Merge branch 'for-linus' into for-next
[deliverable/linux.git] / net / ipv4 / tcp_cubic.c
1 /*
2 * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
3 * Home page:
4 * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
5 * This is from the implementation of CUBIC TCP in
6 * Sangtae Ha, Injong Rhee and Lisong Xu,
7 * "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
8 * in ACM SIGOPS Operating System Review, July 2008.
9 * Available from:
10 * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
11 *
12 * CUBIC integrates a new slow start algorithm, called HyStart.
13 * The details of HyStart are presented in
14 * Sangtae Ha and Injong Rhee,
15 * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
16 * Available from:
17 * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
18 *
19 * All testing results are available from:
20 * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
21 *
22 * Unless CUBIC is enabled and congestion window is large
23 * this behaves the same as the original Reno.
24 */
25
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/math64.h>
29 #include <net/tcp.h>
30
31 #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
32 * max_cwnd = snd_cwnd * beta
33 */
34 #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
35
36 /* Two methods of hybrid slow start */
37 #define HYSTART_ACK_TRAIN 0x1
38 #define HYSTART_DELAY 0x2
39
40 /* Number of delay samples for detecting the increase of delay */
41 #define HYSTART_MIN_SAMPLES 8
42 #define HYSTART_DELAY_MIN (4U<<3)
43 #define HYSTART_DELAY_MAX (16U<<3)
44 #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
45
46 static int fast_convergence __read_mostly = 1;
47 static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */
48 static int initial_ssthresh __read_mostly;
49 static int bic_scale __read_mostly = 41;
50 static int tcp_friendliness __read_mostly = 1;
51
52 static int hystart __read_mostly = 1;
53 static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
54 static int hystart_low_window __read_mostly = 16;
55 static int hystart_ack_delta __read_mostly = 2;
56
57 static u32 cube_rtt_scale __read_mostly;
58 static u32 beta_scale __read_mostly;
59 static u64 cube_factor __read_mostly;
60
61 /* Note parameters that are used for precomputing scale factors are read-only */
62 module_param(fast_convergence, int, 0644);
63 MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
64 module_param(beta, int, 0644);
65 MODULE_PARM_DESC(beta, "beta for multiplicative increase");
66 module_param(initial_ssthresh, int, 0644);
67 MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
68 module_param(bic_scale, int, 0444);
69 MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
70 module_param(tcp_friendliness, int, 0644);
71 MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
72 module_param(hystart, int, 0644);
73 MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
74 module_param(hystart_detect, int, 0644);
75 MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms"
76 " 1: packet-train 2: delay 3: both packet-train and delay");
77 module_param(hystart_low_window, int, 0644);
78 MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
79 module_param(hystart_ack_delta, int, 0644);
80 MODULE_PARM_DESC(hystart_ack_delta, "spacing between ack's indicating train (msecs)");
81
82 /* BIC TCP Parameters */
83 struct bictcp {
84 u32 cnt; /* increase cwnd by 1 after ACKs */
85 u32 last_max_cwnd; /* last maximum snd_cwnd */
86 u32 loss_cwnd; /* congestion window at last loss */
87 u32 last_cwnd; /* the last snd_cwnd */
88 u32 last_time; /* time when updated last_cwnd */
89 u32 bic_origin_point;/* origin point of bic function */
90 u32 bic_K; /* time to origin point
91 from the beginning of the current epoch */
92 u32 delay_min; /* min delay (msec << 3) */
93 u32 epoch_start; /* beginning of an epoch */
94 u32 ack_cnt; /* number of acks */
95 u32 tcp_cwnd; /* estimated tcp cwnd */
96 u16 unused;
97 u8 sample_cnt; /* number of samples to decide curr_rtt */
98 u8 found; /* the exit point is found? */
99 u32 round_start; /* beginning of each round */
100 u32 end_seq; /* end_seq of the round */
101 u32 last_ack; /* last time when the ACK spacing is close */
102 u32 curr_rtt; /* the minimum rtt of current round */
103 };
104
105 static inline void bictcp_reset(struct bictcp *ca)
106 {
107 ca->cnt = 0;
108 ca->last_max_cwnd = 0;
109 ca->last_cwnd = 0;
110 ca->last_time = 0;
111 ca->bic_origin_point = 0;
112 ca->bic_K = 0;
113 ca->delay_min = 0;
114 ca->epoch_start = 0;
115 ca->ack_cnt = 0;
116 ca->tcp_cwnd = 0;
117 ca->found = 0;
118 }
119
120 static inline u32 bictcp_clock(void)
121 {
122 #if HZ < 1000
123 return ktime_to_ms(ktime_get_real());
124 #else
125 return jiffies_to_msecs(jiffies);
126 #endif
127 }
128
129 static inline void bictcp_hystart_reset(struct sock *sk)
130 {
131 struct tcp_sock *tp = tcp_sk(sk);
132 struct bictcp *ca = inet_csk_ca(sk);
133
134 ca->round_start = ca->last_ack = bictcp_clock();
135 ca->end_seq = tp->snd_nxt;
136 ca->curr_rtt = 0;
137 ca->sample_cnt = 0;
138 }
139
140 static void bictcp_init(struct sock *sk)
141 {
142 struct bictcp *ca = inet_csk_ca(sk);
143
144 bictcp_reset(ca);
145 ca->loss_cwnd = 0;
146
147 if (hystart)
148 bictcp_hystart_reset(sk);
149
150 if (!hystart && initial_ssthresh)
151 tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
152 }
153
154 static void bictcp_cwnd_event(struct sock *sk, enum tcp_ca_event event)
155 {
156 if (event == CA_EVENT_TX_START) {
157 s32 delta = tcp_time_stamp - tcp_sk(sk)->lsndtime;
158 struct bictcp *ca = inet_csk_ca(sk);
159
160 /* We were application limited (idle) for a while.
161 * Shift epoch_start to keep cwnd growth to cubic curve.
162 */
163 if (ca->epoch_start && delta > 0)
164 ca->epoch_start += delta;
165 return;
166 }
167 }
168
169 /* calculate the cubic root of x using a table lookup followed by one
170 * Newton-Raphson iteration.
171 * Avg err ~= 0.195%
172 */
173 static u32 cubic_root(u64 a)
174 {
175 u32 x, b, shift;
176 /*
177 * cbrt(x) MSB values for x MSB values in [0..63].
178 * Precomputed then refined by hand - Willy Tarreau
179 *
180 * For x in [0..63],
181 * v = cbrt(x << 18) - 1
182 * cbrt(x) = (v[x] + 10) >> 6
183 */
184 static const u8 v[] = {
185 /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
186 /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
187 /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
188 /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
189 /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
190 /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
191 /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
192 /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
193 };
194
195 b = fls64(a);
196 if (b < 7) {
197 /* a in [0..63] */
198 return ((u32)v[(u32)a] + 35) >> 6;
199 }
200
201 b = ((b * 84) >> 8) - 1;
202 shift = (a >> (b * 3));
203
204 x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
205
206 /*
207 * Newton-Raphson iteration
208 * 2
209 * x = ( 2 * x + a / x ) / 3
210 * k+1 k k
211 */
212 x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
213 x = ((x * 341) >> 10);
214 return x;
215 }
216
217 /*
218 * Compute congestion window to use.
219 */
220 static inline void bictcp_update(struct bictcp *ca, u32 cwnd, u32 acked)
221 {
222 u32 delta, bic_target, max_cnt;
223 u64 offs, t;
224
225 ca->ack_cnt += acked; /* count the number of ACKed packets */
226
227 if (ca->last_cwnd == cwnd &&
228 (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
229 return;
230
231 /* The CUBIC function can update ca->cnt at most once per jiffy.
232 * On all cwnd reduction events, ca->epoch_start is set to 0,
233 * which will force a recalculation of ca->cnt.
234 */
235 if (ca->epoch_start && tcp_time_stamp == ca->last_time)
236 goto tcp_friendliness;
237
238 ca->last_cwnd = cwnd;
239 ca->last_time = tcp_time_stamp;
240
241 if (ca->epoch_start == 0) {
242 ca->epoch_start = tcp_time_stamp; /* record beginning */
243 ca->ack_cnt = acked; /* start counting */
244 ca->tcp_cwnd = cwnd; /* syn with cubic */
245
246 if (ca->last_max_cwnd <= cwnd) {
247 ca->bic_K = 0;
248 ca->bic_origin_point = cwnd;
249 } else {
250 /* Compute new K based on
251 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
252 */
253 ca->bic_K = cubic_root(cube_factor
254 * (ca->last_max_cwnd - cwnd));
255 ca->bic_origin_point = ca->last_max_cwnd;
256 }
257 }
258
259 /* cubic function - calc*/
260 /* calculate c * time^3 / rtt,
261 * while considering overflow in calculation of time^3
262 * (so time^3 is done by using 64 bit)
263 * and without the support of division of 64bit numbers
264 * (so all divisions are done by using 32 bit)
265 * also NOTE the unit of those veriables
266 * time = (t - K) / 2^bictcp_HZ
267 * c = bic_scale >> 10
268 * rtt = (srtt >> 3) / HZ
269 * !!! The following code does not have overflow problems,
270 * if the cwnd < 1 million packets !!!
271 */
272
273 t = (s32)(tcp_time_stamp - ca->epoch_start);
274 t += msecs_to_jiffies(ca->delay_min >> 3);
275 /* change the unit from HZ to bictcp_HZ */
276 t <<= BICTCP_HZ;
277 do_div(t, HZ);
278
279 if (t < ca->bic_K) /* t - K */
280 offs = ca->bic_K - t;
281 else
282 offs = t - ca->bic_K;
283
284 /* c/rtt * (t-K)^3 */
285 delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
286 if (t < ca->bic_K) /* below origin*/
287 bic_target = ca->bic_origin_point - delta;
288 else /* above origin*/
289 bic_target = ca->bic_origin_point + delta;
290
291 /* cubic function - calc bictcp_cnt*/
292 if (bic_target > cwnd) {
293 ca->cnt = cwnd / (bic_target - cwnd);
294 } else {
295 ca->cnt = 100 * cwnd; /* very small increment*/
296 }
297
298 /*
299 * The initial growth of cubic function may be too conservative
300 * when the available bandwidth is still unknown.
301 */
302 if (ca->last_max_cwnd == 0 && ca->cnt > 20)
303 ca->cnt = 20; /* increase cwnd 5% per RTT */
304
305 tcp_friendliness:
306 /* TCP Friendly */
307 if (tcp_friendliness) {
308 u32 scale = beta_scale;
309
310 delta = (cwnd * scale) >> 3;
311 while (ca->ack_cnt > delta) { /* update tcp cwnd */
312 ca->ack_cnt -= delta;
313 ca->tcp_cwnd++;
314 }
315
316 if (ca->tcp_cwnd > cwnd) { /* if bic is slower than tcp */
317 delta = ca->tcp_cwnd - cwnd;
318 max_cnt = cwnd / delta;
319 if (ca->cnt > max_cnt)
320 ca->cnt = max_cnt;
321 }
322 }
323
324 /* The maximum rate of cwnd increase CUBIC allows is 1 packet per
325 * 2 packets ACKed, meaning cwnd grows at 1.5x per RTT.
326 */
327 ca->cnt = max(ca->cnt, 2U);
328 }
329
330 static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
331 {
332 struct tcp_sock *tp = tcp_sk(sk);
333 struct bictcp *ca = inet_csk_ca(sk);
334
335 if (!tcp_is_cwnd_limited(sk))
336 return;
337
338 if (tcp_in_slow_start(tp)) {
339 if (hystart && after(ack, ca->end_seq))
340 bictcp_hystart_reset(sk);
341 acked = tcp_slow_start(tp, acked);
342 if (!acked)
343 return;
344 }
345 bictcp_update(ca, tp->snd_cwnd, acked);
346 tcp_cong_avoid_ai(tp, ca->cnt, acked);
347 }
348
349 static u32 bictcp_recalc_ssthresh(struct sock *sk)
350 {
351 const struct tcp_sock *tp = tcp_sk(sk);
352 struct bictcp *ca = inet_csk_ca(sk);
353
354 ca->epoch_start = 0; /* end of epoch */
355
356 /* Wmax and fast convergence */
357 if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
358 ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
359 / (2 * BICTCP_BETA_SCALE);
360 else
361 ca->last_max_cwnd = tp->snd_cwnd;
362
363 ca->loss_cwnd = tp->snd_cwnd;
364
365 return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
366 }
367
368 static u32 bictcp_undo_cwnd(struct sock *sk)
369 {
370 struct bictcp *ca = inet_csk_ca(sk);
371
372 return max(tcp_sk(sk)->snd_cwnd, ca->loss_cwnd);
373 }
374
375 static void bictcp_state(struct sock *sk, u8 new_state)
376 {
377 if (new_state == TCP_CA_Loss) {
378 bictcp_reset(inet_csk_ca(sk));
379 bictcp_hystart_reset(sk);
380 }
381 }
382
383 static void hystart_update(struct sock *sk, u32 delay)
384 {
385 struct tcp_sock *tp = tcp_sk(sk);
386 struct bictcp *ca = inet_csk_ca(sk);
387
388 if (ca->found & hystart_detect)
389 return;
390
391 if (hystart_detect & HYSTART_ACK_TRAIN) {
392 u32 now = bictcp_clock();
393
394 /* first detection parameter - ack-train detection */
395 if ((s32)(now - ca->last_ack) <= hystart_ack_delta) {
396 ca->last_ack = now;
397 if ((s32)(now - ca->round_start) > ca->delay_min >> 4) {
398 ca->found |= HYSTART_ACK_TRAIN;
399 NET_INC_STATS_BH(sock_net(sk),
400 LINUX_MIB_TCPHYSTARTTRAINDETECT);
401 NET_ADD_STATS_BH(sock_net(sk),
402 LINUX_MIB_TCPHYSTARTTRAINCWND,
403 tp->snd_cwnd);
404 tp->snd_ssthresh = tp->snd_cwnd;
405 }
406 }
407 }
408
409 if (hystart_detect & HYSTART_DELAY) {
410 /* obtain the minimum delay of more than sampling packets */
411 if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
412 if (ca->curr_rtt == 0 || ca->curr_rtt > delay)
413 ca->curr_rtt = delay;
414
415 ca->sample_cnt++;
416 } else {
417 if (ca->curr_rtt > ca->delay_min +
418 HYSTART_DELAY_THRESH(ca->delay_min >> 3)) {
419 ca->found |= HYSTART_DELAY;
420 NET_INC_STATS_BH(sock_net(sk),
421 LINUX_MIB_TCPHYSTARTDELAYDETECT);
422 NET_ADD_STATS_BH(sock_net(sk),
423 LINUX_MIB_TCPHYSTARTDELAYCWND,
424 tp->snd_cwnd);
425 tp->snd_ssthresh = tp->snd_cwnd;
426 }
427 }
428 }
429 }
430
431 /* Track delayed acknowledgment ratio using sliding window
432 * ratio = (15*ratio + sample) / 16
433 */
434 static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
435 {
436 const struct tcp_sock *tp = tcp_sk(sk);
437 struct bictcp *ca = inet_csk_ca(sk);
438 u32 delay;
439
440 /* Some calls are for duplicates without timetamps */
441 if (rtt_us < 0)
442 return;
443
444 /* Discard delay samples right after fast recovery */
445 if (ca->epoch_start && (s32)(tcp_time_stamp - ca->epoch_start) < HZ)
446 return;
447
448 delay = (rtt_us << 3) / USEC_PER_MSEC;
449 if (delay == 0)
450 delay = 1;
451
452 /* first time call or link delay decreases */
453 if (ca->delay_min == 0 || ca->delay_min > delay)
454 ca->delay_min = delay;
455
456 /* hystart triggers when cwnd is larger than some threshold */
457 if (hystart && tcp_in_slow_start(tp) &&
458 tp->snd_cwnd >= hystart_low_window)
459 hystart_update(sk, delay);
460 }
461
462 static struct tcp_congestion_ops cubictcp __read_mostly = {
463 .init = bictcp_init,
464 .ssthresh = bictcp_recalc_ssthresh,
465 .cong_avoid = bictcp_cong_avoid,
466 .set_state = bictcp_state,
467 .undo_cwnd = bictcp_undo_cwnd,
468 .cwnd_event = bictcp_cwnd_event,
469 .pkts_acked = bictcp_acked,
470 .owner = THIS_MODULE,
471 .name = "cubic",
472 };
473
474 static int __init cubictcp_register(void)
475 {
476 BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
477
478 /* Precompute a bunch of the scaling factors that are used per-packet
479 * based on SRTT of 100ms
480 */
481
482 beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3
483 / (BICTCP_BETA_SCALE - beta);
484
485 cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */
486
487 /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
488 * so K = cubic_root( (wmax-cwnd)*rtt/c )
489 * the unit of K is bictcp_HZ=2^10, not HZ
490 *
491 * c = bic_scale >> 10
492 * rtt = 100ms
493 *
494 * the following code has been designed and tested for
495 * cwnd < 1 million packets
496 * RTT < 100 seconds
497 * HZ < 1,000,00 (corresponding to 10 nano-second)
498 */
499
500 /* 1/c * 2^2*bictcp_HZ * srtt */
501 cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
502
503 /* divide by bic_scale and by constant Srtt (100ms) */
504 do_div(cube_factor, bic_scale * 10);
505
506 return tcp_register_congestion_control(&cubictcp);
507 }
508
509 static void __exit cubictcp_unregister(void)
510 {
511 tcp_unregister_congestion_control(&cubictcp);
512 }
513
514 module_init(cubictcp_register);
515 module_exit(cubictcp_unregister);
516
517 MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
518 MODULE_LICENSE("GPL");
519 MODULE_DESCRIPTION("CUBIC TCP");
520 MODULE_VERSION("2.3");
This page took 0.044665 seconds and 5 git commands to generate.