23ca3663d1e88bd63ed9f9de3bdbb91aa44a943f
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95
96 int sysctl_tcp_thin_dupack __read_mostly;
97
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
109 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
110 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
111 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
112 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114
115 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
116 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
117 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
118 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
119 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
120
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124 /* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
126 */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
132
133 icsk->icsk_ack.last_seg_size = 0;
134
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
137 */
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
144 *
145 * "len" is invariant segment length, including TCP header.
146 */
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
153 */
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
159 */
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
165 }
166 }
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 }
171 }
172
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
194 */
195
196 static inline int tcp_in_quickack_mode(const struct sock *sk)
197 {
198 const struct inet_connection_sock *icsk = inet_csk(sk);
199 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
200 }
201
202 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
203 {
204 if (tp->ecn_flags & TCP_ECN_OK)
205 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
206 }
207
208 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
209 {
210 if (tcp_hdr(skb)->cwr)
211 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212 }
213
214 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
215 {
216 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
217 }
218
219 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
220 {
221 if (!(tp->ecn_flags & TCP_ECN_OK))
222 return;
223
224 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
225 case INET_ECN_NOT_ECT:
226 /* Funny extension: if ECT is not set on a segment,
227 * and we already seen ECT on a previous segment,
228 * it is probably a retransmit.
229 */
230 if (tp->ecn_flags & TCP_ECN_SEEN)
231 tcp_enter_quickack_mode((struct sock *)tp);
232 break;
233 case INET_ECN_CE:
234 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
235 /* fallinto */
236 default:
237 tp->ecn_flags |= TCP_ECN_SEEN;
238 }
239 }
240
241 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
242 {
243 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
244 tp->ecn_flags &= ~TCP_ECN_OK;
245 }
246
247 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
248 {
249 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
250 tp->ecn_flags &= ~TCP_ECN_OK;
251 }
252
253 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
254 {
255 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
256 return 1;
257 return 0;
258 }
259
260 /* Buffer size and advertised window tuning.
261 *
262 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
263 */
264
265 static void tcp_fixup_sndbuf(struct sock *sk)
266 {
267 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
268
269 sndmem *= TCP_INIT_CWND;
270 if (sk->sk_sndbuf < sndmem)
271 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
272 }
273
274 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
275 *
276 * All tcp_full_space() is split to two parts: "network" buffer, allocated
277 * forward and advertised in receiver window (tp->rcv_wnd) and
278 * "application buffer", required to isolate scheduling/application
279 * latencies from network.
280 * window_clamp is maximal advertised window. It can be less than
281 * tcp_full_space(), in this case tcp_full_space() - window_clamp
282 * is reserved for "application" buffer. The less window_clamp is
283 * the smoother our behaviour from viewpoint of network, but the lower
284 * throughput and the higher sensitivity of the connection to losses. 8)
285 *
286 * rcv_ssthresh is more strict window_clamp used at "slow start"
287 * phase to predict further behaviour of this connection.
288 * It is used for two goals:
289 * - to enforce header prediction at sender, even when application
290 * requires some significant "application buffer". It is check #1.
291 * - to prevent pruning of receive queue because of misprediction
292 * of receiver window. Check #2.
293 *
294 * The scheme does not work when sender sends good segments opening
295 * window and then starts to feed us spaghetti. But it should work
296 * in common situations. Otherwise, we have to rely on queue collapsing.
297 */
298
299 /* Slow part of check#2. */
300 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
301 {
302 struct tcp_sock *tp = tcp_sk(sk);
303 /* Optimize this! */
304 int truesize = tcp_win_from_space(skb->truesize) >> 1;
305 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
306
307 while (tp->rcv_ssthresh <= window) {
308 if (truesize <= skb->len)
309 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
310
311 truesize >>= 1;
312 window >>= 1;
313 }
314 return 0;
315 }
316
317 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
318 {
319 struct tcp_sock *tp = tcp_sk(sk);
320
321 /* Check #1 */
322 if (tp->rcv_ssthresh < tp->window_clamp &&
323 (int)tp->rcv_ssthresh < tcp_space(sk) &&
324 !sk_under_memory_pressure(sk)) {
325 int incr;
326
327 /* Check #2. Increase window, if skb with such overhead
328 * will fit to rcvbuf in future.
329 */
330 if (tcp_win_from_space(skb->truesize) <= skb->len)
331 incr = 2 * tp->advmss;
332 else
333 incr = __tcp_grow_window(sk, skb);
334
335 if (incr) {
336 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
337 tp->window_clamp);
338 inet_csk(sk)->icsk_ack.quick |= 1;
339 }
340 }
341 }
342
343 /* 3. Tuning rcvbuf, when connection enters established state. */
344
345 static void tcp_fixup_rcvbuf(struct sock *sk)
346 {
347 u32 mss = tcp_sk(sk)->advmss;
348 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
349 int rcvmem;
350
351 /* Limit to 10 segments if mss <= 1460,
352 * or 14600/mss segments, with a minimum of two segments.
353 */
354 if (mss > 1460)
355 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
356
357 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
358 while (tcp_win_from_space(rcvmem) < mss)
359 rcvmem += 128;
360
361 rcvmem *= icwnd;
362
363 if (sk->sk_rcvbuf < rcvmem)
364 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
365 }
366
367 /* 4. Try to fixup all. It is made immediately after connection enters
368 * established state.
369 */
370 static void tcp_init_buffer_space(struct sock *sk)
371 {
372 struct tcp_sock *tp = tcp_sk(sk);
373 int maxwin;
374
375 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
376 tcp_fixup_rcvbuf(sk);
377 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
378 tcp_fixup_sndbuf(sk);
379
380 tp->rcvq_space.space = tp->rcv_wnd;
381
382 maxwin = tcp_full_space(sk);
383
384 if (tp->window_clamp >= maxwin) {
385 tp->window_clamp = maxwin;
386
387 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
388 tp->window_clamp = max(maxwin -
389 (maxwin >> sysctl_tcp_app_win),
390 4 * tp->advmss);
391 }
392
393 /* Force reservation of one segment. */
394 if (sysctl_tcp_app_win &&
395 tp->window_clamp > 2 * tp->advmss &&
396 tp->window_clamp + tp->advmss > maxwin)
397 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
398
399 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
400 tp->snd_cwnd_stamp = tcp_time_stamp;
401 }
402
403 /* 5. Recalculate window clamp after socket hit its memory bounds. */
404 static void tcp_clamp_window(struct sock *sk)
405 {
406 struct tcp_sock *tp = tcp_sk(sk);
407 struct inet_connection_sock *icsk = inet_csk(sk);
408
409 icsk->icsk_ack.quick = 0;
410
411 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
412 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
413 !sk_under_memory_pressure(sk) &&
414 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
415 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
416 sysctl_tcp_rmem[2]);
417 }
418 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
419 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
420 }
421
422 /* Initialize RCV_MSS value.
423 * RCV_MSS is an our guess about MSS used by the peer.
424 * We haven't any direct information about the MSS.
425 * It's better to underestimate the RCV_MSS rather than overestimate.
426 * Overestimations make us ACKing less frequently than needed.
427 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
428 */
429 void tcp_initialize_rcv_mss(struct sock *sk)
430 {
431 const struct tcp_sock *tp = tcp_sk(sk);
432 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
433
434 hint = min(hint, tp->rcv_wnd / 2);
435 hint = min(hint, TCP_MSS_DEFAULT);
436 hint = max(hint, TCP_MIN_MSS);
437
438 inet_csk(sk)->icsk_ack.rcv_mss = hint;
439 }
440 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
441
442 /* Receiver "autotuning" code.
443 *
444 * The algorithm for RTT estimation w/o timestamps is based on
445 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
446 * <http://public.lanl.gov/radiant/pubs.html#DRS>
447 *
448 * More detail on this code can be found at
449 * <http://staff.psc.edu/jheffner/>,
450 * though this reference is out of date. A new paper
451 * is pending.
452 */
453 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
454 {
455 u32 new_sample = tp->rcv_rtt_est.rtt;
456 long m = sample;
457
458 if (m == 0)
459 m = 1;
460
461 if (new_sample != 0) {
462 /* If we sample in larger samples in the non-timestamp
463 * case, we could grossly overestimate the RTT especially
464 * with chatty applications or bulk transfer apps which
465 * are stalled on filesystem I/O.
466 *
467 * Also, since we are only going for a minimum in the
468 * non-timestamp case, we do not smooth things out
469 * else with timestamps disabled convergence takes too
470 * long.
471 */
472 if (!win_dep) {
473 m -= (new_sample >> 3);
474 new_sample += m;
475 } else if (m < new_sample)
476 new_sample = m << 3;
477 } else {
478 /* No previous measure. */
479 new_sample = m << 3;
480 }
481
482 if (tp->rcv_rtt_est.rtt != new_sample)
483 tp->rcv_rtt_est.rtt = new_sample;
484 }
485
486 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
487 {
488 if (tp->rcv_rtt_est.time == 0)
489 goto new_measure;
490 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
491 return;
492 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
493
494 new_measure:
495 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
496 tp->rcv_rtt_est.time = tcp_time_stamp;
497 }
498
499 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
500 const struct sk_buff *skb)
501 {
502 struct tcp_sock *tp = tcp_sk(sk);
503 if (tp->rx_opt.rcv_tsecr &&
504 (TCP_SKB_CB(skb)->end_seq -
505 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
506 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
507 }
508
509 /*
510 * This function should be called every time data is copied to user space.
511 * It calculates the appropriate TCP receive buffer space.
512 */
513 void tcp_rcv_space_adjust(struct sock *sk)
514 {
515 struct tcp_sock *tp = tcp_sk(sk);
516 int time;
517 int space;
518
519 if (tp->rcvq_space.time == 0)
520 goto new_measure;
521
522 time = tcp_time_stamp - tp->rcvq_space.time;
523 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
524 return;
525
526 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
527
528 space = max(tp->rcvq_space.space, space);
529
530 if (tp->rcvq_space.space != space) {
531 int rcvmem;
532
533 tp->rcvq_space.space = space;
534
535 if (sysctl_tcp_moderate_rcvbuf &&
536 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
537 int new_clamp = space;
538
539 /* Receive space grows, normalize in order to
540 * take into account packet headers and sk_buff
541 * structure overhead.
542 */
543 space /= tp->advmss;
544 if (!space)
545 space = 1;
546 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
547 while (tcp_win_from_space(rcvmem) < tp->advmss)
548 rcvmem += 128;
549 space *= rcvmem;
550 space = min(space, sysctl_tcp_rmem[2]);
551 if (space > sk->sk_rcvbuf) {
552 sk->sk_rcvbuf = space;
553
554 /* Make the window clamp follow along. */
555 tp->window_clamp = new_clamp;
556 }
557 }
558 }
559
560 new_measure:
561 tp->rcvq_space.seq = tp->copied_seq;
562 tp->rcvq_space.time = tcp_time_stamp;
563 }
564
565 /* There is something which you must keep in mind when you analyze the
566 * behavior of the tp->ato delayed ack timeout interval. When a
567 * connection starts up, we want to ack as quickly as possible. The
568 * problem is that "good" TCP's do slow start at the beginning of data
569 * transmission. The means that until we send the first few ACK's the
570 * sender will sit on his end and only queue most of his data, because
571 * he can only send snd_cwnd unacked packets at any given time. For
572 * each ACK we send, he increments snd_cwnd and transmits more of his
573 * queue. -DaveM
574 */
575 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
576 {
577 struct tcp_sock *tp = tcp_sk(sk);
578 struct inet_connection_sock *icsk = inet_csk(sk);
579 u32 now;
580
581 inet_csk_schedule_ack(sk);
582
583 tcp_measure_rcv_mss(sk, skb);
584
585 tcp_rcv_rtt_measure(tp);
586
587 now = tcp_time_stamp;
588
589 if (!icsk->icsk_ack.ato) {
590 /* The _first_ data packet received, initialize
591 * delayed ACK engine.
592 */
593 tcp_incr_quickack(sk);
594 icsk->icsk_ack.ato = TCP_ATO_MIN;
595 } else {
596 int m = now - icsk->icsk_ack.lrcvtime;
597
598 if (m <= TCP_ATO_MIN / 2) {
599 /* The fastest case is the first. */
600 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
601 } else if (m < icsk->icsk_ack.ato) {
602 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
603 if (icsk->icsk_ack.ato > icsk->icsk_rto)
604 icsk->icsk_ack.ato = icsk->icsk_rto;
605 } else if (m > icsk->icsk_rto) {
606 /* Too long gap. Apparently sender failed to
607 * restart window, so that we send ACKs quickly.
608 */
609 tcp_incr_quickack(sk);
610 sk_mem_reclaim(sk);
611 }
612 }
613 icsk->icsk_ack.lrcvtime = now;
614
615 TCP_ECN_check_ce(tp, skb);
616
617 if (skb->len >= 128)
618 tcp_grow_window(sk, skb);
619 }
620
621 /* Called to compute a smoothed rtt estimate. The data fed to this
622 * routine either comes from timestamps, or from segments that were
623 * known _not_ to have been retransmitted [see Karn/Partridge
624 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
625 * piece by Van Jacobson.
626 * NOTE: the next three routines used to be one big routine.
627 * To save cycles in the RFC 1323 implementation it was better to break
628 * it up into three procedures. -- erics
629 */
630 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
631 {
632 struct tcp_sock *tp = tcp_sk(sk);
633 long m = mrtt; /* RTT */
634
635 /* The following amusing code comes from Jacobson's
636 * article in SIGCOMM '88. Note that rtt and mdev
637 * are scaled versions of rtt and mean deviation.
638 * This is designed to be as fast as possible
639 * m stands for "measurement".
640 *
641 * On a 1990 paper the rto value is changed to:
642 * RTO = rtt + 4 * mdev
643 *
644 * Funny. This algorithm seems to be very broken.
645 * These formulae increase RTO, when it should be decreased, increase
646 * too slowly, when it should be increased quickly, decrease too quickly
647 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
648 * does not matter how to _calculate_ it. Seems, it was trap
649 * that VJ failed to avoid. 8)
650 */
651 if (m == 0)
652 m = 1;
653 if (tp->srtt != 0) {
654 m -= (tp->srtt >> 3); /* m is now error in rtt est */
655 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
656 if (m < 0) {
657 m = -m; /* m is now abs(error) */
658 m -= (tp->mdev >> 2); /* similar update on mdev */
659 /* This is similar to one of Eifel findings.
660 * Eifel blocks mdev updates when rtt decreases.
661 * This solution is a bit different: we use finer gain
662 * for mdev in this case (alpha*beta).
663 * Like Eifel it also prevents growth of rto,
664 * but also it limits too fast rto decreases,
665 * happening in pure Eifel.
666 */
667 if (m > 0)
668 m >>= 3;
669 } else {
670 m -= (tp->mdev >> 2); /* similar update on mdev */
671 }
672 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
673 if (tp->mdev > tp->mdev_max) {
674 tp->mdev_max = tp->mdev;
675 if (tp->mdev_max > tp->rttvar)
676 tp->rttvar = tp->mdev_max;
677 }
678 if (after(tp->snd_una, tp->rtt_seq)) {
679 if (tp->mdev_max < tp->rttvar)
680 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
681 tp->rtt_seq = tp->snd_nxt;
682 tp->mdev_max = tcp_rto_min(sk);
683 }
684 } else {
685 /* no previous measure. */
686 tp->srtt = m << 3; /* take the measured time to be rtt */
687 tp->mdev = m << 1; /* make sure rto = 3*rtt */
688 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
689 tp->rtt_seq = tp->snd_nxt;
690 }
691 }
692
693 /* Calculate rto without backoff. This is the second half of Van Jacobson's
694 * routine referred to above.
695 */
696 static inline void tcp_set_rto(struct sock *sk)
697 {
698 const struct tcp_sock *tp = tcp_sk(sk);
699 /* Old crap is replaced with new one. 8)
700 *
701 * More seriously:
702 * 1. If rtt variance happened to be less 50msec, it is hallucination.
703 * It cannot be less due to utterly erratic ACK generation made
704 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
705 * to do with delayed acks, because at cwnd>2 true delack timeout
706 * is invisible. Actually, Linux-2.4 also generates erratic
707 * ACKs in some circumstances.
708 */
709 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
710
711 /* 2. Fixups made earlier cannot be right.
712 * If we do not estimate RTO correctly without them,
713 * all the algo is pure shit and should be replaced
714 * with correct one. It is exactly, which we pretend to do.
715 */
716
717 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
718 * guarantees that rto is higher.
719 */
720 tcp_bound_rto(sk);
721 }
722
723 /* Save metrics learned by this TCP session.
724 This function is called only, when TCP finishes successfully
725 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
726 */
727 void tcp_update_metrics(struct sock *sk)
728 {
729 struct tcp_sock *tp = tcp_sk(sk);
730 struct dst_entry *dst = __sk_dst_get(sk);
731
732 if (sysctl_tcp_nometrics_save)
733 return;
734
735 dst_confirm(dst);
736
737 if (dst && (dst->flags & DST_HOST)) {
738 const struct inet_connection_sock *icsk = inet_csk(sk);
739 int m;
740 unsigned long rtt;
741
742 if (icsk->icsk_backoff || !tp->srtt) {
743 /* This session failed to estimate rtt. Why?
744 * Probably, no packets returned in time.
745 * Reset our results.
746 */
747 if (!(dst_metric_locked(dst, RTAX_RTT)))
748 dst_metric_set(dst, RTAX_RTT, 0);
749 return;
750 }
751
752 rtt = dst_metric_rtt(dst, RTAX_RTT);
753 m = rtt - tp->srtt;
754
755 /* If newly calculated rtt larger than stored one,
756 * store new one. Otherwise, use EWMA. Remember,
757 * rtt overestimation is always better than underestimation.
758 */
759 if (!(dst_metric_locked(dst, RTAX_RTT))) {
760 if (m <= 0)
761 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
762 else
763 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
764 }
765
766 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
767 unsigned long var;
768 if (m < 0)
769 m = -m;
770
771 /* Scale deviation to rttvar fixed point */
772 m >>= 1;
773 if (m < tp->mdev)
774 m = tp->mdev;
775
776 var = dst_metric_rtt(dst, RTAX_RTTVAR);
777 if (m >= var)
778 var = m;
779 else
780 var -= (var - m) >> 2;
781
782 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
783 }
784
785 if (tcp_in_initial_slowstart(tp)) {
786 /* Slow start still did not finish. */
787 if (dst_metric(dst, RTAX_SSTHRESH) &&
788 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
789 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
790 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
791 if (!dst_metric_locked(dst, RTAX_CWND) &&
792 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
793 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
794 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
795 icsk->icsk_ca_state == TCP_CA_Open) {
796 /* Cong. avoidance phase, cwnd is reliable. */
797 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
798 dst_metric_set(dst, RTAX_SSTHRESH,
799 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
800 if (!dst_metric_locked(dst, RTAX_CWND))
801 dst_metric_set(dst, RTAX_CWND,
802 (dst_metric(dst, RTAX_CWND) +
803 tp->snd_cwnd) >> 1);
804 } else {
805 /* Else slow start did not finish, cwnd is non-sense,
806 ssthresh may be also invalid.
807 */
808 if (!dst_metric_locked(dst, RTAX_CWND))
809 dst_metric_set(dst, RTAX_CWND,
810 (dst_metric(dst, RTAX_CWND) +
811 tp->snd_ssthresh) >> 1);
812 if (dst_metric(dst, RTAX_SSTHRESH) &&
813 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
814 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
815 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
816 }
817
818 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
819 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
820 tp->reordering != sysctl_tcp_reordering)
821 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
822 }
823 }
824 }
825
826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
827 {
828 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
829
830 if (!cwnd)
831 cwnd = TCP_INIT_CWND;
832 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
833 }
834
835 /* Set slow start threshold and cwnd not falling to slow start */
836 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
837 {
838 struct tcp_sock *tp = tcp_sk(sk);
839 const struct inet_connection_sock *icsk = inet_csk(sk);
840
841 tp->prior_ssthresh = 0;
842 tp->bytes_acked = 0;
843 if (icsk->icsk_ca_state < TCP_CA_CWR) {
844 tp->undo_marker = 0;
845 if (set_ssthresh)
846 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
847 tp->snd_cwnd = min(tp->snd_cwnd,
848 tcp_packets_in_flight(tp) + 1U);
849 tp->snd_cwnd_cnt = 0;
850 tp->high_seq = tp->snd_nxt;
851 tp->snd_cwnd_stamp = tcp_time_stamp;
852 TCP_ECN_queue_cwr(tp);
853
854 tcp_set_ca_state(sk, TCP_CA_CWR);
855 }
856 }
857
858 /*
859 * Packet counting of FACK is based on in-order assumptions, therefore TCP
860 * disables it when reordering is detected
861 */
862 static void tcp_disable_fack(struct tcp_sock *tp)
863 {
864 /* RFC3517 uses different metric in lost marker => reset on change */
865 if (tcp_is_fack(tp))
866 tp->lost_skb_hint = NULL;
867 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
868 }
869
870 /* Take a notice that peer is sending D-SACKs */
871 static void tcp_dsack_seen(struct tcp_sock *tp)
872 {
873 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
874 }
875
876 /* Initialize metrics on socket. */
877
878 static void tcp_init_metrics(struct sock *sk)
879 {
880 struct tcp_sock *tp = tcp_sk(sk);
881 struct dst_entry *dst = __sk_dst_get(sk);
882
883 if (dst == NULL)
884 goto reset;
885
886 dst_confirm(dst);
887
888 if (dst_metric_locked(dst, RTAX_CWND))
889 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
890 if (dst_metric(dst, RTAX_SSTHRESH)) {
891 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
892 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
893 tp->snd_ssthresh = tp->snd_cwnd_clamp;
894 } else {
895 /* ssthresh may have been reduced unnecessarily during.
896 * 3WHS. Restore it back to its initial default.
897 */
898 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
899 }
900 if (dst_metric(dst, RTAX_REORDERING) &&
901 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
902 tcp_disable_fack(tp);
903 tp->reordering = dst_metric(dst, RTAX_REORDERING);
904 }
905
906 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
907 goto reset;
908
909 /* Initial rtt is determined from SYN,SYN-ACK.
910 * The segment is small and rtt may appear much
911 * less than real one. Use per-dst memory
912 * to make it more realistic.
913 *
914 * A bit of theory. RTT is time passed after "normal" sized packet
915 * is sent until it is ACKed. In normal circumstances sending small
916 * packets force peer to delay ACKs and calculation is correct too.
917 * The algorithm is adaptive and, provided we follow specs, it
918 * NEVER underestimate RTT. BUT! If peer tries to make some clever
919 * tricks sort of "quick acks" for time long enough to decrease RTT
920 * to low value, and then abruptly stops to do it and starts to delay
921 * ACKs, wait for troubles.
922 */
923 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
924 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
925 tp->rtt_seq = tp->snd_nxt;
926 }
927 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
928 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
929 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930 }
931 tcp_set_rto(sk);
932 reset:
933 if (tp->srtt == 0) {
934 /* RFC2988bis: We've failed to get a valid RTT sample from
935 * 3WHS. This is most likely due to retransmission,
936 * including spurious one. Reset the RTO back to 3secs
937 * from the more aggressive 1sec to avoid more spurious
938 * retransmission.
939 */
940 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
941 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
942 }
943 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
944 * retransmitted. In light of RFC2988bis' more aggressive 1sec
945 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
946 * retransmission has occurred.
947 */
948 if (tp->total_retrans > 1)
949 tp->snd_cwnd = 1;
950 else
951 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
952 tp->snd_cwnd_stamp = tcp_time_stamp;
953 }
954
955 static void tcp_update_reordering(struct sock *sk, const int metric,
956 const int ts)
957 {
958 struct tcp_sock *tp = tcp_sk(sk);
959 if (metric > tp->reordering) {
960 int mib_idx;
961
962 tp->reordering = min(TCP_MAX_REORDERING, metric);
963
964 /* This exciting event is worth to be remembered. 8) */
965 if (ts)
966 mib_idx = LINUX_MIB_TCPTSREORDER;
967 else if (tcp_is_reno(tp))
968 mib_idx = LINUX_MIB_TCPRENOREORDER;
969 else if (tcp_is_fack(tp))
970 mib_idx = LINUX_MIB_TCPFACKREORDER;
971 else
972 mib_idx = LINUX_MIB_TCPSACKREORDER;
973
974 NET_INC_STATS_BH(sock_net(sk), mib_idx);
975 #if FASTRETRANS_DEBUG > 1
976 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
977 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
978 tp->reordering,
979 tp->fackets_out,
980 tp->sacked_out,
981 tp->undo_marker ? tp->undo_retrans : 0);
982 #endif
983 tcp_disable_fack(tp);
984 }
985 }
986
987 /* This must be called before lost_out is incremented */
988 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
989 {
990 if ((tp->retransmit_skb_hint == NULL) ||
991 before(TCP_SKB_CB(skb)->seq,
992 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
993 tp->retransmit_skb_hint = skb;
994
995 if (!tp->lost_out ||
996 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
997 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
998 }
999
1000 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1001 {
1002 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1003 tcp_verify_retransmit_hint(tp, skb);
1004
1005 tp->lost_out += tcp_skb_pcount(skb);
1006 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1007 }
1008 }
1009
1010 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1011 struct sk_buff *skb)
1012 {
1013 tcp_verify_retransmit_hint(tp, skb);
1014
1015 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1016 tp->lost_out += tcp_skb_pcount(skb);
1017 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1018 }
1019 }
1020
1021 /* This procedure tags the retransmission queue when SACKs arrive.
1022 *
1023 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1024 * Packets in queue with these bits set are counted in variables
1025 * sacked_out, retrans_out and lost_out, correspondingly.
1026 *
1027 * Valid combinations are:
1028 * Tag InFlight Description
1029 * 0 1 - orig segment is in flight.
1030 * S 0 - nothing flies, orig reached receiver.
1031 * L 0 - nothing flies, orig lost by net.
1032 * R 2 - both orig and retransmit are in flight.
1033 * L|R 1 - orig is lost, retransmit is in flight.
1034 * S|R 1 - orig reached receiver, retrans is still in flight.
1035 * (L|S|R is logically valid, it could occur when L|R is sacked,
1036 * but it is equivalent to plain S and code short-curcuits it to S.
1037 * L|S is logically invalid, it would mean -1 packet in flight 8))
1038 *
1039 * These 6 states form finite state machine, controlled by the following events:
1040 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1041 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1042 * 3. Loss detection event of two flavors:
1043 * A. Scoreboard estimator decided the packet is lost.
1044 * A'. Reno "three dupacks" marks head of queue lost.
1045 * A''. Its FACK modification, head until snd.fack is lost.
1046 * B. SACK arrives sacking SND.NXT at the moment, when the
1047 * segment was retransmitted.
1048 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1049 *
1050 * It is pleasant to note, that state diagram turns out to be commutative,
1051 * so that we are allowed not to be bothered by order of our actions,
1052 * when multiple events arrive simultaneously. (see the function below).
1053 *
1054 * Reordering detection.
1055 * --------------------
1056 * Reordering metric is maximal distance, which a packet can be displaced
1057 * in packet stream. With SACKs we can estimate it:
1058 *
1059 * 1. SACK fills old hole and the corresponding segment was not
1060 * ever retransmitted -> reordering. Alas, we cannot use it
1061 * when segment was retransmitted.
1062 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1063 * for retransmitted and already SACKed segment -> reordering..
1064 * Both of these heuristics are not used in Loss state, when we cannot
1065 * account for retransmits accurately.
1066 *
1067 * SACK block validation.
1068 * ----------------------
1069 *
1070 * SACK block range validation checks that the received SACK block fits to
1071 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1072 * Note that SND.UNA is not included to the range though being valid because
1073 * it means that the receiver is rather inconsistent with itself reporting
1074 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1075 * perfectly valid, however, in light of RFC2018 which explicitly states
1076 * that "SACK block MUST reflect the newest segment. Even if the newest
1077 * segment is going to be discarded ...", not that it looks very clever
1078 * in case of head skb. Due to potentional receiver driven attacks, we
1079 * choose to avoid immediate execution of a walk in write queue due to
1080 * reneging and defer head skb's loss recovery to standard loss recovery
1081 * procedure that will eventually trigger (nothing forbids us doing this).
1082 *
1083 * Implements also blockage to start_seq wrap-around. Problem lies in the
1084 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1085 * there's no guarantee that it will be before snd_nxt (n). The problem
1086 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1087 * wrap (s_w):
1088 *
1089 * <- outs wnd -> <- wrapzone ->
1090 * u e n u_w e_w s n_w
1091 * | | | | | | |
1092 * |<------------+------+----- TCP seqno space --------------+---------->|
1093 * ...-- <2^31 ->| |<--------...
1094 * ...---- >2^31 ------>| |<--------...
1095 *
1096 * Current code wouldn't be vulnerable but it's better still to discard such
1097 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1098 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1099 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1100 * equal to the ideal case (infinite seqno space without wrap caused issues).
1101 *
1102 * With D-SACK the lower bound is extended to cover sequence space below
1103 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1104 * again, D-SACK block must not to go across snd_una (for the same reason as
1105 * for the normal SACK blocks, explained above). But there all simplicity
1106 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1107 * fully below undo_marker they do not affect behavior in anyway and can
1108 * therefore be safely ignored. In rare cases (which are more or less
1109 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1110 * fragmentation and packet reordering past skb's retransmission. To consider
1111 * them correctly, the acceptable range must be extended even more though
1112 * the exact amount is rather hard to quantify. However, tp->max_window can
1113 * be used as an exaggerated estimate.
1114 */
1115 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1116 u32 start_seq, u32 end_seq)
1117 {
1118 /* Too far in future, or reversed (interpretation is ambiguous) */
1119 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1120 return 0;
1121
1122 /* Nasty start_seq wrap-around check (see comments above) */
1123 if (!before(start_seq, tp->snd_nxt))
1124 return 0;
1125
1126 /* In outstanding window? ...This is valid exit for D-SACKs too.
1127 * start_seq == snd_una is non-sensical (see comments above)
1128 */
1129 if (after(start_seq, tp->snd_una))
1130 return 1;
1131
1132 if (!is_dsack || !tp->undo_marker)
1133 return 0;
1134
1135 /* ...Then it's D-SACK, and must reside below snd_una completely */
1136 if (after(end_seq, tp->snd_una))
1137 return 0;
1138
1139 if (!before(start_seq, tp->undo_marker))
1140 return 1;
1141
1142 /* Too old */
1143 if (!after(end_seq, tp->undo_marker))
1144 return 0;
1145
1146 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1147 * start_seq < undo_marker and end_seq >= undo_marker.
1148 */
1149 return !before(start_seq, end_seq - tp->max_window);
1150 }
1151
1152 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1153 * Event "B". Later note: FACK people cheated me again 8), we have to account
1154 * for reordering! Ugly, but should help.
1155 *
1156 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1157 * less than what is now known to be received by the other end (derived from
1158 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1159 * retransmitted skbs to avoid some costly processing per ACKs.
1160 */
1161 static void tcp_mark_lost_retrans(struct sock *sk)
1162 {
1163 const struct inet_connection_sock *icsk = inet_csk(sk);
1164 struct tcp_sock *tp = tcp_sk(sk);
1165 struct sk_buff *skb;
1166 int cnt = 0;
1167 u32 new_low_seq = tp->snd_nxt;
1168 u32 received_upto = tcp_highest_sack_seq(tp);
1169
1170 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1171 !after(received_upto, tp->lost_retrans_low) ||
1172 icsk->icsk_ca_state != TCP_CA_Recovery)
1173 return;
1174
1175 tcp_for_write_queue(skb, sk) {
1176 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1177
1178 if (skb == tcp_send_head(sk))
1179 break;
1180 if (cnt == tp->retrans_out)
1181 break;
1182 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1183 continue;
1184
1185 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1186 continue;
1187
1188 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1189 * constraint here (see above) but figuring out that at
1190 * least tp->reordering SACK blocks reside between ack_seq
1191 * and received_upto is not easy task to do cheaply with
1192 * the available datastructures.
1193 *
1194 * Whether FACK should check here for tp->reordering segs
1195 * in-between one could argue for either way (it would be
1196 * rather simple to implement as we could count fack_count
1197 * during the walk and do tp->fackets_out - fack_count).
1198 */
1199 if (after(received_upto, ack_seq)) {
1200 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1201 tp->retrans_out -= tcp_skb_pcount(skb);
1202
1203 tcp_skb_mark_lost_uncond_verify(tp, skb);
1204 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1205 } else {
1206 if (before(ack_seq, new_low_seq))
1207 new_low_seq = ack_seq;
1208 cnt += tcp_skb_pcount(skb);
1209 }
1210 }
1211
1212 if (tp->retrans_out)
1213 tp->lost_retrans_low = new_low_seq;
1214 }
1215
1216 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1217 struct tcp_sack_block_wire *sp, int num_sacks,
1218 u32 prior_snd_una)
1219 {
1220 struct tcp_sock *tp = tcp_sk(sk);
1221 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1222 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1223 int dup_sack = 0;
1224
1225 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1226 dup_sack = 1;
1227 tcp_dsack_seen(tp);
1228 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1229 } else if (num_sacks > 1) {
1230 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1231 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1232
1233 if (!after(end_seq_0, end_seq_1) &&
1234 !before(start_seq_0, start_seq_1)) {
1235 dup_sack = 1;
1236 tcp_dsack_seen(tp);
1237 NET_INC_STATS_BH(sock_net(sk),
1238 LINUX_MIB_TCPDSACKOFORECV);
1239 }
1240 }
1241
1242 /* D-SACK for already forgotten data... Do dumb counting. */
1243 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1244 !after(end_seq_0, prior_snd_una) &&
1245 after(end_seq_0, tp->undo_marker))
1246 tp->undo_retrans--;
1247
1248 return dup_sack;
1249 }
1250
1251 struct tcp_sacktag_state {
1252 int reord;
1253 int fack_count;
1254 int flag;
1255 };
1256
1257 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1258 * the incoming SACK may not exactly match but we can find smaller MSS
1259 * aligned portion of it that matches. Therefore we might need to fragment
1260 * which may fail and creates some hassle (caller must handle error case
1261 * returns).
1262 *
1263 * FIXME: this could be merged to shift decision code
1264 */
1265 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1266 u32 start_seq, u32 end_seq)
1267 {
1268 int in_sack, err;
1269 unsigned int pkt_len;
1270 unsigned int mss;
1271
1272 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1273 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1274
1275 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1276 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1277 mss = tcp_skb_mss(skb);
1278 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1279
1280 if (!in_sack) {
1281 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1282 if (pkt_len < mss)
1283 pkt_len = mss;
1284 } else {
1285 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1286 if (pkt_len < mss)
1287 return -EINVAL;
1288 }
1289
1290 /* Round if necessary so that SACKs cover only full MSSes
1291 * and/or the remaining small portion (if present)
1292 */
1293 if (pkt_len > mss) {
1294 unsigned int new_len = (pkt_len / mss) * mss;
1295 if (!in_sack && new_len < pkt_len) {
1296 new_len += mss;
1297 if (new_len > skb->len)
1298 return 0;
1299 }
1300 pkt_len = new_len;
1301 }
1302 err = tcp_fragment(sk, skb, pkt_len, mss);
1303 if (err < 0)
1304 return err;
1305 }
1306
1307 return in_sack;
1308 }
1309
1310 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1311 static u8 tcp_sacktag_one(struct sock *sk,
1312 struct tcp_sacktag_state *state, u8 sacked,
1313 u32 start_seq, u32 end_seq,
1314 int dup_sack, int pcount)
1315 {
1316 struct tcp_sock *tp = tcp_sk(sk);
1317 int fack_count = state->fack_count;
1318
1319 /* Account D-SACK for retransmitted packet. */
1320 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1321 if (tp->undo_marker && tp->undo_retrans &&
1322 after(end_seq, tp->undo_marker))
1323 tp->undo_retrans--;
1324 if (sacked & TCPCB_SACKED_ACKED)
1325 state->reord = min(fack_count, state->reord);
1326 }
1327
1328 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1329 if (!after(end_seq, tp->snd_una))
1330 return sacked;
1331
1332 if (!(sacked & TCPCB_SACKED_ACKED)) {
1333 if (sacked & TCPCB_SACKED_RETRANS) {
1334 /* If the segment is not tagged as lost,
1335 * we do not clear RETRANS, believing
1336 * that retransmission is still in flight.
1337 */
1338 if (sacked & TCPCB_LOST) {
1339 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1340 tp->lost_out -= pcount;
1341 tp->retrans_out -= pcount;
1342 }
1343 } else {
1344 if (!(sacked & TCPCB_RETRANS)) {
1345 /* New sack for not retransmitted frame,
1346 * which was in hole. It is reordering.
1347 */
1348 if (before(start_seq,
1349 tcp_highest_sack_seq(tp)))
1350 state->reord = min(fack_count,
1351 state->reord);
1352
1353 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1354 if (!after(end_seq, tp->frto_highmark))
1355 state->flag |= FLAG_ONLY_ORIG_SACKED;
1356 }
1357
1358 if (sacked & TCPCB_LOST) {
1359 sacked &= ~TCPCB_LOST;
1360 tp->lost_out -= pcount;
1361 }
1362 }
1363
1364 sacked |= TCPCB_SACKED_ACKED;
1365 state->flag |= FLAG_DATA_SACKED;
1366 tp->sacked_out += pcount;
1367
1368 fack_count += pcount;
1369
1370 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1371 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1372 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1373 tp->lost_cnt_hint += pcount;
1374
1375 if (fack_count > tp->fackets_out)
1376 tp->fackets_out = fack_count;
1377 }
1378
1379 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1380 * frames and clear it. undo_retrans is decreased above, L|R frames
1381 * are accounted above as well.
1382 */
1383 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1384 sacked &= ~TCPCB_SACKED_RETRANS;
1385 tp->retrans_out -= pcount;
1386 }
1387
1388 return sacked;
1389 }
1390
1391 /* Shift newly-SACKed bytes from this skb to the immediately previous
1392 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1393 */
1394 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1395 struct tcp_sacktag_state *state,
1396 unsigned int pcount, int shifted, int mss,
1397 int dup_sack)
1398 {
1399 struct tcp_sock *tp = tcp_sk(sk);
1400 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1401 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1402 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1403
1404 BUG_ON(!pcount);
1405
1406 /* Adjust counters and hints for the newly sacked sequence
1407 * range but discard the return value since prev is already
1408 * marked. We must tag the range first because the seq
1409 * advancement below implicitly advances
1410 * tcp_highest_sack_seq() when skb is highest_sack.
1411 */
1412 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1413 start_seq, end_seq, dup_sack, pcount);
1414
1415 if (skb == tp->lost_skb_hint)
1416 tp->lost_cnt_hint += pcount;
1417
1418 TCP_SKB_CB(prev)->end_seq += shifted;
1419 TCP_SKB_CB(skb)->seq += shifted;
1420
1421 skb_shinfo(prev)->gso_segs += pcount;
1422 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1423 skb_shinfo(skb)->gso_segs -= pcount;
1424
1425 /* When we're adding to gso_segs == 1, gso_size will be zero,
1426 * in theory this shouldn't be necessary but as long as DSACK
1427 * code can come after this skb later on it's better to keep
1428 * setting gso_size to something.
1429 */
1430 if (!skb_shinfo(prev)->gso_size) {
1431 skb_shinfo(prev)->gso_size = mss;
1432 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1433 }
1434
1435 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1436 if (skb_shinfo(skb)->gso_segs <= 1) {
1437 skb_shinfo(skb)->gso_size = 0;
1438 skb_shinfo(skb)->gso_type = 0;
1439 }
1440
1441 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1442 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1443
1444 if (skb->len > 0) {
1445 BUG_ON(!tcp_skb_pcount(skb));
1446 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1447 return 0;
1448 }
1449
1450 /* Whole SKB was eaten :-) */
1451
1452 if (skb == tp->retransmit_skb_hint)
1453 tp->retransmit_skb_hint = prev;
1454 if (skb == tp->scoreboard_skb_hint)
1455 tp->scoreboard_skb_hint = prev;
1456 if (skb == tp->lost_skb_hint) {
1457 tp->lost_skb_hint = prev;
1458 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1459 }
1460
1461 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1462 if (skb == tcp_highest_sack(sk))
1463 tcp_advance_highest_sack(sk, skb);
1464
1465 tcp_unlink_write_queue(skb, sk);
1466 sk_wmem_free_skb(sk, skb);
1467
1468 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1469
1470 return 1;
1471 }
1472
1473 /* I wish gso_size would have a bit more sane initialization than
1474 * something-or-zero which complicates things
1475 */
1476 static int tcp_skb_seglen(const struct sk_buff *skb)
1477 {
1478 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1479 }
1480
1481 /* Shifting pages past head area doesn't work */
1482 static int skb_can_shift(const struct sk_buff *skb)
1483 {
1484 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1485 }
1486
1487 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1488 * skb.
1489 */
1490 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1491 struct tcp_sacktag_state *state,
1492 u32 start_seq, u32 end_seq,
1493 int dup_sack)
1494 {
1495 struct tcp_sock *tp = tcp_sk(sk);
1496 struct sk_buff *prev;
1497 int mss;
1498 int pcount = 0;
1499 int len;
1500 int in_sack;
1501
1502 if (!sk_can_gso(sk))
1503 goto fallback;
1504
1505 /* Normally R but no L won't result in plain S */
1506 if (!dup_sack &&
1507 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1508 goto fallback;
1509 if (!skb_can_shift(skb))
1510 goto fallback;
1511 /* This frame is about to be dropped (was ACKed). */
1512 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1513 goto fallback;
1514
1515 /* Can only happen with delayed DSACK + discard craziness */
1516 if (unlikely(skb == tcp_write_queue_head(sk)))
1517 goto fallback;
1518 prev = tcp_write_queue_prev(sk, skb);
1519
1520 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1521 goto fallback;
1522
1523 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1524 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1525
1526 if (in_sack) {
1527 len = skb->len;
1528 pcount = tcp_skb_pcount(skb);
1529 mss = tcp_skb_seglen(skb);
1530
1531 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1532 * drop this restriction as unnecessary
1533 */
1534 if (mss != tcp_skb_seglen(prev))
1535 goto fallback;
1536 } else {
1537 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1538 goto noop;
1539 /* CHECKME: This is non-MSS split case only?, this will
1540 * cause skipped skbs due to advancing loop btw, original
1541 * has that feature too
1542 */
1543 if (tcp_skb_pcount(skb) <= 1)
1544 goto noop;
1545
1546 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1547 if (!in_sack) {
1548 /* TODO: head merge to next could be attempted here
1549 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1550 * though it might not be worth of the additional hassle
1551 *
1552 * ...we can probably just fallback to what was done
1553 * previously. We could try merging non-SACKed ones
1554 * as well but it probably isn't going to buy off
1555 * because later SACKs might again split them, and
1556 * it would make skb timestamp tracking considerably
1557 * harder problem.
1558 */
1559 goto fallback;
1560 }
1561
1562 len = end_seq - TCP_SKB_CB(skb)->seq;
1563 BUG_ON(len < 0);
1564 BUG_ON(len > skb->len);
1565
1566 /* MSS boundaries should be honoured or else pcount will
1567 * severely break even though it makes things bit trickier.
1568 * Optimize common case to avoid most of the divides
1569 */
1570 mss = tcp_skb_mss(skb);
1571
1572 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1573 * drop this restriction as unnecessary
1574 */
1575 if (mss != tcp_skb_seglen(prev))
1576 goto fallback;
1577
1578 if (len == mss) {
1579 pcount = 1;
1580 } else if (len < mss) {
1581 goto noop;
1582 } else {
1583 pcount = len / mss;
1584 len = pcount * mss;
1585 }
1586 }
1587
1588 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1589 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1590 goto fallback;
1591
1592 if (!skb_shift(prev, skb, len))
1593 goto fallback;
1594 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1595 goto out;
1596
1597 /* Hole filled allows collapsing with the next as well, this is very
1598 * useful when hole on every nth skb pattern happens
1599 */
1600 if (prev == tcp_write_queue_tail(sk))
1601 goto out;
1602 skb = tcp_write_queue_next(sk, prev);
1603
1604 if (!skb_can_shift(skb) ||
1605 (skb == tcp_send_head(sk)) ||
1606 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1607 (mss != tcp_skb_seglen(skb)))
1608 goto out;
1609
1610 len = skb->len;
1611 if (skb_shift(prev, skb, len)) {
1612 pcount += tcp_skb_pcount(skb);
1613 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1614 }
1615
1616 out:
1617 state->fack_count += pcount;
1618 return prev;
1619
1620 noop:
1621 return skb;
1622
1623 fallback:
1624 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1625 return NULL;
1626 }
1627
1628 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1629 struct tcp_sack_block *next_dup,
1630 struct tcp_sacktag_state *state,
1631 u32 start_seq, u32 end_seq,
1632 int dup_sack_in)
1633 {
1634 struct tcp_sock *tp = tcp_sk(sk);
1635 struct sk_buff *tmp;
1636
1637 tcp_for_write_queue_from(skb, sk) {
1638 int in_sack = 0;
1639 int dup_sack = dup_sack_in;
1640
1641 if (skb == tcp_send_head(sk))
1642 break;
1643
1644 /* queue is in-order => we can short-circuit the walk early */
1645 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1646 break;
1647
1648 if ((next_dup != NULL) &&
1649 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1650 in_sack = tcp_match_skb_to_sack(sk, skb,
1651 next_dup->start_seq,
1652 next_dup->end_seq);
1653 if (in_sack > 0)
1654 dup_sack = 1;
1655 }
1656
1657 /* skb reference here is a bit tricky to get right, since
1658 * shifting can eat and free both this skb and the next,
1659 * so not even _safe variant of the loop is enough.
1660 */
1661 if (in_sack <= 0) {
1662 tmp = tcp_shift_skb_data(sk, skb, state,
1663 start_seq, end_seq, dup_sack);
1664 if (tmp != NULL) {
1665 if (tmp != skb) {
1666 skb = tmp;
1667 continue;
1668 }
1669
1670 in_sack = 0;
1671 } else {
1672 in_sack = tcp_match_skb_to_sack(sk, skb,
1673 start_seq,
1674 end_seq);
1675 }
1676 }
1677
1678 if (unlikely(in_sack < 0))
1679 break;
1680
1681 if (in_sack) {
1682 TCP_SKB_CB(skb)->sacked =
1683 tcp_sacktag_one(sk,
1684 state,
1685 TCP_SKB_CB(skb)->sacked,
1686 TCP_SKB_CB(skb)->seq,
1687 TCP_SKB_CB(skb)->end_seq,
1688 dup_sack,
1689 tcp_skb_pcount(skb));
1690
1691 if (!before(TCP_SKB_CB(skb)->seq,
1692 tcp_highest_sack_seq(tp)))
1693 tcp_advance_highest_sack(sk, skb);
1694 }
1695
1696 state->fack_count += tcp_skb_pcount(skb);
1697 }
1698 return skb;
1699 }
1700
1701 /* Avoid all extra work that is being done by sacktag while walking in
1702 * a normal way
1703 */
1704 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1705 struct tcp_sacktag_state *state,
1706 u32 skip_to_seq)
1707 {
1708 tcp_for_write_queue_from(skb, sk) {
1709 if (skb == tcp_send_head(sk))
1710 break;
1711
1712 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1713 break;
1714
1715 state->fack_count += tcp_skb_pcount(skb);
1716 }
1717 return skb;
1718 }
1719
1720 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1721 struct sock *sk,
1722 struct tcp_sack_block *next_dup,
1723 struct tcp_sacktag_state *state,
1724 u32 skip_to_seq)
1725 {
1726 if (next_dup == NULL)
1727 return skb;
1728
1729 if (before(next_dup->start_seq, skip_to_seq)) {
1730 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1731 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1732 next_dup->start_seq, next_dup->end_seq,
1733 1);
1734 }
1735
1736 return skb;
1737 }
1738
1739 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1740 {
1741 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1742 }
1743
1744 static int
1745 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1746 u32 prior_snd_una)
1747 {
1748 const struct inet_connection_sock *icsk = inet_csk(sk);
1749 struct tcp_sock *tp = tcp_sk(sk);
1750 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1751 TCP_SKB_CB(ack_skb)->sacked);
1752 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1753 struct tcp_sack_block sp[TCP_NUM_SACKS];
1754 struct tcp_sack_block *cache;
1755 struct tcp_sacktag_state state;
1756 struct sk_buff *skb;
1757 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1758 int used_sacks;
1759 int found_dup_sack = 0;
1760 int i, j;
1761 int first_sack_index;
1762
1763 state.flag = 0;
1764 state.reord = tp->packets_out;
1765
1766 if (!tp->sacked_out) {
1767 if (WARN_ON(tp->fackets_out))
1768 tp->fackets_out = 0;
1769 tcp_highest_sack_reset(sk);
1770 }
1771
1772 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1773 num_sacks, prior_snd_una);
1774 if (found_dup_sack)
1775 state.flag |= FLAG_DSACKING_ACK;
1776
1777 /* Eliminate too old ACKs, but take into
1778 * account more or less fresh ones, they can
1779 * contain valid SACK info.
1780 */
1781 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1782 return 0;
1783
1784 if (!tp->packets_out)
1785 goto out;
1786
1787 used_sacks = 0;
1788 first_sack_index = 0;
1789 for (i = 0; i < num_sacks; i++) {
1790 int dup_sack = !i && found_dup_sack;
1791
1792 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1793 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1794
1795 if (!tcp_is_sackblock_valid(tp, dup_sack,
1796 sp[used_sacks].start_seq,
1797 sp[used_sacks].end_seq)) {
1798 int mib_idx;
1799
1800 if (dup_sack) {
1801 if (!tp->undo_marker)
1802 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1803 else
1804 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1805 } else {
1806 /* Don't count olds caused by ACK reordering */
1807 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1808 !after(sp[used_sacks].end_seq, tp->snd_una))
1809 continue;
1810 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1811 }
1812
1813 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1814 if (i == 0)
1815 first_sack_index = -1;
1816 continue;
1817 }
1818
1819 /* Ignore very old stuff early */
1820 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1821 continue;
1822
1823 used_sacks++;
1824 }
1825
1826 /* order SACK blocks to allow in order walk of the retrans queue */
1827 for (i = used_sacks - 1; i > 0; i--) {
1828 for (j = 0; j < i; j++) {
1829 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1830 swap(sp[j], sp[j + 1]);
1831
1832 /* Track where the first SACK block goes to */
1833 if (j == first_sack_index)
1834 first_sack_index = j + 1;
1835 }
1836 }
1837 }
1838
1839 skb = tcp_write_queue_head(sk);
1840 state.fack_count = 0;
1841 i = 0;
1842
1843 if (!tp->sacked_out) {
1844 /* It's already past, so skip checking against it */
1845 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1846 } else {
1847 cache = tp->recv_sack_cache;
1848 /* Skip empty blocks in at head of the cache */
1849 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1850 !cache->end_seq)
1851 cache++;
1852 }
1853
1854 while (i < used_sacks) {
1855 u32 start_seq = sp[i].start_seq;
1856 u32 end_seq = sp[i].end_seq;
1857 int dup_sack = (found_dup_sack && (i == first_sack_index));
1858 struct tcp_sack_block *next_dup = NULL;
1859
1860 if (found_dup_sack && ((i + 1) == first_sack_index))
1861 next_dup = &sp[i + 1];
1862
1863 /* Skip too early cached blocks */
1864 while (tcp_sack_cache_ok(tp, cache) &&
1865 !before(start_seq, cache->end_seq))
1866 cache++;
1867
1868 /* Can skip some work by looking recv_sack_cache? */
1869 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1870 after(end_seq, cache->start_seq)) {
1871
1872 /* Head todo? */
1873 if (before(start_seq, cache->start_seq)) {
1874 skb = tcp_sacktag_skip(skb, sk, &state,
1875 start_seq);
1876 skb = tcp_sacktag_walk(skb, sk, next_dup,
1877 &state,
1878 start_seq,
1879 cache->start_seq,
1880 dup_sack);
1881 }
1882
1883 /* Rest of the block already fully processed? */
1884 if (!after(end_seq, cache->end_seq))
1885 goto advance_sp;
1886
1887 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1888 &state,
1889 cache->end_seq);
1890
1891 /* ...tail remains todo... */
1892 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1893 /* ...but better entrypoint exists! */
1894 skb = tcp_highest_sack(sk);
1895 if (skb == NULL)
1896 break;
1897 state.fack_count = tp->fackets_out;
1898 cache++;
1899 goto walk;
1900 }
1901
1902 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1903 /* Check overlap against next cached too (past this one already) */
1904 cache++;
1905 continue;
1906 }
1907
1908 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1909 skb = tcp_highest_sack(sk);
1910 if (skb == NULL)
1911 break;
1912 state.fack_count = tp->fackets_out;
1913 }
1914 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1915
1916 walk:
1917 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1918 start_seq, end_seq, dup_sack);
1919
1920 advance_sp:
1921 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1922 * due to in-order walk
1923 */
1924 if (after(end_seq, tp->frto_highmark))
1925 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1926
1927 i++;
1928 }
1929
1930 /* Clear the head of the cache sack blocks so we can skip it next time */
1931 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1932 tp->recv_sack_cache[i].start_seq = 0;
1933 tp->recv_sack_cache[i].end_seq = 0;
1934 }
1935 for (j = 0; j < used_sacks; j++)
1936 tp->recv_sack_cache[i++] = sp[j];
1937
1938 tcp_mark_lost_retrans(sk);
1939
1940 tcp_verify_left_out(tp);
1941
1942 if ((state.reord < tp->fackets_out) &&
1943 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1944 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1945 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1946
1947 out:
1948
1949 #if FASTRETRANS_DEBUG > 0
1950 WARN_ON((int)tp->sacked_out < 0);
1951 WARN_ON((int)tp->lost_out < 0);
1952 WARN_ON((int)tp->retrans_out < 0);
1953 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1954 #endif
1955 return state.flag;
1956 }
1957
1958 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1959 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1960 */
1961 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1962 {
1963 u32 holes;
1964
1965 holes = max(tp->lost_out, 1U);
1966 holes = min(holes, tp->packets_out);
1967
1968 if ((tp->sacked_out + holes) > tp->packets_out) {
1969 tp->sacked_out = tp->packets_out - holes;
1970 return 1;
1971 }
1972 return 0;
1973 }
1974
1975 /* If we receive more dupacks than we expected counting segments
1976 * in assumption of absent reordering, interpret this as reordering.
1977 * The only another reason could be bug in receiver TCP.
1978 */
1979 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1980 {
1981 struct tcp_sock *tp = tcp_sk(sk);
1982 if (tcp_limit_reno_sacked(tp))
1983 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1984 }
1985
1986 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1987
1988 static void tcp_add_reno_sack(struct sock *sk)
1989 {
1990 struct tcp_sock *tp = tcp_sk(sk);
1991 tp->sacked_out++;
1992 tcp_check_reno_reordering(sk, 0);
1993 tcp_verify_left_out(tp);
1994 }
1995
1996 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1997
1998 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1999 {
2000 struct tcp_sock *tp = tcp_sk(sk);
2001
2002 if (acked > 0) {
2003 /* One ACK acked hole. The rest eat duplicate ACKs. */
2004 if (acked - 1 >= tp->sacked_out)
2005 tp->sacked_out = 0;
2006 else
2007 tp->sacked_out -= acked - 1;
2008 }
2009 tcp_check_reno_reordering(sk, acked);
2010 tcp_verify_left_out(tp);
2011 }
2012
2013 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2014 {
2015 tp->sacked_out = 0;
2016 }
2017
2018 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2019 {
2020 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2021 }
2022
2023 /* F-RTO can only be used if TCP has never retransmitted anything other than
2024 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2025 */
2026 int tcp_use_frto(struct sock *sk)
2027 {
2028 const struct tcp_sock *tp = tcp_sk(sk);
2029 const struct inet_connection_sock *icsk = inet_csk(sk);
2030 struct sk_buff *skb;
2031
2032 if (!sysctl_tcp_frto)
2033 return 0;
2034
2035 /* MTU probe and F-RTO won't really play nicely along currently */
2036 if (icsk->icsk_mtup.probe_size)
2037 return 0;
2038
2039 if (tcp_is_sackfrto(tp))
2040 return 1;
2041
2042 /* Avoid expensive walking of rexmit queue if possible */
2043 if (tp->retrans_out > 1)
2044 return 0;
2045
2046 skb = tcp_write_queue_head(sk);
2047 if (tcp_skb_is_last(sk, skb))
2048 return 1;
2049 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2050 tcp_for_write_queue_from(skb, sk) {
2051 if (skb == tcp_send_head(sk))
2052 break;
2053 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2054 return 0;
2055 /* Short-circuit when first non-SACKed skb has been checked */
2056 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2057 break;
2058 }
2059 return 1;
2060 }
2061
2062 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2063 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2064 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2065 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2066 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2067 * bits are handled if the Loss state is really to be entered (in
2068 * tcp_enter_frto_loss).
2069 *
2070 * Do like tcp_enter_loss() would; when RTO expires the second time it
2071 * does:
2072 * "Reduce ssthresh if it has not yet been made inside this window."
2073 */
2074 void tcp_enter_frto(struct sock *sk)
2075 {
2076 const struct inet_connection_sock *icsk = inet_csk(sk);
2077 struct tcp_sock *tp = tcp_sk(sk);
2078 struct sk_buff *skb;
2079
2080 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2081 tp->snd_una == tp->high_seq ||
2082 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2083 !icsk->icsk_retransmits)) {
2084 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2085 /* Our state is too optimistic in ssthresh() call because cwnd
2086 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2087 * recovery has not yet completed. Pattern would be this: RTO,
2088 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2089 * up here twice).
2090 * RFC4138 should be more specific on what to do, even though
2091 * RTO is quite unlikely to occur after the first Cumulative ACK
2092 * due to back-off and complexity of triggering events ...
2093 */
2094 if (tp->frto_counter) {
2095 u32 stored_cwnd;
2096 stored_cwnd = tp->snd_cwnd;
2097 tp->snd_cwnd = 2;
2098 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2099 tp->snd_cwnd = stored_cwnd;
2100 } else {
2101 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2102 }
2103 /* ... in theory, cong.control module could do "any tricks" in
2104 * ssthresh(), which means that ca_state, lost bits and lost_out
2105 * counter would have to be faked before the call occurs. We
2106 * consider that too expensive, unlikely and hacky, so modules
2107 * using these in ssthresh() must deal these incompatibility
2108 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2109 */
2110 tcp_ca_event(sk, CA_EVENT_FRTO);
2111 }
2112
2113 tp->undo_marker = tp->snd_una;
2114 tp->undo_retrans = 0;
2115
2116 skb = tcp_write_queue_head(sk);
2117 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2118 tp->undo_marker = 0;
2119 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2120 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2121 tp->retrans_out -= tcp_skb_pcount(skb);
2122 }
2123 tcp_verify_left_out(tp);
2124
2125 /* Too bad if TCP was application limited */
2126 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2127
2128 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2129 * The last condition is necessary at least in tp->frto_counter case.
2130 */
2131 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2132 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2133 after(tp->high_seq, tp->snd_una)) {
2134 tp->frto_highmark = tp->high_seq;
2135 } else {
2136 tp->frto_highmark = tp->snd_nxt;
2137 }
2138 tcp_set_ca_state(sk, TCP_CA_Disorder);
2139 tp->high_seq = tp->snd_nxt;
2140 tp->frto_counter = 1;
2141 }
2142
2143 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2144 * which indicates that we should follow the traditional RTO recovery,
2145 * i.e. mark everything lost and do go-back-N retransmission.
2146 */
2147 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2148 {
2149 struct tcp_sock *tp = tcp_sk(sk);
2150 struct sk_buff *skb;
2151
2152 tp->lost_out = 0;
2153 tp->retrans_out = 0;
2154 if (tcp_is_reno(tp))
2155 tcp_reset_reno_sack(tp);
2156
2157 tcp_for_write_queue(skb, sk) {
2158 if (skb == tcp_send_head(sk))
2159 break;
2160
2161 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2162 /*
2163 * Count the retransmission made on RTO correctly (only when
2164 * waiting for the first ACK and did not get it)...
2165 */
2166 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2167 /* For some reason this R-bit might get cleared? */
2168 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2169 tp->retrans_out += tcp_skb_pcount(skb);
2170 /* ...enter this if branch just for the first segment */
2171 flag |= FLAG_DATA_ACKED;
2172 } else {
2173 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2174 tp->undo_marker = 0;
2175 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2176 }
2177
2178 /* Marking forward transmissions that were made after RTO lost
2179 * can cause unnecessary retransmissions in some scenarios,
2180 * SACK blocks will mitigate that in some but not in all cases.
2181 * We used to not mark them but it was causing break-ups with
2182 * receivers that do only in-order receival.
2183 *
2184 * TODO: we could detect presence of such receiver and select
2185 * different behavior per flow.
2186 */
2187 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2188 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2189 tp->lost_out += tcp_skb_pcount(skb);
2190 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2191 }
2192 }
2193 tcp_verify_left_out(tp);
2194
2195 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2196 tp->snd_cwnd_cnt = 0;
2197 tp->snd_cwnd_stamp = tcp_time_stamp;
2198 tp->frto_counter = 0;
2199 tp->bytes_acked = 0;
2200
2201 tp->reordering = min_t(unsigned int, tp->reordering,
2202 sysctl_tcp_reordering);
2203 tcp_set_ca_state(sk, TCP_CA_Loss);
2204 tp->high_seq = tp->snd_nxt;
2205 TCP_ECN_queue_cwr(tp);
2206
2207 tcp_clear_all_retrans_hints(tp);
2208 }
2209
2210 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2211 {
2212 tp->retrans_out = 0;
2213 tp->lost_out = 0;
2214
2215 tp->undo_marker = 0;
2216 tp->undo_retrans = 0;
2217 }
2218
2219 void tcp_clear_retrans(struct tcp_sock *tp)
2220 {
2221 tcp_clear_retrans_partial(tp);
2222
2223 tp->fackets_out = 0;
2224 tp->sacked_out = 0;
2225 }
2226
2227 /* Enter Loss state. If "how" is not zero, forget all SACK information
2228 * and reset tags completely, otherwise preserve SACKs. If receiver
2229 * dropped its ofo queue, we will know this due to reneging detection.
2230 */
2231 void tcp_enter_loss(struct sock *sk, int how)
2232 {
2233 const struct inet_connection_sock *icsk = inet_csk(sk);
2234 struct tcp_sock *tp = tcp_sk(sk);
2235 struct sk_buff *skb;
2236
2237 /* Reduce ssthresh if it has not yet been made inside this window. */
2238 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2239 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2240 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2241 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2242 tcp_ca_event(sk, CA_EVENT_LOSS);
2243 }
2244 tp->snd_cwnd = 1;
2245 tp->snd_cwnd_cnt = 0;
2246 tp->snd_cwnd_stamp = tcp_time_stamp;
2247
2248 tp->bytes_acked = 0;
2249 tcp_clear_retrans_partial(tp);
2250
2251 if (tcp_is_reno(tp))
2252 tcp_reset_reno_sack(tp);
2253
2254 if (!how) {
2255 /* Push undo marker, if it was plain RTO and nothing
2256 * was retransmitted. */
2257 tp->undo_marker = tp->snd_una;
2258 } else {
2259 tp->sacked_out = 0;
2260 tp->fackets_out = 0;
2261 }
2262 tcp_clear_all_retrans_hints(tp);
2263
2264 tcp_for_write_queue(skb, sk) {
2265 if (skb == tcp_send_head(sk))
2266 break;
2267
2268 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2269 tp->undo_marker = 0;
2270 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2271 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2272 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2273 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2274 tp->lost_out += tcp_skb_pcount(skb);
2275 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2276 }
2277 }
2278 tcp_verify_left_out(tp);
2279
2280 tp->reordering = min_t(unsigned int, tp->reordering,
2281 sysctl_tcp_reordering);
2282 tcp_set_ca_state(sk, TCP_CA_Loss);
2283 tp->high_seq = tp->snd_nxt;
2284 TCP_ECN_queue_cwr(tp);
2285 /* Abort F-RTO algorithm if one is in progress */
2286 tp->frto_counter = 0;
2287 }
2288
2289 /* If ACK arrived pointing to a remembered SACK, it means that our
2290 * remembered SACKs do not reflect real state of receiver i.e.
2291 * receiver _host_ is heavily congested (or buggy).
2292 *
2293 * Do processing similar to RTO timeout.
2294 */
2295 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2296 {
2297 if (flag & FLAG_SACK_RENEGING) {
2298 struct inet_connection_sock *icsk = inet_csk(sk);
2299 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2300
2301 tcp_enter_loss(sk, 1);
2302 icsk->icsk_retransmits++;
2303 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2304 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2305 icsk->icsk_rto, TCP_RTO_MAX);
2306 return 1;
2307 }
2308 return 0;
2309 }
2310
2311 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2312 {
2313 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2314 }
2315
2316 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2317 * counter when SACK is enabled (without SACK, sacked_out is used for
2318 * that purpose).
2319 *
2320 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2321 * segments up to the highest received SACK block so far and holes in
2322 * between them.
2323 *
2324 * With reordering, holes may still be in flight, so RFC3517 recovery
2325 * uses pure sacked_out (total number of SACKed segments) even though
2326 * it violates the RFC that uses duplicate ACKs, often these are equal
2327 * but when e.g. out-of-window ACKs or packet duplication occurs,
2328 * they differ. Since neither occurs due to loss, TCP should really
2329 * ignore them.
2330 */
2331 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2332 {
2333 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2334 }
2335
2336 static inline int tcp_skb_timedout(const struct sock *sk,
2337 const struct sk_buff *skb)
2338 {
2339 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2340 }
2341
2342 static inline int tcp_head_timedout(const struct sock *sk)
2343 {
2344 const struct tcp_sock *tp = tcp_sk(sk);
2345
2346 return tp->packets_out &&
2347 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2348 }
2349
2350 /* Linux NewReno/SACK/FACK/ECN state machine.
2351 * --------------------------------------
2352 *
2353 * "Open" Normal state, no dubious events, fast path.
2354 * "Disorder" In all the respects it is "Open",
2355 * but requires a bit more attention. It is entered when
2356 * we see some SACKs or dupacks. It is split of "Open"
2357 * mainly to move some processing from fast path to slow one.
2358 * "CWR" CWND was reduced due to some Congestion Notification event.
2359 * It can be ECN, ICMP source quench, local device congestion.
2360 * "Recovery" CWND was reduced, we are fast-retransmitting.
2361 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2362 *
2363 * tcp_fastretrans_alert() is entered:
2364 * - each incoming ACK, if state is not "Open"
2365 * - when arrived ACK is unusual, namely:
2366 * * SACK
2367 * * Duplicate ACK.
2368 * * ECN ECE.
2369 *
2370 * Counting packets in flight is pretty simple.
2371 *
2372 * in_flight = packets_out - left_out + retrans_out
2373 *
2374 * packets_out is SND.NXT-SND.UNA counted in packets.
2375 *
2376 * retrans_out is number of retransmitted segments.
2377 *
2378 * left_out is number of segments left network, but not ACKed yet.
2379 *
2380 * left_out = sacked_out + lost_out
2381 *
2382 * sacked_out: Packets, which arrived to receiver out of order
2383 * and hence not ACKed. With SACKs this number is simply
2384 * amount of SACKed data. Even without SACKs
2385 * it is easy to give pretty reliable estimate of this number,
2386 * counting duplicate ACKs.
2387 *
2388 * lost_out: Packets lost by network. TCP has no explicit
2389 * "loss notification" feedback from network (for now).
2390 * It means that this number can be only _guessed_.
2391 * Actually, it is the heuristics to predict lossage that
2392 * distinguishes different algorithms.
2393 *
2394 * F.e. after RTO, when all the queue is considered as lost,
2395 * lost_out = packets_out and in_flight = retrans_out.
2396 *
2397 * Essentially, we have now two algorithms counting
2398 * lost packets.
2399 *
2400 * FACK: It is the simplest heuristics. As soon as we decided
2401 * that something is lost, we decide that _all_ not SACKed
2402 * packets until the most forward SACK are lost. I.e.
2403 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2404 * It is absolutely correct estimate, if network does not reorder
2405 * packets. And it loses any connection to reality when reordering
2406 * takes place. We use FACK by default until reordering
2407 * is suspected on the path to this destination.
2408 *
2409 * NewReno: when Recovery is entered, we assume that one segment
2410 * is lost (classic Reno). While we are in Recovery and
2411 * a partial ACK arrives, we assume that one more packet
2412 * is lost (NewReno). This heuristics are the same in NewReno
2413 * and SACK.
2414 *
2415 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2416 * deflation etc. CWND is real congestion window, never inflated, changes
2417 * only according to classic VJ rules.
2418 *
2419 * Really tricky (and requiring careful tuning) part of algorithm
2420 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2421 * The first determines the moment _when_ we should reduce CWND and,
2422 * hence, slow down forward transmission. In fact, it determines the moment
2423 * when we decide that hole is caused by loss, rather than by a reorder.
2424 *
2425 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2426 * holes, caused by lost packets.
2427 *
2428 * And the most logically complicated part of algorithm is undo
2429 * heuristics. We detect false retransmits due to both too early
2430 * fast retransmit (reordering) and underestimated RTO, analyzing
2431 * timestamps and D-SACKs. When we detect that some segments were
2432 * retransmitted by mistake and CWND reduction was wrong, we undo
2433 * window reduction and abort recovery phase. This logic is hidden
2434 * inside several functions named tcp_try_undo_<something>.
2435 */
2436
2437 /* This function decides, when we should leave Disordered state
2438 * and enter Recovery phase, reducing congestion window.
2439 *
2440 * Main question: may we further continue forward transmission
2441 * with the same cwnd?
2442 */
2443 static int tcp_time_to_recover(struct sock *sk)
2444 {
2445 struct tcp_sock *tp = tcp_sk(sk);
2446 __u32 packets_out;
2447
2448 /* Do not perform any recovery during F-RTO algorithm */
2449 if (tp->frto_counter)
2450 return 0;
2451
2452 /* Trick#1: The loss is proven. */
2453 if (tp->lost_out)
2454 return 1;
2455
2456 /* Not-A-Trick#2 : Classic rule... */
2457 if (tcp_dupack_heuristics(tp) > tp->reordering)
2458 return 1;
2459
2460 /* Trick#3 : when we use RFC2988 timer restart, fast
2461 * retransmit can be triggered by timeout of queue head.
2462 */
2463 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2464 return 1;
2465
2466 /* Trick#4: It is still not OK... But will it be useful to delay
2467 * recovery more?
2468 */
2469 packets_out = tp->packets_out;
2470 if (packets_out <= tp->reordering &&
2471 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2472 !tcp_may_send_now(sk)) {
2473 /* We have nothing to send. This connection is limited
2474 * either by receiver window or by application.
2475 */
2476 return 1;
2477 }
2478
2479 /* If a thin stream is detected, retransmit after first
2480 * received dupack. Employ only if SACK is supported in order
2481 * to avoid possible corner-case series of spurious retransmissions
2482 * Use only if there are no unsent data.
2483 */
2484 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2485 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2486 tcp_is_sack(tp) && !tcp_send_head(sk))
2487 return 1;
2488
2489 return 0;
2490 }
2491
2492 /* New heuristics: it is possible only after we switched to restart timer
2493 * each time when something is ACKed. Hence, we can detect timed out packets
2494 * during fast retransmit without falling to slow start.
2495 *
2496 * Usefulness of this as is very questionable, since we should know which of
2497 * the segments is the next to timeout which is relatively expensive to find
2498 * in general case unless we add some data structure just for that. The
2499 * current approach certainly won't find the right one too often and when it
2500 * finally does find _something_ it usually marks large part of the window
2501 * right away (because a retransmission with a larger timestamp blocks the
2502 * loop from advancing). -ij
2503 */
2504 static void tcp_timeout_skbs(struct sock *sk)
2505 {
2506 struct tcp_sock *tp = tcp_sk(sk);
2507 struct sk_buff *skb;
2508
2509 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2510 return;
2511
2512 skb = tp->scoreboard_skb_hint;
2513 if (tp->scoreboard_skb_hint == NULL)
2514 skb = tcp_write_queue_head(sk);
2515
2516 tcp_for_write_queue_from(skb, sk) {
2517 if (skb == tcp_send_head(sk))
2518 break;
2519 if (!tcp_skb_timedout(sk, skb))
2520 break;
2521
2522 tcp_skb_mark_lost(tp, skb);
2523 }
2524
2525 tp->scoreboard_skb_hint = skb;
2526
2527 tcp_verify_left_out(tp);
2528 }
2529
2530 /* Detect loss in event "A" above by marking head of queue up as lost.
2531 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2532 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2533 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2534 * the maximum SACKed segments to pass before reaching this limit.
2535 */
2536 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2537 {
2538 struct tcp_sock *tp = tcp_sk(sk);
2539 struct sk_buff *skb;
2540 int cnt, oldcnt;
2541 int err;
2542 unsigned int mss;
2543 /* Use SACK to deduce losses of new sequences sent during recovery */
2544 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2545
2546 WARN_ON(packets > tp->packets_out);
2547 if (tp->lost_skb_hint) {
2548 skb = tp->lost_skb_hint;
2549 cnt = tp->lost_cnt_hint;
2550 /* Head already handled? */
2551 if (mark_head && skb != tcp_write_queue_head(sk))
2552 return;
2553 } else {
2554 skb = tcp_write_queue_head(sk);
2555 cnt = 0;
2556 }
2557
2558 tcp_for_write_queue_from(skb, sk) {
2559 if (skb == tcp_send_head(sk))
2560 break;
2561 /* TODO: do this better */
2562 /* this is not the most efficient way to do this... */
2563 tp->lost_skb_hint = skb;
2564 tp->lost_cnt_hint = cnt;
2565
2566 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2567 break;
2568
2569 oldcnt = cnt;
2570 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2571 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2572 cnt += tcp_skb_pcount(skb);
2573
2574 if (cnt > packets) {
2575 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2576 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2577 (oldcnt >= packets))
2578 break;
2579
2580 mss = skb_shinfo(skb)->gso_size;
2581 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2582 if (err < 0)
2583 break;
2584 cnt = packets;
2585 }
2586
2587 tcp_skb_mark_lost(tp, skb);
2588
2589 if (mark_head)
2590 break;
2591 }
2592 tcp_verify_left_out(tp);
2593 }
2594
2595 /* Account newly detected lost packet(s) */
2596
2597 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2598 {
2599 struct tcp_sock *tp = tcp_sk(sk);
2600
2601 if (tcp_is_reno(tp)) {
2602 tcp_mark_head_lost(sk, 1, 1);
2603 } else if (tcp_is_fack(tp)) {
2604 int lost = tp->fackets_out - tp->reordering;
2605 if (lost <= 0)
2606 lost = 1;
2607 tcp_mark_head_lost(sk, lost, 0);
2608 } else {
2609 int sacked_upto = tp->sacked_out - tp->reordering;
2610 if (sacked_upto >= 0)
2611 tcp_mark_head_lost(sk, sacked_upto, 0);
2612 else if (fast_rexmit)
2613 tcp_mark_head_lost(sk, 1, 1);
2614 }
2615
2616 tcp_timeout_skbs(sk);
2617 }
2618
2619 /* CWND moderation, preventing bursts due to too big ACKs
2620 * in dubious situations.
2621 */
2622 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2623 {
2624 tp->snd_cwnd = min(tp->snd_cwnd,
2625 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2626 tp->snd_cwnd_stamp = tcp_time_stamp;
2627 }
2628
2629 /* Lower bound on congestion window is slow start threshold
2630 * unless congestion avoidance choice decides to overide it.
2631 */
2632 static inline u32 tcp_cwnd_min(const struct sock *sk)
2633 {
2634 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2635
2636 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2637 }
2638
2639 /* Decrease cwnd each second ack. */
2640 static void tcp_cwnd_down(struct sock *sk, int flag)
2641 {
2642 struct tcp_sock *tp = tcp_sk(sk);
2643 int decr = tp->snd_cwnd_cnt + 1;
2644
2645 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2646 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2647 tp->snd_cwnd_cnt = decr & 1;
2648 decr >>= 1;
2649
2650 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2651 tp->snd_cwnd -= decr;
2652
2653 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2654 tp->snd_cwnd_stamp = tcp_time_stamp;
2655 }
2656 }
2657
2658 /* Nothing was retransmitted or returned timestamp is less
2659 * than timestamp of the first retransmission.
2660 */
2661 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2662 {
2663 return !tp->retrans_stamp ||
2664 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2665 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2666 }
2667
2668 /* Undo procedures. */
2669
2670 #if FASTRETRANS_DEBUG > 1
2671 static void DBGUNDO(struct sock *sk, const char *msg)
2672 {
2673 struct tcp_sock *tp = tcp_sk(sk);
2674 struct inet_sock *inet = inet_sk(sk);
2675
2676 if (sk->sk_family == AF_INET) {
2677 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2678 msg,
2679 &inet->inet_daddr, ntohs(inet->inet_dport),
2680 tp->snd_cwnd, tcp_left_out(tp),
2681 tp->snd_ssthresh, tp->prior_ssthresh,
2682 tp->packets_out);
2683 }
2684 #if IS_ENABLED(CONFIG_IPV6)
2685 else if (sk->sk_family == AF_INET6) {
2686 struct ipv6_pinfo *np = inet6_sk(sk);
2687 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2688 msg,
2689 &np->daddr, ntohs(inet->inet_dport),
2690 tp->snd_cwnd, tcp_left_out(tp),
2691 tp->snd_ssthresh, tp->prior_ssthresh,
2692 tp->packets_out);
2693 }
2694 #endif
2695 }
2696 #else
2697 #define DBGUNDO(x...) do { } while (0)
2698 #endif
2699
2700 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2701 {
2702 struct tcp_sock *tp = tcp_sk(sk);
2703
2704 if (tp->prior_ssthresh) {
2705 const struct inet_connection_sock *icsk = inet_csk(sk);
2706
2707 if (icsk->icsk_ca_ops->undo_cwnd)
2708 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2709 else
2710 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2711
2712 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2713 tp->snd_ssthresh = tp->prior_ssthresh;
2714 TCP_ECN_withdraw_cwr(tp);
2715 }
2716 } else {
2717 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2718 }
2719 tp->snd_cwnd_stamp = tcp_time_stamp;
2720 }
2721
2722 static inline int tcp_may_undo(const struct tcp_sock *tp)
2723 {
2724 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2725 }
2726
2727 /* People celebrate: "We love our President!" */
2728 static int tcp_try_undo_recovery(struct sock *sk)
2729 {
2730 struct tcp_sock *tp = tcp_sk(sk);
2731
2732 if (tcp_may_undo(tp)) {
2733 int mib_idx;
2734
2735 /* Happy end! We did not retransmit anything
2736 * or our original transmission succeeded.
2737 */
2738 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2739 tcp_undo_cwr(sk, true);
2740 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2741 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2742 else
2743 mib_idx = LINUX_MIB_TCPFULLUNDO;
2744
2745 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2746 tp->undo_marker = 0;
2747 }
2748 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2749 /* Hold old state until something *above* high_seq
2750 * is ACKed. For Reno it is MUST to prevent false
2751 * fast retransmits (RFC2582). SACK TCP is safe. */
2752 tcp_moderate_cwnd(tp);
2753 return 1;
2754 }
2755 tcp_set_ca_state(sk, TCP_CA_Open);
2756 return 0;
2757 }
2758
2759 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2760 static void tcp_try_undo_dsack(struct sock *sk)
2761 {
2762 struct tcp_sock *tp = tcp_sk(sk);
2763
2764 if (tp->undo_marker && !tp->undo_retrans) {
2765 DBGUNDO(sk, "D-SACK");
2766 tcp_undo_cwr(sk, true);
2767 tp->undo_marker = 0;
2768 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2769 }
2770 }
2771
2772 /* We can clear retrans_stamp when there are no retransmissions in the
2773 * window. It would seem that it is trivially available for us in
2774 * tp->retrans_out, however, that kind of assumptions doesn't consider
2775 * what will happen if errors occur when sending retransmission for the
2776 * second time. ...It could the that such segment has only
2777 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2778 * the head skb is enough except for some reneging corner cases that
2779 * are not worth the effort.
2780 *
2781 * Main reason for all this complexity is the fact that connection dying
2782 * time now depends on the validity of the retrans_stamp, in particular,
2783 * that successive retransmissions of a segment must not advance
2784 * retrans_stamp under any conditions.
2785 */
2786 static int tcp_any_retrans_done(const struct sock *sk)
2787 {
2788 const struct tcp_sock *tp = tcp_sk(sk);
2789 struct sk_buff *skb;
2790
2791 if (tp->retrans_out)
2792 return 1;
2793
2794 skb = tcp_write_queue_head(sk);
2795 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2796 return 1;
2797
2798 return 0;
2799 }
2800
2801 /* Undo during fast recovery after partial ACK. */
2802
2803 static int tcp_try_undo_partial(struct sock *sk, int acked)
2804 {
2805 struct tcp_sock *tp = tcp_sk(sk);
2806 /* Partial ACK arrived. Force Hoe's retransmit. */
2807 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2808
2809 if (tcp_may_undo(tp)) {
2810 /* Plain luck! Hole if filled with delayed
2811 * packet, rather than with a retransmit.
2812 */
2813 if (!tcp_any_retrans_done(sk))
2814 tp->retrans_stamp = 0;
2815
2816 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2817
2818 DBGUNDO(sk, "Hoe");
2819 tcp_undo_cwr(sk, false);
2820 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2821
2822 /* So... Do not make Hoe's retransmit yet.
2823 * If the first packet was delayed, the rest
2824 * ones are most probably delayed as well.
2825 */
2826 failed = 0;
2827 }
2828 return failed;
2829 }
2830
2831 /* Undo during loss recovery after partial ACK. */
2832 static int tcp_try_undo_loss(struct sock *sk)
2833 {
2834 struct tcp_sock *tp = tcp_sk(sk);
2835
2836 if (tcp_may_undo(tp)) {
2837 struct sk_buff *skb;
2838 tcp_for_write_queue(skb, sk) {
2839 if (skb == tcp_send_head(sk))
2840 break;
2841 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2842 }
2843
2844 tcp_clear_all_retrans_hints(tp);
2845
2846 DBGUNDO(sk, "partial loss");
2847 tp->lost_out = 0;
2848 tcp_undo_cwr(sk, true);
2849 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2850 inet_csk(sk)->icsk_retransmits = 0;
2851 tp->undo_marker = 0;
2852 if (tcp_is_sack(tp))
2853 tcp_set_ca_state(sk, TCP_CA_Open);
2854 return 1;
2855 }
2856 return 0;
2857 }
2858
2859 static inline void tcp_complete_cwr(struct sock *sk)
2860 {
2861 struct tcp_sock *tp = tcp_sk(sk);
2862
2863 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2864 if (tp->undo_marker) {
2865 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2866 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2867 else /* PRR */
2868 tp->snd_cwnd = tp->snd_ssthresh;
2869 tp->snd_cwnd_stamp = tcp_time_stamp;
2870 }
2871 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2872 }
2873
2874 static void tcp_try_keep_open(struct sock *sk)
2875 {
2876 struct tcp_sock *tp = tcp_sk(sk);
2877 int state = TCP_CA_Open;
2878
2879 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2880 state = TCP_CA_Disorder;
2881
2882 if (inet_csk(sk)->icsk_ca_state != state) {
2883 tcp_set_ca_state(sk, state);
2884 tp->high_seq = tp->snd_nxt;
2885 }
2886 }
2887
2888 static void tcp_try_to_open(struct sock *sk, int flag)
2889 {
2890 struct tcp_sock *tp = tcp_sk(sk);
2891
2892 tcp_verify_left_out(tp);
2893
2894 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2895 tp->retrans_stamp = 0;
2896
2897 if (flag & FLAG_ECE)
2898 tcp_enter_cwr(sk, 1);
2899
2900 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2901 tcp_try_keep_open(sk);
2902 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2903 tcp_moderate_cwnd(tp);
2904 } else {
2905 tcp_cwnd_down(sk, flag);
2906 }
2907 }
2908
2909 static void tcp_mtup_probe_failed(struct sock *sk)
2910 {
2911 struct inet_connection_sock *icsk = inet_csk(sk);
2912
2913 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2914 icsk->icsk_mtup.probe_size = 0;
2915 }
2916
2917 static void tcp_mtup_probe_success(struct sock *sk)
2918 {
2919 struct tcp_sock *tp = tcp_sk(sk);
2920 struct inet_connection_sock *icsk = inet_csk(sk);
2921
2922 /* FIXME: breaks with very large cwnd */
2923 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2924 tp->snd_cwnd = tp->snd_cwnd *
2925 tcp_mss_to_mtu(sk, tp->mss_cache) /
2926 icsk->icsk_mtup.probe_size;
2927 tp->snd_cwnd_cnt = 0;
2928 tp->snd_cwnd_stamp = tcp_time_stamp;
2929 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2930
2931 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2932 icsk->icsk_mtup.probe_size = 0;
2933 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2934 }
2935
2936 /* Do a simple retransmit without using the backoff mechanisms in
2937 * tcp_timer. This is used for path mtu discovery.
2938 * The socket is already locked here.
2939 */
2940 void tcp_simple_retransmit(struct sock *sk)
2941 {
2942 const struct inet_connection_sock *icsk = inet_csk(sk);
2943 struct tcp_sock *tp = tcp_sk(sk);
2944 struct sk_buff *skb;
2945 unsigned int mss = tcp_current_mss(sk);
2946 u32 prior_lost = tp->lost_out;
2947
2948 tcp_for_write_queue(skb, sk) {
2949 if (skb == tcp_send_head(sk))
2950 break;
2951 if (tcp_skb_seglen(skb) > mss &&
2952 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2953 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2954 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2955 tp->retrans_out -= tcp_skb_pcount(skb);
2956 }
2957 tcp_skb_mark_lost_uncond_verify(tp, skb);
2958 }
2959 }
2960
2961 tcp_clear_retrans_hints_partial(tp);
2962
2963 if (prior_lost == tp->lost_out)
2964 return;
2965
2966 if (tcp_is_reno(tp))
2967 tcp_limit_reno_sacked(tp);
2968
2969 tcp_verify_left_out(tp);
2970
2971 /* Don't muck with the congestion window here.
2972 * Reason is that we do not increase amount of _data_
2973 * in network, but units changed and effective
2974 * cwnd/ssthresh really reduced now.
2975 */
2976 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2977 tp->high_seq = tp->snd_nxt;
2978 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2979 tp->prior_ssthresh = 0;
2980 tp->undo_marker = 0;
2981 tcp_set_ca_state(sk, TCP_CA_Loss);
2982 }
2983 tcp_xmit_retransmit_queue(sk);
2984 }
2985 EXPORT_SYMBOL(tcp_simple_retransmit);
2986
2987 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2988 * (proportional rate reduction with slow start reduction bound) as described in
2989 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2990 * It computes the number of packets to send (sndcnt) based on packets newly
2991 * delivered:
2992 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2993 * cwnd reductions across a full RTT.
2994 * 2) If packets in flight is lower than ssthresh (such as due to excess
2995 * losses and/or application stalls), do not perform any further cwnd
2996 * reductions, but instead slow start up to ssthresh.
2997 */
2998 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
2999 int fast_rexmit, int flag)
3000 {
3001 struct tcp_sock *tp = tcp_sk(sk);
3002 int sndcnt = 0;
3003 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3004
3005 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3006 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3007 tp->prior_cwnd - 1;
3008 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3009 } else {
3010 sndcnt = min_t(int, delta,
3011 max_t(int, tp->prr_delivered - tp->prr_out,
3012 newly_acked_sacked) + 1);
3013 }
3014
3015 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3016 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3017 }
3018
3019 /* Process an event, which can update packets-in-flight not trivially.
3020 * Main goal of this function is to calculate new estimate for left_out,
3021 * taking into account both packets sitting in receiver's buffer and
3022 * packets lost by network.
3023 *
3024 * Besides that it does CWND reduction, when packet loss is detected
3025 * and changes state of machine.
3026 *
3027 * It does _not_ decide what to send, it is made in function
3028 * tcp_xmit_retransmit_queue().
3029 */
3030 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3031 int newly_acked_sacked, bool is_dupack,
3032 int flag)
3033 {
3034 struct inet_connection_sock *icsk = inet_csk(sk);
3035 struct tcp_sock *tp = tcp_sk(sk);
3036 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3037 (tcp_fackets_out(tp) > tp->reordering));
3038 int fast_rexmit = 0, mib_idx;
3039
3040 if (WARN_ON(!tp->packets_out && tp->sacked_out))
3041 tp->sacked_out = 0;
3042 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3043 tp->fackets_out = 0;
3044
3045 /* Now state machine starts.
3046 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3047 if (flag & FLAG_ECE)
3048 tp->prior_ssthresh = 0;
3049
3050 /* B. In all the states check for reneging SACKs. */
3051 if (tcp_check_sack_reneging(sk, flag))
3052 return;
3053
3054 /* C. Check consistency of the current state. */
3055 tcp_verify_left_out(tp);
3056
3057 /* D. Check state exit conditions. State can be terminated
3058 * when high_seq is ACKed. */
3059 if (icsk->icsk_ca_state == TCP_CA_Open) {
3060 WARN_ON(tp->retrans_out != 0);
3061 tp->retrans_stamp = 0;
3062 } else if (!before(tp->snd_una, tp->high_seq)) {
3063 switch (icsk->icsk_ca_state) {
3064 case TCP_CA_Loss:
3065 icsk->icsk_retransmits = 0;
3066 if (tcp_try_undo_recovery(sk))
3067 return;
3068 break;
3069
3070 case TCP_CA_CWR:
3071 /* CWR is to be held something *above* high_seq
3072 * is ACKed for CWR bit to reach receiver. */
3073 if (tp->snd_una != tp->high_seq) {
3074 tcp_complete_cwr(sk);
3075 tcp_set_ca_state(sk, TCP_CA_Open);
3076 }
3077 break;
3078
3079 case TCP_CA_Recovery:
3080 if (tcp_is_reno(tp))
3081 tcp_reset_reno_sack(tp);
3082 if (tcp_try_undo_recovery(sk))
3083 return;
3084 tcp_complete_cwr(sk);
3085 break;
3086 }
3087 }
3088
3089 /* E. Process state. */
3090 switch (icsk->icsk_ca_state) {
3091 case TCP_CA_Recovery:
3092 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3093 if (tcp_is_reno(tp) && is_dupack)
3094 tcp_add_reno_sack(sk);
3095 } else
3096 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3097 break;
3098 case TCP_CA_Loss:
3099 if (flag & FLAG_DATA_ACKED)
3100 icsk->icsk_retransmits = 0;
3101 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3102 tcp_reset_reno_sack(tp);
3103 if (!tcp_try_undo_loss(sk)) {
3104 tcp_moderate_cwnd(tp);
3105 tcp_xmit_retransmit_queue(sk);
3106 return;
3107 }
3108 if (icsk->icsk_ca_state != TCP_CA_Open)
3109 return;
3110 /* Loss is undone; fall through to processing in Open state. */
3111 default:
3112 if (tcp_is_reno(tp)) {
3113 if (flag & FLAG_SND_UNA_ADVANCED)
3114 tcp_reset_reno_sack(tp);
3115 if (is_dupack)
3116 tcp_add_reno_sack(sk);
3117 }
3118
3119 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3120 tcp_try_undo_dsack(sk);
3121
3122 if (!tcp_time_to_recover(sk)) {
3123 tcp_try_to_open(sk, flag);
3124 return;
3125 }
3126
3127 /* MTU probe failure: don't reduce cwnd */
3128 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3129 icsk->icsk_mtup.probe_size &&
3130 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3131 tcp_mtup_probe_failed(sk);
3132 /* Restores the reduction we did in tcp_mtup_probe() */
3133 tp->snd_cwnd++;
3134 tcp_simple_retransmit(sk);
3135 return;
3136 }
3137
3138 /* Otherwise enter Recovery state */
3139
3140 if (tcp_is_reno(tp))
3141 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3142 else
3143 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3144
3145 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3146
3147 tp->high_seq = tp->snd_nxt;
3148 tp->prior_ssthresh = 0;
3149 tp->undo_marker = tp->snd_una;
3150 tp->undo_retrans = tp->retrans_out;
3151
3152 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3153 if (!(flag & FLAG_ECE))
3154 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3155 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3156 TCP_ECN_queue_cwr(tp);
3157 }
3158
3159 tp->bytes_acked = 0;
3160 tp->snd_cwnd_cnt = 0;
3161 tp->prior_cwnd = tp->snd_cwnd;
3162 tp->prr_delivered = 0;
3163 tp->prr_out = 0;
3164 tcp_set_ca_state(sk, TCP_CA_Recovery);
3165 fast_rexmit = 1;
3166 }
3167
3168 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3169 tcp_update_scoreboard(sk, fast_rexmit);
3170 tp->prr_delivered += newly_acked_sacked;
3171 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3172 tcp_xmit_retransmit_queue(sk);
3173 }
3174
3175 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3176 {
3177 tcp_rtt_estimator(sk, seq_rtt);
3178 tcp_set_rto(sk);
3179 inet_csk(sk)->icsk_backoff = 0;
3180 }
3181 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3182
3183 /* Read draft-ietf-tcplw-high-performance before mucking
3184 * with this code. (Supersedes RFC1323)
3185 */
3186 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3187 {
3188 /* RTTM Rule: A TSecr value received in a segment is used to
3189 * update the averaged RTT measurement only if the segment
3190 * acknowledges some new data, i.e., only if it advances the
3191 * left edge of the send window.
3192 *
3193 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3194 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3195 *
3196 * Changed: reset backoff as soon as we see the first valid sample.
3197 * If we do not, we get strongly overestimated rto. With timestamps
3198 * samples are accepted even from very old segments: f.e., when rtt=1
3199 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3200 * answer arrives rto becomes 120 seconds! If at least one of segments
3201 * in window is lost... Voila. --ANK (010210)
3202 */
3203 struct tcp_sock *tp = tcp_sk(sk);
3204
3205 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3206 }
3207
3208 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3209 {
3210 /* We don't have a timestamp. Can only use
3211 * packets that are not retransmitted to determine
3212 * rtt estimates. Also, we must not reset the
3213 * backoff for rto until we get a non-retransmitted
3214 * packet. This allows us to deal with a situation
3215 * where the network delay has increased suddenly.
3216 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3217 */
3218
3219 if (flag & FLAG_RETRANS_DATA_ACKED)
3220 return;
3221
3222 tcp_valid_rtt_meas(sk, seq_rtt);
3223 }
3224
3225 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3226 const s32 seq_rtt)
3227 {
3228 const struct tcp_sock *tp = tcp_sk(sk);
3229 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3230 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3231 tcp_ack_saw_tstamp(sk, flag);
3232 else if (seq_rtt >= 0)
3233 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3234 }
3235
3236 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3237 {
3238 const struct inet_connection_sock *icsk = inet_csk(sk);
3239 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3240 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3241 }
3242
3243 /* Restart timer after forward progress on connection.
3244 * RFC2988 recommends to restart timer to now+rto.
3245 */
3246 static void tcp_rearm_rto(struct sock *sk)
3247 {
3248 const struct tcp_sock *tp = tcp_sk(sk);
3249
3250 if (!tp->packets_out) {
3251 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3252 } else {
3253 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3254 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3255 }
3256 }
3257
3258 /* If we get here, the whole TSO packet has not been acked. */
3259 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3260 {
3261 struct tcp_sock *tp = tcp_sk(sk);
3262 u32 packets_acked;
3263
3264 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3265
3266 packets_acked = tcp_skb_pcount(skb);
3267 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3268 return 0;
3269 packets_acked -= tcp_skb_pcount(skb);
3270
3271 if (packets_acked) {
3272 BUG_ON(tcp_skb_pcount(skb) == 0);
3273 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3274 }
3275
3276 return packets_acked;
3277 }
3278
3279 /* Remove acknowledged frames from the retransmission queue. If our packet
3280 * is before the ack sequence we can discard it as it's confirmed to have
3281 * arrived at the other end.
3282 */
3283 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3284 u32 prior_snd_una)
3285 {
3286 struct tcp_sock *tp = tcp_sk(sk);
3287 const struct inet_connection_sock *icsk = inet_csk(sk);
3288 struct sk_buff *skb;
3289 u32 now = tcp_time_stamp;
3290 int fully_acked = 1;
3291 int flag = 0;
3292 u32 pkts_acked = 0;
3293 u32 reord = tp->packets_out;
3294 u32 prior_sacked = tp->sacked_out;
3295 s32 seq_rtt = -1;
3296 s32 ca_seq_rtt = -1;
3297 ktime_t last_ackt = net_invalid_timestamp();
3298
3299 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3300 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3301 u32 acked_pcount;
3302 u8 sacked = scb->sacked;
3303
3304 /* Determine how many packets and what bytes were acked, tso and else */
3305 if (after(scb->end_seq, tp->snd_una)) {
3306 if (tcp_skb_pcount(skb) == 1 ||
3307 !after(tp->snd_una, scb->seq))
3308 break;
3309
3310 acked_pcount = tcp_tso_acked(sk, skb);
3311 if (!acked_pcount)
3312 break;
3313
3314 fully_acked = 0;
3315 } else {
3316 acked_pcount = tcp_skb_pcount(skb);
3317 }
3318
3319 if (sacked & TCPCB_RETRANS) {
3320 if (sacked & TCPCB_SACKED_RETRANS)
3321 tp->retrans_out -= acked_pcount;
3322 flag |= FLAG_RETRANS_DATA_ACKED;
3323 ca_seq_rtt = -1;
3324 seq_rtt = -1;
3325 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3326 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3327 } else {
3328 ca_seq_rtt = now - scb->when;
3329 last_ackt = skb->tstamp;
3330 if (seq_rtt < 0) {
3331 seq_rtt = ca_seq_rtt;
3332 }
3333 if (!(sacked & TCPCB_SACKED_ACKED))
3334 reord = min(pkts_acked, reord);
3335 }
3336
3337 if (sacked & TCPCB_SACKED_ACKED)
3338 tp->sacked_out -= acked_pcount;
3339 if (sacked & TCPCB_LOST)
3340 tp->lost_out -= acked_pcount;
3341
3342 tp->packets_out -= acked_pcount;
3343 pkts_acked += acked_pcount;
3344
3345 /* Initial outgoing SYN's get put onto the write_queue
3346 * just like anything else we transmit. It is not
3347 * true data, and if we misinform our callers that
3348 * this ACK acks real data, we will erroneously exit
3349 * connection startup slow start one packet too
3350 * quickly. This is severely frowned upon behavior.
3351 */
3352 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3353 flag |= FLAG_DATA_ACKED;
3354 } else {
3355 flag |= FLAG_SYN_ACKED;
3356 tp->retrans_stamp = 0;
3357 }
3358
3359 if (!fully_acked)
3360 break;
3361
3362 tcp_unlink_write_queue(skb, sk);
3363 sk_wmem_free_skb(sk, skb);
3364 tp->scoreboard_skb_hint = NULL;
3365 if (skb == tp->retransmit_skb_hint)
3366 tp->retransmit_skb_hint = NULL;
3367 if (skb == tp->lost_skb_hint)
3368 tp->lost_skb_hint = NULL;
3369 }
3370
3371 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3372 tp->snd_up = tp->snd_una;
3373
3374 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3375 flag |= FLAG_SACK_RENEGING;
3376
3377 if (flag & FLAG_ACKED) {
3378 const struct tcp_congestion_ops *ca_ops
3379 = inet_csk(sk)->icsk_ca_ops;
3380
3381 if (unlikely(icsk->icsk_mtup.probe_size &&
3382 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3383 tcp_mtup_probe_success(sk);
3384 }
3385
3386 tcp_ack_update_rtt(sk, flag, seq_rtt);
3387 tcp_rearm_rto(sk);
3388
3389 if (tcp_is_reno(tp)) {
3390 tcp_remove_reno_sacks(sk, pkts_acked);
3391 } else {
3392 int delta;
3393
3394 /* Non-retransmitted hole got filled? That's reordering */
3395 if (reord < prior_fackets)
3396 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3397
3398 delta = tcp_is_fack(tp) ? pkts_acked :
3399 prior_sacked - tp->sacked_out;
3400 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3401 }
3402
3403 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3404
3405 if (ca_ops->pkts_acked) {
3406 s32 rtt_us = -1;
3407
3408 /* Is the ACK triggering packet unambiguous? */
3409 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3410 /* High resolution needed and available? */
3411 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3412 !ktime_equal(last_ackt,
3413 net_invalid_timestamp()))
3414 rtt_us = ktime_us_delta(ktime_get_real(),
3415 last_ackt);
3416 else if (ca_seq_rtt >= 0)
3417 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3418 }
3419
3420 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3421 }
3422 }
3423
3424 #if FASTRETRANS_DEBUG > 0
3425 WARN_ON((int)tp->sacked_out < 0);
3426 WARN_ON((int)tp->lost_out < 0);
3427 WARN_ON((int)tp->retrans_out < 0);
3428 if (!tp->packets_out && tcp_is_sack(tp)) {
3429 icsk = inet_csk(sk);
3430 if (tp->lost_out) {
3431 printk(KERN_DEBUG "Leak l=%u %d\n",
3432 tp->lost_out, icsk->icsk_ca_state);
3433 tp->lost_out = 0;
3434 }
3435 if (tp->sacked_out) {
3436 printk(KERN_DEBUG "Leak s=%u %d\n",
3437 tp->sacked_out, icsk->icsk_ca_state);
3438 tp->sacked_out = 0;
3439 }
3440 if (tp->retrans_out) {
3441 printk(KERN_DEBUG "Leak r=%u %d\n",
3442 tp->retrans_out, icsk->icsk_ca_state);
3443 tp->retrans_out = 0;
3444 }
3445 }
3446 #endif
3447 return flag;
3448 }
3449
3450 static void tcp_ack_probe(struct sock *sk)
3451 {
3452 const struct tcp_sock *tp = tcp_sk(sk);
3453 struct inet_connection_sock *icsk = inet_csk(sk);
3454
3455 /* Was it a usable window open? */
3456
3457 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3458 icsk->icsk_backoff = 0;
3459 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3460 /* Socket must be waked up by subsequent tcp_data_snd_check().
3461 * This function is not for random using!
3462 */
3463 } else {
3464 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3465 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3466 TCP_RTO_MAX);
3467 }
3468 }
3469
3470 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3471 {
3472 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3473 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3474 }
3475
3476 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3477 {
3478 const struct tcp_sock *tp = tcp_sk(sk);
3479 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3480 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3481 }
3482
3483 /* Check that window update is acceptable.
3484 * The function assumes that snd_una<=ack<=snd_next.
3485 */
3486 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3487 const u32 ack, const u32 ack_seq,
3488 const u32 nwin)
3489 {
3490 return after(ack, tp->snd_una) ||
3491 after(ack_seq, tp->snd_wl1) ||
3492 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3493 }
3494
3495 /* Update our send window.
3496 *
3497 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3498 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3499 */
3500 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3501 u32 ack_seq)
3502 {
3503 struct tcp_sock *tp = tcp_sk(sk);
3504 int flag = 0;
3505 u32 nwin = ntohs(tcp_hdr(skb)->window);
3506
3507 if (likely(!tcp_hdr(skb)->syn))
3508 nwin <<= tp->rx_opt.snd_wscale;
3509
3510 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3511 flag |= FLAG_WIN_UPDATE;
3512 tcp_update_wl(tp, ack_seq);
3513
3514 if (tp->snd_wnd != nwin) {
3515 tp->snd_wnd = nwin;
3516
3517 /* Note, it is the only place, where
3518 * fast path is recovered for sending TCP.
3519 */
3520 tp->pred_flags = 0;
3521 tcp_fast_path_check(sk);
3522
3523 if (nwin > tp->max_window) {
3524 tp->max_window = nwin;
3525 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3526 }
3527 }
3528 }
3529
3530 tp->snd_una = ack;
3531
3532 return flag;
3533 }
3534
3535 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3536 * continue in congestion avoidance.
3537 */
3538 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3539 {
3540 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3541 tp->snd_cwnd_cnt = 0;
3542 tp->bytes_acked = 0;
3543 TCP_ECN_queue_cwr(tp);
3544 tcp_moderate_cwnd(tp);
3545 }
3546
3547 /* A conservative spurious RTO response algorithm: reduce cwnd using
3548 * rate halving and continue in congestion avoidance.
3549 */
3550 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3551 {
3552 tcp_enter_cwr(sk, 0);
3553 }
3554
3555 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3556 {
3557 if (flag & FLAG_ECE)
3558 tcp_ratehalving_spur_to_response(sk);
3559 else
3560 tcp_undo_cwr(sk, true);
3561 }
3562
3563 /* F-RTO spurious RTO detection algorithm (RFC4138)
3564 *
3565 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3566 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3567 * window (but not to or beyond highest sequence sent before RTO):
3568 * On First ACK, send two new segments out.
3569 * On Second ACK, RTO was likely spurious. Do spurious response (response
3570 * algorithm is not part of the F-RTO detection algorithm
3571 * given in RFC4138 but can be selected separately).
3572 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3573 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3574 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3575 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3576 *
3577 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3578 * original window even after we transmit two new data segments.
3579 *
3580 * SACK version:
3581 * on first step, wait until first cumulative ACK arrives, then move to
3582 * the second step. In second step, the next ACK decides.
3583 *
3584 * F-RTO is implemented (mainly) in four functions:
3585 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3586 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3587 * called when tcp_use_frto() showed green light
3588 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3589 * - tcp_enter_frto_loss() is called if there is not enough evidence
3590 * to prove that the RTO is indeed spurious. It transfers the control
3591 * from F-RTO to the conventional RTO recovery
3592 */
3593 static int tcp_process_frto(struct sock *sk, int flag)
3594 {
3595 struct tcp_sock *tp = tcp_sk(sk);
3596
3597 tcp_verify_left_out(tp);
3598
3599 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3600 if (flag & FLAG_DATA_ACKED)
3601 inet_csk(sk)->icsk_retransmits = 0;
3602
3603 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3604 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3605 tp->undo_marker = 0;
3606
3607 if (!before(tp->snd_una, tp->frto_highmark)) {
3608 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3609 return 1;
3610 }
3611
3612 if (!tcp_is_sackfrto(tp)) {
3613 /* RFC4138 shortcoming in step 2; should also have case c):
3614 * ACK isn't duplicate nor advances window, e.g., opposite dir
3615 * data, winupdate
3616 */
3617 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3618 return 1;
3619
3620 if (!(flag & FLAG_DATA_ACKED)) {
3621 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3622 flag);
3623 return 1;
3624 }
3625 } else {
3626 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3627 /* Prevent sending of new data. */
3628 tp->snd_cwnd = min(tp->snd_cwnd,
3629 tcp_packets_in_flight(tp));
3630 return 1;
3631 }
3632
3633 if ((tp->frto_counter >= 2) &&
3634 (!(flag & FLAG_FORWARD_PROGRESS) ||
3635 ((flag & FLAG_DATA_SACKED) &&
3636 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3637 /* RFC4138 shortcoming (see comment above) */
3638 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3639 (flag & FLAG_NOT_DUP))
3640 return 1;
3641
3642 tcp_enter_frto_loss(sk, 3, flag);
3643 return 1;
3644 }
3645 }
3646
3647 if (tp->frto_counter == 1) {
3648 /* tcp_may_send_now needs to see updated state */
3649 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3650 tp->frto_counter = 2;
3651
3652 if (!tcp_may_send_now(sk))
3653 tcp_enter_frto_loss(sk, 2, flag);
3654
3655 return 1;
3656 } else {
3657 switch (sysctl_tcp_frto_response) {
3658 case 2:
3659 tcp_undo_spur_to_response(sk, flag);
3660 break;
3661 case 1:
3662 tcp_conservative_spur_to_response(tp);
3663 break;
3664 default:
3665 tcp_ratehalving_spur_to_response(sk);
3666 break;
3667 }
3668 tp->frto_counter = 0;
3669 tp->undo_marker = 0;
3670 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3671 }
3672 return 0;
3673 }
3674
3675 /* This routine deals with incoming acks, but not outgoing ones. */
3676 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3677 {
3678 struct inet_connection_sock *icsk = inet_csk(sk);
3679 struct tcp_sock *tp = tcp_sk(sk);
3680 u32 prior_snd_una = tp->snd_una;
3681 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3682 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3683 bool is_dupack = false;
3684 u32 prior_in_flight;
3685 u32 prior_fackets;
3686 int prior_packets;
3687 int prior_sacked = tp->sacked_out;
3688 int pkts_acked = 0;
3689 int newly_acked_sacked = 0;
3690 int frto_cwnd = 0;
3691
3692 /* If the ack is older than previous acks
3693 * then we can probably ignore it.
3694 */
3695 if (before(ack, prior_snd_una))
3696 goto old_ack;
3697
3698 /* If the ack includes data we haven't sent yet, discard
3699 * this segment (RFC793 Section 3.9).
3700 */
3701 if (after(ack, tp->snd_nxt))
3702 goto invalid_ack;
3703
3704 if (after(ack, prior_snd_una))
3705 flag |= FLAG_SND_UNA_ADVANCED;
3706
3707 if (sysctl_tcp_abc) {
3708 if (icsk->icsk_ca_state < TCP_CA_CWR)
3709 tp->bytes_acked += ack - prior_snd_una;
3710 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3711 /* we assume just one segment left network */
3712 tp->bytes_acked += min(ack - prior_snd_una,
3713 tp->mss_cache);
3714 }
3715
3716 prior_fackets = tp->fackets_out;
3717 prior_in_flight = tcp_packets_in_flight(tp);
3718
3719 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3720 /* Window is constant, pure forward advance.
3721 * No more checks are required.
3722 * Note, we use the fact that SND.UNA>=SND.WL2.
3723 */
3724 tcp_update_wl(tp, ack_seq);
3725 tp->snd_una = ack;
3726 flag |= FLAG_WIN_UPDATE;
3727
3728 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3729
3730 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3731 } else {
3732 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3733 flag |= FLAG_DATA;
3734 else
3735 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3736
3737 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3738
3739 if (TCP_SKB_CB(skb)->sacked)
3740 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3741
3742 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3743 flag |= FLAG_ECE;
3744
3745 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3746 }
3747
3748 /* We passed data and got it acked, remove any soft error
3749 * log. Something worked...
3750 */
3751 sk->sk_err_soft = 0;
3752 icsk->icsk_probes_out = 0;
3753 tp->rcv_tstamp = tcp_time_stamp;
3754 prior_packets = tp->packets_out;
3755 if (!prior_packets)
3756 goto no_queue;
3757
3758 /* See if we can take anything off of the retransmit queue. */
3759 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3760
3761 pkts_acked = prior_packets - tp->packets_out;
3762 newly_acked_sacked = (prior_packets - prior_sacked) -
3763 (tp->packets_out - tp->sacked_out);
3764
3765 if (tp->frto_counter)
3766 frto_cwnd = tcp_process_frto(sk, flag);
3767 /* Guarantee sacktag reordering detection against wrap-arounds */
3768 if (before(tp->frto_highmark, tp->snd_una))
3769 tp->frto_highmark = 0;
3770
3771 if (tcp_ack_is_dubious(sk, flag)) {
3772 /* Advance CWND, if state allows this. */
3773 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3774 tcp_may_raise_cwnd(sk, flag))
3775 tcp_cong_avoid(sk, ack, prior_in_flight);
3776 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3777 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3778 is_dupack, flag);
3779 } else {
3780 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3781 tcp_cong_avoid(sk, ack, prior_in_flight);
3782 }
3783
3784 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3785 dst_confirm(__sk_dst_get(sk));
3786
3787 return 1;
3788
3789 no_queue:
3790 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3791 if (flag & FLAG_DSACKING_ACK)
3792 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3793 is_dupack, flag);
3794 /* If this ack opens up a zero window, clear backoff. It was
3795 * being used to time the probes, and is probably far higher than
3796 * it needs to be for normal retransmission.
3797 */
3798 if (tcp_send_head(sk))
3799 tcp_ack_probe(sk);
3800 return 1;
3801
3802 invalid_ack:
3803 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3804 return -1;
3805
3806 old_ack:
3807 /* If data was SACKed, tag it and see if we should send more data.
3808 * If data was DSACKed, see if we can undo a cwnd reduction.
3809 */
3810 if (TCP_SKB_CB(skb)->sacked) {
3811 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3812 newly_acked_sacked = tp->sacked_out - prior_sacked;
3813 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3814 is_dupack, flag);
3815 }
3816
3817 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3818 return 0;
3819 }
3820
3821 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3822 * But, this can also be called on packets in the established flow when
3823 * the fast version below fails.
3824 */
3825 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3826 const u8 **hvpp, int estab)
3827 {
3828 const unsigned char *ptr;
3829 const struct tcphdr *th = tcp_hdr(skb);
3830 int length = (th->doff * 4) - sizeof(struct tcphdr);
3831
3832 ptr = (const unsigned char *)(th + 1);
3833 opt_rx->saw_tstamp = 0;
3834
3835 while (length > 0) {
3836 int opcode = *ptr++;
3837 int opsize;
3838
3839 switch (opcode) {
3840 case TCPOPT_EOL:
3841 return;
3842 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3843 length--;
3844 continue;
3845 default:
3846 opsize = *ptr++;
3847 if (opsize < 2) /* "silly options" */
3848 return;
3849 if (opsize > length)
3850 return; /* don't parse partial options */
3851 switch (opcode) {
3852 case TCPOPT_MSS:
3853 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3854 u16 in_mss = get_unaligned_be16(ptr);
3855 if (in_mss) {
3856 if (opt_rx->user_mss &&
3857 opt_rx->user_mss < in_mss)
3858 in_mss = opt_rx->user_mss;
3859 opt_rx->mss_clamp = in_mss;
3860 }
3861 }
3862 break;
3863 case TCPOPT_WINDOW:
3864 if (opsize == TCPOLEN_WINDOW && th->syn &&
3865 !estab && sysctl_tcp_window_scaling) {
3866 __u8 snd_wscale = *(__u8 *)ptr;
3867 opt_rx->wscale_ok = 1;
3868 if (snd_wscale > 14) {
3869 if (net_ratelimit())
3870 pr_info("%s: Illegal window scaling value %d >14 received\n",
3871 __func__,
3872 snd_wscale);
3873 snd_wscale = 14;
3874 }
3875 opt_rx->snd_wscale = snd_wscale;
3876 }
3877 break;
3878 case TCPOPT_TIMESTAMP:
3879 if ((opsize == TCPOLEN_TIMESTAMP) &&
3880 ((estab && opt_rx->tstamp_ok) ||
3881 (!estab && sysctl_tcp_timestamps))) {
3882 opt_rx->saw_tstamp = 1;
3883 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3884 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3885 }
3886 break;
3887 case TCPOPT_SACK_PERM:
3888 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3889 !estab && sysctl_tcp_sack) {
3890 opt_rx->sack_ok = TCP_SACK_SEEN;
3891 tcp_sack_reset(opt_rx);
3892 }
3893 break;
3894
3895 case TCPOPT_SACK:
3896 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3897 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3898 opt_rx->sack_ok) {
3899 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3900 }
3901 break;
3902 #ifdef CONFIG_TCP_MD5SIG
3903 case TCPOPT_MD5SIG:
3904 /*
3905 * The MD5 Hash has already been
3906 * checked (see tcp_v{4,6}_do_rcv()).
3907 */
3908 break;
3909 #endif
3910 case TCPOPT_COOKIE:
3911 /* This option is variable length.
3912 */
3913 switch (opsize) {
3914 case TCPOLEN_COOKIE_BASE:
3915 /* not yet implemented */
3916 break;
3917 case TCPOLEN_COOKIE_PAIR:
3918 /* not yet implemented */
3919 break;
3920 case TCPOLEN_COOKIE_MIN+0:
3921 case TCPOLEN_COOKIE_MIN+2:
3922 case TCPOLEN_COOKIE_MIN+4:
3923 case TCPOLEN_COOKIE_MIN+6:
3924 case TCPOLEN_COOKIE_MAX:
3925 /* 16-bit multiple */
3926 opt_rx->cookie_plus = opsize;
3927 *hvpp = ptr;
3928 break;
3929 default:
3930 /* ignore option */
3931 break;
3932 }
3933 break;
3934 }
3935
3936 ptr += opsize-2;
3937 length -= opsize;
3938 }
3939 }
3940 }
3941 EXPORT_SYMBOL(tcp_parse_options);
3942
3943 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3944 {
3945 const __be32 *ptr = (const __be32 *)(th + 1);
3946
3947 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3948 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3949 tp->rx_opt.saw_tstamp = 1;
3950 ++ptr;
3951 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3952 ++ptr;
3953 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3954 return 1;
3955 }
3956 return 0;
3957 }
3958
3959 /* Fast parse options. This hopes to only see timestamps.
3960 * If it is wrong it falls back on tcp_parse_options().
3961 */
3962 static int tcp_fast_parse_options(const struct sk_buff *skb,
3963 const struct tcphdr *th,
3964 struct tcp_sock *tp, const u8 **hvpp)
3965 {
3966 /* In the spirit of fast parsing, compare doff directly to constant
3967 * values. Because equality is used, short doff can be ignored here.
3968 */
3969 if (th->doff == (sizeof(*th) / 4)) {
3970 tp->rx_opt.saw_tstamp = 0;
3971 return 0;
3972 } else if (tp->rx_opt.tstamp_ok &&
3973 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3974 if (tcp_parse_aligned_timestamp(tp, th))
3975 return 1;
3976 }
3977 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3978 return 1;
3979 }
3980
3981 #ifdef CONFIG_TCP_MD5SIG
3982 /*
3983 * Parse MD5 Signature option
3984 */
3985 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3986 {
3987 int length = (th->doff << 2) - sizeof(*th);
3988 const u8 *ptr = (const u8 *)(th + 1);
3989
3990 /* If the TCP option is too short, we can short cut */
3991 if (length < TCPOLEN_MD5SIG)
3992 return NULL;
3993
3994 while (length > 0) {
3995 int opcode = *ptr++;
3996 int opsize;
3997
3998 switch(opcode) {
3999 case TCPOPT_EOL:
4000 return NULL;
4001 case TCPOPT_NOP:
4002 length--;
4003 continue;
4004 default:
4005 opsize = *ptr++;
4006 if (opsize < 2 || opsize > length)
4007 return NULL;
4008 if (opcode == TCPOPT_MD5SIG)
4009 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4010 }
4011 ptr += opsize - 2;
4012 length -= opsize;
4013 }
4014 return NULL;
4015 }
4016 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4017 #endif
4018
4019 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4020 {
4021 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4022 tp->rx_opt.ts_recent_stamp = get_seconds();
4023 }
4024
4025 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4026 {
4027 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4028 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4029 * extra check below makes sure this can only happen
4030 * for pure ACK frames. -DaveM
4031 *
4032 * Not only, also it occurs for expired timestamps.
4033 */
4034
4035 if (tcp_paws_check(&tp->rx_opt, 0))
4036 tcp_store_ts_recent(tp);
4037 }
4038 }
4039
4040 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4041 *
4042 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4043 * it can pass through stack. So, the following predicate verifies that
4044 * this segment is not used for anything but congestion avoidance or
4045 * fast retransmit. Moreover, we even are able to eliminate most of such
4046 * second order effects, if we apply some small "replay" window (~RTO)
4047 * to timestamp space.
4048 *
4049 * All these measures still do not guarantee that we reject wrapped ACKs
4050 * on networks with high bandwidth, when sequence space is recycled fastly,
4051 * but it guarantees that such events will be very rare and do not affect
4052 * connection seriously. This doesn't look nice, but alas, PAWS is really
4053 * buggy extension.
4054 *
4055 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4056 * states that events when retransmit arrives after original data are rare.
4057 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4058 * the biggest problem on large power networks even with minor reordering.
4059 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4060 * up to bandwidth of 18Gigabit/sec. 8) ]
4061 */
4062
4063 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4064 {
4065 const struct tcp_sock *tp = tcp_sk(sk);
4066 const struct tcphdr *th = tcp_hdr(skb);
4067 u32 seq = TCP_SKB_CB(skb)->seq;
4068 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4069
4070 return (/* 1. Pure ACK with correct sequence number. */
4071 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4072
4073 /* 2. ... and duplicate ACK. */
4074 ack == tp->snd_una &&
4075
4076 /* 3. ... and does not update window. */
4077 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4078
4079 /* 4. ... and sits in replay window. */
4080 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4081 }
4082
4083 static inline int tcp_paws_discard(const struct sock *sk,
4084 const struct sk_buff *skb)
4085 {
4086 const struct tcp_sock *tp = tcp_sk(sk);
4087
4088 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4089 !tcp_disordered_ack(sk, skb);
4090 }
4091
4092 /* Check segment sequence number for validity.
4093 *
4094 * Segment controls are considered valid, if the segment
4095 * fits to the window after truncation to the window. Acceptability
4096 * of data (and SYN, FIN, of course) is checked separately.
4097 * See tcp_data_queue(), for example.
4098 *
4099 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4100 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4101 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4102 * (borrowed from freebsd)
4103 */
4104
4105 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4106 {
4107 return !before(end_seq, tp->rcv_wup) &&
4108 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4109 }
4110
4111 /* When we get a reset we do this. */
4112 static void tcp_reset(struct sock *sk)
4113 {
4114 /* We want the right error as BSD sees it (and indeed as we do). */
4115 switch (sk->sk_state) {
4116 case TCP_SYN_SENT:
4117 sk->sk_err = ECONNREFUSED;
4118 break;
4119 case TCP_CLOSE_WAIT:
4120 sk->sk_err = EPIPE;
4121 break;
4122 case TCP_CLOSE:
4123 return;
4124 default:
4125 sk->sk_err = ECONNRESET;
4126 }
4127 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4128 smp_wmb();
4129
4130 if (!sock_flag(sk, SOCK_DEAD))
4131 sk->sk_error_report(sk);
4132
4133 tcp_done(sk);
4134 }
4135
4136 /*
4137 * Process the FIN bit. This now behaves as it is supposed to work
4138 * and the FIN takes effect when it is validly part of sequence
4139 * space. Not before when we get holes.
4140 *
4141 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4142 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4143 * TIME-WAIT)
4144 *
4145 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4146 * close and we go into CLOSING (and later onto TIME-WAIT)
4147 *
4148 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4149 */
4150 static void tcp_fin(struct sock *sk)
4151 {
4152 struct tcp_sock *tp = tcp_sk(sk);
4153
4154 inet_csk_schedule_ack(sk);
4155
4156 sk->sk_shutdown |= RCV_SHUTDOWN;
4157 sock_set_flag(sk, SOCK_DONE);
4158
4159 switch (sk->sk_state) {
4160 case TCP_SYN_RECV:
4161 case TCP_ESTABLISHED:
4162 /* Move to CLOSE_WAIT */
4163 tcp_set_state(sk, TCP_CLOSE_WAIT);
4164 inet_csk(sk)->icsk_ack.pingpong = 1;
4165 break;
4166
4167 case TCP_CLOSE_WAIT:
4168 case TCP_CLOSING:
4169 /* Received a retransmission of the FIN, do
4170 * nothing.
4171 */
4172 break;
4173 case TCP_LAST_ACK:
4174 /* RFC793: Remain in the LAST-ACK state. */
4175 break;
4176
4177 case TCP_FIN_WAIT1:
4178 /* This case occurs when a simultaneous close
4179 * happens, we must ack the received FIN and
4180 * enter the CLOSING state.
4181 */
4182 tcp_send_ack(sk);
4183 tcp_set_state(sk, TCP_CLOSING);
4184 break;
4185 case TCP_FIN_WAIT2:
4186 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4187 tcp_send_ack(sk);
4188 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4189 break;
4190 default:
4191 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4192 * cases we should never reach this piece of code.
4193 */
4194 pr_err("%s: Impossible, sk->sk_state=%d\n",
4195 __func__, sk->sk_state);
4196 break;
4197 }
4198
4199 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4200 * Probably, we should reset in this case. For now drop them.
4201 */
4202 __skb_queue_purge(&tp->out_of_order_queue);
4203 if (tcp_is_sack(tp))
4204 tcp_sack_reset(&tp->rx_opt);
4205 sk_mem_reclaim(sk);
4206
4207 if (!sock_flag(sk, SOCK_DEAD)) {
4208 sk->sk_state_change(sk);
4209
4210 /* Do not send POLL_HUP for half duplex close. */
4211 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4212 sk->sk_state == TCP_CLOSE)
4213 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4214 else
4215 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4216 }
4217 }
4218
4219 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4220 u32 end_seq)
4221 {
4222 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4223 if (before(seq, sp->start_seq))
4224 sp->start_seq = seq;
4225 if (after(end_seq, sp->end_seq))
4226 sp->end_seq = end_seq;
4227 return 1;
4228 }
4229 return 0;
4230 }
4231
4232 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4233 {
4234 struct tcp_sock *tp = tcp_sk(sk);
4235
4236 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4237 int mib_idx;
4238
4239 if (before(seq, tp->rcv_nxt))
4240 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4241 else
4242 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4243
4244 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4245
4246 tp->rx_opt.dsack = 1;
4247 tp->duplicate_sack[0].start_seq = seq;
4248 tp->duplicate_sack[0].end_seq = end_seq;
4249 }
4250 }
4251
4252 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4253 {
4254 struct tcp_sock *tp = tcp_sk(sk);
4255
4256 if (!tp->rx_opt.dsack)
4257 tcp_dsack_set(sk, seq, end_seq);
4258 else
4259 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4260 }
4261
4262 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4263 {
4264 struct tcp_sock *tp = tcp_sk(sk);
4265
4266 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4267 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4268 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4269 tcp_enter_quickack_mode(sk);
4270
4271 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4272 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4273
4274 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4275 end_seq = tp->rcv_nxt;
4276 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4277 }
4278 }
4279
4280 tcp_send_ack(sk);
4281 }
4282
4283 /* These routines update the SACK block as out-of-order packets arrive or
4284 * in-order packets close up the sequence space.
4285 */
4286 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4287 {
4288 int this_sack;
4289 struct tcp_sack_block *sp = &tp->selective_acks[0];
4290 struct tcp_sack_block *swalk = sp + 1;
4291
4292 /* See if the recent change to the first SACK eats into
4293 * or hits the sequence space of other SACK blocks, if so coalesce.
4294 */
4295 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4296 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4297 int i;
4298
4299 /* Zap SWALK, by moving every further SACK up by one slot.
4300 * Decrease num_sacks.
4301 */
4302 tp->rx_opt.num_sacks--;
4303 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4304 sp[i] = sp[i + 1];
4305 continue;
4306 }
4307 this_sack++, swalk++;
4308 }
4309 }
4310
4311 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4312 {
4313 struct tcp_sock *tp = tcp_sk(sk);
4314 struct tcp_sack_block *sp = &tp->selective_acks[0];
4315 int cur_sacks = tp->rx_opt.num_sacks;
4316 int this_sack;
4317
4318 if (!cur_sacks)
4319 goto new_sack;
4320
4321 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4322 if (tcp_sack_extend(sp, seq, end_seq)) {
4323 /* Rotate this_sack to the first one. */
4324 for (; this_sack > 0; this_sack--, sp--)
4325 swap(*sp, *(sp - 1));
4326 if (cur_sacks > 1)
4327 tcp_sack_maybe_coalesce(tp);
4328 return;
4329 }
4330 }
4331
4332 /* Could not find an adjacent existing SACK, build a new one,
4333 * put it at the front, and shift everyone else down. We
4334 * always know there is at least one SACK present already here.
4335 *
4336 * If the sack array is full, forget about the last one.
4337 */
4338 if (this_sack >= TCP_NUM_SACKS) {
4339 this_sack--;
4340 tp->rx_opt.num_sacks--;
4341 sp--;
4342 }
4343 for (; this_sack > 0; this_sack--, sp--)
4344 *sp = *(sp - 1);
4345
4346 new_sack:
4347 /* Build the new head SACK, and we're done. */
4348 sp->start_seq = seq;
4349 sp->end_seq = end_seq;
4350 tp->rx_opt.num_sacks++;
4351 }
4352
4353 /* RCV.NXT advances, some SACKs should be eaten. */
4354
4355 static void tcp_sack_remove(struct tcp_sock *tp)
4356 {
4357 struct tcp_sack_block *sp = &tp->selective_acks[0];
4358 int num_sacks = tp->rx_opt.num_sacks;
4359 int this_sack;
4360
4361 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4362 if (skb_queue_empty(&tp->out_of_order_queue)) {
4363 tp->rx_opt.num_sacks = 0;
4364 return;
4365 }
4366
4367 for (this_sack = 0; this_sack < num_sacks;) {
4368 /* Check if the start of the sack is covered by RCV.NXT. */
4369 if (!before(tp->rcv_nxt, sp->start_seq)) {
4370 int i;
4371
4372 /* RCV.NXT must cover all the block! */
4373 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4374
4375 /* Zap this SACK, by moving forward any other SACKS. */
4376 for (i=this_sack+1; i < num_sacks; i++)
4377 tp->selective_acks[i-1] = tp->selective_acks[i];
4378 num_sacks--;
4379 continue;
4380 }
4381 this_sack++;
4382 sp++;
4383 }
4384 tp->rx_opt.num_sacks = num_sacks;
4385 }
4386
4387 /* This one checks to see if we can put data from the
4388 * out_of_order queue into the receive_queue.
4389 */
4390 static void tcp_ofo_queue(struct sock *sk)
4391 {
4392 struct tcp_sock *tp = tcp_sk(sk);
4393 __u32 dsack_high = tp->rcv_nxt;
4394 struct sk_buff *skb;
4395
4396 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4397 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4398 break;
4399
4400 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4401 __u32 dsack = dsack_high;
4402 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4403 dsack_high = TCP_SKB_CB(skb)->end_seq;
4404 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4405 }
4406
4407 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4408 SOCK_DEBUG(sk, "ofo packet was already received\n");
4409 __skb_unlink(skb, &tp->out_of_order_queue);
4410 __kfree_skb(skb);
4411 continue;
4412 }
4413 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4414 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4415 TCP_SKB_CB(skb)->end_seq);
4416
4417 __skb_unlink(skb, &tp->out_of_order_queue);
4418 __skb_queue_tail(&sk->sk_receive_queue, skb);
4419 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4420 if (tcp_hdr(skb)->fin)
4421 tcp_fin(sk);
4422 }
4423 }
4424
4425 static int tcp_prune_ofo_queue(struct sock *sk);
4426 static int tcp_prune_queue(struct sock *sk);
4427
4428 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4429 {
4430 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4431 !sk_rmem_schedule(sk, size)) {
4432
4433 if (tcp_prune_queue(sk) < 0)
4434 return -1;
4435
4436 if (!sk_rmem_schedule(sk, size)) {
4437 if (!tcp_prune_ofo_queue(sk))
4438 return -1;
4439
4440 if (!sk_rmem_schedule(sk, size))
4441 return -1;
4442 }
4443 }
4444 return 0;
4445 }
4446
4447 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4448 {
4449 const struct tcphdr *th = tcp_hdr(skb);
4450 struct tcp_sock *tp = tcp_sk(sk);
4451 int eaten = -1;
4452
4453 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4454 goto drop;
4455
4456 skb_dst_drop(skb);
4457 __skb_pull(skb, th->doff * 4);
4458
4459 TCP_ECN_accept_cwr(tp, skb);
4460
4461 tp->rx_opt.dsack = 0;
4462
4463 /* Queue data for delivery to the user.
4464 * Packets in sequence go to the receive queue.
4465 * Out of sequence packets to the out_of_order_queue.
4466 */
4467 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4468 if (tcp_receive_window(tp) == 0)
4469 goto out_of_window;
4470
4471 /* Ok. In sequence. In window. */
4472 if (tp->ucopy.task == current &&
4473 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4474 sock_owned_by_user(sk) && !tp->urg_data) {
4475 int chunk = min_t(unsigned int, skb->len,
4476 tp->ucopy.len);
4477
4478 __set_current_state(TASK_RUNNING);
4479
4480 local_bh_enable();
4481 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4482 tp->ucopy.len -= chunk;
4483 tp->copied_seq += chunk;
4484 eaten = (chunk == skb->len);
4485 tcp_rcv_space_adjust(sk);
4486 }
4487 local_bh_disable();
4488 }
4489
4490 if (eaten <= 0) {
4491 queue_and_out:
4492 if (eaten < 0 &&
4493 tcp_try_rmem_schedule(sk, skb->truesize))
4494 goto drop;
4495
4496 skb_set_owner_r(skb, sk);
4497 __skb_queue_tail(&sk->sk_receive_queue, skb);
4498 }
4499 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4500 if (skb->len)
4501 tcp_event_data_recv(sk, skb);
4502 if (th->fin)
4503 tcp_fin(sk);
4504
4505 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4506 tcp_ofo_queue(sk);
4507
4508 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4509 * gap in queue is filled.
4510 */
4511 if (skb_queue_empty(&tp->out_of_order_queue))
4512 inet_csk(sk)->icsk_ack.pingpong = 0;
4513 }
4514
4515 if (tp->rx_opt.num_sacks)
4516 tcp_sack_remove(tp);
4517
4518 tcp_fast_path_check(sk);
4519
4520 if (eaten > 0)
4521 __kfree_skb(skb);
4522 else if (!sock_flag(sk, SOCK_DEAD))
4523 sk->sk_data_ready(sk, 0);
4524 return;
4525 }
4526
4527 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4528 /* A retransmit, 2nd most common case. Force an immediate ack. */
4529 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4530 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4531
4532 out_of_window:
4533 tcp_enter_quickack_mode(sk);
4534 inet_csk_schedule_ack(sk);
4535 drop:
4536 __kfree_skb(skb);
4537 return;
4538 }
4539
4540 /* Out of window. F.e. zero window probe. */
4541 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4542 goto out_of_window;
4543
4544 tcp_enter_quickack_mode(sk);
4545
4546 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4547 /* Partial packet, seq < rcv_next < end_seq */
4548 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4549 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4550 TCP_SKB_CB(skb)->end_seq);
4551
4552 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4553
4554 /* If window is closed, drop tail of packet. But after
4555 * remembering D-SACK for its head made in previous line.
4556 */
4557 if (!tcp_receive_window(tp))
4558 goto out_of_window;
4559 goto queue_and_out;
4560 }
4561
4562 TCP_ECN_check_ce(tp, skb);
4563
4564 if (tcp_try_rmem_schedule(sk, skb->truesize))
4565 goto drop;
4566
4567 /* Disable header prediction. */
4568 tp->pred_flags = 0;
4569 inet_csk_schedule_ack(sk);
4570
4571 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4572 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4573
4574 skb_set_owner_r(skb, sk);
4575
4576 if (!skb_peek(&tp->out_of_order_queue)) {
4577 /* Initial out of order segment, build 1 SACK. */
4578 if (tcp_is_sack(tp)) {
4579 tp->rx_opt.num_sacks = 1;
4580 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4581 tp->selective_acks[0].end_seq =
4582 TCP_SKB_CB(skb)->end_seq;
4583 }
4584 __skb_queue_head(&tp->out_of_order_queue, skb);
4585 } else {
4586 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4587 u32 seq = TCP_SKB_CB(skb)->seq;
4588 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4589
4590 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4591 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4592
4593 if (!tp->rx_opt.num_sacks ||
4594 tp->selective_acks[0].end_seq != seq)
4595 goto add_sack;
4596
4597 /* Common case: data arrive in order after hole. */
4598 tp->selective_acks[0].end_seq = end_seq;
4599 return;
4600 }
4601
4602 /* Find place to insert this segment. */
4603 while (1) {
4604 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4605 break;
4606 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4607 skb1 = NULL;
4608 break;
4609 }
4610 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4611 }
4612
4613 /* Do skb overlap to previous one? */
4614 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4615 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4616 /* All the bits are present. Drop. */
4617 __kfree_skb(skb);
4618 tcp_dsack_set(sk, seq, end_seq);
4619 goto add_sack;
4620 }
4621 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4622 /* Partial overlap. */
4623 tcp_dsack_set(sk, seq,
4624 TCP_SKB_CB(skb1)->end_seq);
4625 } else {
4626 if (skb_queue_is_first(&tp->out_of_order_queue,
4627 skb1))
4628 skb1 = NULL;
4629 else
4630 skb1 = skb_queue_prev(
4631 &tp->out_of_order_queue,
4632 skb1);
4633 }
4634 }
4635 if (!skb1)
4636 __skb_queue_head(&tp->out_of_order_queue, skb);
4637 else
4638 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4639
4640 /* And clean segments covered by new one as whole. */
4641 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4642 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4643
4644 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4645 break;
4646 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4647 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4648 end_seq);
4649 break;
4650 }
4651 __skb_unlink(skb1, &tp->out_of_order_queue);
4652 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4653 TCP_SKB_CB(skb1)->end_seq);
4654 __kfree_skb(skb1);
4655 }
4656
4657 add_sack:
4658 if (tcp_is_sack(tp))
4659 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4660 }
4661 }
4662
4663 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4664 struct sk_buff_head *list)
4665 {
4666 struct sk_buff *next = NULL;
4667
4668 if (!skb_queue_is_last(list, skb))
4669 next = skb_queue_next(list, skb);
4670
4671 __skb_unlink(skb, list);
4672 __kfree_skb(skb);
4673 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4674
4675 return next;
4676 }
4677
4678 /* Collapse contiguous sequence of skbs head..tail with
4679 * sequence numbers start..end.
4680 *
4681 * If tail is NULL, this means until the end of the list.
4682 *
4683 * Segments with FIN/SYN are not collapsed (only because this
4684 * simplifies code)
4685 */
4686 static void
4687 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4688 struct sk_buff *head, struct sk_buff *tail,
4689 u32 start, u32 end)
4690 {
4691 struct sk_buff *skb, *n;
4692 bool end_of_skbs;
4693
4694 /* First, check that queue is collapsible and find
4695 * the point where collapsing can be useful. */
4696 skb = head;
4697 restart:
4698 end_of_skbs = true;
4699 skb_queue_walk_from_safe(list, skb, n) {
4700 if (skb == tail)
4701 break;
4702 /* No new bits? It is possible on ofo queue. */
4703 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4704 skb = tcp_collapse_one(sk, skb, list);
4705 if (!skb)
4706 break;
4707 goto restart;
4708 }
4709
4710 /* The first skb to collapse is:
4711 * - not SYN/FIN and
4712 * - bloated or contains data before "start" or
4713 * overlaps to the next one.
4714 */
4715 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4716 (tcp_win_from_space(skb->truesize) > skb->len ||
4717 before(TCP_SKB_CB(skb)->seq, start))) {
4718 end_of_skbs = false;
4719 break;
4720 }
4721
4722 if (!skb_queue_is_last(list, skb)) {
4723 struct sk_buff *next = skb_queue_next(list, skb);
4724 if (next != tail &&
4725 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4726 end_of_skbs = false;
4727 break;
4728 }
4729 }
4730
4731 /* Decided to skip this, advance start seq. */
4732 start = TCP_SKB_CB(skb)->end_seq;
4733 }
4734 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4735 return;
4736
4737 while (before(start, end)) {
4738 struct sk_buff *nskb;
4739 unsigned int header = skb_headroom(skb);
4740 int copy = SKB_MAX_ORDER(header, 0);
4741
4742 /* Too big header? This can happen with IPv6. */
4743 if (copy < 0)
4744 return;
4745 if (end - start < copy)
4746 copy = end - start;
4747 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4748 if (!nskb)
4749 return;
4750
4751 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4752 skb_set_network_header(nskb, (skb_network_header(skb) -
4753 skb->head));
4754 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4755 skb->head));
4756 skb_reserve(nskb, header);
4757 memcpy(nskb->head, skb->head, header);
4758 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4759 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4760 __skb_queue_before(list, skb, nskb);
4761 skb_set_owner_r(nskb, sk);
4762
4763 /* Copy data, releasing collapsed skbs. */
4764 while (copy > 0) {
4765 int offset = start - TCP_SKB_CB(skb)->seq;
4766 int size = TCP_SKB_CB(skb)->end_seq - start;
4767
4768 BUG_ON(offset < 0);
4769 if (size > 0) {
4770 size = min(copy, size);
4771 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4772 BUG();
4773 TCP_SKB_CB(nskb)->end_seq += size;
4774 copy -= size;
4775 start += size;
4776 }
4777 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4778 skb = tcp_collapse_one(sk, skb, list);
4779 if (!skb ||
4780 skb == tail ||
4781 tcp_hdr(skb)->syn ||
4782 tcp_hdr(skb)->fin)
4783 return;
4784 }
4785 }
4786 }
4787 }
4788
4789 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4790 * and tcp_collapse() them until all the queue is collapsed.
4791 */
4792 static void tcp_collapse_ofo_queue(struct sock *sk)
4793 {
4794 struct tcp_sock *tp = tcp_sk(sk);
4795 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4796 struct sk_buff *head;
4797 u32 start, end;
4798
4799 if (skb == NULL)
4800 return;
4801
4802 start = TCP_SKB_CB(skb)->seq;
4803 end = TCP_SKB_CB(skb)->end_seq;
4804 head = skb;
4805
4806 for (;;) {
4807 struct sk_buff *next = NULL;
4808
4809 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4810 next = skb_queue_next(&tp->out_of_order_queue, skb);
4811 skb = next;
4812
4813 /* Segment is terminated when we see gap or when
4814 * we are at the end of all the queue. */
4815 if (!skb ||
4816 after(TCP_SKB_CB(skb)->seq, end) ||
4817 before(TCP_SKB_CB(skb)->end_seq, start)) {
4818 tcp_collapse(sk, &tp->out_of_order_queue,
4819 head, skb, start, end);
4820 head = skb;
4821 if (!skb)
4822 break;
4823 /* Start new segment */
4824 start = TCP_SKB_CB(skb)->seq;
4825 end = TCP_SKB_CB(skb)->end_seq;
4826 } else {
4827 if (before(TCP_SKB_CB(skb)->seq, start))
4828 start = TCP_SKB_CB(skb)->seq;
4829 if (after(TCP_SKB_CB(skb)->end_seq, end))
4830 end = TCP_SKB_CB(skb)->end_seq;
4831 }
4832 }
4833 }
4834
4835 /*
4836 * Purge the out-of-order queue.
4837 * Return true if queue was pruned.
4838 */
4839 static int tcp_prune_ofo_queue(struct sock *sk)
4840 {
4841 struct tcp_sock *tp = tcp_sk(sk);
4842 int res = 0;
4843
4844 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4845 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4846 __skb_queue_purge(&tp->out_of_order_queue);
4847
4848 /* Reset SACK state. A conforming SACK implementation will
4849 * do the same at a timeout based retransmit. When a connection
4850 * is in a sad state like this, we care only about integrity
4851 * of the connection not performance.
4852 */
4853 if (tp->rx_opt.sack_ok)
4854 tcp_sack_reset(&tp->rx_opt);
4855 sk_mem_reclaim(sk);
4856 res = 1;
4857 }
4858 return res;
4859 }
4860
4861 /* Reduce allocated memory if we can, trying to get
4862 * the socket within its memory limits again.
4863 *
4864 * Return less than zero if we should start dropping frames
4865 * until the socket owning process reads some of the data
4866 * to stabilize the situation.
4867 */
4868 static int tcp_prune_queue(struct sock *sk)
4869 {
4870 struct tcp_sock *tp = tcp_sk(sk);
4871
4872 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4873
4874 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4875
4876 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4877 tcp_clamp_window(sk);
4878 else if (sk_under_memory_pressure(sk))
4879 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4880
4881 tcp_collapse_ofo_queue(sk);
4882 if (!skb_queue_empty(&sk->sk_receive_queue))
4883 tcp_collapse(sk, &sk->sk_receive_queue,
4884 skb_peek(&sk->sk_receive_queue),
4885 NULL,
4886 tp->copied_seq, tp->rcv_nxt);
4887 sk_mem_reclaim(sk);
4888
4889 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4890 return 0;
4891
4892 /* Collapsing did not help, destructive actions follow.
4893 * This must not ever occur. */
4894
4895 tcp_prune_ofo_queue(sk);
4896
4897 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4898 return 0;
4899
4900 /* If we are really being abused, tell the caller to silently
4901 * drop receive data on the floor. It will get retransmitted
4902 * and hopefully then we'll have sufficient space.
4903 */
4904 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4905
4906 /* Massive buffer overcommit. */
4907 tp->pred_flags = 0;
4908 return -1;
4909 }
4910
4911 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4912 * As additional protections, we do not touch cwnd in retransmission phases,
4913 * and if application hit its sndbuf limit recently.
4914 */
4915 void tcp_cwnd_application_limited(struct sock *sk)
4916 {
4917 struct tcp_sock *tp = tcp_sk(sk);
4918
4919 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4920 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4921 /* Limited by application or receiver window. */
4922 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4923 u32 win_used = max(tp->snd_cwnd_used, init_win);
4924 if (win_used < tp->snd_cwnd) {
4925 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4926 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4927 }
4928 tp->snd_cwnd_used = 0;
4929 }
4930 tp->snd_cwnd_stamp = tcp_time_stamp;
4931 }
4932
4933 static int tcp_should_expand_sndbuf(const struct sock *sk)
4934 {
4935 const struct tcp_sock *tp = tcp_sk(sk);
4936
4937 /* If the user specified a specific send buffer setting, do
4938 * not modify it.
4939 */
4940 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4941 return 0;
4942
4943 /* If we are under global TCP memory pressure, do not expand. */
4944 if (sk_under_memory_pressure(sk))
4945 return 0;
4946
4947 /* If we are under soft global TCP memory pressure, do not expand. */
4948 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4949 return 0;
4950
4951 /* If we filled the congestion window, do not expand. */
4952 if (tp->packets_out >= tp->snd_cwnd)
4953 return 0;
4954
4955 return 1;
4956 }
4957
4958 /* When incoming ACK allowed to free some skb from write_queue,
4959 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4960 * on the exit from tcp input handler.
4961 *
4962 * PROBLEM: sndbuf expansion does not work well with largesend.
4963 */
4964 static void tcp_new_space(struct sock *sk)
4965 {
4966 struct tcp_sock *tp = tcp_sk(sk);
4967
4968 if (tcp_should_expand_sndbuf(sk)) {
4969 int sndmem = SKB_TRUESIZE(max_t(u32,
4970 tp->rx_opt.mss_clamp,
4971 tp->mss_cache) +
4972 MAX_TCP_HEADER);
4973 int demanded = max_t(unsigned int, tp->snd_cwnd,
4974 tp->reordering + 1);
4975 sndmem *= 2 * demanded;
4976 if (sndmem > sk->sk_sndbuf)
4977 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4978 tp->snd_cwnd_stamp = tcp_time_stamp;
4979 }
4980
4981 sk->sk_write_space(sk);
4982 }
4983
4984 static void tcp_check_space(struct sock *sk)
4985 {
4986 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4987 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4988 if (sk->sk_socket &&
4989 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4990 tcp_new_space(sk);
4991 }
4992 }
4993
4994 static inline void tcp_data_snd_check(struct sock *sk)
4995 {
4996 tcp_push_pending_frames(sk);
4997 tcp_check_space(sk);
4998 }
4999
5000 /*
5001 * Check if sending an ack is needed.
5002 */
5003 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5004 {
5005 struct tcp_sock *tp = tcp_sk(sk);
5006
5007 /* More than one full frame received... */
5008 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5009 /* ... and right edge of window advances far enough.
5010 * (tcp_recvmsg() will send ACK otherwise). Or...
5011 */
5012 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5013 /* We ACK each frame or... */
5014 tcp_in_quickack_mode(sk) ||
5015 /* We have out of order data. */
5016 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5017 /* Then ack it now */
5018 tcp_send_ack(sk);
5019 } else {
5020 /* Else, send delayed ack. */
5021 tcp_send_delayed_ack(sk);
5022 }
5023 }
5024
5025 static inline void tcp_ack_snd_check(struct sock *sk)
5026 {
5027 if (!inet_csk_ack_scheduled(sk)) {
5028 /* We sent a data segment already. */
5029 return;
5030 }
5031 __tcp_ack_snd_check(sk, 1);
5032 }
5033
5034 /*
5035 * This routine is only called when we have urgent data
5036 * signaled. Its the 'slow' part of tcp_urg. It could be
5037 * moved inline now as tcp_urg is only called from one
5038 * place. We handle URGent data wrong. We have to - as
5039 * BSD still doesn't use the correction from RFC961.
5040 * For 1003.1g we should support a new option TCP_STDURG to permit
5041 * either form (or just set the sysctl tcp_stdurg).
5042 */
5043
5044 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5045 {
5046 struct tcp_sock *tp = tcp_sk(sk);
5047 u32 ptr = ntohs(th->urg_ptr);
5048
5049 if (ptr && !sysctl_tcp_stdurg)
5050 ptr--;
5051 ptr += ntohl(th->seq);
5052
5053 /* Ignore urgent data that we've already seen and read. */
5054 if (after(tp->copied_seq, ptr))
5055 return;
5056
5057 /* Do not replay urg ptr.
5058 *
5059 * NOTE: interesting situation not covered by specs.
5060 * Misbehaving sender may send urg ptr, pointing to segment,
5061 * which we already have in ofo queue. We are not able to fetch
5062 * such data and will stay in TCP_URG_NOTYET until will be eaten
5063 * by recvmsg(). Seems, we are not obliged to handle such wicked
5064 * situations. But it is worth to think about possibility of some
5065 * DoSes using some hypothetical application level deadlock.
5066 */
5067 if (before(ptr, tp->rcv_nxt))
5068 return;
5069
5070 /* Do we already have a newer (or duplicate) urgent pointer? */
5071 if (tp->urg_data && !after(ptr, tp->urg_seq))
5072 return;
5073
5074 /* Tell the world about our new urgent pointer. */
5075 sk_send_sigurg(sk);
5076
5077 /* We may be adding urgent data when the last byte read was
5078 * urgent. To do this requires some care. We cannot just ignore
5079 * tp->copied_seq since we would read the last urgent byte again
5080 * as data, nor can we alter copied_seq until this data arrives
5081 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5082 *
5083 * NOTE. Double Dutch. Rendering to plain English: author of comment
5084 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5085 * and expect that both A and B disappear from stream. This is _wrong_.
5086 * Though this happens in BSD with high probability, this is occasional.
5087 * Any application relying on this is buggy. Note also, that fix "works"
5088 * only in this artificial test. Insert some normal data between A and B and we will
5089 * decline of BSD again. Verdict: it is better to remove to trap
5090 * buggy users.
5091 */
5092 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5093 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5094 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5095 tp->copied_seq++;
5096 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5097 __skb_unlink(skb, &sk->sk_receive_queue);
5098 __kfree_skb(skb);
5099 }
5100 }
5101
5102 tp->urg_data = TCP_URG_NOTYET;
5103 tp->urg_seq = ptr;
5104
5105 /* Disable header prediction. */
5106 tp->pred_flags = 0;
5107 }
5108
5109 /* This is the 'fast' part of urgent handling. */
5110 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5111 {
5112 struct tcp_sock *tp = tcp_sk(sk);
5113
5114 /* Check if we get a new urgent pointer - normally not. */
5115 if (th->urg)
5116 tcp_check_urg(sk, th);
5117
5118 /* Do we wait for any urgent data? - normally not... */
5119 if (tp->urg_data == TCP_URG_NOTYET) {
5120 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5121 th->syn;
5122
5123 /* Is the urgent pointer pointing into this packet? */
5124 if (ptr < skb->len) {
5125 u8 tmp;
5126 if (skb_copy_bits(skb, ptr, &tmp, 1))
5127 BUG();
5128 tp->urg_data = TCP_URG_VALID | tmp;
5129 if (!sock_flag(sk, SOCK_DEAD))
5130 sk->sk_data_ready(sk, 0);
5131 }
5132 }
5133 }
5134
5135 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5136 {
5137 struct tcp_sock *tp = tcp_sk(sk);
5138 int chunk = skb->len - hlen;
5139 int err;
5140
5141 local_bh_enable();
5142 if (skb_csum_unnecessary(skb))
5143 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5144 else
5145 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5146 tp->ucopy.iov);
5147
5148 if (!err) {
5149 tp->ucopy.len -= chunk;
5150 tp->copied_seq += chunk;
5151 tcp_rcv_space_adjust(sk);
5152 }
5153
5154 local_bh_disable();
5155 return err;
5156 }
5157
5158 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5159 struct sk_buff *skb)
5160 {
5161 __sum16 result;
5162
5163 if (sock_owned_by_user(sk)) {
5164 local_bh_enable();
5165 result = __tcp_checksum_complete(skb);
5166 local_bh_disable();
5167 } else {
5168 result = __tcp_checksum_complete(skb);
5169 }
5170 return result;
5171 }
5172
5173 static inline int tcp_checksum_complete_user(struct sock *sk,
5174 struct sk_buff *skb)
5175 {
5176 return !skb_csum_unnecessary(skb) &&
5177 __tcp_checksum_complete_user(sk, skb);
5178 }
5179
5180 #ifdef CONFIG_NET_DMA
5181 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5182 int hlen)
5183 {
5184 struct tcp_sock *tp = tcp_sk(sk);
5185 int chunk = skb->len - hlen;
5186 int dma_cookie;
5187 int copied_early = 0;
5188
5189 if (tp->ucopy.wakeup)
5190 return 0;
5191
5192 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5193 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5194
5195 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5196
5197 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5198 skb, hlen,
5199 tp->ucopy.iov, chunk,
5200 tp->ucopy.pinned_list);
5201
5202 if (dma_cookie < 0)
5203 goto out;
5204
5205 tp->ucopy.dma_cookie = dma_cookie;
5206 copied_early = 1;
5207
5208 tp->ucopy.len -= chunk;
5209 tp->copied_seq += chunk;
5210 tcp_rcv_space_adjust(sk);
5211
5212 if ((tp->ucopy.len == 0) ||
5213 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5214 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5215 tp->ucopy.wakeup = 1;
5216 sk->sk_data_ready(sk, 0);
5217 }
5218 } else if (chunk > 0) {
5219 tp->ucopy.wakeup = 1;
5220 sk->sk_data_ready(sk, 0);
5221 }
5222 out:
5223 return copied_early;
5224 }
5225 #endif /* CONFIG_NET_DMA */
5226
5227 /* Does PAWS and seqno based validation of an incoming segment, flags will
5228 * play significant role here.
5229 */
5230 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5231 const struct tcphdr *th, int syn_inerr)
5232 {
5233 const u8 *hash_location;
5234 struct tcp_sock *tp = tcp_sk(sk);
5235
5236 /* RFC1323: H1. Apply PAWS check first. */
5237 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5238 tp->rx_opt.saw_tstamp &&
5239 tcp_paws_discard(sk, skb)) {
5240 if (!th->rst) {
5241 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5242 tcp_send_dupack(sk, skb);
5243 goto discard;
5244 }
5245 /* Reset is accepted even if it did not pass PAWS. */
5246 }
5247
5248 /* Step 1: check sequence number */
5249 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5250 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5251 * (RST) segments are validated by checking their SEQ-fields."
5252 * And page 69: "If an incoming segment is not acceptable,
5253 * an acknowledgment should be sent in reply (unless the RST
5254 * bit is set, if so drop the segment and return)".
5255 */
5256 if (!th->rst)
5257 tcp_send_dupack(sk, skb);
5258 goto discard;
5259 }
5260
5261 /* Step 2: check RST bit */
5262 if (th->rst) {
5263 tcp_reset(sk);
5264 goto discard;
5265 }
5266
5267 /* ts_recent update must be made after we are sure that the packet
5268 * is in window.
5269 */
5270 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5271
5272 /* step 3: check security and precedence [ignored] */
5273
5274 /* step 4: Check for a SYN in window. */
5275 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5276 if (syn_inerr)
5277 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5278 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5279 tcp_reset(sk);
5280 return -1;
5281 }
5282
5283 return 1;
5284
5285 discard:
5286 __kfree_skb(skb);
5287 return 0;
5288 }
5289
5290 /*
5291 * TCP receive function for the ESTABLISHED state.
5292 *
5293 * It is split into a fast path and a slow path. The fast path is
5294 * disabled when:
5295 * - A zero window was announced from us - zero window probing
5296 * is only handled properly in the slow path.
5297 * - Out of order segments arrived.
5298 * - Urgent data is expected.
5299 * - There is no buffer space left
5300 * - Unexpected TCP flags/window values/header lengths are received
5301 * (detected by checking the TCP header against pred_flags)
5302 * - Data is sent in both directions. Fast path only supports pure senders
5303 * or pure receivers (this means either the sequence number or the ack
5304 * value must stay constant)
5305 * - Unexpected TCP option.
5306 *
5307 * When these conditions are not satisfied it drops into a standard
5308 * receive procedure patterned after RFC793 to handle all cases.
5309 * The first three cases are guaranteed by proper pred_flags setting,
5310 * the rest is checked inline. Fast processing is turned on in
5311 * tcp_data_queue when everything is OK.
5312 */
5313 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5314 const struct tcphdr *th, unsigned int len)
5315 {
5316 struct tcp_sock *tp = tcp_sk(sk);
5317 int res;
5318
5319 /*
5320 * Header prediction.
5321 * The code loosely follows the one in the famous
5322 * "30 instruction TCP receive" Van Jacobson mail.
5323 *
5324 * Van's trick is to deposit buffers into socket queue
5325 * on a device interrupt, to call tcp_recv function
5326 * on the receive process context and checksum and copy
5327 * the buffer to user space. smart...
5328 *
5329 * Our current scheme is not silly either but we take the
5330 * extra cost of the net_bh soft interrupt processing...
5331 * We do checksum and copy also but from device to kernel.
5332 */
5333
5334 tp->rx_opt.saw_tstamp = 0;
5335
5336 /* pred_flags is 0xS?10 << 16 + snd_wnd
5337 * if header_prediction is to be made
5338 * 'S' will always be tp->tcp_header_len >> 2
5339 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5340 * turn it off (when there are holes in the receive
5341 * space for instance)
5342 * PSH flag is ignored.
5343 */
5344
5345 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5346 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5347 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5348 int tcp_header_len = tp->tcp_header_len;
5349
5350 /* Timestamp header prediction: tcp_header_len
5351 * is automatically equal to th->doff*4 due to pred_flags
5352 * match.
5353 */
5354
5355 /* Check timestamp */
5356 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5357 /* No? Slow path! */
5358 if (!tcp_parse_aligned_timestamp(tp, th))
5359 goto slow_path;
5360
5361 /* If PAWS failed, check it more carefully in slow path */
5362 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5363 goto slow_path;
5364
5365 /* DO NOT update ts_recent here, if checksum fails
5366 * and timestamp was corrupted part, it will result
5367 * in a hung connection since we will drop all
5368 * future packets due to the PAWS test.
5369 */
5370 }
5371
5372 if (len <= tcp_header_len) {
5373 /* Bulk data transfer: sender */
5374 if (len == tcp_header_len) {
5375 /* Predicted packet is in window by definition.
5376 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5377 * Hence, check seq<=rcv_wup reduces to:
5378 */
5379 if (tcp_header_len ==
5380 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5381 tp->rcv_nxt == tp->rcv_wup)
5382 tcp_store_ts_recent(tp);
5383
5384 /* We know that such packets are checksummed
5385 * on entry.
5386 */
5387 tcp_ack(sk, skb, 0);
5388 __kfree_skb(skb);
5389 tcp_data_snd_check(sk);
5390 return 0;
5391 } else { /* Header too small */
5392 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5393 goto discard;
5394 }
5395 } else {
5396 int eaten = 0;
5397 int copied_early = 0;
5398
5399 if (tp->copied_seq == tp->rcv_nxt &&
5400 len - tcp_header_len <= tp->ucopy.len) {
5401 #ifdef CONFIG_NET_DMA
5402 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5403 copied_early = 1;
5404 eaten = 1;
5405 }
5406 #endif
5407 if (tp->ucopy.task == current &&
5408 sock_owned_by_user(sk) && !copied_early) {
5409 __set_current_state(TASK_RUNNING);
5410
5411 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5412 eaten = 1;
5413 }
5414 if (eaten) {
5415 /* Predicted packet is in window by definition.
5416 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5417 * Hence, check seq<=rcv_wup reduces to:
5418 */
5419 if (tcp_header_len ==
5420 (sizeof(struct tcphdr) +
5421 TCPOLEN_TSTAMP_ALIGNED) &&
5422 tp->rcv_nxt == tp->rcv_wup)
5423 tcp_store_ts_recent(tp);
5424
5425 tcp_rcv_rtt_measure_ts(sk, skb);
5426
5427 __skb_pull(skb, tcp_header_len);
5428 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5429 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5430 }
5431 if (copied_early)
5432 tcp_cleanup_rbuf(sk, skb->len);
5433 }
5434 if (!eaten) {
5435 if (tcp_checksum_complete_user(sk, skb))
5436 goto csum_error;
5437
5438 /* Predicted packet is in window by definition.
5439 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5440 * Hence, check seq<=rcv_wup reduces to:
5441 */
5442 if (tcp_header_len ==
5443 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5444 tp->rcv_nxt == tp->rcv_wup)
5445 tcp_store_ts_recent(tp);
5446
5447 tcp_rcv_rtt_measure_ts(sk, skb);
5448
5449 if ((int)skb->truesize > sk->sk_forward_alloc)
5450 goto step5;
5451
5452 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5453
5454 /* Bulk data transfer: receiver */
5455 __skb_pull(skb, tcp_header_len);
5456 __skb_queue_tail(&sk->sk_receive_queue, skb);
5457 skb_set_owner_r(skb, sk);
5458 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5459 }
5460
5461 tcp_event_data_recv(sk, skb);
5462
5463 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5464 /* Well, only one small jumplet in fast path... */
5465 tcp_ack(sk, skb, FLAG_DATA);
5466 tcp_data_snd_check(sk);
5467 if (!inet_csk_ack_scheduled(sk))
5468 goto no_ack;
5469 }
5470
5471 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5472 __tcp_ack_snd_check(sk, 0);
5473 no_ack:
5474 #ifdef CONFIG_NET_DMA
5475 if (copied_early)
5476 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5477 else
5478 #endif
5479 if (eaten)
5480 __kfree_skb(skb);
5481 else
5482 sk->sk_data_ready(sk, 0);
5483 return 0;
5484 }
5485 }
5486
5487 slow_path:
5488 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5489 goto csum_error;
5490
5491 /*
5492 * Standard slow path.
5493 */
5494
5495 res = tcp_validate_incoming(sk, skb, th, 1);
5496 if (res <= 0)
5497 return -res;
5498
5499 step5:
5500 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5501 goto discard;
5502
5503 tcp_rcv_rtt_measure_ts(sk, skb);
5504
5505 /* Process urgent data. */
5506 tcp_urg(sk, skb, th);
5507
5508 /* step 7: process the segment text */
5509 tcp_data_queue(sk, skb);
5510
5511 tcp_data_snd_check(sk);
5512 tcp_ack_snd_check(sk);
5513 return 0;
5514
5515 csum_error:
5516 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5517
5518 discard:
5519 __kfree_skb(skb);
5520 return 0;
5521 }
5522 EXPORT_SYMBOL(tcp_rcv_established);
5523
5524 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5525 const struct tcphdr *th, unsigned int len)
5526 {
5527 const u8 *hash_location;
5528 struct inet_connection_sock *icsk = inet_csk(sk);
5529 struct tcp_sock *tp = tcp_sk(sk);
5530 struct tcp_cookie_values *cvp = tp->cookie_values;
5531 int saved_clamp = tp->rx_opt.mss_clamp;
5532
5533 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5534
5535 if (th->ack) {
5536 /* rfc793:
5537 * "If the state is SYN-SENT then
5538 * first check the ACK bit
5539 * If the ACK bit is set
5540 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5541 * a reset (unless the RST bit is set, if so drop
5542 * the segment and return)"
5543 *
5544 * We do not send data with SYN, so that RFC-correct
5545 * test reduces to:
5546 */
5547 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5548 goto reset_and_undo;
5549
5550 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5551 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5552 tcp_time_stamp)) {
5553 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5554 goto reset_and_undo;
5555 }
5556
5557 /* Now ACK is acceptable.
5558 *
5559 * "If the RST bit is set
5560 * If the ACK was acceptable then signal the user "error:
5561 * connection reset", drop the segment, enter CLOSED state,
5562 * delete TCB, and return."
5563 */
5564
5565 if (th->rst) {
5566 tcp_reset(sk);
5567 goto discard;
5568 }
5569
5570 /* rfc793:
5571 * "fifth, if neither of the SYN or RST bits is set then
5572 * drop the segment and return."
5573 *
5574 * See note below!
5575 * --ANK(990513)
5576 */
5577 if (!th->syn)
5578 goto discard_and_undo;
5579
5580 /* rfc793:
5581 * "If the SYN bit is on ...
5582 * are acceptable then ...
5583 * (our SYN has been ACKed), change the connection
5584 * state to ESTABLISHED..."
5585 */
5586
5587 TCP_ECN_rcv_synack(tp, th);
5588
5589 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5590 tcp_ack(sk, skb, FLAG_SLOWPATH);
5591
5592 /* Ok.. it's good. Set up sequence numbers and
5593 * move to established.
5594 */
5595 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5596 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5597
5598 /* RFC1323: The window in SYN & SYN/ACK segments is
5599 * never scaled.
5600 */
5601 tp->snd_wnd = ntohs(th->window);
5602 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5603
5604 if (!tp->rx_opt.wscale_ok) {
5605 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5606 tp->window_clamp = min(tp->window_clamp, 65535U);
5607 }
5608
5609 if (tp->rx_opt.saw_tstamp) {
5610 tp->rx_opt.tstamp_ok = 1;
5611 tp->tcp_header_len =
5612 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5613 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5614 tcp_store_ts_recent(tp);
5615 } else {
5616 tp->tcp_header_len = sizeof(struct tcphdr);
5617 }
5618
5619 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5620 tcp_enable_fack(tp);
5621
5622 tcp_mtup_init(sk);
5623 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5624 tcp_initialize_rcv_mss(sk);
5625
5626 /* Remember, tcp_poll() does not lock socket!
5627 * Change state from SYN-SENT only after copied_seq
5628 * is initialized. */
5629 tp->copied_seq = tp->rcv_nxt;
5630
5631 if (cvp != NULL &&
5632 cvp->cookie_pair_size > 0 &&
5633 tp->rx_opt.cookie_plus > 0) {
5634 int cookie_size = tp->rx_opt.cookie_plus
5635 - TCPOLEN_COOKIE_BASE;
5636 int cookie_pair_size = cookie_size
5637 + cvp->cookie_desired;
5638
5639 /* A cookie extension option was sent and returned.
5640 * Note that each incoming SYNACK replaces the
5641 * Responder cookie. The initial exchange is most
5642 * fragile, as protection against spoofing relies
5643 * entirely upon the sequence and timestamp (above).
5644 * This replacement strategy allows the correct pair to
5645 * pass through, while any others will be filtered via
5646 * Responder verification later.
5647 */
5648 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5649 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5650 hash_location, cookie_size);
5651 cvp->cookie_pair_size = cookie_pair_size;
5652 }
5653 }
5654
5655 smp_mb();
5656 tcp_set_state(sk, TCP_ESTABLISHED);
5657
5658 security_inet_conn_established(sk, skb);
5659
5660 /* Make sure socket is routed, for correct metrics. */
5661 icsk->icsk_af_ops->rebuild_header(sk);
5662
5663 tcp_init_metrics(sk);
5664
5665 tcp_init_congestion_control(sk);
5666
5667 /* Prevent spurious tcp_cwnd_restart() on first data
5668 * packet.
5669 */
5670 tp->lsndtime = tcp_time_stamp;
5671
5672 tcp_init_buffer_space(sk);
5673
5674 if (sock_flag(sk, SOCK_KEEPOPEN))
5675 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5676
5677 if (!tp->rx_opt.snd_wscale)
5678 __tcp_fast_path_on(tp, tp->snd_wnd);
5679 else
5680 tp->pred_flags = 0;
5681
5682 if (!sock_flag(sk, SOCK_DEAD)) {
5683 sk->sk_state_change(sk);
5684 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5685 }
5686
5687 if (sk->sk_write_pending ||
5688 icsk->icsk_accept_queue.rskq_defer_accept ||
5689 icsk->icsk_ack.pingpong) {
5690 /* Save one ACK. Data will be ready after
5691 * several ticks, if write_pending is set.
5692 *
5693 * It may be deleted, but with this feature tcpdumps
5694 * look so _wonderfully_ clever, that I was not able
5695 * to stand against the temptation 8) --ANK
5696 */
5697 inet_csk_schedule_ack(sk);
5698 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5699 icsk->icsk_ack.ato = TCP_ATO_MIN;
5700 tcp_incr_quickack(sk);
5701 tcp_enter_quickack_mode(sk);
5702 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5703 TCP_DELACK_MAX, TCP_RTO_MAX);
5704
5705 discard:
5706 __kfree_skb(skb);
5707 return 0;
5708 } else {
5709 tcp_send_ack(sk);
5710 }
5711 return -1;
5712 }
5713
5714 /* No ACK in the segment */
5715
5716 if (th->rst) {
5717 /* rfc793:
5718 * "If the RST bit is set
5719 *
5720 * Otherwise (no ACK) drop the segment and return."
5721 */
5722
5723 goto discard_and_undo;
5724 }
5725
5726 /* PAWS check. */
5727 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5728 tcp_paws_reject(&tp->rx_opt, 0))
5729 goto discard_and_undo;
5730
5731 if (th->syn) {
5732 /* We see SYN without ACK. It is attempt of
5733 * simultaneous connect with crossed SYNs.
5734 * Particularly, it can be connect to self.
5735 */
5736 tcp_set_state(sk, TCP_SYN_RECV);
5737
5738 if (tp->rx_opt.saw_tstamp) {
5739 tp->rx_opt.tstamp_ok = 1;
5740 tcp_store_ts_recent(tp);
5741 tp->tcp_header_len =
5742 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5743 } else {
5744 tp->tcp_header_len = sizeof(struct tcphdr);
5745 }
5746
5747 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5748 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5749
5750 /* RFC1323: The window in SYN & SYN/ACK segments is
5751 * never scaled.
5752 */
5753 tp->snd_wnd = ntohs(th->window);
5754 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5755 tp->max_window = tp->snd_wnd;
5756
5757 TCP_ECN_rcv_syn(tp, th);
5758
5759 tcp_mtup_init(sk);
5760 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5761 tcp_initialize_rcv_mss(sk);
5762
5763 tcp_send_synack(sk);
5764 #if 0
5765 /* Note, we could accept data and URG from this segment.
5766 * There are no obstacles to make this.
5767 *
5768 * However, if we ignore data in ACKless segments sometimes,
5769 * we have no reasons to accept it sometimes.
5770 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5771 * is not flawless. So, discard packet for sanity.
5772 * Uncomment this return to process the data.
5773 */
5774 return -1;
5775 #else
5776 goto discard;
5777 #endif
5778 }
5779 /* "fifth, if neither of the SYN or RST bits is set then
5780 * drop the segment and return."
5781 */
5782
5783 discard_and_undo:
5784 tcp_clear_options(&tp->rx_opt);
5785 tp->rx_opt.mss_clamp = saved_clamp;
5786 goto discard;
5787
5788 reset_and_undo:
5789 tcp_clear_options(&tp->rx_opt);
5790 tp->rx_opt.mss_clamp = saved_clamp;
5791 return 1;
5792 }
5793
5794 /*
5795 * This function implements the receiving procedure of RFC 793 for
5796 * all states except ESTABLISHED and TIME_WAIT.
5797 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5798 * address independent.
5799 */
5800
5801 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5802 const struct tcphdr *th, unsigned int len)
5803 {
5804 struct tcp_sock *tp = tcp_sk(sk);
5805 struct inet_connection_sock *icsk = inet_csk(sk);
5806 int queued = 0;
5807 int res;
5808
5809 tp->rx_opt.saw_tstamp = 0;
5810
5811 switch (sk->sk_state) {
5812 case TCP_CLOSE:
5813 goto discard;
5814
5815 case TCP_LISTEN:
5816 if (th->ack)
5817 return 1;
5818
5819 if (th->rst)
5820 goto discard;
5821
5822 if (th->syn) {
5823 if (th->fin)
5824 goto discard;
5825 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5826 return 1;
5827
5828 /* Now we have several options: In theory there is
5829 * nothing else in the frame. KA9Q has an option to
5830 * send data with the syn, BSD accepts data with the
5831 * syn up to the [to be] advertised window and
5832 * Solaris 2.1 gives you a protocol error. For now
5833 * we just ignore it, that fits the spec precisely
5834 * and avoids incompatibilities. It would be nice in
5835 * future to drop through and process the data.
5836 *
5837 * Now that TTCP is starting to be used we ought to
5838 * queue this data.
5839 * But, this leaves one open to an easy denial of
5840 * service attack, and SYN cookies can't defend
5841 * against this problem. So, we drop the data
5842 * in the interest of security over speed unless
5843 * it's still in use.
5844 */
5845 kfree_skb(skb);
5846 return 0;
5847 }
5848 goto discard;
5849
5850 case TCP_SYN_SENT:
5851 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5852 if (queued >= 0)
5853 return queued;
5854
5855 /* Do step6 onward by hand. */
5856 tcp_urg(sk, skb, th);
5857 __kfree_skb(skb);
5858 tcp_data_snd_check(sk);
5859 return 0;
5860 }
5861
5862 res = tcp_validate_incoming(sk, skb, th, 0);
5863 if (res <= 0)
5864 return -res;
5865
5866 /* step 5: check the ACK field */
5867 if (th->ack) {
5868 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5869
5870 switch (sk->sk_state) {
5871 case TCP_SYN_RECV:
5872 if (acceptable) {
5873 tp->copied_seq = tp->rcv_nxt;
5874 smp_mb();
5875 tcp_set_state(sk, TCP_ESTABLISHED);
5876 sk->sk_state_change(sk);
5877
5878 /* Note, that this wakeup is only for marginal
5879 * crossed SYN case. Passively open sockets
5880 * are not waked up, because sk->sk_sleep ==
5881 * NULL and sk->sk_socket == NULL.
5882 */
5883 if (sk->sk_socket)
5884 sk_wake_async(sk,
5885 SOCK_WAKE_IO, POLL_OUT);
5886
5887 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5888 tp->snd_wnd = ntohs(th->window) <<
5889 tp->rx_opt.snd_wscale;
5890 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5891
5892 if (tp->rx_opt.tstamp_ok)
5893 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5894
5895 /* Make sure socket is routed, for
5896 * correct metrics.
5897 */
5898 icsk->icsk_af_ops->rebuild_header(sk);
5899
5900 tcp_init_metrics(sk);
5901
5902 tcp_init_congestion_control(sk);
5903
5904 /* Prevent spurious tcp_cwnd_restart() on
5905 * first data packet.
5906 */
5907 tp->lsndtime = tcp_time_stamp;
5908
5909 tcp_mtup_init(sk);
5910 tcp_initialize_rcv_mss(sk);
5911 tcp_init_buffer_space(sk);
5912 tcp_fast_path_on(tp);
5913 } else {
5914 return 1;
5915 }
5916 break;
5917
5918 case TCP_FIN_WAIT1:
5919 if (tp->snd_una == tp->write_seq) {
5920 tcp_set_state(sk, TCP_FIN_WAIT2);
5921 sk->sk_shutdown |= SEND_SHUTDOWN;
5922 dst_confirm(__sk_dst_get(sk));
5923
5924 if (!sock_flag(sk, SOCK_DEAD))
5925 /* Wake up lingering close() */
5926 sk->sk_state_change(sk);
5927 else {
5928 int tmo;
5929
5930 if (tp->linger2 < 0 ||
5931 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5932 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5933 tcp_done(sk);
5934 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5935 return 1;
5936 }
5937
5938 tmo = tcp_fin_time(sk);
5939 if (tmo > TCP_TIMEWAIT_LEN) {
5940 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5941 } else if (th->fin || sock_owned_by_user(sk)) {
5942 /* Bad case. We could lose such FIN otherwise.
5943 * It is not a big problem, but it looks confusing
5944 * and not so rare event. We still can lose it now,
5945 * if it spins in bh_lock_sock(), but it is really
5946 * marginal case.
5947 */
5948 inet_csk_reset_keepalive_timer(sk, tmo);
5949 } else {
5950 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5951 goto discard;
5952 }
5953 }
5954 }
5955 break;
5956
5957 case TCP_CLOSING:
5958 if (tp->snd_una == tp->write_seq) {
5959 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5960 goto discard;
5961 }
5962 break;
5963
5964 case TCP_LAST_ACK:
5965 if (tp->snd_una == tp->write_seq) {
5966 tcp_update_metrics(sk);
5967 tcp_done(sk);
5968 goto discard;
5969 }
5970 break;
5971 }
5972 } else
5973 goto discard;
5974
5975 /* step 6: check the URG bit */
5976 tcp_urg(sk, skb, th);
5977
5978 /* step 7: process the segment text */
5979 switch (sk->sk_state) {
5980 case TCP_CLOSE_WAIT:
5981 case TCP_CLOSING:
5982 case TCP_LAST_ACK:
5983 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5984 break;
5985 case TCP_FIN_WAIT1:
5986 case TCP_FIN_WAIT2:
5987 /* RFC 793 says to queue data in these states,
5988 * RFC 1122 says we MUST send a reset.
5989 * BSD 4.4 also does reset.
5990 */
5991 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5992 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5993 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5994 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5995 tcp_reset(sk);
5996 return 1;
5997 }
5998 }
5999 /* Fall through */
6000 case TCP_ESTABLISHED:
6001 tcp_data_queue(sk, skb);
6002 queued = 1;
6003 break;
6004 }
6005
6006 /* tcp_data could move socket to TIME-WAIT */
6007 if (sk->sk_state != TCP_CLOSE) {
6008 tcp_data_snd_check(sk);
6009 tcp_ack_snd_check(sk);
6010 }
6011
6012 if (!queued) {
6013 discard:
6014 __kfree_skb(skb);
6015 }
6016 return 0;
6017 }
6018 EXPORT_SYMBOL(tcp_rcv_state_process);
This page took 0.158263 seconds and 5 git commands to generate.