Merge tag 'staging-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[deliverable/linux.git] / net / ipv4 / tcp_fastopen.c
1 #include <linux/crypto.h>
2 #include <linux/err.h>
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/list.h>
6 #include <linux/tcp.h>
7 #include <linux/rcupdate.h>
8 #include <linux/rculist.h>
9 #include <net/inetpeer.h>
10 #include <net/tcp.h>
11
12 int sysctl_tcp_fastopen __read_mostly = TFO_CLIENT_ENABLE;
13
14 struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
15
16 static DEFINE_SPINLOCK(tcp_fastopen_ctx_lock);
17
18 void tcp_fastopen_init_key_once(bool publish)
19 {
20 static u8 key[TCP_FASTOPEN_KEY_LENGTH];
21
22 /* tcp_fastopen_reset_cipher publishes the new context
23 * atomically, so we allow this race happening here.
24 *
25 * All call sites of tcp_fastopen_cookie_gen also check
26 * for a valid cookie, so this is an acceptable risk.
27 */
28 if (net_get_random_once(key, sizeof(key)) && publish)
29 tcp_fastopen_reset_cipher(key, sizeof(key));
30 }
31
32 static void tcp_fastopen_ctx_free(struct rcu_head *head)
33 {
34 struct tcp_fastopen_context *ctx =
35 container_of(head, struct tcp_fastopen_context, rcu);
36 crypto_free_cipher(ctx->tfm);
37 kfree(ctx);
38 }
39
40 int tcp_fastopen_reset_cipher(void *key, unsigned int len)
41 {
42 int err;
43 struct tcp_fastopen_context *ctx, *octx;
44
45 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
46 if (!ctx)
47 return -ENOMEM;
48 ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
49
50 if (IS_ERR(ctx->tfm)) {
51 err = PTR_ERR(ctx->tfm);
52 error: kfree(ctx);
53 pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
54 return err;
55 }
56 err = crypto_cipher_setkey(ctx->tfm, key, len);
57 if (err) {
58 pr_err("TCP: TFO cipher key error: %d\n", err);
59 crypto_free_cipher(ctx->tfm);
60 goto error;
61 }
62 memcpy(ctx->key, key, len);
63
64 spin_lock(&tcp_fastopen_ctx_lock);
65
66 octx = rcu_dereference_protected(tcp_fastopen_ctx,
67 lockdep_is_held(&tcp_fastopen_ctx_lock));
68 rcu_assign_pointer(tcp_fastopen_ctx, ctx);
69 spin_unlock(&tcp_fastopen_ctx_lock);
70
71 if (octx)
72 call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
73 return err;
74 }
75
76 static bool __tcp_fastopen_cookie_gen(const void *path,
77 struct tcp_fastopen_cookie *foc)
78 {
79 struct tcp_fastopen_context *ctx;
80 bool ok = false;
81
82 rcu_read_lock();
83 ctx = rcu_dereference(tcp_fastopen_ctx);
84 if (ctx) {
85 crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
86 foc->len = TCP_FASTOPEN_COOKIE_SIZE;
87 ok = true;
88 }
89 rcu_read_unlock();
90 return ok;
91 }
92
93 /* Generate the fastopen cookie by doing aes128 encryption on both
94 * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
95 * addresses. For the longer IPv6 addresses use CBC-MAC.
96 *
97 * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
98 */
99 static bool tcp_fastopen_cookie_gen(struct request_sock *req,
100 struct sk_buff *syn,
101 struct tcp_fastopen_cookie *foc)
102 {
103 if (req->rsk_ops->family == AF_INET) {
104 const struct iphdr *iph = ip_hdr(syn);
105
106 __be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
107 return __tcp_fastopen_cookie_gen(path, foc);
108 }
109
110 #if IS_ENABLED(CONFIG_IPV6)
111 if (req->rsk_ops->family == AF_INET6) {
112 const struct ipv6hdr *ip6h = ipv6_hdr(syn);
113 struct tcp_fastopen_cookie tmp;
114
115 if (__tcp_fastopen_cookie_gen(&ip6h->saddr, &tmp)) {
116 struct in6_addr *buf = (struct in6_addr *) tmp.val;
117 int i;
118
119 for (i = 0; i < 4; i++)
120 buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
121 return __tcp_fastopen_cookie_gen(buf, foc);
122 }
123 }
124 #endif
125 return false;
126 }
127
128 static struct sock *tcp_fastopen_create_child(struct sock *sk,
129 struct sk_buff *skb,
130 struct dst_entry *dst,
131 struct request_sock *req)
132 {
133 struct tcp_sock *tp;
134 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
135 struct sock *child;
136 u32 end_seq;
137 bool own_req;
138
139 req->num_retrans = 0;
140 req->num_timeout = 0;
141 req->sk = NULL;
142
143 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
144 NULL, &own_req);
145 if (!child)
146 return NULL;
147
148 spin_lock(&queue->fastopenq.lock);
149 queue->fastopenq.qlen++;
150 spin_unlock(&queue->fastopenq.lock);
151
152 /* Initialize the child socket. Have to fix some values to take
153 * into account the child is a Fast Open socket and is created
154 * only out of the bits carried in the SYN packet.
155 */
156 tp = tcp_sk(child);
157
158 tp->fastopen_rsk = req;
159 tcp_rsk(req)->tfo_listener = true;
160
161 /* RFC1323: The window in SYN & SYN/ACK segments is never
162 * scaled. So correct it appropriately.
163 */
164 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
165
166 /* Activate the retrans timer so that SYNACK can be retransmitted.
167 * The request socket is not added to the ehash
168 * because it's been added to the accept queue directly.
169 */
170 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
171 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
172
173 atomic_set(&req->rsk_refcnt, 2);
174
175 /* Now finish processing the fastopen child socket. */
176 inet_csk(child)->icsk_af_ops->rebuild_header(child);
177 tcp_init_congestion_control(child);
178 tcp_mtup_init(child);
179 tcp_init_metrics(child);
180 tcp_init_buffer_space(child);
181
182 /* Queue the data carried in the SYN packet.
183 * We used to play tricky games with skb_get().
184 * With lockless listener, it is a dead end.
185 * Do not think about it.
186 *
187 * XXX (TFO) - we honor a zero-payload TFO request for now,
188 * (any reason not to?) but no need to queue the skb since
189 * there is no data. How about SYN+FIN?
190 */
191 end_seq = TCP_SKB_CB(skb)->end_seq;
192 if (end_seq != TCP_SKB_CB(skb)->seq + 1) {
193 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
194
195 if (likely(skb2)) {
196 skb_dst_drop(skb2);
197 __skb_pull(skb2, tcp_hdrlen(skb));
198 skb_set_owner_r(skb2, child);
199 __skb_queue_tail(&child->sk_receive_queue, skb2);
200 tp->syn_data_acked = 1;
201
202 /* u64_stats_update_begin(&tp->syncp) not needed here,
203 * as we certainly are not changing upper 32bit value (0)
204 */
205 tp->bytes_received = end_seq - TCP_SKB_CB(skb)->seq - 1;
206 } else {
207 end_seq = TCP_SKB_CB(skb)->seq + 1;
208 }
209 }
210 tcp_rsk(req)->rcv_nxt = tp->rcv_nxt = end_seq;
211 /* tcp_conn_request() is sending the SYNACK,
212 * and queues the child into listener accept queue.
213 */
214 return child;
215 }
216
217 static bool tcp_fastopen_queue_check(struct sock *sk)
218 {
219 struct fastopen_queue *fastopenq;
220
221 /* Make sure the listener has enabled fastopen, and we don't
222 * exceed the max # of pending TFO requests allowed before trying
223 * to validating the cookie in order to avoid burning CPU cycles
224 * unnecessarily.
225 *
226 * XXX (TFO) - The implication of checking the max_qlen before
227 * processing a cookie request is that clients can't differentiate
228 * between qlen overflow causing Fast Open to be disabled
229 * temporarily vs a server not supporting Fast Open at all.
230 */
231 fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
232 if (fastopenq->max_qlen == 0)
233 return false;
234
235 if (fastopenq->qlen >= fastopenq->max_qlen) {
236 struct request_sock *req1;
237 spin_lock(&fastopenq->lock);
238 req1 = fastopenq->rskq_rst_head;
239 if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
240 spin_unlock(&fastopenq->lock);
241 NET_INC_STATS_BH(sock_net(sk),
242 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
243 return false;
244 }
245 fastopenq->rskq_rst_head = req1->dl_next;
246 fastopenq->qlen--;
247 spin_unlock(&fastopenq->lock);
248 reqsk_put(req1);
249 }
250 return true;
251 }
252
253 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
254 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
255 * cookie request (foc->len == 0).
256 */
257 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
258 struct request_sock *req,
259 struct tcp_fastopen_cookie *foc,
260 struct dst_entry *dst)
261 {
262 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
263 bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
264 struct sock *child;
265
266 if (foc->len == 0) /* Client requests a cookie */
267 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
268
269 if (!((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) &&
270 (syn_data || foc->len >= 0) &&
271 tcp_fastopen_queue_check(sk))) {
272 foc->len = -1;
273 return NULL;
274 }
275
276 if (syn_data && (sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD))
277 goto fastopen;
278
279 if (foc->len >= 0 && /* Client presents or requests a cookie */
280 tcp_fastopen_cookie_gen(req, skb, &valid_foc) &&
281 foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
282 foc->len == valid_foc.len &&
283 !memcmp(foc->val, valid_foc.val, foc->len)) {
284 /* Cookie is valid. Create a (full) child socket to accept
285 * the data in SYN before returning a SYN-ACK to ack the
286 * data. If we fail to create the socket, fall back and
287 * ack the ISN only but includes the same cookie.
288 *
289 * Note: Data-less SYN with valid cookie is allowed to send
290 * data in SYN_RECV state.
291 */
292 fastopen:
293 child = tcp_fastopen_create_child(sk, skb, dst, req);
294 if (child) {
295 foc->len = -1;
296 NET_INC_STATS_BH(sock_net(sk),
297 LINUX_MIB_TCPFASTOPENPASSIVE);
298 return child;
299 }
300 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
301 } else if (foc->len > 0) /* Client presents an invalid cookie */
302 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
303
304 valid_foc.exp = foc->exp;
305 *foc = valid_foc;
306 return NULL;
307 }
This page took 0.037802 seconds and 6 git commands to generate.