;
1017
1018 do_fault:
1019 if (!skb->len) {
1020 tcp_unlink_write_queue(skb, sk);
1021 /* It is the one place in all of TCP, except connection
1022 * reset, where we can be unlinking the send_head.
1023 */
1024 tcp_check_send_head(sk, skb);
1025 sk_wmem_free_skb(sk, skb);
1026 }
1027
1028 do_error:
1029 if (copied)
1030 goto out;
1031 out_err:
1032 err = sk_stream_error(sk, flags, err);
1033 TCP_CHECK_TIMER(sk);
1034 release_sock(sk);
1035 return err;
1036 }
1037
1038 /*
1039 * Handle reading urgent data. BSD has very simple semantics for
1040 * this, no blocking and very strange errors 8)
1041 */
1042
1043 static int tcp_recv_urg(struct sock *sk, long timeo,
1044 struct msghdr *msg, int len, int flags,
1045 int *addr_len)
1046 {
1047 struct tcp_sock *tp = tcp_sk(sk);
1048
1049 /* No URG data to read. */
1050 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1051 tp->urg_data == TCP_URG_READ)
1052 return -EINVAL; /* Yes this is right ! */
1053
1054 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1055 return -ENOTCONN;
1056
1057 if (tp->urg_data & TCP_URG_VALID) {
1058 int err = 0;
1059 char c = tp->urg_data;
1060
1061 if (!(flags & MSG_PEEK))
1062 tp->urg_data = TCP_URG_READ;
1063
1064 /* Read urgent data. */
1065 msg->msg_flags |= MSG_OOB;
1066
1067 if (len > 0) {
1068 if (!(flags & MSG_TRUNC))
1069 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1070 len = 1;
1071 } else
1072 msg->msg_flags |= MSG_TRUNC;
1073
1074 return err ? -EFAULT : len;
1075 }
1076
1077 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1078 return 0;
1079
1080 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1081 * the available implementations agree in this case:
1082 * this call should never block, independent of the
1083 * blocking state of the socket.
1084 * Mike <pall@rz.uni-karlsruhe.de>
1085 */
1086 return -EAGAIN;
1087 }
1088
1089 /* Clean up the receive buffer for full frames taken by the user,
1090 * then send an ACK if necessary. COPIED is the number of bytes
1091 * tcp_recvmsg has given to the user so far, it speeds up the
1092 * calculation of whether or not we must ACK for the sake of
1093 * a window update.
1094 */
1095 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1096 {
1097 struct tcp_sock *tp = tcp_sk(sk);
1098 int time_to_ack = 0;
1099
1100 #if TCP_DEBUG
1101 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1102
1103 BUG_TRAP(!skb || before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
1104 #endif
1105
1106 if (inet_csk_ack_scheduled(sk)) {
1107 const struct inet_connection_sock *icsk = inet_csk(sk);
1108 /* Delayed ACKs frequently hit locked sockets during bulk
1109 * receive. */
1110 if (icsk->icsk_ack.blocked ||
1111 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1112 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1113 /*
1114 * If this read emptied read buffer, we send ACK, if
1115 * connection is not bidirectional, user drained
1116 * receive buffer and there was a small segment
1117 * in queue.
1118 */
1119 (copied > 0 &&
1120 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1121 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1122 !icsk->icsk_ack.pingpong)) &&
1123 !atomic_read(&sk->sk_rmem_alloc)))
1124 time_to_ack = 1;
1125 }
1126
1127 /* We send an ACK if we can now advertise a non-zero window
1128 * which has been raised "significantly".
1129 *
1130 * Even if window raised up to infinity, do not send window open ACK
1131 * in states, where we will not receive more. It is useless.
1132 */
1133 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1134 __u32 rcv_window_now = tcp_receive_window(tp);
1135
1136 /* Optimize, __tcp_select_window() is not cheap. */
1137 if (2*rcv_window_now <= tp->window_clamp) {
1138 __u32 new_window = __tcp_select_window(sk);
1139
1140 /* Send ACK now, if this read freed lots of space
1141 * in our buffer. Certainly, new_window is new window.
1142 * We can advertise it now, if it is not less than current one.
1143 * "Lots" means "at least twice" here.
1144 */
1145 if (new_window && new_window >= 2 * rcv_window_now)
1146 time_to_ack = 1;
1147 }
1148 }
1149 if (time_to_ack)
1150 tcp_send_ack(sk);
1151 }
1152
1153 static void tcp_prequeue_process(struct sock *sk)
1154 {
1155 struct sk_buff *skb;
1156 struct tcp_sock *tp = tcp_sk(sk);
1157
1158 NET_INC_STATS_USER(LINUX_MIB_TCPPREQUEUED);
1159
1160 /* RX process wants to run with disabled BHs, though it is not
1161 * necessary */
1162 local_bh_disable();
1163 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1164 sk->sk_backlog_rcv(sk, skb);
1165 local_bh_enable();
1166
1167 /* Clear memory counter. */
1168 tp->ucopy.memory = 0;
1169 }
1170
1171 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1172 {
1173 struct sk_buff *skb;
1174 u32 offset;
1175
1176 skb_queue_walk(&sk->sk_receive_queue, skb) {
1177 offset = seq - TCP_SKB_CB(skb)->seq;
1178 if (tcp_hdr(skb)->syn)
1179 offset--;
1180 if (offset < skb->len || tcp_hdr(skb)->fin) {
1181 *off = offset;
1182 return skb;
1183 }
1184 }
1185 return NULL;
1186 }
1187
1188 /*
1189 * This routine provides an alternative to tcp_recvmsg() for routines
1190 * that would like to handle copying from skbuffs directly in 'sendfile'
1191 * fashion.
1192 * Note:
1193 * - It is assumed that the socket was locked by the caller.
1194 * - The routine does not block.
1195 * - At present, there is no support for reading OOB data
1196 * or for 'peeking' the socket using this routine
1197 * (although both would be easy to implement).
1198 */
1199 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1200 sk_read_actor_t recv_actor)
1201 {
1202 struct sk_buff *skb;
1203 struct tcp_sock *tp = tcp_sk(sk);
1204 u32 seq = tp->copied_seq;
1205 u32 offset;
1206 int copied = 0;
1207
1208 if (sk->sk_state == TCP_LISTEN)
1209 return -ENOTCONN;
1210 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1211 if (offset < skb->len) {
1212 int used;
1213 size_t len;
1214
1215 len = skb->len - offset;
1216 /* Stop reading if we hit a patch of urgent data */
1217 if (tp->urg_data) {
1218 u32 urg_offset = tp->urg_seq - seq;
1219 if (urg_offset < len)
1220 len = urg_offset;
1221 if (!len)
1222 break;
1223 }
1224 used = recv_actor(desc, skb, offset, len);
1225 if (used < 0) {
1226 if (!copied)
1227 copied = used;
1228 break;
1229 } else if (used <= len) {
1230 seq += used;
1231 copied += used;
1232 offset += used;
1233 }
1234 /*
1235 * If recv_actor drops the lock (e.g. TCP splice
1236 * receive) the skb pointer might be invalid when
1237 * getting here: tcp_collapse might have deleted it
1238 * while aggregating skbs from the socket queue.
1239 */
1240 skb = tcp_recv_skb(sk, seq-1, &offset);
1241 if (!skb || (offset+1 != skb->len))
1242 break;
1243 }
1244 if (tcp_hdr(skb)->fin) {
1245 sk_eat_skb(sk, skb, 0);
1246 ++seq;
1247 break;
1248 }
1249 sk_eat_skb(sk, skb, 0);
1250 if (!desc->count)
1251 break;
1252 }
1253 tp->copied_seq = seq;
1254
1255 tcp_rcv_space_adjust(sk);
1256
1257 /* Clean up data we have read: This will do ACK frames. */
1258 if (copied > 0)
1259 tcp_cleanup_rbuf(sk, copied);
1260 return copied;
1261 }
1262
1263 /*
1264 * This routine copies from a sock struct into the user buffer.
1265 *
1266 * Technical note: in 2.3 we work on _locked_ socket, so that
1267 * tricks with *seq access order and skb->users are not required.
1268 * Probably, code can be easily improved even more.
1269 */
1270
1271 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1272 size_t len, int nonblock, int flags, int *addr_len)
1273 {
1274 struct tcp_sock *tp = tcp_sk(sk);
1275 int copied = 0;
1276 u32 peek_seq;
1277 u32 *seq;
1278 unsigned long used;
1279 int err;
1280 int target; /* Read at least this many bytes */
1281 long timeo;
1282 struct task_struct *user_recv = NULL;
1283 int copied_early = 0;
1284 struct sk_buff *skb;
1285
1286 lock_sock(sk);
1287
1288 TCP_CHECK_TIMER(sk);
1289
1290 err = -ENOTCONN;
1291 if (sk->sk_state == TCP_LISTEN)
1292 goto out;
1293
1294 timeo = sock_rcvtimeo(sk, nonblock);
1295
1296 /* Urgent data needs to be handled specially. */
1297 if (flags & MSG_OOB)
1298 goto recv_urg;
1299
1300 seq = &tp->copied_seq;
1301 if (flags & MSG_PEEK) {
1302 peek_seq = tp->copied_seq;
1303 seq = &peek_seq;
1304 }
1305
1306 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1307
1308 #ifdef CONFIG_NET_DMA
1309 tp->ucopy.dma_chan = NULL;
1310 preempt_disable();
1311 skb = skb_peek_tail(&sk->sk_receive_queue);
1312 {
1313 int available = 0;
1314
1315 if (skb)
1316 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1317 if ((available < target) &&
1318 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1319 !sysctl_tcp_low_latency &&
1320 __get_cpu_var(softnet_data).net_dma) {
1321 preempt_enable_no_resched();
1322 tp->ucopy.pinned_list =
1323 dma_pin_iovec_pages(msg->msg_iov, len);
1324 } else {
1325 preempt_enable_no_resched();
1326 }
1327 }
1328 #endif
1329
1330 do {
1331 u32 offset;
1332
1333 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1334 if (tp->urg_data && tp->urg_seq == *seq) {
1335 if (copied)
1336 break;
1337 if (signal_pending(current)) {
1338 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1339 break;
1340 }
1341 }
1342
1343 /* Next get a buffer. */
1344
1345 skb = skb_peek(&sk->sk_receive_queue);
1346 do {
1347 if (!skb)
1348 break;
1349
1350 /* Now that we have two receive queues this
1351 * shouldn't happen.
1352 */
1353 if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1354 printk(KERN_INFO "recvmsg bug: copied %X "
1355 "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1356 break;
1357 }
1358 offset = *seq - TCP_SKB_CB(skb)->seq;
1359 if (tcp_hdr(skb)->syn)
1360 offset--;
1361 if (offset < skb->len)
1362 goto found_ok_skb;
1363 if (tcp_hdr(skb)->fin)
1364 goto found_fin_ok;
1365 BUG_TRAP(flags & MSG_PEEK);
1366 skb = skb->next;
1367 } while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1368
1369 /* Well, if we have backlog, try to process it now yet. */
1370
1371 if (copied >= target && !sk->sk_backlog.tail)
1372 break;
1373
1374 if (copied) {
1375 if (sk->sk_err ||
1376 sk->sk_state == TCP_CLOSE ||
1377 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1378 !timeo ||
1379 signal_pending(current) ||
1380 (flags & MSG_PEEK))
1381 break;
1382 } else {
1383 if (sock_flag(sk, SOCK_DONE))
1384 break;
1385
1386 if (sk->sk_err) {
1387 copied = sock_error(sk);
1388 break;
1389 }
1390
1391 if (sk->sk_shutdown & RCV_SHUTDOWN)
1392 break;
1393
1394 if (sk->sk_state == TCP_CLOSE) {
1395 if (!sock_flag(sk, SOCK_DONE)) {
1396 /* This occurs when user tries to read
1397 * from never connected socket.
1398 */
1399 copied = -ENOTCONN;
1400 break;
1401 }
1402 break;
1403 }
1404
1405 if (!timeo) {
1406 copied = -EAGAIN;
1407 break;
1408 }
1409
1410 if (signal_pending(current)) {
1411 copied = sock_intr_errno(timeo);
1412 break;
1413 }
1414 }
1415
1416 tcp_cleanup_rbuf(sk, copied);
1417
1418 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1419 /* Install new reader */
1420 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1421 user_recv = current;
1422 tp->ucopy.task = user_recv;
1423 tp->ucopy.iov = msg->msg_iov;
1424 }
1425
1426 tp->ucopy.len = len;
1427
1428 BUG_TRAP(tp->copied_seq == tp->rcv_nxt ||
1429 (flags & (MSG_PEEK | MSG_TRUNC)));
1430
1431 /* Ugly... If prequeue is not empty, we have to
1432 * process it before releasing socket, otherwise
1433 * order will be broken at second iteration.
1434 * More elegant solution is required!!!
1435 *
1436 * Look: we have the following (pseudo)queues:
1437 *
1438 * 1. packets in flight
1439 * 2. backlog
1440 * 3. prequeue
1441 * 4. receive_queue
1442 *
1443 * Each queue can be processed only if the next ones
1444 * are empty. At this point we have empty receive_queue.
1445 * But prequeue _can_ be not empty after 2nd iteration,
1446 * when we jumped to start of loop because backlog
1447 * processing added something to receive_queue.
1448 * We cannot release_sock(), because backlog contains
1449 * packets arrived _after_ prequeued ones.
1450 *
1451 * Shortly, algorithm is clear --- to process all
1452 * the queues in order. We could make it more directly,
1453 * requeueing packets from backlog to prequeue, if
1454 * is not empty. It is more elegant, but eats cycles,
1455 * unfortunately.
1456 */
1457 if (!skb_queue_empty(&tp->ucopy.prequeue))
1458 goto do_prequeue;
1459
1460 /* __ Set realtime policy in scheduler __ */
1461 }
1462
1463 if (copied >= target) {
1464 /* Do not sleep, just process backlog. */
1465 release_sock(sk);
1466 lock_sock(sk);
1467 } else
1468 sk_wait_data(sk, &timeo);
1469
1470 #ifdef CONFIG_NET_DMA
1471 tp->ucopy.wakeup = 0;
1472 #endif
1473
1474 if (user_recv) {
1475 int chunk;
1476
1477 /* __ Restore normal policy in scheduler __ */
1478
1479 if ((chunk = len - tp->ucopy.len) != 0) {
1480 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1481 len -= chunk;
1482 copied += chunk;
1483 }
1484
1485 if (tp->rcv_nxt == tp->copied_seq &&
1486 !skb_queue_empty(&tp->ucopy.prequeue)) {
1487 do_prequeue:
1488 tcp_prequeue_process(sk);
1489
1490 if ((chunk = len - tp->ucopy.len) != 0) {
1491 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1492 len -= chunk;
1493 copied += chunk;
1494 }
1495 }
1496 }
1497 if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1498 if (net_ratelimit())
1499 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1500 current->comm, task_pid_nr(current));
1501 peek_seq = tp->copied_seq;
1502 }
1503 continue;
1504
1505 found_ok_skb:
1506 /* Ok so how much can we use? */
1507 used = skb->len - offset;
1508 if (len < used)
1509 used = len;
1510
1511 /* Do we have urgent data here? */
1512 if (tp->urg_data) {
1513 u32 urg_offset = tp->urg_seq - *seq;
1514 if (urg_offset < used) {
1515 if (!urg_offset) {
1516 if (!sock_flag(sk, SOCK_URGINLINE)) {
1517 ++*seq;
1518 offset++;
1519 used--;
1520 if (!used)
1521 goto skip_copy;
1522 }
1523 } else
1524 used = urg_offset;
1525 }
1526 }
1527
1528 if (!(flags & MSG_TRUNC)) {
1529 #ifdef CONFIG_NET_DMA
1530 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1531 tp->ucopy.dma_chan = get_softnet_dma();
1532
1533 if (tp->ucopy.dma_chan) {
1534 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1535 tp->ucopy.dma_chan, skb, offset,
1536 msg->msg_iov, used,
1537 tp->ucopy.pinned_list);
1538
1539 if (tp->ucopy.dma_cookie < 0) {
1540
1541 printk(KERN_ALERT "dma_cookie < 0\n");
1542
1543 /* Exception. Bailout! */
1544 if (!copied)
1545 copied = -EFAULT;
1546 break;
1547 }
1548 if ((offset + used) == skb->len)
1549 copied_early = 1;
1550
1551 } else
1552 #endif
1553 {
1554 err = skb_copy_datagram_iovec(skb, offset,
1555 msg->msg_iov, used);
1556 if (err) {
1557 /* Exception. Bailout! */
1558 if (!copied)
1559 copied = -EFAULT;
1560 break;
1561 }
1562 }
1563 }
1564
1565 *seq += used;
1566 copied += used;
1567 len -= used;
1568
1569 tcp_rcv_space_adjust(sk);
1570
1571 skip_copy:
1572 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1573 tp->urg_data = 0;
1574 tcp_fast_path_check(sk);
1575 }
1576 if (used + offset < skb->len)
1577 continue;
1578
1579 if (tcp_hdr(skb)->fin)
1580 goto found_fin_ok;
1581 if (!(flags & MSG_PEEK)) {
1582 sk_eat_skb(sk, skb, copied_early);
1583 copied_early = 0;
1584 }
1585 continue;
1586
1587 found_fin_ok:
1588 /* Process the FIN. */
1589 ++*seq;
1590 if (!(flags & MSG_PEEK)) {
1591 sk_eat_skb(sk, skb, copied_early);
1592 copied_early = 0;
1593 }
1594 break;
1595 } while (len > 0);
1596
1597 if (user_recv) {
1598 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1599 int chunk;
1600
1601 tp->ucopy.len = copied > 0 ? len : 0;
1602
1603 tcp_prequeue_process(sk);
1604
1605 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1606 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1607 len -= chunk;
1608 copied += chunk;
1609 }
1610 }
1611
1612 tp->ucopy.task = NULL;
1613 tp->ucopy.len = 0;
1614 }
1615
1616 #ifdef CONFIG_NET_DMA
1617 if (tp->ucopy.dma_chan) {
1618 dma_cookie_t done, used;
1619
1620 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1621
1622 while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1623 tp->ucopy.dma_cookie, &done,
1624 &used) == DMA_IN_PROGRESS) {
1625 /* do partial cleanup of sk_async_wait_queue */
1626 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1627 (dma_async_is_complete(skb->dma_cookie, done,
1628 used) == DMA_SUCCESS)) {
1629 __skb_dequeue(&sk->sk_async_wait_queue);
1630 kfree_skb(skb);
1631 }
1632 }
1633
1634 /* Safe to free early-copied skbs now */
1635 __skb_queue_purge(&sk->sk_async_wait_queue);
1636 dma_chan_put(tp->ucopy.dma_chan);
1637 tp->ucopy.dma_chan = NULL;
1638 }
1639 if (tp->ucopy.pinned_list) {
1640 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1641 tp->ucopy.pinned_list = NULL;
1642 }
1643 #endif
1644
1645 /* According to UNIX98, msg_name/msg_namelen are ignored
1646 * on connected socket. I was just happy when found this 8) --ANK
1647 */
1648
1649 /* Clean up data we have read: This will do ACK frames. */
1650 tcp_cleanup_rbuf(sk, copied);
1651
1652 TCP_CHECK_TIMER(sk);
1653 release_sock(sk);
1654 return copied;
1655
1656 out:
1657 TCP_CHECK_TIMER(sk);
1658 release_sock(sk);
1659 return err;
1660
1661 recv_urg:
1662 err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1663 goto out;
1664 }
1665
1666 void tcp_set_state(struct sock *sk, int state)
1667 {
1668 int oldstate = sk->sk_state;
1669
1670 switch (state) {
1671 case TCP_ESTABLISHED:
1672 if (oldstate != TCP_ESTABLISHED)
1673 TCP_INC_STATS(TCP_MIB_CURRESTAB);
1674 break;
1675
1676 case TCP_CLOSE:
1677 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1678 TCP_INC_STATS(TCP_MIB_ESTABRESETS);
1679
1680 sk->sk_prot->unhash(sk);
1681 if (inet_csk(sk)->icsk_bind_hash &&
1682 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1683 inet_put_port(sk);
1684 /* fall through */
1685 default:
1686 if (oldstate==TCP_ESTABLISHED)
1687 TCP_DEC_STATS(TCP_MIB_CURRESTAB);
1688 }
1689
1690 /* Change state AFTER socket is unhashed to avoid closed
1691 * socket sitting in hash tables.
1692 */
1693 sk->sk_state = state;
1694
1695 #ifdef STATE_TRACE
1696 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n",sk, statename[oldstate],statename[state]);
1697 #endif
1698 }
1699 EXPORT_SYMBOL_GPL(tcp_set_state);
1700
1701 /*
1702 * State processing on a close. This implements the state shift for
1703 * sending our FIN frame. Note that we only send a FIN for some
1704 * states. A shutdown() may have already sent the FIN, or we may be
1705 * closed.
1706 */
1707
1708 static const unsigned char new_state[16] = {
1709 /* current state: new state: action: */
1710 /* (Invalid) */ TCP_CLOSE,
1711 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1712 /* TCP_SYN_SENT */ TCP_CLOSE,
1713 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1714 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1715 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1716 /* TCP_TIME_WAIT */ TCP_CLOSE,
1717 /* TCP_CLOSE */ TCP_CLOSE,
1718 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1719 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1720 /* TCP_LISTEN */ TCP_CLOSE,
1721 /* TCP_CLOSING */ TCP_CLOSING,
1722 };
1723
1724 static int tcp_close_state(struct sock *sk)
1725 {
1726 int next = (int)new_state[sk->sk_state];
1727 int ns = next & TCP_STATE_MASK;
1728
1729 tcp_set_state(sk, ns);
1730
1731 return next & TCP_ACTION_FIN;
1732 }
1733
1734 /*
1735 * Shutdown the sending side of a connection. Much like close except
1736 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1737 */
1738
1739 void tcp_shutdown(struct sock *sk, int how)
1740 {
1741 /* We need to grab some memory, and put together a FIN,
1742 * and then put it into the queue to be sent.
1743 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1744 */
1745 if (!(how & SEND_SHUTDOWN))
1746 return;
1747
1748 /* If we've already sent a FIN, or it's a closed state, skip this. */
1749 if ((1 << sk->sk_state) &
1750 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1751 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1752 /* Clear out any half completed packets. FIN if needed. */
1753 if (tcp_close_state(sk))
1754 tcp_send_fin(sk);
1755 }
1756 }
1757
1758 void tcp_close(struct sock *sk, long timeout)
1759 {
1760 struct sk_buff *skb;
1761 int data_was_unread = 0;
1762 int state;
1763
1764 lock_sock(sk);
1765 sk->sk_shutdown = SHUTDOWN_MASK;
1766
1767 if (sk->sk_state == TCP_LISTEN) {
1768 tcp_set_state(sk, TCP_CLOSE);
1769
1770 /* Special case. */
1771 inet_csk_listen_stop(sk);
1772
1773 goto adjudge_to_death;
1774 }
1775
1776 /* We need to flush the recv. buffs. We do this only on the
1777 * descriptor close, not protocol-sourced closes, because the
1778 * reader process may not have drained the data yet!
1779 */
1780 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1781 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1782 tcp_hdr(skb)->fin;
1783 data_was_unread += len;
1784 __kfree_skb(skb);
1785 }
1786
1787 sk_mem_reclaim(sk);
1788
1789 /* As outlined in RFC 2525, section 2.17, we send a RST here because
1790 * data was lost. To witness the awful effects of the old behavior of
1791 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1792 * GET in an FTP client, suspend the process, wait for the client to
1793 * advertise a zero window, then kill -9 the FTP client, wheee...
1794 * Note: timeout is always zero in such a case.
1795 */
1796 if (data_was_unread) {
1797 /* Unread data was tossed, zap the connection. */
1798 NET_INC_STATS_USER(LINUX_MIB_TCPABORTONCLOSE);
1799 tcp_set_state(sk, TCP_CLOSE);
1800 tcp_send_active_reset(sk, GFP_KERNEL);
1801 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1802 /* Check zero linger _after_ checking for unread data. */
1803 sk->sk_prot->disconnect(sk, 0);
1804 NET_INC_STATS_USER(LINUX_MIB_TCPABORTONDATA);
1805 } else if (tcp_close_state(sk)) {
1806 /* We FIN if the application ate all the data before
1807 * zapping the connection.
1808 */
1809
1810 /* RED-PEN. Formally speaking, we have broken TCP state
1811 * machine. State transitions:
1812 *
1813 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1814 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
1815 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1816 *
1817 * are legal only when FIN has been sent (i.e. in window),
1818 * rather than queued out of window. Purists blame.
1819 *
1820 * F.e. "RFC state" is ESTABLISHED,
1821 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1822 *
1823 * The visible declinations are that sometimes
1824 * we enter time-wait state, when it is not required really
1825 * (harmless), do not send active resets, when they are
1826 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1827 * they look as CLOSING or LAST_ACK for Linux)
1828 * Probably, I missed some more holelets.
1829 * --ANK
1830 */
1831 tcp_send_fin(sk);
1832 }
1833
1834 sk_stream_wait_close(sk, timeout);
1835
1836 adjudge_to_death:
1837 state = sk->sk_state;
1838 sock_hold(sk);
1839 sock_orphan(sk);
1840 atomic_inc(sk->sk_prot->orphan_count);
1841
1842 /* It is the last release_sock in its life. It will remove backlog. */
1843 release_sock(sk);
1844
1845
1846 /* Now socket is owned by kernel and we acquire BH lock
1847 to finish close. No need to check for user refs.
1848 */
1849 local_bh_disable();
1850 bh_lock_sock(sk);
1851 BUG_TRAP(!sock_owned_by_user(sk));
1852
1853 /* Have we already been destroyed by a softirq or backlog? */
1854 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1855 goto out;
1856
1857 /* This is a (useful) BSD violating of the RFC. There is a
1858 * problem with TCP as specified in that the other end could
1859 * keep a socket open forever with no application left this end.
1860 * We use a 3 minute timeout (about the same as BSD) then kill
1861 * our end. If they send after that then tough - BUT: long enough
1862 * that we won't make the old 4*rto = almost no time - whoops
1863 * reset mistake.
1864 *
1865 * Nope, it was not mistake. It is really desired behaviour
1866 * f.e. on http servers, when such sockets are useless, but
1867 * consume significant resources. Let's do it with special
1868 * linger2 option. --ANK
1869 */
1870
1871 if (sk->sk_state == TCP_FIN_WAIT2) {
1872 struct tcp_sock *tp = tcp_sk(sk);
1873 if (tp->linger2 < 0) {
1874 tcp_set_state(sk, TCP_CLOSE);
1875 tcp_send_active_reset(sk, GFP_ATOMIC);
1876 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONLINGER);
1877 } else {
1878 const int tmo = tcp_fin_time(sk);
1879
1880 if (tmo > TCP_TIMEWAIT_LEN) {
1881 inet_csk_reset_keepalive_timer(sk,
1882 tmo - TCP_TIMEWAIT_LEN);
1883 } else {
1884 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1885 goto out;
1886 }
1887 }
1888 }
1889 if (sk->sk_state != TCP_CLOSE) {
1890 sk_mem_reclaim(sk);
1891 if (tcp_too_many_orphans(sk,
1892 atomic_read(sk->sk_prot->orphan_count))) {
1893 if (net_ratelimit())
1894 printk(KERN_INFO "TCP: too many of orphaned "
1895 "sockets\n");
1896 tcp_set_state(sk, TCP_CLOSE);
1897 tcp_send_active_reset(sk, GFP_ATOMIC);
1898 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONMEMORY);
1899 }
1900 }
1901
1902 if (sk->sk_state == TCP_CLOSE)
1903 inet_csk_destroy_sock(sk);
1904 /* Otherwise, socket is reprieved until protocol close. */
1905
1906 out:
1907 bh_unlock_sock(sk);
1908 local_bh_enable();
1909 sock_put(sk);
1910 }
1911
1912 /* These states need RST on ABORT according to RFC793 */
1913
1914 static inline int tcp_need_reset(int state)
1915 {
1916 return (1 << state) &
1917 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1918 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1919 }
1920
1921 int tcp_disconnect(struct sock *sk, int flags)
1922 {
1923 struct inet_sock *inet = inet_sk(sk);
1924 struct inet_connection_sock *icsk = inet_csk(sk);
1925 struct tcp_sock *tp = tcp_sk(sk);
1926 int err = 0;
1927 int old_state = sk->sk_state;
1928
1929 if (old_state != TCP_CLOSE)
1930 tcp_set_state(sk, TCP_CLOSE);
1931
1932 /* ABORT function of RFC793 */
1933 if (old_state == TCP_LISTEN) {
1934 inet_csk_listen_stop(sk);
1935 } else if (tcp_need_reset(old_state) ||
1936 (tp->snd_nxt != tp->write_seq &&
1937 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1938 /* The last check adjusts for discrepancy of Linux wrt. RFC
1939 * states
1940 */
1941 tcp_send_active_reset(sk, gfp_any());
1942 sk->sk_err = ECONNRESET;
1943 } else if (old_state == TCP_SYN_SENT)
1944 sk->sk_err = ECONNRESET;
1945
1946 tcp_clear_xmit_timers(sk);
1947 __skb_queue_purge(&sk->sk_receive_queue);
1948 tcp_write_queue_purge(sk);
1949 __skb_queue_purge(&tp->out_of_order_queue);
1950 #ifdef CONFIG_NET_DMA
1951 __skb_queue_purge(&sk->sk_async_wait_queue);
1952 #endif
1953
1954 inet->dport = 0;
1955
1956 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1957 inet_reset_saddr(sk);
1958
1959 sk->sk_shutdown = 0;
1960 sock_reset_flag(sk, SOCK_DONE);
1961 tp->srtt = 0;
1962 if ((tp->write_seq += tp->max_window + 2) == 0)
1963 tp->write_seq = 1;
1964 icsk->icsk_backoff = 0;
1965 tp->snd_cwnd = 2;
1966 icsk->icsk_probes_out = 0;
1967 tp->packets_out = 0;
1968 tp->snd_ssthresh = 0x7fffffff;
1969 tp->snd_cwnd_cnt = 0;
1970 tp->bytes_acked = 0;
1971 tcp_set_ca_state(sk, TCP_CA_Open);
1972 tcp_clear_retrans(tp);
1973 inet_csk_delack_init(sk);
1974 tcp_init_send_head(sk);
1975 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
1976 __sk_dst_reset(sk);
1977
1978 BUG_TRAP(!inet->num || icsk->icsk_bind_hash);
1979
1980 sk->sk_error_report(sk);
1981 return err;
1982 }
1983
1984 /*
1985 * Socket option code for TCP.
1986 */
1987 static int do_tcp_setsockopt(struct sock *sk, int level,
1988 int optname, char __user *optval, int optlen)
1989 {
1990 struct tcp_sock *tp = tcp_sk(sk);
1991 struct inet_connection_sock *icsk = inet_csk(sk);
1992 int val;
1993 int err = 0;
1994
1995 /* This is a string value all the others are int's */
1996 if (optname == TCP_CONGESTION) {
1997 char name[TCP_CA_NAME_MAX];
1998
1999 if (optlen < 1)
2000 return -EINVAL;
2001
2002 val = strncpy_from_user(name, optval,
2003 min(TCP_CA_NAME_MAX-1, optlen));
2004 if (val < 0)
2005 return -EFAULT;
2006 name[val] = 0;
2007
2008 lock_sock(sk);
2009 err = tcp_set_congestion_control(sk, name);
2010 release_sock(sk);
2011 return err;
2012 }
2013
2014 if (optlen < sizeof(int))
2015 return -EINVAL;
2016
2017 if (get_user(val, (int __user *)optval))
2018 return -EFAULT;
2019
2020 lock_sock(sk);
2021
2022 switch (optname) {
2023 case TCP_MAXSEG:
2024 /* Values greater than interface MTU won't take effect. However
2025 * at the point when this call is done we typically don't yet
2026 * know which interface is going to be used */
2027 if (val < 8 || val > MAX_TCP_WINDOW) {
2028 err = -EINVAL;
2029 break;
2030 }
2031 tp->rx_opt.user_mss = val;
2032 break;
2033
2034 case TCP_NODELAY:
2035 if (val) {
2036 /* TCP_NODELAY is weaker than TCP_CORK, so that
2037 * this option on corked socket is remembered, but
2038 * it is not activated until cork is cleared.
2039 *
2040 * However, when TCP_NODELAY is set we make
2041 * an explicit push, which overrides even TCP_CORK
2042 * for currently queued segments.
2043 */
2044 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2045 tcp_push_pending_frames(sk);
2046 } else {
2047 tp->nonagle &= ~TCP_NAGLE_OFF;
2048 }
2049 break;
2050
2051 case TCP_CORK:
2052 /* When set indicates to always queue non-full frames.
2053 * Later the user clears this option and we transmit
2054 * any pending partial frames in the queue. This is
2055 * meant to be used alongside sendfile() to get properly
2056 * filled frames when the user (for example) must write
2057 * out headers with a write() call first and then use
2058 * sendfile to send out the data parts.
2059 *
2060 * TCP_CORK can be set together with TCP_NODELAY and it is
2061 * stronger than TCP_NODELAY.
2062 */
2063 if (val) {
2064 tp->nonagle |= TCP_NAGLE_CORK;
2065 } else {
2066 tp->nonagle &= ~TCP_NAGLE_CORK;
2067 if (tp->nonagle&TCP_NAGLE_OFF)
2068 tp->nonagle |= TCP_NAGLE_PUSH;
2069 tcp_push_pending_frames(sk);
2070 }
2071 break;
2072
2073 case TCP_KEEPIDLE:
2074 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2075 err = -EINVAL;
2076 else {
2077 tp->keepalive_time = val * HZ;
2078 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2079 !((1 << sk->sk_state) &
2080 (TCPF_CLOSE | TCPF_LISTEN))) {
2081 __u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2082 if (tp->keepalive_time > elapsed)
2083 elapsed = tp->keepalive_time - elapsed;
2084 else
2085 elapsed = 0;
2086 inet_csk_reset_keepalive_timer(sk, elapsed);
2087 }
2088 }
2089 break;
2090 case TCP_KEEPINTVL:
2091 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2092 err = -EINVAL;
2093 else
2094 tp->keepalive_intvl = val * HZ;
2095 break;
2096 case TCP_KEEPCNT:
2097 if (val < 1 || val > MAX_TCP_KEEPCNT)
2098 err = -EINVAL;
2099 else
2100 tp->keepalive_probes = val;
2101 break;
2102 case TCP_SYNCNT:
2103 if (val < 1 || val > MAX_TCP_SYNCNT)
2104 err = -EINVAL;
2105 else
2106 icsk->icsk_syn_retries = val;
2107 break;
2108
2109 case TCP_LINGER2:
2110 if (val < 0)
2111 tp->linger2 = -1;
2112 else if (val > sysctl_tcp_fin_timeout / HZ)
2113 tp->linger2 = 0;
2114 else
2115 tp->linger2 = val * HZ;
2116 break;
2117
2118 case TCP_DEFER_ACCEPT:
2119 icsk->icsk_accept_queue.rskq_defer_accept = 0;
2120 if (val > 0) {
2121 /* Translate value in seconds to number of
2122 * retransmits */
2123 while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
2124 val > ((TCP_TIMEOUT_INIT / HZ) <<
2125 icsk->icsk_accept_queue.rskq_defer_accept))
2126 icsk->icsk_accept_queue.rskq_defer_accept++;
2127 icsk->icsk_accept_queue.rskq_defer_accept++;
2128 }
2129 break;
2130
2131 case TCP_WINDOW_CLAMP:
2132 if (!val) {
2133 if (sk->sk_state != TCP_CLOSE) {
2134 err = -EINVAL;
2135 break;
2136 }
2137 tp->window_clamp = 0;
2138 } else
2139 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2140 SOCK_MIN_RCVBUF / 2 : val;
2141 break;
2142
2143 case TCP_QUICKACK:
2144 if (!val) {
2145 icsk->icsk_ack.pingpong = 1;
2146 } else {
2147 icsk->icsk_ack.pingpong = 0;
2148 if ((1 << sk->sk_state) &
2149 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2150 inet_csk_ack_scheduled(sk)) {
2151 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2152 tcp_cleanup_rbuf(sk, 1);
2153 if (!(val & 1))
2154 icsk->icsk_ack.pingpong = 1;
2155 }
2156 }
2157 break;
2158
2159 #ifdef CONFIG_TCP_MD5SIG
2160 case TCP_MD5SIG:
2161 /* Read the IP->Key mappings from userspace */
2162 err = tp->af_specific->md5_parse(sk, optval, optlen);
2163 break;
2164 #endif
2165
2166 default:
2167 err = -ENOPROTOOPT;
2168 break;
2169 }
2170
2171 release_sock(sk);
2172 return err;
2173 }
2174
2175 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2176 int optlen)
2177 {
2178 struct inet_connection_sock *icsk = inet_csk(sk);
2179
2180 if (level != SOL_TCP)
2181 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2182 optval, optlen);
2183 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2184 }
2185
2186 #ifdef CONFIG_COMPAT
2187 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2188 char __user *optval, int optlen)
2189 {
2190 if (level != SOL_TCP)
2191 return inet_csk_compat_setsockopt(sk, level, optname,
2192 optval, optlen);
2193 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2194 }
2195
2196 EXPORT_SYMBOL(compat_tcp_setsockopt);
2197 #endif
2198
2199 /* Return information about state of tcp endpoint in API format. */
2200 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2201 {
2202 struct tcp_sock *tp = tcp_sk(sk);
2203 const struct inet_connection_sock *icsk = inet_csk(sk);
2204 u32 now = tcp_time_stamp;
2205
2206 memset(info, 0, sizeof(*info));
2207
2208 info->tcpi_state = sk->sk_state;
2209 info->tcpi_ca_state = icsk->icsk_ca_state;
2210 info->tcpi_retransmits = icsk->icsk_retransmits;
2211 info->tcpi_probes = icsk->icsk_probes_out;
2212 info->tcpi_backoff = icsk->icsk_backoff;
2213
2214 if (tp->rx_opt.tstamp_ok)
2215 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2216 if (tcp_is_sack(tp))
2217 info->tcpi_options |= TCPI_OPT_SACK;
2218 if (tp->rx_opt.wscale_ok) {
2219 info->tcpi_options |= TCPI_OPT_WSCALE;
2220 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2221 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2222 }
2223
2224 if (tp->ecn_flags&TCP_ECN_OK)
2225 info->tcpi_options |= TCPI_OPT_ECN;
2226
2227 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2228 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2229 info->tcpi_snd_mss = tp->mss_cache;
2230 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2231
2232 if (sk->sk_state == TCP_LISTEN) {
2233 info->tcpi_unacked = sk->sk_ack_backlog;
2234 info->tcpi_sacked = sk->sk_max_ack_backlog;
2235 } else {
2236 info->tcpi_unacked = tp->packets_out;
2237 info->tcpi_sacked = tp->sacked_out;
2238 }
2239 info->tcpi_lost = tp->lost_out;
2240 info->tcpi_retrans = tp->retrans_out;
2241 info->tcpi_fackets = tp->fackets_out;
2242
2243 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2244 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2245 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2246
2247 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2248 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2249 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2250 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2251 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2252 info->tcpi_snd_cwnd = tp->snd_cwnd;
2253 info->tcpi_advmss = tp->advmss;
2254 info->tcpi_reordering = tp->reordering;
2255
2256 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2257 info->tcpi_rcv_space = tp->rcvq_space.space;
2258
2259 info->tcpi_total_retrans = tp->total_retrans;
2260 }
2261
2262 EXPORT_SYMBOL_GPL(tcp_get_info);
2263
2264 static int do_tcp_getsockopt(struct sock *sk, int level,
2265 int optname, char __user *optval, int __user *optlen)
2266 {
2267 struct inet_connection_sock *icsk = inet_csk(sk);
2268 struct tcp_sock *tp = tcp_sk(sk);
2269 int val, len;
2270
2271 if (get_user(len, optlen))
2272 return -EFAULT;
2273
2274 len = min_t(unsigned int, len, sizeof(int));
2275
2276 if (len < 0)
2277 return -EINVAL;
2278
2279 switch (optname) {
2280 case TCP_MAXSEG:
2281 val = tp->mss_cache;
2282 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2283 val = tp->rx_opt.user_mss;
2284 break;
2285 case TCP_NODELAY:
2286 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2287 break;
2288 case TCP_CORK:
2289 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2290 break;
2291 case TCP_KEEPIDLE:
2292 val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2293 break;
2294 case TCP_KEEPINTVL:
2295 val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2296 break;
2297 case TCP_KEEPCNT:
2298 val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2299 break;
2300 case TCP_SYNCNT:
2301 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2302 break;
2303 case TCP_LINGER2:
2304 val = tp->linger2;
2305 if (val >= 0)
2306 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2307 break;
2308 case TCP_DEFER_ACCEPT:
2309 val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
2310 ((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
2311 break;
2312 case TCP_WINDOW_CLAMP:
2313 val = tp->window_clamp;
2314 break;
2315 case TCP_INFO: {
2316 struct tcp_info info;
2317
2318 if (get_user(len, optlen))
2319 return -EFAULT;
2320
2321 tcp_get_info(sk, &info);
2322
2323 len = min_t(unsigned int, len, sizeof(info));
2324 if (put_user(len, optlen))
2325 return -EFAULT;
2326 if (copy_to_user(optval, &info, len))
2327 return -EFAULT;
2328 return 0;
2329 }
2330 case TCP_QUICKACK:
2331 val = !icsk->icsk_ack.pingpong;
2332 break;
2333
2334 case TCP_CONGESTION:
2335 if (get_user(len, optlen))
2336 return -EFAULT;
2337 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2338 if (put_user(len, optlen))
2339 return -EFAULT;
2340 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2341 return -EFAULT;
2342 return 0;
2343 default:
2344 return -ENOPROTOOPT;
2345 }
2346
2347 if (put_user(len, optlen))
2348 return -EFAULT;
2349 if (copy_to_user(optval, &val, len))
2350 return -EFAULT;
2351 return 0;
2352 }
2353
2354 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2355 int __user *optlen)
2356 {
2357 struct inet_connection_sock *icsk = inet_csk(sk);
2358
2359 if (level != SOL_TCP)
2360 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2361 optval, optlen);
2362 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2363 }
2364
2365 #ifdef CONFIG_COMPAT
2366 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2367 char __user *optval, int __user *optlen)
2368 {
2369 if (level != SOL_TCP)
2370 return inet_csk_compat_getsockopt(sk, level, optname,
2371 optval, optlen);
2372 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2373 }
2374
2375 EXPORT_SYMBOL(compat_tcp_getsockopt);
2376 #endif
2377
2378 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2379 {
2380 struct sk_buff *segs = ERR_PTR(-EINVAL);
2381 struct tcphdr *th;
2382 unsigned thlen;
2383 unsigned int seq;
2384 __be32 delta;
2385 unsigned int oldlen;
2386 unsigned int len;
2387
2388 if (!pskb_may_pull(skb, sizeof(*th)))
2389 goto out;
2390
2391 th = tcp_hdr(skb);
2392 thlen = th->doff * 4;
2393 if (thlen < sizeof(*th))
2394 goto out;
2395
2396 if (!pskb_may_pull(skb, thlen))
2397 goto out;
2398
2399 oldlen = (u16)~skb->len;
2400 __skb_pull(skb, thlen);
2401
2402 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2403 /* Packet is from an untrusted source, reset gso_segs. */
2404 int type = skb_shinfo(skb)->gso_type;
2405 int mss;
2406
2407 if (unlikely(type &
2408 ~(SKB_GSO_TCPV4 |
2409 SKB_GSO_DODGY |
2410 SKB_GSO_TCP_ECN |
2411 SKB_GSO_TCPV6 |
2412 0) ||
2413 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2414 goto out;
2415
2416 mss = skb_shinfo(skb)->gso_size;
2417 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2418
2419 segs = NULL;
2420 goto out;
2421 }
2422
2423 segs = skb_segment(skb, features);
2424 if (IS_ERR(segs))
2425 goto out;
2426
2427 len = skb_shinfo(skb)->gso_size;
2428 delta = htonl(oldlen + (thlen + len));
2429
2430 skb = segs;
2431 th = tcp_hdr(skb);
2432 seq = ntohl(th->seq);
2433
2434 do {
2435 th->fin = th->psh = 0;
2436
2437 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2438 (__force u32)delta));
2439 if (skb->ip_summed != CHECKSUM_PARTIAL)
2440 th->check =
2441 csum_fold(csum_partial(skb_transport_header(skb),
2442 thlen, skb->csum));
2443
2444 seq += len;
2445 skb = skb->next;
2446 th = tcp_hdr(skb);
2447
2448 th->seq = htonl(seq);
2449 th->cwr = 0;
2450 } while (skb->next);
2451
2452 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2453 skb->data_len);
2454 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2455 (__force u32)delta));
2456 if (skb->ip_summed != CHECKSUM_PARTIAL)
2457 th->check = csum_fold(csum_partial(skb_transport_header(skb),
2458 thlen, skb->csum));
2459
2460 out:
2461 return segs;
2462 }
2463 EXPORT_SYMBOL(tcp_tso_segment);
2464
2465 #ifdef CONFIG_TCP_MD5SIG
2466 static unsigned long tcp_md5sig_users;
2467 static struct tcp_md5sig_pool **tcp_md5sig_pool;
2468 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2469
2470 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
2471 {
2472 int cpu;
2473 for_each_possible_cpu(cpu) {
2474 struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2475 if (p) {
2476 if (p->md5_desc.tfm)
2477 crypto_free_hash(p->md5_desc.tfm);
2478 kfree(p);
2479 p = NULL;
2480 }
2481 }
2482 free_percpu(pool);
2483 }
2484
2485 void tcp_free_md5sig_pool(void)
2486 {
2487 struct tcp_md5sig_pool **pool = NULL;
2488
2489 spin_lock_bh(&tcp_md5sig_pool_lock);
2490 if (--tcp_md5sig_users == 0) {
2491 pool = tcp_md5sig_pool;
2492 tcp_md5sig_pool = NULL;
2493 }
2494 spin_unlock_bh(&tcp_md5sig_pool_lock);
2495 if (pool)
2496 __tcp_free_md5sig_pool(pool);
2497 }
2498
2499 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2500
2501 static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void)
2502 {
2503 int cpu;
2504 struct tcp_md5sig_pool **pool;
2505
2506 pool = alloc_percpu(struct tcp_md5sig_pool *);
2507 if (!pool)
2508 return NULL;
2509
2510 for_each_possible_cpu(cpu) {
2511 struct tcp_md5sig_pool *p;
2512 struct crypto_hash *hash;
2513
2514 p = kzalloc(sizeof(*p), GFP_KERNEL);
2515 if (!p)
2516 goto out_free;
2517 *per_cpu_ptr(pool, cpu) = p;
2518
2519 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2520 if (!hash || IS_ERR(hash))
2521 goto out_free;
2522
2523 p->md5_desc.tfm = hash;
2524 }
2525 return pool;
2526 out_free:
2527 __tcp_free_md5sig_pool(pool);
2528 return NULL;
2529 }
2530
2531 struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void)
2532 {
2533 struct tcp_md5sig_pool **pool;
2534 int alloc = 0;
2535
2536 retry:
2537 spin_lock_bh(&tcp_md5sig_pool_lock);
2538 pool = tcp_md5sig_pool;
2539 if (tcp_md5sig_users++ == 0) {
2540 alloc = 1;
2541 spin_unlock_bh(&tcp_md5sig_pool_lock);
2542 } else if (!pool) {
2543 tcp_md5sig_users--;
2544 spin_unlock_bh(&tcp_md5sig_pool_lock);
2545 cpu_relax();
2546 goto retry;
2547 } else
2548 spin_unlock_bh(&tcp_md5sig_pool_lock);
2549
2550 if (alloc) {
2551 /* we cannot hold spinlock here because this may sleep. */
2552 struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool();
2553 spin_lock_bh(&tcp_md5sig_pool_lock);
2554 if (!p) {
2555 tcp_md5sig_users--;
2556 spin_unlock_bh(&tcp_md5sig_pool_lock);
2557 return NULL;
2558 }
2559 pool = tcp_md5sig_pool;
2560 if (pool) {
2561 /* oops, it has already been assigned. */
2562 spin_unlock_bh(&tcp_md5sig_pool_lock);
2563 __tcp_free_md5sig_pool(p);
2564 } else {
2565 tcp_md5sig_pool = pool = p;
2566 spin_unlock_bh(&tcp_md5sig_pool_lock);
2567 }
2568 }
2569 return pool;
2570 }
2571
2572 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2573
2574 struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2575 {
2576 struct tcp_md5sig_pool **p;
2577 spin_lock_bh(&tcp_md5sig_pool_lock);
2578 p = tcp_md5sig_pool;
2579 if (p)
2580 tcp_md5sig_users++;
2581 spin_unlock_bh(&tcp_md5sig_pool_lock);
2582 return (p ? *per_cpu_ptr(p, cpu) : NULL);
2583 }
2584
2585 EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2586
2587 void __tcp_put_md5sig_pool(void)
2588 {
2589 tcp_free_md5sig_pool();
2590 }
2591
2592 EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2593 #endif
2594
2595 void tcp_done(struct sock *sk)
2596 {
2597 if(sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2598 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
2599
2600 tcp_set_state(sk, TCP_CLOSE);
2601 tcp_clear_xmit_timers(sk);
2602
2603 sk->sk_shutdown = SHUTDOWN_MASK;
2604
2605 if (!sock_flag(sk, SOCK_DEAD))
2606 sk->sk_state_change(sk);
2607 else
2608 inet_csk_destroy_sock(sk);
2609 }
2610 EXPORT_SYMBOL_GPL(tcp_done);
2611
2612 extern struct tcp_congestion_ops tcp_reno;
2613
2614 static __initdata unsigned long thash_entries;
2615 static int __init set_thash_entries(char *str)
2616 {
2617 if (!str)
2618 return 0;
2619 thash_entries = simple_strtoul(str, &str, 0);
2620 return 1;
2621 }
2622 __setup("thash_entries=", set_thash_entries);
2623
2624 void __init tcp_init(void)
2625 {
2626 struct sk_buff *skb = NULL;
2627 unsigned long nr_pages, limit;
2628 int order, i, max_share;
2629
2630 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
2631
2632 tcp_hashinfo.bind_bucket_cachep =
2633 kmem_cache_create("tcp_bind_bucket",
2634 sizeof(struct inet_bind_bucket), 0,
2635 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2636
2637 /* Size and allocate the main established and bind bucket
2638 * hash tables.
2639 *
2640 * The methodology is similar to that of the buffer cache.
2641 */
2642 tcp_hashinfo.ehash =
2643 alloc_large_system_hash("TCP established",
2644 sizeof(struct inet_ehash_bucket),
2645 thash_entries,
2646 (num_physpages >= 128 * 1024) ?
2647 13 : 15,
2648 0,
2649 &tcp_hashinfo.ehash_size,
2650 NULL,
2651 thash_entries ? 0 : 512 * 1024);
2652 tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size;
2653 for (i = 0; i < tcp_hashinfo.ehash_size; i++) {
2654 INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].chain);
2655 INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].twchain);
2656 }
2657 if (inet_ehash_locks_alloc(&tcp_hashinfo))
2658 panic("TCP: failed to alloc ehash_locks");
2659 tcp_hashinfo.bhash =
2660 alloc_large_system_hash("TCP bind",
2661 sizeof(struct inet_bind_hashbucket),
2662 tcp_hashinfo.ehash_size,
2663 (num_physpages >= 128 * 1024) ?
2664 13 : 15,
2665 0,
2666 &tcp_hashinfo.bhash_size,
2667 NULL,
2668 64 * 1024);
2669 tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2670 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2671 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2672 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2673 }
2674
2675 /* Try to be a bit smarter and adjust defaults depending
2676 * on available memory.
2677 */
2678 for (order = 0; ((1 << order) << PAGE_SHIFT) <
2679 (tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2680 order++)
2681 ;
2682 if (order >= 4) {
2683 tcp_death_row.sysctl_max_tw_buckets = 180000;
2684 sysctl_tcp_max_orphans = 4096 << (order - 4);
2685 sysctl_max_syn_backlog = 1024;
2686 } else if (order < 3) {
2687 tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2688 sysctl_tcp_max_orphans >>= (3 - order);
2689 sysctl_max_syn_backlog = 128;
2690 }
2691
2692 /* Set the pressure threshold to be a fraction of global memory that
2693 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
2694 * memory, with a floor of 128 pages.
2695 */
2696 nr_pages = totalram_pages - totalhigh_pages;
2697 limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2698 limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2699 limit = max(limit, 128UL);
2700 sysctl_tcp_mem[0] = limit / 4 * 3;
2701 sysctl_tcp_mem[1] = limit;
2702 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
2703
2704 /* Set per-socket limits to no more than 1/128 the pressure threshold */
2705 limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2706 max_share = min(4UL*1024*1024, limit);
2707
2708 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
2709 sysctl_tcp_wmem[1] = 16*1024;
2710 sysctl_tcp_wmem[2] = max(64*1024, max_share);
2711
2712 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
2713 sysctl_tcp_rmem[1] = 87380;
2714 sysctl_tcp_rmem[2] = max(87380, max_share);
2715
2716 printk(KERN_INFO "TCP: Hash tables configured "
2717 "(established %d bind %d)\n",
2718 tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size);
2719
2720 tcp_register_congestion_control(&tcp_reno);
2721 }
2722
2723 EXPORT_SYMBOL(tcp_close);
2724 EXPORT_SYMBOL(tcp_disconnect);
2725 EXPORT_SYMBOL(tcp_getsockopt);
2726 EXPORT_SYMBOL(tcp_ioctl);
2727 EXPORT_SYMBOL(tcp_poll);
2728 EXPORT_SYMBOL(tcp_read_sock);
2729 EXPORT_SYMBOL(tcp_recvmsg);
2730 EXPORT_SYMBOL(tcp_sendmsg);
2731 EXPORT_SYMBOL(tcp_splice_read);
2732 EXPORT_SYMBOL(tcp_sendpage);
2733 EXPORT_SYMBOL(tcp_setsockopt);
2734 EXPORT_SYMBOL(tcp_shutdown);
2735 EXPORT_SYMBOL(tcp_statistics);
This page took 0.129376 seconds and 6 git commands to generate.