tcp: fastopen: accept data/FIN present in SYNACK message
[deliverable/linux.git] / net / ipv4 / tcp_fastopen.c
1 #include <linux/err.h>
2 #include <linux/init.h>
3 #include <linux/kernel.h>
4 #include <linux/list.h>
5 #include <linux/tcp.h>
6 #include <linux/rcupdate.h>
7 #include <linux/rculist.h>
8 #include <net/inetpeer.h>
9 #include <net/tcp.h>
10
11 int sysctl_tcp_fastopen __read_mostly = TFO_CLIENT_ENABLE;
12
13 struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
14
15 static DEFINE_SPINLOCK(tcp_fastopen_ctx_lock);
16
17 void tcp_fastopen_init_key_once(bool publish)
18 {
19 static u8 key[TCP_FASTOPEN_KEY_LENGTH];
20
21 /* tcp_fastopen_reset_cipher publishes the new context
22 * atomically, so we allow this race happening here.
23 *
24 * All call sites of tcp_fastopen_cookie_gen also check
25 * for a valid cookie, so this is an acceptable risk.
26 */
27 if (net_get_random_once(key, sizeof(key)) && publish)
28 tcp_fastopen_reset_cipher(key, sizeof(key));
29 }
30
31 static void tcp_fastopen_ctx_free(struct rcu_head *head)
32 {
33 struct tcp_fastopen_context *ctx =
34 container_of(head, struct tcp_fastopen_context, rcu);
35 crypto_free_cipher(ctx->tfm);
36 kfree(ctx);
37 }
38
39 int tcp_fastopen_reset_cipher(void *key, unsigned int len)
40 {
41 int err;
42 struct tcp_fastopen_context *ctx, *octx;
43
44 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
45 if (!ctx)
46 return -ENOMEM;
47 ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
48
49 if (IS_ERR(ctx->tfm)) {
50 err = PTR_ERR(ctx->tfm);
51 error: kfree(ctx);
52 pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
53 return err;
54 }
55 err = crypto_cipher_setkey(ctx->tfm, key, len);
56 if (err) {
57 pr_err("TCP: TFO cipher key error: %d\n", err);
58 crypto_free_cipher(ctx->tfm);
59 goto error;
60 }
61 memcpy(ctx->key, key, len);
62
63 spin_lock(&tcp_fastopen_ctx_lock);
64
65 octx = rcu_dereference_protected(tcp_fastopen_ctx,
66 lockdep_is_held(&tcp_fastopen_ctx_lock));
67 rcu_assign_pointer(tcp_fastopen_ctx, ctx);
68 spin_unlock(&tcp_fastopen_ctx_lock);
69
70 if (octx)
71 call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
72 return err;
73 }
74
75 static bool __tcp_fastopen_cookie_gen(const void *path,
76 struct tcp_fastopen_cookie *foc)
77 {
78 struct tcp_fastopen_context *ctx;
79 bool ok = false;
80
81 rcu_read_lock();
82 ctx = rcu_dereference(tcp_fastopen_ctx);
83 if (ctx) {
84 crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
85 foc->len = TCP_FASTOPEN_COOKIE_SIZE;
86 ok = true;
87 }
88 rcu_read_unlock();
89 return ok;
90 }
91
92 /* Generate the fastopen cookie by doing aes128 encryption on both
93 * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
94 * addresses. For the longer IPv6 addresses use CBC-MAC.
95 *
96 * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
97 */
98 static bool tcp_fastopen_cookie_gen(struct request_sock *req,
99 struct sk_buff *syn,
100 struct tcp_fastopen_cookie *foc)
101 {
102 if (req->rsk_ops->family == AF_INET) {
103 const struct iphdr *iph = ip_hdr(syn);
104
105 __be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
106 return __tcp_fastopen_cookie_gen(path, foc);
107 }
108
109 #if IS_ENABLED(CONFIG_IPV6)
110 if (req->rsk_ops->family == AF_INET6) {
111 const struct ipv6hdr *ip6h = ipv6_hdr(syn);
112 struct tcp_fastopen_cookie tmp;
113
114 if (__tcp_fastopen_cookie_gen(&ip6h->saddr, &tmp)) {
115 struct in6_addr *buf = (struct in6_addr *) tmp.val;
116 int i;
117
118 for (i = 0; i < 4; i++)
119 buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
120 return __tcp_fastopen_cookie_gen(buf, foc);
121 }
122 }
123 #endif
124 return false;
125 }
126
127
128 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
129 * queue this additional data / FIN.
130 */
131 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
132 {
133 struct tcp_sock *tp = tcp_sk(sk);
134
135 if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
136 return;
137
138 skb = skb_clone(skb, GFP_ATOMIC);
139 if (!skb)
140 return;
141
142 skb_dst_drop(skb);
143 __skb_pull(skb, tcp_hdrlen(skb));
144 skb_set_owner_r(skb, sk);
145
146 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
147 __skb_queue_tail(&sk->sk_receive_queue, skb);
148 tp->syn_data_acked = 1;
149
150 /* u64_stats_update_begin(&tp->syncp) not needed here,
151 * as we certainly are not changing upper 32bit value (0)
152 */
153 tp->bytes_received = skb->len;
154 }
155
156 static struct sock *tcp_fastopen_create_child(struct sock *sk,
157 struct sk_buff *skb,
158 struct dst_entry *dst,
159 struct request_sock *req)
160 {
161 struct tcp_sock *tp;
162 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
163 struct sock *child;
164 bool own_req;
165
166 req->num_retrans = 0;
167 req->num_timeout = 0;
168 req->sk = NULL;
169
170 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
171 NULL, &own_req);
172 if (!child)
173 return NULL;
174
175 spin_lock(&queue->fastopenq.lock);
176 queue->fastopenq.qlen++;
177 spin_unlock(&queue->fastopenq.lock);
178
179 /* Initialize the child socket. Have to fix some values to take
180 * into account the child is a Fast Open socket and is created
181 * only out of the bits carried in the SYN packet.
182 */
183 tp = tcp_sk(child);
184
185 tp->fastopen_rsk = req;
186 tcp_rsk(req)->tfo_listener = true;
187
188 /* RFC1323: The window in SYN & SYN/ACK segments is never
189 * scaled. So correct it appropriately.
190 */
191 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
192
193 /* Activate the retrans timer so that SYNACK can be retransmitted.
194 * The request socket is not added to the ehash
195 * because it's been added to the accept queue directly.
196 */
197 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
198 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
199
200 atomic_set(&req->rsk_refcnt, 2);
201
202 /* Now finish processing the fastopen child socket. */
203 inet_csk(child)->icsk_af_ops->rebuild_header(child);
204 tcp_init_congestion_control(child);
205 tcp_mtup_init(child);
206 tcp_init_metrics(child);
207 tcp_init_buffer_space(child);
208
209 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
210
211 tcp_fastopen_add_skb(child, skb);
212
213 tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
214 /* tcp_conn_request() is sending the SYNACK,
215 * and queues the child into listener accept queue.
216 */
217 return child;
218 }
219
220 static bool tcp_fastopen_queue_check(struct sock *sk)
221 {
222 struct fastopen_queue *fastopenq;
223
224 /* Make sure the listener has enabled fastopen, and we don't
225 * exceed the max # of pending TFO requests allowed before trying
226 * to validating the cookie in order to avoid burning CPU cycles
227 * unnecessarily.
228 *
229 * XXX (TFO) - The implication of checking the max_qlen before
230 * processing a cookie request is that clients can't differentiate
231 * between qlen overflow causing Fast Open to be disabled
232 * temporarily vs a server not supporting Fast Open at all.
233 */
234 fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
235 if (fastopenq->max_qlen == 0)
236 return false;
237
238 if (fastopenq->qlen >= fastopenq->max_qlen) {
239 struct request_sock *req1;
240 spin_lock(&fastopenq->lock);
241 req1 = fastopenq->rskq_rst_head;
242 if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
243 spin_unlock(&fastopenq->lock);
244 NET_INC_STATS_BH(sock_net(sk),
245 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
246 return false;
247 }
248 fastopenq->rskq_rst_head = req1->dl_next;
249 fastopenq->qlen--;
250 spin_unlock(&fastopenq->lock);
251 reqsk_put(req1);
252 }
253 return true;
254 }
255
256 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
257 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
258 * cookie request (foc->len == 0).
259 */
260 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
261 struct request_sock *req,
262 struct tcp_fastopen_cookie *foc,
263 struct dst_entry *dst)
264 {
265 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
266 bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
267 struct sock *child;
268
269 if (foc->len == 0) /* Client requests a cookie */
270 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
271
272 if (!((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) &&
273 (syn_data || foc->len >= 0) &&
274 tcp_fastopen_queue_check(sk))) {
275 foc->len = -1;
276 return NULL;
277 }
278
279 if (syn_data && (sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD))
280 goto fastopen;
281
282 if (foc->len >= 0 && /* Client presents or requests a cookie */
283 tcp_fastopen_cookie_gen(req, skb, &valid_foc) &&
284 foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
285 foc->len == valid_foc.len &&
286 !memcmp(foc->val, valid_foc.val, foc->len)) {
287 /* Cookie is valid. Create a (full) child socket to accept
288 * the data in SYN before returning a SYN-ACK to ack the
289 * data. If we fail to create the socket, fall back and
290 * ack the ISN only but includes the same cookie.
291 *
292 * Note: Data-less SYN with valid cookie is allowed to send
293 * data in SYN_RECV state.
294 */
295 fastopen:
296 child = tcp_fastopen_create_child(sk, skb, dst, req);
297 if (child) {
298 foc->len = -1;
299 NET_INC_STATS_BH(sock_net(sk),
300 LINUX_MIB_TCPFASTOPENPASSIVE);
301 return child;
302 }
303 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
304 } else if (foc->len > 0) /* Client presents an invalid cookie */
305 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
306
307 valid_foc.exp = foc->exp;
308 *foc = valid_foc;
309 return NULL;
310 }
This page took 0.039574 seconds and 5 git commands to generate.