[TCP]: Move Reno SACKed_out counter functions earlier
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
107
108 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
109 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
110 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
111 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
112 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
113
114 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
115 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
116 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
117
118 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
119
120 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
121
122 /* Adapt the MSS value used to make delayed ack decision to the
123 * real world.
124 */
125 static void tcp_measure_rcv_mss(struct sock *sk,
126 const struct sk_buff *skb)
127 {
128 struct inet_connection_sock *icsk = inet_csk(sk);
129 const unsigned int lss = icsk->icsk_ack.last_seg_size;
130 unsigned int len;
131
132 icsk->icsk_ack.last_seg_size = 0;
133
134 /* skb->len may jitter because of SACKs, even if peer
135 * sends good full-sized frames.
136 */
137 len = skb_shinfo(skb)->gso_size ?: skb->len;
138 if (len >= icsk->icsk_ack.rcv_mss) {
139 icsk->icsk_ack.rcv_mss = len;
140 } else {
141 /* Otherwise, we make more careful check taking into account,
142 * that SACKs block is variable.
143 *
144 * "len" is invariant segment length, including TCP header.
145 */
146 len += skb->data - skb_transport_header(skb);
147 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
148 /* If PSH is not set, packet should be
149 * full sized, provided peer TCP is not badly broken.
150 * This observation (if it is correct 8)) allows
151 * to handle super-low mtu links fairly.
152 */
153 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
154 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
155 /* Subtract also invariant (if peer is RFC compliant),
156 * tcp header plus fixed timestamp option length.
157 * Resulting "len" is MSS free of SACK jitter.
158 */
159 len -= tcp_sk(sk)->tcp_header_len;
160 icsk->icsk_ack.last_seg_size = len;
161 if (len == lss) {
162 icsk->icsk_ack.rcv_mss = len;
163 return;
164 }
165 }
166 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
167 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
169 }
170 }
171
172 static void tcp_incr_quickack(struct sock *sk)
173 {
174 struct inet_connection_sock *icsk = inet_csk(sk);
175 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
176
177 if (quickacks==0)
178 quickacks=2;
179 if (quickacks > icsk->icsk_ack.quick)
180 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
181 }
182
183 void tcp_enter_quickack_mode(struct sock *sk)
184 {
185 struct inet_connection_sock *icsk = inet_csk(sk);
186 tcp_incr_quickack(sk);
187 icsk->icsk_ack.pingpong = 0;
188 icsk->icsk_ack.ato = TCP_ATO_MIN;
189 }
190
191 /* Send ACKs quickly, if "quick" count is not exhausted
192 * and the session is not interactive.
193 */
194
195 static inline int tcp_in_quickack_mode(const struct sock *sk)
196 {
197 const struct inet_connection_sock *icsk = inet_csk(sk);
198 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
199 }
200
201 /* Buffer size and advertised window tuning.
202 *
203 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
204 */
205
206 static void tcp_fixup_sndbuf(struct sock *sk)
207 {
208 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
209 sizeof(struct sk_buff);
210
211 if (sk->sk_sndbuf < 3 * sndmem)
212 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
213 }
214
215 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
216 *
217 * All tcp_full_space() is split to two parts: "network" buffer, allocated
218 * forward and advertised in receiver window (tp->rcv_wnd) and
219 * "application buffer", required to isolate scheduling/application
220 * latencies from network.
221 * window_clamp is maximal advertised window. It can be less than
222 * tcp_full_space(), in this case tcp_full_space() - window_clamp
223 * is reserved for "application" buffer. The less window_clamp is
224 * the smoother our behaviour from viewpoint of network, but the lower
225 * throughput and the higher sensitivity of the connection to losses. 8)
226 *
227 * rcv_ssthresh is more strict window_clamp used at "slow start"
228 * phase to predict further behaviour of this connection.
229 * It is used for two goals:
230 * - to enforce header prediction at sender, even when application
231 * requires some significant "application buffer". It is check #1.
232 * - to prevent pruning of receive queue because of misprediction
233 * of receiver window. Check #2.
234 *
235 * The scheme does not work when sender sends good segments opening
236 * window and then starts to feed us spaghetti. But it should work
237 * in common situations. Otherwise, we have to rely on queue collapsing.
238 */
239
240 /* Slow part of check#2. */
241 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
242 {
243 struct tcp_sock *tp = tcp_sk(sk);
244 /* Optimize this! */
245 int truesize = tcp_win_from_space(skb->truesize)/2;
246 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
247
248 while (tp->rcv_ssthresh <= window) {
249 if (truesize <= skb->len)
250 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
251
252 truesize >>= 1;
253 window >>= 1;
254 }
255 return 0;
256 }
257
258 static void tcp_grow_window(struct sock *sk,
259 struct sk_buff *skb)
260 {
261 struct tcp_sock *tp = tcp_sk(sk);
262
263 /* Check #1 */
264 if (tp->rcv_ssthresh < tp->window_clamp &&
265 (int)tp->rcv_ssthresh < tcp_space(sk) &&
266 !tcp_memory_pressure) {
267 int incr;
268
269 /* Check #2. Increase window, if skb with such overhead
270 * will fit to rcvbuf in future.
271 */
272 if (tcp_win_from_space(skb->truesize) <= skb->len)
273 incr = 2*tp->advmss;
274 else
275 incr = __tcp_grow_window(sk, skb);
276
277 if (incr) {
278 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
279 inet_csk(sk)->icsk_ack.quick |= 1;
280 }
281 }
282 }
283
284 /* 3. Tuning rcvbuf, when connection enters established state. */
285
286 static void tcp_fixup_rcvbuf(struct sock *sk)
287 {
288 struct tcp_sock *tp = tcp_sk(sk);
289 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
290
291 /* Try to select rcvbuf so that 4 mss-sized segments
292 * will fit to window and corresponding skbs will fit to our rcvbuf.
293 * (was 3; 4 is minimum to allow fast retransmit to work.)
294 */
295 while (tcp_win_from_space(rcvmem) < tp->advmss)
296 rcvmem += 128;
297 if (sk->sk_rcvbuf < 4 * rcvmem)
298 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
299 }
300
301 /* 4. Try to fixup all. It is made immediately after connection enters
302 * established state.
303 */
304 static void tcp_init_buffer_space(struct sock *sk)
305 {
306 struct tcp_sock *tp = tcp_sk(sk);
307 int maxwin;
308
309 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
310 tcp_fixup_rcvbuf(sk);
311 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
312 tcp_fixup_sndbuf(sk);
313
314 tp->rcvq_space.space = tp->rcv_wnd;
315
316 maxwin = tcp_full_space(sk);
317
318 if (tp->window_clamp >= maxwin) {
319 tp->window_clamp = maxwin;
320
321 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
322 tp->window_clamp = max(maxwin -
323 (maxwin >> sysctl_tcp_app_win),
324 4 * tp->advmss);
325 }
326
327 /* Force reservation of one segment. */
328 if (sysctl_tcp_app_win &&
329 tp->window_clamp > 2 * tp->advmss &&
330 tp->window_clamp + tp->advmss > maxwin)
331 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
332
333 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
334 tp->snd_cwnd_stamp = tcp_time_stamp;
335 }
336
337 /* 5. Recalculate window clamp after socket hit its memory bounds. */
338 static void tcp_clamp_window(struct sock *sk)
339 {
340 struct tcp_sock *tp = tcp_sk(sk);
341 struct inet_connection_sock *icsk = inet_csk(sk);
342
343 icsk->icsk_ack.quick = 0;
344
345 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
346 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
347 !tcp_memory_pressure &&
348 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
349 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
350 sysctl_tcp_rmem[2]);
351 }
352 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
353 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
354 }
355
356
357 /* Initialize RCV_MSS value.
358 * RCV_MSS is an our guess about MSS used by the peer.
359 * We haven't any direct information about the MSS.
360 * It's better to underestimate the RCV_MSS rather than overestimate.
361 * Overestimations make us ACKing less frequently than needed.
362 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
363 */
364 void tcp_initialize_rcv_mss(struct sock *sk)
365 {
366 struct tcp_sock *tp = tcp_sk(sk);
367 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
368
369 hint = min(hint, tp->rcv_wnd/2);
370 hint = min(hint, TCP_MIN_RCVMSS);
371 hint = max(hint, TCP_MIN_MSS);
372
373 inet_csk(sk)->icsk_ack.rcv_mss = hint;
374 }
375
376 /* Receiver "autotuning" code.
377 *
378 * The algorithm for RTT estimation w/o timestamps is based on
379 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
380 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
381 *
382 * More detail on this code can be found at
383 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
384 * though this reference is out of date. A new paper
385 * is pending.
386 */
387 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
388 {
389 u32 new_sample = tp->rcv_rtt_est.rtt;
390 long m = sample;
391
392 if (m == 0)
393 m = 1;
394
395 if (new_sample != 0) {
396 /* If we sample in larger samples in the non-timestamp
397 * case, we could grossly overestimate the RTT especially
398 * with chatty applications or bulk transfer apps which
399 * are stalled on filesystem I/O.
400 *
401 * Also, since we are only going for a minimum in the
402 * non-timestamp case, we do not smooth things out
403 * else with timestamps disabled convergence takes too
404 * long.
405 */
406 if (!win_dep) {
407 m -= (new_sample >> 3);
408 new_sample += m;
409 } else if (m < new_sample)
410 new_sample = m << 3;
411 } else {
412 /* No previous measure. */
413 new_sample = m << 3;
414 }
415
416 if (tp->rcv_rtt_est.rtt != new_sample)
417 tp->rcv_rtt_est.rtt = new_sample;
418 }
419
420 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
421 {
422 if (tp->rcv_rtt_est.time == 0)
423 goto new_measure;
424 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
425 return;
426 tcp_rcv_rtt_update(tp,
427 jiffies - tp->rcv_rtt_est.time,
428 1);
429
430 new_measure:
431 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
432 tp->rcv_rtt_est.time = tcp_time_stamp;
433 }
434
435 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
436 {
437 struct tcp_sock *tp = tcp_sk(sk);
438 if (tp->rx_opt.rcv_tsecr &&
439 (TCP_SKB_CB(skb)->end_seq -
440 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
441 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
442 }
443
444 /*
445 * This function should be called every time data is copied to user space.
446 * It calculates the appropriate TCP receive buffer space.
447 */
448 void tcp_rcv_space_adjust(struct sock *sk)
449 {
450 struct tcp_sock *tp = tcp_sk(sk);
451 int time;
452 int space;
453
454 if (tp->rcvq_space.time == 0)
455 goto new_measure;
456
457 time = tcp_time_stamp - tp->rcvq_space.time;
458 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
459 tp->rcv_rtt_est.rtt == 0)
460 return;
461
462 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
463
464 space = max(tp->rcvq_space.space, space);
465
466 if (tp->rcvq_space.space != space) {
467 int rcvmem;
468
469 tp->rcvq_space.space = space;
470
471 if (sysctl_tcp_moderate_rcvbuf &&
472 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
473 int new_clamp = space;
474
475 /* Receive space grows, normalize in order to
476 * take into account packet headers and sk_buff
477 * structure overhead.
478 */
479 space /= tp->advmss;
480 if (!space)
481 space = 1;
482 rcvmem = (tp->advmss + MAX_TCP_HEADER +
483 16 + sizeof(struct sk_buff));
484 while (tcp_win_from_space(rcvmem) < tp->advmss)
485 rcvmem += 128;
486 space *= rcvmem;
487 space = min(space, sysctl_tcp_rmem[2]);
488 if (space > sk->sk_rcvbuf) {
489 sk->sk_rcvbuf = space;
490
491 /* Make the window clamp follow along. */
492 tp->window_clamp = new_clamp;
493 }
494 }
495 }
496
497 new_measure:
498 tp->rcvq_space.seq = tp->copied_seq;
499 tp->rcvq_space.time = tcp_time_stamp;
500 }
501
502 /* There is something which you must keep in mind when you analyze the
503 * behavior of the tp->ato delayed ack timeout interval. When a
504 * connection starts up, we want to ack as quickly as possible. The
505 * problem is that "good" TCP's do slow start at the beginning of data
506 * transmission. The means that until we send the first few ACK's the
507 * sender will sit on his end and only queue most of his data, because
508 * he can only send snd_cwnd unacked packets at any given time. For
509 * each ACK we send, he increments snd_cwnd and transmits more of his
510 * queue. -DaveM
511 */
512 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
513 {
514 struct tcp_sock *tp = tcp_sk(sk);
515 struct inet_connection_sock *icsk = inet_csk(sk);
516 u32 now;
517
518 inet_csk_schedule_ack(sk);
519
520 tcp_measure_rcv_mss(sk, skb);
521
522 tcp_rcv_rtt_measure(tp);
523
524 now = tcp_time_stamp;
525
526 if (!icsk->icsk_ack.ato) {
527 /* The _first_ data packet received, initialize
528 * delayed ACK engine.
529 */
530 tcp_incr_quickack(sk);
531 icsk->icsk_ack.ato = TCP_ATO_MIN;
532 } else {
533 int m = now - icsk->icsk_ack.lrcvtime;
534
535 if (m <= TCP_ATO_MIN/2) {
536 /* The fastest case is the first. */
537 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
538 } else if (m < icsk->icsk_ack.ato) {
539 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
540 if (icsk->icsk_ack.ato > icsk->icsk_rto)
541 icsk->icsk_ack.ato = icsk->icsk_rto;
542 } else if (m > icsk->icsk_rto) {
543 /* Too long gap. Apparently sender failed to
544 * restart window, so that we send ACKs quickly.
545 */
546 tcp_incr_quickack(sk);
547 sk_stream_mem_reclaim(sk);
548 }
549 }
550 icsk->icsk_ack.lrcvtime = now;
551
552 TCP_ECN_check_ce(tp, skb);
553
554 if (skb->len >= 128)
555 tcp_grow_window(sk, skb);
556 }
557
558 static u32 tcp_rto_min(struct sock *sk)
559 {
560 struct dst_entry *dst = __sk_dst_get(sk);
561 u32 rto_min = TCP_RTO_MIN;
562
563 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
564 rto_min = dst->metrics[RTAX_RTO_MIN-1];
565 return rto_min;
566 }
567
568 /* Called to compute a smoothed rtt estimate. The data fed to this
569 * routine either comes from timestamps, or from segments that were
570 * known _not_ to have been retransmitted [see Karn/Partridge
571 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
572 * piece by Van Jacobson.
573 * NOTE: the next three routines used to be one big routine.
574 * To save cycles in the RFC 1323 implementation it was better to break
575 * it up into three procedures. -- erics
576 */
577 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
578 {
579 struct tcp_sock *tp = tcp_sk(sk);
580 long m = mrtt; /* RTT */
581
582 /* The following amusing code comes from Jacobson's
583 * article in SIGCOMM '88. Note that rtt and mdev
584 * are scaled versions of rtt and mean deviation.
585 * This is designed to be as fast as possible
586 * m stands for "measurement".
587 *
588 * On a 1990 paper the rto value is changed to:
589 * RTO = rtt + 4 * mdev
590 *
591 * Funny. This algorithm seems to be very broken.
592 * These formulae increase RTO, when it should be decreased, increase
593 * too slowly, when it should be increased quickly, decrease too quickly
594 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
595 * does not matter how to _calculate_ it. Seems, it was trap
596 * that VJ failed to avoid. 8)
597 */
598 if (m == 0)
599 m = 1;
600 if (tp->srtt != 0) {
601 m -= (tp->srtt >> 3); /* m is now error in rtt est */
602 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
603 if (m < 0) {
604 m = -m; /* m is now abs(error) */
605 m -= (tp->mdev >> 2); /* similar update on mdev */
606 /* This is similar to one of Eifel findings.
607 * Eifel blocks mdev updates when rtt decreases.
608 * This solution is a bit different: we use finer gain
609 * for mdev in this case (alpha*beta).
610 * Like Eifel it also prevents growth of rto,
611 * but also it limits too fast rto decreases,
612 * happening in pure Eifel.
613 */
614 if (m > 0)
615 m >>= 3;
616 } else {
617 m -= (tp->mdev >> 2); /* similar update on mdev */
618 }
619 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
620 if (tp->mdev > tp->mdev_max) {
621 tp->mdev_max = tp->mdev;
622 if (tp->mdev_max > tp->rttvar)
623 tp->rttvar = tp->mdev_max;
624 }
625 if (after(tp->snd_una, tp->rtt_seq)) {
626 if (tp->mdev_max < tp->rttvar)
627 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
628 tp->rtt_seq = tp->snd_nxt;
629 tp->mdev_max = tcp_rto_min(sk);
630 }
631 } else {
632 /* no previous measure. */
633 tp->srtt = m<<3; /* take the measured time to be rtt */
634 tp->mdev = m<<1; /* make sure rto = 3*rtt */
635 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
636 tp->rtt_seq = tp->snd_nxt;
637 }
638 }
639
640 /* Calculate rto without backoff. This is the second half of Van Jacobson's
641 * routine referred to above.
642 */
643 static inline void tcp_set_rto(struct sock *sk)
644 {
645 const struct tcp_sock *tp = tcp_sk(sk);
646 /* Old crap is replaced with new one. 8)
647 *
648 * More seriously:
649 * 1. If rtt variance happened to be less 50msec, it is hallucination.
650 * It cannot be less due to utterly erratic ACK generation made
651 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
652 * to do with delayed acks, because at cwnd>2 true delack timeout
653 * is invisible. Actually, Linux-2.4 also generates erratic
654 * ACKs in some circumstances.
655 */
656 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
657
658 /* 2. Fixups made earlier cannot be right.
659 * If we do not estimate RTO correctly without them,
660 * all the algo is pure shit and should be replaced
661 * with correct one. It is exactly, which we pretend to do.
662 */
663 }
664
665 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
666 * guarantees that rto is higher.
667 */
668 static inline void tcp_bound_rto(struct sock *sk)
669 {
670 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
671 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
672 }
673
674 /* Save metrics learned by this TCP session.
675 This function is called only, when TCP finishes successfully
676 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
677 */
678 void tcp_update_metrics(struct sock *sk)
679 {
680 struct tcp_sock *tp = tcp_sk(sk);
681 struct dst_entry *dst = __sk_dst_get(sk);
682
683 if (sysctl_tcp_nometrics_save)
684 return;
685
686 dst_confirm(dst);
687
688 if (dst && (dst->flags&DST_HOST)) {
689 const struct inet_connection_sock *icsk = inet_csk(sk);
690 int m;
691
692 if (icsk->icsk_backoff || !tp->srtt) {
693 /* This session failed to estimate rtt. Why?
694 * Probably, no packets returned in time.
695 * Reset our results.
696 */
697 if (!(dst_metric_locked(dst, RTAX_RTT)))
698 dst->metrics[RTAX_RTT-1] = 0;
699 return;
700 }
701
702 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
703
704 /* If newly calculated rtt larger than stored one,
705 * store new one. Otherwise, use EWMA. Remember,
706 * rtt overestimation is always better than underestimation.
707 */
708 if (!(dst_metric_locked(dst, RTAX_RTT))) {
709 if (m <= 0)
710 dst->metrics[RTAX_RTT-1] = tp->srtt;
711 else
712 dst->metrics[RTAX_RTT-1] -= (m>>3);
713 }
714
715 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
716 if (m < 0)
717 m = -m;
718
719 /* Scale deviation to rttvar fixed point */
720 m >>= 1;
721 if (m < tp->mdev)
722 m = tp->mdev;
723
724 if (m >= dst_metric(dst, RTAX_RTTVAR))
725 dst->metrics[RTAX_RTTVAR-1] = m;
726 else
727 dst->metrics[RTAX_RTTVAR-1] -=
728 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
729 }
730
731 if (tp->snd_ssthresh >= 0xFFFF) {
732 /* Slow start still did not finish. */
733 if (dst_metric(dst, RTAX_SSTHRESH) &&
734 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
735 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
736 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
737 if (!dst_metric_locked(dst, RTAX_CWND) &&
738 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
739 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
740 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
741 icsk->icsk_ca_state == TCP_CA_Open) {
742 /* Cong. avoidance phase, cwnd is reliable. */
743 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
744 dst->metrics[RTAX_SSTHRESH-1] =
745 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
746 if (!dst_metric_locked(dst, RTAX_CWND))
747 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
748 } else {
749 /* Else slow start did not finish, cwnd is non-sense,
750 ssthresh may be also invalid.
751 */
752 if (!dst_metric_locked(dst, RTAX_CWND))
753 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
754 if (dst->metrics[RTAX_SSTHRESH-1] &&
755 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
756 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
757 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
758 }
759
760 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
761 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
762 tp->reordering != sysctl_tcp_reordering)
763 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
764 }
765 }
766 }
767
768 /* Numbers are taken from RFC3390.
769 *
770 * John Heffner states:
771 *
772 * The RFC specifies a window of no more than 4380 bytes
773 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
774 * is a bit misleading because they use a clamp at 4380 bytes
775 * rather than use a multiplier in the relevant range.
776 */
777 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
778 {
779 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
780
781 if (!cwnd) {
782 if (tp->mss_cache > 1460)
783 cwnd = 2;
784 else
785 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
786 }
787 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
788 }
789
790 /* Set slow start threshold and cwnd not falling to slow start */
791 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
792 {
793 struct tcp_sock *tp = tcp_sk(sk);
794 const struct inet_connection_sock *icsk = inet_csk(sk);
795
796 tp->prior_ssthresh = 0;
797 tp->bytes_acked = 0;
798 if (icsk->icsk_ca_state < TCP_CA_CWR) {
799 tp->undo_marker = 0;
800 if (set_ssthresh)
801 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
802 tp->snd_cwnd = min(tp->snd_cwnd,
803 tcp_packets_in_flight(tp) + 1U);
804 tp->snd_cwnd_cnt = 0;
805 tp->high_seq = tp->snd_nxt;
806 tp->snd_cwnd_stamp = tcp_time_stamp;
807 TCP_ECN_queue_cwr(tp);
808
809 tcp_set_ca_state(sk, TCP_CA_CWR);
810 }
811 }
812
813 /* Initialize metrics on socket. */
814
815 static void tcp_init_metrics(struct sock *sk)
816 {
817 struct tcp_sock *tp = tcp_sk(sk);
818 struct dst_entry *dst = __sk_dst_get(sk);
819
820 if (dst == NULL)
821 goto reset;
822
823 dst_confirm(dst);
824
825 if (dst_metric_locked(dst, RTAX_CWND))
826 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
827 if (dst_metric(dst, RTAX_SSTHRESH)) {
828 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
829 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
830 tp->snd_ssthresh = tp->snd_cwnd_clamp;
831 }
832 if (dst_metric(dst, RTAX_REORDERING) &&
833 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
834 tp->rx_opt.sack_ok &= ~2;
835 tp->reordering = dst_metric(dst, RTAX_REORDERING);
836 }
837
838 if (dst_metric(dst, RTAX_RTT) == 0)
839 goto reset;
840
841 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
842 goto reset;
843
844 /* Initial rtt is determined from SYN,SYN-ACK.
845 * The segment is small and rtt may appear much
846 * less than real one. Use per-dst memory
847 * to make it more realistic.
848 *
849 * A bit of theory. RTT is time passed after "normal" sized packet
850 * is sent until it is ACKed. In normal circumstances sending small
851 * packets force peer to delay ACKs and calculation is correct too.
852 * The algorithm is adaptive and, provided we follow specs, it
853 * NEVER underestimate RTT. BUT! If peer tries to make some clever
854 * tricks sort of "quick acks" for time long enough to decrease RTT
855 * to low value, and then abruptly stops to do it and starts to delay
856 * ACKs, wait for troubles.
857 */
858 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
859 tp->srtt = dst_metric(dst, RTAX_RTT);
860 tp->rtt_seq = tp->snd_nxt;
861 }
862 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
863 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
864 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
865 }
866 tcp_set_rto(sk);
867 tcp_bound_rto(sk);
868 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
869 goto reset;
870 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
871 tp->snd_cwnd_stamp = tcp_time_stamp;
872 return;
873
874 reset:
875 /* Play conservative. If timestamps are not
876 * supported, TCP will fail to recalculate correct
877 * rtt, if initial rto is too small. FORGET ALL AND RESET!
878 */
879 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
880 tp->srtt = 0;
881 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
882 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
883 }
884 }
885
886 static void tcp_update_reordering(struct sock *sk, const int metric,
887 const int ts)
888 {
889 struct tcp_sock *tp = tcp_sk(sk);
890 if (metric > tp->reordering) {
891 tp->reordering = min(TCP_MAX_REORDERING, metric);
892
893 /* This exciting event is worth to be remembered. 8) */
894 if (ts)
895 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
896 else if (IsReno(tp))
897 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
898 else if (IsFack(tp))
899 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
900 else
901 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
902 #if FASTRETRANS_DEBUG > 1
903 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
904 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
905 tp->reordering,
906 tp->fackets_out,
907 tp->sacked_out,
908 tp->undo_marker ? tp->undo_retrans : 0);
909 #endif
910 /* Disable FACK yet. */
911 tp->rx_opt.sack_ok &= ~2;
912 }
913 }
914
915 /* This procedure tags the retransmission queue when SACKs arrive.
916 *
917 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
918 * Packets in queue with these bits set are counted in variables
919 * sacked_out, retrans_out and lost_out, correspondingly.
920 *
921 * Valid combinations are:
922 * Tag InFlight Description
923 * 0 1 - orig segment is in flight.
924 * S 0 - nothing flies, orig reached receiver.
925 * L 0 - nothing flies, orig lost by net.
926 * R 2 - both orig and retransmit are in flight.
927 * L|R 1 - orig is lost, retransmit is in flight.
928 * S|R 1 - orig reached receiver, retrans is still in flight.
929 * (L|S|R is logically valid, it could occur when L|R is sacked,
930 * but it is equivalent to plain S and code short-curcuits it to S.
931 * L|S is logically invalid, it would mean -1 packet in flight 8))
932 *
933 * These 6 states form finite state machine, controlled by the following events:
934 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
935 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
936 * 3. Loss detection event of one of three flavors:
937 * A. Scoreboard estimator decided the packet is lost.
938 * A'. Reno "three dupacks" marks head of queue lost.
939 * A''. Its FACK modfication, head until snd.fack is lost.
940 * B. SACK arrives sacking data transmitted after never retransmitted
941 * hole was sent out.
942 * C. SACK arrives sacking SND.NXT at the moment, when the
943 * segment was retransmitted.
944 * 4. D-SACK added new rule: D-SACK changes any tag to S.
945 *
946 * It is pleasant to note, that state diagram turns out to be commutative,
947 * so that we are allowed not to be bothered by order of our actions,
948 * when multiple events arrive simultaneously. (see the function below).
949 *
950 * Reordering detection.
951 * --------------------
952 * Reordering metric is maximal distance, which a packet can be displaced
953 * in packet stream. With SACKs we can estimate it:
954 *
955 * 1. SACK fills old hole and the corresponding segment was not
956 * ever retransmitted -> reordering. Alas, we cannot use it
957 * when segment was retransmitted.
958 * 2. The last flaw is solved with D-SACK. D-SACK arrives
959 * for retransmitted and already SACKed segment -> reordering..
960 * Both of these heuristics are not used in Loss state, when we cannot
961 * account for retransmits accurately.
962 */
963 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
964 struct tcp_sack_block_wire *sp, int num_sacks,
965 u32 prior_snd_una)
966 {
967 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
968 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
969 int dup_sack = 0;
970
971 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
972 dup_sack = 1;
973 tp->rx_opt.sack_ok |= 4;
974 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
975 } else if (num_sacks > 1) {
976 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
977 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
978
979 if (!after(end_seq_0, end_seq_1) &&
980 !before(start_seq_0, start_seq_1)) {
981 dup_sack = 1;
982 tp->rx_opt.sack_ok |= 4;
983 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
984 }
985 }
986
987 /* D-SACK for already forgotten data... Do dumb counting. */
988 if (dup_sack &&
989 !after(end_seq_0, prior_snd_una) &&
990 after(end_seq_0, tp->undo_marker))
991 tp->undo_retrans--;
992
993 return dup_sack;
994 }
995
996 static int
997 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
998 {
999 const struct inet_connection_sock *icsk = inet_csk(sk);
1000 struct tcp_sock *tp = tcp_sk(sk);
1001 unsigned char *ptr = (skb_transport_header(ack_skb) +
1002 TCP_SKB_CB(ack_skb)->sacked);
1003 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
1004 struct sk_buff *cached_skb;
1005 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1006 int reord = tp->packets_out;
1007 int prior_fackets;
1008 u32 lost_retrans = 0;
1009 int flag = 0;
1010 int found_dup_sack = 0;
1011 int cached_fack_count;
1012 int i;
1013 int first_sack_index;
1014
1015 if (!tp->sacked_out) {
1016 tp->fackets_out = 0;
1017 tp->highest_sack = tp->snd_una;
1018 }
1019 prior_fackets = tp->fackets_out;
1020
1021 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1022 num_sacks, prior_snd_una);
1023 if (found_dup_sack)
1024 flag |= FLAG_DSACKING_ACK;
1025
1026 /* Eliminate too old ACKs, but take into
1027 * account more or less fresh ones, they can
1028 * contain valid SACK info.
1029 */
1030 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1031 return 0;
1032
1033 /* SACK fastpath:
1034 * if the only SACK change is the increase of the end_seq of
1035 * the first block then only apply that SACK block
1036 * and use retrans queue hinting otherwise slowpath */
1037 flag = 1;
1038 for (i = 0; i < num_sacks; i++) {
1039 __be32 start_seq = sp[i].start_seq;
1040 __be32 end_seq = sp[i].end_seq;
1041
1042 if (i == 0) {
1043 if (tp->recv_sack_cache[i].start_seq != start_seq)
1044 flag = 0;
1045 } else {
1046 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1047 (tp->recv_sack_cache[i].end_seq != end_seq))
1048 flag = 0;
1049 }
1050 tp->recv_sack_cache[i].start_seq = start_seq;
1051 tp->recv_sack_cache[i].end_seq = end_seq;
1052 }
1053 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1054 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1055 tp->recv_sack_cache[i].start_seq = 0;
1056 tp->recv_sack_cache[i].end_seq = 0;
1057 }
1058
1059 first_sack_index = 0;
1060 if (flag)
1061 num_sacks = 1;
1062 else {
1063 int j;
1064 tp->fastpath_skb_hint = NULL;
1065
1066 /* order SACK blocks to allow in order walk of the retrans queue */
1067 for (i = num_sacks-1; i > 0; i--) {
1068 for (j = 0; j < i; j++){
1069 if (after(ntohl(sp[j].start_seq),
1070 ntohl(sp[j+1].start_seq))){
1071 struct tcp_sack_block_wire tmp;
1072
1073 tmp = sp[j];
1074 sp[j] = sp[j+1];
1075 sp[j+1] = tmp;
1076
1077 /* Track where the first SACK block goes to */
1078 if (j == first_sack_index)
1079 first_sack_index = j+1;
1080 }
1081
1082 }
1083 }
1084 }
1085
1086 /* clear flag as used for different purpose in following code */
1087 flag = 0;
1088
1089 /* Use SACK fastpath hint if valid */
1090 cached_skb = tp->fastpath_skb_hint;
1091 cached_fack_count = tp->fastpath_cnt_hint;
1092 if (!cached_skb) {
1093 cached_skb = tcp_write_queue_head(sk);
1094 cached_fack_count = 0;
1095 }
1096
1097 for (i=0; i<num_sacks; i++, sp++) {
1098 struct sk_buff *skb;
1099 __u32 start_seq = ntohl(sp->start_seq);
1100 __u32 end_seq = ntohl(sp->end_seq);
1101 int fack_count;
1102 int dup_sack = (found_dup_sack && (i == first_sack_index));
1103
1104 skb = cached_skb;
1105 fack_count = cached_fack_count;
1106
1107 /* Event "B" in the comment above. */
1108 if (after(end_seq, tp->high_seq))
1109 flag |= FLAG_DATA_LOST;
1110
1111 tcp_for_write_queue_from(skb, sk) {
1112 int in_sack, pcount;
1113 u8 sacked;
1114
1115 if (skb == tcp_send_head(sk))
1116 break;
1117
1118 cached_skb = skb;
1119 cached_fack_count = fack_count;
1120 if (i == first_sack_index) {
1121 tp->fastpath_skb_hint = skb;
1122 tp->fastpath_cnt_hint = fack_count;
1123 }
1124
1125 /* The retransmission queue is always in order, so
1126 * we can short-circuit the walk early.
1127 */
1128 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1129 break;
1130
1131 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1132 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1133
1134 pcount = tcp_skb_pcount(skb);
1135
1136 if (pcount > 1 && !in_sack &&
1137 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1138 unsigned int pkt_len;
1139
1140 in_sack = !after(start_seq,
1141 TCP_SKB_CB(skb)->seq);
1142
1143 if (!in_sack)
1144 pkt_len = (start_seq -
1145 TCP_SKB_CB(skb)->seq);
1146 else
1147 pkt_len = (end_seq -
1148 TCP_SKB_CB(skb)->seq);
1149 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1150 break;
1151 pcount = tcp_skb_pcount(skb);
1152 }
1153
1154 fack_count += pcount;
1155
1156 sacked = TCP_SKB_CB(skb)->sacked;
1157
1158 /* Account D-SACK for retransmitted packet. */
1159 if ((dup_sack && in_sack) &&
1160 (sacked & TCPCB_RETRANS) &&
1161 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1162 tp->undo_retrans--;
1163
1164 /* The frame is ACKed. */
1165 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1166 if (sacked&TCPCB_RETRANS) {
1167 if ((dup_sack && in_sack) &&
1168 (sacked&TCPCB_SACKED_ACKED))
1169 reord = min(fack_count, reord);
1170 } else {
1171 /* If it was in a hole, we detected reordering. */
1172 if (fack_count < prior_fackets &&
1173 !(sacked&TCPCB_SACKED_ACKED))
1174 reord = min(fack_count, reord);
1175 }
1176
1177 /* Nothing to do; acked frame is about to be dropped. */
1178 continue;
1179 }
1180
1181 if ((sacked&TCPCB_SACKED_RETRANS) &&
1182 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1183 (!lost_retrans || after(end_seq, lost_retrans)))
1184 lost_retrans = end_seq;
1185
1186 if (!in_sack)
1187 continue;
1188
1189 if (!(sacked&TCPCB_SACKED_ACKED)) {
1190 if (sacked & TCPCB_SACKED_RETRANS) {
1191 /* If the segment is not tagged as lost,
1192 * we do not clear RETRANS, believing
1193 * that retransmission is still in flight.
1194 */
1195 if (sacked & TCPCB_LOST) {
1196 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1197 tp->lost_out -= tcp_skb_pcount(skb);
1198 tp->retrans_out -= tcp_skb_pcount(skb);
1199
1200 /* clear lost hint */
1201 tp->retransmit_skb_hint = NULL;
1202 }
1203 } else {
1204 /* New sack for not retransmitted frame,
1205 * which was in hole. It is reordering.
1206 */
1207 if (!(sacked & TCPCB_RETRANS) &&
1208 fack_count < prior_fackets)
1209 reord = min(fack_count, reord);
1210
1211 if (sacked & TCPCB_LOST) {
1212 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1213 tp->lost_out -= tcp_skb_pcount(skb);
1214
1215 /* clear lost hint */
1216 tp->retransmit_skb_hint = NULL;
1217 }
1218 /* SACK enhanced F-RTO detection.
1219 * Set flag if and only if non-rexmitted
1220 * segments below frto_highmark are
1221 * SACKed (RFC4138; Appendix B).
1222 * Clearing correct due to in-order walk
1223 */
1224 if (after(end_seq, tp->frto_highmark)) {
1225 flag &= ~FLAG_ONLY_ORIG_SACKED;
1226 } else {
1227 if (!(sacked & TCPCB_RETRANS))
1228 flag |= FLAG_ONLY_ORIG_SACKED;
1229 }
1230 }
1231
1232 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1233 flag |= FLAG_DATA_SACKED;
1234 tp->sacked_out += tcp_skb_pcount(skb);
1235
1236 if (fack_count > tp->fackets_out)
1237 tp->fackets_out = fack_count;
1238
1239 if (after(TCP_SKB_CB(skb)->seq,
1240 tp->highest_sack))
1241 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1242 } else {
1243 if (dup_sack && (sacked&TCPCB_RETRANS))
1244 reord = min(fack_count, reord);
1245 }
1246
1247 /* D-SACK. We can detect redundant retransmission
1248 * in S|R and plain R frames and clear it.
1249 * undo_retrans is decreased above, L|R frames
1250 * are accounted above as well.
1251 */
1252 if (dup_sack &&
1253 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1254 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1255 tp->retrans_out -= tcp_skb_pcount(skb);
1256 tp->retransmit_skb_hint = NULL;
1257 }
1258 }
1259 }
1260
1261 /* Check for lost retransmit. This superb idea is
1262 * borrowed from "ratehalving". Event "C".
1263 * Later note: FACK people cheated me again 8),
1264 * we have to account for reordering! Ugly,
1265 * but should help.
1266 */
1267 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1268 struct sk_buff *skb;
1269
1270 tcp_for_write_queue(skb, sk) {
1271 if (skb == tcp_send_head(sk))
1272 break;
1273 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1274 break;
1275 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1276 continue;
1277 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1278 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1279 (IsFack(tp) ||
1280 !before(lost_retrans,
1281 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1282 tp->mss_cache))) {
1283 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1284 tp->retrans_out -= tcp_skb_pcount(skb);
1285
1286 /* clear lost hint */
1287 tp->retransmit_skb_hint = NULL;
1288
1289 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1290 tp->lost_out += tcp_skb_pcount(skb);
1291 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1292 flag |= FLAG_DATA_SACKED;
1293 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1294 }
1295 }
1296 }
1297 }
1298
1299 tp->left_out = tp->sacked_out + tp->lost_out;
1300
1301 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1302 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1303 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1304
1305 #if FASTRETRANS_DEBUG > 0
1306 BUG_TRAP((int)tp->sacked_out >= 0);
1307 BUG_TRAP((int)tp->lost_out >= 0);
1308 BUG_TRAP((int)tp->retrans_out >= 0);
1309 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1310 #endif
1311 return flag;
1312 }
1313
1314 /* F-RTO can only be used if TCP has never retransmitted anything other than
1315 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1316 */
1317 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1318 {
1319 struct tcp_sock *tp = tcp_sk(sk);
1320 u32 holes;
1321
1322 holes = max(tp->lost_out, 1U);
1323 holes = min(holes, tp->packets_out);
1324
1325 if ((tp->sacked_out + holes) > tp->packets_out) {
1326 tp->sacked_out = tp->packets_out - holes;
1327 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1328 }
1329 }
1330
1331 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1332
1333 static void tcp_add_reno_sack(struct sock *sk)
1334 {
1335 struct tcp_sock *tp = tcp_sk(sk);
1336 tp->sacked_out++;
1337 tcp_check_reno_reordering(sk, 0);
1338 tcp_sync_left_out(tp);
1339 }
1340
1341 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1342
1343 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1344 {
1345 struct tcp_sock *tp = tcp_sk(sk);
1346
1347 if (acked > 0) {
1348 /* One ACK acked hole. The rest eat duplicate ACKs. */
1349 if (acked-1 >= tp->sacked_out)
1350 tp->sacked_out = 0;
1351 else
1352 tp->sacked_out -= acked-1;
1353 }
1354 tcp_check_reno_reordering(sk, acked);
1355 tcp_sync_left_out(tp);
1356 }
1357
1358 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1359 {
1360 tp->sacked_out = 0;
1361 tp->left_out = tp->lost_out;
1362 }
1363
1364 int tcp_use_frto(struct sock *sk)
1365 {
1366 const struct tcp_sock *tp = tcp_sk(sk);
1367 struct sk_buff *skb;
1368
1369 if (!sysctl_tcp_frto)
1370 return 0;
1371
1372 if (IsSackFrto())
1373 return 1;
1374
1375 /* Avoid expensive walking of rexmit queue if possible */
1376 if (tp->retrans_out > 1)
1377 return 0;
1378
1379 skb = tcp_write_queue_head(sk);
1380 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1381 tcp_for_write_queue_from(skb, sk) {
1382 if (skb == tcp_send_head(sk))
1383 break;
1384 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1385 return 0;
1386 /* Short-circuit when first non-SACKed skb has been checked */
1387 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1388 break;
1389 }
1390 return 1;
1391 }
1392
1393 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1394 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1395 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1396 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1397 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1398 * bits are handled if the Loss state is really to be entered (in
1399 * tcp_enter_frto_loss).
1400 *
1401 * Do like tcp_enter_loss() would; when RTO expires the second time it
1402 * does:
1403 * "Reduce ssthresh if it has not yet been made inside this window."
1404 */
1405 void tcp_enter_frto(struct sock *sk)
1406 {
1407 const struct inet_connection_sock *icsk = inet_csk(sk);
1408 struct tcp_sock *tp = tcp_sk(sk);
1409 struct sk_buff *skb;
1410
1411 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1412 tp->snd_una == tp->high_seq ||
1413 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1414 !icsk->icsk_retransmits)) {
1415 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1416 /* Our state is too optimistic in ssthresh() call because cwnd
1417 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1418 * recovery has not yet completed. Pattern would be this: RTO,
1419 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1420 * up here twice).
1421 * RFC4138 should be more specific on what to do, even though
1422 * RTO is quite unlikely to occur after the first Cumulative ACK
1423 * due to back-off and complexity of triggering events ...
1424 */
1425 if (tp->frto_counter) {
1426 u32 stored_cwnd;
1427 stored_cwnd = tp->snd_cwnd;
1428 tp->snd_cwnd = 2;
1429 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1430 tp->snd_cwnd = stored_cwnd;
1431 } else {
1432 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1433 }
1434 /* ... in theory, cong.control module could do "any tricks" in
1435 * ssthresh(), which means that ca_state, lost bits and lost_out
1436 * counter would have to be faked before the call occurs. We
1437 * consider that too expensive, unlikely and hacky, so modules
1438 * using these in ssthresh() must deal these incompatibility
1439 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1440 */
1441 tcp_ca_event(sk, CA_EVENT_FRTO);
1442 }
1443
1444 tp->undo_marker = tp->snd_una;
1445 tp->undo_retrans = 0;
1446
1447 skb = tcp_write_queue_head(sk);
1448 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1449 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1450 tp->retrans_out -= tcp_skb_pcount(skb);
1451 }
1452 tcp_sync_left_out(tp);
1453
1454 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1455 * The last condition is necessary at least in tp->frto_counter case.
1456 */
1457 if (IsSackFrto() && (tp->frto_counter ||
1458 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1459 after(tp->high_seq, tp->snd_una)) {
1460 tp->frto_highmark = tp->high_seq;
1461 } else {
1462 tp->frto_highmark = tp->snd_nxt;
1463 }
1464 tcp_set_ca_state(sk, TCP_CA_Disorder);
1465 tp->high_seq = tp->snd_nxt;
1466 tp->frto_counter = 1;
1467 }
1468
1469 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1470 * which indicates that we should follow the traditional RTO recovery,
1471 * i.e. mark everything lost and do go-back-N retransmission.
1472 */
1473 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1474 {
1475 struct tcp_sock *tp = tcp_sk(sk);
1476 struct sk_buff *skb;
1477 int cnt = 0;
1478
1479 tp->sacked_out = 0;
1480 tp->lost_out = 0;
1481 tp->fackets_out = 0;
1482 tp->retrans_out = 0;
1483
1484 tcp_for_write_queue(skb, sk) {
1485 if (skb == tcp_send_head(sk))
1486 break;
1487 cnt += tcp_skb_pcount(skb);
1488 /*
1489 * Count the retransmission made on RTO correctly (only when
1490 * waiting for the first ACK and did not get it)...
1491 */
1492 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1493 /* For some reason this R-bit might get cleared? */
1494 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1495 tp->retrans_out += tcp_skb_pcount(skb);
1496 /* ...enter this if branch just for the first segment */
1497 flag |= FLAG_DATA_ACKED;
1498 } else {
1499 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1500 }
1501 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1502
1503 /* Do not mark those segments lost that were
1504 * forward transmitted after RTO
1505 */
1506 if (!after(TCP_SKB_CB(skb)->end_seq,
1507 tp->frto_highmark)) {
1508 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1509 tp->lost_out += tcp_skb_pcount(skb);
1510 }
1511 } else {
1512 tp->sacked_out += tcp_skb_pcount(skb);
1513 tp->fackets_out = cnt;
1514 }
1515 }
1516 tcp_sync_left_out(tp);
1517
1518 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1519 tp->snd_cwnd_cnt = 0;
1520 tp->snd_cwnd_stamp = tcp_time_stamp;
1521 tp->undo_marker = 0;
1522 tp->frto_counter = 0;
1523
1524 tp->reordering = min_t(unsigned int, tp->reordering,
1525 sysctl_tcp_reordering);
1526 tcp_set_ca_state(sk, TCP_CA_Loss);
1527 tp->high_seq = tp->frto_highmark;
1528 TCP_ECN_queue_cwr(tp);
1529
1530 clear_all_retrans_hints(tp);
1531 }
1532
1533 void tcp_clear_retrans(struct tcp_sock *tp)
1534 {
1535 tp->left_out = 0;
1536 tp->retrans_out = 0;
1537
1538 tp->fackets_out = 0;
1539 tp->sacked_out = 0;
1540 tp->lost_out = 0;
1541
1542 tp->undo_marker = 0;
1543 tp->undo_retrans = 0;
1544 }
1545
1546 /* Enter Loss state. If "how" is not zero, forget all SACK information
1547 * and reset tags completely, otherwise preserve SACKs. If receiver
1548 * dropped its ofo queue, we will know this due to reneging detection.
1549 */
1550 void tcp_enter_loss(struct sock *sk, int how)
1551 {
1552 const struct inet_connection_sock *icsk = inet_csk(sk);
1553 struct tcp_sock *tp = tcp_sk(sk);
1554 struct sk_buff *skb;
1555 int cnt = 0;
1556
1557 /* Reduce ssthresh if it has not yet been made inside this window. */
1558 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1559 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1560 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1561 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1562 tcp_ca_event(sk, CA_EVENT_LOSS);
1563 }
1564 tp->snd_cwnd = 1;
1565 tp->snd_cwnd_cnt = 0;
1566 tp->snd_cwnd_stamp = tcp_time_stamp;
1567
1568 tp->bytes_acked = 0;
1569 tcp_clear_retrans(tp);
1570
1571 /* Push undo marker, if it was plain RTO and nothing
1572 * was retransmitted. */
1573 if (!how)
1574 tp->undo_marker = tp->snd_una;
1575
1576 tcp_for_write_queue(skb, sk) {
1577 if (skb == tcp_send_head(sk))
1578 break;
1579 cnt += tcp_skb_pcount(skb);
1580 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1581 tp->undo_marker = 0;
1582 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1583 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1584 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1585 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1586 tp->lost_out += tcp_skb_pcount(skb);
1587 } else {
1588 tp->sacked_out += tcp_skb_pcount(skb);
1589 tp->fackets_out = cnt;
1590 }
1591 }
1592 tcp_sync_left_out(tp);
1593
1594 tp->reordering = min_t(unsigned int, tp->reordering,
1595 sysctl_tcp_reordering);
1596 tcp_set_ca_state(sk, TCP_CA_Loss);
1597 tp->high_seq = tp->snd_nxt;
1598 TCP_ECN_queue_cwr(tp);
1599 /* Abort FRTO algorithm if one is in progress */
1600 tp->frto_counter = 0;
1601
1602 clear_all_retrans_hints(tp);
1603 }
1604
1605 static int tcp_check_sack_reneging(struct sock *sk)
1606 {
1607 struct sk_buff *skb;
1608
1609 /* If ACK arrived pointing to a remembered SACK,
1610 * it means that our remembered SACKs do not reflect
1611 * real state of receiver i.e.
1612 * receiver _host_ is heavily congested (or buggy).
1613 * Do processing similar to RTO timeout.
1614 */
1615 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1616 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1617 struct inet_connection_sock *icsk = inet_csk(sk);
1618 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1619
1620 tcp_enter_loss(sk, 1);
1621 icsk->icsk_retransmits++;
1622 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1623 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1624 icsk->icsk_rto, TCP_RTO_MAX);
1625 return 1;
1626 }
1627 return 0;
1628 }
1629
1630 static inline int tcp_fackets_out(struct tcp_sock *tp)
1631 {
1632 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1633 }
1634
1635 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1636 {
1637 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1638 }
1639
1640 static inline int tcp_head_timedout(struct sock *sk)
1641 {
1642 struct tcp_sock *tp = tcp_sk(sk);
1643
1644 return tp->packets_out &&
1645 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1646 }
1647
1648 /* Linux NewReno/SACK/FACK/ECN state machine.
1649 * --------------------------------------
1650 *
1651 * "Open" Normal state, no dubious events, fast path.
1652 * "Disorder" In all the respects it is "Open",
1653 * but requires a bit more attention. It is entered when
1654 * we see some SACKs or dupacks. It is split of "Open"
1655 * mainly to move some processing from fast path to slow one.
1656 * "CWR" CWND was reduced due to some Congestion Notification event.
1657 * It can be ECN, ICMP source quench, local device congestion.
1658 * "Recovery" CWND was reduced, we are fast-retransmitting.
1659 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1660 *
1661 * tcp_fastretrans_alert() is entered:
1662 * - each incoming ACK, if state is not "Open"
1663 * - when arrived ACK is unusual, namely:
1664 * * SACK
1665 * * Duplicate ACK.
1666 * * ECN ECE.
1667 *
1668 * Counting packets in flight is pretty simple.
1669 *
1670 * in_flight = packets_out - left_out + retrans_out
1671 *
1672 * packets_out is SND.NXT-SND.UNA counted in packets.
1673 *
1674 * retrans_out is number of retransmitted segments.
1675 *
1676 * left_out is number of segments left network, but not ACKed yet.
1677 *
1678 * left_out = sacked_out + lost_out
1679 *
1680 * sacked_out: Packets, which arrived to receiver out of order
1681 * and hence not ACKed. With SACKs this number is simply
1682 * amount of SACKed data. Even without SACKs
1683 * it is easy to give pretty reliable estimate of this number,
1684 * counting duplicate ACKs.
1685 *
1686 * lost_out: Packets lost by network. TCP has no explicit
1687 * "loss notification" feedback from network (for now).
1688 * It means that this number can be only _guessed_.
1689 * Actually, it is the heuristics to predict lossage that
1690 * distinguishes different algorithms.
1691 *
1692 * F.e. after RTO, when all the queue is considered as lost,
1693 * lost_out = packets_out and in_flight = retrans_out.
1694 *
1695 * Essentially, we have now two algorithms counting
1696 * lost packets.
1697 *
1698 * FACK: It is the simplest heuristics. As soon as we decided
1699 * that something is lost, we decide that _all_ not SACKed
1700 * packets until the most forward SACK are lost. I.e.
1701 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1702 * It is absolutely correct estimate, if network does not reorder
1703 * packets. And it loses any connection to reality when reordering
1704 * takes place. We use FACK by default until reordering
1705 * is suspected on the path to this destination.
1706 *
1707 * NewReno: when Recovery is entered, we assume that one segment
1708 * is lost (classic Reno). While we are in Recovery and
1709 * a partial ACK arrives, we assume that one more packet
1710 * is lost (NewReno). This heuristics are the same in NewReno
1711 * and SACK.
1712 *
1713 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1714 * deflation etc. CWND is real congestion window, never inflated, changes
1715 * only according to classic VJ rules.
1716 *
1717 * Really tricky (and requiring careful tuning) part of algorithm
1718 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1719 * The first determines the moment _when_ we should reduce CWND and,
1720 * hence, slow down forward transmission. In fact, it determines the moment
1721 * when we decide that hole is caused by loss, rather than by a reorder.
1722 *
1723 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1724 * holes, caused by lost packets.
1725 *
1726 * And the most logically complicated part of algorithm is undo
1727 * heuristics. We detect false retransmits due to both too early
1728 * fast retransmit (reordering) and underestimated RTO, analyzing
1729 * timestamps and D-SACKs. When we detect that some segments were
1730 * retransmitted by mistake and CWND reduction was wrong, we undo
1731 * window reduction and abort recovery phase. This logic is hidden
1732 * inside several functions named tcp_try_undo_<something>.
1733 */
1734
1735 /* This function decides, when we should leave Disordered state
1736 * and enter Recovery phase, reducing congestion window.
1737 *
1738 * Main question: may we further continue forward transmission
1739 * with the same cwnd?
1740 */
1741 static int tcp_time_to_recover(struct sock *sk)
1742 {
1743 struct tcp_sock *tp = tcp_sk(sk);
1744 __u32 packets_out;
1745
1746 /* Do not perform any recovery during FRTO algorithm */
1747 if (tp->frto_counter)
1748 return 0;
1749
1750 /* Trick#1: The loss is proven. */
1751 if (tp->lost_out)
1752 return 1;
1753
1754 /* Not-A-Trick#2 : Classic rule... */
1755 if (tcp_fackets_out(tp) > tp->reordering)
1756 return 1;
1757
1758 /* Trick#3 : when we use RFC2988 timer restart, fast
1759 * retransmit can be triggered by timeout of queue head.
1760 */
1761 if (tcp_head_timedout(sk))
1762 return 1;
1763
1764 /* Trick#4: It is still not OK... But will it be useful to delay
1765 * recovery more?
1766 */
1767 packets_out = tp->packets_out;
1768 if (packets_out <= tp->reordering &&
1769 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1770 !tcp_may_send_now(sk)) {
1771 /* We have nothing to send. This connection is limited
1772 * either by receiver window or by application.
1773 */
1774 return 1;
1775 }
1776
1777 return 0;
1778 }
1779
1780 /* RFC: This is from the original, I doubt that this is necessary at all:
1781 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
1782 * retransmitted past LOST markings in the first place? I'm not fully sure
1783 * about undo and end of connection cases, which can cause R without L?
1784 */
1785 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
1786 struct sk_buff *skb)
1787 {
1788 if ((tp->retransmit_skb_hint != NULL) &&
1789 before(TCP_SKB_CB(skb)->seq,
1790 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1791 tp->retransmit_skb_hint = NULL;
1792 }
1793
1794 /* Mark head of queue up as lost. */
1795 static void tcp_mark_head_lost(struct sock *sk,
1796 int packets, u32 high_seq)
1797 {
1798 struct tcp_sock *tp = tcp_sk(sk);
1799 struct sk_buff *skb;
1800 int cnt;
1801
1802 BUG_TRAP(packets <= tp->packets_out);
1803 if (tp->lost_skb_hint) {
1804 skb = tp->lost_skb_hint;
1805 cnt = tp->lost_cnt_hint;
1806 } else {
1807 skb = tcp_write_queue_head(sk);
1808 cnt = 0;
1809 }
1810
1811 tcp_for_write_queue_from(skb, sk) {
1812 if (skb == tcp_send_head(sk))
1813 break;
1814 /* TODO: do this better */
1815 /* this is not the most efficient way to do this... */
1816 tp->lost_skb_hint = skb;
1817 tp->lost_cnt_hint = cnt;
1818 cnt += tcp_skb_pcount(skb);
1819 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1820 break;
1821 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1822 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1823 tp->lost_out += tcp_skb_pcount(skb);
1824 tcp_verify_retransmit_hint(tp, skb);
1825 }
1826 }
1827 tcp_sync_left_out(tp);
1828 }
1829
1830 /* Account newly detected lost packet(s) */
1831
1832 static void tcp_update_scoreboard(struct sock *sk)
1833 {
1834 struct tcp_sock *tp = tcp_sk(sk);
1835
1836 if (IsFack(tp)) {
1837 int lost = tp->fackets_out - tp->reordering;
1838 if (lost <= 0)
1839 lost = 1;
1840 tcp_mark_head_lost(sk, lost, tp->high_seq);
1841 } else {
1842 tcp_mark_head_lost(sk, 1, tp->high_seq);
1843 }
1844
1845 /* New heuristics: it is possible only after we switched
1846 * to restart timer each time when something is ACKed.
1847 * Hence, we can detect timed out packets during fast
1848 * retransmit without falling to slow start.
1849 */
1850 if (!IsReno(tp) && tcp_head_timedout(sk)) {
1851 struct sk_buff *skb;
1852
1853 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1854 : tcp_write_queue_head(sk);
1855
1856 tcp_for_write_queue_from(skb, sk) {
1857 if (skb == tcp_send_head(sk))
1858 break;
1859 if (!tcp_skb_timedout(sk, skb))
1860 break;
1861
1862 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1863 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1864 tp->lost_out += tcp_skb_pcount(skb);
1865 tcp_verify_retransmit_hint(tp, skb);
1866 }
1867 }
1868
1869 tp->scoreboard_skb_hint = skb;
1870
1871 tcp_sync_left_out(tp);
1872 }
1873 }
1874
1875 /* CWND moderation, preventing bursts due to too big ACKs
1876 * in dubious situations.
1877 */
1878 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1879 {
1880 tp->snd_cwnd = min(tp->snd_cwnd,
1881 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1882 tp->snd_cwnd_stamp = tcp_time_stamp;
1883 }
1884
1885 /* Lower bound on congestion window is slow start threshold
1886 * unless congestion avoidance choice decides to overide it.
1887 */
1888 static inline u32 tcp_cwnd_min(const struct sock *sk)
1889 {
1890 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1891
1892 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1893 }
1894
1895 /* Decrease cwnd each second ack. */
1896 static void tcp_cwnd_down(struct sock *sk, int flag)
1897 {
1898 struct tcp_sock *tp = tcp_sk(sk);
1899 int decr = tp->snd_cwnd_cnt + 1;
1900
1901 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
1902 (IsReno(tp) && !(flag&FLAG_NOT_DUP))) {
1903 tp->snd_cwnd_cnt = decr&1;
1904 decr >>= 1;
1905
1906 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1907 tp->snd_cwnd -= decr;
1908
1909 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1910 tp->snd_cwnd_stamp = tcp_time_stamp;
1911 }
1912 }
1913
1914 /* Nothing was retransmitted or returned timestamp is less
1915 * than timestamp of the first retransmission.
1916 */
1917 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1918 {
1919 return !tp->retrans_stamp ||
1920 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1921 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1922 }
1923
1924 /* Undo procedures. */
1925
1926 #if FASTRETRANS_DEBUG > 1
1927 static void DBGUNDO(struct sock *sk, const char *msg)
1928 {
1929 struct tcp_sock *tp = tcp_sk(sk);
1930 struct inet_sock *inet = inet_sk(sk);
1931
1932 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1933 msg,
1934 NIPQUAD(inet->daddr), ntohs(inet->dport),
1935 tp->snd_cwnd, tp->left_out,
1936 tp->snd_ssthresh, tp->prior_ssthresh,
1937 tp->packets_out);
1938 }
1939 #else
1940 #define DBGUNDO(x...) do { } while (0)
1941 #endif
1942
1943 static void tcp_undo_cwr(struct sock *sk, const int undo)
1944 {
1945 struct tcp_sock *tp = tcp_sk(sk);
1946
1947 if (tp->prior_ssthresh) {
1948 const struct inet_connection_sock *icsk = inet_csk(sk);
1949
1950 if (icsk->icsk_ca_ops->undo_cwnd)
1951 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1952 else
1953 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1954
1955 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1956 tp->snd_ssthresh = tp->prior_ssthresh;
1957 TCP_ECN_withdraw_cwr(tp);
1958 }
1959 } else {
1960 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1961 }
1962 tcp_moderate_cwnd(tp);
1963 tp->snd_cwnd_stamp = tcp_time_stamp;
1964
1965 /* There is something screwy going on with the retrans hints after
1966 an undo */
1967 clear_all_retrans_hints(tp);
1968 }
1969
1970 static inline int tcp_may_undo(struct tcp_sock *tp)
1971 {
1972 return tp->undo_marker &&
1973 (!tp->undo_retrans || tcp_packet_delayed(tp));
1974 }
1975
1976 /* People celebrate: "We love our President!" */
1977 static int tcp_try_undo_recovery(struct sock *sk)
1978 {
1979 struct tcp_sock *tp = tcp_sk(sk);
1980
1981 if (tcp_may_undo(tp)) {
1982 /* Happy end! We did not retransmit anything
1983 * or our original transmission succeeded.
1984 */
1985 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1986 tcp_undo_cwr(sk, 1);
1987 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1988 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1989 else
1990 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1991 tp->undo_marker = 0;
1992 }
1993 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1994 /* Hold old state until something *above* high_seq
1995 * is ACKed. For Reno it is MUST to prevent false
1996 * fast retransmits (RFC2582). SACK TCP is safe. */
1997 tcp_moderate_cwnd(tp);
1998 return 1;
1999 }
2000 tcp_set_ca_state(sk, TCP_CA_Open);
2001 return 0;
2002 }
2003
2004 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2005 static void tcp_try_undo_dsack(struct sock *sk)
2006 {
2007 struct tcp_sock *tp = tcp_sk(sk);
2008
2009 if (tp->undo_marker && !tp->undo_retrans) {
2010 DBGUNDO(sk, "D-SACK");
2011 tcp_undo_cwr(sk, 1);
2012 tp->undo_marker = 0;
2013 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2014 }
2015 }
2016
2017 /* Undo during fast recovery after partial ACK. */
2018
2019 static int tcp_try_undo_partial(struct sock *sk, int acked)
2020 {
2021 struct tcp_sock *tp = tcp_sk(sk);
2022 /* Partial ACK arrived. Force Hoe's retransmit. */
2023 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
2024
2025 if (tcp_may_undo(tp)) {
2026 /* Plain luck! Hole if filled with delayed
2027 * packet, rather than with a retransmit.
2028 */
2029 if (tp->retrans_out == 0)
2030 tp->retrans_stamp = 0;
2031
2032 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2033
2034 DBGUNDO(sk, "Hoe");
2035 tcp_undo_cwr(sk, 0);
2036 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2037
2038 /* So... Do not make Hoe's retransmit yet.
2039 * If the first packet was delayed, the rest
2040 * ones are most probably delayed as well.
2041 */
2042 failed = 0;
2043 }
2044 return failed;
2045 }
2046
2047 /* Undo during loss recovery after partial ACK. */
2048 static int tcp_try_undo_loss(struct sock *sk)
2049 {
2050 struct tcp_sock *tp = tcp_sk(sk);
2051
2052 if (tcp_may_undo(tp)) {
2053 struct sk_buff *skb;
2054 tcp_for_write_queue(skb, sk) {
2055 if (skb == tcp_send_head(sk))
2056 break;
2057 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2058 }
2059
2060 clear_all_retrans_hints(tp);
2061
2062 DBGUNDO(sk, "partial loss");
2063 tp->lost_out = 0;
2064 tp->left_out = tp->sacked_out;
2065 tcp_undo_cwr(sk, 1);
2066 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2067 inet_csk(sk)->icsk_retransmits = 0;
2068 tp->undo_marker = 0;
2069 if (!IsReno(tp))
2070 tcp_set_ca_state(sk, TCP_CA_Open);
2071 return 1;
2072 }
2073 return 0;
2074 }
2075
2076 static inline void tcp_complete_cwr(struct sock *sk)
2077 {
2078 struct tcp_sock *tp = tcp_sk(sk);
2079 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2080 tp->snd_cwnd_stamp = tcp_time_stamp;
2081 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2082 }
2083
2084 static void tcp_try_to_open(struct sock *sk, int flag)
2085 {
2086 struct tcp_sock *tp = tcp_sk(sk);
2087
2088 tcp_sync_left_out(tp);
2089
2090 if (tp->retrans_out == 0)
2091 tp->retrans_stamp = 0;
2092
2093 if (flag&FLAG_ECE)
2094 tcp_enter_cwr(sk, 1);
2095
2096 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2097 int state = TCP_CA_Open;
2098
2099 if (tp->left_out || tp->retrans_out || tp->undo_marker)
2100 state = TCP_CA_Disorder;
2101
2102 if (inet_csk(sk)->icsk_ca_state != state) {
2103 tcp_set_ca_state(sk, state);
2104 tp->high_seq = tp->snd_nxt;
2105 }
2106 tcp_moderate_cwnd(tp);
2107 } else {
2108 tcp_cwnd_down(sk, flag);
2109 }
2110 }
2111
2112 static void tcp_mtup_probe_failed(struct sock *sk)
2113 {
2114 struct inet_connection_sock *icsk = inet_csk(sk);
2115
2116 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2117 icsk->icsk_mtup.probe_size = 0;
2118 }
2119
2120 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2121 {
2122 struct tcp_sock *tp = tcp_sk(sk);
2123 struct inet_connection_sock *icsk = inet_csk(sk);
2124
2125 /* FIXME: breaks with very large cwnd */
2126 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2127 tp->snd_cwnd = tp->snd_cwnd *
2128 tcp_mss_to_mtu(sk, tp->mss_cache) /
2129 icsk->icsk_mtup.probe_size;
2130 tp->snd_cwnd_cnt = 0;
2131 tp->snd_cwnd_stamp = tcp_time_stamp;
2132 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2133
2134 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2135 icsk->icsk_mtup.probe_size = 0;
2136 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2137 }
2138
2139
2140 /* Process an event, which can update packets-in-flight not trivially.
2141 * Main goal of this function is to calculate new estimate for left_out,
2142 * taking into account both packets sitting in receiver's buffer and
2143 * packets lost by network.
2144 *
2145 * Besides that it does CWND reduction, when packet loss is detected
2146 * and changes state of machine.
2147 *
2148 * It does _not_ decide what to send, it is made in function
2149 * tcp_xmit_retransmit_queue().
2150 */
2151 static void
2152 tcp_fastretrans_alert(struct sock *sk, int prior_packets, int flag)
2153 {
2154 struct inet_connection_sock *icsk = inet_csk(sk);
2155 struct tcp_sock *tp = tcp_sk(sk);
2156 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2157 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2158 (tp->fackets_out > tp->reordering));
2159
2160 /* Some technical things:
2161 * 1. Reno does not count dupacks (sacked_out) automatically. */
2162 if (!tp->packets_out)
2163 tp->sacked_out = 0;
2164 /* 2. SACK counts snd_fack in packets inaccurately. */
2165 if (tp->sacked_out == 0)
2166 tp->fackets_out = 0;
2167
2168 /* Now state machine starts.
2169 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2170 if (flag&FLAG_ECE)
2171 tp->prior_ssthresh = 0;
2172
2173 /* B. In all the states check for reneging SACKs. */
2174 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2175 return;
2176
2177 /* C. Process data loss notification, provided it is valid. */
2178 if ((flag&FLAG_DATA_LOST) &&
2179 before(tp->snd_una, tp->high_seq) &&
2180 icsk->icsk_ca_state != TCP_CA_Open &&
2181 tp->fackets_out > tp->reordering) {
2182 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
2183 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2184 }
2185
2186 /* D. Synchronize left_out to current state. */
2187 tcp_sync_left_out(tp);
2188
2189 /* E. Check state exit conditions. State can be terminated
2190 * when high_seq is ACKed. */
2191 if (icsk->icsk_ca_state == TCP_CA_Open) {
2192 BUG_TRAP(tp->retrans_out == 0);
2193 tp->retrans_stamp = 0;
2194 } else if (!before(tp->snd_una, tp->high_seq)) {
2195 switch (icsk->icsk_ca_state) {
2196 case TCP_CA_Loss:
2197 icsk->icsk_retransmits = 0;
2198 if (tcp_try_undo_recovery(sk))
2199 return;
2200 break;
2201
2202 case TCP_CA_CWR:
2203 /* CWR is to be held something *above* high_seq
2204 * is ACKed for CWR bit to reach receiver. */
2205 if (tp->snd_una != tp->high_seq) {
2206 tcp_complete_cwr(sk);
2207 tcp_set_ca_state(sk, TCP_CA_Open);
2208 }
2209 break;
2210
2211 case TCP_CA_Disorder:
2212 tcp_try_undo_dsack(sk);
2213 if (!tp->undo_marker ||
2214 /* For SACK case do not Open to allow to undo
2215 * catching for all duplicate ACKs. */
2216 IsReno(tp) || tp->snd_una != tp->high_seq) {
2217 tp->undo_marker = 0;
2218 tcp_set_ca_state(sk, TCP_CA_Open);
2219 }
2220 break;
2221
2222 case TCP_CA_Recovery:
2223 if (IsReno(tp))
2224 tcp_reset_reno_sack(tp);
2225 if (tcp_try_undo_recovery(sk))
2226 return;
2227 tcp_complete_cwr(sk);
2228 break;
2229 }
2230 }
2231
2232 /* F. Process state. */
2233 switch (icsk->icsk_ca_state) {
2234 case TCP_CA_Recovery:
2235 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2236 if (IsReno(tp) && is_dupack)
2237 tcp_add_reno_sack(sk);
2238 } else {
2239 int acked = prior_packets - tp->packets_out;
2240 if (IsReno(tp))
2241 tcp_remove_reno_sacks(sk, acked);
2242 do_lost = tcp_try_undo_partial(sk, acked);
2243 }
2244 break;
2245 case TCP_CA_Loss:
2246 if (flag&FLAG_DATA_ACKED)
2247 icsk->icsk_retransmits = 0;
2248 if (!tcp_try_undo_loss(sk)) {
2249 tcp_moderate_cwnd(tp);
2250 tcp_xmit_retransmit_queue(sk);
2251 return;
2252 }
2253 if (icsk->icsk_ca_state != TCP_CA_Open)
2254 return;
2255 /* Loss is undone; fall through to processing in Open state. */
2256 default:
2257 if (IsReno(tp)) {
2258 if (flag & FLAG_SND_UNA_ADVANCED)
2259 tcp_reset_reno_sack(tp);
2260 if (is_dupack)
2261 tcp_add_reno_sack(sk);
2262 }
2263
2264 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2265 tcp_try_undo_dsack(sk);
2266
2267 if (!tcp_time_to_recover(sk)) {
2268 tcp_try_to_open(sk, flag);
2269 return;
2270 }
2271
2272 /* MTU probe failure: don't reduce cwnd */
2273 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2274 icsk->icsk_mtup.probe_size &&
2275 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2276 tcp_mtup_probe_failed(sk);
2277 /* Restores the reduction we did in tcp_mtup_probe() */
2278 tp->snd_cwnd++;
2279 tcp_simple_retransmit(sk);
2280 return;
2281 }
2282
2283 /* Otherwise enter Recovery state */
2284
2285 if (IsReno(tp))
2286 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2287 else
2288 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2289
2290 tp->high_seq = tp->snd_nxt;
2291 tp->prior_ssthresh = 0;
2292 tp->undo_marker = tp->snd_una;
2293 tp->undo_retrans = tp->retrans_out;
2294
2295 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2296 if (!(flag&FLAG_ECE))
2297 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2298 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2299 TCP_ECN_queue_cwr(tp);
2300 }
2301
2302 tp->bytes_acked = 0;
2303 tp->snd_cwnd_cnt = 0;
2304 tcp_set_ca_state(sk, TCP_CA_Recovery);
2305 }
2306
2307 if (do_lost || tcp_head_timedout(sk))
2308 tcp_update_scoreboard(sk);
2309 tcp_cwnd_down(sk, flag);
2310 tcp_xmit_retransmit_queue(sk);
2311 }
2312
2313 /* Read draft-ietf-tcplw-high-performance before mucking
2314 * with this code. (Supersedes RFC1323)
2315 */
2316 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2317 {
2318 /* RTTM Rule: A TSecr value received in a segment is used to
2319 * update the averaged RTT measurement only if the segment
2320 * acknowledges some new data, i.e., only if it advances the
2321 * left edge of the send window.
2322 *
2323 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2324 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2325 *
2326 * Changed: reset backoff as soon as we see the first valid sample.
2327 * If we do not, we get strongly overestimated rto. With timestamps
2328 * samples are accepted even from very old segments: f.e., when rtt=1
2329 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2330 * answer arrives rto becomes 120 seconds! If at least one of segments
2331 * in window is lost... Voila. --ANK (010210)
2332 */
2333 struct tcp_sock *tp = tcp_sk(sk);
2334 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2335 tcp_rtt_estimator(sk, seq_rtt);
2336 tcp_set_rto(sk);
2337 inet_csk(sk)->icsk_backoff = 0;
2338 tcp_bound_rto(sk);
2339 }
2340
2341 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2342 {
2343 /* We don't have a timestamp. Can only use
2344 * packets that are not retransmitted to determine
2345 * rtt estimates. Also, we must not reset the
2346 * backoff for rto until we get a non-retransmitted
2347 * packet. This allows us to deal with a situation
2348 * where the network delay has increased suddenly.
2349 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2350 */
2351
2352 if (flag & FLAG_RETRANS_DATA_ACKED)
2353 return;
2354
2355 tcp_rtt_estimator(sk, seq_rtt);
2356 tcp_set_rto(sk);
2357 inet_csk(sk)->icsk_backoff = 0;
2358 tcp_bound_rto(sk);
2359 }
2360
2361 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2362 const s32 seq_rtt)
2363 {
2364 const struct tcp_sock *tp = tcp_sk(sk);
2365 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2366 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2367 tcp_ack_saw_tstamp(sk, flag);
2368 else if (seq_rtt >= 0)
2369 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2370 }
2371
2372 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2373 u32 in_flight, int good)
2374 {
2375 const struct inet_connection_sock *icsk = inet_csk(sk);
2376 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2377 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2378 }
2379
2380 /* Restart timer after forward progress on connection.
2381 * RFC2988 recommends to restart timer to now+rto.
2382 */
2383
2384 static void tcp_ack_packets_out(struct sock *sk)
2385 {
2386 struct tcp_sock *tp = tcp_sk(sk);
2387
2388 if (!tp->packets_out) {
2389 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2390 } else {
2391 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2392 }
2393 }
2394
2395 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2396 __u32 now, __s32 *seq_rtt)
2397 {
2398 struct tcp_sock *tp = tcp_sk(sk);
2399 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2400 __u32 seq = tp->snd_una;
2401 __u32 packets_acked;
2402 int acked = 0;
2403
2404 /* If we get here, the whole TSO packet has not been
2405 * acked.
2406 */
2407 BUG_ON(!after(scb->end_seq, seq));
2408
2409 packets_acked = tcp_skb_pcount(skb);
2410 if (tcp_trim_head(sk, skb, seq - scb->seq))
2411 return 0;
2412 packets_acked -= tcp_skb_pcount(skb);
2413
2414 if (packets_acked) {
2415 __u8 sacked = scb->sacked;
2416
2417 acked |= FLAG_DATA_ACKED;
2418 if (sacked) {
2419 if (sacked & TCPCB_RETRANS) {
2420 if (sacked & TCPCB_SACKED_RETRANS)
2421 tp->retrans_out -= packets_acked;
2422 acked |= FLAG_RETRANS_DATA_ACKED;
2423 *seq_rtt = -1;
2424 } else if (*seq_rtt < 0)
2425 *seq_rtt = now - scb->when;
2426 if (sacked & TCPCB_SACKED_ACKED)
2427 tp->sacked_out -= packets_acked;
2428 if (sacked & TCPCB_LOST)
2429 tp->lost_out -= packets_acked;
2430 if (sacked & TCPCB_URG) {
2431 if (tp->urg_mode &&
2432 !before(seq, tp->snd_up))
2433 tp->urg_mode = 0;
2434 }
2435 } else if (*seq_rtt < 0)
2436 *seq_rtt = now - scb->when;
2437
2438 if (tp->fackets_out) {
2439 __u32 dval = min(tp->fackets_out, packets_acked);
2440 tp->fackets_out -= dval;
2441 }
2442 /* hint's skb might be NULL but we don't need to care */
2443 tp->fastpath_cnt_hint -= min_t(u32, packets_acked,
2444 tp->fastpath_cnt_hint);
2445 tp->packets_out -= packets_acked;
2446
2447 BUG_ON(tcp_skb_pcount(skb) == 0);
2448 BUG_ON(!before(scb->seq, scb->end_seq));
2449 }
2450
2451 return acked;
2452 }
2453
2454 /* Remove acknowledged frames from the retransmission queue. */
2455 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2456 {
2457 struct tcp_sock *tp = tcp_sk(sk);
2458 const struct inet_connection_sock *icsk = inet_csk(sk);
2459 struct sk_buff *skb;
2460 __u32 now = tcp_time_stamp;
2461 int acked = 0;
2462 int prior_packets = tp->packets_out;
2463 __s32 seq_rtt = -1;
2464 ktime_t last_ackt = net_invalid_timestamp();
2465
2466 while ((skb = tcp_write_queue_head(sk)) &&
2467 skb != tcp_send_head(sk)) {
2468 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2469 __u8 sacked = scb->sacked;
2470
2471 /* If our packet is before the ack sequence we can
2472 * discard it as it's confirmed to have arrived at
2473 * the other end.
2474 */
2475 if (after(scb->end_seq, tp->snd_una)) {
2476 if (tcp_skb_pcount(skb) > 1 &&
2477 after(tp->snd_una, scb->seq))
2478 acked |= tcp_tso_acked(sk, skb,
2479 now, &seq_rtt);
2480 break;
2481 }
2482
2483 /* Initial outgoing SYN's get put onto the write_queue
2484 * just like anything else we transmit. It is not
2485 * true data, and if we misinform our callers that
2486 * this ACK acks real data, we will erroneously exit
2487 * connection startup slow start one packet too
2488 * quickly. This is severely frowned upon behavior.
2489 */
2490 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2491 acked |= FLAG_DATA_ACKED;
2492 } else {
2493 acked |= FLAG_SYN_ACKED;
2494 tp->retrans_stamp = 0;
2495 }
2496
2497 /* MTU probing checks */
2498 if (icsk->icsk_mtup.probe_size) {
2499 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2500 tcp_mtup_probe_success(sk, skb);
2501 }
2502 }
2503
2504 if (sacked) {
2505 if (sacked & TCPCB_RETRANS) {
2506 if (sacked & TCPCB_SACKED_RETRANS)
2507 tp->retrans_out -= tcp_skb_pcount(skb);
2508 acked |= FLAG_RETRANS_DATA_ACKED;
2509 seq_rtt = -1;
2510 } else if (seq_rtt < 0) {
2511 seq_rtt = now - scb->when;
2512 last_ackt = skb->tstamp;
2513 }
2514 if (sacked & TCPCB_SACKED_ACKED)
2515 tp->sacked_out -= tcp_skb_pcount(skb);
2516 if (sacked & TCPCB_LOST)
2517 tp->lost_out -= tcp_skb_pcount(skb);
2518 if (sacked & TCPCB_URG) {
2519 if (tp->urg_mode &&
2520 !before(scb->end_seq, tp->snd_up))
2521 tp->urg_mode = 0;
2522 }
2523 } else if (seq_rtt < 0) {
2524 seq_rtt = now - scb->when;
2525 last_ackt = skb->tstamp;
2526 }
2527 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2528 tcp_packets_out_dec(tp, skb);
2529 tcp_unlink_write_queue(skb, sk);
2530 sk_stream_free_skb(sk, skb);
2531 clear_all_retrans_hints(tp);
2532 }
2533
2534 if (acked&FLAG_ACKED) {
2535 u32 pkts_acked = prior_packets - tp->packets_out;
2536 const struct tcp_congestion_ops *ca_ops
2537 = inet_csk(sk)->icsk_ca_ops;
2538
2539 tcp_ack_update_rtt(sk, acked, seq_rtt);
2540 tcp_ack_packets_out(sk);
2541
2542 if (ca_ops->pkts_acked) {
2543 s32 rtt_us = -1;
2544
2545 /* Is the ACK triggering packet unambiguous? */
2546 if (!(acked & FLAG_RETRANS_DATA_ACKED)) {
2547 /* High resolution needed and available? */
2548 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2549 !ktime_equal(last_ackt,
2550 net_invalid_timestamp()))
2551 rtt_us = ktime_us_delta(ktime_get_real(),
2552 last_ackt);
2553 else if (seq_rtt > 0)
2554 rtt_us = jiffies_to_usecs(seq_rtt);
2555 }
2556
2557 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2558 }
2559 }
2560
2561 #if FASTRETRANS_DEBUG > 0
2562 BUG_TRAP((int)tp->sacked_out >= 0);
2563 BUG_TRAP((int)tp->lost_out >= 0);
2564 BUG_TRAP((int)tp->retrans_out >= 0);
2565 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2566 const struct inet_connection_sock *icsk = inet_csk(sk);
2567 if (tp->lost_out) {
2568 printk(KERN_DEBUG "Leak l=%u %d\n",
2569 tp->lost_out, icsk->icsk_ca_state);
2570 tp->lost_out = 0;
2571 }
2572 if (tp->sacked_out) {
2573 printk(KERN_DEBUG "Leak s=%u %d\n",
2574 tp->sacked_out, icsk->icsk_ca_state);
2575 tp->sacked_out = 0;
2576 }
2577 if (tp->retrans_out) {
2578 printk(KERN_DEBUG "Leak r=%u %d\n",
2579 tp->retrans_out, icsk->icsk_ca_state);
2580 tp->retrans_out = 0;
2581 }
2582 }
2583 #endif
2584 *seq_rtt_p = seq_rtt;
2585 return acked;
2586 }
2587
2588 static void tcp_ack_probe(struct sock *sk)
2589 {
2590 const struct tcp_sock *tp = tcp_sk(sk);
2591 struct inet_connection_sock *icsk = inet_csk(sk);
2592
2593 /* Was it a usable window open? */
2594
2595 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2596 tp->snd_una + tp->snd_wnd)) {
2597 icsk->icsk_backoff = 0;
2598 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2599 /* Socket must be waked up by subsequent tcp_data_snd_check().
2600 * This function is not for random using!
2601 */
2602 } else {
2603 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2604 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2605 TCP_RTO_MAX);
2606 }
2607 }
2608
2609 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2610 {
2611 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2612 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2613 }
2614
2615 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2616 {
2617 const struct tcp_sock *tp = tcp_sk(sk);
2618 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2619 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2620 }
2621
2622 /* Check that window update is acceptable.
2623 * The function assumes that snd_una<=ack<=snd_next.
2624 */
2625 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2626 const u32 ack_seq, const u32 nwin)
2627 {
2628 return (after(ack, tp->snd_una) ||
2629 after(ack_seq, tp->snd_wl1) ||
2630 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2631 }
2632
2633 /* Update our send window.
2634 *
2635 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2636 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2637 */
2638 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2639 u32 ack_seq)
2640 {
2641 struct tcp_sock *tp = tcp_sk(sk);
2642 int flag = 0;
2643 u32 nwin = ntohs(tcp_hdr(skb)->window);
2644
2645 if (likely(!tcp_hdr(skb)->syn))
2646 nwin <<= tp->rx_opt.snd_wscale;
2647
2648 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2649 flag |= FLAG_WIN_UPDATE;
2650 tcp_update_wl(tp, ack, ack_seq);
2651
2652 if (tp->snd_wnd != nwin) {
2653 tp->snd_wnd = nwin;
2654
2655 /* Note, it is the only place, where
2656 * fast path is recovered for sending TCP.
2657 */
2658 tp->pred_flags = 0;
2659 tcp_fast_path_check(sk);
2660
2661 if (nwin > tp->max_window) {
2662 tp->max_window = nwin;
2663 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2664 }
2665 }
2666 }
2667
2668 tp->snd_una = ack;
2669
2670 return flag;
2671 }
2672
2673 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2674 * continue in congestion avoidance.
2675 */
2676 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2677 {
2678 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2679 tp->snd_cwnd_cnt = 0;
2680 TCP_ECN_queue_cwr(tp);
2681 tcp_moderate_cwnd(tp);
2682 }
2683
2684 /* A conservative spurious RTO response algorithm: reduce cwnd using
2685 * rate halving and continue in congestion avoidance.
2686 */
2687 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2688 {
2689 tcp_enter_cwr(sk, 0);
2690 }
2691
2692 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2693 {
2694 if (flag&FLAG_ECE)
2695 tcp_ratehalving_spur_to_response(sk);
2696 else
2697 tcp_undo_cwr(sk, 1);
2698 }
2699
2700 /* F-RTO spurious RTO detection algorithm (RFC4138)
2701 *
2702 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2703 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2704 * window (but not to or beyond highest sequence sent before RTO):
2705 * On First ACK, send two new segments out.
2706 * On Second ACK, RTO was likely spurious. Do spurious response (response
2707 * algorithm is not part of the F-RTO detection algorithm
2708 * given in RFC4138 but can be selected separately).
2709 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2710 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2711 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2712 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2713 *
2714 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2715 * original window even after we transmit two new data segments.
2716 *
2717 * SACK version:
2718 * on first step, wait until first cumulative ACK arrives, then move to
2719 * the second step. In second step, the next ACK decides.
2720 *
2721 * F-RTO is implemented (mainly) in four functions:
2722 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2723 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2724 * called when tcp_use_frto() showed green light
2725 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2726 * - tcp_enter_frto_loss() is called if there is not enough evidence
2727 * to prove that the RTO is indeed spurious. It transfers the control
2728 * from F-RTO to the conventional RTO recovery
2729 */
2730 static int tcp_process_frto(struct sock *sk, int flag)
2731 {
2732 struct tcp_sock *tp = tcp_sk(sk);
2733
2734 tcp_sync_left_out(tp);
2735
2736 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2737 if (flag&FLAG_DATA_ACKED)
2738 inet_csk(sk)->icsk_retransmits = 0;
2739
2740 if (!before(tp->snd_una, tp->frto_highmark)) {
2741 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2742 return 1;
2743 }
2744
2745 if (!IsSackFrto() || IsReno(tp)) {
2746 /* RFC4138 shortcoming in step 2; should also have case c):
2747 * ACK isn't duplicate nor advances window, e.g., opposite dir
2748 * data, winupdate
2749 */
2750 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
2751 return 1;
2752
2753 if (!(flag&FLAG_DATA_ACKED)) {
2754 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2755 flag);
2756 return 1;
2757 }
2758 } else {
2759 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2760 /* Prevent sending of new data. */
2761 tp->snd_cwnd = min(tp->snd_cwnd,
2762 tcp_packets_in_flight(tp));
2763 return 1;
2764 }
2765
2766 if ((tp->frto_counter >= 2) &&
2767 (!(flag&FLAG_FORWARD_PROGRESS) ||
2768 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2769 /* RFC4138 shortcoming (see comment above) */
2770 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2771 return 1;
2772
2773 tcp_enter_frto_loss(sk, 3, flag);
2774 return 1;
2775 }
2776 }
2777
2778 if (tp->frto_counter == 1) {
2779 /* Sending of the next skb must be allowed or no FRTO */
2780 if (!tcp_send_head(sk) ||
2781 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2782 tp->snd_una + tp->snd_wnd)) {
2783 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2784 flag);
2785 return 1;
2786 }
2787
2788 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2789 tp->frto_counter = 2;
2790 return 1;
2791 } else {
2792 switch (sysctl_tcp_frto_response) {
2793 case 2:
2794 tcp_undo_spur_to_response(sk, flag);
2795 break;
2796 case 1:
2797 tcp_conservative_spur_to_response(tp);
2798 break;
2799 default:
2800 tcp_ratehalving_spur_to_response(sk);
2801 break;
2802 }
2803 tp->frto_counter = 0;
2804 }
2805 return 0;
2806 }
2807
2808 /* This routine deals with incoming acks, but not outgoing ones. */
2809 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2810 {
2811 struct inet_connection_sock *icsk = inet_csk(sk);
2812 struct tcp_sock *tp = tcp_sk(sk);
2813 u32 prior_snd_una = tp->snd_una;
2814 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2815 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2816 u32 prior_in_flight;
2817 s32 seq_rtt;
2818 int prior_packets;
2819 int frto_cwnd = 0;
2820
2821 /* If the ack is newer than sent or older than previous acks
2822 * then we can probably ignore it.
2823 */
2824 if (after(ack, tp->snd_nxt))
2825 goto uninteresting_ack;
2826
2827 if (before(ack, prior_snd_una))
2828 goto old_ack;
2829
2830 if (after(ack, prior_snd_una))
2831 flag |= FLAG_SND_UNA_ADVANCED;
2832
2833 if (sysctl_tcp_abc) {
2834 if (icsk->icsk_ca_state < TCP_CA_CWR)
2835 tp->bytes_acked += ack - prior_snd_una;
2836 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2837 /* we assume just one segment left network */
2838 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2839 }
2840
2841 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2842 /* Window is constant, pure forward advance.
2843 * No more checks are required.
2844 * Note, we use the fact that SND.UNA>=SND.WL2.
2845 */
2846 tcp_update_wl(tp, ack, ack_seq);
2847 tp->snd_una = ack;
2848 flag |= FLAG_WIN_UPDATE;
2849
2850 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2851
2852 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2853 } else {
2854 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2855 flag |= FLAG_DATA;
2856 else
2857 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2858
2859 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
2860
2861 if (TCP_SKB_CB(skb)->sacked)
2862 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2863
2864 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
2865 flag |= FLAG_ECE;
2866
2867 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2868 }
2869
2870 /* We passed data and got it acked, remove any soft error
2871 * log. Something worked...
2872 */
2873 sk->sk_err_soft = 0;
2874 tp->rcv_tstamp = tcp_time_stamp;
2875 prior_packets = tp->packets_out;
2876 if (!prior_packets)
2877 goto no_queue;
2878
2879 prior_in_flight = tcp_packets_in_flight(tp);
2880
2881 /* See if we can take anything off of the retransmit queue. */
2882 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2883
2884 if (tp->frto_counter)
2885 frto_cwnd = tcp_process_frto(sk, flag);
2886
2887 if (tcp_ack_is_dubious(sk, flag)) {
2888 /* Advance CWND, if state allows this. */
2889 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2890 tcp_may_raise_cwnd(sk, flag))
2891 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
2892 tcp_fastretrans_alert(sk, prior_packets, flag);
2893 } else {
2894 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2895 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
2896 }
2897
2898 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2899 dst_confirm(sk->sk_dst_cache);
2900
2901 return 1;
2902
2903 no_queue:
2904 icsk->icsk_probes_out = 0;
2905
2906 /* If this ack opens up a zero window, clear backoff. It was
2907 * being used to time the probes, and is probably far higher than
2908 * it needs to be for normal retransmission.
2909 */
2910 if (tcp_send_head(sk))
2911 tcp_ack_probe(sk);
2912 return 1;
2913
2914 old_ack:
2915 if (TCP_SKB_CB(skb)->sacked)
2916 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2917
2918 uninteresting_ack:
2919 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2920 return 0;
2921 }
2922
2923
2924 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2925 * But, this can also be called on packets in the established flow when
2926 * the fast version below fails.
2927 */
2928 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2929 {
2930 unsigned char *ptr;
2931 struct tcphdr *th = tcp_hdr(skb);
2932 int length=(th->doff*4)-sizeof(struct tcphdr);
2933
2934 ptr = (unsigned char *)(th + 1);
2935 opt_rx->saw_tstamp = 0;
2936
2937 while (length > 0) {
2938 int opcode=*ptr++;
2939 int opsize;
2940
2941 switch (opcode) {
2942 case TCPOPT_EOL:
2943 return;
2944 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2945 length--;
2946 continue;
2947 default:
2948 opsize=*ptr++;
2949 if (opsize < 2) /* "silly options" */
2950 return;
2951 if (opsize > length)
2952 return; /* don't parse partial options */
2953 switch (opcode) {
2954 case TCPOPT_MSS:
2955 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
2956 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2957 if (in_mss) {
2958 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2959 in_mss = opt_rx->user_mss;
2960 opt_rx->mss_clamp = in_mss;
2961 }
2962 }
2963 break;
2964 case TCPOPT_WINDOW:
2965 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
2966 if (sysctl_tcp_window_scaling) {
2967 __u8 snd_wscale = *(__u8 *) ptr;
2968 opt_rx->wscale_ok = 1;
2969 if (snd_wscale > 14) {
2970 if (net_ratelimit())
2971 printk(KERN_INFO "tcp_parse_options: Illegal window "
2972 "scaling value %d >14 received.\n",
2973 snd_wscale);
2974 snd_wscale = 14;
2975 }
2976 opt_rx->snd_wscale = snd_wscale;
2977 }
2978 break;
2979 case TCPOPT_TIMESTAMP:
2980 if (opsize==TCPOLEN_TIMESTAMP) {
2981 if ((estab && opt_rx->tstamp_ok) ||
2982 (!estab && sysctl_tcp_timestamps)) {
2983 opt_rx->saw_tstamp = 1;
2984 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2985 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2986 }
2987 }
2988 break;
2989 case TCPOPT_SACK_PERM:
2990 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2991 if (sysctl_tcp_sack) {
2992 opt_rx->sack_ok = 1;
2993 tcp_sack_reset(opt_rx);
2994 }
2995 }
2996 break;
2997
2998 case TCPOPT_SACK:
2999 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3000 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3001 opt_rx->sack_ok) {
3002 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3003 }
3004 break;
3005 #ifdef CONFIG_TCP_MD5SIG
3006 case TCPOPT_MD5SIG:
3007 /*
3008 * The MD5 Hash has already been
3009 * checked (see tcp_v{4,6}_do_rcv()).
3010 */
3011 break;
3012 #endif
3013 }
3014
3015 ptr+=opsize-2;
3016 length-=opsize;
3017 }
3018 }
3019 }
3020
3021 /* Fast parse options. This hopes to only see timestamps.
3022 * If it is wrong it falls back on tcp_parse_options().
3023 */
3024 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3025 struct tcp_sock *tp)
3026 {
3027 if (th->doff == sizeof(struct tcphdr)>>2) {
3028 tp->rx_opt.saw_tstamp = 0;
3029 return 0;
3030 } else if (tp->rx_opt.tstamp_ok &&
3031 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3032 __be32 *ptr = (__be32 *)(th + 1);
3033 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3034 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3035 tp->rx_opt.saw_tstamp = 1;
3036 ++ptr;
3037 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3038 ++ptr;
3039 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3040 return 1;
3041 }
3042 }
3043 tcp_parse_options(skb, &tp->rx_opt, 1);
3044 return 1;
3045 }
3046
3047 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3048 {
3049 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3050 tp->rx_opt.ts_recent_stamp = get_seconds();
3051 }
3052
3053 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3054 {
3055 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3056 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3057 * extra check below makes sure this can only happen
3058 * for pure ACK frames. -DaveM
3059 *
3060 * Not only, also it occurs for expired timestamps.
3061 */
3062
3063 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3064 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3065 tcp_store_ts_recent(tp);
3066 }
3067 }
3068
3069 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3070 *
3071 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3072 * it can pass through stack. So, the following predicate verifies that
3073 * this segment is not used for anything but congestion avoidance or
3074 * fast retransmit. Moreover, we even are able to eliminate most of such
3075 * second order effects, if we apply some small "replay" window (~RTO)
3076 * to timestamp space.
3077 *
3078 * All these measures still do not guarantee that we reject wrapped ACKs
3079 * on networks with high bandwidth, when sequence space is recycled fastly,
3080 * but it guarantees that such events will be very rare and do not affect
3081 * connection seriously. This doesn't look nice, but alas, PAWS is really
3082 * buggy extension.
3083 *
3084 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3085 * states that events when retransmit arrives after original data are rare.
3086 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3087 * the biggest problem on large power networks even with minor reordering.
3088 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3089 * up to bandwidth of 18Gigabit/sec. 8) ]
3090 */
3091
3092 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3093 {
3094 struct tcp_sock *tp = tcp_sk(sk);
3095 struct tcphdr *th = tcp_hdr(skb);
3096 u32 seq = TCP_SKB_CB(skb)->seq;
3097 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3098
3099 return (/* 1. Pure ACK with correct sequence number. */
3100 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3101
3102 /* 2. ... and duplicate ACK. */
3103 ack == tp->snd_una &&
3104
3105 /* 3. ... and does not update window. */
3106 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3107
3108 /* 4. ... and sits in replay window. */
3109 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3110 }
3111
3112 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3113 {
3114 const struct tcp_sock *tp = tcp_sk(sk);
3115 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3116 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3117 !tcp_disordered_ack(sk, skb));
3118 }
3119
3120 /* Check segment sequence number for validity.
3121 *
3122 * Segment controls are considered valid, if the segment
3123 * fits to the window after truncation to the window. Acceptability
3124 * of data (and SYN, FIN, of course) is checked separately.
3125 * See tcp_data_queue(), for example.
3126 *
3127 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3128 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3129 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3130 * (borrowed from freebsd)
3131 */
3132
3133 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3134 {
3135 return !before(end_seq, tp->rcv_wup) &&
3136 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3137 }
3138
3139 /* When we get a reset we do this. */
3140 static void tcp_reset(struct sock *sk)
3141 {
3142 /* We want the right error as BSD sees it (and indeed as we do). */
3143 switch (sk->sk_state) {
3144 case TCP_SYN_SENT:
3145 sk->sk_err = ECONNREFUSED;
3146 break;
3147 case TCP_CLOSE_WAIT:
3148 sk->sk_err = EPIPE;
3149 break;
3150 case TCP_CLOSE:
3151 return;
3152 default:
3153 sk->sk_err = ECONNRESET;
3154 }
3155
3156 if (!sock_flag(sk, SOCK_DEAD))
3157 sk->sk_error_report(sk);
3158
3159 tcp_done(sk);
3160 }
3161
3162 /*
3163 * Process the FIN bit. This now behaves as it is supposed to work
3164 * and the FIN takes effect when it is validly part of sequence
3165 * space. Not before when we get holes.
3166 *
3167 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3168 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3169 * TIME-WAIT)
3170 *
3171 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3172 * close and we go into CLOSING (and later onto TIME-WAIT)
3173 *
3174 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3175 */
3176 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3177 {
3178 struct tcp_sock *tp = tcp_sk(sk);
3179
3180 inet_csk_schedule_ack(sk);
3181
3182 sk->sk_shutdown |= RCV_SHUTDOWN;
3183 sock_set_flag(sk, SOCK_DONE);
3184
3185 switch (sk->sk_state) {
3186 case TCP_SYN_RECV:
3187 case TCP_ESTABLISHED:
3188 /* Move to CLOSE_WAIT */
3189 tcp_set_state(sk, TCP_CLOSE_WAIT);
3190 inet_csk(sk)->icsk_ack.pingpong = 1;
3191 break;
3192
3193 case TCP_CLOSE_WAIT:
3194 case TCP_CLOSING:
3195 /* Received a retransmission of the FIN, do
3196 * nothing.
3197 */
3198 break;
3199 case TCP_LAST_ACK:
3200 /* RFC793: Remain in the LAST-ACK state. */
3201 break;
3202
3203 case TCP_FIN_WAIT1:
3204 /* This case occurs when a simultaneous close
3205 * happens, we must ack the received FIN and
3206 * enter the CLOSING state.
3207 */
3208 tcp_send_ack(sk);
3209 tcp_set_state(sk, TCP_CLOSING);
3210 break;
3211 case TCP_FIN_WAIT2:
3212 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3213 tcp_send_ack(sk);
3214 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3215 break;
3216 default:
3217 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3218 * cases we should never reach this piece of code.
3219 */
3220 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3221 __FUNCTION__, sk->sk_state);
3222 break;
3223 }
3224
3225 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3226 * Probably, we should reset in this case. For now drop them.
3227 */
3228 __skb_queue_purge(&tp->out_of_order_queue);
3229 if (tp->rx_opt.sack_ok)
3230 tcp_sack_reset(&tp->rx_opt);
3231 sk_stream_mem_reclaim(sk);
3232
3233 if (!sock_flag(sk, SOCK_DEAD)) {
3234 sk->sk_state_change(sk);
3235
3236 /* Do not send POLL_HUP for half duplex close. */
3237 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3238 sk->sk_state == TCP_CLOSE)
3239 sk_wake_async(sk, 1, POLL_HUP);
3240 else
3241 sk_wake_async(sk, 1, POLL_IN);
3242 }
3243 }
3244
3245 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3246 {
3247 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3248 if (before(seq, sp->start_seq))
3249 sp->start_seq = seq;
3250 if (after(end_seq, sp->end_seq))
3251 sp->end_seq = end_seq;
3252 return 1;
3253 }
3254 return 0;
3255 }
3256
3257 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3258 {
3259 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3260 if (before(seq, tp->rcv_nxt))
3261 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3262 else
3263 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3264
3265 tp->rx_opt.dsack = 1;
3266 tp->duplicate_sack[0].start_seq = seq;
3267 tp->duplicate_sack[0].end_seq = end_seq;
3268 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3269 }
3270 }
3271
3272 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3273 {
3274 if (!tp->rx_opt.dsack)
3275 tcp_dsack_set(tp, seq, end_seq);
3276 else
3277 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3278 }
3279
3280 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3281 {
3282 struct tcp_sock *tp = tcp_sk(sk);
3283
3284 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3285 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3286 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3287 tcp_enter_quickack_mode(sk);
3288
3289 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3290 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3291
3292 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3293 end_seq = tp->rcv_nxt;
3294 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3295 }
3296 }
3297
3298 tcp_send_ack(sk);
3299 }
3300
3301 /* These routines update the SACK block as out-of-order packets arrive or
3302 * in-order packets close up the sequence space.
3303 */
3304 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3305 {
3306 int this_sack;
3307 struct tcp_sack_block *sp = &tp->selective_acks[0];
3308 struct tcp_sack_block *swalk = sp+1;
3309
3310 /* See if the recent change to the first SACK eats into
3311 * or hits the sequence space of other SACK blocks, if so coalesce.
3312 */
3313 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3314 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3315 int i;
3316
3317 /* Zap SWALK, by moving every further SACK up by one slot.
3318 * Decrease num_sacks.
3319 */
3320 tp->rx_opt.num_sacks--;
3321 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3322 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3323 sp[i] = sp[i+1];
3324 continue;
3325 }
3326 this_sack++, swalk++;
3327 }
3328 }
3329
3330 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3331 {
3332 __u32 tmp;
3333
3334 tmp = sack1->start_seq;
3335 sack1->start_seq = sack2->start_seq;
3336 sack2->start_seq = tmp;
3337
3338 tmp = sack1->end_seq;
3339 sack1->end_seq = sack2->end_seq;
3340 sack2->end_seq = tmp;
3341 }
3342
3343 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3344 {
3345 struct tcp_sock *tp = tcp_sk(sk);
3346 struct tcp_sack_block *sp = &tp->selective_acks[0];
3347 int cur_sacks = tp->rx_opt.num_sacks;
3348 int this_sack;
3349
3350 if (!cur_sacks)
3351 goto new_sack;
3352
3353 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3354 if (tcp_sack_extend(sp, seq, end_seq)) {
3355 /* Rotate this_sack to the first one. */
3356 for (; this_sack>0; this_sack--, sp--)
3357 tcp_sack_swap(sp, sp-1);
3358 if (cur_sacks > 1)
3359 tcp_sack_maybe_coalesce(tp);
3360 return;
3361 }
3362 }
3363
3364 /* Could not find an adjacent existing SACK, build a new one,
3365 * put it at the front, and shift everyone else down. We
3366 * always know there is at least one SACK present already here.
3367 *
3368 * If the sack array is full, forget about the last one.
3369 */
3370 if (this_sack >= 4) {
3371 this_sack--;
3372 tp->rx_opt.num_sacks--;
3373 sp--;
3374 }
3375 for (; this_sack > 0; this_sack--, sp--)
3376 *sp = *(sp-1);
3377
3378 new_sack:
3379 /* Build the new head SACK, and we're done. */
3380 sp->start_seq = seq;
3381 sp->end_seq = end_seq;
3382 tp->rx_opt.num_sacks++;
3383 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3384 }
3385
3386 /* RCV.NXT advances, some SACKs should be eaten. */
3387
3388 static void tcp_sack_remove(struct tcp_sock *tp)
3389 {
3390 struct tcp_sack_block *sp = &tp->selective_acks[0];
3391 int num_sacks = tp->rx_opt.num_sacks;
3392 int this_sack;
3393
3394 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3395 if (skb_queue_empty(&tp->out_of_order_queue)) {
3396 tp->rx_opt.num_sacks = 0;
3397 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3398 return;
3399 }
3400
3401 for (this_sack = 0; this_sack < num_sacks; ) {
3402 /* Check if the start of the sack is covered by RCV.NXT. */
3403 if (!before(tp->rcv_nxt, sp->start_seq)) {
3404 int i;
3405
3406 /* RCV.NXT must cover all the block! */
3407 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3408
3409 /* Zap this SACK, by moving forward any other SACKS. */
3410 for (i=this_sack+1; i < num_sacks; i++)
3411 tp->selective_acks[i-1] = tp->selective_acks[i];
3412 num_sacks--;
3413 continue;
3414 }
3415 this_sack++;
3416 sp++;
3417 }
3418 if (num_sacks != tp->rx_opt.num_sacks) {
3419 tp->rx_opt.num_sacks = num_sacks;
3420 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3421 }
3422 }
3423
3424 /* This one checks to see if we can put data from the
3425 * out_of_order queue into the receive_queue.
3426 */
3427 static void tcp_ofo_queue(struct sock *sk)
3428 {
3429 struct tcp_sock *tp = tcp_sk(sk);
3430 __u32 dsack_high = tp->rcv_nxt;
3431 struct sk_buff *skb;
3432
3433 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3434 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3435 break;
3436
3437 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3438 __u32 dsack = dsack_high;
3439 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3440 dsack_high = TCP_SKB_CB(skb)->end_seq;
3441 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3442 }
3443
3444 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3445 SOCK_DEBUG(sk, "ofo packet was already received \n");
3446 __skb_unlink(skb, &tp->out_of_order_queue);
3447 __kfree_skb(skb);
3448 continue;
3449 }
3450 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3451 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3452 TCP_SKB_CB(skb)->end_seq);
3453
3454 __skb_unlink(skb, &tp->out_of_order_queue);
3455 __skb_queue_tail(&sk->sk_receive_queue, skb);
3456 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3457 if (tcp_hdr(skb)->fin)
3458 tcp_fin(skb, sk, tcp_hdr(skb));
3459 }
3460 }
3461
3462 static int tcp_prune_queue(struct sock *sk);
3463
3464 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3465 {
3466 struct tcphdr *th = tcp_hdr(skb);
3467 struct tcp_sock *tp = tcp_sk(sk);
3468 int eaten = -1;
3469
3470 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3471 goto drop;
3472
3473 __skb_pull(skb, th->doff*4);
3474
3475 TCP_ECN_accept_cwr(tp, skb);
3476
3477 if (tp->rx_opt.dsack) {
3478 tp->rx_opt.dsack = 0;
3479 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3480 4 - tp->rx_opt.tstamp_ok);
3481 }
3482
3483 /* Queue data for delivery to the user.
3484 * Packets in sequence go to the receive queue.
3485 * Out of sequence packets to the out_of_order_queue.
3486 */
3487 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3488 if (tcp_receive_window(tp) == 0)
3489 goto out_of_window;
3490
3491 /* Ok. In sequence. In window. */
3492 if (tp->ucopy.task == current &&
3493 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3494 sock_owned_by_user(sk) && !tp->urg_data) {
3495 int chunk = min_t(unsigned int, skb->len,
3496 tp->ucopy.len);
3497
3498 __set_current_state(TASK_RUNNING);
3499
3500 local_bh_enable();
3501 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3502 tp->ucopy.len -= chunk;
3503 tp->copied_seq += chunk;
3504 eaten = (chunk == skb->len && !th->fin);
3505 tcp_rcv_space_adjust(sk);
3506 }
3507 local_bh_disable();
3508 }
3509
3510 if (eaten <= 0) {
3511 queue_and_out:
3512 if (eaten < 0 &&
3513 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3514 !sk_stream_rmem_schedule(sk, skb))) {
3515 if (tcp_prune_queue(sk) < 0 ||
3516 !sk_stream_rmem_schedule(sk, skb))
3517 goto drop;
3518 }
3519 sk_stream_set_owner_r(skb, sk);
3520 __skb_queue_tail(&sk->sk_receive_queue, skb);
3521 }
3522 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3523 if (skb->len)
3524 tcp_event_data_recv(sk, skb);
3525 if (th->fin)
3526 tcp_fin(skb, sk, th);
3527
3528 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3529 tcp_ofo_queue(sk);
3530
3531 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3532 * gap in queue is filled.
3533 */
3534 if (skb_queue_empty(&tp->out_of_order_queue))
3535 inet_csk(sk)->icsk_ack.pingpong = 0;
3536 }
3537
3538 if (tp->rx_opt.num_sacks)
3539 tcp_sack_remove(tp);
3540
3541 tcp_fast_path_check(sk);
3542
3543 if (eaten > 0)
3544 __kfree_skb(skb);
3545 else if (!sock_flag(sk, SOCK_DEAD))
3546 sk->sk_data_ready(sk, 0);
3547 return;
3548 }
3549
3550 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3551 /* A retransmit, 2nd most common case. Force an immediate ack. */
3552 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3553 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3554
3555 out_of_window:
3556 tcp_enter_quickack_mode(sk);
3557 inet_csk_schedule_ack(sk);
3558 drop:
3559 __kfree_skb(skb);
3560 return;
3561 }
3562
3563 /* Out of window. F.e. zero window probe. */
3564 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3565 goto out_of_window;
3566
3567 tcp_enter_quickack_mode(sk);
3568
3569 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3570 /* Partial packet, seq < rcv_next < end_seq */
3571 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3572 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3573 TCP_SKB_CB(skb)->end_seq);
3574
3575 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3576
3577 /* If window is closed, drop tail of packet. But after
3578 * remembering D-SACK for its head made in previous line.
3579 */
3580 if (!tcp_receive_window(tp))
3581 goto out_of_window;
3582 goto queue_and_out;
3583 }
3584
3585 TCP_ECN_check_ce(tp, skb);
3586
3587 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3588 !sk_stream_rmem_schedule(sk, skb)) {
3589 if (tcp_prune_queue(sk) < 0 ||
3590 !sk_stream_rmem_schedule(sk, skb))
3591 goto drop;
3592 }
3593
3594 /* Disable header prediction. */
3595 tp->pred_flags = 0;
3596 inet_csk_schedule_ack(sk);
3597
3598 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3599 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3600
3601 sk_stream_set_owner_r(skb, sk);
3602
3603 if (!skb_peek(&tp->out_of_order_queue)) {
3604 /* Initial out of order segment, build 1 SACK. */
3605 if (tp->rx_opt.sack_ok) {
3606 tp->rx_opt.num_sacks = 1;
3607 tp->rx_opt.dsack = 0;
3608 tp->rx_opt.eff_sacks = 1;
3609 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3610 tp->selective_acks[0].end_seq =
3611 TCP_SKB_CB(skb)->end_seq;
3612 }
3613 __skb_queue_head(&tp->out_of_order_queue,skb);
3614 } else {
3615 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3616 u32 seq = TCP_SKB_CB(skb)->seq;
3617 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3618
3619 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3620 __skb_append(skb1, skb, &tp->out_of_order_queue);
3621
3622 if (!tp->rx_opt.num_sacks ||
3623 tp->selective_acks[0].end_seq != seq)
3624 goto add_sack;
3625
3626 /* Common case: data arrive in order after hole. */
3627 tp->selective_acks[0].end_seq = end_seq;
3628 return;
3629 }
3630
3631 /* Find place to insert this segment. */
3632 do {
3633 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3634 break;
3635 } while ((skb1 = skb1->prev) !=
3636 (struct sk_buff*)&tp->out_of_order_queue);
3637
3638 /* Do skb overlap to previous one? */
3639 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3640 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3641 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3642 /* All the bits are present. Drop. */
3643 __kfree_skb(skb);
3644 tcp_dsack_set(tp, seq, end_seq);
3645 goto add_sack;
3646 }
3647 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3648 /* Partial overlap. */
3649 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3650 } else {
3651 skb1 = skb1->prev;
3652 }
3653 }
3654 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3655
3656 /* And clean segments covered by new one as whole. */
3657 while ((skb1 = skb->next) !=
3658 (struct sk_buff*)&tp->out_of_order_queue &&
3659 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3660 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3661 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3662 break;
3663 }
3664 __skb_unlink(skb1, &tp->out_of_order_queue);
3665 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3666 __kfree_skb(skb1);
3667 }
3668
3669 add_sack:
3670 if (tp->rx_opt.sack_ok)
3671 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3672 }
3673 }
3674
3675 /* Collapse contiguous sequence of skbs head..tail with
3676 * sequence numbers start..end.
3677 * Segments with FIN/SYN are not collapsed (only because this
3678 * simplifies code)
3679 */
3680 static void
3681 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3682 struct sk_buff *head, struct sk_buff *tail,
3683 u32 start, u32 end)
3684 {
3685 struct sk_buff *skb;
3686
3687 /* First, check that queue is collapsible and find
3688 * the point where collapsing can be useful. */
3689 for (skb = head; skb != tail; ) {
3690 /* No new bits? It is possible on ofo queue. */
3691 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3692 struct sk_buff *next = skb->next;
3693 __skb_unlink(skb, list);
3694 __kfree_skb(skb);
3695 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3696 skb = next;
3697 continue;
3698 }
3699
3700 /* The first skb to collapse is:
3701 * - not SYN/FIN and
3702 * - bloated or contains data before "start" or
3703 * overlaps to the next one.
3704 */
3705 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3706 (tcp_win_from_space(skb->truesize) > skb->len ||
3707 before(TCP_SKB_CB(skb)->seq, start) ||
3708 (skb->next != tail &&
3709 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3710 break;
3711
3712 /* Decided to skip this, advance start seq. */
3713 start = TCP_SKB_CB(skb)->end_seq;
3714 skb = skb->next;
3715 }
3716 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3717 return;
3718
3719 while (before(start, end)) {
3720 struct sk_buff *nskb;
3721 int header = skb_headroom(skb);
3722 int copy = SKB_MAX_ORDER(header, 0);
3723
3724 /* Too big header? This can happen with IPv6. */
3725 if (copy < 0)
3726 return;
3727 if (end-start < copy)
3728 copy = end-start;
3729 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3730 if (!nskb)
3731 return;
3732
3733 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3734 skb_set_network_header(nskb, (skb_network_header(skb) -
3735 skb->head));
3736 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3737 skb->head));
3738 skb_reserve(nskb, header);
3739 memcpy(nskb->head, skb->head, header);
3740 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3741 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3742 __skb_insert(nskb, skb->prev, skb, list);
3743 sk_stream_set_owner_r(nskb, sk);
3744
3745 /* Copy data, releasing collapsed skbs. */
3746 while (copy > 0) {
3747 int offset = start - TCP_SKB_CB(skb)->seq;
3748 int size = TCP_SKB_CB(skb)->end_seq - start;
3749
3750 BUG_ON(offset < 0);
3751 if (size > 0) {
3752 size = min(copy, size);
3753 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3754 BUG();
3755 TCP_SKB_CB(nskb)->end_seq += size;
3756 copy -= size;
3757 start += size;
3758 }
3759 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3760 struct sk_buff *next = skb->next;
3761 __skb_unlink(skb, list);
3762 __kfree_skb(skb);
3763 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3764 skb = next;
3765 if (skb == tail ||
3766 tcp_hdr(skb)->syn ||
3767 tcp_hdr(skb)->fin)
3768 return;
3769 }
3770 }
3771 }
3772 }
3773
3774 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3775 * and tcp_collapse() them until all the queue is collapsed.
3776 */
3777 static void tcp_collapse_ofo_queue(struct sock *sk)
3778 {
3779 struct tcp_sock *tp = tcp_sk(sk);
3780 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3781 struct sk_buff *head;
3782 u32 start, end;
3783
3784 if (skb == NULL)
3785 return;
3786
3787 start = TCP_SKB_CB(skb)->seq;
3788 end = TCP_SKB_CB(skb)->end_seq;
3789 head = skb;
3790
3791 for (;;) {
3792 skb = skb->next;
3793
3794 /* Segment is terminated when we see gap or when
3795 * we are at the end of all the queue. */
3796 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3797 after(TCP_SKB_CB(skb)->seq, end) ||
3798 before(TCP_SKB_CB(skb)->end_seq, start)) {
3799 tcp_collapse(sk, &tp->out_of_order_queue,
3800 head, skb, start, end);
3801 head = skb;
3802 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3803 break;
3804 /* Start new segment */
3805 start = TCP_SKB_CB(skb)->seq;
3806 end = TCP_SKB_CB(skb)->end_seq;
3807 } else {
3808 if (before(TCP_SKB_CB(skb)->seq, start))
3809 start = TCP_SKB_CB(skb)->seq;
3810 if (after(TCP_SKB_CB(skb)->end_seq, end))
3811 end = TCP_SKB_CB(skb)->end_seq;
3812 }
3813 }
3814 }
3815
3816 /* Reduce allocated memory if we can, trying to get
3817 * the socket within its memory limits again.
3818 *
3819 * Return less than zero if we should start dropping frames
3820 * until the socket owning process reads some of the data
3821 * to stabilize the situation.
3822 */
3823 static int tcp_prune_queue(struct sock *sk)
3824 {
3825 struct tcp_sock *tp = tcp_sk(sk);
3826
3827 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3828
3829 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3830
3831 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3832 tcp_clamp_window(sk);
3833 else if (tcp_memory_pressure)
3834 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3835
3836 tcp_collapse_ofo_queue(sk);
3837 tcp_collapse(sk, &sk->sk_receive_queue,
3838 sk->sk_receive_queue.next,
3839 (struct sk_buff*)&sk->sk_receive_queue,
3840 tp->copied_seq, tp->rcv_nxt);
3841 sk_stream_mem_reclaim(sk);
3842
3843 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3844 return 0;
3845
3846 /* Collapsing did not help, destructive actions follow.
3847 * This must not ever occur. */
3848
3849 /* First, purge the out_of_order queue. */
3850 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3851 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3852 __skb_queue_purge(&tp->out_of_order_queue);
3853
3854 /* Reset SACK state. A conforming SACK implementation will
3855 * do the same at a timeout based retransmit. When a connection
3856 * is in a sad state like this, we care only about integrity
3857 * of the connection not performance.
3858 */
3859 if (tp->rx_opt.sack_ok)
3860 tcp_sack_reset(&tp->rx_opt);
3861 sk_stream_mem_reclaim(sk);
3862 }
3863
3864 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3865 return 0;
3866
3867 /* If we are really being abused, tell the caller to silently
3868 * drop receive data on the floor. It will get retransmitted
3869 * and hopefully then we'll have sufficient space.
3870 */
3871 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3872
3873 /* Massive buffer overcommit. */
3874 tp->pred_flags = 0;
3875 return -1;
3876 }
3877
3878
3879 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3880 * As additional protections, we do not touch cwnd in retransmission phases,
3881 * and if application hit its sndbuf limit recently.
3882 */
3883 void tcp_cwnd_application_limited(struct sock *sk)
3884 {
3885 struct tcp_sock *tp = tcp_sk(sk);
3886
3887 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3888 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3889 /* Limited by application or receiver window. */
3890 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3891 u32 win_used = max(tp->snd_cwnd_used, init_win);
3892 if (win_used < tp->snd_cwnd) {
3893 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3894 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3895 }
3896 tp->snd_cwnd_used = 0;
3897 }
3898 tp->snd_cwnd_stamp = tcp_time_stamp;
3899 }
3900
3901 static int tcp_should_expand_sndbuf(struct sock *sk)
3902 {
3903 struct tcp_sock *tp = tcp_sk(sk);
3904
3905 /* If the user specified a specific send buffer setting, do
3906 * not modify it.
3907 */
3908 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3909 return 0;
3910
3911 /* If we are under global TCP memory pressure, do not expand. */
3912 if (tcp_memory_pressure)
3913 return 0;
3914
3915 /* If we are under soft global TCP memory pressure, do not expand. */
3916 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3917 return 0;
3918
3919 /* If we filled the congestion window, do not expand. */
3920 if (tp->packets_out >= tp->snd_cwnd)
3921 return 0;
3922
3923 return 1;
3924 }
3925
3926 /* When incoming ACK allowed to free some skb from write_queue,
3927 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3928 * on the exit from tcp input handler.
3929 *
3930 * PROBLEM: sndbuf expansion does not work well with largesend.
3931 */
3932 static void tcp_new_space(struct sock *sk)
3933 {
3934 struct tcp_sock *tp = tcp_sk(sk);
3935
3936 if (tcp_should_expand_sndbuf(sk)) {
3937 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3938 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3939 demanded = max_t(unsigned int, tp->snd_cwnd,
3940 tp->reordering + 1);
3941 sndmem *= 2*demanded;
3942 if (sndmem > sk->sk_sndbuf)
3943 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3944 tp->snd_cwnd_stamp = tcp_time_stamp;
3945 }
3946
3947 sk->sk_write_space(sk);
3948 }
3949
3950 static void tcp_check_space(struct sock *sk)
3951 {
3952 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3953 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3954 if (sk->sk_socket &&
3955 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3956 tcp_new_space(sk);
3957 }
3958 }
3959
3960 static inline void tcp_data_snd_check(struct sock *sk)
3961 {
3962 tcp_push_pending_frames(sk);
3963 tcp_check_space(sk);
3964 }
3965
3966 /*
3967 * Check if sending an ack is needed.
3968 */
3969 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3970 {
3971 struct tcp_sock *tp = tcp_sk(sk);
3972
3973 /* More than one full frame received... */
3974 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3975 /* ... and right edge of window advances far enough.
3976 * (tcp_recvmsg() will send ACK otherwise). Or...
3977 */
3978 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3979 /* We ACK each frame or... */
3980 tcp_in_quickack_mode(sk) ||
3981 /* We have out of order data. */
3982 (ofo_possible &&
3983 skb_peek(&tp->out_of_order_queue))) {
3984 /* Then ack it now */
3985 tcp_send_ack(sk);
3986 } else {
3987 /* Else, send delayed ack. */
3988 tcp_send_delayed_ack(sk);
3989 }
3990 }
3991
3992 static inline void tcp_ack_snd_check(struct sock *sk)
3993 {
3994 if (!inet_csk_ack_scheduled(sk)) {
3995 /* We sent a data segment already. */
3996 return;
3997 }
3998 __tcp_ack_snd_check(sk, 1);
3999 }
4000
4001 /*
4002 * This routine is only called when we have urgent data
4003 * signaled. Its the 'slow' part of tcp_urg. It could be
4004 * moved inline now as tcp_urg is only called from one
4005 * place. We handle URGent data wrong. We have to - as
4006 * BSD still doesn't use the correction from RFC961.
4007 * For 1003.1g we should support a new option TCP_STDURG to permit
4008 * either form (or just set the sysctl tcp_stdurg).
4009 */
4010
4011 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4012 {
4013 struct tcp_sock *tp = tcp_sk(sk);
4014 u32 ptr = ntohs(th->urg_ptr);
4015
4016 if (ptr && !sysctl_tcp_stdurg)
4017 ptr--;
4018 ptr += ntohl(th->seq);
4019
4020 /* Ignore urgent data that we've already seen and read. */
4021 if (after(tp->copied_seq, ptr))
4022 return;
4023
4024 /* Do not replay urg ptr.
4025 *
4026 * NOTE: interesting situation not covered by specs.
4027 * Misbehaving sender may send urg ptr, pointing to segment,
4028 * which we already have in ofo queue. We are not able to fetch
4029 * such data and will stay in TCP_URG_NOTYET until will be eaten
4030 * by recvmsg(). Seems, we are not obliged to handle such wicked
4031 * situations. But it is worth to think about possibility of some
4032 * DoSes using some hypothetical application level deadlock.
4033 */
4034 if (before(ptr, tp->rcv_nxt))
4035 return;
4036
4037 /* Do we already have a newer (or duplicate) urgent pointer? */
4038 if (tp->urg_data && !after(ptr, tp->urg_seq))
4039 return;
4040
4041 /* Tell the world about our new urgent pointer. */
4042 sk_send_sigurg(sk);
4043
4044 /* We may be adding urgent data when the last byte read was
4045 * urgent. To do this requires some care. We cannot just ignore
4046 * tp->copied_seq since we would read the last urgent byte again
4047 * as data, nor can we alter copied_seq until this data arrives
4048 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4049 *
4050 * NOTE. Double Dutch. Rendering to plain English: author of comment
4051 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4052 * and expect that both A and B disappear from stream. This is _wrong_.
4053 * Though this happens in BSD with high probability, this is occasional.
4054 * Any application relying on this is buggy. Note also, that fix "works"
4055 * only in this artificial test. Insert some normal data between A and B and we will
4056 * decline of BSD again. Verdict: it is better to remove to trap
4057 * buggy users.
4058 */
4059 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4060 !sock_flag(sk, SOCK_URGINLINE) &&
4061 tp->copied_seq != tp->rcv_nxt) {
4062 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4063 tp->copied_seq++;
4064 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4065 __skb_unlink(skb, &sk->sk_receive_queue);
4066 __kfree_skb(skb);
4067 }
4068 }
4069
4070 tp->urg_data = TCP_URG_NOTYET;
4071 tp->urg_seq = ptr;
4072
4073 /* Disable header prediction. */
4074 tp->pred_flags = 0;
4075 }
4076
4077 /* This is the 'fast' part of urgent handling. */
4078 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4079 {
4080 struct tcp_sock *tp = tcp_sk(sk);
4081
4082 /* Check if we get a new urgent pointer - normally not. */
4083 if (th->urg)
4084 tcp_check_urg(sk,th);
4085
4086 /* Do we wait for any urgent data? - normally not... */
4087 if (tp->urg_data == TCP_URG_NOTYET) {
4088 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4089 th->syn;
4090
4091 /* Is the urgent pointer pointing into this packet? */
4092 if (ptr < skb->len) {
4093 u8 tmp;
4094 if (skb_copy_bits(skb, ptr, &tmp, 1))
4095 BUG();
4096 tp->urg_data = TCP_URG_VALID | tmp;
4097 if (!sock_flag(sk, SOCK_DEAD))
4098 sk->sk_data_ready(sk, 0);
4099 }
4100 }
4101 }
4102
4103 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4104 {
4105 struct tcp_sock *tp = tcp_sk(sk);
4106 int chunk = skb->len - hlen;
4107 int err;
4108
4109 local_bh_enable();
4110 if (skb_csum_unnecessary(skb))
4111 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4112 else
4113 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4114 tp->ucopy.iov);
4115
4116 if (!err) {
4117 tp->ucopy.len -= chunk;
4118 tp->copied_seq += chunk;
4119 tcp_rcv_space_adjust(sk);
4120 }
4121
4122 local_bh_disable();
4123 return err;
4124 }
4125
4126 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4127 {
4128 __sum16 result;
4129
4130 if (sock_owned_by_user(sk)) {
4131 local_bh_enable();
4132 result = __tcp_checksum_complete(skb);
4133 local_bh_disable();
4134 } else {
4135 result = __tcp_checksum_complete(skb);
4136 }
4137 return result;
4138 }
4139
4140 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4141 {
4142 return !skb_csum_unnecessary(skb) &&
4143 __tcp_checksum_complete_user(sk, skb);
4144 }
4145
4146 #ifdef CONFIG_NET_DMA
4147 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4148 {
4149 struct tcp_sock *tp = tcp_sk(sk);
4150 int chunk = skb->len - hlen;
4151 int dma_cookie;
4152 int copied_early = 0;
4153
4154 if (tp->ucopy.wakeup)
4155 return 0;
4156
4157 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4158 tp->ucopy.dma_chan = get_softnet_dma();
4159
4160 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4161
4162 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4163 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4164
4165 if (dma_cookie < 0)
4166 goto out;
4167
4168 tp->ucopy.dma_cookie = dma_cookie;
4169 copied_early = 1;
4170
4171 tp->ucopy.len -= chunk;
4172 tp->copied_seq += chunk;
4173 tcp_rcv_space_adjust(sk);
4174
4175 if ((tp->ucopy.len == 0) ||
4176 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4177 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4178 tp->ucopy.wakeup = 1;
4179 sk->sk_data_ready(sk, 0);
4180 }
4181 } else if (chunk > 0) {
4182 tp->ucopy.wakeup = 1;
4183 sk->sk_data_ready(sk, 0);
4184 }
4185 out:
4186 return copied_early;
4187 }
4188 #endif /* CONFIG_NET_DMA */
4189
4190 /*
4191 * TCP receive function for the ESTABLISHED state.
4192 *
4193 * It is split into a fast path and a slow path. The fast path is
4194 * disabled when:
4195 * - A zero window was announced from us - zero window probing
4196 * is only handled properly in the slow path.
4197 * - Out of order segments arrived.
4198 * - Urgent data is expected.
4199 * - There is no buffer space left
4200 * - Unexpected TCP flags/window values/header lengths are received
4201 * (detected by checking the TCP header against pred_flags)
4202 * - Data is sent in both directions. Fast path only supports pure senders
4203 * or pure receivers (this means either the sequence number or the ack
4204 * value must stay constant)
4205 * - Unexpected TCP option.
4206 *
4207 * When these conditions are not satisfied it drops into a standard
4208 * receive procedure patterned after RFC793 to handle all cases.
4209 * The first three cases are guaranteed by proper pred_flags setting,
4210 * the rest is checked inline. Fast processing is turned on in
4211 * tcp_data_queue when everything is OK.
4212 */
4213 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4214 struct tcphdr *th, unsigned len)
4215 {
4216 struct tcp_sock *tp = tcp_sk(sk);
4217
4218 /*
4219 * Header prediction.
4220 * The code loosely follows the one in the famous
4221 * "30 instruction TCP receive" Van Jacobson mail.
4222 *
4223 * Van's trick is to deposit buffers into socket queue
4224 * on a device interrupt, to call tcp_recv function
4225 * on the receive process context and checksum and copy
4226 * the buffer to user space. smart...
4227 *
4228 * Our current scheme is not silly either but we take the
4229 * extra cost of the net_bh soft interrupt processing...
4230 * We do checksum and copy also but from device to kernel.
4231 */
4232
4233 tp->rx_opt.saw_tstamp = 0;
4234
4235 /* pred_flags is 0xS?10 << 16 + snd_wnd
4236 * if header_prediction is to be made
4237 * 'S' will always be tp->tcp_header_len >> 2
4238 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4239 * turn it off (when there are holes in the receive
4240 * space for instance)
4241 * PSH flag is ignored.
4242 */
4243
4244 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4245 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4246 int tcp_header_len = tp->tcp_header_len;
4247
4248 /* Timestamp header prediction: tcp_header_len
4249 * is automatically equal to th->doff*4 due to pred_flags
4250 * match.
4251 */
4252
4253 /* Check timestamp */
4254 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4255 __be32 *ptr = (__be32 *)(th + 1);
4256
4257 /* No? Slow path! */
4258 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4259 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4260 goto slow_path;
4261
4262 tp->rx_opt.saw_tstamp = 1;
4263 ++ptr;
4264 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4265 ++ptr;
4266 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4267
4268 /* If PAWS failed, check it more carefully in slow path */
4269 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4270 goto slow_path;
4271
4272 /* DO NOT update ts_recent here, if checksum fails
4273 * and timestamp was corrupted part, it will result
4274 * in a hung connection since we will drop all
4275 * future packets due to the PAWS test.
4276 */
4277 }
4278
4279 if (len <= tcp_header_len) {
4280 /* Bulk data transfer: sender */
4281 if (len == tcp_header_len) {
4282 /* Predicted packet is in window by definition.
4283 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4284 * Hence, check seq<=rcv_wup reduces to:
4285 */
4286 if (tcp_header_len ==
4287 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4288 tp->rcv_nxt == tp->rcv_wup)
4289 tcp_store_ts_recent(tp);
4290
4291 /* We know that such packets are checksummed
4292 * on entry.
4293 */
4294 tcp_ack(sk, skb, 0);
4295 __kfree_skb(skb);
4296 tcp_data_snd_check(sk);
4297 return 0;
4298 } else { /* Header too small */
4299 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4300 goto discard;
4301 }
4302 } else {
4303 int eaten = 0;
4304 int copied_early = 0;
4305
4306 if (tp->copied_seq == tp->rcv_nxt &&
4307 len - tcp_header_len <= tp->ucopy.len) {
4308 #ifdef CONFIG_NET_DMA
4309 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4310 copied_early = 1;
4311 eaten = 1;
4312 }
4313 #endif
4314 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4315 __set_current_state(TASK_RUNNING);
4316
4317 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4318 eaten = 1;
4319 }
4320 if (eaten) {
4321 /* Predicted packet is in window by definition.
4322 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4323 * Hence, check seq<=rcv_wup reduces to:
4324 */
4325 if (tcp_header_len ==
4326 (sizeof(struct tcphdr) +
4327 TCPOLEN_TSTAMP_ALIGNED) &&
4328 tp->rcv_nxt == tp->rcv_wup)
4329 tcp_store_ts_recent(tp);
4330
4331 tcp_rcv_rtt_measure_ts(sk, skb);
4332
4333 __skb_pull(skb, tcp_header_len);
4334 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4335 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4336 }
4337 if (copied_early)
4338 tcp_cleanup_rbuf(sk, skb->len);
4339 }
4340 if (!eaten) {
4341 if (tcp_checksum_complete_user(sk, skb))
4342 goto csum_error;
4343
4344 /* Predicted packet is in window by definition.
4345 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4346 * Hence, check seq<=rcv_wup reduces to:
4347 */
4348 if (tcp_header_len ==
4349 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4350 tp->rcv_nxt == tp->rcv_wup)
4351 tcp_store_ts_recent(tp);
4352
4353 tcp_rcv_rtt_measure_ts(sk, skb);
4354
4355 if ((int)skb->truesize > sk->sk_forward_alloc)
4356 goto step5;
4357
4358 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4359
4360 /* Bulk data transfer: receiver */
4361 __skb_pull(skb,tcp_header_len);
4362 __skb_queue_tail(&sk->sk_receive_queue, skb);
4363 sk_stream_set_owner_r(skb, sk);
4364 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4365 }
4366
4367 tcp_event_data_recv(sk, skb);
4368
4369 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4370 /* Well, only one small jumplet in fast path... */
4371 tcp_ack(sk, skb, FLAG_DATA);
4372 tcp_data_snd_check(sk);
4373 if (!inet_csk_ack_scheduled(sk))
4374 goto no_ack;
4375 }
4376
4377 __tcp_ack_snd_check(sk, 0);
4378 no_ack:
4379 #ifdef CONFIG_NET_DMA
4380 if (copied_early)
4381 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4382 else
4383 #endif
4384 if (eaten)
4385 __kfree_skb(skb);
4386 else
4387 sk->sk_data_ready(sk, 0);
4388 return 0;
4389 }
4390 }
4391
4392 slow_path:
4393 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4394 goto csum_error;
4395
4396 /*
4397 * RFC1323: H1. Apply PAWS check first.
4398 */
4399 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4400 tcp_paws_discard(sk, skb)) {
4401 if (!th->rst) {
4402 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4403 tcp_send_dupack(sk, skb);
4404 goto discard;
4405 }
4406 /* Resets are accepted even if PAWS failed.
4407
4408 ts_recent update must be made after we are sure
4409 that the packet is in window.
4410 */
4411 }
4412
4413 /*
4414 * Standard slow path.
4415 */
4416
4417 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4418 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4419 * (RST) segments are validated by checking their SEQ-fields."
4420 * And page 69: "If an incoming segment is not acceptable,
4421 * an acknowledgment should be sent in reply (unless the RST bit
4422 * is set, if so drop the segment and return)".
4423 */
4424 if (!th->rst)
4425 tcp_send_dupack(sk, skb);
4426 goto discard;
4427 }
4428
4429 if (th->rst) {
4430 tcp_reset(sk);
4431 goto discard;
4432 }
4433
4434 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4435
4436 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4437 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4438 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4439 tcp_reset(sk);
4440 return 1;
4441 }
4442
4443 step5:
4444 if (th->ack)
4445 tcp_ack(sk, skb, FLAG_SLOWPATH);
4446
4447 tcp_rcv_rtt_measure_ts(sk, skb);
4448
4449 /* Process urgent data. */
4450 tcp_urg(sk, skb, th);
4451
4452 /* step 7: process the segment text */
4453 tcp_data_queue(sk, skb);
4454
4455 tcp_data_snd_check(sk);
4456 tcp_ack_snd_check(sk);
4457 return 0;
4458
4459 csum_error:
4460 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4461
4462 discard:
4463 __kfree_skb(skb);
4464 return 0;
4465 }
4466
4467 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4468 struct tcphdr *th, unsigned len)
4469 {
4470 struct tcp_sock *tp = tcp_sk(sk);
4471 struct inet_connection_sock *icsk = inet_csk(sk);
4472 int saved_clamp = tp->rx_opt.mss_clamp;
4473
4474 tcp_parse_options(skb, &tp->rx_opt, 0);
4475
4476 if (th->ack) {
4477 /* rfc793:
4478 * "If the state is SYN-SENT then
4479 * first check the ACK bit
4480 * If the ACK bit is set
4481 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4482 * a reset (unless the RST bit is set, if so drop
4483 * the segment and return)"
4484 *
4485 * We do not send data with SYN, so that RFC-correct
4486 * test reduces to:
4487 */
4488 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4489 goto reset_and_undo;
4490
4491 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4492 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4493 tcp_time_stamp)) {
4494 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4495 goto reset_and_undo;
4496 }
4497
4498 /* Now ACK is acceptable.
4499 *
4500 * "If the RST bit is set
4501 * If the ACK was acceptable then signal the user "error:
4502 * connection reset", drop the segment, enter CLOSED state,
4503 * delete TCB, and return."
4504 */
4505
4506 if (th->rst) {
4507 tcp_reset(sk);
4508 goto discard;
4509 }
4510
4511 /* rfc793:
4512 * "fifth, if neither of the SYN or RST bits is set then
4513 * drop the segment and return."
4514 *
4515 * See note below!
4516 * --ANK(990513)
4517 */
4518 if (!th->syn)
4519 goto discard_and_undo;
4520
4521 /* rfc793:
4522 * "If the SYN bit is on ...
4523 * are acceptable then ...
4524 * (our SYN has been ACKed), change the connection
4525 * state to ESTABLISHED..."
4526 */
4527
4528 TCP_ECN_rcv_synack(tp, th);
4529
4530 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4531 tcp_ack(sk, skb, FLAG_SLOWPATH);
4532
4533 /* Ok.. it's good. Set up sequence numbers and
4534 * move to established.
4535 */
4536 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4537 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4538
4539 /* RFC1323: The window in SYN & SYN/ACK segments is
4540 * never scaled.
4541 */
4542 tp->snd_wnd = ntohs(th->window);
4543 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4544
4545 if (!tp->rx_opt.wscale_ok) {
4546 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4547 tp->window_clamp = min(tp->window_clamp, 65535U);
4548 }
4549
4550 if (tp->rx_opt.saw_tstamp) {
4551 tp->rx_opt.tstamp_ok = 1;
4552 tp->tcp_header_len =
4553 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4554 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4555 tcp_store_ts_recent(tp);
4556 } else {
4557 tp->tcp_header_len = sizeof(struct tcphdr);
4558 }
4559
4560 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4561 tp->rx_opt.sack_ok |= 2;
4562
4563 tcp_mtup_init(sk);
4564 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4565 tcp_initialize_rcv_mss(sk);
4566
4567 /* Remember, tcp_poll() does not lock socket!
4568 * Change state from SYN-SENT only after copied_seq
4569 * is initialized. */
4570 tp->copied_seq = tp->rcv_nxt;
4571 smp_mb();
4572 tcp_set_state(sk, TCP_ESTABLISHED);
4573
4574 security_inet_conn_established(sk, skb);
4575
4576 /* Make sure socket is routed, for correct metrics. */
4577 icsk->icsk_af_ops->rebuild_header(sk);
4578
4579 tcp_init_metrics(sk);
4580
4581 tcp_init_congestion_control(sk);
4582
4583 /* Prevent spurious tcp_cwnd_restart() on first data
4584 * packet.
4585 */
4586 tp->lsndtime = tcp_time_stamp;
4587
4588 tcp_init_buffer_space(sk);
4589
4590 if (sock_flag(sk, SOCK_KEEPOPEN))
4591 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4592
4593 if (!tp->rx_opt.snd_wscale)
4594 __tcp_fast_path_on(tp, tp->snd_wnd);
4595 else
4596 tp->pred_flags = 0;
4597
4598 if (!sock_flag(sk, SOCK_DEAD)) {
4599 sk->sk_state_change(sk);
4600 sk_wake_async(sk, 0, POLL_OUT);
4601 }
4602
4603 if (sk->sk_write_pending ||
4604 icsk->icsk_accept_queue.rskq_defer_accept ||
4605 icsk->icsk_ack.pingpong) {
4606 /* Save one ACK. Data will be ready after
4607 * several ticks, if write_pending is set.
4608 *
4609 * It may be deleted, but with this feature tcpdumps
4610 * look so _wonderfully_ clever, that I was not able
4611 * to stand against the temptation 8) --ANK
4612 */
4613 inet_csk_schedule_ack(sk);
4614 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4615 icsk->icsk_ack.ato = TCP_ATO_MIN;
4616 tcp_incr_quickack(sk);
4617 tcp_enter_quickack_mode(sk);
4618 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4619 TCP_DELACK_MAX, TCP_RTO_MAX);
4620
4621 discard:
4622 __kfree_skb(skb);
4623 return 0;
4624 } else {
4625 tcp_send_ack(sk);
4626 }
4627 return -1;
4628 }
4629
4630 /* No ACK in the segment */
4631
4632 if (th->rst) {
4633 /* rfc793:
4634 * "If the RST bit is set
4635 *
4636 * Otherwise (no ACK) drop the segment and return."
4637 */
4638
4639 goto discard_and_undo;
4640 }
4641
4642 /* PAWS check. */
4643 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4644 goto discard_and_undo;
4645
4646 if (th->syn) {
4647 /* We see SYN without ACK. It is attempt of
4648 * simultaneous connect with crossed SYNs.
4649 * Particularly, it can be connect to self.
4650 */
4651 tcp_set_state(sk, TCP_SYN_RECV);
4652
4653 if (tp->rx_opt.saw_tstamp) {
4654 tp->rx_opt.tstamp_ok = 1;
4655 tcp_store_ts_recent(tp);
4656 tp->tcp_header_len =
4657 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4658 } else {
4659 tp->tcp_header_len = sizeof(struct tcphdr);
4660 }
4661
4662 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4663 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4664
4665 /* RFC1323: The window in SYN & SYN/ACK segments is
4666 * never scaled.
4667 */
4668 tp->snd_wnd = ntohs(th->window);
4669 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4670 tp->max_window = tp->snd_wnd;
4671
4672 TCP_ECN_rcv_syn(tp, th);
4673
4674 tcp_mtup_init(sk);
4675 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4676 tcp_initialize_rcv_mss(sk);
4677
4678
4679 tcp_send_synack(sk);
4680 #if 0
4681 /* Note, we could accept data and URG from this segment.
4682 * There are no obstacles to make this.
4683 *
4684 * However, if we ignore data in ACKless segments sometimes,
4685 * we have no reasons to accept it sometimes.
4686 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4687 * is not flawless. So, discard packet for sanity.
4688 * Uncomment this return to process the data.
4689 */
4690 return -1;
4691 #else
4692 goto discard;
4693 #endif
4694 }
4695 /* "fifth, if neither of the SYN or RST bits is set then
4696 * drop the segment and return."
4697 */
4698
4699 discard_and_undo:
4700 tcp_clear_options(&tp->rx_opt);
4701 tp->rx_opt.mss_clamp = saved_clamp;
4702 goto discard;
4703
4704 reset_and_undo:
4705 tcp_clear_options(&tp->rx_opt);
4706 tp->rx_opt.mss_clamp = saved_clamp;
4707 return 1;
4708 }
4709
4710
4711 /*
4712 * This function implements the receiving procedure of RFC 793 for
4713 * all states except ESTABLISHED and TIME_WAIT.
4714 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4715 * address independent.
4716 */
4717
4718 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4719 struct tcphdr *th, unsigned len)
4720 {
4721 struct tcp_sock *tp = tcp_sk(sk);
4722 struct inet_connection_sock *icsk = inet_csk(sk);
4723 int queued = 0;
4724
4725 tp->rx_opt.saw_tstamp = 0;
4726
4727 switch (sk->sk_state) {
4728 case TCP_CLOSE:
4729 goto discard;
4730
4731 case TCP_LISTEN:
4732 if (th->ack)
4733 return 1;
4734
4735 if (th->rst)
4736 goto discard;
4737
4738 if (th->syn) {
4739 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4740 return 1;
4741
4742 /* Now we have several options: In theory there is
4743 * nothing else in the frame. KA9Q has an option to
4744 * send data with the syn, BSD accepts data with the
4745 * syn up to the [to be] advertised window and
4746 * Solaris 2.1 gives you a protocol error. For now
4747 * we just ignore it, that fits the spec precisely
4748 * and avoids incompatibilities. It would be nice in
4749 * future to drop through and process the data.
4750 *
4751 * Now that TTCP is starting to be used we ought to
4752 * queue this data.
4753 * But, this leaves one open to an easy denial of
4754 * service attack, and SYN cookies can't defend
4755 * against this problem. So, we drop the data
4756 * in the interest of security over speed unless
4757 * it's still in use.
4758 */
4759 kfree_skb(skb);
4760 return 0;
4761 }
4762 goto discard;
4763
4764 case TCP_SYN_SENT:
4765 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4766 if (queued >= 0)
4767 return queued;
4768
4769 /* Do step6 onward by hand. */
4770 tcp_urg(sk, skb, th);
4771 __kfree_skb(skb);
4772 tcp_data_snd_check(sk);
4773 return 0;
4774 }
4775
4776 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4777 tcp_paws_discard(sk, skb)) {
4778 if (!th->rst) {
4779 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4780 tcp_send_dupack(sk, skb);
4781 goto discard;
4782 }
4783 /* Reset is accepted even if it did not pass PAWS. */
4784 }
4785
4786 /* step 1: check sequence number */
4787 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4788 if (!th->rst)
4789 tcp_send_dupack(sk, skb);
4790 goto discard;
4791 }
4792
4793 /* step 2: check RST bit */
4794 if (th->rst) {
4795 tcp_reset(sk);
4796 goto discard;
4797 }
4798
4799 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4800
4801 /* step 3: check security and precedence [ignored] */
4802
4803 /* step 4:
4804 *
4805 * Check for a SYN in window.
4806 */
4807 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4808 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4809 tcp_reset(sk);
4810 return 1;
4811 }
4812
4813 /* step 5: check the ACK field */
4814 if (th->ack) {
4815 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4816
4817 switch (sk->sk_state) {
4818 case TCP_SYN_RECV:
4819 if (acceptable) {
4820 tp->copied_seq = tp->rcv_nxt;
4821 smp_mb();
4822 tcp_set_state(sk, TCP_ESTABLISHED);
4823 sk->sk_state_change(sk);
4824
4825 /* Note, that this wakeup is only for marginal
4826 * crossed SYN case. Passively open sockets
4827 * are not waked up, because sk->sk_sleep ==
4828 * NULL and sk->sk_socket == NULL.
4829 */
4830 if (sk->sk_socket) {
4831 sk_wake_async(sk,0,POLL_OUT);
4832 }
4833
4834 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4835 tp->snd_wnd = ntohs(th->window) <<
4836 tp->rx_opt.snd_wscale;
4837 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4838 TCP_SKB_CB(skb)->seq);
4839
4840 /* tcp_ack considers this ACK as duplicate
4841 * and does not calculate rtt.
4842 * Fix it at least with timestamps.
4843 */
4844 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4845 !tp->srtt)
4846 tcp_ack_saw_tstamp(sk, 0);
4847
4848 if (tp->rx_opt.tstamp_ok)
4849 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4850
4851 /* Make sure socket is routed, for
4852 * correct metrics.
4853 */
4854 icsk->icsk_af_ops->rebuild_header(sk);
4855
4856 tcp_init_metrics(sk);
4857
4858 tcp_init_congestion_control(sk);
4859
4860 /* Prevent spurious tcp_cwnd_restart() on
4861 * first data packet.
4862 */
4863 tp->lsndtime = tcp_time_stamp;
4864
4865 tcp_mtup_init(sk);
4866 tcp_initialize_rcv_mss(sk);
4867 tcp_init_buffer_space(sk);
4868 tcp_fast_path_on(tp);
4869 } else {
4870 return 1;
4871 }
4872 break;
4873
4874 case TCP_FIN_WAIT1:
4875 if (tp->snd_una == tp->write_seq) {
4876 tcp_set_state(sk, TCP_FIN_WAIT2);
4877 sk->sk_shutdown |= SEND_SHUTDOWN;
4878 dst_confirm(sk->sk_dst_cache);
4879
4880 if (!sock_flag(sk, SOCK_DEAD))
4881 /* Wake up lingering close() */
4882 sk->sk_state_change(sk);
4883 else {
4884 int tmo;
4885
4886 if (tp->linger2 < 0 ||
4887 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4888 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4889 tcp_done(sk);
4890 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4891 return 1;
4892 }
4893
4894 tmo = tcp_fin_time(sk);
4895 if (tmo > TCP_TIMEWAIT_LEN) {
4896 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4897 } else if (th->fin || sock_owned_by_user(sk)) {
4898 /* Bad case. We could lose such FIN otherwise.
4899 * It is not a big problem, but it looks confusing
4900 * and not so rare event. We still can lose it now,
4901 * if it spins in bh_lock_sock(), but it is really
4902 * marginal case.
4903 */
4904 inet_csk_reset_keepalive_timer(sk, tmo);
4905 } else {
4906 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4907 goto discard;
4908 }
4909 }
4910 }
4911 break;
4912
4913 case TCP_CLOSING:
4914 if (tp->snd_una == tp->write_seq) {
4915 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4916 goto discard;
4917 }
4918 break;
4919
4920 case TCP_LAST_ACK:
4921 if (tp->snd_una == tp->write_seq) {
4922 tcp_update_metrics(sk);
4923 tcp_done(sk);
4924 goto discard;
4925 }
4926 break;
4927 }
4928 } else
4929 goto discard;
4930
4931 /* step 6: check the URG bit */
4932 tcp_urg(sk, skb, th);
4933
4934 /* step 7: process the segment text */
4935 switch (sk->sk_state) {
4936 case TCP_CLOSE_WAIT:
4937 case TCP_CLOSING:
4938 case TCP_LAST_ACK:
4939 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4940 break;
4941 case TCP_FIN_WAIT1:
4942 case TCP_FIN_WAIT2:
4943 /* RFC 793 says to queue data in these states,
4944 * RFC 1122 says we MUST send a reset.
4945 * BSD 4.4 also does reset.
4946 */
4947 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4948 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4949 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4950 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4951 tcp_reset(sk);
4952 return 1;
4953 }
4954 }
4955 /* Fall through */
4956 case TCP_ESTABLISHED:
4957 tcp_data_queue(sk, skb);
4958 queued = 1;
4959 break;
4960 }
4961
4962 /* tcp_data could move socket to TIME-WAIT */
4963 if (sk->sk_state != TCP_CLOSE) {
4964 tcp_data_snd_check(sk);
4965 tcp_ack_snd_check(sk);
4966 }
4967
4968 if (!queued) {
4969 discard:
4970 __kfree_skb(skb);
4971 }
4972 return 0;
4973 }
4974
4975 EXPORT_SYMBOL(sysctl_tcp_ecn);
4976 EXPORT_SYMBOL(sysctl_tcp_reordering);
4977 EXPORT_SYMBOL(tcp_parse_options);
4978 EXPORT_SYMBOL(tcp_rcv_established);
4979 EXPORT_SYMBOL(tcp_rcv_state_process);
4980 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.174257 seconds and 5 git commands to generate.