Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271
272 #include <net/icmp.h>
273 #include <net/tcp.h>
274 #include <net/xfrm.h>
275 #include <net/ip.h>
276 #include <net/netdma.h>
277 #include <net/sock.h>
278
279 #include <asm/uaccess.h>
280 #include <asm/ioctls.h>
281
282 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
283
284 struct percpu_counter tcp_orphan_count;
285 EXPORT_SYMBOL_GPL(tcp_orphan_count);
286
287 int sysctl_tcp_wmem[3] __read_mostly;
288 int sysctl_tcp_rmem[3] __read_mostly;
289
290 EXPORT_SYMBOL(sysctl_tcp_rmem);
291 EXPORT_SYMBOL(sysctl_tcp_wmem);
292
293 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
294 EXPORT_SYMBOL(tcp_memory_allocated);
295
296 /*
297 * Current number of TCP sockets.
298 */
299 struct percpu_counter tcp_sockets_allocated;
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301
302 /*
303 * TCP splice context
304 */
305 struct tcp_splice_state {
306 struct pipe_inode_info *pipe;
307 size_t len;
308 unsigned int flags;
309 };
310
311 /*
312 * Pressure flag: try to collapse.
313 * Technical note: it is used by multiple contexts non atomically.
314 * All the __sk_mem_schedule() is of this nature: accounting
315 * is strict, actions are advisory and have some latency.
316 */
317 int tcp_memory_pressure __read_mostly;
318 EXPORT_SYMBOL(tcp_memory_pressure);
319
320 void tcp_enter_memory_pressure(struct sock *sk)
321 {
322 if (!tcp_memory_pressure) {
323 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324 tcp_memory_pressure = 1;
325 }
326 }
327 EXPORT_SYMBOL(tcp_enter_memory_pressure);
328
329 /* Convert seconds to retransmits based on initial and max timeout */
330 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331 {
332 u8 res = 0;
333
334 if (seconds > 0) {
335 int period = timeout;
336
337 res = 1;
338 while (seconds > period && res < 255) {
339 res++;
340 timeout <<= 1;
341 if (timeout > rto_max)
342 timeout = rto_max;
343 period += timeout;
344 }
345 }
346 return res;
347 }
348
349 /* Convert retransmits to seconds based on initial and max timeout */
350 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351 {
352 int period = 0;
353
354 if (retrans > 0) {
355 period = timeout;
356 while (--retrans) {
357 timeout <<= 1;
358 if (timeout > rto_max)
359 timeout = rto_max;
360 period += timeout;
361 }
362 }
363 return period;
364 }
365
366 /* Address-family independent initialization for a tcp_sock.
367 *
368 * NOTE: A lot of things set to zero explicitly by call to
369 * sk_alloc() so need not be done here.
370 */
371 void tcp_init_sock(struct sock *sk)
372 {
373 struct inet_connection_sock *icsk = inet_csk(sk);
374 struct tcp_sock *tp = tcp_sk(sk);
375
376 skb_queue_head_init(&tp->out_of_order_queue);
377 tcp_init_xmit_timers(sk);
378 tcp_prequeue_init(tp);
379
380 icsk->icsk_rto = TCP_TIMEOUT_INIT;
381 tp->mdev = TCP_TIMEOUT_INIT;
382
383 /* So many TCP implementations out there (incorrectly) count the
384 * initial SYN frame in their delayed-ACK and congestion control
385 * algorithms that we must have the following bandaid to talk
386 * efficiently to them. -DaveM
387 */
388 tp->snd_cwnd = TCP_INIT_CWND;
389
390 /* See draft-stevens-tcpca-spec-01 for discussion of the
391 * initialization of these values.
392 */
393 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
394 tp->snd_cwnd_clamp = ~0;
395 tp->mss_cache = TCP_MSS_DEFAULT;
396
397 tp->reordering = sysctl_tcp_reordering;
398 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
399
400 sk->sk_state = TCP_CLOSE;
401
402 sk->sk_write_space = sk_stream_write_space;
403 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
404
405 icsk->icsk_sync_mss = tcp_sync_mss;
406
407 /* TCP Cookie Transactions */
408 if (sysctl_tcp_cookie_size > 0) {
409 /* Default, cookies without s_data_payload. */
410 tp->cookie_values =
411 kzalloc(sizeof(*tp->cookie_values),
412 sk->sk_allocation);
413 if (tp->cookie_values != NULL)
414 kref_init(&tp->cookie_values->kref);
415 }
416 /* Presumed zeroed, in order of appearance:
417 * cookie_in_always, cookie_out_never,
418 * s_data_constant, s_data_in, s_data_out
419 */
420 sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
422
423 local_bh_disable();
424 sock_update_memcg(sk);
425 sk_sockets_allocated_inc(sk);
426 local_bh_enable();
427 }
428 EXPORT_SYMBOL(tcp_init_sock);
429
430 /*
431 * Wait for a TCP event.
432 *
433 * Note that we don't need to lock the socket, as the upper poll layers
434 * take care of normal races (between the test and the event) and we don't
435 * go look at any of the socket buffers directly.
436 */
437 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
438 {
439 unsigned int mask;
440 struct sock *sk = sock->sk;
441 const struct tcp_sock *tp = tcp_sk(sk);
442
443 sock_poll_wait(file, sk_sleep(sk), wait);
444 if (sk->sk_state == TCP_LISTEN)
445 return inet_csk_listen_poll(sk);
446
447 /* Socket is not locked. We are protected from async events
448 * by poll logic and correct handling of state changes
449 * made by other threads is impossible in any case.
450 */
451
452 mask = 0;
453
454 /*
455 * POLLHUP is certainly not done right. But poll() doesn't
456 * have a notion of HUP in just one direction, and for a
457 * socket the read side is more interesting.
458 *
459 * Some poll() documentation says that POLLHUP is incompatible
460 * with the POLLOUT/POLLWR flags, so somebody should check this
461 * all. But careful, it tends to be safer to return too many
462 * bits than too few, and you can easily break real applications
463 * if you don't tell them that something has hung up!
464 *
465 * Check-me.
466 *
467 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
468 * our fs/select.c). It means that after we received EOF,
469 * poll always returns immediately, making impossible poll() on write()
470 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
471 * if and only if shutdown has been made in both directions.
472 * Actually, it is interesting to look how Solaris and DUX
473 * solve this dilemma. I would prefer, if POLLHUP were maskable,
474 * then we could set it on SND_SHUTDOWN. BTW examples given
475 * in Stevens' books assume exactly this behaviour, it explains
476 * why POLLHUP is incompatible with POLLOUT. --ANK
477 *
478 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
479 * blocking on fresh not-connected or disconnected socket. --ANK
480 */
481 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
482 mask |= POLLHUP;
483 if (sk->sk_shutdown & RCV_SHUTDOWN)
484 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
485
486 /* Connected? */
487 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
488 int target = sock_rcvlowat(sk, 0, INT_MAX);
489
490 if (tp->urg_seq == tp->copied_seq &&
491 !sock_flag(sk, SOCK_URGINLINE) &&
492 tp->urg_data)
493 target++;
494
495 /* Potential race condition. If read of tp below will
496 * escape above sk->sk_state, we can be illegally awaken
497 * in SYN_* states. */
498 if (tp->rcv_nxt - tp->copied_seq >= target)
499 mask |= POLLIN | POLLRDNORM;
500
501 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
502 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
503 mask |= POLLOUT | POLLWRNORM;
504 } else { /* send SIGIO later */
505 set_bit(SOCK_ASYNC_NOSPACE,
506 &sk->sk_socket->flags);
507 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
508
509 /* Race breaker. If space is freed after
510 * wspace test but before the flags are set,
511 * IO signal will be lost.
512 */
513 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
514 mask |= POLLOUT | POLLWRNORM;
515 }
516 } else
517 mask |= POLLOUT | POLLWRNORM;
518
519 if (tp->urg_data & TCP_URG_VALID)
520 mask |= POLLPRI;
521 }
522 /* This barrier is coupled with smp_wmb() in tcp_reset() */
523 smp_rmb();
524 if (sk->sk_err)
525 mask |= POLLERR;
526
527 return mask;
528 }
529 EXPORT_SYMBOL(tcp_poll);
530
531 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
532 {
533 struct tcp_sock *tp = tcp_sk(sk);
534 int answ;
535
536 switch (cmd) {
537 case SIOCINQ:
538 if (sk->sk_state == TCP_LISTEN)
539 return -EINVAL;
540
541 lock_sock(sk);
542 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
543 answ = 0;
544 else if (sock_flag(sk, SOCK_URGINLINE) ||
545 !tp->urg_data ||
546 before(tp->urg_seq, tp->copied_seq) ||
547 !before(tp->urg_seq, tp->rcv_nxt)) {
548 struct sk_buff *skb;
549
550 answ = tp->rcv_nxt - tp->copied_seq;
551
552 /* Subtract 1, if FIN is in queue. */
553 skb = skb_peek_tail(&sk->sk_receive_queue);
554 if (answ && skb)
555 answ -= tcp_hdr(skb)->fin;
556 } else
557 answ = tp->urg_seq - tp->copied_seq;
558 release_sock(sk);
559 break;
560 case SIOCATMARK:
561 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
562 break;
563 case SIOCOUTQ:
564 if (sk->sk_state == TCP_LISTEN)
565 return -EINVAL;
566
567 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
568 answ = 0;
569 else
570 answ = tp->write_seq - tp->snd_una;
571 break;
572 case SIOCOUTQNSD:
573 if (sk->sk_state == TCP_LISTEN)
574 return -EINVAL;
575
576 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
577 answ = 0;
578 else
579 answ = tp->write_seq - tp->snd_nxt;
580 break;
581 default:
582 return -ENOIOCTLCMD;
583 }
584
585 return put_user(answ, (int __user *)arg);
586 }
587 EXPORT_SYMBOL(tcp_ioctl);
588
589 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
590 {
591 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
592 tp->pushed_seq = tp->write_seq;
593 }
594
595 static inline int forced_push(const struct tcp_sock *tp)
596 {
597 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
598 }
599
600 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
601 {
602 struct tcp_sock *tp = tcp_sk(sk);
603 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
604
605 skb->csum = 0;
606 tcb->seq = tcb->end_seq = tp->write_seq;
607 tcb->tcp_flags = TCPHDR_ACK;
608 tcb->sacked = 0;
609 skb_header_release(skb);
610 tcp_add_write_queue_tail(sk, skb);
611 sk->sk_wmem_queued += skb->truesize;
612 sk_mem_charge(sk, skb->truesize);
613 if (tp->nonagle & TCP_NAGLE_PUSH)
614 tp->nonagle &= ~TCP_NAGLE_PUSH;
615 }
616
617 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
618 {
619 if (flags & MSG_OOB)
620 tp->snd_up = tp->write_seq;
621 }
622
623 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
624 int nonagle)
625 {
626 if (tcp_send_head(sk)) {
627 struct tcp_sock *tp = tcp_sk(sk);
628
629 if (!(flags & MSG_MORE) || forced_push(tp))
630 tcp_mark_push(tp, tcp_write_queue_tail(sk));
631
632 tcp_mark_urg(tp, flags);
633 __tcp_push_pending_frames(sk, mss_now,
634 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
635 }
636 }
637
638 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
639 unsigned int offset, size_t len)
640 {
641 struct tcp_splice_state *tss = rd_desc->arg.data;
642 int ret;
643
644 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
645 tss->flags);
646 if (ret > 0)
647 rd_desc->count -= ret;
648 return ret;
649 }
650
651 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
652 {
653 /* Store TCP splice context information in read_descriptor_t. */
654 read_descriptor_t rd_desc = {
655 .arg.data = tss,
656 .count = tss->len,
657 };
658
659 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
660 }
661
662 /**
663 * tcp_splice_read - splice data from TCP socket to a pipe
664 * @sock: socket to splice from
665 * @ppos: position (not valid)
666 * @pipe: pipe to splice to
667 * @len: number of bytes to splice
668 * @flags: splice modifier flags
669 *
670 * Description:
671 * Will read pages from given socket and fill them into a pipe.
672 *
673 **/
674 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
675 struct pipe_inode_info *pipe, size_t len,
676 unsigned int flags)
677 {
678 struct sock *sk = sock->sk;
679 struct tcp_splice_state tss = {
680 .pipe = pipe,
681 .len = len,
682 .flags = flags,
683 };
684 long timeo;
685 ssize_t spliced;
686 int ret;
687
688 sock_rps_record_flow(sk);
689 /*
690 * We can't seek on a socket input
691 */
692 if (unlikely(*ppos))
693 return -ESPIPE;
694
695 ret = spliced = 0;
696
697 lock_sock(sk);
698
699 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
700 while (tss.len) {
701 ret = __tcp_splice_read(sk, &tss);
702 if (ret < 0)
703 break;
704 else if (!ret) {
705 if (spliced)
706 break;
707 if (sock_flag(sk, SOCK_DONE))
708 break;
709 if (sk->sk_err) {
710 ret = sock_error(sk);
711 break;
712 }
713 if (sk->sk_shutdown & RCV_SHUTDOWN)
714 break;
715 if (sk->sk_state == TCP_CLOSE) {
716 /*
717 * This occurs when user tries to read
718 * from never connected socket.
719 */
720 if (!sock_flag(sk, SOCK_DONE))
721 ret = -ENOTCONN;
722 break;
723 }
724 if (!timeo) {
725 ret = -EAGAIN;
726 break;
727 }
728 sk_wait_data(sk, &timeo);
729 if (signal_pending(current)) {
730 ret = sock_intr_errno(timeo);
731 break;
732 }
733 continue;
734 }
735 tss.len -= ret;
736 spliced += ret;
737
738 if (!timeo)
739 break;
740 release_sock(sk);
741 lock_sock(sk);
742
743 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
744 (sk->sk_shutdown & RCV_SHUTDOWN) ||
745 signal_pending(current))
746 break;
747 }
748
749 release_sock(sk);
750
751 if (spliced)
752 return spliced;
753
754 return ret;
755 }
756 EXPORT_SYMBOL(tcp_splice_read);
757
758 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
759 {
760 struct sk_buff *skb;
761
762 /* The TCP header must be at least 32-bit aligned. */
763 size = ALIGN(size, 4);
764
765 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
766 if (skb) {
767 if (sk_wmem_schedule(sk, skb->truesize)) {
768 skb_reserve(skb, sk->sk_prot->max_header);
769 /*
770 * Make sure that we have exactly size bytes
771 * available to the caller, no more, no less.
772 */
773 skb->avail_size = size;
774 return skb;
775 }
776 __kfree_skb(skb);
777 } else {
778 sk->sk_prot->enter_memory_pressure(sk);
779 sk_stream_moderate_sndbuf(sk);
780 }
781 return NULL;
782 }
783
784 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
785 int large_allowed)
786 {
787 struct tcp_sock *tp = tcp_sk(sk);
788 u32 xmit_size_goal, old_size_goal;
789
790 xmit_size_goal = mss_now;
791
792 if (large_allowed && sk_can_gso(sk)) {
793 xmit_size_goal = ((sk->sk_gso_max_size - 1) -
794 inet_csk(sk)->icsk_af_ops->net_header_len -
795 inet_csk(sk)->icsk_ext_hdr_len -
796 tp->tcp_header_len);
797
798 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
799
800 /* We try hard to avoid divides here */
801 old_size_goal = tp->xmit_size_goal_segs * mss_now;
802
803 if (likely(old_size_goal <= xmit_size_goal &&
804 old_size_goal + mss_now > xmit_size_goal)) {
805 xmit_size_goal = old_size_goal;
806 } else {
807 tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
808 xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
809 }
810 }
811
812 return max(xmit_size_goal, mss_now);
813 }
814
815 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
816 {
817 int mss_now;
818
819 mss_now = tcp_current_mss(sk);
820 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
821
822 return mss_now;
823 }
824
825 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
826 size_t psize, int flags)
827 {
828 struct tcp_sock *tp = tcp_sk(sk);
829 int mss_now, size_goal;
830 int err;
831 ssize_t copied;
832 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
833
834 /* Wait for a connection to finish. */
835 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
836 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
837 goto out_err;
838
839 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
840
841 mss_now = tcp_send_mss(sk, &size_goal, flags);
842 copied = 0;
843
844 err = -EPIPE;
845 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
846 goto out_err;
847
848 while (psize > 0) {
849 struct sk_buff *skb = tcp_write_queue_tail(sk);
850 struct page *page = pages[poffset / PAGE_SIZE];
851 int copy, i;
852 int offset = poffset % PAGE_SIZE;
853 int size = min_t(size_t, psize, PAGE_SIZE - offset);
854 bool can_coalesce;
855
856 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
857 new_segment:
858 if (!sk_stream_memory_free(sk))
859 goto wait_for_sndbuf;
860
861 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
862 if (!skb)
863 goto wait_for_memory;
864
865 skb_entail(sk, skb);
866 copy = size_goal;
867 }
868
869 if (copy > size)
870 copy = size;
871
872 i = skb_shinfo(skb)->nr_frags;
873 can_coalesce = skb_can_coalesce(skb, i, page, offset);
874 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
875 tcp_mark_push(tp, skb);
876 goto new_segment;
877 }
878 if (!sk_wmem_schedule(sk, copy))
879 goto wait_for_memory;
880
881 if (can_coalesce) {
882 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
883 } else {
884 get_page(page);
885 skb_fill_page_desc(skb, i, page, offset, copy);
886 }
887
888 skb->len += copy;
889 skb->data_len += copy;
890 skb->truesize += copy;
891 sk->sk_wmem_queued += copy;
892 sk_mem_charge(sk, copy);
893 skb->ip_summed = CHECKSUM_PARTIAL;
894 tp->write_seq += copy;
895 TCP_SKB_CB(skb)->end_seq += copy;
896 skb_shinfo(skb)->gso_segs = 0;
897
898 if (!copied)
899 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
900
901 copied += copy;
902 poffset += copy;
903 if (!(psize -= copy))
904 goto out;
905
906 if (skb->len < size_goal || (flags & MSG_OOB))
907 continue;
908
909 if (forced_push(tp)) {
910 tcp_mark_push(tp, skb);
911 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
912 } else if (skb == tcp_send_head(sk))
913 tcp_push_one(sk, mss_now);
914 continue;
915
916 wait_for_sndbuf:
917 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
918 wait_for_memory:
919 if (copied)
920 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
921
922 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
923 goto do_error;
924
925 mss_now = tcp_send_mss(sk, &size_goal, flags);
926 }
927
928 out:
929 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
930 tcp_push(sk, flags, mss_now, tp->nonagle);
931 return copied;
932
933 do_error:
934 if (copied)
935 goto out;
936 out_err:
937 return sk_stream_error(sk, flags, err);
938 }
939
940 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
941 size_t size, int flags)
942 {
943 ssize_t res;
944
945 if (!(sk->sk_route_caps & NETIF_F_SG) ||
946 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
947 return sock_no_sendpage(sk->sk_socket, page, offset, size,
948 flags);
949
950 lock_sock(sk);
951 res = do_tcp_sendpages(sk, &page, offset, size, flags);
952 release_sock(sk);
953 return res;
954 }
955 EXPORT_SYMBOL(tcp_sendpage);
956
957 static inline int select_size(const struct sock *sk, bool sg)
958 {
959 const struct tcp_sock *tp = tcp_sk(sk);
960 int tmp = tp->mss_cache;
961
962 if (sg) {
963 if (sk_can_gso(sk)) {
964 /* Small frames wont use a full page:
965 * Payload will immediately follow tcp header.
966 */
967 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
968 } else {
969 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
970
971 if (tmp >= pgbreak &&
972 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
973 tmp = pgbreak;
974 }
975 }
976
977 return tmp;
978 }
979
980 static int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
981 {
982 struct sk_buff *skb;
983 struct tcp_skb_cb *cb;
984 struct tcphdr *th;
985
986 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
987 if (!skb)
988 goto err;
989
990 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
991 skb_reset_transport_header(skb);
992 memset(th, 0, sizeof(*th));
993
994 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
995 goto err_free;
996
997 cb = TCP_SKB_CB(skb);
998
999 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
1000 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
1001 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
1002
1003 tcp_queue_rcv(sk, skb, sizeof(*th));
1004
1005 return size;
1006
1007 err_free:
1008 kfree_skb(skb);
1009 err:
1010 return -ENOMEM;
1011 }
1012
1013 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1014 size_t size)
1015 {
1016 struct iovec *iov;
1017 struct tcp_sock *tp = tcp_sk(sk);
1018 struct sk_buff *skb;
1019 int iovlen, flags, err, copied;
1020 int mss_now = 0, size_goal;
1021 bool sg;
1022 long timeo;
1023
1024 lock_sock(sk);
1025
1026 flags = msg->msg_flags;
1027 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1028
1029 /* Wait for a connection to finish. */
1030 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1031 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1032 goto out_err;
1033
1034 if (unlikely(tp->repair)) {
1035 if (tp->repair_queue == TCP_RECV_QUEUE) {
1036 copied = tcp_send_rcvq(sk, msg, size);
1037 goto out;
1038 }
1039
1040 err = -EINVAL;
1041 if (tp->repair_queue == TCP_NO_QUEUE)
1042 goto out_err;
1043
1044 /* 'common' sending to sendq */
1045 }
1046
1047 /* This should be in poll */
1048 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1049
1050 mss_now = tcp_send_mss(sk, &size_goal, flags);
1051
1052 /* Ok commence sending. */
1053 iovlen = msg->msg_iovlen;
1054 iov = msg->msg_iov;
1055 copied = 0;
1056
1057 err = -EPIPE;
1058 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1059 goto out_err;
1060
1061 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1062
1063 while (--iovlen >= 0) {
1064 size_t seglen = iov->iov_len;
1065 unsigned char __user *from = iov->iov_base;
1066
1067 iov++;
1068
1069 while (seglen > 0) {
1070 int copy = 0;
1071 int max = size_goal;
1072
1073 skb = tcp_write_queue_tail(sk);
1074 if (tcp_send_head(sk)) {
1075 if (skb->ip_summed == CHECKSUM_NONE)
1076 max = mss_now;
1077 copy = max - skb->len;
1078 }
1079
1080 if (copy <= 0) {
1081 new_segment:
1082 /* Allocate new segment. If the interface is SG,
1083 * allocate skb fitting to single page.
1084 */
1085 if (!sk_stream_memory_free(sk))
1086 goto wait_for_sndbuf;
1087
1088 skb = sk_stream_alloc_skb(sk,
1089 select_size(sk, sg),
1090 sk->sk_allocation);
1091 if (!skb)
1092 goto wait_for_memory;
1093
1094 /*
1095 * Check whether we can use HW checksum.
1096 */
1097 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1098 skb->ip_summed = CHECKSUM_PARTIAL;
1099
1100 skb_entail(sk, skb);
1101 copy = size_goal;
1102 max = size_goal;
1103 }
1104
1105 /* Try to append data to the end of skb. */
1106 if (copy > seglen)
1107 copy = seglen;
1108
1109 /* Where to copy to? */
1110 if (skb_availroom(skb) > 0) {
1111 /* We have some space in skb head. Superb! */
1112 copy = min_t(int, copy, skb_availroom(skb));
1113 err = skb_add_data_nocache(sk, skb, from, copy);
1114 if (err)
1115 goto do_fault;
1116 } else {
1117 int merge = 0;
1118 int i = skb_shinfo(skb)->nr_frags;
1119 struct page *page = sk->sk_sndmsg_page;
1120 int off;
1121
1122 if (page && page_count(page) == 1)
1123 sk->sk_sndmsg_off = 0;
1124
1125 off = sk->sk_sndmsg_off;
1126
1127 if (skb_can_coalesce(skb, i, page, off) &&
1128 off != PAGE_SIZE) {
1129 /* We can extend the last page
1130 * fragment. */
1131 merge = 1;
1132 } else if (i == MAX_SKB_FRAGS || !sg) {
1133 /* Need to add new fragment and cannot
1134 * do this because interface is non-SG,
1135 * or because all the page slots are
1136 * busy. */
1137 tcp_mark_push(tp, skb);
1138 goto new_segment;
1139 } else if (page) {
1140 if (off == PAGE_SIZE) {
1141 put_page(page);
1142 sk->sk_sndmsg_page = page = NULL;
1143 off = 0;
1144 }
1145 } else
1146 off = 0;
1147
1148 if (copy > PAGE_SIZE - off)
1149 copy = PAGE_SIZE - off;
1150
1151 if (!sk_wmem_schedule(sk, copy))
1152 goto wait_for_memory;
1153
1154 if (!page) {
1155 /* Allocate new cache page. */
1156 if (!(page = sk_stream_alloc_page(sk)))
1157 goto wait_for_memory;
1158 }
1159
1160 /* Time to copy data. We are close to
1161 * the end! */
1162 err = skb_copy_to_page_nocache(sk, from, skb,
1163 page, off, copy);
1164 if (err) {
1165 /* If this page was new, give it to the
1166 * socket so it does not get leaked.
1167 */
1168 if (!sk->sk_sndmsg_page) {
1169 sk->sk_sndmsg_page = page;
1170 sk->sk_sndmsg_off = 0;
1171 }
1172 goto do_error;
1173 }
1174
1175 /* Update the skb. */
1176 if (merge) {
1177 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1178 } else {
1179 skb_fill_page_desc(skb, i, page, off, copy);
1180 if (sk->sk_sndmsg_page) {
1181 get_page(page);
1182 } else if (off + copy < PAGE_SIZE) {
1183 get_page(page);
1184 sk->sk_sndmsg_page = page;
1185 }
1186 }
1187
1188 sk->sk_sndmsg_off = off + copy;
1189 }
1190
1191 if (!copied)
1192 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1193
1194 tp->write_seq += copy;
1195 TCP_SKB_CB(skb)->end_seq += copy;
1196 skb_shinfo(skb)->gso_segs = 0;
1197
1198 from += copy;
1199 copied += copy;
1200 if ((seglen -= copy) == 0 && iovlen == 0)
1201 goto out;
1202
1203 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1204 continue;
1205
1206 if (forced_push(tp)) {
1207 tcp_mark_push(tp, skb);
1208 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1209 } else if (skb == tcp_send_head(sk))
1210 tcp_push_one(sk, mss_now);
1211 continue;
1212
1213 wait_for_sndbuf:
1214 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1215 wait_for_memory:
1216 if (copied && likely(!tp->repair))
1217 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1218
1219 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1220 goto do_error;
1221
1222 mss_now = tcp_send_mss(sk, &size_goal, flags);
1223 }
1224 }
1225
1226 out:
1227 if (copied && likely(!tp->repair))
1228 tcp_push(sk, flags, mss_now, tp->nonagle);
1229 release_sock(sk);
1230 return copied;
1231
1232 do_fault:
1233 if (!skb->len) {
1234 tcp_unlink_write_queue(skb, sk);
1235 /* It is the one place in all of TCP, except connection
1236 * reset, where we can be unlinking the send_head.
1237 */
1238 tcp_check_send_head(sk, skb);
1239 sk_wmem_free_skb(sk, skb);
1240 }
1241
1242 do_error:
1243 if (copied)
1244 goto out;
1245 out_err:
1246 err = sk_stream_error(sk, flags, err);
1247 release_sock(sk);
1248 return err;
1249 }
1250 EXPORT_SYMBOL(tcp_sendmsg);
1251
1252 /*
1253 * Handle reading urgent data. BSD has very simple semantics for
1254 * this, no blocking and very strange errors 8)
1255 */
1256
1257 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1258 {
1259 struct tcp_sock *tp = tcp_sk(sk);
1260
1261 /* No URG data to read. */
1262 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1263 tp->urg_data == TCP_URG_READ)
1264 return -EINVAL; /* Yes this is right ! */
1265
1266 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1267 return -ENOTCONN;
1268
1269 if (tp->urg_data & TCP_URG_VALID) {
1270 int err = 0;
1271 char c = tp->urg_data;
1272
1273 if (!(flags & MSG_PEEK))
1274 tp->urg_data = TCP_URG_READ;
1275
1276 /* Read urgent data. */
1277 msg->msg_flags |= MSG_OOB;
1278
1279 if (len > 0) {
1280 if (!(flags & MSG_TRUNC))
1281 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1282 len = 1;
1283 } else
1284 msg->msg_flags |= MSG_TRUNC;
1285
1286 return err ? -EFAULT : len;
1287 }
1288
1289 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1290 return 0;
1291
1292 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1293 * the available implementations agree in this case:
1294 * this call should never block, independent of the
1295 * blocking state of the socket.
1296 * Mike <pall@rz.uni-karlsruhe.de>
1297 */
1298 return -EAGAIN;
1299 }
1300
1301 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1302 {
1303 struct sk_buff *skb;
1304 int copied = 0, err = 0;
1305
1306 /* XXX -- need to support SO_PEEK_OFF */
1307
1308 skb_queue_walk(&sk->sk_write_queue, skb) {
1309 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1310 if (err)
1311 break;
1312
1313 copied += skb->len;
1314 }
1315
1316 return err ?: copied;
1317 }
1318
1319 /* Clean up the receive buffer for full frames taken by the user,
1320 * then send an ACK if necessary. COPIED is the number of bytes
1321 * tcp_recvmsg has given to the user so far, it speeds up the
1322 * calculation of whether or not we must ACK for the sake of
1323 * a window update.
1324 */
1325 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1326 {
1327 struct tcp_sock *tp = tcp_sk(sk);
1328 int time_to_ack = 0;
1329
1330 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1331
1332 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1333 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1334 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1335
1336 if (inet_csk_ack_scheduled(sk)) {
1337 const struct inet_connection_sock *icsk = inet_csk(sk);
1338 /* Delayed ACKs frequently hit locked sockets during bulk
1339 * receive. */
1340 if (icsk->icsk_ack.blocked ||
1341 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1342 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1343 /*
1344 * If this read emptied read buffer, we send ACK, if
1345 * connection is not bidirectional, user drained
1346 * receive buffer and there was a small segment
1347 * in queue.
1348 */
1349 (copied > 0 &&
1350 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1351 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1352 !icsk->icsk_ack.pingpong)) &&
1353 !atomic_read(&sk->sk_rmem_alloc)))
1354 time_to_ack = 1;
1355 }
1356
1357 /* We send an ACK if we can now advertise a non-zero window
1358 * which has been raised "significantly".
1359 *
1360 * Even if window raised up to infinity, do not send window open ACK
1361 * in states, where we will not receive more. It is useless.
1362 */
1363 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1364 __u32 rcv_window_now = tcp_receive_window(tp);
1365
1366 /* Optimize, __tcp_select_window() is not cheap. */
1367 if (2*rcv_window_now <= tp->window_clamp) {
1368 __u32 new_window = __tcp_select_window(sk);
1369
1370 /* Send ACK now, if this read freed lots of space
1371 * in our buffer. Certainly, new_window is new window.
1372 * We can advertise it now, if it is not less than current one.
1373 * "Lots" means "at least twice" here.
1374 */
1375 if (new_window && new_window >= 2 * rcv_window_now)
1376 time_to_ack = 1;
1377 }
1378 }
1379 if (time_to_ack)
1380 tcp_send_ack(sk);
1381 }
1382
1383 static void tcp_prequeue_process(struct sock *sk)
1384 {
1385 struct sk_buff *skb;
1386 struct tcp_sock *tp = tcp_sk(sk);
1387
1388 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1389
1390 /* RX process wants to run with disabled BHs, though it is not
1391 * necessary */
1392 local_bh_disable();
1393 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1394 sk_backlog_rcv(sk, skb);
1395 local_bh_enable();
1396
1397 /* Clear memory counter. */
1398 tp->ucopy.memory = 0;
1399 }
1400
1401 #ifdef CONFIG_NET_DMA
1402 static void tcp_service_net_dma(struct sock *sk, bool wait)
1403 {
1404 dma_cookie_t done, used;
1405 dma_cookie_t last_issued;
1406 struct tcp_sock *tp = tcp_sk(sk);
1407
1408 if (!tp->ucopy.dma_chan)
1409 return;
1410
1411 last_issued = tp->ucopy.dma_cookie;
1412 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1413
1414 do {
1415 if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1416 last_issued, &done,
1417 &used) == DMA_SUCCESS) {
1418 /* Safe to free early-copied skbs now */
1419 __skb_queue_purge(&sk->sk_async_wait_queue);
1420 break;
1421 } else {
1422 struct sk_buff *skb;
1423 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1424 (dma_async_is_complete(skb->dma_cookie, done,
1425 used) == DMA_SUCCESS)) {
1426 __skb_dequeue(&sk->sk_async_wait_queue);
1427 kfree_skb(skb);
1428 }
1429 }
1430 } while (wait);
1431 }
1432 #endif
1433
1434 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1435 {
1436 struct sk_buff *skb;
1437 u32 offset;
1438
1439 skb_queue_walk(&sk->sk_receive_queue, skb) {
1440 offset = seq - TCP_SKB_CB(skb)->seq;
1441 if (tcp_hdr(skb)->syn)
1442 offset--;
1443 if (offset < skb->len || tcp_hdr(skb)->fin) {
1444 *off = offset;
1445 return skb;
1446 }
1447 }
1448 return NULL;
1449 }
1450
1451 /*
1452 * This routine provides an alternative to tcp_recvmsg() for routines
1453 * that would like to handle copying from skbuffs directly in 'sendfile'
1454 * fashion.
1455 * Note:
1456 * - It is assumed that the socket was locked by the caller.
1457 * - The routine does not block.
1458 * - At present, there is no support for reading OOB data
1459 * or for 'peeking' the socket using this routine
1460 * (although both would be easy to implement).
1461 */
1462 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1463 sk_read_actor_t recv_actor)
1464 {
1465 struct sk_buff *skb;
1466 struct tcp_sock *tp = tcp_sk(sk);
1467 u32 seq = tp->copied_seq;
1468 u32 offset;
1469 int copied = 0;
1470
1471 if (sk->sk_state == TCP_LISTEN)
1472 return -ENOTCONN;
1473 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1474 if (offset < skb->len) {
1475 int used;
1476 size_t len;
1477
1478 len = skb->len - offset;
1479 /* Stop reading if we hit a patch of urgent data */
1480 if (tp->urg_data) {
1481 u32 urg_offset = tp->urg_seq - seq;
1482 if (urg_offset < len)
1483 len = urg_offset;
1484 if (!len)
1485 break;
1486 }
1487 used = recv_actor(desc, skb, offset, len);
1488 if (used < 0) {
1489 if (!copied)
1490 copied = used;
1491 break;
1492 } else if (used <= len) {
1493 seq += used;
1494 copied += used;
1495 offset += used;
1496 }
1497 /*
1498 * If recv_actor drops the lock (e.g. TCP splice
1499 * receive) the skb pointer might be invalid when
1500 * getting here: tcp_collapse might have deleted it
1501 * while aggregating skbs from the socket queue.
1502 */
1503 skb = tcp_recv_skb(sk, seq-1, &offset);
1504 if (!skb || (offset+1 != skb->len))
1505 break;
1506 }
1507 if (tcp_hdr(skb)->fin) {
1508 sk_eat_skb(sk, skb, 0);
1509 ++seq;
1510 break;
1511 }
1512 sk_eat_skb(sk, skb, 0);
1513 if (!desc->count)
1514 break;
1515 tp->copied_seq = seq;
1516 }
1517 tp->copied_seq = seq;
1518
1519 tcp_rcv_space_adjust(sk);
1520
1521 /* Clean up data we have read: This will do ACK frames. */
1522 if (copied > 0)
1523 tcp_cleanup_rbuf(sk, copied);
1524 return copied;
1525 }
1526 EXPORT_SYMBOL(tcp_read_sock);
1527
1528 /*
1529 * This routine copies from a sock struct into the user buffer.
1530 *
1531 * Technical note: in 2.3 we work on _locked_ socket, so that
1532 * tricks with *seq access order and skb->users are not required.
1533 * Probably, code can be easily improved even more.
1534 */
1535
1536 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1537 size_t len, int nonblock, int flags, int *addr_len)
1538 {
1539 struct tcp_sock *tp = tcp_sk(sk);
1540 int copied = 0;
1541 u32 peek_seq;
1542 u32 *seq;
1543 unsigned long used;
1544 int err;
1545 int target; /* Read at least this many bytes */
1546 long timeo;
1547 struct task_struct *user_recv = NULL;
1548 int copied_early = 0;
1549 struct sk_buff *skb;
1550 u32 urg_hole = 0;
1551
1552 lock_sock(sk);
1553
1554 err = -ENOTCONN;
1555 if (sk->sk_state == TCP_LISTEN)
1556 goto out;
1557
1558 timeo = sock_rcvtimeo(sk, nonblock);
1559
1560 /* Urgent data needs to be handled specially. */
1561 if (flags & MSG_OOB)
1562 goto recv_urg;
1563
1564 if (unlikely(tp->repair)) {
1565 err = -EPERM;
1566 if (!(flags & MSG_PEEK))
1567 goto out;
1568
1569 if (tp->repair_queue == TCP_SEND_QUEUE)
1570 goto recv_sndq;
1571
1572 err = -EINVAL;
1573 if (tp->repair_queue == TCP_NO_QUEUE)
1574 goto out;
1575
1576 /* 'common' recv queue MSG_PEEK-ing */
1577 }
1578
1579 seq = &tp->copied_seq;
1580 if (flags & MSG_PEEK) {
1581 peek_seq = tp->copied_seq;
1582 seq = &peek_seq;
1583 }
1584
1585 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1586
1587 #ifdef CONFIG_NET_DMA
1588 tp->ucopy.dma_chan = NULL;
1589 preempt_disable();
1590 skb = skb_peek_tail(&sk->sk_receive_queue);
1591 {
1592 int available = 0;
1593
1594 if (skb)
1595 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1596 if ((available < target) &&
1597 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1598 !sysctl_tcp_low_latency &&
1599 net_dma_find_channel()) {
1600 preempt_enable_no_resched();
1601 tp->ucopy.pinned_list =
1602 dma_pin_iovec_pages(msg->msg_iov, len);
1603 } else {
1604 preempt_enable_no_resched();
1605 }
1606 }
1607 #endif
1608
1609 do {
1610 u32 offset;
1611
1612 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1613 if (tp->urg_data && tp->urg_seq == *seq) {
1614 if (copied)
1615 break;
1616 if (signal_pending(current)) {
1617 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1618 break;
1619 }
1620 }
1621
1622 /* Next get a buffer. */
1623
1624 skb_queue_walk(&sk->sk_receive_queue, skb) {
1625 /* Now that we have two receive queues this
1626 * shouldn't happen.
1627 */
1628 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1629 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1630 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1631 flags))
1632 break;
1633
1634 offset = *seq - TCP_SKB_CB(skb)->seq;
1635 if (tcp_hdr(skb)->syn)
1636 offset--;
1637 if (offset < skb->len)
1638 goto found_ok_skb;
1639 if (tcp_hdr(skb)->fin)
1640 goto found_fin_ok;
1641 WARN(!(flags & MSG_PEEK),
1642 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1643 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1644 }
1645
1646 /* Well, if we have backlog, try to process it now yet. */
1647
1648 if (copied >= target && !sk->sk_backlog.tail)
1649 break;
1650
1651 if (copied) {
1652 if (sk->sk_err ||
1653 sk->sk_state == TCP_CLOSE ||
1654 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1655 !timeo ||
1656 signal_pending(current))
1657 break;
1658 } else {
1659 if (sock_flag(sk, SOCK_DONE))
1660 break;
1661
1662 if (sk->sk_err) {
1663 copied = sock_error(sk);
1664 break;
1665 }
1666
1667 if (sk->sk_shutdown & RCV_SHUTDOWN)
1668 break;
1669
1670 if (sk->sk_state == TCP_CLOSE) {
1671 if (!sock_flag(sk, SOCK_DONE)) {
1672 /* This occurs when user tries to read
1673 * from never connected socket.
1674 */
1675 copied = -ENOTCONN;
1676 break;
1677 }
1678 break;
1679 }
1680
1681 if (!timeo) {
1682 copied = -EAGAIN;
1683 break;
1684 }
1685
1686 if (signal_pending(current)) {
1687 copied = sock_intr_errno(timeo);
1688 break;
1689 }
1690 }
1691
1692 tcp_cleanup_rbuf(sk, copied);
1693
1694 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1695 /* Install new reader */
1696 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1697 user_recv = current;
1698 tp->ucopy.task = user_recv;
1699 tp->ucopy.iov = msg->msg_iov;
1700 }
1701
1702 tp->ucopy.len = len;
1703
1704 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1705 !(flags & (MSG_PEEK | MSG_TRUNC)));
1706
1707 /* Ugly... If prequeue is not empty, we have to
1708 * process it before releasing socket, otherwise
1709 * order will be broken at second iteration.
1710 * More elegant solution is required!!!
1711 *
1712 * Look: we have the following (pseudo)queues:
1713 *
1714 * 1. packets in flight
1715 * 2. backlog
1716 * 3. prequeue
1717 * 4. receive_queue
1718 *
1719 * Each queue can be processed only if the next ones
1720 * are empty. At this point we have empty receive_queue.
1721 * But prequeue _can_ be not empty after 2nd iteration,
1722 * when we jumped to start of loop because backlog
1723 * processing added something to receive_queue.
1724 * We cannot release_sock(), because backlog contains
1725 * packets arrived _after_ prequeued ones.
1726 *
1727 * Shortly, algorithm is clear --- to process all
1728 * the queues in order. We could make it more directly,
1729 * requeueing packets from backlog to prequeue, if
1730 * is not empty. It is more elegant, but eats cycles,
1731 * unfortunately.
1732 */
1733 if (!skb_queue_empty(&tp->ucopy.prequeue))
1734 goto do_prequeue;
1735
1736 /* __ Set realtime policy in scheduler __ */
1737 }
1738
1739 #ifdef CONFIG_NET_DMA
1740 if (tp->ucopy.dma_chan)
1741 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1742 #endif
1743 if (copied >= target) {
1744 /* Do not sleep, just process backlog. */
1745 release_sock(sk);
1746 lock_sock(sk);
1747 } else
1748 sk_wait_data(sk, &timeo);
1749
1750 #ifdef CONFIG_NET_DMA
1751 tcp_service_net_dma(sk, false); /* Don't block */
1752 tp->ucopy.wakeup = 0;
1753 #endif
1754
1755 if (user_recv) {
1756 int chunk;
1757
1758 /* __ Restore normal policy in scheduler __ */
1759
1760 if ((chunk = len - tp->ucopy.len) != 0) {
1761 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1762 len -= chunk;
1763 copied += chunk;
1764 }
1765
1766 if (tp->rcv_nxt == tp->copied_seq &&
1767 !skb_queue_empty(&tp->ucopy.prequeue)) {
1768 do_prequeue:
1769 tcp_prequeue_process(sk);
1770
1771 if ((chunk = len - tp->ucopy.len) != 0) {
1772 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1773 len -= chunk;
1774 copied += chunk;
1775 }
1776 }
1777 }
1778 if ((flags & MSG_PEEK) &&
1779 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1780 if (net_ratelimit())
1781 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1782 current->comm, task_pid_nr(current));
1783 peek_seq = tp->copied_seq;
1784 }
1785 continue;
1786
1787 found_ok_skb:
1788 /* Ok so how much can we use? */
1789 used = skb->len - offset;
1790 if (len < used)
1791 used = len;
1792
1793 /* Do we have urgent data here? */
1794 if (tp->urg_data) {
1795 u32 urg_offset = tp->urg_seq - *seq;
1796 if (urg_offset < used) {
1797 if (!urg_offset) {
1798 if (!sock_flag(sk, SOCK_URGINLINE)) {
1799 ++*seq;
1800 urg_hole++;
1801 offset++;
1802 used--;
1803 if (!used)
1804 goto skip_copy;
1805 }
1806 } else
1807 used = urg_offset;
1808 }
1809 }
1810
1811 if (!(flags & MSG_TRUNC)) {
1812 #ifdef CONFIG_NET_DMA
1813 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1814 tp->ucopy.dma_chan = net_dma_find_channel();
1815
1816 if (tp->ucopy.dma_chan) {
1817 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1818 tp->ucopy.dma_chan, skb, offset,
1819 msg->msg_iov, used,
1820 tp->ucopy.pinned_list);
1821
1822 if (tp->ucopy.dma_cookie < 0) {
1823
1824 pr_alert("%s: dma_cookie < 0\n",
1825 __func__);
1826
1827 /* Exception. Bailout! */
1828 if (!copied)
1829 copied = -EFAULT;
1830 break;
1831 }
1832
1833 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1834
1835 if ((offset + used) == skb->len)
1836 copied_early = 1;
1837
1838 } else
1839 #endif
1840 {
1841 err = skb_copy_datagram_iovec(skb, offset,
1842 msg->msg_iov, used);
1843 if (err) {
1844 /* Exception. Bailout! */
1845 if (!copied)
1846 copied = -EFAULT;
1847 break;
1848 }
1849 }
1850 }
1851
1852 *seq += used;
1853 copied += used;
1854 len -= used;
1855
1856 tcp_rcv_space_adjust(sk);
1857
1858 skip_copy:
1859 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1860 tp->urg_data = 0;
1861 tcp_fast_path_check(sk);
1862 }
1863 if (used + offset < skb->len)
1864 continue;
1865
1866 if (tcp_hdr(skb)->fin)
1867 goto found_fin_ok;
1868 if (!(flags & MSG_PEEK)) {
1869 sk_eat_skb(sk, skb, copied_early);
1870 copied_early = 0;
1871 }
1872 continue;
1873
1874 found_fin_ok:
1875 /* Process the FIN. */
1876 ++*seq;
1877 if (!(flags & MSG_PEEK)) {
1878 sk_eat_skb(sk, skb, copied_early);
1879 copied_early = 0;
1880 }
1881 break;
1882 } while (len > 0);
1883
1884 if (user_recv) {
1885 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1886 int chunk;
1887
1888 tp->ucopy.len = copied > 0 ? len : 0;
1889
1890 tcp_prequeue_process(sk);
1891
1892 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1893 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1894 len -= chunk;
1895 copied += chunk;
1896 }
1897 }
1898
1899 tp->ucopy.task = NULL;
1900 tp->ucopy.len = 0;
1901 }
1902
1903 #ifdef CONFIG_NET_DMA
1904 tcp_service_net_dma(sk, true); /* Wait for queue to drain */
1905 tp->ucopy.dma_chan = NULL;
1906
1907 if (tp->ucopy.pinned_list) {
1908 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1909 tp->ucopy.pinned_list = NULL;
1910 }
1911 #endif
1912
1913 /* According to UNIX98, msg_name/msg_namelen are ignored
1914 * on connected socket. I was just happy when found this 8) --ANK
1915 */
1916
1917 /* Clean up data we have read: This will do ACK frames. */
1918 tcp_cleanup_rbuf(sk, copied);
1919
1920 release_sock(sk);
1921 return copied;
1922
1923 out:
1924 release_sock(sk);
1925 return err;
1926
1927 recv_urg:
1928 err = tcp_recv_urg(sk, msg, len, flags);
1929 goto out;
1930
1931 recv_sndq:
1932 err = tcp_peek_sndq(sk, msg, len);
1933 goto out;
1934 }
1935 EXPORT_SYMBOL(tcp_recvmsg);
1936
1937 void tcp_set_state(struct sock *sk, int state)
1938 {
1939 int oldstate = sk->sk_state;
1940
1941 switch (state) {
1942 case TCP_ESTABLISHED:
1943 if (oldstate != TCP_ESTABLISHED)
1944 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1945 break;
1946
1947 case TCP_CLOSE:
1948 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1949 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1950
1951 sk->sk_prot->unhash(sk);
1952 if (inet_csk(sk)->icsk_bind_hash &&
1953 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1954 inet_put_port(sk);
1955 /* fall through */
1956 default:
1957 if (oldstate == TCP_ESTABLISHED)
1958 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1959 }
1960
1961 /* Change state AFTER socket is unhashed to avoid closed
1962 * socket sitting in hash tables.
1963 */
1964 sk->sk_state = state;
1965
1966 #ifdef STATE_TRACE
1967 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1968 #endif
1969 }
1970 EXPORT_SYMBOL_GPL(tcp_set_state);
1971
1972 /*
1973 * State processing on a close. This implements the state shift for
1974 * sending our FIN frame. Note that we only send a FIN for some
1975 * states. A shutdown() may have already sent the FIN, or we may be
1976 * closed.
1977 */
1978
1979 static const unsigned char new_state[16] = {
1980 /* current state: new state: action: */
1981 /* (Invalid) */ TCP_CLOSE,
1982 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1983 /* TCP_SYN_SENT */ TCP_CLOSE,
1984 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1985 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1986 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1987 /* TCP_TIME_WAIT */ TCP_CLOSE,
1988 /* TCP_CLOSE */ TCP_CLOSE,
1989 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1990 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1991 /* TCP_LISTEN */ TCP_CLOSE,
1992 /* TCP_CLOSING */ TCP_CLOSING,
1993 };
1994
1995 static int tcp_close_state(struct sock *sk)
1996 {
1997 int next = (int)new_state[sk->sk_state];
1998 int ns = next & TCP_STATE_MASK;
1999
2000 tcp_set_state(sk, ns);
2001
2002 return next & TCP_ACTION_FIN;
2003 }
2004
2005 /*
2006 * Shutdown the sending side of a connection. Much like close except
2007 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2008 */
2009
2010 void tcp_shutdown(struct sock *sk, int how)
2011 {
2012 /* We need to grab some memory, and put together a FIN,
2013 * and then put it into the queue to be sent.
2014 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2015 */
2016 if (!(how & SEND_SHUTDOWN))
2017 return;
2018
2019 /* If we've already sent a FIN, or it's a closed state, skip this. */
2020 if ((1 << sk->sk_state) &
2021 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2022 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2023 /* Clear out any half completed packets. FIN if needed. */
2024 if (tcp_close_state(sk))
2025 tcp_send_fin(sk);
2026 }
2027 }
2028 EXPORT_SYMBOL(tcp_shutdown);
2029
2030 bool tcp_check_oom(struct sock *sk, int shift)
2031 {
2032 bool too_many_orphans, out_of_socket_memory;
2033
2034 too_many_orphans = tcp_too_many_orphans(sk, shift);
2035 out_of_socket_memory = tcp_out_of_memory(sk);
2036
2037 if (too_many_orphans && net_ratelimit())
2038 pr_info("too many orphaned sockets\n");
2039 if (out_of_socket_memory && net_ratelimit())
2040 pr_info("out of memory -- consider tuning tcp_mem\n");
2041 return too_many_orphans || out_of_socket_memory;
2042 }
2043
2044 void tcp_close(struct sock *sk, long timeout)
2045 {
2046 struct sk_buff *skb;
2047 int data_was_unread = 0;
2048 int state;
2049
2050 lock_sock(sk);
2051 sk->sk_shutdown = SHUTDOWN_MASK;
2052
2053 if (sk->sk_state == TCP_LISTEN) {
2054 tcp_set_state(sk, TCP_CLOSE);
2055
2056 /* Special case. */
2057 inet_csk_listen_stop(sk);
2058
2059 goto adjudge_to_death;
2060 }
2061
2062 /* We need to flush the recv. buffs. We do this only on the
2063 * descriptor close, not protocol-sourced closes, because the
2064 * reader process may not have drained the data yet!
2065 */
2066 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2067 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2068 tcp_hdr(skb)->fin;
2069 data_was_unread += len;
2070 __kfree_skb(skb);
2071 }
2072
2073 sk_mem_reclaim(sk);
2074
2075 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2076 if (sk->sk_state == TCP_CLOSE)
2077 goto adjudge_to_death;
2078
2079 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2080 * data was lost. To witness the awful effects of the old behavior of
2081 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2082 * GET in an FTP client, suspend the process, wait for the client to
2083 * advertise a zero window, then kill -9 the FTP client, wheee...
2084 * Note: timeout is always zero in such a case.
2085 */
2086 if (unlikely(tcp_sk(sk)->repair)) {
2087 sk->sk_prot->disconnect(sk, 0);
2088 } else if (data_was_unread) {
2089 /* Unread data was tossed, zap the connection. */
2090 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2091 tcp_set_state(sk, TCP_CLOSE);
2092 tcp_send_active_reset(sk, sk->sk_allocation);
2093 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2094 /* Check zero linger _after_ checking for unread data. */
2095 sk->sk_prot->disconnect(sk, 0);
2096 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2097 } else if (tcp_close_state(sk)) {
2098 /* We FIN if the application ate all the data before
2099 * zapping the connection.
2100 */
2101
2102 /* RED-PEN. Formally speaking, we have broken TCP state
2103 * machine. State transitions:
2104 *
2105 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2106 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2107 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2108 *
2109 * are legal only when FIN has been sent (i.e. in window),
2110 * rather than queued out of window. Purists blame.
2111 *
2112 * F.e. "RFC state" is ESTABLISHED,
2113 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2114 *
2115 * The visible declinations are that sometimes
2116 * we enter time-wait state, when it is not required really
2117 * (harmless), do not send active resets, when they are
2118 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2119 * they look as CLOSING or LAST_ACK for Linux)
2120 * Probably, I missed some more holelets.
2121 * --ANK
2122 */
2123 tcp_send_fin(sk);
2124 }
2125
2126 sk_stream_wait_close(sk, timeout);
2127
2128 adjudge_to_death:
2129 state = sk->sk_state;
2130 sock_hold(sk);
2131 sock_orphan(sk);
2132
2133 /* It is the last release_sock in its life. It will remove backlog. */
2134 release_sock(sk);
2135
2136
2137 /* Now socket is owned by kernel and we acquire BH lock
2138 to finish close. No need to check for user refs.
2139 */
2140 local_bh_disable();
2141 bh_lock_sock(sk);
2142 WARN_ON(sock_owned_by_user(sk));
2143
2144 percpu_counter_inc(sk->sk_prot->orphan_count);
2145
2146 /* Have we already been destroyed by a softirq or backlog? */
2147 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2148 goto out;
2149
2150 /* This is a (useful) BSD violating of the RFC. There is a
2151 * problem with TCP as specified in that the other end could
2152 * keep a socket open forever with no application left this end.
2153 * We use a 3 minute timeout (about the same as BSD) then kill
2154 * our end. If they send after that then tough - BUT: long enough
2155 * that we won't make the old 4*rto = almost no time - whoops
2156 * reset mistake.
2157 *
2158 * Nope, it was not mistake. It is really desired behaviour
2159 * f.e. on http servers, when such sockets are useless, but
2160 * consume significant resources. Let's do it with special
2161 * linger2 option. --ANK
2162 */
2163
2164 if (sk->sk_state == TCP_FIN_WAIT2) {
2165 struct tcp_sock *tp = tcp_sk(sk);
2166 if (tp->linger2 < 0) {
2167 tcp_set_state(sk, TCP_CLOSE);
2168 tcp_send_active_reset(sk, GFP_ATOMIC);
2169 NET_INC_STATS_BH(sock_net(sk),
2170 LINUX_MIB_TCPABORTONLINGER);
2171 } else {
2172 const int tmo = tcp_fin_time(sk);
2173
2174 if (tmo > TCP_TIMEWAIT_LEN) {
2175 inet_csk_reset_keepalive_timer(sk,
2176 tmo - TCP_TIMEWAIT_LEN);
2177 } else {
2178 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2179 goto out;
2180 }
2181 }
2182 }
2183 if (sk->sk_state != TCP_CLOSE) {
2184 sk_mem_reclaim(sk);
2185 if (tcp_check_oom(sk, 0)) {
2186 tcp_set_state(sk, TCP_CLOSE);
2187 tcp_send_active_reset(sk, GFP_ATOMIC);
2188 NET_INC_STATS_BH(sock_net(sk),
2189 LINUX_MIB_TCPABORTONMEMORY);
2190 }
2191 }
2192
2193 if (sk->sk_state == TCP_CLOSE)
2194 inet_csk_destroy_sock(sk);
2195 /* Otherwise, socket is reprieved until protocol close. */
2196
2197 out:
2198 bh_unlock_sock(sk);
2199 local_bh_enable();
2200 sock_put(sk);
2201 }
2202 EXPORT_SYMBOL(tcp_close);
2203
2204 /* These states need RST on ABORT according to RFC793 */
2205
2206 static inline int tcp_need_reset(int state)
2207 {
2208 return (1 << state) &
2209 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2210 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2211 }
2212
2213 int tcp_disconnect(struct sock *sk, int flags)
2214 {
2215 struct inet_sock *inet = inet_sk(sk);
2216 struct inet_connection_sock *icsk = inet_csk(sk);
2217 struct tcp_sock *tp = tcp_sk(sk);
2218 int err = 0;
2219 int old_state = sk->sk_state;
2220
2221 if (old_state != TCP_CLOSE)
2222 tcp_set_state(sk, TCP_CLOSE);
2223
2224 /* ABORT function of RFC793 */
2225 if (old_state == TCP_LISTEN) {
2226 inet_csk_listen_stop(sk);
2227 } else if (unlikely(tp->repair)) {
2228 sk->sk_err = ECONNABORTED;
2229 } else if (tcp_need_reset(old_state) ||
2230 (tp->snd_nxt != tp->write_seq &&
2231 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2232 /* The last check adjusts for discrepancy of Linux wrt. RFC
2233 * states
2234 */
2235 tcp_send_active_reset(sk, gfp_any());
2236 sk->sk_err = ECONNRESET;
2237 } else if (old_state == TCP_SYN_SENT)
2238 sk->sk_err = ECONNRESET;
2239
2240 tcp_clear_xmit_timers(sk);
2241 __skb_queue_purge(&sk->sk_receive_queue);
2242 tcp_write_queue_purge(sk);
2243 __skb_queue_purge(&tp->out_of_order_queue);
2244 #ifdef CONFIG_NET_DMA
2245 __skb_queue_purge(&sk->sk_async_wait_queue);
2246 #endif
2247
2248 inet->inet_dport = 0;
2249
2250 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2251 inet_reset_saddr(sk);
2252
2253 sk->sk_shutdown = 0;
2254 sock_reset_flag(sk, SOCK_DONE);
2255 tp->srtt = 0;
2256 if ((tp->write_seq += tp->max_window + 2) == 0)
2257 tp->write_seq = 1;
2258 icsk->icsk_backoff = 0;
2259 tp->snd_cwnd = 2;
2260 icsk->icsk_probes_out = 0;
2261 tp->packets_out = 0;
2262 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2263 tp->snd_cwnd_cnt = 0;
2264 tp->bytes_acked = 0;
2265 tp->window_clamp = 0;
2266 tcp_set_ca_state(sk, TCP_CA_Open);
2267 tcp_clear_retrans(tp);
2268 inet_csk_delack_init(sk);
2269 tcp_init_send_head(sk);
2270 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2271 __sk_dst_reset(sk);
2272
2273 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2274
2275 sk->sk_error_report(sk);
2276 return err;
2277 }
2278 EXPORT_SYMBOL(tcp_disconnect);
2279
2280 static inline int tcp_can_repair_sock(struct sock *sk)
2281 {
2282 return capable(CAP_NET_ADMIN) &&
2283 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2284 }
2285
2286 static int tcp_repair_options_est(struct tcp_sock *tp, char __user *optbuf, unsigned int len)
2287 {
2288 /*
2289 * Options are stored in CODE:VALUE form where CODE is 8bit and VALUE
2290 * fits the respective TCPOLEN_ size
2291 */
2292
2293 while (len > 0) {
2294 u8 opcode;
2295
2296 if (get_user(opcode, optbuf))
2297 return -EFAULT;
2298
2299 optbuf++;
2300 len--;
2301
2302 switch (opcode) {
2303 case TCPOPT_MSS: {
2304 u16 in_mss;
2305
2306 if (len < sizeof(in_mss))
2307 return -ENODATA;
2308 if (get_user(in_mss, optbuf))
2309 return -EFAULT;
2310
2311 tp->rx_opt.mss_clamp = in_mss;
2312
2313 optbuf += sizeof(in_mss);
2314 len -= sizeof(in_mss);
2315 break;
2316 }
2317 case TCPOPT_WINDOW: {
2318 u8 wscale;
2319
2320 if (len < sizeof(wscale))
2321 return -ENODATA;
2322 if (get_user(wscale, optbuf))
2323 return -EFAULT;
2324
2325 if (wscale > 14)
2326 return -EFBIG;
2327
2328 tp->rx_opt.snd_wscale = wscale;
2329
2330 optbuf += sizeof(wscale);
2331 len -= sizeof(wscale);
2332 break;
2333 }
2334 case TCPOPT_SACK_PERM:
2335 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2336 if (sysctl_tcp_fack)
2337 tcp_enable_fack(tp);
2338 break;
2339 case TCPOPT_TIMESTAMP:
2340 tp->rx_opt.tstamp_ok = 1;
2341 break;
2342 }
2343 }
2344
2345 return 0;
2346 }
2347
2348 /*
2349 * Socket option code for TCP.
2350 */
2351 static int do_tcp_setsockopt(struct sock *sk, int level,
2352 int optname, char __user *optval, unsigned int optlen)
2353 {
2354 struct tcp_sock *tp = tcp_sk(sk);
2355 struct inet_connection_sock *icsk = inet_csk(sk);
2356 int val;
2357 int err = 0;
2358
2359 /* These are data/string values, all the others are ints */
2360 switch (optname) {
2361 case TCP_CONGESTION: {
2362 char name[TCP_CA_NAME_MAX];
2363
2364 if (optlen < 1)
2365 return -EINVAL;
2366
2367 val = strncpy_from_user(name, optval,
2368 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2369 if (val < 0)
2370 return -EFAULT;
2371 name[val] = 0;
2372
2373 lock_sock(sk);
2374 err = tcp_set_congestion_control(sk, name);
2375 release_sock(sk);
2376 return err;
2377 }
2378 case TCP_COOKIE_TRANSACTIONS: {
2379 struct tcp_cookie_transactions ctd;
2380 struct tcp_cookie_values *cvp = NULL;
2381
2382 if (sizeof(ctd) > optlen)
2383 return -EINVAL;
2384 if (copy_from_user(&ctd, optval, sizeof(ctd)))
2385 return -EFAULT;
2386
2387 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2388 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2389 return -EINVAL;
2390
2391 if (ctd.tcpct_cookie_desired == 0) {
2392 /* default to global value */
2393 } else if ((0x1 & ctd.tcpct_cookie_desired) ||
2394 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2395 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2396 return -EINVAL;
2397 }
2398
2399 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2400 /* Supercedes all other values */
2401 lock_sock(sk);
2402 if (tp->cookie_values != NULL) {
2403 kref_put(&tp->cookie_values->kref,
2404 tcp_cookie_values_release);
2405 tp->cookie_values = NULL;
2406 }
2407 tp->rx_opt.cookie_in_always = 0; /* false */
2408 tp->rx_opt.cookie_out_never = 1; /* true */
2409 release_sock(sk);
2410 return err;
2411 }
2412
2413 /* Allocate ancillary memory before locking.
2414 */
2415 if (ctd.tcpct_used > 0 ||
2416 (tp->cookie_values == NULL &&
2417 (sysctl_tcp_cookie_size > 0 ||
2418 ctd.tcpct_cookie_desired > 0 ||
2419 ctd.tcpct_s_data_desired > 0))) {
2420 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2421 GFP_KERNEL);
2422 if (cvp == NULL)
2423 return -ENOMEM;
2424
2425 kref_init(&cvp->kref);
2426 }
2427 lock_sock(sk);
2428 tp->rx_opt.cookie_in_always =
2429 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2430 tp->rx_opt.cookie_out_never = 0; /* false */
2431
2432 if (tp->cookie_values != NULL) {
2433 if (cvp != NULL) {
2434 /* Changed values are recorded by a changed
2435 * pointer, ensuring the cookie will differ,
2436 * without separately hashing each value later.
2437 */
2438 kref_put(&tp->cookie_values->kref,
2439 tcp_cookie_values_release);
2440 } else {
2441 cvp = tp->cookie_values;
2442 }
2443 }
2444
2445 if (cvp != NULL) {
2446 cvp->cookie_desired = ctd.tcpct_cookie_desired;
2447
2448 if (ctd.tcpct_used > 0) {
2449 memcpy(cvp->s_data_payload, ctd.tcpct_value,
2450 ctd.tcpct_used);
2451 cvp->s_data_desired = ctd.tcpct_used;
2452 cvp->s_data_constant = 1; /* true */
2453 } else {
2454 /* No constant payload data. */
2455 cvp->s_data_desired = ctd.tcpct_s_data_desired;
2456 cvp->s_data_constant = 0; /* false */
2457 }
2458
2459 tp->cookie_values = cvp;
2460 }
2461 release_sock(sk);
2462 return err;
2463 }
2464 default:
2465 /* fallthru */
2466 break;
2467 }
2468
2469 if (optlen < sizeof(int))
2470 return -EINVAL;
2471
2472 if (get_user(val, (int __user *)optval))
2473 return -EFAULT;
2474
2475 lock_sock(sk);
2476
2477 switch (optname) {
2478 case TCP_MAXSEG:
2479 /* Values greater than interface MTU won't take effect. However
2480 * at the point when this call is done we typically don't yet
2481 * know which interface is going to be used */
2482 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2483 err = -EINVAL;
2484 break;
2485 }
2486 tp->rx_opt.user_mss = val;
2487 break;
2488
2489 case TCP_NODELAY:
2490 if (val) {
2491 /* TCP_NODELAY is weaker than TCP_CORK, so that
2492 * this option on corked socket is remembered, but
2493 * it is not activated until cork is cleared.
2494 *
2495 * However, when TCP_NODELAY is set we make
2496 * an explicit push, which overrides even TCP_CORK
2497 * for currently queued segments.
2498 */
2499 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2500 tcp_push_pending_frames(sk);
2501 } else {
2502 tp->nonagle &= ~TCP_NAGLE_OFF;
2503 }
2504 break;
2505
2506 case TCP_THIN_LINEAR_TIMEOUTS:
2507 if (val < 0 || val > 1)
2508 err = -EINVAL;
2509 else
2510 tp->thin_lto = val;
2511 break;
2512
2513 case TCP_THIN_DUPACK:
2514 if (val < 0 || val > 1)
2515 err = -EINVAL;
2516 else
2517 tp->thin_dupack = val;
2518 break;
2519
2520 case TCP_REPAIR:
2521 if (!tcp_can_repair_sock(sk))
2522 err = -EPERM;
2523 else if (val == 1) {
2524 tp->repair = 1;
2525 sk->sk_reuse = SK_FORCE_REUSE;
2526 tp->repair_queue = TCP_NO_QUEUE;
2527 } else if (val == 0) {
2528 tp->repair = 0;
2529 sk->sk_reuse = SK_NO_REUSE;
2530 tcp_send_window_probe(sk);
2531 } else
2532 err = -EINVAL;
2533
2534 break;
2535
2536 case TCP_REPAIR_QUEUE:
2537 if (!tp->repair)
2538 err = -EPERM;
2539 else if (val < TCP_QUEUES_NR)
2540 tp->repair_queue = val;
2541 else
2542 err = -EINVAL;
2543 break;
2544
2545 case TCP_QUEUE_SEQ:
2546 if (sk->sk_state != TCP_CLOSE)
2547 err = -EPERM;
2548 else if (tp->repair_queue == TCP_SEND_QUEUE)
2549 tp->write_seq = val;
2550 else if (tp->repair_queue == TCP_RECV_QUEUE)
2551 tp->rcv_nxt = val;
2552 else
2553 err = -EINVAL;
2554 break;
2555
2556 case TCP_REPAIR_OPTIONS:
2557 if (!tp->repair)
2558 err = -EINVAL;
2559 else if (sk->sk_state == TCP_ESTABLISHED)
2560 err = tcp_repair_options_est(tp, optval, optlen);
2561 else
2562 err = -EPERM;
2563 break;
2564
2565 case TCP_CORK:
2566 /* When set indicates to always queue non-full frames.
2567 * Later the user clears this option and we transmit
2568 * any pending partial frames in the queue. This is
2569 * meant to be used alongside sendfile() to get properly
2570 * filled frames when the user (for example) must write
2571 * out headers with a write() call first and then use
2572 * sendfile to send out the data parts.
2573 *
2574 * TCP_CORK can be set together with TCP_NODELAY and it is
2575 * stronger than TCP_NODELAY.
2576 */
2577 if (val) {
2578 tp->nonagle |= TCP_NAGLE_CORK;
2579 } else {
2580 tp->nonagle &= ~TCP_NAGLE_CORK;
2581 if (tp->nonagle&TCP_NAGLE_OFF)
2582 tp->nonagle |= TCP_NAGLE_PUSH;
2583 tcp_push_pending_frames(sk);
2584 }
2585 break;
2586
2587 case TCP_KEEPIDLE:
2588 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2589 err = -EINVAL;
2590 else {
2591 tp->keepalive_time = val * HZ;
2592 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2593 !((1 << sk->sk_state) &
2594 (TCPF_CLOSE | TCPF_LISTEN))) {
2595 u32 elapsed = keepalive_time_elapsed(tp);
2596 if (tp->keepalive_time > elapsed)
2597 elapsed = tp->keepalive_time - elapsed;
2598 else
2599 elapsed = 0;
2600 inet_csk_reset_keepalive_timer(sk, elapsed);
2601 }
2602 }
2603 break;
2604 case TCP_KEEPINTVL:
2605 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2606 err = -EINVAL;
2607 else
2608 tp->keepalive_intvl = val * HZ;
2609 break;
2610 case TCP_KEEPCNT:
2611 if (val < 1 || val > MAX_TCP_KEEPCNT)
2612 err = -EINVAL;
2613 else
2614 tp->keepalive_probes = val;
2615 break;
2616 case TCP_SYNCNT:
2617 if (val < 1 || val > MAX_TCP_SYNCNT)
2618 err = -EINVAL;
2619 else
2620 icsk->icsk_syn_retries = val;
2621 break;
2622
2623 case TCP_LINGER2:
2624 if (val < 0)
2625 tp->linger2 = -1;
2626 else if (val > sysctl_tcp_fin_timeout / HZ)
2627 tp->linger2 = 0;
2628 else
2629 tp->linger2 = val * HZ;
2630 break;
2631
2632 case TCP_DEFER_ACCEPT:
2633 /* Translate value in seconds to number of retransmits */
2634 icsk->icsk_accept_queue.rskq_defer_accept =
2635 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2636 TCP_RTO_MAX / HZ);
2637 break;
2638
2639 case TCP_WINDOW_CLAMP:
2640 if (!val) {
2641 if (sk->sk_state != TCP_CLOSE) {
2642 err = -EINVAL;
2643 break;
2644 }
2645 tp->window_clamp = 0;
2646 } else
2647 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2648 SOCK_MIN_RCVBUF / 2 : val;
2649 break;
2650
2651 case TCP_QUICKACK:
2652 if (!val) {
2653 icsk->icsk_ack.pingpong = 1;
2654 } else {
2655 icsk->icsk_ack.pingpong = 0;
2656 if ((1 << sk->sk_state) &
2657 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2658 inet_csk_ack_scheduled(sk)) {
2659 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2660 tcp_cleanup_rbuf(sk, 1);
2661 if (!(val & 1))
2662 icsk->icsk_ack.pingpong = 1;
2663 }
2664 }
2665 break;
2666
2667 #ifdef CONFIG_TCP_MD5SIG
2668 case TCP_MD5SIG:
2669 /* Read the IP->Key mappings from userspace */
2670 err = tp->af_specific->md5_parse(sk, optval, optlen);
2671 break;
2672 #endif
2673 case TCP_USER_TIMEOUT:
2674 /* Cap the max timeout in ms TCP will retry/retrans
2675 * before giving up and aborting (ETIMEDOUT) a connection.
2676 */
2677 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2678 break;
2679 default:
2680 err = -ENOPROTOOPT;
2681 break;
2682 }
2683
2684 release_sock(sk);
2685 return err;
2686 }
2687
2688 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2689 unsigned int optlen)
2690 {
2691 const struct inet_connection_sock *icsk = inet_csk(sk);
2692
2693 if (level != SOL_TCP)
2694 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2695 optval, optlen);
2696 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2697 }
2698 EXPORT_SYMBOL(tcp_setsockopt);
2699
2700 #ifdef CONFIG_COMPAT
2701 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2702 char __user *optval, unsigned int optlen)
2703 {
2704 if (level != SOL_TCP)
2705 return inet_csk_compat_setsockopt(sk, level, optname,
2706 optval, optlen);
2707 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2708 }
2709 EXPORT_SYMBOL(compat_tcp_setsockopt);
2710 #endif
2711
2712 /* Return information about state of tcp endpoint in API format. */
2713 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2714 {
2715 const struct tcp_sock *tp = tcp_sk(sk);
2716 const struct inet_connection_sock *icsk = inet_csk(sk);
2717 u32 now = tcp_time_stamp;
2718
2719 memset(info, 0, sizeof(*info));
2720
2721 info->tcpi_state = sk->sk_state;
2722 info->tcpi_ca_state = icsk->icsk_ca_state;
2723 info->tcpi_retransmits = icsk->icsk_retransmits;
2724 info->tcpi_probes = icsk->icsk_probes_out;
2725 info->tcpi_backoff = icsk->icsk_backoff;
2726
2727 if (tp->rx_opt.tstamp_ok)
2728 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2729 if (tcp_is_sack(tp))
2730 info->tcpi_options |= TCPI_OPT_SACK;
2731 if (tp->rx_opt.wscale_ok) {
2732 info->tcpi_options |= TCPI_OPT_WSCALE;
2733 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2734 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2735 }
2736
2737 if (tp->ecn_flags & TCP_ECN_OK)
2738 info->tcpi_options |= TCPI_OPT_ECN;
2739 if (tp->ecn_flags & TCP_ECN_SEEN)
2740 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2741
2742 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2743 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2744 info->tcpi_snd_mss = tp->mss_cache;
2745 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2746
2747 if (sk->sk_state == TCP_LISTEN) {
2748 info->tcpi_unacked = sk->sk_ack_backlog;
2749 info->tcpi_sacked = sk->sk_max_ack_backlog;
2750 } else {
2751 info->tcpi_unacked = tp->packets_out;
2752 info->tcpi_sacked = tp->sacked_out;
2753 }
2754 info->tcpi_lost = tp->lost_out;
2755 info->tcpi_retrans = tp->retrans_out;
2756 info->tcpi_fackets = tp->fackets_out;
2757
2758 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2759 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2760 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2761
2762 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2763 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2764 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2765 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2766 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2767 info->tcpi_snd_cwnd = tp->snd_cwnd;
2768 info->tcpi_advmss = tp->advmss;
2769 info->tcpi_reordering = tp->reordering;
2770
2771 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2772 info->tcpi_rcv_space = tp->rcvq_space.space;
2773
2774 info->tcpi_total_retrans = tp->total_retrans;
2775 }
2776 EXPORT_SYMBOL_GPL(tcp_get_info);
2777
2778 static int do_tcp_getsockopt(struct sock *sk, int level,
2779 int optname, char __user *optval, int __user *optlen)
2780 {
2781 struct inet_connection_sock *icsk = inet_csk(sk);
2782 struct tcp_sock *tp = tcp_sk(sk);
2783 int val, len;
2784
2785 if (get_user(len, optlen))
2786 return -EFAULT;
2787
2788 len = min_t(unsigned int, len, sizeof(int));
2789
2790 if (len < 0)
2791 return -EINVAL;
2792
2793 switch (optname) {
2794 case TCP_MAXSEG:
2795 val = tp->mss_cache;
2796 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2797 val = tp->rx_opt.user_mss;
2798 if (tp->repair)
2799 val = tp->rx_opt.mss_clamp;
2800 break;
2801 case TCP_NODELAY:
2802 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2803 break;
2804 case TCP_CORK:
2805 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2806 break;
2807 case TCP_KEEPIDLE:
2808 val = keepalive_time_when(tp) / HZ;
2809 break;
2810 case TCP_KEEPINTVL:
2811 val = keepalive_intvl_when(tp) / HZ;
2812 break;
2813 case TCP_KEEPCNT:
2814 val = keepalive_probes(tp);
2815 break;
2816 case TCP_SYNCNT:
2817 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2818 break;
2819 case TCP_LINGER2:
2820 val = tp->linger2;
2821 if (val >= 0)
2822 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2823 break;
2824 case TCP_DEFER_ACCEPT:
2825 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2826 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2827 break;
2828 case TCP_WINDOW_CLAMP:
2829 val = tp->window_clamp;
2830 break;
2831 case TCP_INFO: {
2832 struct tcp_info info;
2833
2834 if (get_user(len, optlen))
2835 return -EFAULT;
2836
2837 tcp_get_info(sk, &info);
2838
2839 len = min_t(unsigned int, len, sizeof(info));
2840 if (put_user(len, optlen))
2841 return -EFAULT;
2842 if (copy_to_user(optval, &info, len))
2843 return -EFAULT;
2844 return 0;
2845 }
2846 case TCP_QUICKACK:
2847 val = !icsk->icsk_ack.pingpong;
2848 break;
2849
2850 case TCP_CONGESTION:
2851 if (get_user(len, optlen))
2852 return -EFAULT;
2853 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2854 if (put_user(len, optlen))
2855 return -EFAULT;
2856 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2857 return -EFAULT;
2858 return 0;
2859
2860 case TCP_COOKIE_TRANSACTIONS: {
2861 struct tcp_cookie_transactions ctd;
2862 struct tcp_cookie_values *cvp = tp->cookie_values;
2863
2864 if (get_user(len, optlen))
2865 return -EFAULT;
2866 if (len < sizeof(ctd))
2867 return -EINVAL;
2868
2869 memset(&ctd, 0, sizeof(ctd));
2870 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2871 TCP_COOKIE_IN_ALWAYS : 0)
2872 | (tp->rx_opt.cookie_out_never ?
2873 TCP_COOKIE_OUT_NEVER : 0);
2874
2875 if (cvp != NULL) {
2876 ctd.tcpct_flags |= (cvp->s_data_in ?
2877 TCP_S_DATA_IN : 0)
2878 | (cvp->s_data_out ?
2879 TCP_S_DATA_OUT : 0);
2880
2881 ctd.tcpct_cookie_desired = cvp->cookie_desired;
2882 ctd.tcpct_s_data_desired = cvp->s_data_desired;
2883
2884 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2885 cvp->cookie_pair_size);
2886 ctd.tcpct_used = cvp->cookie_pair_size;
2887 }
2888
2889 if (put_user(sizeof(ctd), optlen))
2890 return -EFAULT;
2891 if (copy_to_user(optval, &ctd, sizeof(ctd)))
2892 return -EFAULT;
2893 return 0;
2894 }
2895 case TCP_THIN_LINEAR_TIMEOUTS:
2896 val = tp->thin_lto;
2897 break;
2898 case TCP_THIN_DUPACK:
2899 val = tp->thin_dupack;
2900 break;
2901
2902 case TCP_REPAIR:
2903 val = tp->repair;
2904 break;
2905
2906 case TCP_REPAIR_QUEUE:
2907 if (tp->repair)
2908 val = tp->repair_queue;
2909 else
2910 return -EINVAL;
2911 break;
2912
2913 case TCP_QUEUE_SEQ:
2914 if (tp->repair_queue == TCP_SEND_QUEUE)
2915 val = tp->write_seq;
2916 else if (tp->repair_queue == TCP_RECV_QUEUE)
2917 val = tp->rcv_nxt;
2918 else
2919 return -EINVAL;
2920 break;
2921
2922 case TCP_USER_TIMEOUT:
2923 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2924 break;
2925 default:
2926 return -ENOPROTOOPT;
2927 }
2928
2929 if (put_user(len, optlen))
2930 return -EFAULT;
2931 if (copy_to_user(optval, &val, len))
2932 return -EFAULT;
2933 return 0;
2934 }
2935
2936 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2937 int __user *optlen)
2938 {
2939 struct inet_connection_sock *icsk = inet_csk(sk);
2940
2941 if (level != SOL_TCP)
2942 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2943 optval, optlen);
2944 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2945 }
2946 EXPORT_SYMBOL(tcp_getsockopt);
2947
2948 #ifdef CONFIG_COMPAT
2949 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2950 char __user *optval, int __user *optlen)
2951 {
2952 if (level != SOL_TCP)
2953 return inet_csk_compat_getsockopt(sk, level, optname,
2954 optval, optlen);
2955 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2956 }
2957 EXPORT_SYMBOL(compat_tcp_getsockopt);
2958 #endif
2959
2960 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2961 netdev_features_t features)
2962 {
2963 struct sk_buff *segs = ERR_PTR(-EINVAL);
2964 struct tcphdr *th;
2965 unsigned int thlen;
2966 unsigned int seq;
2967 __be32 delta;
2968 unsigned int oldlen;
2969 unsigned int mss;
2970
2971 if (!pskb_may_pull(skb, sizeof(*th)))
2972 goto out;
2973
2974 th = tcp_hdr(skb);
2975 thlen = th->doff * 4;
2976 if (thlen < sizeof(*th))
2977 goto out;
2978
2979 if (!pskb_may_pull(skb, thlen))
2980 goto out;
2981
2982 oldlen = (u16)~skb->len;
2983 __skb_pull(skb, thlen);
2984
2985 mss = skb_shinfo(skb)->gso_size;
2986 if (unlikely(skb->len <= mss))
2987 goto out;
2988
2989 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2990 /* Packet is from an untrusted source, reset gso_segs. */
2991 int type = skb_shinfo(skb)->gso_type;
2992
2993 if (unlikely(type &
2994 ~(SKB_GSO_TCPV4 |
2995 SKB_GSO_DODGY |
2996 SKB_GSO_TCP_ECN |
2997 SKB_GSO_TCPV6 |
2998 0) ||
2999 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
3000 goto out;
3001
3002 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
3003
3004 segs = NULL;
3005 goto out;
3006 }
3007
3008 segs = skb_segment(skb, features);
3009 if (IS_ERR(segs))
3010 goto out;
3011
3012 delta = htonl(oldlen + (thlen + mss));
3013
3014 skb = segs;
3015 th = tcp_hdr(skb);
3016 seq = ntohl(th->seq);
3017
3018 do {
3019 th->fin = th->psh = 0;
3020
3021 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3022 (__force u32)delta));
3023 if (skb->ip_summed != CHECKSUM_PARTIAL)
3024 th->check =
3025 csum_fold(csum_partial(skb_transport_header(skb),
3026 thlen, skb->csum));
3027
3028 seq += mss;
3029 skb = skb->next;
3030 th = tcp_hdr(skb);
3031
3032 th->seq = htonl(seq);
3033 th->cwr = 0;
3034 } while (skb->next);
3035
3036 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3037 skb->data_len);
3038 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3039 (__force u32)delta));
3040 if (skb->ip_summed != CHECKSUM_PARTIAL)
3041 th->check = csum_fold(csum_partial(skb_transport_header(skb),
3042 thlen, skb->csum));
3043
3044 out:
3045 return segs;
3046 }
3047 EXPORT_SYMBOL(tcp_tso_segment);
3048
3049 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3050 {
3051 struct sk_buff **pp = NULL;
3052 struct sk_buff *p;
3053 struct tcphdr *th;
3054 struct tcphdr *th2;
3055 unsigned int len;
3056 unsigned int thlen;
3057 __be32 flags;
3058 unsigned int mss = 1;
3059 unsigned int hlen;
3060 unsigned int off;
3061 int flush = 1;
3062 int i;
3063
3064 off = skb_gro_offset(skb);
3065 hlen = off + sizeof(*th);
3066 th = skb_gro_header_fast(skb, off);
3067 if (skb_gro_header_hard(skb, hlen)) {
3068 th = skb_gro_header_slow(skb, hlen, off);
3069 if (unlikely(!th))
3070 goto out;
3071 }
3072
3073 thlen = th->doff * 4;
3074 if (thlen < sizeof(*th))
3075 goto out;
3076
3077 hlen = off + thlen;
3078 if (skb_gro_header_hard(skb, hlen)) {
3079 th = skb_gro_header_slow(skb, hlen, off);
3080 if (unlikely(!th))
3081 goto out;
3082 }
3083
3084 skb_gro_pull(skb, thlen);
3085
3086 len = skb_gro_len(skb);
3087 flags = tcp_flag_word(th);
3088
3089 for (; (p = *head); head = &p->next) {
3090 if (!NAPI_GRO_CB(p)->same_flow)
3091 continue;
3092
3093 th2 = tcp_hdr(p);
3094
3095 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3096 NAPI_GRO_CB(p)->same_flow = 0;
3097 continue;
3098 }
3099
3100 goto found;
3101 }
3102
3103 goto out_check_final;
3104
3105 found:
3106 flush = NAPI_GRO_CB(p)->flush;
3107 flush |= (__force int)(flags & TCP_FLAG_CWR);
3108 flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3109 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3110 flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3111 for (i = sizeof(*th); i < thlen; i += 4)
3112 flush |= *(u32 *)((u8 *)th + i) ^
3113 *(u32 *)((u8 *)th2 + i);
3114
3115 mss = skb_shinfo(p)->gso_size;
3116
3117 flush |= (len - 1) >= mss;
3118 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3119
3120 if (flush || skb_gro_receive(head, skb)) {
3121 mss = 1;
3122 goto out_check_final;
3123 }
3124
3125 p = *head;
3126 th2 = tcp_hdr(p);
3127 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3128
3129 out_check_final:
3130 flush = len < mss;
3131 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3132 TCP_FLAG_RST | TCP_FLAG_SYN |
3133 TCP_FLAG_FIN));
3134
3135 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3136 pp = head;
3137
3138 out:
3139 NAPI_GRO_CB(skb)->flush |= flush;
3140
3141 return pp;
3142 }
3143 EXPORT_SYMBOL(tcp_gro_receive);
3144
3145 int tcp_gro_complete(struct sk_buff *skb)
3146 {
3147 struct tcphdr *th = tcp_hdr(skb);
3148
3149 skb->csum_start = skb_transport_header(skb) - skb->head;
3150 skb->csum_offset = offsetof(struct tcphdr, check);
3151 skb->ip_summed = CHECKSUM_PARTIAL;
3152
3153 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3154
3155 if (th->cwr)
3156 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3157
3158 return 0;
3159 }
3160 EXPORT_SYMBOL(tcp_gro_complete);
3161
3162 #ifdef CONFIG_TCP_MD5SIG
3163 static unsigned long tcp_md5sig_users;
3164 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3165 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3166
3167 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3168 {
3169 int cpu;
3170
3171 for_each_possible_cpu(cpu) {
3172 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3173
3174 if (p->md5_desc.tfm)
3175 crypto_free_hash(p->md5_desc.tfm);
3176 }
3177 free_percpu(pool);
3178 }
3179
3180 void tcp_free_md5sig_pool(void)
3181 {
3182 struct tcp_md5sig_pool __percpu *pool = NULL;
3183
3184 spin_lock_bh(&tcp_md5sig_pool_lock);
3185 if (--tcp_md5sig_users == 0) {
3186 pool = tcp_md5sig_pool;
3187 tcp_md5sig_pool = NULL;
3188 }
3189 spin_unlock_bh(&tcp_md5sig_pool_lock);
3190 if (pool)
3191 __tcp_free_md5sig_pool(pool);
3192 }
3193 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3194
3195 static struct tcp_md5sig_pool __percpu *
3196 __tcp_alloc_md5sig_pool(struct sock *sk)
3197 {
3198 int cpu;
3199 struct tcp_md5sig_pool __percpu *pool;
3200
3201 pool = alloc_percpu(struct tcp_md5sig_pool);
3202 if (!pool)
3203 return NULL;
3204
3205 for_each_possible_cpu(cpu) {
3206 struct crypto_hash *hash;
3207
3208 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3209 if (!hash || IS_ERR(hash))
3210 goto out_free;
3211
3212 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3213 }
3214 return pool;
3215 out_free:
3216 __tcp_free_md5sig_pool(pool);
3217 return NULL;
3218 }
3219
3220 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3221 {
3222 struct tcp_md5sig_pool __percpu *pool;
3223 int alloc = 0;
3224
3225 retry:
3226 spin_lock_bh(&tcp_md5sig_pool_lock);
3227 pool = tcp_md5sig_pool;
3228 if (tcp_md5sig_users++ == 0) {
3229 alloc = 1;
3230 spin_unlock_bh(&tcp_md5sig_pool_lock);
3231 } else if (!pool) {
3232 tcp_md5sig_users--;
3233 spin_unlock_bh(&tcp_md5sig_pool_lock);
3234 cpu_relax();
3235 goto retry;
3236 } else
3237 spin_unlock_bh(&tcp_md5sig_pool_lock);
3238
3239 if (alloc) {
3240 /* we cannot hold spinlock here because this may sleep. */
3241 struct tcp_md5sig_pool __percpu *p;
3242
3243 p = __tcp_alloc_md5sig_pool(sk);
3244 spin_lock_bh(&tcp_md5sig_pool_lock);
3245 if (!p) {
3246 tcp_md5sig_users--;
3247 spin_unlock_bh(&tcp_md5sig_pool_lock);
3248 return NULL;
3249 }
3250 pool = tcp_md5sig_pool;
3251 if (pool) {
3252 /* oops, it has already been assigned. */
3253 spin_unlock_bh(&tcp_md5sig_pool_lock);
3254 __tcp_free_md5sig_pool(p);
3255 } else {
3256 tcp_md5sig_pool = pool = p;
3257 spin_unlock_bh(&tcp_md5sig_pool_lock);
3258 }
3259 }
3260 return pool;
3261 }
3262 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3263
3264
3265 /**
3266 * tcp_get_md5sig_pool - get md5sig_pool for this user
3267 *
3268 * We use percpu structure, so if we succeed, we exit with preemption
3269 * and BH disabled, to make sure another thread or softirq handling
3270 * wont try to get same context.
3271 */
3272 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3273 {
3274 struct tcp_md5sig_pool __percpu *p;
3275
3276 local_bh_disable();
3277
3278 spin_lock(&tcp_md5sig_pool_lock);
3279 p = tcp_md5sig_pool;
3280 if (p)
3281 tcp_md5sig_users++;
3282 spin_unlock(&tcp_md5sig_pool_lock);
3283
3284 if (p)
3285 return this_cpu_ptr(p);
3286
3287 local_bh_enable();
3288 return NULL;
3289 }
3290 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3291
3292 void tcp_put_md5sig_pool(void)
3293 {
3294 local_bh_enable();
3295 tcp_free_md5sig_pool();
3296 }
3297 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3298
3299 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3300 const struct tcphdr *th)
3301 {
3302 struct scatterlist sg;
3303 struct tcphdr hdr;
3304 int err;
3305
3306 /* We are not allowed to change tcphdr, make a local copy */
3307 memcpy(&hdr, th, sizeof(hdr));
3308 hdr.check = 0;
3309
3310 /* options aren't included in the hash */
3311 sg_init_one(&sg, &hdr, sizeof(hdr));
3312 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3313 return err;
3314 }
3315 EXPORT_SYMBOL(tcp_md5_hash_header);
3316
3317 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3318 const struct sk_buff *skb, unsigned int header_len)
3319 {
3320 struct scatterlist sg;
3321 const struct tcphdr *tp = tcp_hdr(skb);
3322 struct hash_desc *desc = &hp->md5_desc;
3323 unsigned int i;
3324 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3325 skb_headlen(skb) - header_len : 0;
3326 const struct skb_shared_info *shi = skb_shinfo(skb);
3327 struct sk_buff *frag_iter;
3328
3329 sg_init_table(&sg, 1);
3330
3331 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3332 if (crypto_hash_update(desc, &sg, head_data_len))
3333 return 1;
3334
3335 for (i = 0; i < shi->nr_frags; ++i) {
3336 const struct skb_frag_struct *f = &shi->frags[i];
3337 struct page *page = skb_frag_page(f);
3338 sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3339 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3340 return 1;
3341 }
3342
3343 skb_walk_frags(skb, frag_iter)
3344 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3345 return 1;
3346
3347 return 0;
3348 }
3349 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3350
3351 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3352 {
3353 struct scatterlist sg;
3354
3355 sg_init_one(&sg, key->key, key->keylen);
3356 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3357 }
3358 EXPORT_SYMBOL(tcp_md5_hash_key);
3359
3360 #endif
3361
3362 /**
3363 * Each Responder maintains up to two secret values concurrently for
3364 * efficient secret rollover. Each secret value has 4 states:
3365 *
3366 * Generating. (tcp_secret_generating != tcp_secret_primary)
3367 * Generates new Responder-Cookies, but not yet used for primary
3368 * verification. This is a short-term state, typically lasting only
3369 * one round trip time (RTT).
3370 *
3371 * Primary. (tcp_secret_generating == tcp_secret_primary)
3372 * Used both for generation and primary verification.
3373 *
3374 * Retiring. (tcp_secret_retiring != tcp_secret_secondary)
3375 * Used for verification, until the first failure that can be
3376 * verified by the newer Generating secret. At that time, this
3377 * cookie's state is changed to Secondary, and the Generating
3378 * cookie's state is changed to Primary. This is a short-term state,
3379 * typically lasting only one round trip time (RTT).
3380 *
3381 * Secondary. (tcp_secret_retiring == tcp_secret_secondary)
3382 * Used for secondary verification, after primary verification
3383 * failures. This state lasts no more than twice the Maximum Segment
3384 * Lifetime (2MSL). Then, the secret is discarded.
3385 */
3386 struct tcp_cookie_secret {
3387 /* The secret is divided into two parts. The digest part is the
3388 * equivalent of previously hashing a secret and saving the state,
3389 * and serves as an initialization vector (IV). The message part
3390 * serves as the trailing secret.
3391 */
3392 u32 secrets[COOKIE_WORKSPACE_WORDS];
3393 unsigned long expires;
3394 };
3395
3396 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3397 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3398 #define TCP_SECRET_LIFE (HZ * 600)
3399
3400 static struct tcp_cookie_secret tcp_secret_one;
3401 static struct tcp_cookie_secret tcp_secret_two;
3402
3403 /* Essentially a circular list, without dynamic allocation. */
3404 static struct tcp_cookie_secret *tcp_secret_generating;
3405 static struct tcp_cookie_secret *tcp_secret_primary;
3406 static struct tcp_cookie_secret *tcp_secret_retiring;
3407 static struct tcp_cookie_secret *tcp_secret_secondary;
3408
3409 static DEFINE_SPINLOCK(tcp_secret_locker);
3410
3411 /* Select a pseudo-random word in the cookie workspace.
3412 */
3413 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3414 {
3415 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3416 }
3417
3418 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3419 * Called in softirq context.
3420 * Returns: 0 for success.
3421 */
3422 int tcp_cookie_generator(u32 *bakery)
3423 {
3424 unsigned long jiffy = jiffies;
3425
3426 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3427 spin_lock_bh(&tcp_secret_locker);
3428 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3429 /* refreshed by another */
3430 memcpy(bakery,
3431 &tcp_secret_generating->secrets[0],
3432 COOKIE_WORKSPACE_WORDS);
3433 } else {
3434 /* still needs refreshing */
3435 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3436
3437 /* The first time, paranoia assumes that the
3438 * randomization function isn't as strong. But,
3439 * this secret initialization is delayed until
3440 * the last possible moment (packet arrival).
3441 * Although that time is observable, it is
3442 * unpredictably variable. Mash in the most
3443 * volatile clock bits available, and expire the
3444 * secret extra quickly.
3445 */
3446 if (unlikely(tcp_secret_primary->expires ==
3447 tcp_secret_secondary->expires)) {
3448 struct timespec tv;
3449
3450 getnstimeofday(&tv);
3451 bakery[COOKIE_DIGEST_WORDS+0] ^=
3452 (u32)tv.tv_nsec;
3453
3454 tcp_secret_secondary->expires = jiffy
3455 + TCP_SECRET_1MSL
3456 + (0x0f & tcp_cookie_work(bakery, 0));
3457 } else {
3458 tcp_secret_secondary->expires = jiffy
3459 + TCP_SECRET_LIFE
3460 + (0xff & tcp_cookie_work(bakery, 1));
3461 tcp_secret_primary->expires = jiffy
3462 + TCP_SECRET_2MSL
3463 + (0x1f & tcp_cookie_work(bakery, 2));
3464 }
3465 memcpy(&tcp_secret_secondary->secrets[0],
3466 bakery, COOKIE_WORKSPACE_WORDS);
3467
3468 rcu_assign_pointer(tcp_secret_generating,
3469 tcp_secret_secondary);
3470 rcu_assign_pointer(tcp_secret_retiring,
3471 tcp_secret_primary);
3472 /*
3473 * Neither call_rcu() nor synchronize_rcu() needed.
3474 * Retiring data is not freed. It is replaced after
3475 * further (locked) pointer updates, and a quiet time
3476 * (minimum 1MSL, maximum LIFE - 2MSL).
3477 */
3478 }
3479 spin_unlock_bh(&tcp_secret_locker);
3480 } else {
3481 rcu_read_lock_bh();
3482 memcpy(bakery,
3483 &rcu_dereference(tcp_secret_generating)->secrets[0],
3484 COOKIE_WORKSPACE_WORDS);
3485 rcu_read_unlock_bh();
3486 }
3487 return 0;
3488 }
3489 EXPORT_SYMBOL(tcp_cookie_generator);
3490
3491 void tcp_done(struct sock *sk)
3492 {
3493 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3494 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3495
3496 tcp_set_state(sk, TCP_CLOSE);
3497 tcp_clear_xmit_timers(sk);
3498
3499 sk->sk_shutdown = SHUTDOWN_MASK;
3500
3501 if (!sock_flag(sk, SOCK_DEAD))
3502 sk->sk_state_change(sk);
3503 else
3504 inet_csk_destroy_sock(sk);
3505 }
3506 EXPORT_SYMBOL_GPL(tcp_done);
3507
3508 extern struct tcp_congestion_ops tcp_reno;
3509
3510 static __initdata unsigned long thash_entries;
3511 static int __init set_thash_entries(char *str)
3512 {
3513 if (!str)
3514 return 0;
3515 thash_entries = simple_strtoul(str, &str, 0);
3516 return 1;
3517 }
3518 __setup("thash_entries=", set_thash_entries);
3519
3520 void tcp_init_mem(struct net *net)
3521 {
3522 unsigned long limit = nr_free_buffer_pages() / 8;
3523 limit = max(limit, 128UL);
3524 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3525 net->ipv4.sysctl_tcp_mem[1] = limit;
3526 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3527 }
3528
3529 void __init tcp_init(void)
3530 {
3531 struct sk_buff *skb = NULL;
3532 unsigned long limit;
3533 int max_share, cnt;
3534 unsigned int i;
3535 unsigned long jiffy = jiffies;
3536
3537 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3538
3539 percpu_counter_init(&tcp_sockets_allocated, 0);
3540 percpu_counter_init(&tcp_orphan_count, 0);
3541 tcp_hashinfo.bind_bucket_cachep =
3542 kmem_cache_create("tcp_bind_bucket",
3543 sizeof(struct inet_bind_bucket), 0,
3544 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3545
3546 /* Size and allocate the main established and bind bucket
3547 * hash tables.
3548 *
3549 * The methodology is similar to that of the buffer cache.
3550 */
3551 tcp_hashinfo.ehash =
3552 alloc_large_system_hash("TCP established",
3553 sizeof(struct inet_ehash_bucket),
3554 thash_entries,
3555 (totalram_pages >= 128 * 1024) ?
3556 13 : 15,
3557 0,
3558 NULL,
3559 &tcp_hashinfo.ehash_mask,
3560 thash_entries ? 0 : 512 * 1024);
3561 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3562 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3563 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3564 }
3565 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3566 panic("TCP: failed to alloc ehash_locks");
3567 tcp_hashinfo.bhash =
3568 alloc_large_system_hash("TCP bind",
3569 sizeof(struct inet_bind_hashbucket),
3570 tcp_hashinfo.ehash_mask + 1,
3571 (totalram_pages >= 128 * 1024) ?
3572 13 : 15,
3573 0,
3574 &tcp_hashinfo.bhash_size,
3575 NULL,
3576 64 * 1024);
3577 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3578 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3579 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3580 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3581 }
3582
3583
3584 cnt = tcp_hashinfo.ehash_mask + 1;
3585
3586 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3587 sysctl_tcp_max_orphans = cnt / 2;
3588 sysctl_max_syn_backlog = max(128, cnt / 256);
3589
3590 tcp_init_mem(&init_net);
3591 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3592 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3593 max_share = min(4UL*1024*1024, limit);
3594
3595 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3596 sysctl_tcp_wmem[1] = 16*1024;
3597 sysctl_tcp_wmem[2] = max(64*1024, max_share);
3598
3599 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3600 sysctl_tcp_rmem[1] = 87380;
3601 sysctl_tcp_rmem[2] = max(87380, max_share);
3602
3603 pr_info("Hash tables configured (established %u bind %u)\n",
3604 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3605
3606 tcp_register_congestion_control(&tcp_reno);
3607
3608 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3609 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3610 tcp_secret_one.expires = jiffy; /* past due */
3611 tcp_secret_two.expires = jiffy; /* past due */
3612 tcp_secret_generating = &tcp_secret_one;
3613 tcp_secret_primary = &tcp_secret_one;
3614 tcp_secret_retiring = &tcp_secret_two;
3615 tcp_secret_secondary = &tcp_secret_two;
3616 }
This page took 0.106185 seconds and 6 git commands to generate.