Merge branch 'i2c-embedded/for-current' of git://git.pengutronix.de/git/wsa/linux
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_ecn __read_mostly = 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91 int sysctl_tcp_stdurg __read_mostly;
92 int sysctl_tcp_rfc1337 __read_mostly;
93 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
94 int sysctl_tcp_frto __read_mostly = 2;
95 int sysctl_tcp_frto_response __read_mostly;
96 int sysctl_tcp_nometrics_save __read_mostly;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_abc __read_mostly;
102
103 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
104 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
105 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
106 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
107 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
108 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
109 #define FLAG_ECE 0x40 /* ECE in this ACK */
110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
115 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
116
117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122
123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125
126 /* Adapt the MSS value used to make delayed ack decision to the
127 * real world.
128 */
129 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 {
131 struct inet_connection_sock *icsk = inet_csk(sk);
132 const unsigned int lss = icsk->icsk_ack.last_seg_size;
133 unsigned int len;
134
135 icsk->icsk_ack.last_seg_size = 0;
136
137 /* skb->len may jitter because of SACKs, even if peer
138 * sends good full-sized frames.
139 */
140 len = skb_shinfo(skb)->gso_size ? : skb->len;
141 if (len >= icsk->icsk_ack.rcv_mss) {
142 icsk->icsk_ack.rcv_mss = len;
143 } else {
144 /* Otherwise, we make more careful check taking into account,
145 * that SACKs block is variable.
146 *
147 * "len" is invariant segment length, including TCP header.
148 */
149 len += skb->data - skb_transport_header(skb);
150 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
151 /* If PSH is not set, packet should be
152 * full sized, provided peer TCP is not badly broken.
153 * This observation (if it is correct 8)) allows
154 * to handle super-low mtu links fairly.
155 */
156 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
157 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
158 /* Subtract also invariant (if peer is RFC compliant),
159 * tcp header plus fixed timestamp option length.
160 * Resulting "len" is MSS free of SACK jitter.
161 */
162 len -= tcp_sk(sk)->tcp_header_len;
163 icsk->icsk_ack.last_seg_size = len;
164 if (len == lss) {
165 icsk->icsk_ack.rcv_mss = len;
166 return;
167 }
168 }
169 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
172 }
173 }
174
175 static void tcp_incr_quickack(struct sock *sk)
176 {
177 struct inet_connection_sock *icsk = inet_csk(sk);
178 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179
180 if (quickacks == 0)
181 quickacks = 2;
182 if (quickacks > icsk->icsk_ack.quick)
183 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 }
185
186 static void tcp_enter_quickack_mode(struct sock *sk)
187 {
188 struct inet_connection_sock *icsk = inet_csk(sk);
189 tcp_incr_quickack(sk);
190 icsk->icsk_ack.pingpong = 0;
191 icsk->icsk_ack.ato = TCP_ATO_MIN;
192 }
193
194 /* Send ACKs quickly, if "quick" count is not exhausted
195 * and the session is not interactive.
196 */
197
198 static inline int tcp_in_quickack_mode(const struct sock *sk)
199 {
200 const struct inet_connection_sock *icsk = inet_csk(sk);
201 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
202 }
203
204 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 {
206 if (tp->ecn_flags & TCP_ECN_OK)
207 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208 }
209
210 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211 {
212 if (tcp_hdr(skb)->cwr)
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 {
218 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219 }
220
221 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222 {
223 if (!(tp->ecn_flags & TCP_ECN_OK))
224 return;
225
226 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
227 case INET_ECN_NOT_ECT:
228 /* Funny extension: if ECT is not set on a segment,
229 * and we already seen ECT on a previous segment,
230 * it is probably a retransmit.
231 */
232 if (tp->ecn_flags & TCP_ECN_SEEN)
233 tcp_enter_quickack_mode((struct sock *)tp);
234 break;
235 case INET_ECN_CE:
236 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
237 /* fallinto */
238 default:
239 tp->ecn_flags |= TCP_ECN_SEEN;
240 }
241 }
242
243 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
244 {
245 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
246 tp->ecn_flags &= ~TCP_ECN_OK;
247 }
248
249 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
250 {
251 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
252 tp->ecn_flags &= ~TCP_ECN_OK;
253 }
254
255 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
256 {
257 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
258 return 1;
259 return 0;
260 }
261
262 /* Buffer size and advertised window tuning.
263 *
264 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
265 */
266
267 static void tcp_fixup_sndbuf(struct sock *sk)
268 {
269 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
270
271 sndmem *= TCP_INIT_CWND;
272 if (sk->sk_sndbuf < sndmem)
273 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
274 }
275
276 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
277 *
278 * All tcp_full_space() is split to two parts: "network" buffer, allocated
279 * forward and advertised in receiver window (tp->rcv_wnd) and
280 * "application buffer", required to isolate scheduling/application
281 * latencies from network.
282 * window_clamp is maximal advertised window. It can be less than
283 * tcp_full_space(), in this case tcp_full_space() - window_clamp
284 * is reserved for "application" buffer. The less window_clamp is
285 * the smoother our behaviour from viewpoint of network, but the lower
286 * throughput and the higher sensitivity of the connection to losses. 8)
287 *
288 * rcv_ssthresh is more strict window_clamp used at "slow start"
289 * phase to predict further behaviour of this connection.
290 * It is used for two goals:
291 * - to enforce header prediction at sender, even when application
292 * requires some significant "application buffer". It is check #1.
293 * - to prevent pruning of receive queue because of misprediction
294 * of receiver window. Check #2.
295 *
296 * The scheme does not work when sender sends good segments opening
297 * window and then starts to feed us spaghetti. But it should work
298 * in common situations. Otherwise, we have to rely on queue collapsing.
299 */
300
301 /* Slow part of check#2. */
302 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
303 {
304 struct tcp_sock *tp = tcp_sk(sk);
305 /* Optimize this! */
306 int truesize = tcp_win_from_space(skb->truesize) >> 1;
307 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
308
309 while (tp->rcv_ssthresh <= window) {
310 if (truesize <= skb->len)
311 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
312
313 truesize >>= 1;
314 window >>= 1;
315 }
316 return 0;
317 }
318
319 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
320 {
321 struct tcp_sock *tp = tcp_sk(sk);
322
323 /* Check #1 */
324 if (tp->rcv_ssthresh < tp->window_clamp &&
325 (int)tp->rcv_ssthresh < tcp_space(sk) &&
326 !sk_under_memory_pressure(sk)) {
327 int incr;
328
329 /* Check #2. Increase window, if skb with such overhead
330 * will fit to rcvbuf in future.
331 */
332 if (tcp_win_from_space(skb->truesize) <= skb->len)
333 incr = 2 * tp->advmss;
334 else
335 incr = __tcp_grow_window(sk, skb);
336
337 if (incr) {
338 incr = max_t(int, incr, 2 * skb->len);
339 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
340 tp->window_clamp);
341 inet_csk(sk)->icsk_ack.quick |= 1;
342 }
343 }
344 }
345
346 /* 3. Tuning rcvbuf, when connection enters established state. */
347
348 static void tcp_fixup_rcvbuf(struct sock *sk)
349 {
350 u32 mss = tcp_sk(sk)->advmss;
351 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
352 int rcvmem;
353
354 /* Limit to 10 segments if mss <= 1460,
355 * or 14600/mss segments, with a minimum of two segments.
356 */
357 if (mss > 1460)
358 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
359
360 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
361 while (tcp_win_from_space(rcvmem) < mss)
362 rcvmem += 128;
363
364 rcvmem *= icwnd;
365
366 if (sk->sk_rcvbuf < rcvmem)
367 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
368 }
369
370 /* 4. Try to fixup all. It is made immediately after connection enters
371 * established state.
372 */
373 static void tcp_init_buffer_space(struct sock *sk)
374 {
375 struct tcp_sock *tp = tcp_sk(sk);
376 int maxwin;
377
378 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
379 tcp_fixup_rcvbuf(sk);
380 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
381 tcp_fixup_sndbuf(sk);
382
383 tp->rcvq_space.space = tp->rcv_wnd;
384
385 maxwin = tcp_full_space(sk);
386
387 if (tp->window_clamp >= maxwin) {
388 tp->window_clamp = maxwin;
389
390 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
391 tp->window_clamp = max(maxwin -
392 (maxwin >> sysctl_tcp_app_win),
393 4 * tp->advmss);
394 }
395
396 /* Force reservation of one segment. */
397 if (sysctl_tcp_app_win &&
398 tp->window_clamp > 2 * tp->advmss &&
399 tp->window_clamp + tp->advmss > maxwin)
400 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
401
402 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
403 tp->snd_cwnd_stamp = tcp_time_stamp;
404 }
405
406 /* 5. Recalculate window clamp after socket hit its memory bounds. */
407 static void tcp_clamp_window(struct sock *sk)
408 {
409 struct tcp_sock *tp = tcp_sk(sk);
410 struct inet_connection_sock *icsk = inet_csk(sk);
411
412 icsk->icsk_ack.quick = 0;
413
414 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
415 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
416 !sk_under_memory_pressure(sk) &&
417 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
418 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
419 sysctl_tcp_rmem[2]);
420 }
421 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
422 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
423 }
424
425 /* Initialize RCV_MSS value.
426 * RCV_MSS is an our guess about MSS used by the peer.
427 * We haven't any direct information about the MSS.
428 * It's better to underestimate the RCV_MSS rather than overestimate.
429 * Overestimations make us ACKing less frequently than needed.
430 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
431 */
432 void tcp_initialize_rcv_mss(struct sock *sk)
433 {
434 const struct tcp_sock *tp = tcp_sk(sk);
435 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
436
437 hint = min(hint, tp->rcv_wnd / 2);
438 hint = min(hint, TCP_MSS_DEFAULT);
439 hint = max(hint, TCP_MIN_MSS);
440
441 inet_csk(sk)->icsk_ack.rcv_mss = hint;
442 }
443 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
444
445 /* Receiver "autotuning" code.
446 *
447 * The algorithm for RTT estimation w/o timestamps is based on
448 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
449 * <http://public.lanl.gov/radiant/pubs.html#DRS>
450 *
451 * More detail on this code can be found at
452 * <http://staff.psc.edu/jheffner/>,
453 * though this reference is out of date. A new paper
454 * is pending.
455 */
456 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
457 {
458 u32 new_sample = tp->rcv_rtt_est.rtt;
459 long m = sample;
460
461 if (m == 0)
462 m = 1;
463
464 if (new_sample != 0) {
465 /* If we sample in larger samples in the non-timestamp
466 * case, we could grossly overestimate the RTT especially
467 * with chatty applications or bulk transfer apps which
468 * are stalled on filesystem I/O.
469 *
470 * Also, since we are only going for a minimum in the
471 * non-timestamp case, we do not smooth things out
472 * else with timestamps disabled convergence takes too
473 * long.
474 */
475 if (!win_dep) {
476 m -= (new_sample >> 3);
477 new_sample += m;
478 } else {
479 m <<= 3;
480 if (m < new_sample)
481 new_sample = m;
482 }
483 } else {
484 /* No previous measure. */
485 new_sample = m << 3;
486 }
487
488 if (tp->rcv_rtt_est.rtt != new_sample)
489 tp->rcv_rtt_est.rtt = new_sample;
490 }
491
492 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
493 {
494 if (tp->rcv_rtt_est.time == 0)
495 goto new_measure;
496 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
497 return;
498 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
499
500 new_measure:
501 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
502 tp->rcv_rtt_est.time = tcp_time_stamp;
503 }
504
505 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
506 const struct sk_buff *skb)
507 {
508 struct tcp_sock *tp = tcp_sk(sk);
509 if (tp->rx_opt.rcv_tsecr &&
510 (TCP_SKB_CB(skb)->end_seq -
511 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
512 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
513 }
514
515 /*
516 * This function should be called every time data is copied to user space.
517 * It calculates the appropriate TCP receive buffer space.
518 */
519 void tcp_rcv_space_adjust(struct sock *sk)
520 {
521 struct tcp_sock *tp = tcp_sk(sk);
522 int time;
523 int space;
524
525 if (tp->rcvq_space.time == 0)
526 goto new_measure;
527
528 time = tcp_time_stamp - tp->rcvq_space.time;
529 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
530 return;
531
532 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
533
534 space = max(tp->rcvq_space.space, space);
535
536 if (tp->rcvq_space.space != space) {
537 int rcvmem;
538
539 tp->rcvq_space.space = space;
540
541 if (sysctl_tcp_moderate_rcvbuf &&
542 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
543 int new_clamp = space;
544
545 /* Receive space grows, normalize in order to
546 * take into account packet headers and sk_buff
547 * structure overhead.
548 */
549 space /= tp->advmss;
550 if (!space)
551 space = 1;
552 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
553 while (tcp_win_from_space(rcvmem) < tp->advmss)
554 rcvmem += 128;
555 space *= rcvmem;
556 space = min(space, sysctl_tcp_rmem[2]);
557 if (space > sk->sk_rcvbuf) {
558 sk->sk_rcvbuf = space;
559
560 /* Make the window clamp follow along. */
561 tp->window_clamp = new_clamp;
562 }
563 }
564 }
565
566 new_measure:
567 tp->rcvq_space.seq = tp->copied_seq;
568 tp->rcvq_space.time = tcp_time_stamp;
569 }
570
571 /* There is something which you must keep in mind when you analyze the
572 * behavior of the tp->ato delayed ack timeout interval. When a
573 * connection starts up, we want to ack as quickly as possible. The
574 * problem is that "good" TCP's do slow start at the beginning of data
575 * transmission. The means that until we send the first few ACK's the
576 * sender will sit on his end and only queue most of his data, because
577 * he can only send snd_cwnd unacked packets at any given time. For
578 * each ACK we send, he increments snd_cwnd and transmits more of his
579 * queue. -DaveM
580 */
581 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
582 {
583 struct tcp_sock *tp = tcp_sk(sk);
584 struct inet_connection_sock *icsk = inet_csk(sk);
585 u32 now;
586
587 inet_csk_schedule_ack(sk);
588
589 tcp_measure_rcv_mss(sk, skb);
590
591 tcp_rcv_rtt_measure(tp);
592
593 now = tcp_time_stamp;
594
595 if (!icsk->icsk_ack.ato) {
596 /* The _first_ data packet received, initialize
597 * delayed ACK engine.
598 */
599 tcp_incr_quickack(sk);
600 icsk->icsk_ack.ato = TCP_ATO_MIN;
601 } else {
602 int m = now - icsk->icsk_ack.lrcvtime;
603
604 if (m <= TCP_ATO_MIN / 2) {
605 /* The fastest case is the first. */
606 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
607 } else if (m < icsk->icsk_ack.ato) {
608 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
609 if (icsk->icsk_ack.ato > icsk->icsk_rto)
610 icsk->icsk_ack.ato = icsk->icsk_rto;
611 } else if (m > icsk->icsk_rto) {
612 /* Too long gap. Apparently sender failed to
613 * restart window, so that we send ACKs quickly.
614 */
615 tcp_incr_quickack(sk);
616 sk_mem_reclaim(sk);
617 }
618 }
619 icsk->icsk_ack.lrcvtime = now;
620
621 TCP_ECN_check_ce(tp, skb);
622
623 if (skb->len >= 128)
624 tcp_grow_window(sk, skb);
625 }
626
627 /* Called to compute a smoothed rtt estimate. The data fed to this
628 * routine either comes from timestamps, or from segments that were
629 * known _not_ to have been retransmitted [see Karn/Partridge
630 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
631 * piece by Van Jacobson.
632 * NOTE: the next three routines used to be one big routine.
633 * To save cycles in the RFC 1323 implementation it was better to break
634 * it up into three procedures. -- erics
635 */
636 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
637 {
638 struct tcp_sock *tp = tcp_sk(sk);
639 long m = mrtt; /* RTT */
640
641 /* The following amusing code comes from Jacobson's
642 * article in SIGCOMM '88. Note that rtt and mdev
643 * are scaled versions of rtt and mean deviation.
644 * This is designed to be as fast as possible
645 * m stands for "measurement".
646 *
647 * On a 1990 paper the rto value is changed to:
648 * RTO = rtt + 4 * mdev
649 *
650 * Funny. This algorithm seems to be very broken.
651 * These formulae increase RTO, when it should be decreased, increase
652 * too slowly, when it should be increased quickly, decrease too quickly
653 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
654 * does not matter how to _calculate_ it. Seems, it was trap
655 * that VJ failed to avoid. 8)
656 */
657 if (m == 0)
658 m = 1;
659 if (tp->srtt != 0) {
660 m -= (tp->srtt >> 3); /* m is now error in rtt est */
661 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
662 if (m < 0) {
663 m = -m; /* m is now abs(error) */
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 /* This is similar to one of Eifel findings.
666 * Eifel blocks mdev updates when rtt decreases.
667 * This solution is a bit different: we use finer gain
668 * for mdev in this case (alpha*beta).
669 * Like Eifel it also prevents growth of rto,
670 * but also it limits too fast rto decreases,
671 * happening in pure Eifel.
672 */
673 if (m > 0)
674 m >>= 3;
675 } else {
676 m -= (tp->mdev >> 2); /* similar update on mdev */
677 }
678 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
679 if (tp->mdev > tp->mdev_max) {
680 tp->mdev_max = tp->mdev;
681 if (tp->mdev_max > tp->rttvar)
682 tp->rttvar = tp->mdev_max;
683 }
684 if (after(tp->snd_una, tp->rtt_seq)) {
685 if (tp->mdev_max < tp->rttvar)
686 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
687 tp->rtt_seq = tp->snd_nxt;
688 tp->mdev_max = tcp_rto_min(sk);
689 }
690 } else {
691 /* no previous measure. */
692 tp->srtt = m << 3; /* take the measured time to be rtt */
693 tp->mdev = m << 1; /* make sure rto = 3*rtt */
694 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
695 tp->rtt_seq = tp->snd_nxt;
696 }
697 }
698
699 /* Calculate rto without backoff. This is the second half of Van Jacobson's
700 * routine referred to above.
701 */
702 static inline void tcp_set_rto(struct sock *sk)
703 {
704 const struct tcp_sock *tp = tcp_sk(sk);
705 /* Old crap is replaced with new one. 8)
706 *
707 * More seriously:
708 * 1. If rtt variance happened to be less 50msec, it is hallucination.
709 * It cannot be less due to utterly erratic ACK generation made
710 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
711 * to do with delayed acks, because at cwnd>2 true delack timeout
712 * is invisible. Actually, Linux-2.4 also generates erratic
713 * ACKs in some circumstances.
714 */
715 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
716
717 /* 2. Fixups made earlier cannot be right.
718 * If we do not estimate RTO correctly without them,
719 * all the algo is pure shit and should be replaced
720 * with correct one. It is exactly, which we pretend to do.
721 */
722
723 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
724 * guarantees that rto is higher.
725 */
726 tcp_bound_rto(sk);
727 }
728
729 /* Save metrics learned by this TCP session.
730 This function is called only, when TCP finishes successfully
731 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
732 */
733 void tcp_update_metrics(struct sock *sk)
734 {
735 struct tcp_sock *tp = tcp_sk(sk);
736 struct dst_entry *dst = __sk_dst_get(sk);
737
738 if (sysctl_tcp_nometrics_save)
739 return;
740
741 dst_confirm(dst);
742
743 if (dst && (dst->flags & DST_HOST)) {
744 const struct inet_connection_sock *icsk = inet_csk(sk);
745 int m;
746 unsigned long rtt;
747
748 if (icsk->icsk_backoff || !tp->srtt) {
749 /* This session failed to estimate rtt. Why?
750 * Probably, no packets returned in time.
751 * Reset our results.
752 */
753 if (!(dst_metric_locked(dst, RTAX_RTT)))
754 dst_metric_set(dst, RTAX_RTT, 0);
755 return;
756 }
757
758 rtt = dst_metric_rtt(dst, RTAX_RTT);
759 m = rtt - tp->srtt;
760
761 /* If newly calculated rtt larger than stored one,
762 * store new one. Otherwise, use EWMA. Remember,
763 * rtt overestimation is always better than underestimation.
764 */
765 if (!(dst_metric_locked(dst, RTAX_RTT))) {
766 if (m <= 0)
767 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
768 else
769 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
770 }
771
772 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
773 unsigned long var;
774 if (m < 0)
775 m = -m;
776
777 /* Scale deviation to rttvar fixed point */
778 m >>= 1;
779 if (m < tp->mdev)
780 m = tp->mdev;
781
782 var = dst_metric_rtt(dst, RTAX_RTTVAR);
783 if (m >= var)
784 var = m;
785 else
786 var -= (var - m) >> 2;
787
788 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
789 }
790
791 if (tcp_in_initial_slowstart(tp)) {
792 /* Slow start still did not finish. */
793 if (dst_metric(dst, RTAX_SSTHRESH) &&
794 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
795 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
796 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
797 if (!dst_metric_locked(dst, RTAX_CWND) &&
798 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
799 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
800 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
801 icsk->icsk_ca_state == TCP_CA_Open) {
802 /* Cong. avoidance phase, cwnd is reliable. */
803 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
804 dst_metric_set(dst, RTAX_SSTHRESH,
805 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
806 if (!dst_metric_locked(dst, RTAX_CWND))
807 dst_metric_set(dst, RTAX_CWND,
808 (dst_metric(dst, RTAX_CWND) +
809 tp->snd_cwnd) >> 1);
810 } else {
811 /* Else slow start did not finish, cwnd is non-sense,
812 ssthresh may be also invalid.
813 */
814 if (!dst_metric_locked(dst, RTAX_CWND))
815 dst_metric_set(dst, RTAX_CWND,
816 (dst_metric(dst, RTAX_CWND) +
817 tp->snd_ssthresh) >> 1);
818 if (dst_metric(dst, RTAX_SSTHRESH) &&
819 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
820 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
821 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
822 }
823
824 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
825 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
826 tp->reordering != sysctl_tcp_reordering)
827 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
828 }
829 }
830 }
831
832 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
833 {
834 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
835
836 if (!cwnd)
837 cwnd = TCP_INIT_CWND;
838 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
839 }
840
841 /* Set slow start threshold and cwnd not falling to slow start */
842 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
843 {
844 struct tcp_sock *tp = tcp_sk(sk);
845 const struct inet_connection_sock *icsk = inet_csk(sk);
846
847 tp->prior_ssthresh = 0;
848 tp->bytes_acked = 0;
849 if (icsk->icsk_ca_state < TCP_CA_CWR) {
850 tp->undo_marker = 0;
851 if (set_ssthresh)
852 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
853 tp->snd_cwnd = min(tp->snd_cwnd,
854 tcp_packets_in_flight(tp) + 1U);
855 tp->snd_cwnd_cnt = 0;
856 tp->high_seq = tp->snd_nxt;
857 tp->snd_cwnd_stamp = tcp_time_stamp;
858 TCP_ECN_queue_cwr(tp);
859
860 tcp_set_ca_state(sk, TCP_CA_CWR);
861 }
862 }
863
864 /*
865 * Packet counting of FACK is based on in-order assumptions, therefore TCP
866 * disables it when reordering is detected
867 */
868 static void tcp_disable_fack(struct tcp_sock *tp)
869 {
870 /* RFC3517 uses different metric in lost marker => reset on change */
871 if (tcp_is_fack(tp))
872 tp->lost_skb_hint = NULL;
873 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
874 }
875
876 /* Take a notice that peer is sending D-SACKs */
877 static void tcp_dsack_seen(struct tcp_sock *tp)
878 {
879 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
880 }
881
882 /* Initialize metrics on socket. */
883
884 static void tcp_init_metrics(struct sock *sk)
885 {
886 struct tcp_sock *tp = tcp_sk(sk);
887 struct dst_entry *dst = __sk_dst_get(sk);
888
889 if (dst == NULL)
890 goto reset;
891
892 dst_confirm(dst);
893
894 if (dst_metric_locked(dst, RTAX_CWND))
895 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
896 if (dst_metric(dst, RTAX_SSTHRESH)) {
897 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
898 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
899 tp->snd_ssthresh = tp->snd_cwnd_clamp;
900 } else {
901 /* ssthresh may have been reduced unnecessarily during.
902 * 3WHS. Restore it back to its initial default.
903 */
904 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
905 }
906 if (dst_metric(dst, RTAX_REORDERING) &&
907 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
908 tcp_disable_fack(tp);
909 tp->reordering = dst_metric(dst, RTAX_REORDERING);
910 }
911
912 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
913 goto reset;
914
915 /* Initial rtt is determined from SYN,SYN-ACK.
916 * The segment is small and rtt may appear much
917 * less than real one. Use per-dst memory
918 * to make it more realistic.
919 *
920 * A bit of theory. RTT is time passed after "normal" sized packet
921 * is sent until it is ACKed. In normal circumstances sending small
922 * packets force peer to delay ACKs and calculation is correct too.
923 * The algorithm is adaptive and, provided we follow specs, it
924 * NEVER underestimate RTT. BUT! If peer tries to make some clever
925 * tricks sort of "quick acks" for time long enough to decrease RTT
926 * to low value, and then abruptly stops to do it and starts to delay
927 * ACKs, wait for troubles.
928 */
929 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
930 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
931 tp->rtt_seq = tp->snd_nxt;
932 }
933 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
934 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
935 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
936 }
937 tcp_set_rto(sk);
938 reset:
939 if (tp->srtt == 0) {
940 /* RFC2988bis: We've failed to get a valid RTT sample from
941 * 3WHS. This is most likely due to retransmission,
942 * including spurious one. Reset the RTO back to 3secs
943 * from the more aggressive 1sec to avoid more spurious
944 * retransmission.
945 */
946 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
947 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
948 }
949 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
950 * retransmitted. In light of RFC2988bis' more aggressive 1sec
951 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
952 * retransmission has occurred.
953 */
954 if (tp->total_retrans > 1)
955 tp->snd_cwnd = 1;
956 else
957 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
958 tp->snd_cwnd_stamp = tcp_time_stamp;
959 }
960
961 static void tcp_update_reordering(struct sock *sk, const int metric,
962 const int ts)
963 {
964 struct tcp_sock *tp = tcp_sk(sk);
965 if (metric > tp->reordering) {
966 int mib_idx;
967
968 tp->reordering = min(TCP_MAX_REORDERING, metric);
969
970 /* This exciting event is worth to be remembered. 8) */
971 if (ts)
972 mib_idx = LINUX_MIB_TCPTSREORDER;
973 else if (tcp_is_reno(tp))
974 mib_idx = LINUX_MIB_TCPRENOREORDER;
975 else if (tcp_is_fack(tp))
976 mib_idx = LINUX_MIB_TCPFACKREORDER;
977 else
978 mib_idx = LINUX_MIB_TCPSACKREORDER;
979
980 NET_INC_STATS_BH(sock_net(sk), mib_idx);
981 #if FASTRETRANS_DEBUG > 1
982 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
983 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
984 tp->reordering,
985 tp->fackets_out,
986 tp->sacked_out,
987 tp->undo_marker ? tp->undo_retrans : 0);
988 #endif
989 tcp_disable_fack(tp);
990 }
991 }
992
993 /* This must be called before lost_out is incremented */
994 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
995 {
996 if ((tp->retransmit_skb_hint == NULL) ||
997 before(TCP_SKB_CB(skb)->seq,
998 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
999 tp->retransmit_skb_hint = skb;
1000
1001 if (!tp->lost_out ||
1002 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1003 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1004 }
1005
1006 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1007 {
1008 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1009 tcp_verify_retransmit_hint(tp, skb);
1010
1011 tp->lost_out += tcp_skb_pcount(skb);
1012 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013 }
1014 }
1015
1016 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1017 struct sk_buff *skb)
1018 {
1019 tcp_verify_retransmit_hint(tp, skb);
1020
1021 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1022 tp->lost_out += tcp_skb_pcount(skb);
1023 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1024 }
1025 }
1026
1027 /* This procedure tags the retransmission queue when SACKs arrive.
1028 *
1029 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1030 * Packets in queue with these bits set are counted in variables
1031 * sacked_out, retrans_out and lost_out, correspondingly.
1032 *
1033 * Valid combinations are:
1034 * Tag InFlight Description
1035 * 0 1 - orig segment is in flight.
1036 * S 0 - nothing flies, orig reached receiver.
1037 * L 0 - nothing flies, orig lost by net.
1038 * R 2 - both orig and retransmit are in flight.
1039 * L|R 1 - orig is lost, retransmit is in flight.
1040 * S|R 1 - orig reached receiver, retrans is still in flight.
1041 * (L|S|R is logically valid, it could occur when L|R is sacked,
1042 * but it is equivalent to plain S and code short-curcuits it to S.
1043 * L|S is logically invalid, it would mean -1 packet in flight 8))
1044 *
1045 * These 6 states form finite state machine, controlled by the following events:
1046 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1047 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1048 * 3. Loss detection event of two flavors:
1049 * A. Scoreboard estimator decided the packet is lost.
1050 * A'. Reno "three dupacks" marks head of queue lost.
1051 * A''. Its FACK modification, head until snd.fack is lost.
1052 * B. SACK arrives sacking SND.NXT at the moment, when the
1053 * segment was retransmitted.
1054 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1055 *
1056 * It is pleasant to note, that state diagram turns out to be commutative,
1057 * so that we are allowed not to be bothered by order of our actions,
1058 * when multiple events arrive simultaneously. (see the function below).
1059 *
1060 * Reordering detection.
1061 * --------------------
1062 * Reordering metric is maximal distance, which a packet can be displaced
1063 * in packet stream. With SACKs we can estimate it:
1064 *
1065 * 1. SACK fills old hole and the corresponding segment was not
1066 * ever retransmitted -> reordering. Alas, we cannot use it
1067 * when segment was retransmitted.
1068 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1069 * for retransmitted and already SACKed segment -> reordering..
1070 * Both of these heuristics are not used in Loss state, when we cannot
1071 * account for retransmits accurately.
1072 *
1073 * SACK block validation.
1074 * ----------------------
1075 *
1076 * SACK block range validation checks that the received SACK block fits to
1077 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1078 * Note that SND.UNA is not included to the range though being valid because
1079 * it means that the receiver is rather inconsistent with itself reporting
1080 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1081 * perfectly valid, however, in light of RFC2018 which explicitly states
1082 * that "SACK block MUST reflect the newest segment. Even if the newest
1083 * segment is going to be discarded ...", not that it looks very clever
1084 * in case of head skb. Due to potentional receiver driven attacks, we
1085 * choose to avoid immediate execution of a walk in write queue due to
1086 * reneging and defer head skb's loss recovery to standard loss recovery
1087 * procedure that will eventually trigger (nothing forbids us doing this).
1088 *
1089 * Implements also blockage to start_seq wrap-around. Problem lies in the
1090 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1091 * there's no guarantee that it will be before snd_nxt (n). The problem
1092 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1093 * wrap (s_w):
1094 *
1095 * <- outs wnd -> <- wrapzone ->
1096 * u e n u_w e_w s n_w
1097 * | | | | | | |
1098 * |<------------+------+----- TCP seqno space --------------+---------->|
1099 * ...-- <2^31 ->| |<--------...
1100 * ...---- >2^31 ------>| |<--------...
1101 *
1102 * Current code wouldn't be vulnerable but it's better still to discard such
1103 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1104 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1105 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1106 * equal to the ideal case (infinite seqno space without wrap caused issues).
1107 *
1108 * With D-SACK the lower bound is extended to cover sequence space below
1109 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1110 * again, D-SACK block must not to go across snd_una (for the same reason as
1111 * for the normal SACK blocks, explained above). But there all simplicity
1112 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1113 * fully below undo_marker they do not affect behavior in anyway and can
1114 * therefore be safely ignored. In rare cases (which are more or less
1115 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1116 * fragmentation and packet reordering past skb's retransmission. To consider
1117 * them correctly, the acceptable range must be extended even more though
1118 * the exact amount is rather hard to quantify. However, tp->max_window can
1119 * be used as an exaggerated estimate.
1120 */
1121 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1122 u32 start_seq, u32 end_seq)
1123 {
1124 /* Too far in future, or reversed (interpretation is ambiguous) */
1125 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1126 return 0;
1127
1128 /* Nasty start_seq wrap-around check (see comments above) */
1129 if (!before(start_seq, tp->snd_nxt))
1130 return 0;
1131
1132 /* In outstanding window? ...This is valid exit for D-SACKs too.
1133 * start_seq == snd_una is non-sensical (see comments above)
1134 */
1135 if (after(start_seq, tp->snd_una))
1136 return 1;
1137
1138 if (!is_dsack || !tp->undo_marker)
1139 return 0;
1140
1141 /* ...Then it's D-SACK, and must reside below snd_una completely */
1142 if (after(end_seq, tp->snd_una))
1143 return 0;
1144
1145 if (!before(start_seq, tp->undo_marker))
1146 return 1;
1147
1148 /* Too old */
1149 if (!after(end_seq, tp->undo_marker))
1150 return 0;
1151
1152 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1153 * start_seq < undo_marker and end_seq >= undo_marker.
1154 */
1155 return !before(start_seq, end_seq - tp->max_window);
1156 }
1157
1158 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1159 * Event "B". Later note: FACK people cheated me again 8), we have to account
1160 * for reordering! Ugly, but should help.
1161 *
1162 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1163 * less than what is now known to be received by the other end (derived from
1164 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1165 * retransmitted skbs to avoid some costly processing per ACKs.
1166 */
1167 static void tcp_mark_lost_retrans(struct sock *sk)
1168 {
1169 const struct inet_connection_sock *icsk = inet_csk(sk);
1170 struct tcp_sock *tp = tcp_sk(sk);
1171 struct sk_buff *skb;
1172 int cnt = 0;
1173 u32 new_low_seq = tp->snd_nxt;
1174 u32 received_upto = tcp_highest_sack_seq(tp);
1175
1176 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1177 !after(received_upto, tp->lost_retrans_low) ||
1178 icsk->icsk_ca_state != TCP_CA_Recovery)
1179 return;
1180
1181 tcp_for_write_queue(skb, sk) {
1182 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1183
1184 if (skb == tcp_send_head(sk))
1185 break;
1186 if (cnt == tp->retrans_out)
1187 break;
1188 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1189 continue;
1190
1191 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1192 continue;
1193
1194 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1195 * constraint here (see above) but figuring out that at
1196 * least tp->reordering SACK blocks reside between ack_seq
1197 * and received_upto is not easy task to do cheaply with
1198 * the available datastructures.
1199 *
1200 * Whether FACK should check here for tp->reordering segs
1201 * in-between one could argue for either way (it would be
1202 * rather simple to implement as we could count fack_count
1203 * during the walk and do tp->fackets_out - fack_count).
1204 */
1205 if (after(received_upto, ack_seq)) {
1206 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1207 tp->retrans_out -= tcp_skb_pcount(skb);
1208
1209 tcp_skb_mark_lost_uncond_verify(tp, skb);
1210 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1211 } else {
1212 if (before(ack_seq, new_low_seq))
1213 new_low_seq = ack_seq;
1214 cnt += tcp_skb_pcount(skb);
1215 }
1216 }
1217
1218 if (tp->retrans_out)
1219 tp->lost_retrans_low = new_low_seq;
1220 }
1221
1222 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1223 struct tcp_sack_block_wire *sp, int num_sacks,
1224 u32 prior_snd_una)
1225 {
1226 struct tcp_sock *tp = tcp_sk(sk);
1227 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1228 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1229 int dup_sack = 0;
1230
1231 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1232 dup_sack = 1;
1233 tcp_dsack_seen(tp);
1234 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1235 } else if (num_sacks > 1) {
1236 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1237 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1238
1239 if (!after(end_seq_0, end_seq_1) &&
1240 !before(start_seq_0, start_seq_1)) {
1241 dup_sack = 1;
1242 tcp_dsack_seen(tp);
1243 NET_INC_STATS_BH(sock_net(sk),
1244 LINUX_MIB_TCPDSACKOFORECV);
1245 }
1246 }
1247
1248 /* D-SACK for already forgotten data... Do dumb counting. */
1249 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1250 !after(end_seq_0, prior_snd_una) &&
1251 after(end_seq_0, tp->undo_marker))
1252 tp->undo_retrans--;
1253
1254 return dup_sack;
1255 }
1256
1257 struct tcp_sacktag_state {
1258 int reord;
1259 int fack_count;
1260 int flag;
1261 };
1262
1263 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1264 * the incoming SACK may not exactly match but we can find smaller MSS
1265 * aligned portion of it that matches. Therefore we might need to fragment
1266 * which may fail and creates some hassle (caller must handle error case
1267 * returns).
1268 *
1269 * FIXME: this could be merged to shift decision code
1270 */
1271 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1272 u32 start_seq, u32 end_seq)
1273 {
1274 int in_sack, err;
1275 unsigned int pkt_len;
1276 unsigned int mss;
1277
1278 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1279 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1280
1281 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1282 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1283 mss = tcp_skb_mss(skb);
1284 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1285
1286 if (!in_sack) {
1287 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1288 if (pkt_len < mss)
1289 pkt_len = mss;
1290 } else {
1291 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1292 if (pkt_len < mss)
1293 return -EINVAL;
1294 }
1295
1296 /* Round if necessary so that SACKs cover only full MSSes
1297 * and/or the remaining small portion (if present)
1298 */
1299 if (pkt_len > mss) {
1300 unsigned int new_len = (pkt_len / mss) * mss;
1301 if (!in_sack && new_len < pkt_len) {
1302 new_len += mss;
1303 if (new_len > skb->len)
1304 return 0;
1305 }
1306 pkt_len = new_len;
1307 }
1308 err = tcp_fragment(sk, skb, pkt_len, mss);
1309 if (err < 0)
1310 return err;
1311 }
1312
1313 return in_sack;
1314 }
1315
1316 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1317 static u8 tcp_sacktag_one(struct sock *sk,
1318 struct tcp_sacktag_state *state, u8 sacked,
1319 u32 start_seq, u32 end_seq,
1320 int dup_sack, int pcount)
1321 {
1322 struct tcp_sock *tp = tcp_sk(sk);
1323 int fack_count = state->fack_count;
1324
1325 /* Account D-SACK for retransmitted packet. */
1326 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1327 if (tp->undo_marker && tp->undo_retrans &&
1328 after(end_seq, tp->undo_marker))
1329 tp->undo_retrans--;
1330 if (sacked & TCPCB_SACKED_ACKED)
1331 state->reord = min(fack_count, state->reord);
1332 }
1333
1334 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1335 if (!after(end_seq, tp->snd_una))
1336 return sacked;
1337
1338 if (!(sacked & TCPCB_SACKED_ACKED)) {
1339 if (sacked & TCPCB_SACKED_RETRANS) {
1340 /* If the segment is not tagged as lost,
1341 * we do not clear RETRANS, believing
1342 * that retransmission is still in flight.
1343 */
1344 if (sacked & TCPCB_LOST) {
1345 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1346 tp->lost_out -= pcount;
1347 tp->retrans_out -= pcount;
1348 }
1349 } else {
1350 if (!(sacked & TCPCB_RETRANS)) {
1351 /* New sack for not retransmitted frame,
1352 * which was in hole. It is reordering.
1353 */
1354 if (before(start_seq,
1355 tcp_highest_sack_seq(tp)))
1356 state->reord = min(fack_count,
1357 state->reord);
1358
1359 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1360 if (!after(end_seq, tp->frto_highmark))
1361 state->flag |= FLAG_ONLY_ORIG_SACKED;
1362 }
1363
1364 if (sacked & TCPCB_LOST) {
1365 sacked &= ~TCPCB_LOST;
1366 tp->lost_out -= pcount;
1367 }
1368 }
1369
1370 sacked |= TCPCB_SACKED_ACKED;
1371 state->flag |= FLAG_DATA_SACKED;
1372 tp->sacked_out += pcount;
1373
1374 fack_count += pcount;
1375
1376 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1377 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1378 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1379 tp->lost_cnt_hint += pcount;
1380
1381 if (fack_count > tp->fackets_out)
1382 tp->fackets_out = fack_count;
1383 }
1384
1385 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1386 * frames and clear it. undo_retrans is decreased above, L|R frames
1387 * are accounted above as well.
1388 */
1389 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1390 sacked &= ~TCPCB_SACKED_RETRANS;
1391 tp->retrans_out -= pcount;
1392 }
1393
1394 return sacked;
1395 }
1396
1397 /* Shift newly-SACKed bytes from this skb to the immediately previous
1398 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1399 */
1400 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1401 struct tcp_sacktag_state *state,
1402 unsigned int pcount, int shifted, int mss,
1403 int dup_sack)
1404 {
1405 struct tcp_sock *tp = tcp_sk(sk);
1406 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1407 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1408 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1409
1410 BUG_ON(!pcount);
1411
1412 /* Adjust counters and hints for the newly sacked sequence
1413 * range but discard the return value since prev is already
1414 * marked. We must tag the range first because the seq
1415 * advancement below implicitly advances
1416 * tcp_highest_sack_seq() when skb is highest_sack.
1417 */
1418 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1419 start_seq, end_seq, dup_sack, pcount);
1420
1421 if (skb == tp->lost_skb_hint)
1422 tp->lost_cnt_hint += pcount;
1423
1424 TCP_SKB_CB(prev)->end_seq += shifted;
1425 TCP_SKB_CB(skb)->seq += shifted;
1426
1427 skb_shinfo(prev)->gso_segs += pcount;
1428 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1429 skb_shinfo(skb)->gso_segs -= pcount;
1430
1431 /* When we're adding to gso_segs == 1, gso_size will be zero,
1432 * in theory this shouldn't be necessary but as long as DSACK
1433 * code can come after this skb later on it's better to keep
1434 * setting gso_size to something.
1435 */
1436 if (!skb_shinfo(prev)->gso_size) {
1437 skb_shinfo(prev)->gso_size = mss;
1438 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1439 }
1440
1441 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1442 if (skb_shinfo(skb)->gso_segs <= 1) {
1443 skb_shinfo(skb)->gso_size = 0;
1444 skb_shinfo(skb)->gso_type = 0;
1445 }
1446
1447 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1448 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1449
1450 if (skb->len > 0) {
1451 BUG_ON(!tcp_skb_pcount(skb));
1452 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1453 return 0;
1454 }
1455
1456 /* Whole SKB was eaten :-) */
1457
1458 if (skb == tp->retransmit_skb_hint)
1459 tp->retransmit_skb_hint = prev;
1460 if (skb == tp->scoreboard_skb_hint)
1461 tp->scoreboard_skb_hint = prev;
1462 if (skb == tp->lost_skb_hint) {
1463 tp->lost_skb_hint = prev;
1464 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1465 }
1466
1467 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1468 if (skb == tcp_highest_sack(sk))
1469 tcp_advance_highest_sack(sk, skb);
1470
1471 tcp_unlink_write_queue(skb, sk);
1472 sk_wmem_free_skb(sk, skb);
1473
1474 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1475
1476 return 1;
1477 }
1478
1479 /* I wish gso_size would have a bit more sane initialization than
1480 * something-or-zero which complicates things
1481 */
1482 static int tcp_skb_seglen(const struct sk_buff *skb)
1483 {
1484 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1485 }
1486
1487 /* Shifting pages past head area doesn't work */
1488 static int skb_can_shift(const struct sk_buff *skb)
1489 {
1490 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1491 }
1492
1493 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1494 * skb.
1495 */
1496 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1497 struct tcp_sacktag_state *state,
1498 u32 start_seq, u32 end_seq,
1499 int dup_sack)
1500 {
1501 struct tcp_sock *tp = tcp_sk(sk);
1502 struct sk_buff *prev;
1503 int mss;
1504 int pcount = 0;
1505 int len;
1506 int in_sack;
1507
1508 if (!sk_can_gso(sk))
1509 goto fallback;
1510
1511 /* Normally R but no L won't result in plain S */
1512 if (!dup_sack &&
1513 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1514 goto fallback;
1515 if (!skb_can_shift(skb))
1516 goto fallback;
1517 /* This frame is about to be dropped (was ACKed). */
1518 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1519 goto fallback;
1520
1521 /* Can only happen with delayed DSACK + discard craziness */
1522 if (unlikely(skb == tcp_write_queue_head(sk)))
1523 goto fallback;
1524 prev = tcp_write_queue_prev(sk, skb);
1525
1526 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1527 goto fallback;
1528
1529 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1530 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1531
1532 if (in_sack) {
1533 len = skb->len;
1534 pcount = tcp_skb_pcount(skb);
1535 mss = tcp_skb_seglen(skb);
1536
1537 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1538 * drop this restriction as unnecessary
1539 */
1540 if (mss != tcp_skb_seglen(prev))
1541 goto fallback;
1542 } else {
1543 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1544 goto noop;
1545 /* CHECKME: This is non-MSS split case only?, this will
1546 * cause skipped skbs due to advancing loop btw, original
1547 * has that feature too
1548 */
1549 if (tcp_skb_pcount(skb) <= 1)
1550 goto noop;
1551
1552 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1553 if (!in_sack) {
1554 /* TODO: head merge to next could be attempted here
1555 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1556 * though it might not be worth of the additional hassle
1557 *
1558 * ...we can probably just fallback to what was done
1559 * previously. We could try merging non-SACKed ones
1560 * as well but it probably isn't going to buy off
1561 * because later SACKs might again split them, and
1562 * it would make skb timestamp tracking considerably
1563 * harder problem.
1564 */
1565 goto fallback;
1566 }
1567
1568 len = end_seq - TCP_SKB_CB(skb)->seq;
1569 BUG_ON(len < 0);
1570 BUG_ON(len > skb->len);
1571
1572 /* MSS boundaries should be honoured or else pcount will
1573 * severely break even though it makes things bit trickier.
1574 * Optimize common case to avoid most of the divides
1575 */
1576 mss = tcp_skb_mss(skb);
1577
1578 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1579 * drop this restriction as unnecessary
1580 */
1581 if (mss != tcp_skb_seglen(prev))
1582 goto fallback;
1583
1584 if (len == mss) {
1585 pcount = 1;
1586 } else if (len < mss) {
1587 goto noop;
1588 } else {
1589 pcount = len / mss;
1590 len = pcount * mss;
1591 }
1592 }
1593
1594 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1595 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1596 goto fallback;
1597
1598 if (!skb_shift(prev, skb, len))
1599 goto fallback;
1600 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1601 goto out;
1602
1603 /* Hole filled allows collapsing with the next as well, this is very
1604 * useful when hole on every nth skb pattern happens
1605 */
1606 if (prev == tcp_write_queue_tail(sk))
1607 goto out;
1608 skb = tcp_write_queue_next(sk, prev);
1609
1610 if (!skb_can_shift(skb) ||
1611 (skb == tcp_send_head(sk)) ||
1612 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1613 (mss != tcp_skb_seglen(skb)))
1614 goto out;
1615
1616 len = skb->len;
1617 if (skb_shift(prev, skb, len)) {
1618 pcount += tcp_skb_pcount(skb);
1619 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1620 }
1621
1622 out:
1623 state->fack_count += pcount;
1624 return prev;
1625
1626 noop:
1627 return skb;
1628
1629 fallback:
1630 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1631 return NULL;
1632 }
1633
1634 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1635 struct tcp_sack_block *next_dup,
1636 struct tcp_sacktag_state *state,
1637 u32 start_seq, u32 end_seq,
1638 int dup_sack_in)
1639 {
1640 struct tcp_sock *tp = tcp_sk(sk);
1641 struct sk_buff *tmp;
1642
1643 tcp_for_write_queue_from(skb, sk) {
1644 int in_sack = 0;
1645 int dup_sack = dup_sack_in;
1646
1647 if (skb == tcp_send_head(sk))
1648 break;
1649
1650 /* queue is in-order => we can short-circuit the walk early */
1651 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1652 break;
1653
1654 if ((next_dup != NULL) &&
1655 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1656 in_sack = tcp_match_skb_to_sack(sk, skb,
1657 next_dup->start_seq,
1658 next_dup->end_seq);
1659 if (in_sack > 0)
1660 dup_sack = 1;
1661 }
1662
1663 /* skb reference here is a bit tricky to get right, since
1664 * shifting can eat and free both this skb and the next,
1665 * so not even _safe variant of the loop is enough.
1666 */
1667 if (in_sack <= 0) {
1668 tmp = tcp_shift_skb_data(sk, skb, state,
1669 start_seq, end_seq, dup_sack);
1670 if (tmp != NULL) {
1671 if (tmp != skb) {
1672 skb = tmp;
1673 continue;
1674 }
1675
1676 in_sack = 0;
1677 } else {
1678 in_sack = tcp_match_skb_to_sack(sk, skb,
1679 start_seq,
1680 end_seq);
1681 }
1682 }
1683
1684 if (unlikely(in_sack < 0))
1685 break;
1686
1687 if (in_sack) {
1688 TCP_SKB_CB(skb)->sacked =
1689 tcp_sacktag_one(sk,
1690 state,
1691 TCP_SKB_CB(skb)->sacked,
1692 TCP_SKB_CB(skb)->seq,
1693 TCP_SKB_CB(skb)->end_seq,
1694 dup_sack,
1695 tcp_skb_pcount(skb));
1696
1697 if (!before(TCP_SKB_CB(skb)->seq,
1698 tcp_highest_sack_seq(tp)))
1699 tcp_advance_highest_sack(sk, skb);
1700 }
1701
1702 state->fack_count += tcp_skb_pcount(skb);
1703 }
1704 return skb;
1705 }
1706
1707 /* Avoid all extra work that is being done by sacktag while walking in
1708 * a normal way
1709 */
1710 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1711 struct tcp_sacktag_state *state,
1712 u32 skip_to_seq)
1713 {
1714 tcp_for_write_queue_from(skb, sk) {
1715 if (skb == tcp_send_head(sk))
1716 break;
1717
1718 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1719 break;
1720
1721 state->fack_count += tcp_skb_pcount(skb);
1722 }
1723 return skb;
1724 }
1725
1726 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1727 struct sock *sk,
1728 struct tcp_sack_block *next_dup,
1729 struct tcp_sacktag_state *state,
1730 u32 skip_to_seq)
1731 {
1732 if (next_dup == NULL)
1733 return skb;
1734
1735 if (before(next_dup->start_seq, skip_to_seq)) {
1736 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1737 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1738 next_dup->start_seq, next_dup->end_seq,
1739 1);
1740 }
1741
1742 return skb;
1743 }
1744
1745 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1746 {
1747 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1748 }
1749
1750 static int
1751 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1752 u32 prior_snd_una)
1753 {
1754 const struct inet_connection_sock *icsk = inet_csk(sk);
1755 struct tcp_sock *tp = tcp_sk(sk);
1756 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1757 TCP_SKB_CB(ack_skb)->sacked);
1758 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1759 struct tcp_sack_block sp[TCP_NUM_SACKS];
1760 struct tcp_sack_block *cache;
1761 struct tcp_sacktag_state state;
1762 struct sk_buff *skb;
1763 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1764 int used_sacks;
1765 int found_dup_sack = 0;
1766 int i, j;
1767 int first_sack_index;
1768
1769 state.flag = 0;
1770 state.reord = tp->packets_out;
1771
1772 if (!tp->sacked_out) {
1773 if (WARN_ON(tp->fackets_out))
1774 tp->fackets_out = 0;
1775 tcp_highest_sack_reset(sk);
1776 }
1777
1778 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1779 num_sacks, prior_snd_una);
1780 if (found_dup_sack)
1781 state.flag |= FLAG_DSACKING_ACK;
1782
1783 /* Eliminate too old ACKs, but take into
1784 * account more or less fresh ones, they can
1785 * contain valid SACK info.
1786 */
1787 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1788 return 0;
1789
1790 if (!tp->packets_out)
1791 goto out;
1792
1793 used_sacks = 0;
1794 first_sack_index = 0;
1795 for (i = 0; i < num_sacks; i++) {
1796 int dup_sack = !i && found_dup_sack;
1797
1798 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1799 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1800
1801 if (!tcp_is_sackblock_valid(tp, dup_sack,
1802 sp[used_sacks].start_seq,
1803 sp[used_sacks].end_seq)) {
1804 int mib_idx;
1805
1806 if (dup_sack) {
1807 if (!tp->undo_marker)
1808 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1809 else
1810 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1811 } else {
1812 /* Don't count olds caused by ACK reordering */
1813 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1814 !after(sp[used_sacks].end_seq, tp->snd_una))
1815 continue;
1816 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1817 }
1818
1819 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1820 if (i == 0)
1821 first_sack_index = -1;
1822 continue;
1823 }
1824
1825 /* Ignore very old stuff early */
1826 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1827 continue;
1828
1829 used_sacks++;
1830 }
1831
1832 /* order SACK blocks to allow in order walk of the retrans queue */
1833 for (i = used_sacks - 1; i > 0; i--) {
1834 for (j = 0; j < i; j++) {
1835 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1836 swap(sp[j], sp[j + 1]);
1837
1838 /* Track where the first SACK block goes to */
1839 if (j == first_sack_index)
1840 first_sack_index = j + 1;
1841 }
1842 }
1843 }
1844
1845 skb = tcp_write_queue_head(sk);
1846 state.fack_count = 0;
1847 i = 0;
1848
1849 if (!tp->sacked_out) {
1850 /* It's already past, so skip checking against it */
1851 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1852 } else {
1853 cache = tp->recv_sack_cache;
1854 /* Skip empty blocks in at head of the cache */
1855 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1856 !cache->end_seq)
1857 cache++;
1858 }
1859
1860 while (i < used_sacks) {
1861 u32 start_seq = sp[i].start_seq;
1862 u32 end_seq = sp[i].end_seq;
1863 int dup_sack = (found_dup_sack && (i == first_sack_index));
1864 struct tcp_sack_block *next_dup = NULL;
1865
1866 if (found_dup_sack && ((i + 1) == first_sack_index))
1867 next_dup = &sp[i + 1];
1868
1869 /* Skip too early cached blocks */
1870 while (tcp_sack_cache_ok(tp, cache) &&
1871 !before(start_seq, cache->end_seq))
1872 cache++;
1873
1874 /* Can skip some work by looking recv_sack_cache? */
1875 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1876 after(end_seq, cache->start_seq)) {
1877
1878 /* Head todo? */
1879 if (before(start_seq, cache->start_seq)) {
1880 skb = tcp_sacktag_skip(skb, sk, &state,
1881 start_seq);
1882 skb = tcp_sacktag_walk(skb, sk, next_dup,
1883 &state,
1884 start_seq,
1885 cache->start_seq,
1886 dup_sack);
1887 }
1888
1889 /* Rest of the block already fully processed? */
1890 if (!after(end_seq, cache->end_seq))
1891 goto advance_sp;
1892
1893 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1894 &state,
1895 cache->end_seq);
1896
1897 /* ...tail remains todo... */
1898 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1899 /* ...but better entrypoint exists! */
1900 skb = tcp_highest_sack(sk);
1901 if (skb == NULL)
1902 break;
1903 state.fack_count = tp->fackets_out;
1904 cache++;
1905 goto walk;
1906 }
1907
1908 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1909 /* Check overlap against next cached too (past this one already) */
1910 cache++;
1911 continue;
1912 }
1913
1914 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1915 skb = tcp_highest_sack(sk);
1916 if (skb == NULL)
1917 break;
1918 state.fack_count = tp->fackets_out;
1919 }
1920 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1921
1922 walk:
1923 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1924 start_seq, end_seq, dup_sack);
1925
1926 advance_sp:
1927 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1928 * due to in-order walk
1929 */
1930 if (after(end_seq, tp->frto_highmark))
1931 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1932
1933 i++;
1934 }
1935
1936 /* Clear the head of the cache sack blocks so we can skip it next time */
1937 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1938 tp->recv_sack_cache[i].start_seq = 0;
1939 tp->recv_sack_cache[i].end_seq = 0;
1940 }
1941 for (j = 0; j < used_sacks; j++)
1942 tp->recv_sack_cache[i++] = sp[j];
1943
1944 tcp_mark_lost_retrans(sk);
1945
1946 tcp_verify_left_out(tp);
1947
1948 if ((state.reord < tp->fackets_out) &&
1949 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1950 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1951 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1952
1953 out:
1954
1955 #if FASTRETRANS_DEBUG > 0
1956 WARN_ON((int)tp->sacked_out < 0);
1957 WARN_ON((int)tp->lost_out < 0);
1958 WARN_ON((int)tp->retrans_out < 0);
1959 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1960 #endif
1961 return state.flag;
1962 }
1963
1964 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1965 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1966 */
1967 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1968 {
1969 u32 holes;
1970
1971 holes = max(tp->lost_out, 1U);
1972 holes = min(holes, tp->packets_out);
1973
1974 if ((tp->sacked_out + holes) > tp->packets_out) {
1975 tp->sacked_out = tp->packets_out - holes;
1976 return 1;
1977 }
1978 return 0;
1979 }
1980
1981 /* If we receive more dupacks than we expected counting segments
1982 * in assumption of absent reordering, interpret this as reordering.
1983 * The only another reason could be bug in receiver TCP.
1984 */
1985 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1986 {
1987 struct tcp_sock *tp = tcp_sk(sk);
1988 if (tcp_limit_reno_sacked(tp))
1989 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1990 }
1991
1992 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1993
1994 static void tcp_add_reno_sack(struct sock *sk)
1995 {
1996 struct tcp_sock *tp = tcp_sk(sk);
1997 tp->sacked_out++;
1998 tcp_check_reno_reordering(sk, 0);
1999 tcp_verify_left_out(tp);
2000 }
2001
2002 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2003
2004 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2005 {
2006 struct tcp_sock *tp = tcp_sk(sk);
2007
2008 if (acked > 0) {
2009 /* One ACK acked hole. The rest eat duplicate ACKs. */
2010 if (acked - 1 >= tp->sacked_out)
2011 tp->sacked_out = 0;
2012 else
2013 tp->sacked_out -= acked - 1;
2014 }
2015 tcp_check_reno_reordering(sk, acked);
2016 tcp_verify_left_out(tp);
2017 }
2018
2019 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2020 {
2021 tp->sacked_out = 0;
2022 }
2023
2024 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2025 {
2026 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2027 }
2028
2029 /* F-RTO can only be used if TCP has never retransmitted anything other than
2030 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2031 */
2032 int tcp_use_frto(struct sock *sk)
2033 {
2034 const struct tcp_sock *tp = tcp_sk(sk);
2035 const struct inet_connection_sock *icsk = inet_csk(sk);
2036 struct sk_buff *skb;
2037
2038 if (!sysctl_tcp_frto)
2039 return 0;
2040
2041 /* MTU probe and F-RTO won't really play nicely along currently */
2042 if (icsk->icsk_mtup.probe_size)
2043 return 0;
2044
2045 if (tcp_is_sackfrto(tp))
2046 return 1;
2047
2048 /* Avoid expensive walking of rexmit queue if possible */
2049 if (tp->retrans_out > 1)
2050 return 0;
2051
2052 skb = tcp_write_queue_head(sk);
2053 if (tcp_skb_is_last(sk, skb))
2054 return 1;
2055 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2056 tcp_for_write_queue_from(skb, sk) {
2057 if (skb == tcp_send_head(sk))
2058 break;
2059 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2060 return 0;
2061 /* Short-circuit when first non-SACKed skb has been checked */
2062 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2063 break;
2064 }
2065 return 1;
2066 }
2067
2068 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2069 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2070 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2071 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2072 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2073 * bits are handled if the Loss state is really to be entered (in
2074 * tcp_enter_frto_loss).
2075 *
2076 * Do like tcp_enter_loss() would; when RTO expires the second time it
2077 * does:
2078 * "Reduce ssthresh if it has not yet been made inside this window."
2079 */
2080 void tcp_enter_frto(struct sock *sk)
2081 {
2082 const struct inet_connection_sock *icsk = inet_csk(sk);
2083 struct tcp_sock *tp = tcp_sk(sk);
2084 struct sk_buff *skb;
2085
2086 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2087 tp->snd_una == tp->high_seq ||
2088 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2089 !icsk->icsk_retransmits)) {
2090 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2091 /* Our state is too optimistic in ssthresh() call because cwnd
2092 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2093 * recovery has not yet completed. Pattern would be this: RTO,
2094 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2095 * up here twice).
2096 * RFC4138 should be more specific on what to do, even though
2097 * RTO is quite unlikely to occur after the first Cumulative ACK
2098 * due to back-off and complexity of triggering events ...
2099 */
2100 if (tp->frto_counter) {
2101 u32 stored_cwnd;
2102 stored_cwnd = tp->snd_cwnd;
2103 tp->snd_cwnd = 2;
2104 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2105 tp->snd_cwnd = stored_cwnd;
2106 } else {
2107 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2108 }
2109 /* ... in theory, cong.control module could do "any tricks" in
2110 * ssthresh(), which means that ca_state, lost bits and lost_out
2111 * counter would have to be faked before the call occurs. We
2112 * consider that too expensive, unlikely and hacky, so modules
2113 * using these in ssthresh() must deal these incompatibility
2114 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2115 */
2116 tcp_ca_event(sk, CA_EVENT_FRTO);
2117 }
2118
2119 tp->undo_marker = tp->snd_una;
2120 tp->undo_retrans = 0;
2121
2122 skb = tcp_write_queue_head(sk);
2123 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2124 tp->undo_marker = 0;
2125 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2126 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2127 tp->retrans_out -= tcp_skb_pcount(skb);
2128 }
2129 tcp_verify_left_out(tp);
2130
2131 /* Too bad if TCP was application limited */
2132 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2133
2134 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2135 * The last condition is necessary at least in tp->frto_counter case.
2136 */
2137 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2138 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2139 after(tp->high_seq, tp->snd_una)) {
2140 tp->frto_highmark = tp->high_seq;
2141 } else {
2142 tp->frto_highmark = tp->snd_nxt;
2143 }
2144 tcp_set_ca_state(sk, TCP_CA_Disorder);
2145 tp->high_seq = tp->snd_nxt;
2146 tp->frto_counter = 1;
2147 }
2148
2149 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2150 * which indicates that we should follow the traditional RTO recovery,
2151 * i.e. mark everything lost and do go-back-N retransmission.
2152 */
2153 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2154 {
2155 struct tcp_sock *tp = tcp_sk(sk);
2156 struct sk_buff *skb;
2157
2158 tp->lost_out = 0;
2159 tp->retrans_out = 0;
2160 if (tcp_is_reno(tp))
2161 tcp_reset_reno_sack(tp);
2162
2163 tcp_for_write_queue(skb, sk) {
2164 if (skb == tcp_send_head(sk))
2165 break;
2166
2167 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2168 /*
2169 * Count the retransmission made on RTO correctly (only when
2170 * waiting for the first ACK and did not get it)...
2171 */
2172 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2173 /* For some reason this R-bit might get cleared? */
2174 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2175 tp->retrans_out += tcp_skb_pcount(skb);
2176 /* ...enter this if branch just for the first segment */
2177 flag |= FLAG_DATA_ACKED;
2178 } else {
2179 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2180 tp->undo_marker = 0;
2181 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2182 }
2183
2184 /* Marking forward transmissions that were made after RTO lost
2185 * can cause unnecessary retransmissions in some scenarios,
2186 * SACK blocks will mitigate that in some but not in all cases.
2187 * We used to not mark them but it was causing break-ups with
2188 * receivers that do only in-order receival.
2189 *
2190 * TODO: we could detect presence of such receiver and select
2191 * different behavior per flow.
2192 */
2193 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2194 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2195 tp->lost_out += tcp_skb_pcount(skb);
2196 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2197 }
2198 }
2199 tcp_verify_left_out(tp);
2200
2201 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2202 tp->snd_cwnd_cnt = 0;
2203 tp->snd_cwnd_stamp = tcp_time_stamp;
2204 tp->frto_counter = 0;
2205 tp->bytes_acked = 0;
2206
2207 tp->reordering = min_t(unsigned int, tp->reordering,
2208 sysctl_tcp_reordering);
2209 tcp_set_ca_state(sk, TCP_CA_Loss);
2210 tp->high_seq = tp->snd_nxt;
2211 TCP_ECN_queue_cwr(tp);
2212
2213 tcp_clear_all_retrans_hints(tp);
2214 }
2215
2216 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2217 {
2218 tp->retrans_out = 0;
2219 tp->lost_out = 0;
2220
2221 tp->undo_marker = 0;
2222 tp->undo_retrans = 0;
2223 }
2224
2225 void tcp_clear_retrans(struct tcp_sock *tp)
2226 {
2227 tcp_clear_retrans_partial(tp);
2228
2229 tp->fackets_out = 0;
2230 tp->sacked_out = 0;
2231 }
2232
2233 /* Enter Loss state. If "how" is not zero, forget all SACK information
2234 * and reset tags completely, otherwise preserve SACKs. If receiver
2235 * dropped its ofo queue, we will know this due to reneging detection.
2236 */
2237 void tcp_enter_loss(struct sock *sk, int how)
2238 {
2239 const struct inet_connection_sock *icsk = inet_csk(sk);
2240 struct tcp_sock *tp = tcp_sk(sk);
2241 struct sk_buff *skb;
2242
2243 /* Reduce ssthresh if it has not yet been made inside this window. */
2244 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2245 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2246 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2247 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2248 tcp_ca_event(sk, CA_EVENT_LOSS);
2249 }
2250 tp->snd_cwnd = 1;
2251 tp->snd_cwnd_cnt = 0;
2252 tp->snd_cwnd_stamp = tcp_time_stamp;
2253
2254 tp->bytes_acked = 0;
2255 tcp_clear_retrans_partial(tp);
2256
2257 if (tcp_is_reno(tp))
2258 tcp_reset_reno_sack(tp);
2259
2260 if (!how) {
2261 /* Push undo marker, if it was plain RTO and nothing
2262 * was retransmitted. */
2263 tp->undo_marker = tp->snd_una;
2264 } else {
2265 tp->sacked_out = 0;
2266 tp->fackets_out = 0;
2267 }
2268 tcp_clear_all_retrans_hints(tp);
2269
2270 tcp_for_write_queue(skb, sk) {
2271 if (skb == tcp_send_head(sk))
2272 break;
2273
2274 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2275 tp->undo_marker = 0;
2276 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2277 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2278 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2279 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2280 tp->lost_out += tcp_skb_pcount(skb);
2281 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2282 }
2283 }
2284 tcp_verify_left_out(tp);
2285
2286 tp->reordering = min_t(unsigned int, tp->reordering,
2287 sysctl_tcp_reordering);
2288 tcp_set_ca_state(sk, TCP_CA_Loss);
2289 tp->high_seq = tp->snd_nxt;
2290 TCP_ECN_queue_cwr(tp);
2291 /* Abort F-RTO algorithm if one is in progress */
2292 tp->frto_counter = 0;
2293 }
2294
2295 /* If ACK arrived pointing to a remembered SACK, it means that our
2296 * remembered SACKs do not reflect real state of receiver i.e.
2297 * receiver _host_ is heavily congested (or buggy).
2298 *
2299 * Do processing similar to RTO timeout.
2300 */
2301 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2302 {
2303 if (flag & FLAG_SACK_RENEGING) {
2304 struct inet_connection_sock *icsk = inet_csk(sk);
2305 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2306
2307 tcp_enter_loss(sk, 1);
2308 icsk->icsk_retransmits++;
2309 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2310 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2311 icsk->icsk_rto, TCP_RTO_MAX);
2312 return 1;
2313 }
2314 return 0;
2315 }
2316
2317 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2318 {
2319 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2320 }
2321
2322 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2323 * counter when SACK is enabled (without SACK, sacked_out is used for
2324 * that purpose).
2325 *
2326 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2327 * segments up to the highest received SACK block so far and holes in
2328 * between them.
2329 *
2330 * With reordering, holes may still be in flight, so RFC3517 recovery
2331 * uses pure sacked_out (total number of SACKed segments) even though
2332 * it violates the RFC that uses duplicate ACKs, often these are equal
2333 * but when e.g. out-of-window ACKs or packet duplication occurs,
2334 * they differ. Since neither occurs due to loss, TCP should really
2335 * ignore them.
2336 */
2337 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2338 {
2339 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2340 }
2341
2342 static inline int tcp_skb_timedout(const struct sock *sk,
2343 const struct sk_buff *skb)
2344 {
2345 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2346 }
2347
2348 static inline int tcp_head_timedout(const struct sock *sk)
2349 {
2350 const struct tcp_sock *tp = tcp_sk(sk);
2351
2352 return tp->packets_out &&
2353 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2354 }
2355
2356 /* Linux NewReno/SACK/FACK/ECN state machine.
2357 * --------------------------------------
2358 *
2359 * "Open" Normal state, no dubious events, fast path.
2360 * "Disorder" In all the respects it is "Open",
2361 * but requires a bit more attention. It is entered when
2362 * we see some SACKs or dupacks. It is split of "Open"
2363 * mainly to move some processing from fast path to slow one.
2364 * "CWR" CWND was reduced due to some Congestion Notification event.
2365 * It can be ECN, ICMP source quench, local device congestion.
2366 * "Recovery" CWND was reduced, we are fast-retransmitting.
2367 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2368 *
2369 * tcp_fastretrans_alert() is entered:
2370 * - each incoming ACK, if state is not "Open"
2371 * - when arrived ACK is unusual, namely:
2372 * * SACK
2373 * * Duplicate ACK.
2374 * * ECN ECE.
2375 *
2376 * Counting packets in flight is pretty simple.
2377 *
2378 * in_flight = packets_out - left_out + retrans_out
2379 *
2380 * packets_out is SND.NXT-SND.UNA counted in packets.
2381 *
2382 * retrans_out is number of retransmitted segments.
2383 *
2384 * left_out is number of segments left network, but not ACKed yet.
2385 *
2386 * left_out = sacked_out + lost_out
2387 *
2388 * sacked_out: Packets, which arrived to receiver out of order
2389 * and hence not ACKed. With SACKs this number is simply
2390 * amount of SACKed data. Even without SACKs
2391 * it is easy to give pretty reliable estimate of this number,
2392 * counting duplicate ACKs.
2393 *
2394 * lost_out: Packets lost by network. TCP has no explicit
2395 * "loss notification" feedback from network (for now).
2396 * It means that this number can be only _guessed_.
2397 * Actually, it is the heuristics to predict lossage that
2398 * distinguishes different algorithms.
2399 *
2400 * F.e. after RTO, when all the queue is considered as lost,
2401 * lost_out = packets_out and in_flight = retrans_out.
2402 *
2403 * Essentially, we have now two algorithms counting
2404 * lost packets.
2405 *
2406 * FACK: It is the simplest heuristics. As soon as we decided
2407 * that something is lost, we decide that _all_ not SACKed
2408 * packets until the most forward SACK are lost. I.e.
2409 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2410 * It is absolutely correct estimate, if network does not reorder
2411 * packets. And it loses any connection to reality when reordering
2412 * takes place. We use FACK by default until reordering
2413 * is suspected on the path to this destination.
2414 *
2415 * NewReno: when Recovery is entered, we assume that one segment
2416 * is lost (classic Reno). While we are in Recovery and
2417 * a partial ACK arrives, we assume that one more packet
2418 * is lost (NewReno). This heuristics are the same in NewReno
2419 * and SACK.
2420 *
2421 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2422 * deflation etc. CWND is real congestion window, never inflated, changes
2423 * only according to classic VJ rules.
2424 *
2425 * Really tricky (and requiring careful tuning) part of algorithm
2426 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2427 * The first determines the moment _when_ we should reduce CWND and,
2428 * hence, slow down forward transmission. In fact, it determines the moment
2429 * when we decide that hole is caused by loss, rather than by a reorder.
2430 *
2431 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2432 * holes, caused by lost packets.
2433 *
2434 * And the most logically complicated part of algorithm is undo
2435 * heuristics. We detect false retransmits due to both too early
2436 * fast retransmit (reordering) and underestimated RTO, analyzing
2437 * timestamps and D-SACKs. When we detect that some segments were
2438 * retransmitted by mistake and CWND reduction was wrong, we undo
2439 * window reduction and abort recovery phase. This logic is hidden
2440 * inside several functions named tcp_try_undo_<something>.
2441 */
2442
2443 /* This function decides, when we should leave Disordered state
2444 * and enter Recovery phase, reducing congestion window.
2445 *
2446 * Main question: may we further continue forward transmission
2447 * with the same cwnd?
2448 */
2449 static int tcp_time_to_recover(struct sock *sk)
2450 {
2451 struct tcp_sock *tp = tcp_sk(sk);
2452 __u32 packets_out;
2453
2454 /* Do not perform any recovery during F-RTO algorithm */
2455 if (tp->frto_counter)
2456 return 0;
2457
2458 /* Trick#1: The loss is proven. */
2459 if (tp->lost_out)
2460 return 1;
2461
2462 /* Not-A-Trick#2 : Classic rule... */
2463 if (tcp_dupack_heuristics(tp) > tp->reordering)
2464 return 1;
2465
2466 /* Trick#3 : when we use RFC2988 timer restart, fast
2467 * retransmit can be triggered by timeout of queue head.
2468 */
2469 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2470 return 1;
2471
2472 /* Trick#4: It is still not OK... But will it be useful to delay
2473 * recovery more?
2474 */
2475 packets_out = tp->packets_out;
2476 if (packets_out <= tp->reordering &&
2477 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2478 !tcp_may_send_now(sk)) {
2479 /* We have nothing to send. This connection is limited
2480 * either by receiver window or by application.
2481 */
2482 return 1;
2483 }
2484
2485 /* If a thin stream is detected, retransmit after first
2486 * received dupack. Employ only if SACK is supported in order
2487 * to avoid possible corner-case series of spurious retransmissions
2488 * Use only if there are no unsent data.
2489 */
2490 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2491 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2492 tcp_is_sack(tp) && !tcp_send_head(sk))
2493 return 1;
2494
2495 return 0;
2496 }
2497
2498 /* New heuristics: it is possible only after we switched to restart timer
2499 * each time when something is ACKed. Hence, we can detect timed out packets
2500 * during fast retransmit without falling to slow start.
2501 *
2502 * Usefulness of this as is very questionable, since we should know which of
2503 * the segments is the next to timeout which is relatively expensive to find
2504 * in general case unless we add some data structure just for that. The
2505 * current approach certainly won't find the right one too often and when it
2506 * finally does find _something_ it usually marks large part of the window
2507 * right away (because a retransmission with a larger timestamp blocks the
2508 * loop from advancing). -ij
2509 */
2510 static void tcp_timeout_skbs(struct sock *sk)
2511 {
2512 struct tcp_sock *tp = tcp_sk(sk);
2513 struct sk_buff *skb;
2514
2515 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2516 return;
2517
2518 skb = tp->scoreboard_skb_hint;
2519 if (tp->scoreboard_skb_hint == NULL)
2520 skb = tcp_write_queue_head(sk);
2521
2522 tcp_for_write_queue_from(skb, sk) {
2523 if (skb == tcp_send_head(sk))
2524 break;
2525 if (!tcp_skb_timedout(sk, skb))
2526 break;
2527
2528 tcp_skb_mark_lost(tp, skb);
2529 }
2530
2531 tp->scoreboard_skb_hint = skb;
2532
2533 tcp_verify_left_out(tp);
2534 }
2535
2536 /* Detect loss in event "A" above by marking head of queue up as lost.
2537 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2538 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2539 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2540 * the maximum SACKed segments to pass before reaching this limit.
2541 */
2542 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2543 {
2544 struct tcp_sock *tp = tcp_sk(sk);
2545 struct sk_buff *skb;
2546 int cnt, oldcnt;
2547 int err;
2548 unsigned int mss;
2549 /* Use SACK to deduce losses of new sequences sent during recovery */
2550 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2551
2552 WARN_ON(packets > tp->packets_out);
2553 if (tp->lost_skb_hint) {
2554 skb = tp->lost_skb_hint;
2555 cnt = tp->lost_cnt_hint;
2556 /* Head already handled? */
2557 if (mark_head && skb != tcp_write_queue_head(sk))
2558 return;
2559 } else {
2560 skb = tcp_write_queue_head(sk);
2561 cnt = 0;
2562 }
2563
2564 tcp_for_write_queue_from(skb, sk) {
2565 if (skb == tcp_send_head(sk))
2566 break;
2567 /* TODO: do this better */
2568 /* this is not the most efficient way to do this... */
2569 tp->lost_skb_hint = skb;
2570 tp->lost_cnt_hint = cnt;
2571
2572 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2573 break;
2574
2575 oldcnt = cnt;
2576 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2577 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2578 cnt += tcp_skb_pcount(skb);
2579
2580 if (cnt > packets) {
2581 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2582 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2583 (oldcnt >= packets))
2584 break;
2585
2586 mss = skb_shinfo(skb)->gso_size;
2587 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2588 if (err < 0)
2589 break;
2590 cnt = packets;
2591 }
2592
2593 tcp_skb_mark_lost(tp, skb);
2594
2595 if (mark_head)
2596 break;
2597 }
2598 tcp_verify_left_out(tp);
2599 }
2600
2601 /* Account newly detected lost packet(s) */
2602
2603 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2604 {
2605 struct tcp_sock *tp = tcp_sk(sk);
2606
2607 if (tcp_is_reno(tp)) {
2608 tcp_mark_head_lost(sk, 1, 1);
2609 } else if (tcp_is_fack(tp)) {
2610 int lost = tp->fackets_out - tp->reordering;
2611 if (lost <= 0)
2612 lost = 1;
2613 tcp_mark_head_lost(sk, lost, 0);
2614 } else {
2615 int sacked_upto = tp->sacked_out - tp->reordering;
2616 if (sacked_upto >= 0)
2617 tcp_mark_head_lost(sk, sacked_upto, 0);
2618 else if (fast_rexmit)
2619 tcp_mark_head_lost(sk, 1, 1);
2620 }
2621
2622 tcp_timeout_skbs(sk);
2623 }
2624
2625 /* CWND moderation, preventing bursts due to too big ACKs
2626 * in dubious situations.
2627 */
2628 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2629 {
2630 tp->snd_cwnd = min(tp->snd_cwnd,
2631 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2632 tp->snd_cwnd_stamp = tcp_time_stamp;
2633 }
2634
2635 /* Lower bound on congestion window is slow start threshold
2636 * unless congestion avoidance choice decides to overide it.
2637 */
2638 static inline u32 tcp_cwnd_min(const struct sock *sk)
2639 {
2640 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2641
2642 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2643 }
2644
2645 /* Decrease cwnd each second ack. */
2646 static void tcp_cwnd_down(struct sock *sk, int flag)
2647 {
2648 struct tcp_sock *tp = tcp_sk(sk);
2649 int decr = tp->snd_cwnd_cnt + 1;
2650
2651 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2652 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2653 tp->snd_cwnd_cnt = decr & 1;
2654 decr >>= 1;
2655
2656 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2657 tp->snd_cwnd -= decr;
2658
2659 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2660 tp->snd_cwnd_stamp = tcp_time_stamp;
2661 }
2662 }
2663
2664 /* Nothing was retransmitted or returned timestamp is less
2665 * than timestamp of the first retransmission.
2666 */
2667 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2668 {
2669 return !tp->retrans_stamp ||
2670 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2671 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2672 }
2673
2674 /* Undo procedures. */
2675
2676 #if FASTRETRANS_DEBUG > 1
2677 static void DBGUNDO(struct sock *sk, const char *msg)
2678 {
2679 struct tcp_sock *tp = tcp_sk(sk);
2680 struct inet_sock *inet = inet_sk(sk);
2681
2682 if (sk->sk_family == AF_INET) {
2683 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2684 msg,
2685 &inet->inet_daddr, ntohs(inet->inet_dport),
2686 tp->snd_cwnd, tcp_left_out(tp),
2687 tp->snd_ssthresh, tp->prior_ssthresh,
2688 tp->packets_out);
2689 }
2690 #if IS_ENABLED(CONFIG_IPV6)
2691 else if (sk->sk_family == AF_INET6) {
2692 struct ipv6_pinfo *np = inet6_sk(sk);
2693 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2694 msg,
2695 &np->daddr, ntohs(inet->inet_dport),
2696 tp->snd_cwnd, tcp_left_out(tp),
2697 tp->snd_ssthresh, tp->prior_ssthresh,
2698 tp->packets_out);
2699 }
2700 #endif
2701 }
2702 #else
2703 #define DBGUNDO(x...) do { } while (0)
2704 #endif
2705
2706 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2707 {
2708 struct tcp_sock *tp = tcp_sk(sk);
2709
2710 if (tp->prior_ssthresh) {
2711 const struct inet_connection_sock *icsk = inet_csk(sk);
2712
2713 if (icsk->icsk_ca_ops->undo_cwnd)
2714 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2715 else
2716 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2717
2718 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2719 tp->snd_ssthresh = tp->prior_ssthresh;
2720 TCP_ECN_withdraw_cwr(tp);
2721 }
2722 } else {
2723 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2724 }
2725 tp->snd_cwnd_stamp = tcp_time_stamp;
2726 }
2727
2728 static inline int tcp_may_undo(const struct tcp_sock *tp)
2729 {
2730 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2731 }
2732
2733 /* People celebrate: "We love our President!" */
2734 static int tcp_try_undo_recovery(struct sock *sk)
2735 {
2736 struct tcp_sock *tp = tcp_sk(sk);
2737
2738 if (tcp_may_undo(tp)) {
2739 int mib_idx;
2740
2741 /* Happy end! We did not retransmit anything
2742 * or our original transmission succeeded.
2743 */
2744 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2745 tcp_undo_cwr(sk, true);
2746 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2747 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2748 else
2749 mib_idx = LINUX_MIB_TCPFULLUNDO;
2750
2751 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2752 tp->undo_marker = 0;
2753 }
2754 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2755 /* Hold old state until something *above* high_seq
2756 * is ACKed. For Reno it is MUST to prevent false
2757 * fast retransmits (RFC2582). SACK TCP is safe. */
2758 tcp_moderate_cwnd(tp);
2759 return 1;
2760 }
2761 tcp_set_ca_state(sk, TCP_CA_Open);
2762 return 0;
2763 }
2764
2765 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2766 static void tcp_try_undo_dsack(struct sock *sk)
2767 {
2768 struct tcp_sock *tp = tcp_sk(sk);
2769
2770 if (tp->undo_marker && !tp->undo_retrans) {
2771 DBGUNDO(sk, "D-SACK");
2772 tcp_undo_cwr(sk, true);
2773 tp->undo_marker = 0;
2774 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2775 }
2776 }
2777
2778 /* We can clear retrans_stamp when there are no retransmissions in the
2779 * window. It would seem that it is trivially available for us in
2780 * tp->retrans_out, however, that kind of assumptions doesn't consider
2781 * what will happen if errors occur when sending retransmission for the
2782 * second time. ...It could the that such segment has only
2783 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2784 * the head skb is enough except for some reneging corner cases that
2785 * are not worth the effort.
2786 *
2787 * Main reason for all this complexity is the fact that connection dying
2788 * time now depends on the validity of the retrans_stamp, in particular,
2789 * that successive retransmissions of a segment must not advance
2790 * retrans_stamp under any conditions.
2791 */
2792 static int tcp_any_retrans_done(const struct sock *sk)
2793 {
2794 const struct tcp_sock *tp = tcp_sk(sk);
2795 struct sk_buff *skb;
2796
2797 if (tp->retrans_out)
2798 return 1;
2799
2800 skb = tcp_write_queue_head(sk);
2801 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2802 return 1;
2803
2804 return 0;
2805 }
2806
2807 /* Undo during fast recovery after partial ACK. */
2808
2809 static int tcp_try_undo_partial(struct sock *sk, int acked)
2810 {
2811 struct tcp_sock *tp = tcp_sk(sk);
2812 /* Partial ACK arrived. Force Hoe's retransmit. */
2813 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2814
2815 if (tcp_may_undo(tp)) {
2816 /* Plain luck! Hole if filled with delayed
2817 * packet, rather than with a retransmit.
2818 */
2819 if (!tcp_any_retrans_done(sk))
2820 tp->retrans_stamp = 0;
2821
2822 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2823
2824 DBGUNDO(sk, "Hoe");
2825 tcp_undo_cwr(sk, false);
2826 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2827
2828 /* So... Do not make Hoe's retransmit yet.
2829 * If the first packet was delayed, the rest
2830 * ones are most probably delayed as well.
2831 */
2832 failed = 0;
2833 }
2834 return failed;
2835 }
2836
2837 /* Undo during loss recovery after partial ACK. */
2838 static int tcp_try_undo_loss(struct sock *sk)
2839 {
2840 struct tcp_sock *tp = tcp_sk(sk);
2841
2842 if (tcp_may_undo(tp)) {
2843 struct sk_buff *skb;
2844 tcp_for_write_queue(skb, sk) {
2845 if (skb == tcp_send_head(sk))
2846 break;
2847 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2848 }
2849
2850 tcp_clear_all_retrans_hints(tp);
2851
2852 DBGUNDO(sk, "partial loss");
2853 tp->lost_out = 0;
2854 tcp_undo_cwr(sk, true);
2855 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2856 inet_csk(sk)->icsk_retransmits = 0;
2857 tp->undo_marker = 0;
2858 if (tcp_is_sack(tp))
2859 tcp_set_ca_state(sk, TCP_CA_Open);
2860 return 1;
2861 }
2862 return 0;
2863 }
2864
2865 static inline void tcp_complete_cwr(struct sock *sk)
2866 {
2867 struct tcp_sock *tp = tcp_sk(sk);
2868
2869 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2870 if (tp->undo_marker) {
2871 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2872 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2873 tp->snd_cwnd_stamp = tcp_time_stamp;
2874 } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2875 /* PRR algorithm. */
2876 tp->snd_cwnd = tp->snd_ssthresh;
2877 tp->snd_cwnd_stamp = tcp_time_stamp;
2878 }
2879 }
2880 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2881 }
2882
2883 static void tcp_try_keep_open(struct sock *sk)
2884 {
2885 struct tcp_sock *tp = tcp_sk(sk);
2886 int state = TCP_CA_Open;
2887
2888 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2889 state = TCP_CA_Disorder;
2890
2891 if (inet_csk(sk)->icsk_ca_state != state) {
2892 tcp_set_ca_state(sk, state);
2893 tp->high_seq = tp->snd_nxt;
2894 }
2895 }
2896
2897 static void tcp_try_to_open(struct sock *sk, int flag)
2898 {
2899 struct tcp_sock *tp = tcp_sk(sk);
2900
2901 tcp_verify_left_out(tp);
2902
2903 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2904 tp->retrans_stamp = 0;
2905
2906 if (flag & FLAG_ECE)
2907 tcp_enter_cwr(sk, 1);
2908
2909 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2910 tcp_try_keep_open(sk);
2911 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2912 tcp_moderate_cwnd(tp);
2913 } else {
2914 tcp_cwnd_down(sk, flag);
2915 }
2916 }
2917
2918 static void tcp_mtup_probe_failed(struct sock *sk)
2919 {
2920 struct inet_connection_sock *icsk = inet_csk(sk);
2921
2922 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2923 icsk->icsk_mtup.probe_size = 0;
2924 }
2925
2926 static void tcp_mtup_probe_success(struct sock *sk)
2927 {
2928 struct tcp_sock *tp = tcp_sk(sk);
2929 struct inet_connection_sock *icsk = inet_csk(sk);
2930
2931 /* FIXME: breaks with very large cwnd */
2932 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2933 tp->snd_cwnd = tp->snd_cwnd *
2934 tcp_mss_to_mtu(sk, tp->mss_cache) /
2935 icsk->icsk_mtup.probe_size;
2936 tp->snd_cwnd_cnt = 0;
2937 tp->snd_cwnd_stamp = tcp_time_stamp;
2938 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2939
2940 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2941 icsk->icsk_mtup.probe_size = 0;
2942 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2943 }
2944
2945 /* Do a simple retransmit without using the backoff mechanisms in
2946 * tcp_timer. This is used for path mtu discovery.
2947 * The socket is already locked here.
2948 */
2949 void tcp_simple_retransmit(struct sock *sk)
2950 {
2951 const struct inet_connection_sock *icsk = inet_csk(sk);
2952 struct tcp_sock *tp = tcp_sk(sk);
2953 struct sk_buff *skb;
2954 unsigned int mss = tcp_current_mss(sk);
2955 u32 prior_lost = tp->lost_out;
2956
2957 tcp_for_write_queue(skb, sk) {
2958 if (skb == tcp_send_head(sk))
2959 break;
2960 if (tcp_skb_seglen(skb) > mss &&
2961 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2962 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2963 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2964 tp->retrans_out -= tcp_skb_pcount(skb);
2965 }
2966 tcp_skb_mark_lost_uncond_verify(tp, skb);
2967 }
2968 }
2969
2970 tcp_clear_retrans_hints_partial(tp);
2971
2972 if (prior_lost == tp->lost_out)
2973 return;
2974
2975 if (tcp_is_reno(tp))
2976 tcp_limit_reno_sacked(tp);
2977
2978 tcp_verify_left_out(tp);
2979
2980 /* Don't muck with the congestion window here.
2981 * Reason is that we do not increase amount of _data_
2982 * in network, but units changed and effective
2983 * cwnd/ssthresh really reduced now.
2984 */
2985 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2986 tp->high_seq = tp->snd_nxt;
2987 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2988 tp->prior_ssthresh = 0;
2989 tp->undo_marker = 0;
2990 tcp_set_ca_state(sk, TCP_CA_Loss);
2991 }
2992 tcp_xmit_retransmit_queue(sk);
2993 }
2994 EXPORT_SYMBOL(tcp_simple_retransmit);
2995
2996 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2997 * (proportional rate reduction with slow start reduction bound) as described in
2998 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2999 * It computes the number of packets to send (sndcnt) based on packets newly
3000 * delivered:
3001 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
3002 * cwnd reductions across a full RTT.
3003 * 2) If packets in flight is lower than ssthresh (such as due to excess
3004 * losses and/or application stalls), do not perform any further cwnd
3005 * reductions, but instead slow start up to ssthresh.
3006 */
3007 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3008 int fast_rexmit, int flag)
3009 {
3010 struct tcp_sock *tp = tcp_sk(sk);
3011 int sndcnt = 0;
3012 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3013
3014 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3015 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3016 tp->prior_cwnd - 1;
3017 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3018 } else {
3019 sndcnt = min_t(int, delta,
3020 max_t(int, tp->prr_delivered - tp->prr_out,
3021 newly_acked_sacked) + 1);
3022 }
3023
3024 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3025 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3026 }
3027
3028 /* Process an event, which can update packets-in-flight not trivially.
3029 * Main goal of this function is to calculate new estimate for left_out,
3030 * taking into account both packets sitting in receiver's buffer and
3031 * packets lost by network.
3032 *
3033 * Besides that it does CWND reduction, when packet loss is detected
3034 * and changes state of machine.
3035 *
3036 * It does _not_ decide what to send, it is made in function
3037 * tcp_xmit_retransmit_queue().
3038 */
3039 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3040 int newly_acked_sacked, bool is_dupack,
3041 int flag)
3042 {
3043 struct inet_connection_sock *icsk = inet_csk(sk);
3044 struct tcp_sock *tp = tcp_sk(sk);
3045 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3046 (tcp_fackets_out(tp) > tp->reordering));
3047 int fast_rexmit = 0, mib_idx;
3048
3049 if (WARN_ON(!tp->packets_out && tp->sacked_out))
3050 tp->sacked_out = 0;
3051 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3052 tp->fackets_out = 0;
3053
3054 /* Now state machine starts.
3055 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3056 if (flag & FLAG_ECE)
3057 tp->prior_ssthresh = 0;
3058
3059 /* B. In all the states check for reneging SACKs. */
3060 if (tcp_check_sack_reneging(sk, flag))
3061 return;
3062
3063 /* C. Check consistency of the current state. */
3064 tcp_verify_left_out(tp);
3065
3066 /* D. Check state exit conditions. State can be terminated
3067 * when high_seq is ACKed. */
3068 if (icsk->icsk_ca_state == TCP_CA_Open) {
3069 WARN_ON(tp->retrans_out != 0);
3070 tp->retrans_stamp = 0;
3071 } else if (!before(tp->snd_una, tp->high_seq)) {
3072 switch (icsk->icsk_ca_state) {
3073 case TCP_CA_Loss:
3074 icsk->icsk_retransmits = 0;
3075 if (tcp_try_undo_recovery(sk))
3076 return;
3077 break;
3078
3079 case TCP_CA_CWR:
3080 /* CWR is to be held something *above* high_seq
3081 * is ACKed for CWR bit to reach receiver. */
3082 if (tp->snd_una != tp->high_seq) {
3083 tcp_complete_cwr(sk);
3084 tcp_set_ca_state(sk, TCP_CA_Open);
3085 }
3086 break;
3087
3088 case TCP_CA_Recovery:
3089 if (tcp_is_reno(tp))
3090 tcp_reset_reno_sack(tp);
3091 if (tcp_try_undo_recovery(sk))
3092 return;
3093 tcp_complete_cwr(sk);
3094 break;
3095 }
3096 }
3097
3098 /* E. Process state. */
3099 switch (icsk->icsk_ca_state) {
3100 case TCP_CA_Recovery:
3101 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3102 if (tcp_is_reno(tp) && is_dupack)
3103 tcp_add_reno_sack(sk);
3104 } else
3105 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3106 break;
3107 case TCP_CA_Loss:
3108 if (flag & FLAG_DATA_ACKED)
3109 icsk->icsk_retransmits = 0;
3110 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3111 tcp_reset_reno_sack(tp);
3112 if (!tcp_try_undo_loss(sk)) {
3113 tcp_moderate_cwnd(tp);
3114 tcp_xmit_retransmit_queue(sk);
3115 return;
3116 }
3117 if (icsk->icsk_ca_state != TCP_CA_Open)
3118 return;
3119 /* Loss is undone; fall through to processing in Open state. */
3120 default:
3121 if (tcp_is_reno(tp)) {
3122 if (flag & FLAG_SND_UNA_ADVANCED)
3123 tcp_reset_reno_sack(tp);
3124 if (is_dupack)
3125 tcp_add_reno_sack(sk);
3126 }
3127
3128 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3129 tcp_try_undo_dsack(sk);
3130
3131 if (!tcp_time_to_recover(sk)) {
3132 tcp_try_to_open(sk, flag);
3133 return;
3134 }
3135
3136 /* MTU probe failure: don't reduce cwnd */
3137 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3138 icsk->icsk_mtup.probe_size &&
3139 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3140 tcp_mtup_probe_failed(sk);
3141 /* Restores the reduction we did in tcp_mtup_probe() */
3142 tp->snd_cwnd++;
3143 tcp_simple_retransmit(sk);
3144 return;
3145 }
3146
3147 /* Otherwise enter Recovery state */
3148
3149 if (tcp_is_reno(tp))
3150 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3151 else
3152 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3153
3154 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3155
3156 tp->high_seq = tp->snd_nxt;
3157 tp->prior_ssthresh = 0;
3158 tp->undo_marker = tp->snd_una;
3159 tp->undo_retrans = tp->retrans_out;
3160
3161 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3162 if (!(flag & FLAG_ECE))
3163 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3164 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3165 TCP_ECN_queue_cwr(tp);
3166 }
3167
3168 tp->bytes_acked = 0;
3169 tp->snd_cwnd_cnt = 0;
3170 tp->prior_cwnd = tp->snd_cwnd;
3171 tp->prr_delivered = 0;
3172 tp->prr_out = 0;
3173 tcp_set_ca_state(sk, TCP_CA_Recovery);
3174 fast_rexmit = 1;
3175 }
3176
3177 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3178 tcp_update_scoreboard(sk, fast_rexmit);
3179 tp->prr_delivered += newly_acked_sacked;
3180 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3181 tcp_xmit_retransmit_queue(sk);
3182 }
3183
3184 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3185 {
3186 tcp_rtt_estimator(sk, seq_rtt);
3187 tcp_set_rto(sk);
3188 inet_csk(sk)->icsk_backoff = 0;
3189 }
3190 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3191
3192 /* Read draft-ietf-tcplw-high-performance before mucking
3193 * with this code. (Supersedes RFC1323)
3194 */
3195 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3196 {
3197 /* RTTM Rule: A TSecr value received in a segment is used to
3198 * update the averaged RTT measurement only if the segment
3199 * acknowledges some new data, i.e., only if it advances the
3200 * left edge of the send window.
3201 *
3202 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3203 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3204 *
3205 * Changed: reset backoff as soon as we see the first valid sample.
3206 * If we do not, we get strongly overestimated rto. With timestamps
3207 * samples are accepted even from very old segments: f.e., when rtt=1
3208 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3209 * answer arrives rto becomes 120 seconds! If at least one of segments
3210 * in window is lost... Voila. --ANK (010210)
3211 */
3212 struct tcp_sock *tp = tcp_sk(sk);
3213
3214 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3215 }
3216
3217 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3218 {
3219 /* We don't have a timestamp. Can only use
3220 * packets that are not retransmitted to determine
3221 * rtt estimates. Also, we must not reset the
3222 * backoff for rto until we get a non-retransmitted
3223 * packet. This allows us to deal with a situation
3224 * where the network delay has increased suddenly.
3225 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3226 */
3227
3228 if (flag & FLAG_RETRANS_DATA_ACKED)
3229 return;
3230
3231 tcp_valid_rtt_meas(sk, seq_rtt);
3232 }
3233
3234 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3235 const s32 seq_rtt)
3236 {
3237 const struct tcp_sock *tp = tcp_sk(sk);
3238 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3239 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3240 tcp_ack_saw_tstamp(sk, flag);
3241 else if (seq_rtt >= 0)
3242 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3243 }
3244
3245 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3246 {
3247 const struct inet_connection_sock *icsk = inet_csk(sk);
3248 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3249 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3250 }
3251
3252 /* Restart timer after forward progress on connection.
3253 * RFC2988 recommends to restart timer to now+rto.
3254 */
3255 static void tcp_rearm_rto(struct sock *sk)
3256 {
3257 const struct tcp_sock *tp = tcp_sk(sk);
3258
3259 if (!tp->packets_out) {
3260 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3261 } else {
3262 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3263 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3264 }
3265 }
3266
3267 /* If we get here, the whole TSO packet has not been acked. */
3268 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3269 {
3270 struct tcp_sock *tp = tcp_sk(sk);
3271 u32 packets_acked;
3272
3273 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3274
3275 packets_acked = tcp_skb_pcount(skb);
3276 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3277 return 0;
3278 packets_acked -= tcp_skb_pcount(skb);
3279
3280 if (packets_acked) {
3281 BUG_ON(tcp_skb_pcount(skb) == 0);
3282 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3283 }
3284
3285 return packets_acked;
3286 }
3287
3288 /* Remove acknowledged frames from the retransmission queue. If our packet
3289 * is before the ack sequence we can discard it as it's confirmed to have
3290 * arrived at the other end.
3291 */
3292 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3293 u32 prior_snd_una)
3294 {
3295 struct tcp_sock *tp = tcp_sk(sk);
3296 const struct inet_connection_sock *icsk = inet_csk(sk);
3297 struct sk_buff *skb;
3298 u32 now = tcp_time_stamp;
3299 int fully_acked = 1;
3300 int flag = 0;
3301 u32 pkts_acked = 0;
3302 u32 reord = tp->packets_out;
3303 u32 prior_sacked = tp->sacked_out;
3304 s32 seq_rtt = -1;
3305 s32 ca_seq_rtt = -1;
3306 ktime_t last_ackt = net_invalid_timestamp();
3307
3308 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3309 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3310 u32 acked_pcount;
3311 u8 sacked = scb->sacked;
3312
3313 /* Determine how many packets and what bytes were acked, tso and else */
3314 if (after(scb->end_seq, tp->snd_una)) {
3315 if (tcp_skb_pcount(skb) == 1 ||
3316 !after(tp->snd_una, scb->seq))
3317 break;
3318
3319 acked_pcount = tcp_tso_acked(sk, skb);
3320 if (!acked_pcount)
3321 break;
3322
3323 fully_acked = 0;
3324 } else {
3325 acked_pcount = tcp_skb_pcount(skb);
3326 }
3327
3328 if (sacked & TCPCB_RETRANS) {
3329 if (sacked & TCPCB_SACKED_RETRANS)
3330 tp->retrans_out -= acked_pcount;
3331 flag |= FLAG_RETRANS_DATA_ACKED;
3332 ca_seq_rtt = -1;
3333 seq_rtt = -1;
3334 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3335 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3336 } else {
3337 ca_seq_rtt = now - scb->when;
3338 last_ackt = skb->tstamp;
3339 if (seq_rtt < 0) {
3340 seq_rtt = ca_seq_rtt;
3341 }
3342 if (!(sacked & TCPCB_SACKED_ACKED))
3343 reord = min(pkts_acked, reord);
3344 }
3345
3346 if (sacked & TCPCB_SACKED_ACKED)
3347 tp->sacked_out -= acked_pcount;
3348 if (sacked & TCPCB_LOST)
3349 tp->lost_out -= acked_pcount;
3350
3351 tp->packets_out -= acked_pcount;
3352 pkts_acked += acked_pcount;
3353
3354 /* Initial outgoing SYN's get put onto the write_queue
3355 * just like anything else we transmit. It is not
3356 * true data, and if we misinform our callers that
3357 * this ACK acks real data, we will erroneously exit
3358 * connection startup slow start one packet too
3359 * quickly. This is severely frowned upon behavior.
3360 */
3361 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3362 flag |= FLAG_DATA_ACKED;
3363 } else {
3364 flag |= FLAG_SYN_ACKED;
3365 tp->retrans_stamp = 0;
3366 }
3367
3368 if (!fully_acked)
3369 break;
3370
3371 tcp_unlink_write_queue(skb, sk);
3372 sk_wmem_free_skb(sk, skb);
3373 tp->scoreboard_skb_hint = NULL;
3374 if (skb == tp->retransmit_skb_hint)
3375 tp->retransmit_skb_hint = NULL;
3376 if (skb == tp->lost_skb_hint)
3377 tp->lost_skb_hint = NULL;
3378 }
3379
3380 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3381 tp->snd_up = tp->snd_una;
3382
3383 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3384 flag |= FLAG_SACK_RENEGING;
3385
3386 if (flag & FLAG_ACKED) {
3387 const struct tcp_congestion_ops *ca_ops
3388 = inet_csk(sk)->icsk_ca_ops;
3389
3390 if (unlikely(icsk->icsk_mtup.probe_size &&
3391 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3392 tcp_mtup_probe_success(sk);
3393 }
3394
3395 tcp_ack_update_rtt(sk, flag, seq_rtt);
3396 tcp_rearm_rto(sk);
3397
3398 if (tcp_is_reno(tp)) {
3399 tcp_remove_reno_sacks(sk, pkts_acked);
3400 } else {
3401 int delta;
3402
3403 /* Non-retransmitted hole got filled? That's reordering */
3404 if (reord < prior_fackets)
3405 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3406
3407 delta = tcp_is_fack(tp) ? pkts_acked :
3408 prior_sacked - tp->sacked_out;
3409 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3410 }
3411
3412 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3413
3414 if (ca_ops->pkts_acked) {
3415 s32 rtt_us = -1;
3416
3417 /* Is the ACK triggering packet unambiguous? */
3418 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3419 /* High resolution needed and available? */
3420 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3421 !ktime_equal(last_ackt,
3422 net_invalid_timestamp()))
3423 rtt_us = ktime_us_delta(ktime_get_real(),
3424 last_ackt);
3425 else if (ca_seq_rtt >= 0)
3426 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3427 }
3428
3429 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3430 }
3431 }
3432
3433 #if FASTRETRANS_DEBUG > 0
3434 WARN_ON((int)tp->sacked_out < 0);
3435 WARN_ON((int)tp->lost_out < 0);
3436 WARN_ON((int)tp->retrans_out < 0);
3437 if (!tp->packets_out && tcp_is_sack(tp)) {
3438 icsk = inet_csk(sk);
3439 if (tp->lost_out) {
3440 printk(KERN_DEBUG "Leak l=%u %d\n",
3441 tp->lost_out, icsk->icsk_ca_state);
3442 tp->lost_out = 0;
3443 }
3444 if (tp->sacked_out) {
3445 printk(KERN_DEBUG "Leak s=%u %d\n",
3446 tp->sacked_out, icsk->icsk_ca_state);
3447 tp->sacked_out = 0;
3448 }
3449 if (tp->retrans_out) {
3450 printk(KERN_DEBUG "Leak r=%u %d\n",
3451 tp->retrans_out, icsk->icsk_ca_state);
3452 tp->retrans_out = 0;
3453 }
3454 }
3455 #endif
3456 return flag;
3457 }
3458
3459 static void tcp_ack_probe(struct sock *sk)
3460 {
3461 const struct tcp_sock *tp = tcp_sk(sk);
3462 struct inet_connection_sock *icsk = inet_csk(sk);
3463
3464 /* Was it a usable window open? */
3465
3466 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3467 icsk->icsk_backoff = 0;
3468 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3469 /* Socket must be waked up by subsequent tcp_data_snd_check().
3470 * This function is not for random using!
3471 */
3472 } else {
3473 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3474 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3475 TCP_RTO_MAX);
3476 }
3477 }
3478
3479 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3480 {
3481 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3482 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3483 }
3484
3485 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3486 {
3487 const struct tcp_sock *tp = tcp_sk(sk);
3488 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3489 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3490 }
3491
3492 /* Check that window update is acceptable.
3493 * The function assumes that snd_una<=ack<=snd_next.
3494 */
3495 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3496 const u32 ack, const u32 ack_seq,
3497 const u32 nwin)
3498 {
3499 return after(ack, tp->snd_una) ||
3500 after(ack_seq, tp->snd_wl1) ||
3501 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3502 }
3503
3504 /* Update our send window.
3505 *
3506 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3507 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3508 */
3509 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3510 u32 ack_seq)
3511 {
3512 struct tcp_sock *tp = tcp_sk(sk);
3513 int flag = 0;
3514 u32 nwin = ntohs(tcp_hdr(skb)->window);
3515
3516 if (likely(!tcp_hdr(skb)->syn))
3517 nwin <<= tp->rx_opt.snd_wscale;
3518
3519 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3520 flag |= FLAG_WIN_UPDATE;
3521 tcp_update_wl(tp, ack_seq);
3522
3523 if (tp->snd_wnd != nwin) {
3524 tp->snd_wnd = nwin;
3525
3526 /* Note, it is the only place, where
3527 * fast path is recovered for sending TCP.
3528 */
3529 tp->pred_flags = 0;
3530 tcp_fast_path_check(sk);
3531
3532 if (nwin > tp->max_window) {
3533 tp->max_window = nwin;
3534 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3535 }
3536 }
3537 }
3538
3539 tp->snd_una = ack;
3540
3541 return flag;
3542 }
3543
3544 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3545 * continue in congestion avoidance.
3546 */
3547 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3548 {
3549 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3550 tp->snd_cwnd_cnt = 0;
3551 tp->bytes_acked = 0;
3552 TCP_ECN_queue_cwr(tp);
3553 tcp_moderate_cwnd(tp);
3554 }
3555
3556 /* A conservative spurious RTO response algorithm: reduce cwnd using
3557 * rate halving and continue in congestion avoidance.
3558 */
3559 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3560 {
3561 tcp_enter_cwr(sk, 0);
3562 }
3563
3564 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3565 {
3566 if (flag & FLAG_ECE)
3567 tcp_ratehalving_spur_to_response(sk);
3568 else
3569 tcp_undo_cwr(sk, true);
3570 }
3571
3572 /* F-RTO spurious RTO detection algorithm (RFC4138)
3573 *
3574 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3575 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3576 * window (but not to or beyond highest sequence sent before RTO):
3577 * On First ACK, send two new segments out.
3578 * On Second ACK, RTO was likely spurious. Do spurious response (response
3579 * algorithm is not part of the F-RTO detection algorithm
3580 * given in RFC4138 but can be selected separately).
3581 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3582 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3583 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3584 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3585 *
3586 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3587 * original window even after we transmit two new data segments.
3588 *
3589 * SACK version:
3590 * on first step, wait until first cumulative ACK arrives, then move to
3591 * the second step. In second step, the next ACK decides.
3592 *
3593 * F-RTO is implemented (mainly) in four functions:
3594 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3595 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3596 * called when tcp_use_frto() showed green light
3597 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3598 * - tcp_enter_frto_loss() is called if there is not enough evidence
3599 * to prove that the RTO is indeed spurious. It transfers the control
3600 * from F-RTO to the conventional RTO recovery
3601 */
3602 static int tcp_process_frto(struct sock *sk, int flag)
3603 {
3604 struct tcp_sock *tp = tcp_sk(sk);
3605
3606 tcp_verify_left_out(tp);
3607
3608 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3609 if (flag & FLAG_DATA_ACKED)
3610 inet_csk(sk)->icsk_retransmits = 0;
3611
3612 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3613 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3614 tp->undo_marker = 0;
3615
3616 if (!before(tp->snd_una, tp->frto_highmark)) {
3617 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3618 return 1;
3619 }
3620
3621 if (!tcp_is_sackfrto(tp)) {
3622 /* RFC4138 shortcoming in step 2; should also have case c):
3623 * ACK isn't duplicate nor advances window, e.g., opposite dir
3624 * data, winupdate
3625 */
3626 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3627 return 1;
3628
3629 if (!(flag & FLAG_DATA_ACKED)) {
3630 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3631 flag);
3632 return 1;
3633 }
3634 } else {
3635 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3636 /* Prevent sending of new data. */
3637 tp->snd_cwnd = min(tp->snd_cwnd,
3638 tcp_packets_in_flight(tp));
3639 return 1;
3640 }
3641
3642 if ((tp->frto_counter >= 2) &&
3643 (!(flag & FLAG_FORWARD_PROGRESS) ||
3644 ((flag & FLAG_DATA_SACKED) &&
3645 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3646 /* RFC4138 shortcoming (see comment above) */
3647 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3648 (flag & FLAG_NOT_DUP))
3649 return 1;
3650
3651 tcp_enter_frto_loss(sk, 3, flag);
3652 return 1;
3653 }
3654 }
3655
3656 if (tp->frto_counter == 1) {
3657 /* tcp_may_send_now needs to see updated state */
3658 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3659 tp->frto_counter = 2;
3660
3661 if (!tcp_may_send_now(sk))
3662 tcp_enter_frto_loss(sk, 2, flag);
3663
3664 return 1;
3665 } else {
3666 switch (sysctl_tcp_frto_response) {
3667 case 2:
3668 tcp_undo_spur_to_response(sk, flag);
3669 break;
3670 case 1:
3671 tcp_conservative_spur_to_response(tp);
3672 break;
3673 default:
3674 tcp_ratehalving_spur_to_response(sk);
3675 break;
3676 }
3677 tp->frto_counter = 0;
3678 tp->undo_marker = 0;
3679 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3680 }
3681 return 0;
3682 }
3683
3684 /* This routine deals with incoming acks, but not outgoing ones. */
3685 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3686 {
3687 struct inet_connection_sock *icsk = inet_csk(sk);
3688 struct tcp_sock *tp = tcp_sk(sk);
3689 u32 prior_snd_una = tp->snd_una;
3690 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3691 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3692 bool is_dupack = false;
3693 u32 prior_in_flight;
3694 u32 prior_fackets;
3695 int prior_packets;
3696 int prior_sacked = tp->sacked_out;
3697 int pkts_acked = 0;
3698 int newly_acked_sacked = 0;
3699 int frto_cwnd = 0;
3700
3701 /* If the ack is older than previous acks
3702 * then we can probably ignore it.
3703 */
3704 if (before(ack, prior_snd_una))
3705 goto old_ack;
3706
3707 /* If the ack includes data we haven't sent yet, discard
3708 * this segment (RFC793 Section 3.9).
3709 */
3710 if (after(ack, tp->snd_nxt))
3711 goto invalid_ack;
3712
3713 if (after(ack, prior_snd_una))
3714 flag |= FLAG_SND_UNA_ADVANCED;
3715
3716 if (sysctl_tcp_abc) {
3717 if (icsk->icsk_ca_state < TCP_CA_CWR)
3718 tp->bytes_acked += ack - prior_snd_una;
3719 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3720 /* we assume just one segment left network */
3721 tp->bytes_acked += min(ack - prior_snd_una,
3722 tp->mss_cache);
3723 }
3724
3725 prior_fackets = tp->fackets_out;
3726 prior_in_flight = tcp_packets_in_flight(tp);
3727
3728 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3729 /* Window is constant, pure forward advance.
3730 * No more checks are required.
3731 * Note, we use the fact that SND.UNA>=SND.WL2.
3732 */
3733 tcp_update_wl(tp, ack_seq);
3734 tp->snd_una = ack;
3735 flag |= FLAG_WIN_UPDATE;
3736
3737 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3738
3739 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3740 } else {
3741 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3742 flag |= FLAG_DATA;
3743 else
3744 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3745
3746 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3747
3748 if (TCP_SKB_CB(skb)->sacked)
3749 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3750
3751 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3752 flag |= FLAG_ECE;
3753
3754 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3755 }
3756
3757 /* We passed data and got it acked, remove any soft error
3758 * log. Something worked...
3759 */
3760 sk->sk_err_soft = 0;
3761 icsk->icsk_probes_out = 0;
3762 tp->rcv_tstamp = tcp_time_stamp;
3763 prior_packets = tp->packets_out;
3764 if (!prior_packets)
3765 goto no_queue;
3766
3767 /* See if we can take anything off of the retransmit queue. */
3768 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3769
3770 pkts_acked = prior_packets - tp->packets_out;
3771 newly_acked_sacked = (prior_packets - prior_sacked) -
3772 (tp->packets_out - tp->sacked_out);
3773
3774 if (tp->frto_counter)
3775 frto_cwnd = tcp_process_frto(sk, flag);
3776 /* Guarantee sacktag reordering detection against wrap-arounds */
3777 if (before(tp->frto_highmark, tp->snd_una))
3778 tp->frto_highmark = 0;
3779
3780 if (tcp_ack_is_dubious(sk, flag)) {
3781 /* Advance CWND, if state allows this. */
3782 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3783 tcp_may_raise_cwnd(sk, flag))
3784 tcp_cong_avoid(sk, ack, prior_in_flight);
3785 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3786 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3787 is_dupack, flag);
3788 } else {
3789 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3790 tcp_cong_avoid(sk, ack, prior_in_flight);
3791 }
3792
3793 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3794 dst_confirm(__sk_dst_get(sk));
3795
3796 return 1;
3797
3798 no_queue:
3799 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3800 if (flag & FLAG_DSACKING_ACK)
3801 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3802 is_dupack, flag);
3803 /* If this ack opens up a zero window, clear backoff. It was
3804 * being used to time the probes, and is probably far higher than
3805 * it needs to be for normal retransmission.
3806 */
3807 if (tcp_send_head(sk))
3808 tcp_ack_probe(sk);
3809 return 1;
3810
3811 invalid_ack:
3812 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3813 return -1;
3814
3815 old_ack:
3816 /* If data was SACKed, tag it and see if we should send more data.
3817 * If data was DSACKed, see if we can undo a cwnd reduction.
3818 */
3819 if (TCP_SKB_CB(skb)->sacked) {
3820 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3821 newly_acked_sacked = tp->sacked_out - prior_sacked;
3822 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3823 is_dupack, flag);
3824 }
3825
3826 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3827 return 0;
3828 }
3829
3830 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3831 * But, this can also be called on packets in the established flow when
3832 * the fast version below fails.
3833 */
3834 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3835 const u8 **hvpp, int estab)
3836 {
3837 const unsigned char *ptr;
3838 const struct tcphdr *th = tcp_hdr(skb);
3839 int length = (th->doff * 4) - sizeof(struct tcphdr);
3840
3841 ptr = (const unsigned char *)(th + 1);
3842 opt_rx->saw_tstamp = 0;
3843
3844 while (length > 0) {
3845 int opcode = *ptr++;
3846 int opsize;
3847
3848 switch (opcode) {
3849 case TCPOPT_EOL:
3850 return;
3851 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3852 length--;
3853 continue;
3854 default:
3855 opsize = *ptr++;
3856 if (opsize < 2) /* "silly options" */
3857 return;
3858 if (opsize > length)
3859 return; /* don't parse partial options */
3860 switch (opcode) {
3861 case TCPOPT_MSS:
3862 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3863 u16 in_mss = get_unaligned_be16(ptr);
3864 if (in_mss) {
3865 if (opt_rx->user_mss &&
3866 opt_rx->user_mss < in_mss)
3867 in_mss = opt_rx->user_mss;
3868 opt_rx->mss_clamp = in_mss;
3869 }
3870 }
3871 break;
3872 case TCPOPT_WINDOW:
3873 if (opsize == TCPOLEN_WINDOW && th->syn &&
3874 !estab && sysctl_tcp_window_scaling) {
3875 __u8 snd_wscale = *(__u8 *)ptr;
3876 opt_rx->wscale_ok = 1;
3877 if (snd_wscale > 14) {
3878 if (net_ratelimit())
3879 pr_info("%s: Illegal window scaling value %d >14 received\n",
3880 __func__,
3881 snd_wscale);
3882 snd_wscale = 14;
3883 }
3884 opt_rx->snd_wscale = snd_wscale;
3885 }
3886 break;
3887 case TCPOPT_TIMESTAMP:
3888 if ((opsize == TCPOLEN_TIMESTAMP) &&
3889 ((estab && opt_rx->tstamp_ok) ||
3890 (!estab && sysctl_tcp_timestamps))) {
3891 opt_rx->saw_tstamp = 1;
3892 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3893 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3894 }
3895 break;
3896 case TCPOPT_SACK_PERM:
3897 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3898 !estab && sysctl_tcp_sack) {
3899 opt_rx->sack_ok = TCP_SACK_SEEN;
3900 tcp_sack_reset(opt_rx);
3901 }
3902 break;
3903
3904 case TCPOPT_SACK:
3905 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3906 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3907 opt_rx->sack_ok) {
3908 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3909 }
3910 break;
3911 #ifdef CONFIG_TCP_MD5SIG
3912 case TCPOPT_MD5SIG:
3913 /*
3914 * The MD5 Hash has already been
3915 * checked (see tcp_v{4,6}_do_rcv()).
3916 */
3917 break;
3918 #endif
3919 case TCPOPT_COOKIE:
3920 /* This option is variable length.
3921 */
3922 switch (opsize) {
3923 case TCPOLEN_COOKIE_BASE:
3924 /* not yet implemented */
3925 break;
3926 case TCPOLEN_COOKIE_PAIR:
3927 /* not yet implemented */
3928 break;
3929 case TCPOLEN_COOKIE_MIN+0:
3930 case TCPOLEN_COOKIE_MIN+2:
3931 case TCPOLEN_COOKIE_MIN+4:
3932 case TCPOLEN_COOKIE_MIN+6:
3933 case TCPOLEN_COOKIE_MAX:
3934 /* 16-bit multiple */
3935 opt_rx->cookie_plus = opsize;
3936 *hvpp = ptr;
3937 break;
3938 default:
3939 /* ignore option */
3940 break;
3941 }
3942 break;
3943 }
3944
3945 ptr += opsize-2;
3946 length -= opsize;
3947 }
3948 }
3949 }
3950 EXPORT_SYMBOL(tcp_parse_options);
3951
3952 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3953 {
3954 const __be32 *ptr = (const __be32 *)(th + 1);
3955
3956 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3957 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3958 tp->rx_opt.saw_tstamp = 1;
3959 ++ptr;
3960 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3961 ++ptr;
3962 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3963 return 1;
3964 }
3965 return 0;
3966 }
3967
3968 /* Fast parse options. This hopes to only see timestamps.
3969 * If it is wrong it falls back on tcp_parse_options().
3970 */
3971 static int tcp_fast_parse_options(const struct sk_buff *skb,
3972 const struct tcphdr *th,
3973 struct tcp_sock *tp, const u8 **hvpp)
3974 {
3975 /* In the spirit of fast parsing, compare doff directly to constant
3976 * values. Because equality is used, short doff can be ignored here.
3977 */
3978 if (th->doff == (sizeof(*th) / 4)) {
3979 tp->rx_opt.saw_tstamp = 0;
3980 return 0;
3981 } else if (tp->rx_opt.tstamp_ok &&
3982 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3983 if (tcp_parse_aligned_timestamp(tp, th))
3984 return 1;
3985 }
3986 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3987 return 1;
3988 }
3989
3990 #ifdef CONFIG_TCP_MD5SIG
3991 /*
3992 * Parse MD5 Signature option
3993 */
3994 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3995 {
3996 int length = (th->doff << 2) - sizeof(*th);
3997 const u8 *ptr = (const u8 *)(th + 1);
3998
3999 /* If the TCP option is too short, we can short cut */
4000 if (length < TCPOLEN_MD5SIG)
4001 return NULL;
4002
4003 while (length > 0) {
4004 int opcode = *ptr++;
4005 int opsize;
4006
4007 switch(opcode) {
4008 case TCPOPT_EOL:
4009 return NULL;
4010 case TCPOPT_NOP:
4011 length--;
4012 continue;
4013 default:
4014 opsize = *ptr++;
4015 if (opsize < 2 || opsize > length)
4016 return NULL;
4017 if (opcode == TCPOPT_MD5SIG)
4018 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4019 }
4020 ptr += opsize - 2;
4021 length -= opsize;
4022 }
4023 return NULL;
4024 }
4025 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4026 #endif
4027
4028 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4029 {
4030 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4031 tp->rx_opt.ts_recent_stamp = get_seconds();
4032 }
4033
4034 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4035 {
4036 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4037 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4038 * extra check below makes sure this can only happen
4039 * for pure ACK frames. -DaveM
4040 *
4041 * Not only, also it occurs for expired timestamps.
4042 */
4043
4044 if (tcp_paws_check(&tp->rx_opt, 0))
4045 tcp_store_ts_recent(tp);
4046 }
4047 }
4048
4049 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4050 *
4051 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4052 * it can pass through stack. So, the following predicate verifies that
4053 * this segment is not used for anything but congestion avoidance or
4054 * fast retransmit. Moreover, we even are able to eliminate most of such
4055 * second order effects, if we apply some small "replay" window (~RTO)
4056 * to timestamp space.
4057 *
4058 * All these measures still do not guarantee that we reject wrapped ACKs
4059 * on networks with high bandwidth, when sequence space is recycled fastly,
4060 * but it guarantees that such events will be very rare and do not affect
4061 * connection seriously. This doesn't look nice, but alas, PAWS is really
4062 * buggy extension.
4063 *
4064 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4065 * states that events when retransmit arrives after original data are rare.
4066 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4067 * the biggest problem on large power networks even with minor reordering.
4068 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4069 * up to bandwidth of 18Gigabit/sec. 8) ]
4070 */
4071
4072 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4073 {
4074 const struct tcp_sock *tp = tcp_sk(sk);
4075 const struct tcphdr *th = tcp_hdr(skb);
4076 u32 seq = TCP_SKB_CB(skb)->seq;
4077 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4078
4079 return (/* 1. Pure ACK with correct sequence number. */
4080 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4081
4082 /* 2. ... and duplicate ACK. */
4083 ack == tp->snd_una &&
4084
4085 /* 3. ... and does not update window. */
4086 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4087
4088 /* 4. ... and sits in replay window. */
4089 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4090 }
4091
4092 static inline int tcp_paws_discard(const struct sock *sk,
4093 const struct sk_buff *skb)
4094 {
4095 const struct tcp_sock *tp = tcp_sk(sk);
4096
4097 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4098 !tcp_disordered_ack(sk, skb);
4099 }
4100
4101 /* Check segment sequence number for validity.
4102 *
4103 * Segment controls are considered valid, if the segment
4104 * fits to the window after truncation to the window. Acceptability
4105 * of data (and SYN, FIN, of course) is checked separately.
4106 * See tcp_data_queue(), for example.
4107 *
4108 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4109 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4110 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4111 * (borrowed from freebsd)
4112 */
4113
4114 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4115 {
4116 return !before(end_seq, tp->rcv_wup) &&
4117 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4118 }
4119
4120 /* When we get a reset we do this. */
4121 static void tcp_reset(struct sock *sk)
4122 {
4123 /* We want the right error as BSD sees it (and indeed as we do). */
4124 switch (sk->sk_state) {
4125 case TCP_SYN_SENT:
4126 sk->sk_err = ECONNREFUSED;
4127 break;
4128 case TCP_CLOSE_WAIT:
4129 sk->sk_err = EPIPE;
4130 break;
4131 case TCP_CLOSE:
4132 return;
4133 default:
4134 sk->sk_err = ECONNRESET;
4135 }
4136 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4137 smp_wmb();
4138
4139 if (!sock_flag(sk, SOCK_DEAD))
4140 sk->sk_error_report(sk);
4141
4142 tcp_done(sk);
4143 }
4144
4145 /*
4146 * Process the FIN bit. This now behaves as it is supposed to work
4147 * and the FIN takes effect when it is validly part of sequence
4148 * space. Not before when we get holes.
4149 *
4150 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4151 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4152 * TIME-WAIT)
4153 *
4154 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4155 * close and we go into CLOSING (and later onto TIME-WAIT)
4156 *
4157 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4158 */
4159 static void tcp_fin(struct sock *sk)
4160 {
4161 struct tcp_sock *tp = tcp_sk(sk);
4162
4163 inet_csk_schedule_ack(sk);
4164
4165 sk->sk_shutdown |= RCV_SHUTDOWN;
4166 sock_set_flag(sk, SOCK_DONE);
4167
4168 switch (sk->sk_state) {
4169 case TCP_SYN_RECV:
4170 case TCP_ESTABLISHED:
4171 /* Move to CLOSE_WAIT */
4172 tcp_set_state(sk, TCP_CLOSE_WAIT);
4173 inet_csk(sk)->icsk_ack.pingpong = 1;
4174 break;
4175
4176 case TCP_CLOSE_WAIT:
4177 case TCP_CLOSING:
4178 /* Received a retransmission of the FIN, do
4179 * nothing.
4180 */
4181 break;
4182 case TCP_LAST_ACK:
4183 /* RFC793: Remain in the LAST-ACK state. */
4184 break;
4185
4186 case TCP_FIN_WAIT1:
4187 /* This case occurs when a simultaneous close
4188 * happens, we must ack the received FIN and
4189 * enter the CLOSING state.
4190 */
4191 tcp_send_ack(sk);
4192 tcp_set_state(sk, TCP_CLOSING);
4193 break;
4194 case TCP_FIN_WAIT2:
4195 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4196 tcp_send_ack(sk);
4197 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4198 break;
4199 default:
4200 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4201 * cases we should never reach this piece of code.
4202 */
4203 pr_err("%s: Impossible, sk->sk_state=%d\n",
4204 __func__, sk->sk_state);
4205 break;
4206 }
4207
4208 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4209 * Probably, we should reset in this case. For now drop them.
4210 */
4211 __skb_queue_purge(&tp->out_of_order_queue);
4212 if (tcp_is_sack(tp))
4213 tcp_sack_reset(&tp->rx_opt);
4214 sk_mem_reclaim(sk);
4215
4216 if (!sock_flag(sk, SOCK_DEAD)) {
4217 sk->sk_state_change(sk);
4218
4219 /* Do not send POLL_HUP for half duplex close. */
4220 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4221 sk->sk_state == TCP_CLOSE)
4222 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4223 else
4224 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4225 }
4226 }
4227
4228 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4229 u32 end_seq)
4230 {
4231 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4232 if (before(seq, sp->start_seq))
4233 sp->start_seq = seq;
4234 if (after(end_seq, sp->end_seq))
4235 sp->end_seq = end_seq;
4236 return 1;
4237 }
4238 return 0;
4239 }
4240
4241 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4242 {
4243 struct tcp_sock *tp = tcp_sk(sk);
4244
4245 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4246 int mib_idx;
4247
4248 if (before(seq, tp->rcv_nxt))
4249 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4250 else
4251 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4252
4253 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4254
4255 tp->rx_opt.dsack = 1;
4256 tp->duplicate_sack[0].start_seq = seq;
4257 tp->duplicate_sack[0].end_seq = end_seq;
4258 }
4259 }
4260
4261 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4262 {
4263 struct tcp_sock *tp = tcp_sk(sk);
4264
4265 if (!tp->rx_opt.dsack)
4266 tcp_dsack_set(sk, seq, end_seq);
4267 else
4268 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4269 }
4270
4271 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4272 {
4273 struct tcp_sock *tp = tcp_sk(sk);
4274
4275 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4276 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4277 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4278 tcp_enter_quickack_mode(sk);
4279
4280 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4281 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4282
4283 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4284 end_seq = tp->rcv_nxt;
4285 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4286 }
4287 }
4288
4289 tcp_send_ack(sk);
4290 }
4291
4292 /* These routines update the SACK block as out-of-order packets arrive or
4293 * in-order packets close up the sequence space.
4294 */
4295 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4296 {
4297 int this_sack;
4298 struct tcp_sack_block *sp = &tp->selective_acks[0];
4299 struct tcp_sack_block *swalk = sp + 1;
4300
4301 /* See if the recent change to the first SACK eats into
4302 * or hits the sequence space of other SACK blocks, if so coalesce.
4303 */
4304 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4305 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4306 int i;
4307
4308 /* Zap SWALK, by moving every further SACK up by one slot.
4309 * Decrease num_sacks.
4310 */
4311 tp->rx_opt.num_sacks--;
4312 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4313 sp[i] = sp[i + 1];
4314 continue;
4315 }
4316 this_sack++, swalk++;
4317 }
4318 }
4319
4320 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4321 {
4322 struct tcp_sock *tp = tcp_sk(sk);
4323 struct tcp_sack_block *sp = &tp->selective_acks[0];
4324 int cur_sacks = tp->rx_opt.num_sacks;
4325 int this_sack;
4326
4327 if (!cur_sacks)
4328 goto new_sack;
4329
4330 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4331 if (tcp_sack_extend(sp, seq, end_seq)) {
4332 /* Rotate this_sack to the first one. */
4333 for (; this_sack > 0; this_sack--, sp--)
4334 swap(*sp, *(sp - 1));
4335 if (cur_sacks > 1)
4336 tcp_sack_maybe_coalesce(tp);
4337 return;
4338 }
4339 }
4340
4341 /* Could not find an adjacent existing SACK, build a new one,
4342 * put it at the front, and shift everyone else down. We
4343 * always know there is at least one SACK present already here.
4344 *
4345 * If the sack array is full, forget about the last one.
4346 */
4347 if (this_sack >= TCP_NUM_SACKS) {
4348 this_sack--;
4349 tp->rx_opt.num_sacks--;
4350 sp--;
4351 }
4352 for (; this_sack > 0; this_sack--, sp--)
4353 *sp = *(sp - 1);
4354
4355 new_sack:
4356 /* Build the new head SACK, and we're done. */
4357 sp->start_seq = seq;
4358 sp->end_seq = end_seq;
4359 tp->rx_opt.num_sacks++;
4360 }
4361
4362 /* RCV.NXT advances, some SACKs should be eaten. */
4363
4364 static void tcp_sack_remove(struct tcp_sock *tp)
4365 {
4366 struct tcp_sack_block *sp = &tp->selective_acks[0];
4367 int num_sacks = tp->rx_opt.num_sacks;
4368 int this_sack;
4369
4370 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4371 if (skb_queue_empty(&tp->out_of_order_queue)) {
4372 tp->rx_opt.num_sacks = 0;
4373 return;
4374 }
4375
4376 for (this_sack = 0; this_sack < num_sacks;) {
4377 /* Check if the start of the sack is covered by RCV.NXT. */
4378 if (!before(tp->rcv_nxt, sp->start_seq)) {
4379 int i;
4380
4381 /* RCV.NXT must cover all the block! */
4382 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4383
4384 /* Zap this SACK, by moving forward any other SACKS. */
4385 for (i=this_sack+1; i < num_sacks; i++)
4386 tp->selective_acks[i-1] = tp->selective_acks[i];
4387 num_sacks--;
4388 continue;
4389 }
4390 this_sack++;
4391 sp++;
4392 }
4393 tp->rx_opt.num_sacks = num_sacks;
4394 }
4395
4396 /* This one checks to see if we can put data from the
4397 * out_of_order queue into the receive_queue.
4398 */
4399 static void tcp_ofo_queue(struct sock *sk)
4400 {
4401 struct tcp_sock *tp = tcp_sk(sk);
4402 __u32 dsack_high = tp->rcv_nxt;
4403 struct sk_buff *skb;
4404
4405 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4406 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4407 break;
4408
4409 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4410 __u32 dsack = dsack_high;
4411 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4412 dsack_high = TCP_SKB_CB(skb)->end_seq;
4413 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4414 }
4415
4416 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4417 SOCK_DEBUG(sk, "ofo packet was already received\n");
4418 __skb_unlink(skb, &tp->out_of_order_queue);
4419 __kfree_skb(skb);
4420 continue;
4421 }
4422 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4423 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4424 TCP_SKB_CB(skb)->end_seq);
4425
4426 __skb_unlink(skb, &tp->out_of_order_queue);
4427 __skb_queue_tail(&sk->sk_receive_queue, skb);
4428 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4429 if (tcp_hdr(skb)->fin)
4430 tcp_fin(sk);
4431 }
4432 }
4433
4434 static int tcp_prune_ofo_queue(struct sock *sk);
4435 static int tcp_prune_queue(struct sock *sk);
4436
4437 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4438 {
4439 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4440 !sk_rmem_schedule(sk, size)) {
4441
4442 if (tcp_prune_queue(sk) < 0)
4443 return -1;
4444
4445 if (!sk_rmem_schedule(sk, size)) {
4446 if (!tcp_prune_ofo_queue(sk))
4447 return -1;
4448
4449 if (!sk_rmem_schedule(sk, size))
4450 return -1;
4451 }
4452 }
4453 return 0;
4454 }
4455
4456 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4457 {
4458 struct tcp_sock *tp = tcp_sk(sk);
4459 struct sk_buff *skb1;
4460 u32 seq, end_seq;
4461
4462 TCP_ECN_check_ce(tp, skb);
4463
4464 if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4465 /* TODO: should increment a counter */
4466 __kfree_skb(skb);
4467 return;
4468 }
4469
4470 /* Disable header prediction. */
4471 tp->pred_flags = 0;
4472 inet_csk_schedule_ack(sk);
4473
4474 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4475 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4476
4477 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4478 if (!skb1) {
4479 /* Initial out of order segment, build 1 SACK. */
4480 if (tcp_is_sack(tp)) {
4481 tp->rx_opt.num_sacks = 1;
4482 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4483 tp->selective_acks[0].end_seq =
4484 TCP_SKB_CB(skb)->end_seq;
4485 }
4486 __skb_queue_head(&tp->out_of_order_queue, skb);
4487 goto end;
4488 }
4489
4490 seq = TCP_SKB_CB(skb)->seq;
4491 end_seq = TCP_SKB_CB(skb)->end_seq;
4492
4493 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4494 /* Packets in ofo can stay in queue a long time.
4495 * Better try to coalesce them right now
4496 * to avoid future tcp_collapse_ofo_queue(),
4497 * probably the most expensive function in tcp stack.
4498 */
4499 if (skb->len <= skb_tailroom(skb1) && !tcp_hdr(skb)->fin) {
4500 NET_INC_STATS_BH(sock_net(sk),
4501 LINUX_MIB_TCPRCVCOALESCE);
4502 BUG_ON(skb_copy_bits(skb, 0,
4503 skb_put(skb1, skb->len),
4504 skb->len));
4505 TCP_SKB_CB(skb1)->end_seq = end_seq;
4506 TCP_SKB_CB(skb1)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
4507 __kfree_skb(skb);
4508 skb = NULL;
4509 } else {
4510 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4511 }
4512
4513 if (!tp->rx_opt.num_sacks ||
4514 tp->selective_acks[0].end_seq != seq)
4515 goto add_sack;
4516
4517 /* Common case: data arrive in order after hole. */
4518 tp->selective_acks[0].end_seq = end_seq;
4519 goto end;
4520 }
4521
4522 /* Find place to insert this segment. */
4523 while (1) {
4524 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4525 break;
4526 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4527 skb1 = NULL;
4528 break;
4529 }
4530 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4531 }
4532
4533 /* Do skb overlap to previous one? */
4534 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4535 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4536 /* All the bits are present. Drop. */
4537 __kfree_skb(skb);
4538 skb = NULL;
4539 tcp_dsack_set(sk, seq, end_seq);
4540 goto add_sack;
4541 }
4542 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4543 /* Partial overlap. */
4544 tcp_dsack_set(sk, seq,
4545 TCP_SKB_CB(skb1)->end_seq);
4546 } else {
4547 if (skb_queue_is_first(&tp->out_of_order_queue,
4548 skb1))
4549 skb1 = NULL;
4550 else
4551 skb1 = skb_queue_prev(
4552 &tp->out_of_order_queue,
4553 skb1);
4554 }
4555 }
4556 if (!skb1)
4557 __skb_queue_head(&tp->out_of_order_queue, skb);
4558 else
4559 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4560
4561 /* And clean segments covered by new one as whole. */
4562 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4563 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4564
4565 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4566 break;
4567 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4568 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4569 end_seq);
4570 break;
4571 }
4572 __skb_unlink(skb1, &tp->out_of_order_queue);
4573 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4574 TCP_SKB_CB(skb1)->end_seq);
4575 __kfree_skb(skb1);
4576 }
4577
4578 add_sack:
4579 if (tcp_is_sack(tp))
4580 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4581 end:
4582 if (skb)
4583 skb_set_owner_r(skb, sk);
4584 }
4585
4586
4587 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4588 {
4589 const struct tcphdr *th = tcp_hdr(skb);
4590 struct tcp_sock *tp = tcp_sk(sk);
4591 int eaten = -1;
4592
4593 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4594 goto drop;
4595
4596 skb_dst_drop(skb);
4597 __skb_pull(skb, th->doff * 4);
4598
4599 TCP_ECN_accept_cwr(tp, skb);
4600
4601 tp->rx_opt.dsack = 0;
4602
4603 /* Queue data for delivery to the user.
4604 * Packets in sequence go to the receive queue.
4605 * Out of sequence packets to the out_of_order_queue.
4606 */
4607 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4608 if (tcp_receive_window(tp) == 0)
4609 goto out_of_window;
4610
4611 /* Ok. In sequence. In window. */
4612 if (tp->ucopy.task == current &&
4613 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4614 sock_owned_by_user(sk) && !tp->urg_data) {
4615 int chunk = min_t(unsigned int, skb->len,
4616 tp->ucopy.len);
4617
4618 __set_current_state(TASK_RUNNING);
4619
4620 local_bh_enable();
4621 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4622 tp->ucopy.len -= chunk;
4623 tp->copied_seq += chunk;
4624 eaten = (chunk == skb->len);
4625 tcp_rcv_space_adjust(sk);
4626 }
4627 local_bh_disable();
4628 }
4629
4630 if (eaten <= 0) {
4631 queue_and_out:
4632 if (eaten < 0 &&
4633 tcp_try_rmem_schedule(sk, skb->truesize))
4634 goto drop;
4635
4636 skb_set_owner_r(skb, sk);
4637 __skb_queue_tail(&sk->sk_receive_queue, skb);
4638 }
4639 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4640 if (skb->len)
4641 tcp_event_data_recv(sk, skb);
4642 if (th->fin)
4643 tcp_fin(sk);
4644
4645 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4646 tcp_ofo_queue(sk);
4647
4648 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4649 * gap in queue is filled.
4650 */
4651 if (skb_queue_empty(&tp->out_of_order_queue))
4652 inet_csk(sk)->icsk_ack.pingpong = 0;
4653 }
4654
4655 if (tp->rx_opt.num_sacks)
4656 tcp_sack_remove(tp);
4657
4658 tcp_fast_path_check(sk);
4659
4660 if (eaten > 0)
4661 __kfree_skb(skb);
4662 else if (!sock_flag(sk, SOCK_DEAD))
4663 sk->sk_data_ready(sk, 0);
4664 return;
4665 }
4666
4667 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4668 /* A retransmit, 2nd most common case. Force an immediate ack. */
4669 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4670 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4671
4672 out_of_window:
4673 tcp_enter_quickack_mode(sk);
4674 inet_csk_schedule_ack(sk);
4675 drop:
4676 __kfree_skb(skb);
4677 return;
4678 }
4679
4680 /* Out of window. F.e. zero window probe. */
4681 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4682 goto out_of_window;
4683
4684 tcp_enter_quickack_mode(sk);
4685
4686 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4687 /* Partial packet, seq < rcv_next < end_seq */
4688 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4689 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4690 TCP_SKB_CB(skb)->end_seq);
4691
4692 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4693
4694 /* If window is closed, drop tail of packet. But after
4695 * remembering D-SACK for its head made in previous line.
4696 */
4697 if (!tcp_receive_window(tp))
4698 goto out_of_window;
4699 goto queue_and_out;
4700 }
4701
4702 tcp_data_queue_ofo(sk, skb);
4703 }
4704
4705 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4706 struct sk_buff_head *list)
4707 {
4708 struct sk_buff *next = NULL;
4709
4710 if (!skb_queue_is_last(list, skb))
4711 next = skb_queue_next(list, skb);
4712
4713 __skb_unlink(skb, list);
4714 __kfree_skb(skb);
4715 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4716
4717 return next;
4718 }
4719
4720 /* Collapse contiguous sequence of skbs head..tail with
4721 * sequence numbers start..end.
4722 *
4723 * If tail is NULL, this means until the end of the list.
4724 *
4725 * Segments with FIN/SYN are not collapsed (only because this
4726 * simplifies code)
4727 */
4728 static void
4729 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4730 struct sk_buff *head, struct sk_buff *tail,
4731 u32 start, u32 end)
4732 {
4733 struct sk_buff *skb, *n;
4734 bool end_of_skbs;
4735
4736 /* First, check that queue is collapsible and find
4737 * the point where collapsing can be useful. */
4738 skb = head;
4739 restart:
4740 end_of_skbs = true;
4741 skb_queue_walk_from_safe(list, skb, n) {
4742 if (skb == tail)
4743 break;
4744 /* No new bits? It is possible on ofo queue. */
4745 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4746 skb = tcp_collapse_one(sk, skb, list);
4747 if (!skb)
4748 break;
4749 goto restart;
4750 }
4751
4752 /* The first skb to collapse is:
4753 * - not SYN/FIN and
4754 * - bloated or contains data before "start" or
4755 * overlaps to the next one.
4756 */
4757 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4758 (tcp_win_from_space(skb->truesize) > skb->len ||
4759 before(TCP_SKB_CB(skb)->seq, start))) {
4760 end_of_skbs = false;
4761 break;
4762 }
4763
4764 if (!skb_queue_is_last(list, skb)) {
4765 struct sk_buff *next = skb_queue_next(list, skb);
4766 if (next != tail &&
4767 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4768 end_of_skbs = false;
4769 break;
4770 }
4771 }
4772
4773 /* Decided to skip this, advance start seq. */
4774 start = TCP_SKB_CB(skb)->end_seq;
4775 }
4776 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4777 return;
4778
4779 while (before(start, end)) {
4780 struct sk_buff *nskb;
4781 unsigned int header = skb_headroom(skb);
4782 int copy = SKB_MAX_ORDER(header, 0);
4783
4784 /* Too big header? This can happen with IPv6. */
4785 if (copy < 0)
4786 return;
4787 if (end - start < copy)
4788 copy = end - start;
4789 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4790 if (!nskb)
4791 return;
4792
4793 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4794 skb_set_network_header(nskb, (skb_network_header(skb) -
4795 skb->head));
4796 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4797 skb->head));
4798 skb_reserve(nskb, header);
4799 memcpy(nskb->head, skb->head, header);
4800 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4801 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4802 __skb_queue_before(list, skb, nskb);
4803 skb_set_owner_r(nskb, sk);
4804
4805 /* Copy data, releasing collapsed skbs. */
4806 while (copy > 0) {
4807 int offset = start - TCP_SKB_CB(skb)->seq;
4808 int size = TCP_SKB_CB(skb)->end_seq - start;
4809
4810 BUG_ON(offset < 0);
4811 if (size > 0) {
4812 size = min(copy, size);
4813 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4814 BUG();
4815 TCP_SKB_CB(nskb)->end_seq += size;
4816 copy -= size;
4817 start += size;
4818 }
4819 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4820 skb = tcp_collapse_one(sk, skb, list);
4821 if (!skb ||
4822 skb == tail ||
4823 tcp_hdr(skb)->syn ||
4824 tcp_hdr(skb)->fin)
4825 return;
4826 }
4827 }
4828 }
4829 }
4830
4831 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4832 * and tcp_collapse() them until all the queue is collapsed.
4833 */
4834 static void tcp_collapse_ofo_queue(struct sock *sk)
4835 {
4836 struct tcp_sock *tp = tcp_sk(sk);
4837 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4838 struct sk_buff *head;
4839 u32 start, end;
4840
4841 if (skb == NULL)
4842 return;
4843
4844 start = TCP_SKB_CB(skb)->seq;
4845 end = TCP_SKB_CB(skb)->end_seq;
4846 head = skb;
4847
4848 for (;;) {
4849 struct sk_buff *next = NULL;
4850
4851 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4852 next = skb_queue_next(&tp->out_of_order_queue, skb);
4853 skb = next;
4854
4855 /* Segment is terminated when we see gap or when
4856 * we are at the end of all the queue. */
4857 if (!skb ||
4858 after(TCP_SKB_CB(skb)->seq, end) ||
4859 before(TCP_SKB_CB(skb)->end_seq, start)) {
4860 tcp_collapse(sk, &tp->out_of_order_queue,
4861 head, skb, start, end);
4862 head = skb;
4863 if (!skb)
4864 break;
4865 /* Start new segment */
4866 start = TCP_SKB_CB(skb)->seq;
4867 end = TCP_SKB_CB(skb)->end_seq;
4868 } else {
4869 if (before(TCP_SKB_CB(skb)->seq, start))
4870 start = TCP_SKB_CB(skb)->seq;
4871 if (after(TCP_SKB_CB(skb)->end_seq, end))
4872 end = TCP_SKB_CB(skb)->end_seq;
4873 }
4874 }
4875 }
4876
4877 /*
4878 * Purge the out-of-order queue.
4879 * Return true if queue was pruned.
4880 */
4881 static int tcp_prune_ofo_queue(struct sock *sk)
4882 {
4883 struct tcp_sock *tp = tcp_sk(sk);
4884 int res = 0;
4885
4886 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4887 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4888 __skb_queue_purge(&tp->out_of_order_queue);
4889
4890 /* Reset SACK state. A conforming SACK implementation will
4891 * do the same at a timeout based retransmit. When a connection
4892 * is in a sad state like this, we care only about integrity
4893 * of the connection not performance.
4894 */
4895 if (tp->rx_opt.sack_ok)
4896 tcp_sack_reset(&tp->rx_opt);
4897 sk_mem_reclaim(sk);
4898 res = 1;
4899 }
4900 return res;
4901 }
4902
4903 /* Reduce allocated memory if we can, trying to get
4904 * the socket within its memory limits again.
4905 *
4906 * Return less than zero if we should start dropping frames
4907 * until the socket owning process reads some of the data
4908 * to stabilize the situation.
4909 */
4910 static int tcp_prune_queue(struct sock *sk)
4911 {
4912 struct tcp_sock *tp = tcp_sk(sk);
4913
4914 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4915
4916 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4917
4918 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4919 tcp_clamp_window(sk);
4920 else if (sk_under_memory_pressure(sk))
4921 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4922
4923 tcp_collapse_ofo_queue(sk);
4924 if (!skb_queue_empty(&sk->sk_receive_queue))
4925 tcp_collapse(sk, &sk->sk_receive_queue,
4926 skb_peek(&sk->sk_receive_queue),
4927 NULL,
4928 tp->copied_seq, tp->rcv_nxt);
4929 sk_mem_reclaim(sk);
4930
4931 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4932 return 0;
4933
4934 /* Collapsing did not help, destructive actions follow.
4935 * This must not ever occur. */
4936
4937 tcp_prune_ofo_queue(sk);
4938
4939 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4940 return 0;
4941
4942 /* If we are really being abused, tell the caller to silently
4943 * drop receive data on the floor. It will get retransmitted
4944 * and hopefully then we'll have sufficient space.
4945 */
4946 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4947
4948 /* Massive buffer overcommit. */
4949 tp->pred_flags = 0;
4950 return -1;
4951 }
4952
4953 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4954 * As additional protections, we do not touch cwnd in retransmission phases,
4955 * and if application hit its sndbuf limit recently.
4956 */
4957 void tcp_cwnd_application_limited(struct sock *sk)
4958 {
4959 struct tcp_sock *tp = tcp_sk(sk);
4960
4961 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4962 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4963 /* Limited by application or receiver window. */
4964 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4965 u32 win_used = max(tp->snd_cwnd_used, init_win);
4966 if (win_used < tp->snd_cwnd) {
4967 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4968 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4969 }
4970 tp->snd_cwnd_used = 0;
4971 }
4972 tp->snd_cwnd_stamp = tcp_time_stamp;
4973 }
4974
4975 static int tcp_should_expand_sndbuf(const struct sock *sk)
4976 {
4977 const struct tcp_sock *tp = tcp_sk(sk);
4978
4979 /* If the user specified a specific send buffer setting, do
4980 * not modify it.
4981 */
4982 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4983 return 0;
4984
4985 /* If we are under global TCP memory pressure, do not expand. */
4986 if (sk_under_memory_pressure(sk))
4987 return 0;
4988
4989 /* If we are under soft global TCP memory pressure, do not expand. */
4990 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4991 return 0;
4992
4993 /* If we filled the congestion window, do not expand. */
4994 if (tp->packets_out >= tp->snd_cwnd)
4995 return 0;
4996
4997 return 1;
4998 }
4999
5000 /* When incoming ACK allowed to free some skb from write_queue,
5001 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5002 * on the exit from tcp input handler.
5003 *
5004 * PROBLEM: sndbuf expansion does not work well with largesend.
5005 */
5006 static void tcp_new_space(struct sock *sk)
5007 {
5008 struct tcp_sock *tp = tcp_sk(sk);
5009
5010 if (tcp_should_expand_sndbuf(sk)) {
5011 int sndmem = SKB_TRUESIZE(max_t(u32,
5012 tp->rx_opt.mss_clamp,
5013 tp->mss_cache) +
5014 MAX_TCP_HEADER);
5015 int demanded = max_t(unsigned int, tp->snd_cwnd,
5016 tp->reordering + 1);
5017 sndmem *= 2 * demanded;
5018 if (sndmem > sk->sk_sndbuf)
5019 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5020 tp->snd_cwnd_stamp = tcp_time_stamp;
5021 }
5022
5023 sk->sk_write_space(sk);
5024 }
5025
5026 static void tcp_check_space(struct sock *sk)
5027 {
5028 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5029 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5030 if (sk->sk_socket &&
5031 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5032 tcp_new_space(sk);
5033 }
5034 }
5035
5036 static inline void tcp_data_snd_check(struct sock *sk)
5037 {
5038 tcp_push_pending_frames(sk);
5039 tcp_check_space(sk);
5040 }
5041
5042 /*
5043 * Check if sending an ack is needed.
5044 */
5045 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5046 {
5047 struct tcp_sock *tp = tcp_sk(sk);
5048
5049 /* More than one full frame received... */
5050 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5051 /* ... and right edge of window advances far enough.
5052 * (tcp_recvmsg() will send ACK otherwise). Or...
5053 */
5054 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5055 /* We ACK each frame or... */
5056 tcp_in_quickack_mode(sk) ||
5057 /* We have out of order data. */
5058 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5059 /* Then ack it now */
5060 tcp_send_ack(sk);
5061 } else {
5062 /* Else, send delayed ack. */
5063 tcp_send_delayed_ack(sk);
5064 }
5065 }
5066
5067 static inline void tcp_ack_snd_check(struct sock *sk)
5068 {
5069 if (!inet_csk_ack_scheduled(sk)) {
5070 /* We sent a data segment already. */
5071 return;
5072 }
5073 __tcp_ack_snd_check(sk, 1);
5074 }
5075
5076 /*
5077 * This routine is only called when we have urgent data
5078 * signaled. Its the 'slow' part of tcp_urg. It could be
5079 * moved inline now as tcp_urg is only called from one
5080 * place. We handle URGent data wrong. We have to - as
5081 * BSD still doesn't use the correction from RFC961.
5082 * For 1003.1g we should support a new option TCP_STDURG to permit
5083 * either form (or just set the sysctl tcp_stdurg).
5084 */
5085
5086 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5087 {
5088 struct tcp_sock *tp = tcp_sk(sk);
5089 u32 ptr = ntohs(th->urg_ptr);
5090
5091 if (ptr && !sysctl_tcp_stdurg)
5092 ptr--;
5093 ptr += ntohl(th->seq);
5094
5095 /* Ignore urgent data that we've already seen and read. */
5096 if (after(tp->copied_seq, ptr))
5097 return;
5098
5099 /* Do not replay urg ptr.
5100 *
5101 * NOTE: interesting situation not covered by specs.
5102 * Misbehaving sender may send urg ptr, pointing to segment,
5103 * which we already have in ofo queue. We are not able to fetch
5104 * such data and will stay in TCP_URG_NOTYET until will be eaten
5105 * by recvmsg(). Seems, we are not obliged to handle such wicked
5106 * situations. But it is worth to think about possibility of some
5107 * DoSes using some hypothetical application level deadlock.
5108 */
5109 if (before(ptr, tp->rcv_nxt))
5110 return;
5111
5112 /* Do we already have a newer (or duplicate) urgent pointer? */
5113 if (tp->urg_data && !after(ptr, tp->urg_seq))
5114 return;
5115
5116 /* Tell the world about our new urgent pointer. */
5117 sk_send_sigurg(sk);
5118
5119 /* We may be adding urgent data when the last byte read was
5120 * urgent. To do this requires some care. We cannot just ignore
5121 * tp->copied_seq since we would read the last urgent byte again
5122 * as data, nor can we alter copied_seq until this data arrives
5123 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5124 *
5125 * NOTE. Double Dutch. Rendering to plain English: author of comment
5126 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5127 * and expect that both A and B disappear from stream. This is _wrong_.
5128 * Though this happens in BSD with high probability, this is occasional.
5129 * Any application relying on this is buggy. Note also, that fix "works"
5130 * only in this artificial test. Insert some normal data between A and B and we will
5131 * decline of BSD again. Verdict: it is better to remove to trap
5132 * buggy users.
5133 */
5134 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5135 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5136 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5137 tp->copied_seq++;
5138 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5139 __skb_unlink(skb, &sk->sk_receive_queue);
5140 __kfree_skb(skb);
5141 }
5142 }
5143
5144 tp->urg_data = TCP_URG_NOTYET;
5145 tp->urg_seq = ptr;
5146
5147 /* Disable header prediction. */
5148 tp->pred_flags = 0;
5149 }
5150
5151 /* This is the 'fast' part of urgent handling. */
5152 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5153 {
5154 struct tcp_sock *tp = tcp_sk(sk);
5155
5156 /* Check if we get a new urgent pointer - normally not. */
5157 if (th->urg)
5158 tcp_check_urg(sk, th);
5159
5160 /* Do we wait for any urgent data? - normally not... */
5161 if (tp->urg_data == TCP_URG_NOTYET) {
5162 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5163 th->syn;
5164
5165 /* Is the urgent pointer pointing into this packet? */
5166 if (ptr < skb->len) {
5167 u8 tmp;
5168 if (skb_copy_bits(skb, ptr, &tmp, 1))
5169 BUG();
5170 tp->urg_data = TCP_URG_VALID | tmp;
5171 if (!sock_flag(sk, SOCK_DEAD))
5172 sk->sk_data_ready(sk, 0);
5173 }
5174 }
5175 }
5176
5177 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5178 {
5179 struct tcp_sock *tp = tcp_sk(sk);
5180 int chunk = skb->len - hlen;
5181 int err;
5182
5183 local_bh_enable();
5184 if (skb_csum_unnecessary(skb))
5185 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5186 else
5187 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5188 tp->ucopy.iov);
5189
5190 if (!err) {
5191 tp->ucopy.len -= chunk;
5192 tp->copied_seq += chunk;
5193 tcp_rcv_space_adjust(sk);
5194 }
5195
5196 local_bh_disable();
5197 return err;
5198 }
5199
5200 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5201 struct sk_buff *skb)
5202 {
5203 __sum16 result;
5204
5205 if (sock_owned_by_user(sk)) {
5206 local_bh_enable();
5207 result = __tcp_checksum_complete(skb);
5208 local_bh_disable();
5209 } else {
5210 result = __tcp_checksum_complete(skb);
5211 }
5212 return result;
5213 }
5214
5215 static inline int tcp_checksum_complete_user(struct sock *sk,
5216 struct sk_buff *skb)
5217 {
5218 return !skb_csum_unnecessary(skb) &&
5219 __tcp_checksum_complete_user(sk, skb);
5220 }
5221
5222 #ifdef CONFIG_NET_DMA
5223 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5224 int hlen)
5225 {
5226 struct tcp_sock *tp = tcp_sk(sk);
5227 int chunk = skb->len - hlen;
5228 int dma_cookie;
5229 int copied_early = 0;
5230
5231 if (tp->ucopy.wakeup)
5232 return 0;
5233
5234 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5235 tp->ucopy.dma_chan = net_dma_find_channel();
5236
5237 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5238
5239 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5240 skb, hlen,
5241 tp->ucopy.iov, chunk,
5242 tp->ucopy.pinned_list);
5243
5244 if (dma_cookie < 0)
5245 goto out;
5246
5247 tp->ucopy.dma_cookie = dma_cookie;
5248 copied_early = 1;
5249
5250 tp->ucopy.len -= chunk;
5251 tp->copied_seq += chunk;
5252 tcp_rcv_space_adjust(sk);
5253
5254 if ((tp->ucopy.len == 0) ||
5255 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5256 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5257 tp->ucopy.wakeup = 1;
5258 sk->sk_data_ready(sk, 0);
5259 }
5260 } else if (chunk > 0) {
5261 tp->ucopy.wakeup = 1;
5262 sk->sk_data_ready(sk, 0);
5263 }
5264 out:
5265 return copied_early;
5266 }
5267 #endif /* CONFIG_NET_DMA */
5268
5269 /* Does PAWS and seqno based validation of an incoming segment, flags will
5270 * play significant role here.
5271 */
5272 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5273 const struct tcphdr *th, int syn_inerr)
5274 {
5275 const u8 *hash_location;
5276 struct tcp_sock *tp = tcp_sk(sk);
5277
5278 /* RFC1323: H1. Apply PAWS check first. */
5279 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5280 tp->rx_opt.saw_tstamp &&
5281 tcp_paws_discard(sk, skb)) {
5282 if (!th->rst) {
5283 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5284 tcp_send_dupack(sk, skb);
5285 goto discard;
5286 }
5287 /* Reset is accepted even if it did not pass PAWS. */
5288 }
5289
5290 /* Step 1: check sequence number */
5291 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5292 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5293 * (RST) segments are validated by checking their SEQ-fields."
5294 * And page 69: "If an incoming segment is not acceptable,
5295 * an acknowledgment should be sent in reply (unless the RST
5296 * bit is set, if so drop the segment and return)".
5297 */
5298 if (!th->rst)
5299 tcp_send_dupack(sk, skb);
5300 goto discard;
5301 }
5302
5303 /* Step 2: check RST bit */
5304 if (th->rst) {
5305 tcp_reset(sk);
5306 goto discard;
5307 }
5308
5309 /* ts_recent update must be made after we are sure that the packet
5310 * is in window.
5311 */
5312 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5313
5314 /* step 3: check security and precedence [ignored] */
5315
5316 /* step 4: Check for a SYN in window. */
5317 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5318 if (syn_inerr)
5319 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5320 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5321 tcp_reset(sk);
5322 return -1;
5323 }
5324
5325 return 1;
5326
5327 discard:
5328 __kfree_skb(skb);
5329 return 0;
5330 }
5331
5332 /*
5333 * TCP receive function for the ESTABLISHED state.
5334 *
5335 * It is split into a fast path and a slow path. The fast path is
5336 * disabled when:
5337 * - A zero window was announced from us - zero window probing
5338 * is only handled properly in the slow path.
5339 * - Out of order segments arrived.
5340 * - Urgent data is expected.
5341 * - There is no buffer space left
5342 * - Unexpected TCP flags/window values/header lengths are received
5343 * (detected by checking the TCP header against pred_flags)
5344 * - Data is sent in both directions. Fast path only supports pure senders
5345 * or pure receivers (this means either the sequence number or the ack
5346 * value must stay constant)
5347 * - Unexpected TCP option.
5348 *
5349 * When these conditions are not satisfied it drops into a standard
5350 * receive procedure patterned after RFC793 to handle all cases.
5351 * The first three cases are guaranteed by proper pred_flags setting,
5352 * the rest is checked inline. Fast processing is turned on in
5353 * tcp_data_queue when everything is OK.
5354 */
5355 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5356 const struct tcphdr *th, unsigned int len)
5357 {
5358 struct tcp_sock *tp = tcp_sk(sk);
5359 int res;
5360
5361 /*
5362 * Header prediction.
5363 * The code loosely follows the one in the famous
5364 * "30 instruction TCP receive" Van Jacobson mail.
5365 *
5366 * Van's trick is to deposit buffers into socket queue
5367 * on a device interrupt, to call tcp_recv function
5368 * on the receive process context and checksum and copy
5369 * the buffer to user space. smart...
5370 *
5371 * Our current scheme is not silly either but we take the
5372 * extra cost of the net_bh soft interrupt processing...
5373 * We do checksum and copy also but from device to kernel.
5374 */
5375
5376 tp->rx_opt.saw_tstamp = 0;
5377
5378 /* pred_flags is 0xS?10 << 16 + snd_wnd
5379 * if header_prediction is to be made
5380 * 'S' will always be tp->tcp_header_len >> 2
5381 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5382 * turn it off (when there are holes in the receive
5383 * space for instance)
5384 * PSH flag is ignored.
5385 */
5386
5387 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5388 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5389 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5390 int tcp_header_len = tp->tcp_header_len;
5391
5392 /* Timestamp header prediction: tcp_header_len
5393 * is automatically equal to th->doff*4 due to pred_flags
5394 * match.
5395 */
5396
5397 /* Check timestamp */
5398 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5399 /* No? Slow path! */
5400 if (!tcp_parse_aligned_timestamp(tp, th))
5401 goto slow_path;
5402
5403 /* If PAWS failed, check it more carefully in slow path */
5404 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5405 goto slow_path;
5406
5407 /* DO NOT update ts_recent here, if checksum fails
5408 * and timestamp was corrupted part, it will result
5409 * in a hung connection since we will drop all
5410 * future packets due to the PAWS test.
5411 */
5412 }
5413
5414 if (len <= tcp_header_len) {
5415 /* Bulk data transfer: sender */
5416 if (len == tcp_header_len) {
5417 /* Predicted packet is in window by definition.
5418 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5419 * Hence, check seq<=rcv_wup reduces to:
5420 */
5421 if (tcp_header_len ==
5422 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5423 tp->rcv_nxt == tp->rcv_wup)
5424 tcp_store_ts_recent(tp);
5425
5426 /* We know that such packets are checksummed
5427 * on entry.
5428 */
5429 tcp_ack(sk, skb, 0);
5430 __kfree_skb(skb);
5431 tcp_data_snd_check(sk);
5432 return 0;
5433 } else { /* Header too small */
5434 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5435 goto discard;
5436 }
5437 } else {
5438 int eaten = 0;
5439 int copied_early = 0;
5440
5441 if (tp->copied_seq == tp->rcv_nxt &&
5442 len - tcp_header_len <= tp->ucopy.len) {
5443 #ifdef CONFIG_NET_DMA
5444 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5445 copied_early = 1;
5446 eaten = 1;
5447 }
5448 #endif
5449 if (tp->ucopy.task == current &&
5450 sock_owned_by_user(sk) && !copied_early) {
5451 __set_current_state(TASK_RUNNING);
5452
5453 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5454 eaten = 1;
5455 }
5456 if (eaten) {
5457 /* Predicted packet is in window by definition.
5458 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5459 * Hence, check seq<=rcv_wup reduces to:
5460 */
5461 if (tcp_header_len ==
5462 (sizeof(struct tcphdr) +
5463 TCPOLEN_TSTAMP_ALIGNED) &&
5464 tp->rcv_nxt == tp->rcv_wup)
5465 tcp_store_ts_recent(tp);
5466
5467 tcp_rcv_rtt_measure_ts(sk, skb);
5468
5469 __skb_pull(skb, tcp_header_len);
5470 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5471 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5472 }
5473 if (copied_early)
5474 tcp_cleanup_rbuf(sk, skb->len);
5475 }
5476 if (!eaten) {
5477 if (tcp_checksum_complete_user(sk, skb))
5478 goto csum_error;
5479
5480 /* Predicted packet is in window by definition.
5481 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5482 * Hence, check seq<=rcv_wup reduces to:
5483 */
5484 if (tcp_header_len ==
5485 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5486 tp->rcv_nxt == tp->rcv_wup)
5487 tcp_store_ts_recent(tp);
5488
5489 tcp_rcv_rtt_measure_ts(sk, skb);
5490
5491 if ((int)skb->truesize > sk->sk_forward_alloc)
5492 goto step5;
5493
5494 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5495
5496 /* Bulk data transfer: receiver */
5497 __skb_pull(skb, tcp_header_len);
5498 __skb_queue_tail(&sk->sk_receive_queue, skb);
5499 skb_set_owner_r(skb, sk);
5500 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5501 }
5502
5503 tcp_event_data_recv(sk, skb);
5504
5505 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5506 /* Well, only one small jumplet in fast path... */
5507 tcp_ack(sk, skb, FLAG_DATA);
5508 tcp_data_snd_check(sk);
5509 if (!inet_csk_ack_scheduled(sk))
5510 goto no_ack;
5511 }
5512
5513 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5514 __tcp_ack_snd_check(sk, 0);
5515 no_ack:
5516 #ifdef CONFIG_NET_DMA
5517 if (copied_early)
5518 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5519 else
5520 #endif
5521 if (eaten)
5522 __kfree_skb(skb);
5523 else
5524 sk->sk_data_ready(sk, 0);
5525 return 0;
5526 }
5527 }
5528
5529 slow_path:
5530 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5531 goto csum_error;
5532
5533 /*
5534 * Standard slow path.
5535 */
5536
5537 res = tcp_validate_incoming(sk, skb, th, 1);
5538 if (res <= 0)
5539 return -res;
5540
5541 step5:
5542 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5543 goto discard;
5544
5545 tcp_rcv_rtt_measure_ts(sk, skb);
5546
5547 /* Process urgent data. */
5548 tcp_urg(sk, skb, th);
5549
5550 /* step 7: process the segment text */
5551 tcp_data_queue(sk, skb);
5552
5553 tcp_data_snd_check(sk);
5554 tcp_ack_snd_check(sk);
5555 return 0;
5556
5557 csum_error:
5558 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5559
5560 discard:
5561 __kfree_skb(skb);
5562 return 0;
5563 }
5564 EXPORT_SYMBOL(tcp_rcv_established);
5565
5566 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5567 const struct tcphdr *th, unsigned int len)
5568 {
5569 const u8 *hash_location;
5570 struct inet_connection_sock *icsk = inet_csk(sk);
5571 struct tcp_sock *tp = tcp_sk(sk);
5572 struct tcp_cookie_values *cvp = tp->cookie_values;
5573 int saved_clamp = tp->rx_opt.mss_clamp;
5574
5575 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5576
5577 if (th->ack) {
5578 /* rfc793:
5579 * "If the state is SYN-SENT then
5580 * first check the ACK bit
5581 * If the ACK bit is set
5582 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5583 * a reset (unless the RST bit is set, if so drop
5584 * the segment and return)"
5585 *
5586 * We do not send data with SYN, so that RFC-correct
5587 * test reduces to:
5588 */
5589 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5590 goto reset_and_undo;
5591
5592 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5593 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5594 tcp_time_stamp)) {
5595 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5596 goto reset_and_undo;
5597 }
5598
5599 /* Now ACK is acceptable.
5600 *
5601 * "If the RST bit is set
5602 * If the ACK was acceptable then signal the user "error:
5603 * connection reset", drop the segment, enter CLOSED state,
5604 * delete TCB, and return."
5605 */
5606
5607 if (th->rst) {
5608 tcp_reset(sk);
5609 goto discard;
5610 }
5611
5612 /* rfc793:
5613 * "fifth, if neither of the SYN or RST bits is set then
5614 * drop the segment and return."
5615 *
5616 * See note below!
5617 * --ANK(990513)
5618 */
5619 if (!th->syn)
5620 goto discard_and_undo;
5621
5622 /* rfc793:
5623 * "If the SYN bit is on ...
5624 * are acceptable then ...
5625 * (our SYN has been ACKed), change the connection
5626 * state to ESTABLISHED..."
5627 */
5628
5629 TCP_ECN_rcv_synack(tp, th);
5630
5631 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5632 tcp_ack(sk, skb, FLAG_SLOWPATH);
5633
5634 /* Ok.. it's good. Set up sequence numbers and
5635 * move to established.
5636 */
5637 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5638 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5639
5640 /* RFC1323: The window in SYN & SYN/ACK segments is
5641 * never scaled.
5642 */
5643 tp->snd_wnd = ntohs(th->window);
5644 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5645
5646 if (!tp->rx_opt.wscale_ok) {
5647 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5648 tp->window_clamp = min(tp->window_clamp, 65535U);
5649 }
5650
5651 if (tp->rx_opt.saw_tstamp) {
5652 tp->rx_opt.tstamp_ok = 1;
5653 tp->tcp_header_len =
5654 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5655 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5656 tcp_store_ts_recent(tp);
5657 } else {
5658 tp->tcp_header_len = sizeof(struct tcphdr);
5659 }
5660
5661 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5662 tcp_enable_fack(tp);
5663
5664 tcp_mtup_init(sk);
5665 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5666 tcp_initialize_rcv_mss(sk);
5667
5668 /* Remember, tcp_poll() does not lock socket!
5669 * Change state from SYN-SENT only after copied_seq
5670 * is initialized. */
5671 tp->copied_seq = tp->rcv_nxt;
5672
5673 if (cvp != NULL &&
5674 cvp->cookie_pair_size > 0 &&
5675 tp->rx_opt.cookie_plus > 0) {
5676 int cookie_size = tp->rx_opt.cookie_plus
5677 - TCPOLEN_COOKIE_BASE;
5678 int cookie_pair_size = cookie_size
5679 + cvp->cookie_desired;
5680
5681 /* A cookie extension option was sent and returned.
5682 * Note that each incoming SYNACK replaces the
5683 * Responder cookie. The initial exchange is most
5684 * fragile, as protection against spoofing relies
5685 * entirely upon the sequence and timestamp (above).
5686 * This replacement strategy allows the correct pair to
5687 * pass through, while any others will be filtered via
5688 * Responder verification later.
5689 */
5690 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5691 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5692 hash_location, cookie_size);
5693 cvp->cookie_pair_size = cookie_pair_size;
5694 }
5695 }
5696
5697 smp_mb();
5698 tcp_set_state(sk, TCP_ESTABLISHED);
5699
5700 security_inet_conn_established(sk, skb);
5701
5702 /* Make sure socket is routed, for correct metrics. */
5703 icsk->icsk_af_ops->rebuild_header(sk);
5704
5705 tcp_init_metrics(sk);
5706
5707 tcp_init_congestion_control(sk);
5708
5709 /* Prevent spurious tcp_cwnd_restart() on first data
5710 * packet.
5711 */
5712 tp->lsndtime = tcp_time_stamp;
5713
5714 tcp_init_buffer_space(sk);
5715
5716 if (sock_flag(sk, SOCK_KEEPOPEN))
5717 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5718
5719 if (!tp->rx_opt.snd_wscale)
5720 __tcp_fast_path_on(tp, tp->snd_wnd);
5721 else
5722 tp->pred_flags = 0;
5723
5724 if (!sock_flag(sk, SOCK_DEAD)) {
5725 sk->sk_state_change(sk);
5726 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5727 }
5728
5729 if (sk->sk_write_pending ||
5730 icsk->icsk_accept_queue.rskq_defer_accept ||
5731 icsk->icsk_ack.pingpong) {
5732 /* Save one ACK. Data will be ready after
5733 * several ticks, if write_pending is set.
5734 *
5735 * It may be deleted, but with this feature tcpdumps
5736 * look so _wonderfully_ clever, that I was not able
5737 * to stand against the temptation 8) --ANK
5738 */
5739 inet_csk_schedule_ack(sk);
5740 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5741 icsk->icsk_ack.ato = TCP_ATO_MIN;
5742 tcp_incr_quickack(sk);
5743 tcp_enter_quickack_mode(sk);
5744 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5745 TCP_DELACK_MAX, TCP_RTO_MAX);
5746
5747 discard:
5748 __kfree_skb(skb);
5749 return 0;
5750 } else {
5751 tcp_send_ack(sk);
5752 }
5753 return -1;
5754 }
5755
5756 /* No ACK in the segment */
5757
5758 if (th->rst) {
5759 /* rfc793:
5760 * "If the RST bit is set
5761 *
5762 * Otherwise (no ACK) drop the segment and return."
5763 */
5764
5765 goto discard_and_undo;
5766 }
5767
5768 /* PAWS check. */
5769 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5770 tcp_paws_reject(&tp->rx_opt, 0))
5771 goto discard_and_undo;
5772
5773 if (th->syn) {
5774 /* We see SYN without ACK. It is attempt of
5775 * simultaneous connect with crossed SYNs.
5776 * Particularly, it can be connect to self.
5777 */
5778 tcp_set_state(sk, TCP_SYN_RECV);
5779
5780 if (tp->rx_opt.saw_tstamp) {
5781 tp->rx_opt.tstamp_ok = 1;
5782 tcp_store_ts_recent(tp);
5783 tp->tcp_header_len =
5784 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5785 } else {
5786 tp->tcp_header_len = sizeof(struct tcphdr);
5787 }
5788
5789 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5790 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5791
5792 /* RFC1323: The window in SYN & SYN/ACK segments is
5793 * never scaled.
5794 */
5795 tp->snd_wnd = ntohs(th->window);
5796 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5797 tp->max_window = tp->snd_wnd;
5798
5799 TCP_ECN_rcv_syn(tp, th);
5800
5801 tcp_mtup_init(sk);
5802 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5803 tcp_initialize_rcv_mss(sk);
5804
5805 tcp_send_synack(sk);
5806 #if 0
5807 /* Note, we could accept data and URG from this segment.
5808 * There are no obstacles to make this.
5809 *
5810 * However, if we ignore data in ACKless segments sometimes,
5811 * we have no reasons to accept it sometimes.
5812 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5813 * is not flawless. So, discard packet for sanity.
5814 * Uncomment this return to process the data.
5815 */
5816 return -1;
5817 #else
5818 goto discard;
5819 #endif
5820 }
5821 /* "fifth, if neither of the SYN or RST bits is set then
5822 * drop the segment and return."
5823 */
5824
5825 discard_and_undo:
5826 tcp_clear_options(&tp->rx_opt);
5827 tp->rx_opt.mss_clamp = saved_clamp;
5828 goto discard;
5829
5830 reset_and_undo:
5831 tcp_clear_options(&tp->rx_opt);
5832 tp->rx_opt.mss_clamp = saved_clamp;
5833 return 1;
5834 }
5835
5836 /*
5837 * This function implements the receiving procedure of RFC 793 for
5838 * all states except ESTABLISHED and TIME_WAIT.
5839 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5840 * address independent.
5841 */
5842
5843 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5844 const struct tcphdr *th, unsigned int len)
5845 {
5846 struct tcp_sock *tp = tcp_sk(sk);
5847 struct inet_connection_sock *icsk = inet_csk(sk);
5848 int queued = 0;
5849 int res;
5850
5851 tp->rx_opt.saw_tstamp = 0;
5852
5853 switch (sk->sk_state) {
5854 case TCP_CLOSE:
5855 goto discard;
5856
5857 case TCP_LISTEN:
5858 if (th->ack)
5859 return 1;
5860
5861 if (th->rst)
5862 goto discard;
5863
5864 if (th->syn) {
5865 if (th->fin)
5866 goto discard;
5867 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5868 return 1;
5869
5870 /* Now we have several options: In theory there is
5871 * nothing else in the frame. KA9Q has an option to
5872 * send data with the syn, BSD accepts data with the
5873 * syn up to the [to be] advertised window and
5874 * Solaris 2.1 gives you a protocol error. For now
5875 * we just ignore it, that fits the spec precisely
5876 * and avoids incompatibilities. It would be nice in
5877 * future to drop through and process the data.
5878 *
5879 * Now that TTCP is starting to be used we ought to
5880 * queue this data.
5881 * But, this leaves one open to an easy denial of
5882 * service attack, and SYN cookies can't defend
5883 * against this problem. So, we drop the data
5884 * in the interest of security over speed unless
5885 * it's still in use.
5886 */
5887 kfree_skb(skb);
5888 return 0;
5889 }
5890 goto discard;
5891
5892 case TCP_SYN_SENT:
5893 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5894 if (queued >= 0)
5895 return queued;
5896
5897 /* Do step6 onward by hand. */
5898 tcp_urg(sk, skb, th);
5899 __kfree_skb(skb);
5900 tcp_data_snd_check(sk);
5901 return 0;
5902 }
5903
5904 res = tcp_validate_incoming(sk, skb, th, 0);
5905 if (res <= 0)
5906 return -res;
5907
5908 /* step 5: check the ACK field */
5909 if (th->ack) {
5910 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5911
5912 switch (sk->sk_state) {
5913 case TCP_SYN_RECV:
5914 if (acceptable) {
5915 tp->copied_seq = tp->rcv_nxt;
5916 smp_mb();
5917 tcp_set_state(sk, TCP_ESTABLISHED);
5918 sk->sk_state_change(sk);
5919
5920 /* Note, that this wakeup is only for marginal
5921 * crossed SYN case. Passively open sockets
5922 * are not waked up, because sk->sk_sleep ==
5923 * NULL and sk->sk_socket == NULL.
5924 */
5925 if (sk->sk_socket)
5926 sk_wake_async(sk,
5927 SOCK_WAKE_IO, POLL_OUT);
5928
5929 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5930 tp->snd_wnd = ntohs(th->window) <<
5931 tp->rx_opt.snd_wscale;
5932 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5933
5934 if (tp->rx_opt.tstamp_ok)
5935 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5936
5937 /* Make sure socket is routed, for
5938 * correct metrics.
5939 */
5940 icsk->icsk_af_ops->rebuild_header(sk);
5941
5942 tcp_init_metrics(sk);
5943
5944 tcp_init_congestion_control(sk);
5945
5946 /* Prevent spurious tcp_cwnd_restart() on
5947 * first data packet.
5948 */
5949 tp->lsndtime = tcp_time_stamp;
5950
5951 tcp_mtup_init(sk);
5952 tcp_initialize_rcv_mss(sk);
5953 tcp_init_buffer_space(sk);
5954 tcp_fast_path_on(tp);
5955 } else {
5956 return 1;
5957 }
5958 break;
5959
5960 case TCP_FIN_WAIT1:
5961 if (tp->snd_una == tp->write_seq) {
5962 tcp_set_state(sk, TCP_FIN_WAIT2);
5963 sk->sk_shutdown |= SEND_SHUTDOWN;
5964 dst_confirm(__sk_dst_get(sk));
5965
5966 if (!sock_flag(sk, SOCK_DEAD))
5967 /* Wake up lingering close() */
5968 sk->sk_state_change(sk);
5969 else {
5970 int tmo;
5971
5972 if (tp->linger2 < 0 ||
5973 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5974 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5975 tcp_done(sk);
5976 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5977 return 1;
5978 }
5979
5980 tmo = tcp_fin_time(sk);
5981 if (tmo > TCP_TIMEWAIT_LEN) {
5982 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5983 } else if (th->fin || sock_owned_by_user(sk)) {
5984 /* Bad case. We could lose such FIN otherwise.
5985 * It is not a big problem, but it looks confusing
5986 * and not so rare event. We still can lose it now,
5987 * if it spins in bh_lock_sock(), but it is really
5988 * marginal case.
5989 */
5990 inet_csk_reset_keepalive_timer(sk, tmo);
5991 } else {
5992 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5993 goto discard;
5994 }
5995 }
5996 }
5997 break;
5998
5999 case TCP_CLOSING:
6000 if (tp->snd_una == tp->write_seq) {
6001 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6002 goto discard;
6003 }
6004 break;
6005
6006 case TCP_LAST_ACK:
6007 if (tp->snd_una == tp->write_seq) {
6008 tcp_update_metrics(sk);
6009 tcp_done(sk);
6010 goto discard;
6011 }
6012 break;
6013 }
6014 } else
6015 goto discard;
6016
6017 /* step 6: check the URG bit */
6018 tcp_urg(sk, skb, th);
6019
6020 /* step 7: process the segment text */
6021 switch (sk->sk_state) {
6022 case TCP_CLOSE_WAIT:
6023 case TCP_CLOSING:
6024 case TCP_LAST_ACK:
6025 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6026 break;
6027 case TCP_FIN_WAIT1:
6028 case TCP_FIN_WAIT2:
6029 /* RFC 793 says to queue data in these states,
6030 * RFC 1122 says we MUST send a reset.
6031 * BSD 4.4 also does reset.
6032 */
6033 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6034 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6035 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6036 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6037 tcp_reset(sk);
6038 return 1;
6039 }
6040 }
6041 /* Fall through */
6042 case TCP_ESTABLISHED:
6043 tcp_data_queue(sk, skb);
6044 queued = 1;
6045 break;
6046 }
6047
6048 /* tcp_data could move socket to TIME-WAIT */
6049 if (sk->sk_state != TCP_CLOSE) {
6050 tcp_data_snd_check(sk);
6051 tcp_ack_snd_check(sk);
6052 }
6053
6054 if (!queued) {
6055 discard:
6056 __kfree_skb(skb);
6057 }
6058 return 0;
6059 }
6060 EXPORT_SYMBOL(tcp_rcv_state_process);
This page took 0.168846 seconds and 5 git commands to generate.