tcp: net/ipv4/tcp.c needs linux/scatterlist.h
[deliverable/linux.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp.c,v 1.216 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 *
22 * Fixes:
23 * Alan Cox : Numerous verify_area() calls
24 * Alan Cox : Set the ACK bit on a reset
25 * Alan Cox : Stopped it crashing if it closed while
26 * sk->inuse=1 and was trying to connect
27 * (tcp_err()).
28 * Alan Cox : All icmp error handling was broken
29 * pointers passed where wrong and the
30 * socket was looked up backwards. Nobody
31 * tested any icmp error code obviously.
32 * Alan Cox : tcp_err() now handled properly. It
33 * wakes people on errors. poll
34 * behaves and the icmp error race
35 * has gone by moving it into sock.c
36 * Alan Cox : tcp_send_reset() fixed to work for
37 * everything not just packets for
38 * unknown sockets.
39 * Alan Cox : tcp option processing.
40 * Alan Cox : Reset tweaked (still not 100%) [Had
41 * syn rule wrong]
42 * Herp Rosmanith : More reset fixes
43 * Alan Cox : No longer acks invalid rst frames.
44 * Acking any kind of RST is right out.
45 * Alan Cox : Sets an ignore me flag on an rst
46 * receive otherwise odd bits of prattle
47 * escape still
48 * Alan Cox : Fixed another acking RST frame bug.
49 * Should stop LAN workplace lockups.
50 * Alan Cox : Some tidyups using the new skb list
51 * facilities
52 * Alan Cox : sk->keepopen now seems to work
53 * Alan Cox : Pulls options out correctly on accepts
54 * Alan Cox : Fixed assorted sk->rqueue->next errors
55 * Alan Cox : PSH doesn't end a TCP read. Switched a
56 * bit to skb ops.
57 * Alan Cox : Tidied tcp_data to avoid a potential
58 * nasty.
59 * Alan Cox : Added some better commenting, as the
60 * tcp is hard to follow
61 * Alan Cox : Removed incorrect check for 20 * psh
62 * Michael O'Reilly : ack < copied bug fix.
63 * Johannes Stille : Misc tcp fixes (not all in yet).
64 * Alan Cox : FIN with no memory -> CRASH
65 * Alan Cox : Added socket option proto entries.
66 * Also added awareness of them to accept.
67 * Alan Cox : Added TCP options (SOL_TCP)
68 * Alan Cox : Switched wakeup calls to callbacks,
69 * so the kernel can layer network
70 * sockets.
71 * Alan Cox : Use ip_tos/ip_ttl settings.
72 * Alan Cox : Handle FIN (more) properly (we hope).
73 * Alan Cox : RST frames sent on unsynchronised
74 * state ack error.
75 * Alan Cox : Put in missing check for SYN bit.
76 * Alan Cox : Added tcp_select_window() aka NET2E
77 * window non shrink trick.
78 * Alan Cox : Added a couple of small NET2E timer
79 * fixes
80 * Charles Hedrick : TCP fixes
81 * Toomas Tamm : TCP window fixes
82 * Alan Cox : Small URG fix to rlogin ^C ack fight
83 * Charles Hedrick : Rewrote most of it to actually work
84 * Linus : Rewrote tcp_read() and URG handling
85 * completely
86 * Gerhard Koerting: Fixed some missing timer handling
87 * Matthew Dillon : Reworked TCP machine states as per RFC
88 * Gerhard Koerting: PC/TCP workarounds
89 * Adam Caldwell : Assorted timer/timing errors
90 * Matthew Dillon : Fixed another RST bug
91 * Alan Cox : Move to kernel side addressing changes.
92 * Alan Cox : Beginning work on TCP fastpathing
93 * (not yet usable)
94 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
95 * Alan Cox : TCP fast path debugging
96 * Alan Cox : Window clamping
97 * Michael Riepe : Bug in tcp_check()
98 * Matt Dillon : More TCP improvements and RST bug fixes
99 * Matt Dillon : Yet more small nasties remove from the
100 * TCP code (Be very nice to this man if
101 * tcp finally works 100%) 8)
102 * Alan Cox : BSD accept semantics.
103 * Alan Cox : Reset on closedown bug.
104 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
105 * Michael Pall : Handle poll() after URG properly in
106 * all cases.
107 * Michael Pall : Undo the last fix in tcp_read_urg()
108 * (multi URG PUSH broke rlogin).
109 * Michael Pall : Fix the multi URG PUSH problem in
110 * tcp_readable(), poll() after URG
111 * works now.
112 * Michael Pall : recv(...,MSG_OOB) never blocks in the
113 * BSD api.
114 * Alan Cox : Changed the semantics of sk->socket to
115 * fix a race and a signal problem with
116 * accept() and async I/O.
117 * Alan Cox : Relaxed the rules on tcp_sendto().
118 * Yury Shevchuk : Really fixed accept() blocking problem.
119 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
120 * clients/servers which listen in on
121 * fixed ports.
122 * Alan Cox : Cleaned the above up and shrank it to
123 * a sensible code size.
124 * Alan Cox : Self connect lockup fix.
125 * Alan Cox : No connect to multicast.
126 * Ross Biro : Close unaccepted children on master
127 * socket close.
128 * Alan Cox : Reset tracing code.
129 * Alan Cox : Spurious resets on shutdown.
130 * Alan Cox : Giant 15 minute/60 second timer error
131 * Alan Cox : Small whoops in polling before an
132 * accept.
133 * Alan Cox : Kept the state trace facility since
134 * it's handy for debugging.
135 * Alan Cox : More reset handler fixes.
136 * Alan Cox : Started rewriting the code based on
137 * the RFC's for other useful protocol
138 * references see: Comer, KA9Q NOS, and
139 * for a reference on the difference
140 * between specifications and how BSD
141 * works see the 4.4lite source.
142 * A.N.Kuznetsov : Don't time wait on completion of tidy
143 * close.
144 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
145 * Linus Torvalds : Fixed BSD port reuse to work first syn
146 * Alan Cox : Reimplemented timers as per the RFC
147 * and using multiple timers for sanity.
148 * Alan Cox : Small bug fixes, and a lot of new
149 * comments.
150 * Alan Cox : Fixed dual reader crash by locking
151 * the buffers (much like datagram.c)
152 * Alan Cox : Fixed stuck sockets in probe. A probe
153 * now gets fed up of retrying without
154 * (even a no space) answer.
155 * Alan Cox : Extracted closing code better
156 * Alan Cox : Fixed the closing state machine to
157 * resemble the RFC.
158 * Alan Cox : More 'per spec' fixes.
159 * Jorge Cwik : Even faster checksumming.
160 * Alan Cox : tcp_data() doesn't ack illegal PSH
161 * only frames. At least one pc tcp stack
162 * generates them.
163 * Alan Cox : Cache last socket.
164 * Alan Cox : Per route irtt.
165 * Matt Day : poll()->select() match BSD precisely on error
166 * Alan Cox : New buffers
167 * Marc Tamsky : Various sk->prot->retransmits and
168 * sk->retransmits misupdating fixed.
169 * Fixed tcp_write_timeout: stuck close,
170 * and TCP syn retries gets used now.
171 * Mark Yarvis : In tcp_read_wakeup(), don't send an
172 * ack if state is TCP_CLOSED.
173 * Alan Cox : Look up device on a retransmit - routes may
174 * change. Doesn't yet cope with MSS shrink right
175 * but it's a start!
176 * Marc Tamsky : Closing in closing fixes.
177 * Mike Shaver : RFC1122 verifications.
178 * Alan Cox : rcv_saddr errors.
179 * Alan Cox : Block double connect().
180 * Alan Cox : Small hooks for enSKIP.
181 * Alexey Kuznetsov: Path MTU discovery.
182 * Alan Cox : Support soft errors.
183 * Alan Cox : Fix MTU discovery pathological case
184 * when the remote claims no mtu!
185 * Marc Tamsky : TCP_CLOSE fix.
186 * Colin (G3TNE) : Send a reset on syn ack replies in
187 * window but wrong (fixes NT lpd problems)
188 * Pedro Roque : Better TCP window handling, delayed ack.
189 * Joerg Reuter : No modification of locked buffers in
190 * tcp_do_retransmit()
191 * Eric Schenk : Changed receiver side silly window
192 * avoidance algorithm to BSD style
193 * algorithm. This doubles throughput
194 * against machines running Solaris,
195 * and seems to result in general
196 * improvement.
197 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
198 * Willy Konynenberg : Transparent proxying support.
199 * Mike McLagan : Routing by source
200 * Keith Owens : Do proper merging with partial SKB's in
201 * tcp_do_sendmsg to avoid burstiness.
202 * Eric Schenk : Fix fast close down bug with
203 * shutdown() followed by close().
204 * Andi Kleen : Make poll agree with SIGIO
205 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
206 * lingertime == 0 (RFC 793 ABORT Call)
207 * Hirokazu Takahashi : Use copy_from_user() instead of
208 * csum_and_copy_from_user() if possible.
209 *
210 * This program is free software; you can redistribute it and/or
211 * modify it under the terms of the GNU General Public License
212 * as published by the Free Software Foundation; either version
213 * 2 of the License, or(at your option) any later version.
214 *
215 * Description of States:
216 *
217 * TCP_SYN_SENT sent a connection request, waiting for ack
218 *
219 * TCP_SYN_RECV received a connection request, sent ack,
220 * waiting for final ack in three-way handshake.
221 *
222 * TCP_ESTABLISHED connection established
223 *
224 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
225 * transmission of remaining buffered data
226 *
227 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
228 * to shutdown
229 *
230 * TCP_CLOSING both sides have shutdown but we still have
231 * data we have to finish sending
232 *
233 * TCP_TIME_WAIT timeout to catch resent junk before entering
234 * closed, can only be entered from FIN_WAIT2
235 * or CLOSING. Required because the other end
236 * may not have gotten our last ACK causing it
237 * to retransmit the data packet (which we ignore)
238 *
239 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
240 * us to finish writing our data and to shutdown
241 * (we have to close() to move on to LAST_ACK)
242 *
243 * TCP_LAST_ACK out side has shutdown after remote has
244 * shutdown. There may still be data in our
245 * buffer that we have to finish sending
246 *
247 * TCP_CLOSE socket is finished
248 */
249
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269
270 #include <net/icmp.h>
271 #include <net/tcp.h>
272 #include <net/xfrm.h>
273 #include <net/ip.h>
274 #include <net/netdma.h>
275 #include <net/sock.h>
276
277 #include <asm/uaccess.h>
278 #include <asm/ioctls.h>
279
280 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
281
282 DEFINE_SNMP_STAT(struct tcp_mib, tcp_statistics) __read_mostly;
283
284 atomic_t tcp_orphan_count = ATOMIC_INIT(0);
285
286 EXPORT_SYMBOL_GPL(tcp_orphan_count);
287
288 int sysctl_tcp_mem[3] __read_mostly;
289 int sysctl_tcp_wmem[3] __read_mostly;
290 int sysctl_tcp_rmem[3] __read_mostly;
291
292 EXPORT_SYMBOL(sysctl_tcp_mem);
293 EXPORT_SYMBOL(sysctl_tcp_rmem);
294 EXPORT_SYMBOL(sysctl_tcp_wmem);
295
296 atomic_t tcp_memory_allocated; /* Current allocated memory. */
297 atomic_t tcp_sockets_allocated; /* Current number of TCP sockets. */
298
299 EXPORT_SYMBOL(tcp_memory_allocated);
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301
302 /*
303 * TCP splice context
304 */
305 struct tcp_splice_state {
306 struct pipe_inode_info *pipe;
307 size_t len;
308 unsigned int flags;
309 };
310
311 /*
312 * Pressure flag: try to collapse.
313 * Technical note: it is used by multiple contexts non atomically.
314 * All the __sk_mem_schedule() is of this nature: accounting
315 * is strict, actions are advisory and have some latency.
316 */
317 int tcp_memory_pressure __read_mostly;
318
319 EXPORT_SYMBOL(tcp_memory_pressure);
320
321 void tcp_enter_memory_pressure(void)
322 {
323 if (!tcp_memory_pressure) {
324 NET_INC_STATS(LINUX_MIB_TCPMEMORYPRESSURES);
325 tcp_memory_pressure = 1;
326 }
327 }
328
329 EXPORT_SYMBOL(tcp_enter_memory_pressure);
330
331 /*
332 * Wait for a TCP event.
333 *
334 * Note that we don't need to lock the socket, as the upper poll layers
335 * take care of normal races (between the test and the event) and we don't
336 * go look at any of the socket buffers directly.
337 */
338 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
339 {
340 unsigned int mask;
341 struct sock *sk = sock->sk;
342 struct tcp_sock *tp = tcp_sk(sk);
343
344 poll_wait(file, sk->sk_sleep, wait);
345 if (sk->sk_state == TCP_LISTEN)
346 return inet_csk_listen_poll(sk);
347
348 /* Socket is not locked. We are protected from async events
349 by poll logic and correct handling of state changes
350 made by another threads is impossible in any case.
351 */
352
353 mask = 0;
354 if (sk->sk_err)
355 mask = POLLERR;
356
357 /*
358 * POLLHUP is certainly not done right. But poll() doesn't
359 * have a notion of HUP in just one direction, and for a
360 * socket the read side is more interesting.
361 *
362 * Some poll() documentation says that POLLHUP is incompatible
363 * with the POLLOUT/POLLWR flags, so somebody should check this
364 * all. But careful, it tends to be safer to return too many
365 * bits than too few, and you can easily break real applications
366 * if you don't tell them that something has hung up!
367 *
368 * Check-me.
369 *
370 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
371 * our fs/select.c). It means that after we received EOF,
372 * poll always returns immediately, making impossible poll() on write()
373 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
374 * if and only if shutdown has been made in both directions.
375 * Actually, it is interesting to look how Solaris and DUX
376 * solve this dilemma. I would prefer, if PULLHUP were maskable,
377 * then we could set it on SND_SHUTDOWN. BTW examples given
378 * in Stevens' books assume exactly this behaviour, it explains
379 * why PULLHUP is incompatible with POLLOUT. --ANK
380 *
381 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
382 * blocking on fresh not-connected or disconnected socket. --ANK
383 */
384 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
385 mask |= POLLHUP;
386 if (sk->sk_shutdown & RCV_SHUTDOWN)
387 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
388
389 /* Connected? */
390 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
391 /* Potential race condition. If read of tp below will
392 * escape above sk->sk_state, we can be illegally awaken
393 * in SYN_* states. */
394 if ((tp->rcv_nxt != tp->copied_seq) &&
395 (tp->urg_seq != tp->copied_seq ||
396 tp->rcv_nxt != tp->copied_seq + 1 ||
397 sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data))
398 mask |= POLLIN | POLLRDNORM;
399
400 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
401 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
402 mask |= POLLOUT | POLLWRNORM;
403 } else { /* send SIGIO later */
404 set_bit(SOCK_ASYNC_NOSPACE,
405 &sk->sk_socket->flags);
406 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
407
408 /* Race breaker. If space is freed after
409 * wspace test but before the flags are set,
410 * IO signal will be lost.
411 */
412 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
413 mask |= POLLOUT | POLLWRNORM;
414 }
415 }
416
417 if (tp->urg_data & TCP_URG_VALID)
418 mask |= POLLPRI;
419 }
420 return mask;
421 }
422
423 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
424 {
425 struct tcp_sock *tp = tcp_sk(sk);
426 int answ;
427
428 switch (cmd) {
429 case SIOCINQ:
430 if (sk->sk_state == TCP_LISTEN)
431 return -EINVAL;
432
433 lock_sock(sk);
434 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
435 answ = 0;
436 else if (sock_flag(sk, SOCK_URGINLINE) ||
437 !tp->urg_data ||
438 before(tp->urg_seq, tp->copied_seq) ||
439 !before(tp->urg_seq, tp->rcv_nxt)) {
440 answ = tp->rcv_nxt - tp->copied_seq;
441
442 /* Subtract 1, if FIN is in queue. */
443 if (answ && !skb_queue_empty(&sk->sk_receive_queue))
444 answ -=
445 tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin;
446 } else
447 answ = tp->urg_seq - tp->copied_seq;
448 release_sock(sk);
449 break;
450 case SIOCATMARK:
451 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
452 break;
453 case SIOCOUTQ:
454 if (sk->sk_state == TCP_LISTEN)
455 return -EINVAL;
456
457 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
458 answ = 0;
459 else
460 answ = tp->write_seq - tp->snd_una;
461 break;
462 default:
463 return -ENOIOCTLCMD;
464 }
465
466 return put_user(answ, (int __user *)arg);
467 }
468
469 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
470 {
471 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
472 tp->pushed_seq = tp->write_seq;
473 }
474
475 static inline int forced_push(struct tcp_sock *tp)
476 {
477 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
478 }
479
480 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
481 {
482 struct tcp_sock *tp = tcp_sk(sk);
483 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
484
485 skb->csum = 0;
486 tcb->seq = tcb->end_seq = tp->write_seq;
487 tcb->flags = TCPCB_FLAG_ACK;
488 tcb->sacked = 0;
489 skb_header_release(skb);
490 tcp_add_write_queue_tail(sk, skb);
491 sk->sk_wmem_queued += skb->truesize;
492 sk_mem_charge(sk, skb->truesize);
493 if (tp->nonagle & TCP_NAGLE_PUSH)
494 tp->nonagle &= ~TCP_NAGLE_PUSH;
495 }
496
497 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
498 struct sk_buff *skb)
499 {
500 if (flags & MSG_OOB) {
501 tp->urg_mode = 1;
502 tp->snd_up = tp->write_seq;
503 }
504 }
505
506 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
507 int nonagle)
508 {
509 struct tcp_sock *tp = tcp_sk(sk);
510
511 if (tcp_send_head(sk)) {
512 struct sk_buff *skb = tcp_write_queue_tail(sk);
513 if (!(flags & MSG_MORE) || forced_push(tp))
514 tcp_mark_push(tp, skb);
515 tcp_mark_urg(tp, flags, skb);
516 __tcp_push_pending_frames(sk, mss_now,
517 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
518 }
519 }
520
521 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
522 unsigned int offset, size_t len)
523 {
524 struct tcp_splice_state *tss = rd_desc->arg.data;
525
526 return skb_splice_bits(skb, offset, tss->pipe, tss->len, tss->flags);
527 }
528
529 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
530 {
531 /* Store TCP splice context information in read_descriptor_t. */
532 read_descriptor_t rd_desc = {
533 .arg.data = tss,
534 };
535
536 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
537 }
538
539 /**
540 * tcp_splice_read - splice data from TCP socket to a pipe
541 * @sock: socket to splice from
542 * @ppos: position (not valid)
543 * @pipe: pipe to splice to
544 * @len: number of bytes to splice
545 * @flags: splice modifier flags
546 *
547 * Description:
548 * Will read pages from given socket and fill them into a pipe.
549 *
550 **/
551 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
552 struct pipe_inode_info *pipe, size_t len,
553 unsigned int flags)
554 {
555 struct sock *sk = sock->sk;
556 struct tcp_splice_state tss = {
557 .pipe = pipe,
558 .len = len,
559 .flags = flags,
560 };
561 long timeo;
562 ssize_t spliced;
563 int ret;
564
565 /*
566 * We can't seek on a socket input
567 */
568 if (unlikely(*ppos))
569 return -ESPIPE;
570
571 ret = spliced = 0;
572
573 lock_sock(sk);
574
575 timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
576 while (tss.len) {
577 ret = __tcp_splice_read(sk, &tss);
578 if (ret < 0)
579 break;
580 else if (!ret) {
581 if (spliced)
582 break;
583 if (flags & SPLICE_F_NONBLOCK) {
584 ret = -EAGAIN;
585 break;
586 }
587 if (sock_flag(sk, SOCK_DONE))
588 break;
589 if (sk->sk_err) {
590 ret = sock_error(sk);
591 break;
592 }
593 if (sk->sk_shutdown & RCV_SHUTDOWN)
594 break;
595 if (sk->sk_state == TCP_CLOSE) {
596 /*
597 * This occurs when user tries to read
598 * from never connected socket.
599 */
600 if (!sock_flag(sk, SOCK_DONE))
601 ret = -ENOTCONN;
602 break;
603 }
604 if (!timeo) {
605 ret = -EAGAIN;
606 break;
607 }
608 sk_wait_data(sk, &timeo);
609 if (signal_pending(current)) {
610 ret = sock_intr_errno(timeo);
611 break;
612 }
613 continue;
614 }
615 tss.len -= ret;
616 spliced += ret;
617
618 release_sock(sk);
619 lock_sock(sk);
620
621 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
622 (sk->sk_shutdown & RCV_SHUTDOWN) || !timeo ||
623 signal_pending(current))
624 break;
625 }
626
627 release_sock(sk);
628
629 if (spliced)
630 return spliced;
631
632 return ret;
633 }
634
635 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
636 {
637 struct sk_buff *skb;
638
639 /* The TCP header must be at least 32-bit aligned. */
640 size = ALIGN(size, 4);
641
642 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
643 if (skb) {
644 if (sk_wmem_schedule(sk, skb->truesize)) {
645 /*
646 * Make sure that we have exactly size bytes
647 * available to the caller, no more, no less.
648 */
649 skb_reserve(skb, skb_tailroom(skb) - size);
650 return skb;
651 }
652 __kfree_skb(skb);
653 } else {
654 sk->sk_prot->enter_memory_pressure();
655 sk_stream_moderate_sndbuf(sk);
656 }
657 return NULL;
658 }
659
660 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
661 size_t psize, int flags)
662 {
663 struct tcp_sock *tp = tcp_sk(sk);
664 int mss_now, size_goal;
665 int err;
666 ssize_t copied;
667 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
668
669 /* Wait for a connection to finish. */
670 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
671 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
672 goto out_err;
673
674 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
675
676 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
677 size_goal = tp->xmit_size_goal;
678 copied = 0;
679
680 err = -EPIPE;
681 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
682 goto do_error;
683
684 while (psize > 0) {
685 struct sk_buff *skb = tcp_write_queue_tail(sk);
686 struct page *page = pages[poffset / PAGE_SIZE];
687 int copy, i, can_coalesce;
688 int offset = poffset % PAGE_SIZE;
689 int size = min_t(size_t, psize, PAGE_SIZE - offset);
690
691 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
692 new_segment:
693 if (!sk_stream_memory_free(sk))
694 goto wait_for_sndbuf;
695
696 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
697 if (!skb)
698 goto wait_for_memory;
699
700 skb_entail(sk, skb);
701 copy = size_goal;
702 }
703
704 if (copy > size)
705 copy = size;
706
707 i = skb_shinfo(skb)->nr_frags;
708 can_coalesce = skb_can_coalesce(skb, i, page, offset);
709 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
710 tcp_mark_push(tp, skb);
711 goto new_segment;
712 }
713 if (!sk_wmem_schedule(sk, copy))
714 goto wait_for_memory;
715
716 if (can_coalesce) {
717 skb_shinfo(skb)->frags[i - 1].size += copy;
718 } else {
719 get_page(page);
720 skb_fill_page_desc(skb, i, page, offset, copy);
721 }
722
723 skb->len += copy;
724 skb->data_len += copy;
725 skb->truesize += copy;
726 sk->sk_wmem_queued += copy;
727 sk_mem_charge(sk, copy);
728 skb->ip_summed = CHECKSUM_PARTIAL;
729 tp->write_seq += copy;
730 TCP_SKB_CB(skb)->end_seq += copy;
731 skb_shinfo(skb)->gso_segs = 0;
732
733 if (!copied)
734 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
735
736 copied += copy;
737 poffset += copy;
738 if (!(psize -= copy))
739 goto out;
740
741 if (skb->len < size_goal || (flags & MSG_OOB))
742 continue;
743
744 if (forced_push(tp)) {
745 tcp_mark_push(tp, skb);
746 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
747 } else if (skb == tcp_send_head(sk))
748 tcp_push_one(sk, mss_now);
749 continue;
750
751 wait_for_sndbuf:
752 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
753 wait_for_memory:
754 if (copied)
755 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
756
757 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
758 goto do_error;
759
760 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
761 size_goal = tp->xmit_size_goal;
762 }
763
764 out:
765 if (copied)
766 tcp_push(sk, flags, mss_now, tp->nonagle);
767 return copied;
768
769 do_error:
770 if (copied)
771 goto out;
772 out_err:
773 return sk_stream_error(sk, flags, err);
774 }
775
776 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
777 size_t size, int flags)
778 {
779 ssize_t res;
780 struct sock *sk = sock->sk;
781
782 if (!(sk->sk_route_caps & NETIF_F_SG) ||
783 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
784 return sock_no_sendpage(sock, page, offset, size, flags);
785
786 lock_sock(sk);
787 TCP_CHECK_TIMER(sk);
788 res = do_tcp_sendpages(sk, &page, offset, size, flags);
789 TCP_CHECK_TIMER(sk);
790 release_sock(sk);
791 return res;
792 }
793
794 #define TCP_PAGE(sk) (sk->sk_sndmsg_page)
795 #define TCP_OFF(sk) (sk->sk_sndmsg_off)
796
797 static inline int select_size(struct sock *sk)
798 {
799 struct tcp_sock *tp = tcp_sk(sk);
800 int tmp = tp->mss_cache;
801
802 if (sk->sk_route_caps & NETIF_F_SG) {
803 if (sk_can_gso(sk))
804 tmp = 0;
805 else {
806 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
807
808 if (tmp >= pgbreak &&
809 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
810 tmp = pgbreak;
811 }
812 }
813
814 return tmp;
815 }
816
817 int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
818 size_t size)
819 {
820 struct sock *sk = sock->sk;
821 struct iovec *iov;
822 struct tcp_sock *tp = tcp_sk(sk);
823 struct sk_buff *skb;
824 int iovlen, flags;
825 int mss_now, size_goal;
826 int err, copied;
827 long timeo;
828
829 lock_sock(sk);
830 TCP_CHECK_TIMER(sk);
831
832 flags = msg->msg_flags;
833 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
834
835 /* Wait for a connection to finish. */
836 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
837 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
838 goto out_err;
839
840 /* This should be in poll */
841 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
842
843 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
844 size_goal = tp->xmit_size_goal;
845
846 /* Ok commence sending. */
847 iovlen = msg->msg_iovlen;
848 iov = msg->msg_iov;
849 copied = 0;
850
851 err = -EPIPE;
852 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
853 goto do_error;
854
855 while (--iovlen >= 0) {
856 int seglen = iov->iov_len;
857 unsigned char __user *from = iov->iov_base;
858
859 iov++;
860
861 while (seglen > 0) {
862 int copy;
863
864 skb = tcp_write_queue_tail(sk);
865
866 if (!tcp_send_head(sk) ||
867 (copy = size_goal - skb->len) <= 0) {
868
869 new_segment:
870 /* Allocate new segment. If the interface is SG,
871 * allocate skb fitting to single page.
872 */
873 if (!sk_stream_memory_free(sk))
874 goto wait_for_sndbuf;
875
876 skb = sk_stream_alloc_skb(sk, select_size(sk),
877 sk->sk_allocation);
878 if (!skb)
879 goto wait_for_memory;
880
881 /*
882 * Check whether we can use HW checksum.
883 */
884 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
885 skb->ip_summed = CHECKSUM_PARTIAL;
886
887 skb_entail(sk, skb);
888 copy = size_goal;
889 }
890
891 /* Try to append data to the end of skb. */
892 if (copy > seglen)
893 copy = seglen;
894
895 /* Where to copy to? */
896 if (skb_tailroom(skb) > 0) {
897 /* We have some space in skb head. Superb! */
898 if (copy > skb_tailroom(skb))
899 copy = skb_tailroom(skb);
900 if ((err = skb_add_data(skb, from, copy)) != 0)
901 goto do_fault;
902 } else {
903 int merge = 0;
904 int i = skb_shinfo(skb)->nr_frags;
905 struct page *page = TCP_PAGE(sk);
906 int off = TCP_OFF(sk);
907
908 if (skb_can_coalesce(skb, i, page, off) &&
909 off != PAGE_SIZE) {
910 /* We can extend the last page
911 * fragment. */
912 merge = 1;
913 } else if (i == MAX_SKB_FRAGS ||
914 (!i &&
915 !(sk->sk_route_caps & NETIF_F_SG))) {
916 /* Need to add new fragment and cannot
917 * do this because interface is non-SG,
918 * or because all the page slots are
919 * busy. */
920 tcp_mark_push(tp, skb);
921 goto new_segment;
922 } else if (page) {
923 if (off == PAGE_SIZE) {
924 put_page(page);
925 TCP_PAGE(sk) = page = NULL;
926 off = 0;
927 }
928 } else
929 off = 0;
930
931 if (copy > PAGE_SIZE - off)
932 copy = PAGE_SIZE - off;
933
934 if (!sk_wmem_schedule(sk, copy))
935 goto wait_for_memory;
936
937 if (!page) {
938 /* Allocate new cache page. */
939 if (!(page = sk_stream_alloc_page(sk)))
940 goto wait_for_memory;
941 }
942
943 /* Time to copy data. We are close to
944 * the end! */
945 err = skb_copy_to_page(sk, from, skb, page,
946 off, copy);
947 if (err) {
948 /* If this page was new, give it to the
949 * socket so it does not get leaked.
950 */
951 if (!TCP_PAGE(sk)) {
952 TCP_PAGE(sk) = page;
953 TCP_OFF(sk) = 0;
954 }
955 goto do_error;
956 }
957
958 /* Update the skb. */
959 if (merge) {
960 skb_shinfo(skb)->frags[i - 1].size +=
961 copy;
962 } else {
963 skb_fill_page_desc(skb, i, page, off, copy);
964 if (TCP_PAGE(sk)) {
965 get_page(page);
966 } else if (off + copy < PAGE_SIZE) {
967 get_page(page);
968 TCP_PAGE(sk) = page;
969 }
970 }
971
972 TCP_OFF(sk) = off + copy;
973 }
974
975 if (!copied)
976 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
977
978 tp->write_seq += copy;
979 TCP_SKB_CB(skb)->end_seq += copy;
980 skb_shinfo(skb)->gso_segs = 0;
981
982 from += copy;
983 copied += copy;
984 if ((seglen -= copy) == 0 && iovlen == 0)
985 goto out;
986
987 if (skb->len < size_goal || (flags & MSG_OOB))
988 continue;
989
990 if (forced_push(tp)) {
991 tcp_mark_push(tp, skb);
992 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
993 } else if (skb == tcp_send_head(sk))
994 tcp_push_one(sk, mss_now);
995 continue;
996
997 wait_for_sndbuf:
998 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
999 wait_for_memory:
1000 if (copied)
1001 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1002
1003 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1004 goto do_error;
1005
1006 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
1007 size_goal = tp->xmit_size_goal;
1008 }
1009 }
1010
1011 out:
1012 if (copied)
1013 tcp_push(sk, flags, mss_now, tp->nonagle);
1014 TCP_CHECK_TIMER(sk);
1015 release_sock(sk);
1016 return copied;
1017
1018 do_fault:
1019 if (!skb->len) {
1020 tcp_unlink_write_queue(skb, sk);
1021 /* It is the one place in all of TCP, except connection
1022 * reset, where we can be unlinking the send_head.
1023 */
1024 tcp_check_send_head(sk, skb);
1025 sk_wmem_free_skb(sk, skb);
1026 }
1027
1028 do_error:
1029 if (copied)
1030 goto out;
1031 out_err:
1032 err = sk_stream_error(sk, flags, err);
1033 TCP_CHECK_TIMER(sk);
1034 release_sock(sk);
1035 return err;
1036 }
1037
1038 /*
1039 * Handle reading urgent data. BSD has very simple semantics for
1040 * this, no blocking and very strange errors 8)
1041 */
1042
1043 static int tcp_recv_urg(struct sock *sk, long timeo,
1044 struct msghdr *msg, int len, int flags,
1045 int *addr_len)
1046 {
1047 struct tcp_sock *tp = tcp_sk(sk);
1048
1049 /* No URG data to read. */
1050 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1051 tp->urg_data == TCP_URG_READ)
1052 return -EINVAL; /* Yes this is right ! */
1053
1054 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1055 return -ENOTCONN;
1056
1057 if (tp->urg_data & TCP_URG_VALID) {
1058 int err = 0;
1059 char c = tp->urg_data;
1060
1061 if (!(flags & MSG_PEEK))
1062 tp->urg_data = TCP_URG_READ;
1063
1064 /* Read urgent data. */
1065 msg->msg_flags |= MSG_OOB;
1066
1067 if (len > 0) {
1068 if (!(flags & MSG_TRUNC))
1069 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1070 len = 1;
1071 } else
1072 msg->msg_flags |= MSG_TRUNC;
1073
1074 return err ? -EFAULT : len;
1075 }
1076
1077 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1078 return 0;
1079
1080 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1081 * the available implementations agree in this case:
1082 * this call should never block, independent of the
1083 * blocking state of the socket.
1084 * Mike <pall@rz.uni-karlsruhe.de>
1085 */
1086 return -EAGAIN;
1087 }
1088
1089 /* Clean up the receive buffer for full frames taken by the user,
1090 * then send an ACK if necessary. COPIED is the number of bytes
1091 * tcp_recvmsg has given to the user so far, it speeds up the
1092 * calculation of whether or not we must ACK for the sake of
1093 * a window update.
1094 */
1095 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1096 {
1097 struct tcp_sock *tp = tcp_sk(sk);
1098 int time_to_ack = 0;
1099
1100 #if TCP_DEBUG
1101 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1102
1103 BUG_TRAP(!skb || before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
1104 #endif
1105
1106 if (inet_csk_ack_scheduled(sk)) {
1107 const struct inet_connection_sock *icsk = inet_csk(sk);
1108 /* Delayed ACKs frequently hit locked sockets during bulk
1109 * receive. */
1110 if (icsk->icsk_ack.blocked ||
1111 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1112 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1113 /*
1114 * If this read emptied read buffer, we send ACK, if
1115 * connection is not bidirectional, user drained
1116 * receive buffer and there was a small segment
1117 * in queue.
1118 */
1119 (copied > 0 &&
1120 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1121 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1122 !icsk->icsk_ack.pingpong)) &&
1123 !atomic_read(&sk->sk_rmem_alloc)))
1124 time_to_ack = 1;
1125 }
1126
1127 /* We send an ACK if we can now advertise a non-zero window
1128 * which has been raised "significantly".
1129 *
1130 * Even if window raised up to infinity, do not send window open ACK
1131 * in states, where we will not receive more. It is useless.
1132 */
1133 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1134 __u32 rcv_window_now = tcp_receive_window(tp);
1135
1136 /* Optimize, __tcp_select_window() is not cheap. */
1137 if (2*rcv_window_now <= tp->window_clamp) {
1138 __u32 new_window = __tcp_select_window(sk);
1139
1140 /* Send ACK now, if this read freed lots of space
1141 * in our buffer. Certainly, new_window is new window.
1142 * We can advertise it now, if it is not less than current one.
1143 * "Lots" means "at least twice" here.
1144 */
1145 if (new_window && new_window >= 2 * rcv_window_now)
1146 time_to_ack = 1;
1147 }
1148 }
1149 if (time_to_ack)
1150 tcp_send_ack(sk);
1151 }
1152
1153 static void tcp_prequeue_process(struct sock *sk)
1154 {
1155 struct sk_buff *skb;
1156 struct tcp_sock *tp = tcp_sk(sk);
1157
1158 NET_INC_STATS_USER(LINUX_MIB_TCPPREQUEUED);
1159
1160 /* RX process wants to run with disabled BHs, though it is not
1161 * necessary */
1162 local_bh_disable();
1163 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1164 sk->sk_backlog_rcv(sk, skb);
1165 local_bh_enable();
1166
1167 /* Clear memory counter. */
1168 tp->ucopy.memory = 0;
1169 }
1170
1171 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1172 {
1173 struct sk_buff *skb;
1174 u32 offset;
1175
1176 skb_queue_walk(&sk->sk_receive_queue, skb) {
1177 offset = seq - TCP_SKB_CB(skb)->seq;
1178 if (tcp_hdr(skb)->syn)
1179 offset--;
1180 if (offset < skb->len || tcp_hdr(skb)->fin) {
1181 *off = offset;
1182 return skb;
1183 }
1184 }
1185 return NULL;
1186 }
1187
1188 /*
1189 * This routine provides an alternative to tcp_recvmsg() for routines
1190 * that would like to handle copying from skbuffs directly in 'sendfile'
1191 * fashion.
1192 * Note:
1193 * - It is assumed that the socket was locked by the caller.
1194 * - The routine does not block.
1195 * - At present, there is no support for reading OOB data
1196 * or for 'peeking' the socket using this routine
1197 * (although both would be easy to implement).
1198 */
1199 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1200 sk_read_actor_t recv_actor)
1201 {
1202 struct sk_buff *skb;
1203 struct tcp_sock *tp = tcp_sk(sk);
1204 u32 seq = tp->copied_seq;
1205 u32 offset;
1206 int copied = 0;
1207
1208 if (sk->sk_state == TCP_LISTEN)
1209 return -ENOTCONN;
1210 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1211 if (offset < skb->len) {
1212 size_t used, len;
1213
1214 len = skb->len - offset;
1215 /* Stop reading if we hit a patch of urgent data */
1216 if (tp->urg_data) {
1217 u32 urg_offset = tp->urg_seq - seq;
1218 if (urg_offset < len)
1219 len = urg_offset;
1220 if (!len)
1221 break;
1222 }
1223 used = recv_actor(desc, skb, offset, len);
1224 if (used < 0) {
1225 if (!copied)
1226 copied = used;
1227 break;
1228 } else if (used <= len) {
1229 seq += used;
1230 copied += used;
1231 offset += used;
1232 }
1233 /*
1234 * If recv_actor drops the lock (e.g. TCP splice
1235 * receive) the skb pointer might be invalid when
1236 * getting here: tcp_collapse might have deleted it
1237 * while aggregating skbs from the socket queue.
1238 */
1239 skb = tcp_recv_skb(sk, seq-1, &offset);
1240 if (!skb || (offset+1 != skb->len))
1241 break;
1242 }
1243 if (tcp_hdr(skb)->fin) {
1244 sk_eat_skb(sk, skb, 0);
1245 ++seq;
1246 break;
1247 }
1248 sk_eat_skb(sk, skb, 0);
1249 if (!desc->count)
1250 break;
1251 }
1252 tp->copied_seq = seq;
1253
1254 tcp_rcv_space_adjust(sk);
1255
1256 /* Clean up data we have read: This will do ACK frames. */
1257 if (copied > 0)
1258 tcp_cleanup_rbuf(sk, copied);
1259 return copied;
1260 }
1261
1262 /*
1263 * This routine copies from a sock struct into the user buffer.
1264 *
1265 * Technical note: in 2.3 we work on _locked_ socket, so that
1266 * tricks with *seq access order and skb->users are not required.
1267 * Probably, code can be easily improved even more.
1268 */
1269
1270 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1271 size_t len, int nonblock, int flags, int *addr_len)
1272 {
1273 struct tcp_sock *tp = tcp_sk(sk);
1274 int copied = 0;
1275 u32 peek_seq;
1276 u32 *seq;
1277 unsigned long used;
1278 int err;
1279 int target; /* Read at least this many bytes */
1280 long timeo;
1281 struct task_struct *user_recv = NULL;
1282 int copied_early = 0;
1283 struct sk_buff *skb;
1284
1285 lock_sock(sk);
1286
1287 TCP_CHECK_TIMER(sk);
1288
1289 err = -ENOTCONN;
1290 if (sk->sk_state == TCP_LISTEN)
1291 goto out;
1292
1293 timeo = sock_rcvtimeo(sk, nonblock);
1294
1295 /* Urgent data needs to be handled specially. */
1296 if (flags & MSG_OOB)
1297 goto recv_urg;
1298
1299 seq = &tp->copied_seq;
1300 if (flags & MSG_PEEK) {
1301 peek_seq = tp->copied_seq;
1302 seq = &peek_seq;
1303 }
1304
1305 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1306
1307 #ifdef CONFIG_NET_DMA
1308 tp->ucopy.dma_chan = NULL;
1309 preempt_disable();
1310 skb = skb_peek_tail(&sk->sk_receive_queue);
1311 {
1312 int available = 0;
1313
1314 if (skb)
1315 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1316 if ((available < target) &&
1317 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1318 !sysctl_tcp_low_latency &&
1319 __get_cpu_var(softnet_data).net_dma) {
1320 preempt_enable_no_resched();
1321 tp->ucopy.pinned_list =
1322 dma_pin_iovec_pages(msg->msg_iov, len);
1323 } else {
1324 preempt_enable_no_resched();
1325 }
1326 }
1327 #endif
1328
1329 do {
1330 u32 offset;
1331
1332 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1333 if (tp->urg_data && tp->urg_seq == *seq) {
1334 if (copied)
1335 break;
1336 if (signal_pending(current)) {
1337 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1338 break;
1339 }
1340 }
1341
1342 /* Next get a buffer. */
1343
1344 skb = skb_peek(&sk->sk_receive_queue);
1345 do {
1346 if (!skb)
1347 break;
1348
1349 /* Now that we have two receive queues this
1350 * shouldn't happen.
1351 */
1352 if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1353 printk(KERN_INFO "recvmsg bug: copied %X "
1354 "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1355 break;
1356 }
1357 offset = *seq - TCP_SKB_CB(skb)->seq;
1358 if (tcp_hdr(skb)->syn)
1359 offset--;
1360 if (offset < skb->len)
1361 goto found_ok_skb;
1362 if (tcp_hdr(skb)->fin)
1363 goto found_fin_ok;
1364 BUG_TRAP(flags & MSG_PEEK);
1365 skb = skb->next;
1366 } while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1367
1368 /* Well, if we have backlog, try to process it now yet. */
1369
1370 if (copied >= target && !sk->sk_backlog.tail)
1371 break;
1372
1373 if (copied) {
1374 if (sk->sk_err ||
1375 sk->sk_state == TCP_CLOSE ||
1376 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1377 !timeo ||
1378 signal_pending(current) ||
1379 (flags & MSG_PEEK))
1380 break;
1381 } else {
1382 if (sock_flag(sk, SOCK_DONE))
1383 break;
1384
1385 if (sk->sk_err) {
1386 copied = sock_error(sk);
1387 break;
1388 }
1389
1390 if (sk->sk_shutdown & RCV_SHUTDOWN)
1391 break;
1392
1393 if (sk->sk_state == TCP_CLOSE) {
1394 if (!sock_flag(sk, SOCK_DONE)) {
1395 /* This occurs when user tries to read
1396 * from never connected socket.
1397 */
1398 copied = -ENOTCONN;
1399 break;
1400 }
1401 break;
1402 }
1403
1404 if (!timeo) {
1405 copied = -EAGAIN;
1406 break;
1407 }
1408
1409 if (signal_pending(current)) {
1410 copied = sock_intr_errno(timeo);
1411 break;
1412 }
1413 }
1414
1415 tcp_cleanup_rbuf(sk, copied);
1416
1417 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1418 /* Install new reader */
1419 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1420 user_recv = current;
1421 tp->ucopy.task = user_recv;
1422 tp->ucopy.iov = msg->msg_iov;
1423 }
1424
1425 tp->ucopy.len = len;
1426
1427 BUG_TRAP(tp->copied_seq == tp->rcv_nxt ||
1428 (flags & (MSG_PEEK | MSG_TRUNC)));
1429
1430 /* Ugly... If prequeue is not empty, we have to
1431 * process it before releasing socket, otherwise
1432 * order will be broken at second iteration.
1433 * More elegant solution is required!!!
1434 *
1435 * Look: we have the following (pseudo)queues:
1436 *
1437 * 1. packets in flight
1438 * 2. backlog
1439 * 3. prequeue
1440 * 4. receive_queue
1441 *
1442 * Each queue can be processed only if the next ones
1443 * are empty. At this point we have empty receive_queue.
1444 * But prequeue _can_ be not empty after 2nd iteration,
1445 * when we jumped to start of loop because backlog
1446 * processing added something to receive_queue.
1447 * We cannot release_sock(), because backlog contains
1448 * packets arrived _after_ prequeued ones.
1449 *
1450 * Shortly, algorithm is clear --- to process all
1451 * the queues in order. We could make it more directly,
1452 * requeueing packets from backlog to prequeue, if
1453 * is not empty. It is more elegant, but eats cycles,
1454 * unfortunately.
1455 */
1456 if (!skb_queue_empty(&tp->ucopy.prequeue))
1457 goto do_prequeue;
1458
1459 /* __ Set realtime policy in scheduler __ */
1460 }
1461
1462 if (copied >= target) {
1463 /* Do not sleep, just process backlog. */
1464 release_sock(sk);
1465 lock_sock(sk);
1466 } else
1467 sk_wait_data(sk, &timeo);
1468
1469 #ifdef CONFIG_NET_DMA
1470 tp->ucopy.wakeup = 0;
1471 #endif
1472
1473 if (user_recv) {
1474 int chunk;
1475
1476 /* __ Restore normal policy in scheduler __ */
1477
1478 if ((chunk = len - tp->ucopy.len) != 0) {
1479 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1480 len -= chunk;
1481 copied += chunk;
1482 }
1483
1484 if (tp->rcv_nxt == tp->copied_seq &&
1485 !skb_queue_empty(&tp->ucopy.prequeue)) {
1486 do_prequeue:
1487 tcp_prequeue_process(sk);
1488
1489 if ((chunk = len - tp->ucopy.len) != 0) {
1490 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1491 len -= chunk;
1492 copied += chunk;
1493 }
1494 }
1495 }
1496 if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1497 if (net_ratelimit())
1498 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1499 current->comm, task_pid_nr(current));
1500 peek_seq = tp->copied_seq;
1501 }
1502 continue;
1503
1504 found_ok_skb:
1505 /* Ok so how much can we use? */
1506 used = skb->len - offset;
1507 if (len < used)
1508 used = len;
1509
1510 /* Do we have urgent data here? */
1511 if (tp->urg_data) {
1512 u32 urg_offset = tp->urg_seq - *seq;
1513 if (urg_offset < used) {
1514 if (!urg_offset) {
1515 if (!sock_flag(sk, SOCK_URGINLINE)) {
1516 ++*seq;
1517 offset++;
1518 used--;
1519 if (!used)
1520 goto skip_copy;
1521 }
1522 } else
1523 used = urg_offset;
1524 }
1525 }
1526
1527 if (!(flags & MSG_TRUNC)) {
1528 #ifdef CONFIG_NET_DMA
1529 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1530 tp->ucopy.dma_chan = get_softnet_dma();
1531
1532 if (tp->ucopy.dma_chan) {
1533 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1534 tp->ucopy.dma_chan, skb, offset,
1535 msg->msg_iov, used,
1536 tp->ucopy.pinned_list);
1537
1538 if (tp->ucopy.dma_cookie < 0) {
1539
1540 printk(KERN_ALERT "dma_cookie < 0\n");
1541
1542 /* Exception. Bailout! */
1543 if (!copied)
1544 copied = -EFAULT;
1545 break;
1546 }
1547 if ((offset + used) == skb->len)
1548 copied_early = 1;
1549
1550 } else
1551 #endif
1552 {
1553 err = skb_copy_datagram_iovec(skb, offset,
1554 msg->msg_iov, used);
1555 if (err) {
1556 /* Exception. Bailout! */
1557 if (!copied)
1558 copied = -EFAULT;
1559 break;
1560 }
1561 }
1562 }
1563
1564 *seq += used;
1565 copied += used;
1566 len -= used;
1567
1568 tcp_rcv_space_adjust(sk);
1569
1570 skip_copy:
1571 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1572 tp->urg_data = 0;
1573 tcp_fast_path_check(sk);
1574 }
1575 if (used + offset < skb->len)
1576 continue;
1577
1578 if (tcp_hdr(skb)->fin)
1579 goto found_fin_ok;
1580 if (!(flags & MSG_PEEK)) {
1581 sk_eat_skb(sk, skb, copied_early);
1582 copied_early = 0;
1583 }
1584 continue;
1585
1586 found_fin_ok:
1587 /* Process the FIN. */
1588 ++*seq;
1589 if (!(flags & MSG_PEEK)) {
1590 sk_eat_skb(sk, skb, copied_early);
1591 copied_early = 0;
1592 }
1593 break;
1594 } while (len > 0);
1595
1596 if (user_recv) {
1597 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1598 int chunk;
1599
1600 tp->ucopy.len = copied > 0 ? len : 0;
1601
1602 tcp_prequeue_process(sk);
1603
1604 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1605 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1606 len -= chunk;
1607 copied += chunk;
1608 }
1609 }
1610
1611 tp->ucopy.task = NULL;
1612 tp->ucopy.len = 0;
1613 }
1614
1615 #ifdef CONFIG_NET_DMA
1616 if (tp->ucopy.dma_chan) {
1617 dma_cookie_t done, used;
1618
1619 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1620
1621 while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1622 tp->ucopy.dma_cookie, &done,
1623 &used) == DMA_IN_PROGRESS) {
1624 /* do partial cleanup of sk_async_wait_queue */
1625 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1626 (dma_async_is_complete(skb->dma_cookie, done,
1627 used) == DMA_SUCCESS)) {
1628 __skb_dequeue(&sk->sk_async_wait_queue);
1629 kfree_skb(skb);
1630 }
1631 }
1632
1633 /* Safe to free early-copied skbs now */
1634 __skb_queue_purge(&sk->sk_async_wait_queue);
1635 dma_chan_put(tp->ucopy.dma_chan);
1636 tp->ucopy.dma_chan = NULL;
1637 }
1638 if (tp->ucopy.pinned_list) {
1639 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1640 tp->ucopy.pinned_list = NULL;
1641 }
1642 #endif
1643
1644 /* According to UNIX98, msg_name/msg_namelen are ignored
1645 * on connected socket. I was just happy when found this 8) --ANK
1646 */
1647
1648 /* Clean up data we have read: This will do ACK frames. */
1649 tcp_cleanup_rbuf(sk, copied);
1650
1651 TCP_CHECK_TIMER(sk);
1652 release_sock(sk);
1653 return copied;
1654
1655 out:
1656 TCP_CHECK_TIMER(sk);
1657 release_sock(sk);
1658 return err;
1659
1660 recv_urg:
1661 err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1662 goto out;
1663 }
1664
1665 void tcp_set_state(struct sock *sk, int state)
1666 {
1667 int oldstate = sk->sk_state;
1668
1669 switch (state) {
1670 case TCP_ESTABLISHED:
1671 if (oldstate != TCP_ESTABLISHED)
1672 TCP_INC_STATS(TCP_MIB_CURRESTAB);
1673 break;
1674
1675 case TCP_CLOSE:
1676 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1677 TCP_INC_STATS(TCP_MIB_ESTABRESETS);
1678
1679 sk->sk_prot->unhash(sk);
1680 if (inet_csk(sk)->icsk_bind_hash &&
1681 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1682 inet_put_port(sk);
1683 /* fall through */
1684 default:
1685 if (oldstate==TCP_ESTABLISHED)
1686 TCP_DEC_STATS(TCP_MIB_CURRESTAB);
1687 }
1688
1689 /* Change state AFTER socket is unhashed to avoid closed
1690 * socket sitting in hash tables.
1691 */
1692 sk->sk_state = state;
1693
1694 #ifdef STATE_TRACE
1695 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n",sk, statename[oldstate],statename[state]);
1696 #endif
1697 }
1698 EXPORT_SYMBOL_GPL(tcp_set_state);
1699
1700 /*
1701 * State processing on a close. This implements the state shift for
1702 * sending our FIN frame. Note that we only send a FIN for some
1703 * states. A shutdown() may have already sent the FIN, or we may be
1704 * closed.
1705 */
1706
1707 static const unsigned char new_state[16] = {
1708 /* current state: new state: action: */
1709 /* (Invalid) */ TCP_CLOSE,
1710 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1711 /* TCP_SYN_SENT */ TCP_CLOSE,
1712 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1713 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1714 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1715 /* TCP_TIME_WAIT */ TCP_CLOSE,
1716 /* TCP_CLOSE */ TCP_CLOSE,
1717 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1718 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1719 /* TCP_LISTEN */ TCP_CLOSE,
1720 /* TCP_CLOSING */ TCP_CLOSING,
1721 };
1722
1723 static int tcp_close_state(struct sock *sk)
1724 {
1725 int next = (int)new_state[sk->sk_state];
1726 int ns = next & TCP_STATE_MASK;
1727
1728 tcp_set_state(sk, ns);
1729
1730 return next & TCP_ACTION_FIN;
1731 }
1732
1733 /*
1734 * Shutdown the sending side of a connection. Much like close except
1735 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1736 */
1737
1738 void tcp_shutdown(struct sock *sk, int how)
1739 {
1740 /* We need to grab some memory, and put together a FIN,
1741 * and then put it into the queue to be sent.
1742 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1743 */
1744 if (!(how & SEND_SHUTDOWN))
1745 return;
1746
1747 /* If we've already sent a FIN, or it's a closed state, skip this. */
1748 if ((1 << sk->sk_state) &
1749 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1750 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1751 /* Clear out any half completed packets. FIN if needed. */
1752 if (tcp_close_state(sk))
1753 tcp_send_fin(sk);
1754 }
1755 }
1756
1757 void tcp_close(struct sock *sk, long timeout)
1758 {
1759 struct sk_buff *skb;
1760 int data_was_unread = 0;
1761 int state;
1762
1763 lock_sock(sk);
1764 sk->sk_shutdown = SHUTDOWN_MASK;
1765
1766 if (sk->sk_state == TCP_LISTEN) {
1767 tcp_set_state(sk, TCP_CLOSE);
1768
1769 /* Special case. */
1770 inet_csk_listen_stop(sk);
1771
1772 goto adjudge_to_death;
1773 }
1774
1775 /* We need to flush the recv. buffs. We do this only on the
1776 * descriptor close, not protocol-sourced closes, because the
1777 * reader process may not have drained the data yet!
1778 */
1779 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1780 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1781 tcp_hdr(skb)->fin;
1782 data_was_unread += len;
1783 __kfree_skb(skb);
1784 }
1785
1786 sk_mem_reclaim(sk);
1787
1788 /* As outlined in RFC 2525, section 2.17, we send a RST here because
1789 * data was lost. To witness the awful effects of the old behavior of
1790 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1791 * GET in an FTP client, suspend the process, wait for the client to
1792 * advertise a zero window, then kill -9 the FTP client, wheee...
1793 * Note: timeout is always zero in such a case.
1794 */
1795 if (data_was_unread) {
1796 /* Unread data was tossed, zap the connection. */
1797 NET_INC_STATS_USER(LINUX_MIB_TCPABORTONCLOSE);
1798 tcp_set_state(sk, TCP_CLOSE);
1799 tcp_send_active_reset(sk, GFP_KERNEL);
1800 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1801 /* Check zero linger _after_ checking for unread data. */
1802 sk->sk_prot->disconnect(sk, 0);
1803 NET_INC_STATS_USER(LINUX_MIB_TCPABORTONDATA);
1804 } else if (tcp_close_state(sk)) {
1805 /* We FIN if the application ate all the data before
1806 * zapping the connection.
1807 */
1808
1809 /* RED-PEN. Formally speaking, we have broken TCP state
1810 * machine. State transitions:
1811 *
1812 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1813 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
1814 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1815 *
1816 * are legal only when FIN has been sent (i.e. in window),
1817 * rather than queued out of window. Purists blame.
1818 *
1819 * F.e. "RFC state" is ESTABLISHED,
1820 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1821 *
1822 * The visible declinations are that sometimes
1823 * we enter time-wait state, when it is not required really
1824 * (harmless), do not send active resets, when they are
1825 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1826 * they look as CLOSING or LAST_ACK for Linux)
1827 * Probably, I missed some more holelets.
1828 * --ANK
1829 */
1830 tcp_send_fin(sk);
1831 }
1832
1833 sk_stream_wait_close(sk, timeout);
1834
1835 adjudge_to_death:
1836 state = sk->sk_state;
1837 sock_hold(sk);
1838 sock_orphan(sk);
1839 atomic_inc(sk->sk_prot->orphan_count);
1840
1841 /* It is the last release_sock in its life. It will remove backlog. */
1842 release_sock(sk);
1843
1844
1845 /* Now socket is owned by kernel and we acquire BH lock
1846 to finish close. No need to check for user refs.
1847 */
1848 local_bh_disable();
1849 bh_lock_sock(sk);
1850 BUG_TRAP(!sock_owned_by_user(sk));
1851
1852 /* Have we already been destroyed by a softirq or backlog? */
1853 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1854 goto out;
1855
1856 /* This is a (useful) BSD violating of the RFC. There is a
1857 * problem with TCP as specified in that the other end could
1858 * keep a socket open forever with no application left this end.
1859 * We use a 3 minute timeout (about the same as BSD) then kill
1860 * our end. If they send after that then tough - BUT: long enough
1861 * that we won't make the old 4*rto = almost no time - whoops
1862 * reset mistake.
1863 *
1864 * Nope, it was not mistake. It is really desired behaviour
1865 * f.e. on http servers, when such sockets are useless, but
1866 * consume significant resources. Let's do it with special
1867 * linger2 option. --ANK
1868 */
1869
1870 if (sk->sk_state == TCP_FIN_WAIT2) {
1871 struct tcp_sock *tp = tcp_sk(sk);
1872 if (tp->linger2 < 0) {
1873 tcp_set_state(sk, TCP_CLOSE);
1874 tcp_send_active_reset(sk, GFP_ATOMIC);
1875 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONLINGER);
1876 } else {
1877 const int tmo = tcp_fin_time(sk);
1878
1879 if (tmo > TCP_TIMEWAIT_LEN) {
1880 inet_csk_reset_keepalive_timer(sk,
1881 tmo - TCP_TIMEWAIT_LEN);
1882 } else {
1883 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1884 goto out;
1885 }
1886 }
1887 }
1888 if (sk->sk_state != TCP_CLOSE) {
1889 sk_mem_reclaim(sk);
1890 if (tcp_too_many_orphans(sk,
1891 atomic_read(sk->sk_prot->orphan_count))) {
1892 if (net_ratelimit())
1893 printk(KERN_INFO "TCP: too many of orphaned "
1894 "sockets\n");
1895 tcp_set_state(sk, TCP_CLOSE);
1896 tcp_send_active_reset(sk, GFP_ATOMIC);
1897 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONMEMORY);
1898 }
1899 }
1900
1901 if (sk->sk_state == TCP_CLOSE)
1902 inet_csk_destroy_sock(sk);
1903 /* Otherwise, socket is reprieved until protocol close. */
1904
1905 out:
1906 bh_unlock_sock(sk);
1907 local_bh_enable();
1908 sock_put(sk);
1909 }
1910
1911 /* These states need RST on ABORT according to RFC793 */
1912
1913 static inline int tcp_need_reset(int state)
1914 {
1915 return (1 << state) &
1916 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1917 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1918 }
1919
1920 int tcp_disconnect(struct sock *sk, int flags)
1921 {
1922 struct inet_sock *inet = inet_sk(sk);
1923 struct inet_connection_sock *icsk = inet_csk(sk);
1924 struct tcp_sock *tp = tcp_sk(sk);
1925 int err = 0;
1926 int old_state = sk->sk_state;
1927
1928 if (old_state != TCP_CLOSE)
1929 tcp_set_state(sk, TCP_CLOSE);
1930
1931 /* ABORT function of RFC793 */
1932 if (old_state == TCP_LISTEN) {
1933 inet_csk_listen_stop(sk);
1934 } else if (tcp_need_reset(old_state) ||
1935 (tp->snd_nxt != tp->write_seq &&
1936 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1937 /* The last check adjusts for discrepancy of Linux wrt. RFC
1938 * states
1939 */
1940 tcp_send_active_reset(sk, gfp_any());
1941 sk->sk_err = ECONNRESET;
1942 } else if (old_state == TCP_SYN_SENT)
1943 sk->sk_err = ECONNRESET;
1944
1945 tcp_clear_xmit_timers(sk);
1946 __skb_queue_purge(&sk->sk_receive_queue);
1947 tcp_write_queue_purge(sk);
1948 __skb_queue_purge(&tp->out_of_order_queue);
1949 #ifdef CONFIG_NET_DMA
1950 __skb_queue_purge(&sk->sk_async_wait_queue);
1951 #endif
1952
1953 inet->dport = 0;
1954
1955 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1956 inet_reset_saddr(sk);
1957
1958 sk->sk_shutdown = 0;
1959 sock_reset_flag(sk, SOCK_DONE);
1960 tp->srtt = 0;
1961 if ((tp->write_seq += tp->max_window + 2) == 0)
1962 tp->write_seq = 1;
1963 icsk->icsk_backoff = 0;
1964 tp->snd_cwnd = 2;
1965 icsk->icsk_probes_out = 0;
1966 tp->packets_out = 0;
1967 tp->snd_ssthresh = 0x7fffffff;
1968 tp->snd_cwnd_cnt = 0;
1969 tp->bytes_acked = 0;
1970 tcp_set_ca_state(sk, TCP_CA_Open);
1971 tcp_clear_retrans(tp);
1972 inet_csk_delack_init(sk);
1973 tcp_init_send_head(sk);
1974 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
1975 __sk_dst_reset(sk);
1976
1977 BUG_TRAP(!inet->num || icsk->icsk_bind_hash);
1978
1979 sk->sk_error_report(sk);
1980 return err;
1981 }
1982
1983 /*
1984 * Socket option code for TCP.
1985 */
1986 static int do_tcp_setsockopt(struct sock *sk, int level,
1987 int optname, char __user *optval, int optlen)
1988 {
1989 struct tcp_sock *tp = tcp_sk(sk);
1990 struct inet_connection_sock *icsk = inet_csk(sk);
1991 int val;
1992 int err = 0;
1993
1994 /* This is a string value all the others are int's */
1995 if (optname == TCP_CONGESTION) {
1996 char name[TCP_CA_NAME_MAX];
1997
1998 if (optlen < 1)
1999 return -EINVAL;
2000
2001 val = strncpy_from_user(name, optval,
2002 min(TCP_CA_NAME_MAX-1, optlen));
2003 if (val < 0)
2004 return -EFAULT;
2005 name[val] = 0;
2006
2007 lock_sock(sk);
2008 err = tcp_set_congestion_control(sk, name);
2009 release_sock(sk);
2010 return err;
2011 }
2012
2013 if (optlen < sizeof(int))
2014 return -EINVAL;
2015
2016 if (get_user(val, (int __user *)optval))
2017 return -EFAULT;
2018
2019 lock_sock(sk);
2020
2021 switch (optname) {
2022 case TCP_MAXSEG:
2023 /* Values greater than interface MTU won't take effect. However
2024 * at the point when this call is done we typically don't yet
2025 * know which interface is going to be used */
2026 if (val < 8 || val > MAX_TCP_WINDOW) {
2027 err = -EINVAL;
2028 break;
2029 }
2030 tp->rx_opt.user_mss = val;
2031 break;
2032
2033 case TCP_NODELAY:
2034 if (val) {
2035 /* TCP_NODELAY is weaker than TCP_CORK, so that
2036 * this option on corked socket is remembered, but
2037 * it is not activated until cork is cleared.
2038 *
2039 * However, when TCP_NODELAY is set we make
2040 * an explicit push, which overrides even TCP_CORK
2041 * for currently queued segments.
2042 */
2043 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2044 tcp_push_pending_frames(sk);
2045 } else {
2046 tp->nonagle &= ~TCP_NAGLE_OFF;
2047 }
2048 break;
2049
2050 case TCP_CORK:
2051 /* When set indicates to always queue non-full frames.
2052 * Later the user clears this option and we transmit
2053 * any pending partial frames in the queue. This is
2054 * meant to be used alongside sendfile() to get properly
2055 * filled frames when the user (for example) must write
2056 * out headers with a write() call first and then use
2057 * sendfile to send out the data parts.
2058 *
2059 * TCP_CORK can be set together with TCP_NODELAY and it is
2060 * stronger than TCP_NODELAY.
2061 */
2062 if (val) {
2063 tp->nonagle |= TCP_NAGLE_CORK;
2064 } else {
2065 tp->nonagle &= ~TCP_NAGLE_CORK;
2066 if (tp->nonagle&TCP_NAGLE_OFF)
2067 tp->nonagle |= TCP_NAGLE_PUSH;
2068 tcp_push_pending_frames(sk);
2069 }
2070 break;
2071
2072 case TCP_KEEPIDLE:
2073 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2074 err = -EINVAL;
2075 else {
2076 tp->keepalive_time = val * HZ;
2077 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2078 !((1 << sk->sk_state) &
2079 (TCPF_CLOSE | TCPF_LISTEN))) {
2080 __u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2081 if (tp->keepalive_time > elapsed)
2082 elapsed = tp->keepalive_time - elapsed;
2083 else
2084 elapsed = 0;
2085 inet_csk_reset_keepalive_timer(sk, elapsed);
2086 }
2087 }
2088 break;
2089 case TCP_KEEPINTVL:
2090 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2091 err = -EINVAL;
2092 else
2093 tp->keepalive_intvl = val * HZ;
2094 break;
2095 case TCP_KEEPCNT:
2096 if (val < 1 || val > MAX_TCP_KEEPCNT)
2097 err = -EINVAL;
2098 else
2099 tp->keepalive_probes = val;
2100 break;
2101 case TCP_SYNCNT:
2102 if (val < 1 || val > MAX_TCP_SYNCNT)
2103 err = -EINVAL;
2104 else
2105 icsk->icsk_syn_retries = val;
2106 break;
2107
2108 case TCP_LINGER2:
2109 if (val < 0)
2110 tp->linger2 = -1;
2111 else if (val > sysctl_tcp_fin_timeout / HZ)
2112 tp->linger2 = 0;
2113 else
2114 tp->linger2 = val * HZ;
2115 break;
2116
2117 case TCP_DEFER_ACCEPT:
2118 icsk->icsk_accept_queue.rskq_defer_accept = 0;
2119 if (val > 0) {
2120 /* Translate value in seconds to number of
2121 * retransmits */
2122 while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
2123 val > ((TCP_TIMEOUT_INIT / HZ) <<
2124 icsk->icsk_accept_queue.rskq_defer_accept))
2125 icsk->icsk_accept_queue.rskq_defer_accept++;
2126 icsk->icsk_accept_queue.rskq_defer_accept++;
2127 }
2128 break;
2129
2130 case TCP_WINDOW_CLAMP:
2131 if (!val) {
2132 if (sk->sk_state != TCP_CLOSE) {
2133 err = -EINVAL;
2134 break;
2135 }
2136 tp->window_clamp = 0;
2137 } else
2138 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2139 SOCK_MIN_RCVBUF / 2 : val;
2140 break;
2141
2142 case TCP_QUICKACK:
2143 if (!val) {
2144 icsk->icsk_ack.pingpong = 1;
2145 } else {
2146 icsk->icsk_ack.pingpong = 0;
2147 if ((1 << sk->sk_state) &
2148 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2149 inet_csk_ack_scheduled(sk)) {
2150 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2151 tcp_cleanup_rbuf(sk, 1);
2152 if (!(val & 1))
2153 icsk->icsk_ack.pingpong = 1;
2154 }
2155 }
2156 break;
2157
2158 #ifdef CONFIG_TCP_MD5SIG
2159 case TCP_MD5SIG:
2160 /* Read the IP->Key mappings from userspace */
2161 err = tp->af_specific->md5_parse(sk, optval, optlen);
2162 break;
2163 #endif
2164
2165 default:
2166 err = -ENOPROTOOPT;
2167 break;
2168 }
2169
2170 release_sock(sk);
2171 return err;
2172 }
2173
2174 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2175 int optlen)
2176 {
2177 struct inet_connection_sock *icsk = inet_csk(sk);
2178
2179 if (level != SOL_TCP)
2180 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2181 optval, optlen);
2182 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2183 }
2184
2185 #ifdef CONFIG_COMPAT
2186 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2187 char __user *optval, int optlen)
2188 {
2189 if (level != SOL_TCP)
2190 return inet_csk_compat_setsockopt(sk, level, optname,
2191 optval, optlen);
2192 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2193 }
2194
2195 EXPORT_SYMBOL(compat_tcp_setsockopt);
2196 #endif
2197
2198 /* Return information about state of tcp endpoint in API format. */
2199 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2200 {
2201 struct tcp_sock *tp = tcp_sk(sk);
2202 const struct inet_connection_sock *icsk = inet_csk(sk);
2203 u32 now = tcp_time_stamp;
2204
2205 memset(info, 0, sizeof(*info));
2206
2207 info->tcpi_state = sk->sk_state;
2208 info->tcpi_ca_state = icsk->icsk_ca_state;
2209 info->tcpi_retransmits = icsk->icsk_retransmits;
2210 info->tcpi_probes = icsk->icsk_probes_out;
2211 info->tcpi_backoff = icsk->icsk_backoff;
2212
2213 if (tp->rx_opt.tstamp_ok)
2214 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2215 if (tcp_is_sack(tp))
2216 info->tcpi_options |= TCPI_OPT_SACK;
2217 if (tp->rx_opt.wscale_ok) {
2218 info->tcpi_options |= TCPI_OPT_WSCALE;
2219 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2220 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2221 }
2222
2223 if (tp->ecn_flags&TCP_ECN_OK)
2224 info->tcpi_options |= TCPI_OPT_ECN;
2225
2226 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2227 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2228 info->tcpi_snd_mss = tp->mss_cache;
2229 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2230
2231 if (sk->sk_state == TCP_LISTEN) {
2232 info->tcpi_unacked = sk->sk_ack_backlog;
2233 info->tcpi_sacked = sk->sk_max_ack_backlog;
2234 } else {
2235 info->tcpi_unacked = tp->packets_out;
2236 info->tcpi_sacked = tp->sacked_out;
2237 }
2238 info->tcpi_lost = tp->lost_out;
2239 info->tcpi_retrans = tp->retrans_out;
2240 info->tcpi_fackets = tp->fackets_out;
2241
2242 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2243 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2244 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2245
2246 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2247 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2248 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2249 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2250 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2251 info->tcpi_snd_cwnd = tp->snd_cwnd;
2252 info->tcpi_advmss = tp->advmss;
2253 info->tcpi_reordering = tp->reordering;
2254
2255 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2256 info->tcpi_rcv_space = tp->rcvq_space.space;
2257
2258 info->tcpi_total_retrans = tp->total_retrans;
2259 }
2260
2261 EXPORT_SYMBOL_GPL(tcp_get_info);
2262
2263 static int do_tcp_getsockopt(struct sock *sk, int level,
2264 int optname, char __user *optval, int __user *optlen)
2265 {
2266 struct inet_connection_sock *icsk = inet_csk(sk);
2267 struct tcp_sock *tp = tcp_sk(sk);
2268 int val, len;
2269
2270 if (get_user(len, optlen))
2271 return -EFAULT;
2272
2273 len = min_t(unsigned int, len, sizeof(int));
2274
2275 if (len < 0)
2276 return -EINVAL;
2277
2278 switch (optname) {
2279 case TCP_MAXSEG:
2280 val = tp->mss_cache;
2281 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2282 val = tp->rx_opt.user_mss;
2283 break;
2284 case TCP_NODELAY:
2285 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2286 break;
2287 case TCP_CORK:
2288 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2289 break;
2290 case TCP_KEEPIDLE:
2291 val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2292 break;
2293 case TCP_KEEPINTVL:
2294 val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2295 break;
2296 case TCP_KEEPCNT:
2297 val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2298 break;
2299 case TCP_SYNCNT:
2300 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2301 break;
2302 case TCP_LINGER2:
2303 val = tp->linger2;
2304 if (val >= 0)
2305 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2306 break;
2307 case TCP_DEFER_ACCEPT:
2308 val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
2309 ((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
2310 break;
2311 case TCP_WINDOW_CLAMP:
2312 val = tp->window_clamp;
2313 break;
2314 case TCP_INFO: {
2315 struct tcp_info info;
2316
2317 if (get_user(len, optlen))
2318 return -EFAULT;
2319
2320 tcp_get_info(sk, &info);
2321
2322 len = min_t(unsigned int, len, sizeof(info));
2323 if (put_user(len, optlen))
2324 return -EFAULT;
2325 if (copy_to_user(optval, &info, len))
2326 return -EFAULT;
2327 return 0;
2328 }
2329 case TCP_QUICKACK:
2330 val = !icsk->icsk_ack.pingpong;
2331 break;
2332
2333 case TCP_CONGESTION:
2334 if (get_user(len, optlen))
2335 return -EFAULT;
2336 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2337 if (put_user(len, optlen))
2338 return -EFAULT;
2339 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2340 return -EFAULT;
2341 return 0;
2342 default:
2343 return -ENOPROTOOPT;
2344 }
2345
2346 if (put_user(len, optlen))
2347 return -EFAULT;
2348 if (copy_to_user(optval, &val, len))
2349 return -EFAULT;
2350 return 0;
2351 }
2352
2353 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2354 int __user *optlen)
2355 {
2356 struct inet_connection_sock *icsk = inet_csk(sk);
2357
2358 if (level != SOL_TCP)
2359 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2360 optval, optlen);
2361 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2362 }
2363
2364 #ifdef CONFIG_COMPAT
2365 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2366 char __user *optval, int __user *optlen)
2367 {
2368 if (level != SOL_TCP)
2369 return inet_csk_compat_getsockopt(sk, level, optname,
2370 optval, optlen);
2371 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2372 }
2373
2374 EXPORT_SYMBOL(compat_tcp_getsockopt);
2375 #endif
2376
2377 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2378 {
2379 struct sk_buff *segs = ERR_PTR(-EINVAL);
2380 struct tcphdr *th;
2381 unsigned thlen;
2382 unsigned int seq;
2383 __be32 delta;
2384 unsigned int oldlen;
2385 unsigned int len;
2386
2387 if (!pskb_may_pull(skb, sizeof(*th)))
2388 goto out;
2389
2390 th = tcp_hdr(skb);
2391 thlen = th->doff * 4;
2392 if (thlen < sizeof(*th))
2393 goto out;
2394
2395 if (!pskb_may_pull(skb, thlen))
2396 goto out;
2397
2398 oldlen = (u16)~skb->len;
2399 __skb_pull(skb, thlen);
2400
2401 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2402 /* Packet is from an untrusted source, reset gso_segs. */
2403 int type = skb_shinfo(skb)->gso_type;
2404 int mss;
2405
2406 if (unlikely(type &
2407 ~(SKB_GSO_TCPV4 |
2408 SKB_GSO_DODGY |
2409 SKB_GSO_TCP_ECN |
2410 SKB_GSO_TCPV6 |
2411 0) ||
2412 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2413 goto out;
2414
2415 mss = skb_shinfo(skb)->gso_size;
2416 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2417
2418 segs = NULL;
2419 goto out;
2420 }
2421
2422 segs = skb_segment(skb, features);
2423 if (IS_ERR(segs))
2424 goto out;
2425
2426 len = skb_shinfo(skb)->gso_size;
2427 delta = htonl(oldlen + (thlen + len));
2428
2429 skb = segs;
2430 th = tcp_hdr(skb);
2431 seq = ntohl(th->seq);
2432
2433 do {
2434 th->fin = th->psh = 0;
2435
2436 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2437 (__force u32)delta));
2438 if (skb->ip_summed != CHECKSUM_PARTIAL)
2439 th->check =
2440 csum_fold(csum_partial(skb_transport_header(skb),
2441 thlen, skb->csum));
2442
2443 seq += len;
2444 skb = skb->next;
2445 th = tcp_hdr(skb);
2446
2447 th->seq = htonl(seq);
2448 th->cwr = 0;
2449 } while (skb->next);
2450
2451 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2452 skb->data_len);
2453 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2454 (__force u32)delta));
2455 if (skb->ip_summed != CHECKSUM_PARTIAL)
2456 th->check = csum_fold(csum_partial(skb_transport_header(skb),
2457 thlen, skb->csum));
2458
2459 out:
2460 return segs;
2461 }
2462 EXPORT_SYMBOL(tcp_tso_segment);
2463
2464 #ifdef CONFIG_TCP_MD5SIG
2465 static unsigned long tcp_md5sig_users;
2466 static struct tcp_md5sig_pool **tcp_md5sig_pool;
2467 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2468
2469 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
2470 {
2471 int cpu;
2472 for_each_possible_cpu(cpu) {
2473 struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2474 if (p) {
2475 if (p->md5_desc.tfm)
2476 crypto_free_hash(p->md5_desc.tfm);
2477 kfree(p);
2478 p = NULL;
2479 }
2480 }
2481 free_percpu(pool);
2482 }
2483
2484 void tcp_free_md5sig_pool(void)
2485 {
2486 struct tcp_md5sig_pool **pool = NULL;
2487
2488 spin_lock_bh(&tcp_md5sig_pool_lock);
2489 if (--tcp_md5sig_users == 0) {
2490 pool = tcp_md5sig_pool;
2491 tcp_md5sig_pool = NULL;
2492 }
2493 spin_unlock_bh(&tcp_md5sig_pool_lock);
2494 if (pool)
2495 __tcp_free_md5sig_pool(pool);
2496 }
2497
2498 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2499
2500 static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void)
2501 {
2502 int cpu;
2503 struct tcp_md5sig_pool **pool;
2504
2505 pool = alloc_percpu(struct tcp_md5sig_pool *);
2506 if (!pool)
2507 return NULL;
2508
2509 for_each_possible_cpu(cpu) {
2510 struct tcp_md5sig_pool *p;
2511 struct crypto_hash *hash;
2512
2513 p = kzalloc(sizeof(*p), GFP_KERNEL);
2514 if (!p)
2515 goto out_free;
2516 *per_cpu_ptr(pool, cpu) = p;
2517
2518 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2519 if (!hash || IS_ERR(hash))
2520 goto out_free;
2521
2522 p->md5_desc.tfm = hash;
2523 }
2524 return pool;
2525 out_free:
2526 __tcp_free_md5sig_pool(pool);
2527 return NULL;
2528 }
2529
2530 struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void)
2531 {
2532 struct tcp_md5sig_pool **pool;
2533 int alloc = 0;
2534
2535 retry:
2536 spin_lock_bh(&tcp_md5sig_pool_lock);
2537 pool = tcp_md5sig_pool;
2538 if (tcp_md5sig_users++ == 0) {
2539 alloc = 1;
2540 spin_unlock_bh(&tcp_md5sig_pool_lock);
2541 } else if (!pool) {
2542 tcp_md5sig_users--;
2543 spin_unlock_bh(&tcp_md5sig_pool_lock);
2544 cpu_relax();
2545 goto retry;
2546 } else
2547 spin_unlock_bh(&tcp_md5sig_pool_lock);
2548
2549 if (alloc) {
2550 /* we cannot hold spinlock here because this may sleep. */
2551 struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool();
2552 spin_lock_bh(&tcp_md5sig_pool_lock);
2553 if (!p) {
2554 tcp_md5sig_users--;
2555 spin_unlock_bh(&tcp_md5sig_pool_lock);
2556 return NULL;
2557 }
2558 pool = tcp_md5sig_pool;
2559 if (pool) {
2560 /* oops, it has already been assigned. */
2561 spin_unlock_bh(&tcp_md5sig_pool_lock);
2562 __tcp_free_md5sig_pool(p);
2563 } else {
2564 tcp_md5sig_pool = pool = p;
2565 spin_unlock_bh(&tcp_md5sig_pool_lock);
2566 }
2567 }
2568 return pool;
2569 }
2570
2571 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2572
2573 struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2574 {
2575 struct tcp_md5sig_pool **p;
2576 spin_lock_bh(&tcp_md5sig_pool_lock);
2577 p = tcp_md5sig_pool;
2578 if (p)
2579 tcp_md5sig_users++;
2580 spin_unlock_bh(&tcp_md5sig_pool_lock);
2581 return (p ? *per_cpu_ptr(p, cpu) : NULL);
2582 }
2583
2584 EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2585
2586 void __tcp_put_md5sig_pool(void)
2587 {
2588 tcp_free_md5sig_pool();
2589 }
2590
2591 EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2592 #endif
2593
2594 void tcp_done(struct sock *sk)
2595 {
2596 if(sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2597 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
2598
2599 tcp_set_state(sk, TCP_CLOSE);
2600 tcp_clear_xmit_timers(sk);
2601
2602 sk->sk_shutdown = SHUTDOWN_MASK;
2603
2604 if (!sock_flag(sk, SOCK_DEAD))
2605 sk->sk_state_change(sk);
2606 else
2607 inet_csk_destroy_sock(sk);
2608 }
2609 EXPORT_SYMBOL_GPL(tcp_done);
2610
2611 extern struct tcp_congestion_ops tcp_reno;
2612
2613 static __initdata unsigned long thash_entries;
2614 static int __init set_thash_entries(char *str)
2615 {
2616 if (!str)
2617 return 0;
2618 thash_entries = simple_strtoul(str, &str, 0);
2619 return 1;
2620 }
2621 __setup("thash_entries=", set_thash_entries);
2622
2623 void __init tcp_init(void)
2624 {
2625 struct sk_buff *skb = NULL;
2626 unsigned long nr_pages, limit;
2627 int order, i, max_share;
2628
2629 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
2630
2631 tcp_hashinfo.bind_bucket_cachep =
2632 kmem_cache_create("tcp_bind_bucket",
2633 sizeof(struct inet_bind_bucket), 0,
2634 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2635
2636 /* Size and allocate the main established and bind bucket
2637 * hash tables.
2638 *
2639 * The methodology is similar to that of the buffer cache.
2640 */
2641 tcp_hashinfo.ehash =
2642 alloc_large_system_hash("TCP established",
2643 sizeof(struct inet_ehash_bucket),
2644 thash_entries,
2645 (num_physpages >= 128 * 1024) ?
2646 13 : 15,
2647 0,
2648 &tcp_hashinfo.ehash_size,
2649 NULL,
2650 thash_entries ? 0 : 512 * 1024);
2651 tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size;
2652 for (i = 0; i < tcp_hashinfo.ehash_size; i++) {
2653 INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].chain);
2654 INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].twchain);
2655 }
2656 if (inet_ehash_locks_alloc(&tcp_hashinfo))
2657 panic("TCP: failed to alloc ehash_locks");
2658 tcp_hashinfo.bhash =
2659 alloc_large_system_hash("TCP bind",
2660 sizeof(struct inet_bind_hashbucket),
2661 tcp_hashinfo.ehash_size,
2662 (num_physpages >= 128 * 1024) ?
2663 13 : 15,
2664 0,
2665 &tcp_hashinfo.bhash_size,
2666 NULL,
2667 64 * 1024);
2668 tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2669 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2670 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2671 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2672 }
2673
2674 /* Try to be a bit smarter and adjust defaults depending
2675 * on available memory.
2676 */
2677 for (order = 0; ((1 << order) << PAGE_SHIFT) <
2678 (tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2679 order++)
2680 ;
2681 if (order >= 4) {
2682 tcp_death_row.sysctl_max_tw_buckets = 180000;
2683 sysctl_tcp_max_orphans = 4096 << (order - 4);
2684 sysctl_max_syn_backlog = 1024;
2685 } else if (order < 3) {
2686 tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2687 sysctl_tcp_max_orphans >>= (3 - order);
2688 sysctl_max_syn_backlog = 128;
2689 }
2690
2691 /* Set the pressure threshold to be a fraction of global memory that
2692 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
2693 * memory, with a floor of 128 pages.
2694 */
2695 nr_pages = totalram_pages - totalhigh_pages;
2696 limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2697 limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2698 limit = max(limit, 128UL);
2699 sysctl_tcp_mem[0] = limit / 4 * 3;
2700 sysctl_tcp_mem[1] = limit;
2701 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
2702
2703 /* Set per-socket limits to no more than 1/128 the pressure threshold */
2704 limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2705 max_share = min(4UL*1024*1024, limit);
2706
2707 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
2708 sysctl_tcp_wmem[1] = 16*1024;
2709 sysctl_tcp_wmem[2] = max(64*1024, max_share);
2710
2711 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
2712 sysctl_tcp_rmem[1] = 87380;
2713 sysctl_tcp_rmem[2] = max(87380, max_share);
2714
2715 printk(KERN_INFO "TCP: Hash tables configured "
2716 "(established %d bind %d)\n",
2717 tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size);
2718
2719 tcp_register_congestion_control(&tcp_reno);
2720 }
2721
2722 EXPORT_SYMBOL(tcp_close);
2723 EXPORT_SYMBOL(tcp_disconnect);
2724 EXPORT_SYMBOL(tcp_getsockopt);
2725 EXPORT_SYMBOL(tcp_ioctl);
2726 EXPORT_SYMBOL(tcp_poll);
2727 EXPORT_SYMBOL(tcp_read_sock);
2728 EXPORT_SYMBOL(tcp_recvmsg);
2729 EXPORT_SYMBOL(tcp_sendmsg);
2730 EXPORT_SYMBOL(tcp_splice_read);
2731 EXPORT_SYMBOL(tcp_sendpage);
2732 EXPORT_SYMBOL(tcp_setsockopt);
2733 EXPORT_SYMBOL(tcp_shutdown);
2734 EXPORT_SYMBOL(tcp_statistics);
This page took 0.161375 seconds and 6 git commands to generate.