tcp: don't check mtu probe completion in the loop
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
108
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118 /* Adapt the MSS value used to make delayed ack decision to the
119 * real world.
120 */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123 struct inet_connection_sock *icsk = inet_csk(sk);
124 const unsigned int lss = icsk->icsk_ack.last_seg_size;
125 unsigned int len;
126
127 icsk->icsk_ack.last_seg_size = 0;
128
129 /* skb->len may jitter because of SACKs, even if peer
130 * sends good full-sized frames.
131 */
132 len = skb_shinfo(skb)->gso_size ? : skb->len;
133 if (len >= icsk->icsk_ack.rcv_mss) {
134 icsk->icsk_ack.rcv_mss = len;
135 } else {
136 /* Otherwise, we make more careful check taking into account,
137 * that SACKs block is variable.
138 *
139 * "len" is invariant segment length, including TCP header.
140 */
141 len += skb->data - skb_transport_header(skb);
142 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143 /* If PSH is not set, packet should be
144 * full sized, provided peer TCP is not badly broken.
145 * This observation (if it is correct 8)) allows
146 * to handle super-low mtu links fairly.
147 */
148 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150 /* Subtract also invariant (if peer is RFC compliant),
151 * tcp header plus fixed timestamp option length.
152 * Resulting "len" is MSS free of SACK jitter.
153 */
154 len -= tcp_sk(sk)->tcp_header_len;
155 icsk->icsk_ack.last_seg_size = len;
156 if (len == lss) {
157 icsk->icsk_ack.rcv_mss = len;
158 return;
159 }
160 }
161 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164 }
165 }
166
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169 struct inet_connection_sock *icsk = inet_csk(sk);
170 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172 if (quickacks == 0)
173 quickacks = 2;
174 if (quickacks > icsk->icsk_ack.quick)
175 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180 struct inet_connection_sock *icsk = inet_csk(sk);
181 tcp_incr_quickack(sk);
182 icsk->icsk_ack.pingpong = 0;
183 icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185
186 /* Send ACKs quickly, if "quick" count is not exhausted
187 * and the session is not interactive.
188 */
189
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192 const struct inet_connection_sock *icsk = inet_csk(sk);
193 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198 if (tp->ecn_flags & TCP_ECN_OK)
199 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204 if (tcp_hdr(skb)->cwr)
205 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215 if (tp->ecn_flags & TCP_ECN_OK) {
216 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218 /* Funny extension: if ECT is not set on a segment,
219 * it is surely retransmit. It is not in ECN RFC,
220 * but Linux follows this rule. */
221 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222 tcp_enter_quickack_mode((struct sock *)tp);
223 }
224 }
225
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229 tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235 tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241 return 1;
242 return 0;
243 }
244
245 /* Buffer size and advertised window tuning.
246 *
247 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248 */
249
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253 sizeof(struct sk_buff);
254
255 if (sk->sk_sndbuf < 3 * sndmem)
256 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260 *
261 * All tcp_full_space() is split to two parts: "network" buffer, allocated
262 * forward and advertised in receiver window (tp->rcv_wnd) and
263 * "application buffer", required to isolate scheduling/application
264 * latencies from network.
265 * window_clamp is maximal advertised window. It can be less than
266 * tcp_full_space(), in this case tcp_full_space() - window_clamp
267 * is reserved for "application" buffer. The less window_clamp is
268 * the smoother our behaviour from viewpoint of network, but the lower
269 * throughput and the higher sensitivity of the connection to losses. 8)
270 *
271 * rcv_ssthresh is more strict window_clamp used at "slow start"
272 * phase to predict further behaviour of this connection.
273 * It is used for two goals:
274 * - to enforce header prediction at sender, even when application
275 * requires some significant "application buffer". It is check #1.
276 * - to prevent pruning of receive queue because of misprediction
277 * of receiver window. Check #2.
278 *
279 * The scheme does not work when sender sends good segments opening
280 * window and then starts to feed us spaghetti. But it should work
281 * in common situations. Otherwise, we have to rely on queue collapsing.
282 */
283
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287 struct tcp_sock *tp = tcp_sk(sk);
288 /* Optimize this! */
289 int truesize = tcp_win_from_space(skb->truesize) >> 1;
290 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292 while (tp->rcv_ssthresh <= window) {
293 if (truesize <= skb->len)
294 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296 truesize >>= 1;
297 window >>= 1;
298 }
299 return 0;
300 }
301
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304 struct tcp_sock *tp = tcp_sk(sk);
305
306 /* Check #1 */
307 if (tp->rcv_ssthresh < tp->window_clamp &&
308 (int)tp->rcv_ssthresh < tcp_space(sk) &&
309 !tcp_memory_pressure) {
310 int incr;
311
312 /* Check #2. Increase window, if skb with such overhead
313 * will fit to rcvbuf in future.
314 */
315 if (tcp_win_from_space(skb->truesize) <= skb->len)
316 incr = 2 * tp->advmss;
317 else
318 incr = __tcp_grow_window(sk, skb);
319
320 if (incr) {
321 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322 tp->window_clamp);
323 inet_csk(sk)->icsk_ack.quick |= 1;
324 }
325 }
326 }
327
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332 struct tcp_sock *tp = tcp_sk(sk);
333 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335 /* Try to select rcvbuf so that 4 mss-sized segments
336 * will fit to window and corresponding skbs will fit to our rcvbuf.
337 * (was 3; 4 is minimum to allow fast retransmit to work.)
338 */
339 while (tcp_win_from_space(rcvmem) < tp->advmss)
340 rcvmem += 128;
341 if (sk->sk_rcvbuf < 4 * rcvmem)
342 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344
345 /* 4. Try to fixup all. It is made immediately after connection enters
346 * established state.
347 */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350 struct tcp_sock *tp = tcp_sk(sk);
351 int maxwin;
352
353 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354 tcp_fixup_rcvbuf(sk);
355 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356 tcp_fixup_sndbuf(sk);
357
358 tp->rcvq_space.space = tp->rcv_wnd;
359
360 maxwin = tcp_full_space(sk);
361
362 if (tp->window_clamp >= maxwin) {
363 tp->window_clamp = maxwin;
364
365 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366 tp->window_clamp = max(maxwin -
367 (maxwin >> sysctl_tcp_app_win),
368 4 * tp->advmss);
369 }
370
371 /* Force reservation of one segment. */
372 if (sysctl_tcp_app_win &&
373 tp->window_clamp > 2 * tp->advmss &&
374 tp->window_clamp + tp->advmss > maxwin)
375 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378 tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384 struct tcp_sock *tp = tcp_sk(sk);
385 struct inet_connection_sock *icsk = inet_csk(sk);
386
387 icsk->icsk_ack.quick = 0;
388
389 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391 !tcp_memory_pressure &&
392 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394 sysctl_tcp_rmem[2]);
395 }
396 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399
400 /* Initialize RCV_MSS value.
401 * RCV_MSS is an our guess about MSS used by the peer.
402 * We haven't any direct information about the MSS.
403 * It's better to underestimate the RCV_MSS rather than overestimate.
404 * Overestimations make us ACKing less frequently than needed.
405 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406 */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409 struct tcp_sock *tp = tcp_sk(sk);
410 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412 hint = min(hint, tp->rcv_wnd / 2);
413 hint = min(hint, TCP_MIN_RCVMSS);
414 hint = max(hint, TCP_MIN_MSS);
415
416 inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418
419 /* Receiver "autotuning" code.
420 *
421 * The algorithm for RTT estimation w/o timestamps is based on
422 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424 *
425 * More detail on this code can be found at
426 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427 * though this reference is out of date. A new paper
428 * is pending.
429 */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432 u32 new_sample = tp->rcv_rtt_est.rtt;
433 long m = sample;
434
435 if (m == 0)
436 m = 1;
437
438 if (new_sample != 0) {
439 /* If we sample in larger samples in the non-timestamp
440 * case, we could grossly overestimate the RTT especially
441 * with chatty applications or bulk transfer apps which
442 * are stalled on filesystem I/O.
443 *
444 * Also, since we are only going for a minimum in the
445 * non-timestamp case, we do not smooth things out
446 * else with timestamps disabled convergence takes too
447 * long.
448 */
449 if (!win_dep) {
450 m -= (new_sample >> 3);
451 new_sample += m;
452 } else if (m < new_sample)
453 new_sample = m << 3;
454 } else {
455 /* No previous measure. */
456 new_sample = m << 3;
457 }
458
459 if (tp->rcv_rtt_est.rtt != new_sample)
460 tp->rcv_rtt_est.rtt = new_sample;
461 }
462
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465 if (tp->rcv_rtt_est.time == 0)
466 goto new_measure;
467 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468 return;
469 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471 new_measure:
472 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473 tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477 const struct sk_buff *skb)
478 {
479 struct tcp_sock *tp = tcp_sk(sk);
480 if (tp->rx_opt.rcv_tsecr &&
481 (TCP_SKB_CB(skb)->end_seq -
482 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485
486 /*
487 * This function should be called every time data is copied to user space.
488 * It calculates the appropriate TCP receive buffer space.
489 */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492 struct tcp_sock *tp = tcp_sk(sk);
493 int time;
494 int space;
495
496 if (tp->rcvq_space.time == 0)
497 goto new_measure;
498
499 time = tcp_time_stamp - tp->rcvq_space.time;
500 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501 return;
502
503 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505 space = max(tp->rcvq_space.space, space);
506
507 if (tp->rcvq_space.space != space) {
508 int rcvmem;
509
510 tp->rcvq_space.space = space;
511
512 if (sysctl_tcp_moderate_rcvbuf &&
513 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514 int new_clamp = space;
515
516 /* Receive space grows, normalize in order to
517 * take into account packet headers and sk_buff
518 * structure overhead.
519 */
520 space /= tp->advmss;
521 if (!space)
522 space = 1;
523 rcvmem = (tp->advmss + MAX_TCP_HEADER +
524 16 + sizeof(struct sk_buff));
525 while (tcp_win_from_space(rcvmem) < tp->advmss)
526 rcvmem += 128;
527 space *= rcvmem;
528 space = min(space, sysctl_tcp_rmem[2]);
529 if (space > sk->sk_rcvbuf) {
530 sk->sk_rcvbuf = space;
531
532 /* Make the window clamp follow along. */
533 tp->window_clamp = new_clamp;
534 }
535 }
536 }
537
538 new_measure:
539 tp->rcvq_space.seq = tp->copied_seq;
540 tp->rcvq_space.time = tcp_time_stamp;
541 }
542
543 /* There is something which you must keep in mind when you analyze the
544 * behavior of the tp->ato delayed ack timeout interval. When a
545 * connection starts up, we want to ack as quickly as possible. The
546 * problem is that "good" TCP's do slow start at the beginning of data
547 * transmission. The means that until we send the first few ACK's the
548 * sender will sit on his end and only queue most of his data, because
549 * he can only send snd_cwnd unacked packets at any given time. For
550 * each ACK we send, he increments snd_cwnd and transmits more of his
551 * queue. -DaveM
552 */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555 struct tcp_sock *tp = tcp_sk(sk);
556 struct inet_connection_sock *icsk = inet_csk(sk);
557 u32 now;
558
559 inet_csk_schedule_ack(sk);
560
561 tcp_measure_rcv_mss(sk, skb);
562
563 tcp_rcv_rtt_measure(tp);
564
565 now = tcp_time_stamp;
566
567 if (!icsk->icsk_ack.ato) {
568 /* The _first_ data packet received, initialize
569 * delayed ACK engine.
570 */
571 tcp_incr_quickack(sk);
572 icsk->icsk_ack.ato = TCP_ATO_MIN;
573 } else {
574 int m = now - icsk->icsk_ack.lrcvtime;
575
576 if (m <= TCP_ATO_MIN / 2) {
577 /* The fastest case is the first. */
578 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579 } else if (m < icsk->icsk_ack.ato) {
580 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581 if (icsk->icsk_ack.ato > icsk->icsk_rto)
582 icsk->icsk_ack.ato = icsk->icsk_rto;
583 } else if (m > icsk->icsk_rto) {
584 /* Too long gap. Apparently sender failed to
585 * restart window, so that we send ACKs quickly.
586 */
587 tcp_incr_quickack(sk);
588 sk_mem_reclaim(sk);
589 }
590 }
591 icsk->icsk_ack.lrcvtime = now;
592
593 TCP_ECN_check_ce(tp, skb);
594
595 if (skb->len >= 128)
596 tcp_grow_window(sk, skb);
597 }
598
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601 struct dst_entry *dst = __sk_dst_get(sk);
602 u32 rto_min = TCP_RTO_MIN;
603
604 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606 return rto_min;
607 }
608
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610 * routine either comes from timestamps, or from segments that were
611 * known _not_ to have been retransmitted [see Karn/Partridge
612 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613 * piece by Van Jacobson.
614 * NOTE: the next three routines used to be one big routine.
615 * To save cycles in the RFC 1323 implementation it was better to break
616 * it up into three procedures. -- erics
617 */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620 struct tcp_sock *tp = tcp_sk(sk);
621 long m = mrtt; /* RTT */
622
623 /* The following amusing code comes from Jacobson's
624 * article in SIGCOMM '88. Note that rtt and mdev
625 * are scaled versions of rtt and mean deviation.
626 * This is designed to be as fast as possible
627 * m stands for "measurement".
628 *
629 * On a 1990 paper the rto value is changed to:
630 * RTO = rtt + 4 * mdev
631 *
632 * Funny. This algorithm seems to be very broken.
633 * These formulae increase RTO, when it should be decreased, increase
634 * too slowly, when it should be increased quickly, decrease too quickly
635 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636 * does not matter how to _calculate_ it. Seems, it was trap
637 * that VJ failed to avoid. 8)
638 */
639 if (m == 0)
640 m = 1;
641 if (tp->srtt != 0) {
642 m -= (tp->srtt >> 3); /* m is now error in rtt est */
643 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
644 if (m < 0) {
645 m = -m; /* m is now abs(error) */
646 m -= (tp->mdev >> 2); /* similar update on mdev */
647 /* This is similar to one of Eifel findings.
648 * Eifel blocks mdev updates when rtt decreases.
649 * This solution is a bit different: we use finer gain
650 * for mdev in this case (alpha*beta).
651 * Like Eifel it also prevents growth of rto,
652 * but also it limits too fast rto decreases,
653 * happening in pure Eifel.
654 */
655 if (m > 0)
656 m >>= 3;
657 } else {
658 m -= (tp->mdev >> 2); /* similar update on mdev */
659 }
660 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
661 if (tp->mdev > tp->mdev_max) {
662 tp->mdev_max = tp->mdev;
663 if (tp->mdev_max > tp->rttvar)
664 tp->rttvar = tp->mdev_max;
665 }
666 if (after(tp->snd_una, tp->rtt_seq)) {
667 if (tp->mdev_max < tp->rttvar)
668 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669 tp->rtt_seq = tp->snd_nxt;
670 tp->mdev_max = tcp_rto_min(sk);
671 }
672 } else {
673 /* no previous measure. */
674 tp->srtt = m << 3; /* take the measured time to be rtt */
675 tp->mdev = m << 1; /* make sure rto = 3*rtt */
676 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677 tp->rtt_seq = tp->snd_nxt;
678 }
679 }
680
681 /* Calculate rto without backoff. This is the second half of Van Jacobson's
682 * routine referred to above.
683 */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686 const struct tcp_sock *tp = tcp_sk(sk);
687 /* Old crap is replaced with new one. 8)
688 *
689 * More seriously:
690 * 1. If rtt variance happened to be less 50msec, it is hallucination.
691 * It cannot be less due to utterly erratic ACK generation made
692 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693 * to do with delayed acks, because at cwnd>2 true delack timeout
694 * is invisible. Actually, Linux-2.4 also generates erratic
695 * ACKs in some circumstances.
696 */
697 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699 /* 2. Fixups made earlier cannot be right.
700 * If we do not estimate RTO correctly without them,
701 * all the algo is pure shit and should be replaced
702 * with correct one. It is exactly, which we pretend to do.
703 */
704
705 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
706 * guarantees that rto is higher.
707 */
708 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
709 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
710 }
711
712 /* Save metrics learned by this TCP session.
713 This function is called only, when TCP finishes successfully
714 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
715 */
716 void tcp_update_metrics(struct sock *sk)
717 {
718 struct tcp_sock *tp = tcp_sk(sk);
719 struct dst_entry *dst = __sk_dst_get(sk);
720
721 if (sysctl_tcp_nometrics_save)
722 return;
723
724 dst_confirm(dst);
725
726 if (dst && (dst->flags & DST_HOST)) {
727 const struct inet_connection_sock *icsk = inet_csk(sk);
728 int m;
729 unsigned long rtt;
730
731 if (icsk->icsk_backoff || !tp->srtt) {
732 /* This session failed to estimate rtt. Why?
733 * Probably, no packets returned in time.
734 * Reset our results.
735 */
736 if (!(dst_metric_locked(dst, RTAX_RTT)))
737 dst->metrics[RTAX_RTT - 1] = 0;
738 return;
739 }
740
741 rtt = dst_metric_rtt(dst, RTAX_RTT);
742 m = rtt - tp->srtt;
743
744 /* If newly calculated rtt larger than stored one,
745 * store new one. Otherwise, use EWMA. Remember,
746 * rtt overestimation is always better than underestimation.
747 */
748 if (!(dst_metric_locked(dst, RTAX_RTT))) {
749 if (m <= 0)
750 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
751 else
752 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
753 }
754
755 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
756 unsigned long var;
757 if (m < 0)
758 m = -m;
759
760 /* Scale deviation to rttvar fixed point */
761 m >>= 1;
762 if (m < tp->mdev)
763 m = tp->mdev;
764
765 var = dst_metric_rtt(dst, RTAX_RTTVAR);
766 if (m >= var)
767 var = m;
768 else
769 var -= (var - m) >> 2;
770
771 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
772 }
773
774 if (tp->snd_ssthresh >= 0xFFFF) {
775 /* Slow start still did not finish. */
776 if (dst_metric(dst, RTAX_SSTHRESH) &&
777 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
780 if (!dst_metric_locked(dst, RTAX_CWND) &&
781 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
783 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
784 icsk->icsk_ca_state == TCP_CA_Open) {
785 /* Cong. avoidance phase, cwnd is reliable. */
786 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787 dst->metrics[RTAX_SSTHRESH-1] =
788 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
789 if (!dst_metric_locked(dst, RTAX_CWND))
790 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
791 } else {
792 /* Else slow start did not finish, cwnd is non-sense,
793 ssthresh may be also invalid.
794 */
795 if (!dst_metric_locked(dst, RTAX_CWND))
796 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
797 if (dst_metric(dst, RTAX_SSTHRESH) &&
798 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
799 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
800 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
801 }
802
803 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
804 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
805 tp->reordering != sysctl_tcp_reordering)
806 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
807 }
808 }
809 }
810
811 /* Numbers are taken from RFC3390.
812 *
813 * John Heffner states:
814 *
815 * The RFC specifies a window of no more than 4380 bytes
816 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
817 * is a bit misleading because they use a clamp at 4380 bytes
818 * rather than use a multiplier in the relevant range.
819 */
820 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
821 {
822 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
823
824 if (!cwnd) {
825 if (tp->mss_cache > 1460)
826 cwnd = 2;
827 else
828 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
829 }
830 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
831 }
832
833 /* Set slow start threshold and cwnd not falling to slow start */
834 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
835 {
836 struct tcp_sock *tp = tcp_sk(sk);
837 const struct inet_connection_sock *icsk = inet_csk(sk);
838
839 tp->prior_ssthresh = 0;
840 tp->bytes_acked = 0;
841 if (icsk->icsk_ca_state < TCP_CA_CWR) {
842 tp->undo_marker = 0;
843 if (set_ssthresh)
844 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
845 tp->snd_cwnd = min(tp->snd_cwnd,
846 tcp_packets_in_flight(tp) + 1U);
847 tp->snd_cwnd_cnt = 0;
848 tp->high_seq = tp->snd_nxt;
849 tp->snd_cwnd_stamp = tcp_time_stamp;
850 TCP_ECN_queue_cwr(tp);
851
852 tcp_set_ca_state(sk, TCP_CA_CWR);
853 }
854 }
855
856 /*
857 * Packet counting of FACK is based on in-order assumptions, therefore TCP
858 * disables it when reordering is detected
859 */
860 static void tcp_disable_fack(struct tcp_sock *tp)
861 {
862 /* RFC3517 uses different metric in lost marker => reset on change */
863 if (tcp_is_fack(tp))
864 tp->lost_skb_hint = NULL;
865 tp->rx_opt.sack_ok &= ~2;
866 }
867
868 /* Take a notice that peer is sending D-SACKs */
869 static void tcp_dsack_seen(struct tcp_sock *tp)
870 {
871 tp->rx_opt.sack_ok |= 4;
872 }
873
874 /* Initialize metrics on socket. */
875
876 static void tcp_init_metrics(struct sock *sk)
877 {
878 struct tcp_sock *tp = tcp_sk(sk);
879 struct dst_entry *dst = __sk_dst_get(sk);
880
881 if (dst == NULL)
882 goto reset;
883
884 dst_confirm(dst);
885
886 if (dst_metric_locked(dst, RTAX_CWND))
887 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
888 if (dst_metric(dst, RTAX_SSTHRESH)) {
889 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
890 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
891 tp->snd_ssthresh = tp->snd_cwnd_clamp;
892 }
893 if (dst_metric(dst, RTAX_REORDERING) &&
894 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
895 tcp_disable_fack(tp);
896 tp->reordering = dst_metric(dst, RTAX_REORDERING);
897 }
898
899 if (dst_metric(dst, RTAX_RTT) == 0)
900 goto reset;
901
902 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
903 goto reset;
904
905 /* Initial rtt is determined from SYN,SYN-ACK.
906 * The segment is small and rtt may appear much
907 * less than real one. Use per-dst memory
908 * to make it more realistic.
909 *
910 * A bit of theory. RTT is time passed after "normal" sized packet
911 * is sent until it is ACKed. In normal circumstances sending small
912 * packets force peer to delay ACKs and calculation is correct too.
913 * The algorithm is adaptive and, provided we follow specs, it
914 * NEVER underestimate RTT. BUT! If peer tries to make some clever
915 * tricks sort of "quick acks" for time long enough to decrease RTT
916 * to low value, and then abruptly stops to do it and starts to delay
917 * ACKs, wait for troubles.
918 */
919 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
920 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
921 tp->rtt_seq = tp->snd_nxt;
922 }
923 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
924 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
925 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
926 }
927 tcp_set_rto(sk);
928 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
929 goto reset;
930 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
931 tp->snd_cwnd_stamp = tcp_time_stamp;
932 return;
933
934 reset:
935 /* Play conservative. If timestamps are not
936 * supported, TCP will fail to recalculate correct
937 * rtt, if initial rto is too small. FORGET ALL AND RESET!
938 */
939 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
940 tp->srtt = 0;
941 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
942 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
943 }
944 }
945
946 static void tcp_update_reordering(struct sock *sk, const int metric,
947 const int ts)
948 {
949 struct tcp_sock *tp = tcp_sk(sk);
950 if (metric > tp->reordering) {
951 int mib_idx;
952
953 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955 /* This exciting event is worth to be remembered. 8) */
956 if (ts)
957 mib_idx = LINUX_MIB_TCPTSREORDER;
958 else if (tcp_is_reno(tp))
959 mib_idx = LINUX_MIB_TCPRENOREORDER;
960 else if (tcp_is_fack(tp))
961 mib_idx = LINUX_MIB_TCPFACKREORDER;
962 else
963 mib_idx = LINUX_MIB_TCPSACKREORDER;
964
965 NET_INC_STATS_BH(sock_net(sk), mib_idx);
966 #if FASTRETRANS_DEBUG > 1
967 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
968 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
969 tp->reordering,
970 tp->fackets_out,
971 tp->sacked_out,
972 tp->undo_marker ? tp->undo_retrans : 0);
973 #endif
974 tcp_disable_fack(tp);
975 }
976 }
977
978 /* This must be called before lost_out is incremented */
979 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
980 {
981 if ((tp->retransmit_skb_hint == NULL) ||
982 before(TCP_SKB_CB(skb)->seq,
983 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
984 tp->retransmit_skb_hint = skb;
985
986 if (!tp->lost_out ||
987 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
988 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
989 }
990
991 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
992 {
993 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
994 tcp_verify_retransmit_hint(tp, skb);
995
996 tp->lost_out += tcp_skb_pcount(skb);
997 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
998 }
999 }
1000
1001 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1002 struct sk_buff *skb)
1003 {
1004 tcp_verify_retransmit_hint(tp, skb);
1005
1006 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1007 tp->lost_out += tcp_skb_pcount(skb);
1008 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1009 }
1010 }
1011
1012 /* This procedure tags the retransmission queue when SACKs arrive.
1013 *
1014 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1015 * Packets in queue with these bits set are counted in variables
1016 * sacked_out, retrans_out and lost_out, correspondingly.
1017 *
1018 * Valid combinations are:
1019 * Tag InFlight Description
1020 * 0 1 - orig segment is in flight.
1021 * S 0 - nothing flies, orig reached receiver.
1022 * L 0 - nothing flies, orig lost by net.
1023 * R 2 - both orig and retransmit are in flight.
1024 * L|R 1 - orig is lost, retransmit is in flight.
1025 * S|R 1 - orig reached receiver, retrans is still in flight.
1026 * (L|S|R is logically valid, it could occur when L|R is sacked,
1027 * but it is equivalent to plain S and code short-curcuits it to S.
1028 * L|S is logically invalid, it would mean -1 packet in flight 8))
1029 *
1030 * These 6 states form finite state machine, controlled by the following events:
1031 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1032 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1033 * 3. Loss detection event of one of three flavors:
1034 * A. Scoreboard estimator decided the packet is lost.
1035 * A'. Reno "three dupacks" marks head of queue lost.
1036 * A''. Its FACK modfication, head until snd.fack is lost.
1037 * B. SACK arrives sacking data transmitted after never retransmitted
1038 * hole was sent out.
1039 * C. SACK arrives sacking SND.NXT at the moment, when the
1040 * segment was retransmitted.
1041 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1042 *
1043 * It is pleasant to note, that state diagram turns out to be commutative,
1044 * so that we are allowed not to be bothered by order of our actions,
1045 * when multiple events arrive simultaneously. (see the function below).
1046 *
1047 * Reordering detection.
1048 * --------------------
1049 * Reordering metric is maximal distance, which a packet can be displaced
1050 * in packet stream. With SACKs we can estimate it:
1051 *
1052 * 1. SACK fills old hole and the corresponding segment was not
1053 * ever retransmitted -> reordering. Alas, we cannot use it
1054 * when segment was retransmitted.
1055 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1056 * for retransmitted and already SACKed segment -> reordering..
1057 * Both of these heuristics are not used in Loss state, when we cannot
1058 * account for retransmits accurately.
1059 *
1060 * SACK block validation.
1061 * ----------------------
1062 *
1063 * SACK block range validation checks that the received SACK block fits to
1064 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1065 * Note that SND.UNA is not included to the range though being valid because
1066 * it means that the receiver is rather inconsistent with itself reporting
1067 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1068 * perfectly valid, however, in light of RFC2018 which explicitly states
1069 * that "SACK block MUST reflect the newest segment. Even if the newest
1070 * segment is going to be discarded ...", not that it looks very clever
1071 * in case of head skb. Due to potentional receiver driven attacks, we
1072 * choose to avoid immediate execution of a walk in write queue due to
1073 * reneging and defer head skb's loss recovery to standard loss recovery
1074 * procedure that will eventually trigger (nothing forbids us doing this).
1075 *
1076 * Implements also blockage to start_seq wrap-around. Problem lies in the
1077 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1078 * there's no guarantee that it will be before snd_nxt (n). The problem
1079 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1080 * wrap (s_w):
1081 *
1082 * <- outs wnd -> <- wrapzone ->
1083 * u e n u_w e_w s n_w
1084 * | | | | | | |
1085 * |<------------+------+----- TCP seqno space --------------+---------->|
1086 * ...-- <2^31 ->| |<--------...
1087 * ...---- >2^31 ------>| |<--------...
1088 *
1089 * Current code wouldn't be vulnerable but it's better still to discard such
1090 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1091 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1092 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1093 * equal to the ideal case (infinite seqno space without wrap caused issues).
1094 *
1095 * With D-SACK the lower bound is extended to cover sequence space below
1096 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1097 * again, D-SACK block must not to go across snd_una (for the same reason as
1098 * for the normal SACK blocks, explained above). But there all simplicity
1099 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1100 * fully below undo_marker they do not affect behavior in anyway and can
1101 * therefore be safely ignored. In rare cases (which are more or less
1102 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1103 * fragmentation and packet reordering past skb's retransmission. To consider
1104 * them correctly, the acceptable range must be extended even more though
1105 * the exact amount is rather hard to quantify. However, tp->max_window can
1106 * be used as an exaggerated estimate.
1107 */
1108 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1109 u32 start_seq, u32 end_seq)
1110 {
1111 /* Too far in future, or reversed (interpretation is ambiguous) */
1112 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1113 return 0;
1114
1115 /* Nasty start_seq wrap-around check (see comments above) */
1116 if (!before(start_seq, tp->snd_nxt))
1117 return 0;
1118
1119 /* In outstanding window? ...This is valid exit for D-SACKs too.
1120 * start_seq == snd_una is non-sensical (see comments above)
1121 */
1122 if (after(start_seq, tp->snd_una))
1123 return 1;
1124
1125 if (!is_dsack || !tp->undo_marker)
1126 return 0;
1127
1128 /* ...Then it's D-SACK, and must reside below snd_una completely */
1129 if (!after(end_seq, tp->snd_una))
1130 return 0;
1131
1132 if (!before(start_seq, tp->undo_marker))
1133 return 1;
1134
1135 /* Too old */
1136 if (!after(end_seq, tp->undo_marker))
1137 return 0;
1138
1139 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1140 * start_seq < undo_marker and end_seq >= undo_marker.
1141 */
1142 return !before(start_seq, end_seq - tp->max_window);
1143 }
1144
1145 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1146 * Event "C". Later note: FACK people cheated me again 8), we have to account
1147 * for reordering! Ugly, but should help.
1148 *
1149 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1150 * less than what is now known to be received by the other end (derived from
1151 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1152 * retransmitted skbs to avoid some costly processing per ACKs.
1153 */
1154 static void tcp_mark_lost_retrans(struct sock *sk)
1155 {
1156 const struct inet_connection_sock *icsk = inet_csk(sk);
1157 struct tcp_sock *tp = tcp_sk(sk);
1158 struct sk_buff *skb;
1159 int cnt = 0;
1160 u32 new_low_seq = tp->snd_nxt;
1161 u32 received_upto = tcp_highest_sack_seq(tp);
1162
1163 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1164 !after(received_upto, tp->lost_retrans_low) ||
1165 icsk->icsk_ca_state != TCP_CA_Recovery)
1166 return;
1167
1168 tcp_for_write_queue(skb, sk) {
1169 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1170
1171 if (skb == tcp_send_head(sk))
1172 break;
1173 if (cnt == tp->retrans_out)
1174 break;
1175 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1176 continue;
1177
1178 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1179 continue;
1180
1181 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1182 * constraint here (see above) but figuring out that at
1183 * least tp->reordering SACK blocks reside between ack_seq
1184 * and received_upto is not easy task to do cheaply with
1185 * the available datastructures.
1186 *
1187 * Whether FACK should check here for tp->reordering segs
1188 * in-between one could argue for either way (it would be
1189 * rather simple to implement as we could count fack_count
1190 * during the walk and do tp->fackets_out - fack_count).
1191 */
1192 if (after(received_upto, ack_seq)) {
1193 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1194 tp->retrans_out -= tcp_skb_pcount(skb);
1195
1196 tcp_skb_mark_lost_uncond_verify(tp, skb);
1197 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1198 } else {
1199 if (before(ack_seq, new_low_seq))
1200 new_low_seq = ack_seq;
1201 cnt += tcp_skb_pcount(skb);
1202 }
1203 }
1204
1205 if (tp->retrans_out)
1206 tp->lost_retrans_low = new_low_seq;
1207 }
1208
1209 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1210 struct tcp_sack_block_wire *sp, int num_sacks,
1211 u32 prior_snd_una)
1212 {
1213 struct tcp_sock *tp = tcp_sk(sk);
1214 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1215 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1216 int dup_sack = 0;
1217
1218 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1219 dup_sack = 1;
1220 tcp_dsack_seen(tp);
1221 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1222 } else if (num_sacks > 1) {
1223 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1224 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1225
1226 if (!after(end_seq_0, end_seq_1) &&
1227 !before(start_seq_0, start_seq_1)) {
1228 dup_sack = 1;
1229 tcp_dsack_seen(tp);
1230 NET_INC_STATS_BH(sock_net(sk),
1231 LINUX_MIB_TCPDSACKOFORECV);
1232 }
1233 }
1234
1235 /* D-SACK for already forgotten data... Do dumb counting. */
1236 if (dup_sack &&
1237 !after(end_seq_0, prior_snd_una) &&
1238 after(end_seq_0, tp->undo_marker))
1239 tp->undo_retrans--;
1240
1241 return dup_sack;
1242 }
1243
1244 struct tcp_sacktag_state {
1245 int reord;
1246 int fack_count;
1247 int flag;
1248 };
1249
1250 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1251 * the incoming SACK may not exactly match but we can find smaller MSS
1252 * aligned portion of it that matches. Therefore we might need to fragment
1253 * which may fail and creates some hassle (caller must handle error case
1254 * returns).
1255 *
1256 * FIXME: this could be merged to shift decision code
1257 */
1258 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1259 u32 start_seq, u32 end_seq)
1260 {
1261 int in_sack, err;
1262 unsigned int pkt_len;
1263 unsigned int mss;
1264
1265 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1266 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1267
1268 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1269 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1270 mss = tcp_skb_mss(skb);
1271 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1272
1273 if (!in_sack) {
1274 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1275 if (pkt_len < mss)
1276 pkt_len = mss;
1277 } else {
1278 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1279 if (pkt_len < mss)
1280 return -EINVAL;
1281 }
1282
1283 /* Round if necessary so that SACKs cover only full MSSes
1284 * and/or the remaining small portion (if present)
1285 */
1286 if (pkt_len > mss) {
1287 unsigned int new_len = (pkt_len / mss) * mss;
1288 if (!in_sack && new_len < pkt_len) {
1289 new_len += mss;
1290 if (new_len > skb->len)
1291 return 0;
1292 }
1293 pkt_len = new_len;
1294 }
1295 err = tcp_fragment(sk, skb, pkt_len, mss);
1296 if (err < 0)
1297 return err;
1298 }
1299
1300 return in_sack;
1301 }
1302
1303 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1304 struct tcp_sacktag_state *state,
1305 int dup_sack, int pcount)
1306 {
1307 struct tcp_sock *tp = tcp_sk(sk);
1308 u8 sacked = TCP_SKB_CB(skb)->sacked;
1309 int fack_count = state->fack_count;
1310
1311 /* Account D-SACK for retransmitted packet. */
1312 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1313 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1314 tp->undo_retrans--;
1315 if (sacked & TCPCB_SACKED_ACKED)
1316 state->reord = min(fack_count, state->reord);
1317 }
1318
1319 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1320 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1321 return sacked;
1322
1323 if (!(sacked & TCPCB_SACKED_ACKED)) {
1324 if (sacked & TCPCB_SACKED_RETRANS) {
1325 /* If the segment is not tagged as lost,
1326 * we do not clear RETRANS, believing
1327 * that retransmission is still in flight.
1328 */
1329 if (sacked & TCPCB_LOST) {
1330 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1331 tp->lost_out -= pcount;
1332 tp->retrans_out -= pcount;
1333 }
1334 } else {
1335 if (!(sacked & TCPCB_RETRANS)) {
1336 /* New sack for not retransmitted frame,
1337 * which was in hole. It is reordering.
1338 */
1339 if (before(TCP_SKB_CB(skb)->seq,
1340 tcp_highest_sack_seq(tp)))
1341 state->reord = min(fack_count,
1342 state->reord);
1343
1344 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1345 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1346 state->flag |= FLAG_ONLY_ORIG_SACKED;
1347 }
1348
1349 if (sacked & TCPCB_LOST) {
1350 sacked &= ~TCPCB_LOST;
1351 tp->lost_out -= pcount;
1352 }
1353 }
1354
1355 sacked |= TCPCB_SACKED_ACKED;
1356 state->flag |= FLAG_DATA_SACKED;
1357 tp->sacked_out += pcount;
1358
1359 fack_count += pcount;
1360
1361 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1362 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1363 before(TCP_SKB_CB(skb)->seq,
1364 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1365 tp->lost_cnt_hint += pcount;
1366
1367 if (fack_count > tp->fackets_out)
1368 tp->fackets_out = fack_count;
1369 }
1370
1371 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1372 * frames and clear it. undo_retrans is decreased above, L|R frames
1373 * are accounted above as well.
1374 */
1375 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1376 sacked &= ~TCPCB_SACKED_RETRANS;
1377 tp->retrans_out -= pcount;
1378 }
1379
1380 return sacked;
1381 }
1382
1383 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1384 struct tcp_sacktag_state *state,
1385 unsigned int pcount, int shifted, int mss,
1386 int dup_sack)
1387 {
1388 struct tcp_sock *tp = tcp_sk(sk);
1389 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1390
1391 BUG_ON(!pcount);
1392
1393 /* Tweak before seqno plays */
1394 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1395 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1396 tp->lost_cnt_hint += pcount;
1397
1398 TCP_SKB_CB(prev)->end_seq += shifted;
1399 TCP_SKB_CB(skb)->seq += shifted;
1400
1401 skb_shinfo(prev)->gso_segs += pcount;
1402 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1403 skb_shinfo(skb)->gso_segs -= pcount;
1404
1405 /* When we're adding to gso_segs == 1, gso_size will be zero,
1406 * in theory this shouldn't be necessary but as long as DSACK
1407 * code can come after this skb later on it's better to keep
1408 * setting gso_size to something.
1409 */
1410 if (!skb_shinfo(prev)->gso_size) {
1411 skb_shinfo(prev)->gso_size = mss;
1412 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1413 }
1414
1415 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1416 if (skb_shinfo(skb)->gso_segs <= 1) {
1417 skb_shinfo(skb)->gso_size = 0;
1418 skb_shinfo(skb)->gso_type = 0;
1419 }
1420
1421 /* We discard results */
1422 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1423
1424 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1425 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1426
1427 if (skb->len > 0) {
1428 BUG_ON(!tcp_skb_pcount(skb));
1429 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1430 return 0;
1431 }
1432
1433 /* Whole SKB was eaten :-) */
1434
1435 if (skb == tp->retransmit_skb_hint)
1436 tp->retransmit_skb_hint = prev;
1437 if (skb == tp->scoreboard_skb_hint)
1438 tp->scoreboard_skb_hint = prev;
1439 if (skb == tp->lost_skb_hint) {
1440 tp->lost_skb_hint = prev;
1441 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1442 }
1443
1444 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1445 if (skb == tcp_highest_sack(sk))
1446 tcp_advance_highest_sack(sk, skb);
1447
1448 tcp_unlink_write_queue(skb, sk);
1449 sk_wmem_free_skb(sk, skb);
1450
1451 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1452
1453 return 1;
1454 }
1455
1456 /* I wish gso_size would have a bit more sane initialization than
1457 * something-or-zero which complicates things
1458 */
1459 static int tcp_skb_seglen(struct sk_buff *skb)
1460 {
1461 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1462 }
1463
1464 /* Shifting pages past head area doesn't work */
1465 static int skb_can_shift(struct sk_buff *skb)
1466 {
1467 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1468 }
1469
1470 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1471 * skb.
1472 */
1473 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1474 struct tcp_sacktag_state *state,
1475 u32 start_seq, u32 end_seq,
1476 int dup_sack)
1477 {
1478 struct tcp_sock *tp = tcp_sk(sk);
1479 struct sk_buff *prev;
1480 int mss;
1481 int pcount = 0;
1482 int len;
1483 int in_sack;
1484
1485 if (!sk_can_gso(sk))
1486 goto fallback;
1487
1488 /* Normally R but no L won't result in plain S */
1489 if (!dup_sack &&
1490 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1491 goto fallback;
1492 if (!skb_can_shift(skb))
1493 goto fallback;
1494 /* This frame is about to be dropped (was ACKed). */
1495 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1496 goto fallback;
1497
1498 /* Can only happen with delayed DSACK + discard craziness */
1499 if (unlikely(skb == tcp_write_queue_head(sk)))
1500 goto fallback;
1501 prev = tcp_write_queue_prev(sk, skb);
1502
1503 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1504 goto fallback;
1505
1506 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1507 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1508
1509 if (in_sack) {
1510 len = skb->len;
1511 pcount = tcp_skb_pcount(skb);
1512 mss = tcp_skb_seglen(skb);
1513
1514 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1515 * drop this restriction as unnecessary
1516 */
1517 if (mss != tcp_skb_seglen(prev))
1518 goto fallback;
1519 } else {
1520 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1521 goto noop;
1522 /* CHECKME: This is non-MSS split case only?, this will
1523 * cause skipped skbs due to advancing loop btw, original
1524 * has that feature too
1525 */
1526 if (tcp_skb_pcount(skb) <= 1)
1527 goto noop;
1528
1529 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1530 if (!in_sack) {
1531 /* TODO: head merge to next could be attempted here
1532 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1533 * though it might not be worth of the additional hassle
1534 *
1535 * ...we can probably just fallback to what was done
1536 * previously. We could try merging non-SACKed ones
1537 * as well but it probably isn't going to buy off
1538 * because later SACKs might again split them, and
1539 * it would make skb timestamp tracking considerably
1540 * harder problem.
1541 */
1542 goto fallback;
1543 }
1544
1545 len = end_seq - TCP_SKB_CB(skb)->seq;
1546 BUG_ON(len < 0);
1547 BUG_ON(len > skb->len);
1548
1549 /* MSS boundaries should be honoured or else pcount will
1550 * severely break even though it makes things bit trickier.
1551 * Optimize common case to avoid most of the divides
1552 */
1553 mss = tcp_skb_mss(skb);
1554
1555 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1556 * drop this restriction as unnecessary
1557 */
1558 if (mss != tcp_skb_seglen(prev))
1559 goto fallback;
1560
1561 if (len == mss) {
1562 pcount = 1;
1563 } else if (len < mss) {
1564 goto noop;
1565 } else {
1566 pcount = len / mss;
1567 len = pcount * mss;
1568 }
1569 }
1570
1571 if (!skb_shift(prev, skb, len))
1572 goto fallback;
1573 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1574 goto out;
1575
1576 /* Hole filled allows collapsing with the next as well, this is very
1577 * useful when hole on every nth skb pattern happens
1578 */
1579 if (prev == tcp_write_queue_tail(sk))
1580 goto out;
1581 skb = tcp_write_queue_next(sk, prev);
1582
1583 if (!skb_can_shift(skb) ||
1584 (skb == tcp_send_head(sk)) ||
1585 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1586 (mss != tcp_skb_seglen(skb)))
1587 goto out;
1588
1589 len = skb->len;
1590 if (skb_shift(prev, skb, len)) {
1591 pcount += tcp_skb_pcount(skb);
1592 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1593 }
1594
1595 out:
1596 state->fack_count += pcount;
1597 return prev;
1598
1599 noop:
1600 return skb;
1601
1602 fallback:
1603 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1604 return NULL;
1605 }
1606
1607 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1608 struct tcp_sack_block *next_dup,
1609 struct tcp_sacktag_state *state,
1610 u32 start_seq, u32 end_seq,
1611 int dup_sack_in)
1612 {
1613 struct tcp_sock *tp = tcp_sk(sk);
1614 struct sk_buff *tmp;
1615
1616 tcp_for_write_queue_from(skb, sk) {
1617 int in_sack = 0;
1618 int dup_sack = dup_sack_in;
1619
1620 if (skb == tcp_send_head(sk))
1621 break;
1622
1623 /* queue is in-order => we can short-circuit the walk early */
1624 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1625 break;
1626
1627 if ((next_dup != NULL) &&
1628 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1629 in_sack = tcp_match_skb_to_sack(sk, skb,
1630 next_dup->start_seq,
1631 next_dup->end_seq);
1632 if (in_sack > 0)
1633 dup_sack = 1;
1634 }
1635
1636 /* skb reference here is a bit tricky to get right, since
1637 * shifting can eat and free both this skb and the next,
1638 * so not even _safe variant of the loop is enough.
1639 */
1640 if (in_sack <= 0) {
1641 tmp = tcp_shift_skb_data(sk, skb, state,
1642 start_seq, end_seq, dup_sack);
1643 if (tmp != NULL) {
1644 if (tmp != skb) {
1645 skb = tmp;
1646 continue;
1647 }
1648
1649 in_sack = 0;
1650 } else {
1651 in_sack = tcp_match_skb_to_sack(sk, skb,
1652 start_seq,
1653 end_seq);
1654 }
1655 }
1656
1657 if (unlikely(in_sack < 0))
1658 break;
1659
1660 if (in_sack) {
1661 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1662 state,
1663 dup_sack,
1664 tcp_skb_pcount(skb));
1665
1666 if (!before(TCP_SKB_CB(skb)->seq,
1667 tcp_highest_sack_seq(tp)))
1668 tcp_advance_highest_sack(sk, skb);
1669 }
1670
1671 state->fack_count += tcp_skb_pcount(skb);
1672 }
1673 return skb;
1674 }
1675
1676 /* Avoid all extra work that is being done by sacktag while walking in
1677 * a normal way
1678 */
1679 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1680 struct tcp_sacktag_state *state,
1681 u32 skip_to_seq)
1682 {
1683 tcp_for_write_queue_from(skb, sk) {
1684 if (skb == tcp_send_head(sk))
1685 break;
1686
1687 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1688 break;
1689
1690 state->fack_count += tcp_skb_pcount(skb);
1691 }
1692 return skb;
1693 }
1694
1695 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1696 struct sock *sk,
1697 struct tcp_sack_block *next_dup,
1698 struct tcp_sacktag_state *state,
1699 u32 skip_to_seq)
1700 {
1701 if (next_dup == NULL)
1702 return skb;
1703
1704 if (before(next_dup->start_seq, skip_to_seq)) {
1705 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1706 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1707 next_dup->start_seq, next_dup->end_seq,
1708 1);
1709 }
1710
1711 return skb;
1712 }
1713
1714 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1715 {
1716 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1717 }
1718
1719 static int
1720 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1721 u32 prior_snd_una)
1722 {
1723 const struct inet_connection_sock *icsk = inet_csk(sk);
1724 struct tcp_sock *tp = tcp_sk(sk);
1725 unsigned char *ptr = (skb_transport_header(ack_skb) +
1726 TCP_SKB_CB(ack_skb)->sacked);
1727 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1728 struct tcp_sack_block sp[TCP_NUM_SACKS];
1729 struct tcp_sack_block *cache;
1730 struct tcp_sacktag_state state;
1731 struct sk_buff *skb;
1732 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1733 int used_sacks;
1734 int found_dup_sack = 0;
1735 int i, j;
1736 int first_sack_index;
1737
1738 state.flag = 0;
1739 state.reord = tp->packets_out;
1740
1741 if (!tp->sacked_out) {
1742 if (WARN_ON(tp->fackets_out))
1743 tp->fackets_out = 0;
1744 tcp_highest_sack_reset(sk);
1745 }
1746
1747 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1748 num_sacks, prior_snd_una);
1749 if (found_dup_sack)
1750 state.flag |= FLAG_DSACKING_ACK;
1751
1752 /* Eliminate too old ACKs, but take into
1753 * account more or less fresh ones, they can
1754 * contain valid SACK info.
1755 */
1756 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1757 return 0;
1758
1759 if (!tp->packets_out)
1760 goto out;
1761
1762 used_sacks = 0;
1763 first_sack_index = 0;
1764 for (i = 0; i < num_sacks; i++) {
1765 int dup_sack = !i && found_dup_sack;
1766
1767 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1768 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1769
1770 if (!tcp_is_sackblock_valid(tp, dup_sack,
1771 sp[used_sacks].start_seq,
1772 sp[used_sacks].end_seq)) {
1773 int mib_idx;
1774
1775 if (dup_sack) {
1776 if (!tp->undo_marker)
1777 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1778 else
1779 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1780 } else {
1781 /* Don't count olds caused by ACK reordering */
1782 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1783 !after(sp[used_sacks].end_seq, tp->snd_una))
1784 continue;
1785 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1786 }
1787
1788 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1789 if (i == 0)
1790 first_sack_index = -1;
1791 continue;
1792 }
1793
1794 /* Ignore very old stuff early */
1795 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1796 continue;
1797
1798 used_sacks++;
1799 }
1800
1801 /* order SACK blocks to allow in order walk of the retrans queue */
1802 for (i = used_sacks - 1; i > 0; i--) {
1803 for (j = 0; j < i; j++) {
1804 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1805 struct tcp_sack_block tmp;
1806
1807 tmp = sp[j];
1808 sp[j] = sp[j + 1];
1809 sp[j + 1] = tmp;
1810
1811 /* Track where the first SACK block goes to */
1812 if (j == first_sack_index)
1813 first_sack_index = j + 1;
1814 }
1815 }
1816 }
1817
1818 skb = tcp_write_queue_head(sk);
1819 state.fack_count = 0;
1820 i = 0;
1821
1822 if (!tp->sacked_out) {
1823 /* It's already past, so skip checking against it */
1824 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1825 } else {
1826 cache = tp->recv_sack_cache;
1827 /* Skip empty blocks in at head of the cache */
1828 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1829 !cache->end_seq)
1830 cache++;
1831 }
1832
1833 while (i < used_sacks) {
1834 u32 start_seq = sp[i].start_seq;
1835 u32 end_seq = sp[i].end_seq;
1836 int dup_sack = (found_dup_sack && (i == first_sack_index));
1837 struct tcp_sack_block *next_dup = NULL;
1838
1839 if (found_dup_sack && ((i + 1) == first_sack_index))
1840 next_dup = &sp[i + 1];
1841
1842 /* Event "B" in the comment above. */
1843 if (after(end_seq, tp->high_seq))
1844 state.flag |= FLAG_DATA_LOST;
1845
1846 /* Skip too early cached blocks */
1847 while (tcp_sack_cache_ok(tp, cache) &&
1848 !before(start_seq, cache->end_seq))
1849 cache++;
1850
1851 /* Can skip some work by looking recv_sack_cache? */
1852 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1853 after(end_seq, cache->start_seq)) {
1854
1855 /* Head todo? */
1856 if (before(start_seq, cache->start_seq)) {
1857 skb = tcp_sacktag_skip(skb, sk, &state,
1858 start_seq);
1859 skb = tcp_sacktag_walk(skb, sk, next_dup,
1860 &state,
1861 start_seq,
1862 cache->start_seq,
1863 dup_sack);
1864 }
1865
1866 /* Rest of the block already fully processed? */
1867 if (!after(end_seq, cache->end_seq))
1868 goto advance_sp;
1869
1870 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1871 &state,
1872 cache->end_seq);
1873
1874 /* ...tail remains todo... */
1875 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1876 /* ...but better entrypoint exists! */
1877 skb = tcp_highest_sack(sk);
1878 if (skb == NULL)
1879 break;
1880 state.fack_count = tp->fackets_out;
1881 cache++;
1882 goto walk;
1883 }
1884
1885 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1886 /* Check overlap against next cached too (past this one already) */
1887 cache++;
1888 continue;
1889 }
1890
1891 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1892 skb = tcp_highest_sack(sk);
1893 if (skb == NULL)
1894 break;
1895 state.fack_count = tp->fackets_out;
1896 }
1897 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1898
1899 walk:
1900 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1901 start_seq, end_seq, dup_sack);
1902
1903 advance_sp:
1904 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1905 * due to in-order walk
1906 */
1907 if (after(end_seq, tp->frto_highmark))
1908 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1909
1910 i++;
1911 }
1912
1913 /* Clear the head of the cache sack blocks so we can skip it next time */
1914 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1915 tp->recv_sack_cache[i].start_seq = 0;
1916 tp->recv_sack_cache[i].end_seq = 0;
1917 }
1918 for (j = 0; j < used_sacks; j++)
1919 tp->recv_sack_cache[i++] = sp[j];
1920
1921 tcp_mark_lost_retrans(sk);
1922
1923 tcp_verify_left_out(tp);
1924
1925 if ((state.reord < tp->fackets_out) &&
1926 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1927 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1928 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1929
1930 out:
1931
1932 #if FASTRETRANS_DEBUG > 0
1933 WARN_ON((int)tp->sacked_out < 0);
1934 WARN_ON((int)tp->lost_out < 0);
1935 WARN_ON((int)tp->retrans_out < 0);
1936 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1937 #endif
1938 return state.flag;
1939 }
1940
1941 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1942 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1943 */
1944 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1945 {
1946 u32 holes;
1947
1948 holes = max(tp->lost_out, 1U);
1949 holes = min(holes, tp->packets_out);
1950
1951 if ((tp->sacked_out + holes) > tp->packets_out) {
1952 tp->sacked_out = tp->packets_out - holes;
1953 return 1;
1954 }
1955 return 0;
1956 }
1957
1958 /* If we receive more dupacks than we expected counting segments
1959 * in assumption of absent reordering, interpret this as reordering.
1960 * The only another reason could be bug in receiver TCP.
1961 */
1962 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1963 {
1964 struct tcp_sock *tp = tcp_sk(sk);
1965 if (tcp_limit_reno_sacked(tp))
1966 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1967 }
1968
1969 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1970
1971 static void tcp_add_reno_sack(struct sock *sk)
1972 {
1973 struct tcp_sock *tp = tcp_sk(sk);
1974 tp->sacked_out++;
1975 tcp_check_reno_reordering(sk, 0);
1976 tcp_verify_left_out(tp);
1977 }
1978
1979 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1980
1981 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1982 {
1983 struct tcp_sock *tp = tcp_sk(sk);
1984
1985 if (acked > 0) {
1986 /* One ACK acked hole. The rest eat duplicate ACKs. */
1987 if (acked - 1 >= tp->sacked_out)
1988 tp->sacked_out = 0;
1989 else
1990 tp->sacked_out -= acked - 1;
1991 }
1992 tcp_check_reno_reordering(sk, acked);
1993 tcp_verify_left_out(tp);
1994 }
1995
1996 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1997 {
1998 tp->sacked_out = 0;
1999 }
2000
2001 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2002 {
2003 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2004 }
2005
2006 /* F-RTO can only be used if TCP has never retransmitted anything other than
2007 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2008 */
2009 int tcp_use_frto(struct sock *sk)
2010 {
2011 const struct tcp_sock *tp = tcp_sk(sk);
2012 const struct inet_connection_sock *icsk = inet_csk(sk);
2013 struct sk_buff *skb;
2014
2015 if (!sysctl_tcp_frto)
2016 return 0;
2017
2018 /* MTU probe and F-RTO won't really play nicely along currently */
2019 if (icsk->icsk_mtup.probe_size)
2020 return 0;
2021
2022 if (tcp_is_sackfrto(tp))
2023 return 1;
2024
2025 /* Avoid expensive walking of rexmit queue if possible */
2026 if (tp->retrans_out > 1)
2027 return 0;
2028
2029 skb = tcp_write_queue_head(sk);
2030 if (tcp_skb_is_last(sk, skb))
2031 return 1;
2032 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2033 tcp_for_write_queue_from(skb, sk) {
2034 if (skb == tcp_send_head(sk))
2035 break;
2036 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2037 return 0;
2038 /* Short-circuit when first non-SACKed skb has been checked */
2039 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2040 break;
2041 }
2042 return 1;
2043 }
2044
2045 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2046 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2047 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2048 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2049 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2050 * bits are handled if the Loss state is really to be entered (in
2051 * tcp_enter_frto_loss).
2052 *
2053 * Do like tcp_enter_loss() would; when RTO expires the second time it
2054 * does:
2055 * "Reduce ssthresh if it has not yet been made inside this window."
2056 */
2057 void tcp_enter_frto(struct sock *sk)
2058 {
2059 const struct inet_connection_sock *icsk = inet_csk(sk);
2060 struct tcp_sock *tp = tcp_sk(sk);
2061 struct sk_buff *skb;
2062
2063 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2064 tp->snd_una == tp->high_seq ||
2065 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2066 !icsk->icsk_retransmits)) {
2067 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2068 /* Our state is too optimistic in ssthresh() call because cwnd
2069 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2070 * recovery has not yet completed. Pattern would be this: RTO,
2071 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2072 * up here twice).
2073 * RFC4138 should be more specific on what to do, even though
2074 * RTO is quite unlikely to occur after the first Cumulative ACK
2075 * due to back-off and complexity of triggering events ...
2076 */
2077 if (tp->frto_counter) {
2078 u32 stored_cwnd;
2079 stored_cwnd = tp->snd_cwnd;
2080 tp->snd_cwnd = 2;
2081 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2082 tp->snd_cwnd = stored_cwnd;
2083 } else {
2084 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2085 }
2086 /* ... in theory, cong.control module could do "any tricks" in
2087 * ssthresh(), which means that ca_state, lost bits and lost_out
2088 * counter would have to be faked before the call occurs. We
2089 * consider that too expensive, unlikely and hacky, so modules
2090 * using these in ssthresh() must deal these incompatibility
2091 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2092 */
2093 tcp_ca_event(sk, CA_EVENT_FRTO);
2094 }
2095
2096 tp->undo_marker = tp->snd_una;
2097 tp->undo_retrans = 0;
2098
2099 skb = tcp_write_queue_head(sk);
2100 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2101 tp->undo_marker = 0;
2102 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2103 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2104 tp->retrans_out -= tcp_skb_pcount(skb);
2105 }
2106 tcp_verify_left_out(tp);
2107
2108 /* Too bad if TCP was application limited */
2109 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2110
2111 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2112 * The last condition is necessary at least in tp->frto_counter case.
2113 */
2114 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2115 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2116 after(tp->high_seq, tp->snd_una)) {
2117 tp->frto_highmark = tp->high_seq;
2118 } else {
2119 tp->frto_highmark = tp->snd_nxt;
2120 }
2121 tcp_set_ca_state(sk, TCP_CA_Disorder);
2122 tp->high_seq = tp->snd_nxt;
2123 tp->frto_counter = 1;
2124 }
2125
2126 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2127 * which indicates that we should follow the traditional RTO recovery,
2128 * i.e. mark everything lost and do go-back-N retransmission.
2129 */
2130 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2131 {
2132 struct tcp_sock *tp = tcp_sk(sk);
2133 struct sk_buff *skb;
2134
2135 tp->lost_out = 0;
2136 tp->retrans_out = 0;
2137 if (tcp_is_reno(tp))
2138 tcp_reset_reno_sack(tp);
2139
2140 tcp_for_write_queue(skb, sk) {
2141 if (skb == tcp_send_head(sk))
2142 break;
2143
2144 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2145 /*
2146 * Count the retransmission made on RTO correctly (only when
2147 * waiting for the first ACK and did not get it)...
2148 */
2149 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2150 /* For some reason this R-bit might get cleared? */
2151 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2152 tp->retrans_out += tcp_skb_pcount(skb);
2153 /* ...enter this if branch just for the first segment */
2154 flag |= FLAG_DATA_ACKED;
2155 } else {
2156 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2157 tp->undo_marker = 0;
2158 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2159 }
2160
2161 /* Marking forward transmissions that were made after RTO lost
2162 * can cause unnecessary retransmissions in some scenarios,
2163 * SACK blocks will mitigate that in some but not in all cases.
2164 * We used to not mark them but it was causing break-ups with
2165 * receivers that do only in-order receival.
2166 *
2167 * TODO: we could detect presence of such receiver and select
2168 * different behavior per flow.
2169 */
2170 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2171 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2172 tp->lost_out += tcp_skb_pcount(skb);
2173 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2174 }
2175 }
2176 tcp_verify_left_out(tp);
2177
2178 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2179 tp->snd_cwnd_cnt = 0;
2180 tp->snd_cwnd_stamp = tcp_time_stamp;
2181 tp->frto_counter = 0;
2182 tp->bytes_acked = 0;
2183
2184 tp->reordering = min_t(unsigned int, tp->reordering,
2185 sysctl_tcp_reordering);
2186 tcp_set_ca_state(sk, TCP_CA_Loss);
2187 tp->high_seq = tp->snd_nxt;
2188 TCP_ECN_queue_cwr(tp);
2189
2190 tcp_clear_all_retrans_hints(tp);
2191 }
2192
2193 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2194 {
2195 tp->retrans_out = 0;
2196 tp->lost_out = 0;
2197
2198 tp->undo_marker = 0;
2199 tp->undo_retrans = 0;
2200 }
2201
2202 void tcp_clear_retrans(struct tcp_sock *tp)
2203 {
2204 tcp_clear_retrans_partial(tp);
2205
2206 tp->fackets_out = 0;
2207 tp->sacked_out = 0;
2208 }
2209
2210 /* Enter Loss state. If "how" is not zero, forget all SACK information
2211 * and reset tags completely, otherwise preserve SACKs. If receiver
2212 * dropped its ofo queue, we will know this due to reneging detection.
2213 */
2214 void tcp_enter_loss(struct sock *sk, int how)
2215 {
2216 const struct inet_connection_sock *icsk = inet_csk(sk);
2217 struct tcp_sock *tp = tcp_sk(sk);
2218 struct sk_buff *skb;
2219
2220 /* Reduce ssthresh if it has not yet been made inside this window. */
2221 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2222 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2223 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2224 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2225 tcp_ca_event(sk, CA_EVENT_LOSS);
2226 }
2227 tp->snd_cwnd = 1;
2228 tp->snd_cwnd_cnt = 0;
2229 tp->snd_cwnd_stamp = tcp_time_stamp;
2230
2231 tp->bytes_acked = 0;
2232 tcp_clear_retrans_partial(tp);
2233
2234 if (tcp_is_reno(tp))
2235 tcp_reset_reno_sack(tp);
2236
2237 if (!how) {
2238 /* Push undo marker, if it was plain RTO and nothing
2239 * was retransmitted. */
2240 tp->undo_marker = tp->snd_una;
2241 } else {
2242 tp->sacked_out = 0;
2243 tp->fackets_out = 0;
2244 }
2245 tcp_clear_all_retrans_hints(tp);
2246
2247 tcp_for_write_queue(skb, sk) {
2248 if (skb == tcp_send_head(sk))
2249 break;
2250
2251 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2252 tp->undo_marker = 0;
2253 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2254 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2255 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2256 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2257 tp->lost_out += tcp_skb_pcount(skb);
2258 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2259 }
2260 }
2261 tcp_verify_left_out(tp);
2262
2263 tp->reordering = min_t(unsigned int, tp->reordering,
2264 sysctl_tcp_reordering);
2265 tcp_set_ca_state(sk, TCP_CA_Loss);
2266 tp->high_seq = tp->snd_nxt;
2267 TCP_ECN_queue_cwr(tp);
2268 /* Abort F-RTO algorithm if one is in progress */
2269 tp->frto_counter = 0;
2270 }
2271
2272 /* If ACK arrived pointing to a remembered SACK, it means that our
2273 * remembered SACKs do not reflect real state of receiver i.e.
2274 * receiver _host_ is heavily congested (or buggy).
2275 *
2276 * Do processing similar to RTO timeout.
2277 */
2278 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2279 {
2280 if (flag & FLAG_SACK_RENEGING) {
2281 struct inet_connection_sock *icsk = inet_csk(sk);
2282 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2283
2284 tcp_enter_loss(sk, 1);
2285 icsk->icsk_retransmits++;
2286 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2287 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2288 icsk->icsk_rto, TCP_RTO_MAX);
2289 return 1;
2290 }
2291 return 0;
2292 }
2293
2294 static inline int tcp_fackets_out(struct tcp_sock *tp)
2295 {
2296 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2297 }
2298
2299 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2300 * counter when SACK is enabled (without SACK, sacked_out is used for
2301 * that purpose).
2302 *
2303 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2304 * segments up to the highest received SACK block so far and holes in
2305 * between them.
2306 *
2307 * With reordering, holes may still be in flight, so RFC3517 recovery
2308 * uses pure sacked_out (total number of SACKed segments) even though
2309 * it violates the RFC that uses duplicate ACKs, often these are equal
2310 * but when e.g. out-of-window ACKs or packet duplication occurs,
2311 * they differ. Since neither occurs due to loss, TCP should really
2312 * ignore them.
2313 */
2314 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2315 {
2316 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2317 }
2318
2319 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2320 {
2321 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2322 }
2323
2324 static inline int tcp_head_timedout(struct sock *sk)
2325 {
2326 struct tcp_sock *tp = tcp_sk(sk);
2327
2328 return tp->packets_out &&
2329 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2330 }
2331
2332 /* Linux NewReno/SACK/FACK/ECN state machine.
2333 * --------------------------------------
2334 *
2335 * "Open" Normal state, no dubious events, fast path.
2336 * "Disorder" In all the respects it is "Open",
2337 * but requires a bit more attention. It is entered when
2338 * we see some SACKs or dupacks. It is split of "Open"
2339 * mainly to move some processing from fast path to slow one.
2340 * "CWR" CWND was reduced due to some Congestion Notification event.
2341 * It can be ECN, ICMP source quench, local device congestion.
2342 * "Recovery" CWND was reduced, we are fast-retransmitting.
2343 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2344 *
2345 * tcp_fastretrans_alert() is entered:
2346 * - each incoming ACK, if state is not "Open"
2347 * - when arrived ACK is unusual, namely:
2348 * * SACK
2349 * * Duplicate ACK.
2350 * * ECN ECE.
2351 *
2352 * Counting packets in flight is pretty simple.
2353 *
2354 * in_flight = packets_out - left_out + retrans_out
2355 *
2356 * packets_out is SND.NXT-SND.UNA counted in packets.
2357 *
2358 * retrans_out is number of retransmitted segments.
2359 *
2360 * left_out is number of segments left network, but not ACKed yet.
2361 *
2362 * left_out = sacked_out + lost_out
2363 *
2364 * sacked_out: Packets, which arrived to receiver out of order
2365 * and hence not ACKed. With SACKs this number is simply
2366 * amount of SACKed data. Even without SACKs
2367 * it is easy to give pretty reliable estimate of this number,
2368 * counting duplicate ACKs.
2369 *
2370 * lost_out: Packets lost by network. TCP has no explicit
2371 * "loss notification" feedback from network (for now).
2372 * It means that this number can be only _guessed_.
2373 * Actually, it is the heuristics to predict lossage that
2374 * distinguishes different algorithms.
2375 *
2376 * F.e. after RTO, when all the queue is considered as lost,
2377 * lost_out = packets_out and in_flight = retrans_out.
2378 *
2379 * Essentially, we have now two algorithms counting
2380 * lost packets.
2381 *
2382 * FACK: It is the simplest heuristics. As soon as we decided
2383 * that something is lost, we decide that _all_ not SACKed
2384 * packets until the most forward SACK are lost. I.e.
2385 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2386 * It is absolutely correct estimate, if network does not reorder
2387 * packets. And it loses any connection to reality when reordering
2388 * takes place. We use FACK by default until reordering
2389 * is suspected on the path to this destination.
2390 *
2391 * NewReno: when Recovery is entered, we assume that one segment
2392 * is lost (classic Reno). While we are in Recovery and
2393 * a partial ACK arrives, we assume that one more packet
2394 * is lost (NewReno). This heuristics are the same in NewReno
2395 * and SACK.
2396 *
2397 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2398 * deflation etc. CWND is real congestion window, never inflated, changes
2399 * only according to classic VJ rules.
2400 *
2401 * Really tricky (and requiring careful tuning) part of algorithm
2402 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2403 * The first determines the moment _when_ we should reduce CWND and,
2404 * hence, slow down forward transmission. In fact, it determines the moment
2405 * when we decide that hole is caused by loss, rather than by a reorder.
2406 *
2407 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2408 * holes, caused by lost packets.
2409 *
2410 * And the most logically complicated part of algorithm is undo
2411 * heuristics. We detect false retransmits due to both too early
2412 * fast retransmit (reordering) and underestimated RTO, analyzing
2413 * timestamps and D-SACKs. When we detect that some segments were
2414 * retransmitted by mistake and CWND reduction was wrong, we undo
2415 * window reduction and abort recovery phase. This logic is hidden
2416 * inside several functions named tcp_try_undo_<something>.
2417 */
2418
2419 /* This function decides, when we should leave Disordered state
2420 * and enter Recovery phase, reducing congestion window.
2421 *
2422 * Main question: may we further continue forward transmission
2423 * with the same cwnd?
2424 */
2425 static int tcp_time_to_recover(struct sock *sk)
2426 {
2427 struct tcp_sock *tp = tcp_sk(sk);
2428 __u32 packets_out;
2429
2430 /* Do not perform any recovery during F-RTO algorithm */
2431 if (tp->frto_counter)
2432 return 0;
2433
2434 /* Trick#1: The loss is proven. */
2435 if (tp->lost_out)
2436 return 1;
2437
2438 /* Not-A-Trick#2 : Classic rule... */
2439 if (tcp_dupack_heurestics(tp) > tp->reordering)
2440 return 1;
2441
2442 /* Trick#3 : when we use RFC2988 timer restart, fast
2443 * retransmit can be triggered by timeout of queue head.
2444 */
2445 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2446 return 1;
2447
2448 /* Trick#4: It is still not OK... But will it be useful to delay
2449 * recovery more?
2450 */
2451 packets_out = tp->packets_out;
2452 if (packets_out <= tp->reordering &&
2453 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2454 !tcp_may_send_now(sk)) {
2455 /* We have nothing to send. This connection is limited
2456 * either by receiver window or by application.
2457 */
2458 return 1;
2459 }
2460
2461 return 0;
2462 }
2463
2464 /* New heuristics: it is possible only after we switched to restart timer
2465 * each time when something is ACKed. Hence, we can detect timed out packets
2466 * during fast retransmit without falling to slow start.
2467 *
2468 * Usefulness of this as is very questionable, since we should know which of
2469 * the segments is the next to timeout which is relatively expensive to find
2470 * in general case unless we add some data structure just for that. The
2471 * current approach certainly won't find the right one too often and when it
2472 * finally does find _something_ it usually marks large part of the window
2473 * right away (because a retransmission with a larger timestamp blocks the
2474 * loop from advancing). -ij
2475 */
2476 static void tcp_timeout_skbs(struct sock *sk)
2477 {
2478 struct tcp_sock *tp = tcp_sk(sk);
2479 struct sk_buff *skb;
2480
2481 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2482 return;
2483
2484 skb = tp->scoreboard_skb_hint;
2485 if (tp->scoreboard_skb_hint == NULL)
2486 skb = tcp_write_queue_head(sk);
2487
2488 tcp_for_write_queue_from(skb, sk) {
2489 if (skb == tcp_send_head(sk))
2490 break;
2491 if (!tcp_skb_timedout(sk, skb))
2492 break;
2493
2494 tcp_skb_mark_lost(tp, skb);
2495 }
2496
2497 tp->scoreboard_skb_hint = skb;
2498
2499 tcp_verify_left_out(tp);
2500 }
2501
2502 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2503 * is against sacked "cnt", otherwise it's against facked "cnt"
2504 */
2505 static void tcp_mark_head_lost(struct sock *sk, int packets)
2506 {
2507 struct tcp_sock *tp = tcp_sk(sk);
2508 struct sk_buff *skb;
2509 int cnt, oldcnt;
2510 int err;
2511 unsigned int mss;
2512
2513 WARN_ON(packets > tp->packets_out);
2514 if (tp->lost_skb_hint) {
2515 skb = tp->lost_skb_hint;
2516 cnt = tp->lost_cnt_hint;
2517 } else {
2518 skb = tcp_write_queue_head(sk);
2519 cnt = 0;
2520 }
2521
2522 tcp_for_write_queue_from(skb, sk) {
2523 if (skb == tcp_send_head(sk))
2524 break;
2525 /* TODO: do this better */
2526 /* this is not the most efficient way to do this... */
2527 tp->lost_skb_hint = skb;
2528 tp->lost_cnt_hint = cnt;
2529
2530 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2531 break;
2532
2533 oldcnt = cnt;
2534 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2535 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2536 cnt += tcp_skb_pcount(skb);
2537
2538 if (cnt > packets) {
2539 if (tcp_is_sack(tp) || (oldcnt >= packets))
2540 break;
2541
2542 mss = skb_shinfo(skb)->gso_size;
2543 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2544 if (err < 0)
2545 break;
2546 cnt = packets;
2547 }
2548
2549 tcp_skb_mark_lost(tp, skb);
2550 }
2551 tcp_verify_left_out(tp);
2552 }
2553
2554 /* Account newly detected lost packet(s) */
2555
2556 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2557 {
2558 struct tcp_sock *tp = tcp_sk(sk);
2559
2560 if (tcp_is_reno(tp)) {
2561 tcp_mark_head_lost(sk, 1);
2562 } else if (tcp_is_fack(tp)) {
2563 int lost = tp->fackets_out - tp->reordering;
2564 if (lost <= 0)
2565 lost = 1;
2566 tcp_mark_head_lost(sk, lost);
2567 } else {
2568 int sacked_upto = tp->sacked_out - tp->reordering;
2569 if (sacked_upto < fast_rexmit)
2570 sacked_upto = fast_rexmit;
2571 tcp_mark_head_lost(sk, sacked_upto);
2572 }
2573
2574 tcp_timeout_skbs(sk);
2575 }
2576
2577 /* CWND moderation, preventing bursts due to too big ACKs
2578 * in dubious situations.
2579 */
2580 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2581 {
2582 tp->snd_cwnd = min(tp->snd_cwnd,
2583 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2584 tp->snd_cwnd_stamp = tcp_time_stamp;
2585 }
2586
2587 /* Lower bound on congestion window is slow start threshold
2588 * unless congestion avoidance choice decides to overide it.
2589 */
2590 static inline u32 tcp_cwnd_min(const struct sock *sk)
2591 {
2592 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2593
2594 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2595 }
2596
2597 /* Decrease cwnd each second ack. */
2598 static void tcp_cwnd_down(struct sock *sk, int flag)
2599 {
2600 struct tcp_sock *tp = tcp_sk(sk);
2601 int decr = tp->snd_cwnd_cnt + 1;
2602
2603 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2604 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2605 tp->snd_cwnd_cnt = decr & 1;
2606 decr >>= 1;
2607
2608 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2609 tp->snd_cwnd -= decr;
2610
2611 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2612 tp->snd_cwnd_stamp = tcp_time_stamp;
2613 }
2614 }
2615
2616 /* Nothing was retransmitted or returned timestamp is less
2617 * than timestamp of the first retransmission.
2618 */
2619 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2620 {
2621 return !tp->retrans_stamp ||
2622 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2623 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2624 }
2625
2626 /* Undo procedures. */
2627
2628 #if FASTRETRANS_DEBUG > 1
2629 static void DBGUNDO(struct sock *sk, const char *msg)
2630 {
2631 struct tcp_sock *tp = tcp_sk(sk);
2632 struct inet_sock *inet = inet_sk(sk);
2633
2634 if (sk->sk_family == AF_INET) {
2635 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2636 msg,
2637 &inet->daddr, ntohs(inet->dport),
2638 tp->snd_cwnd, tcp_left_out(tp),
2639 tp->snd_ssthresh, tp->prior_ssthresh,
2640 tp->packets_out);
2641 }
2642 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2643 else if (sk->sk_family == AF_INET6) {
2644 struct ipv6_pinfo *np = inet6_sk(sk);
2645 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2646 msg,
2647 &np->daddr, ntohs(inet->dport),
2648 tp->snd_cwnd, tcp_left_out(tp),
2649 tp->snd_ssthresh, tp->prior_ssthresh,
2650 tp->packets_out);
2651 }
2652 #endif
2653 }
2654 #else
2655 #define DBGUNDO(x...) do { } while (0)
2656 #endif
2657
2658 static void tcp_undo_cwr(struct sock *sk, const int undo)
2659 {
2660 struct tcp_sock *tp = tcp_sk(sk);
2661
2662 if (tp->prior_ssthresh) {
2663 const struct inet_connection_sock *icsk = inet_csk(sk);
2664
2665 if (icsk->icsk_ca_ops->undo_cwnd)
2666 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2667 else
2668 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2669
2670 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2671 tp->snd_ssthresh = tp->prior_ssthresh;
2672 TCP_ECN_withdraw_cwr(tp);
2673 }
2674 } else {
2675 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2676 }
2677 tcp_moderate_cwnd(tp);
2678 tp->snd_cwnd_stamp = tcp_time_stamp;
2679 }
2680
2681 static inline int tcp_may_undo(struct tcp_sock *tp)
2682 {
2683 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2684 }
2685
2686 /* People celebrate: "We love our President!" */
2687 static int tcp_try_undo_recovery(struct sock *sk)
2688 {
2689 struct tcp_sock *tp = tcp_sk(sk);
2690
2691 if (tcp_may_undo(tp)) {
2692 int mib_idx;
2693
2694 /* Happy end! We did not retransmit anything
2695 * or our original transmission succeeded.
2696 */
2697 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2698 tcp_undo_cwr(sk, 1);
2699 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2700 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2701 else
2702 mib_idx = LINUX_MIB_TCPFULLUNDO;
2703
2704 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2705 tp->undo_marker = 0;
2706 }
2707 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2708 /* Hold old state until something *above* high_seq
2709 * is ACKed. For Reno it is MUST to prevent false
2710 * fast retransmits (RFC2582). SACK TCP is safe. */
2711 tcp_moderate_cwnd(tp);
2712 return 1;
2713 }
2714 tcp_set_ca_state(sk, TCP_CA_Open);
2715 return 0;
2716 }
2717
2718 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2719 static void tcp_try_undo_dsack(struct sock *sk)
2720 {
2721 struct tcp_sock *tp = tcp_sk(sk);
2722
2723 if (tp->undo_marker && !tp->undo_retrans) {
2724 DBGUNDO(sk, "D-SACK");
2725 tcp_undo_cwr(sk, 1);
2726 tp->undo_marker = 0;
2727 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2728 }
2729 }
2730
2731 /* Undo during fast recovery after partial ACK. */
2732
2733 static int tcp_try_undo_partial(struct sock *sk, int acked)
2734 {
2735 struct tcp_sock *tp = tcp_sk(sk);
2736 /* Partial ACK arrived. Force Hoe's retransmit. */
2737 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2738
2739 if (tcp_may_undo(tp)) {
2740 /* Plain luck! Hole if filled with delayed
2741 * packet, rather than with a retransmit.
2742 */
2743 if (tp->retrans_out == 0)
2744 tp->retrans_stamp = 0;
2745
2746 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2747
2748 DBGUNDO(sk, "Hoe");
2749 tcp_undo_cwr(sk, 0);
2750 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2751
2752 /* So... Do not make Hoe's retransmit yet.
2753 * If the first packet was delayed, the rest
2754 * ones are most probably delayed as well.
2755 */
2756 failed = 0;
2757 }
2758 return failed;
2759 }
2760
2761 /* Undo during loss recovery after partial ACK. */
2762 static int tcp_try_undo_loss(struct sock *sk)
2763 {
2764 struct tcp_sock *tp = tcp_sk(sk);
2765
2766 if (tcp_may_undo(tp)) {
2767 struct sk_buff *skb;
2768 tcp_for_write_queue(skb, sk) {
2769 if (skb == tcp_send_head(sk))
2770 break;
2771 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2772 }
2773
2774 tcp_clear_all_retrans_hints(tp);
2775
2776 DBGUNDO(sk, "partial loss");
2777 tp->lost_out = 0;
2778 tcp_undo_cwr(sk, 1);
2779 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2780 inet_csk(sk)->icsk_retransmits = 0;
2781 tp->undo_marker = 0;
2782 if (tcp_is_sack(tp))
2783 tcp_set_ca_state(sk, TCP_CA_Open);
2784 return 1;
2785 }
2786 return 0;
2787 }
2788
2789 static inline void tcp_complete_cwr(struct sock *sk)
2790 {
2791 struct tcp_sock *tp = tcp_sk(sk);
2792 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2793 tp->snd_cwnd_stamp = tcp_time_stamp;
2794 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2795 }
2796
2797 static void tcp_try_keep_open(struct sock *sk)
2798 {
2799 struct tcp_sock *tp = tcp_sk(sk);
2800 int state = TCP_CA_Open;
2801
2802 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2803 state = TCP_CA_Disorder;
2804
2805 if (inet_csk(sk)->icsk_ca_state != state) {
2806 tcp_set_ca_state(sk, state);
2807 tp->high_seq = tp->snd_nxt;
2808 }
2809 }
2810
2811 static void tcp_try_to_open(struct sock *sk, int flag)
2812 {
2813 struct tcp_sock *tp = tcp_sk(sk);
2814
2815 tcp_verify_left_out(tp);
2816
2817 if (!tp->frto_counter && tp->retrans_out == 0)
2818 tp->retrans_stamp = 0;
2819
2820 if (flag & FLAG_ECE)
2821 tcp_enter_cwr(sk, 1);
2822
2823 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2824 tcp_try_keep_open(sk);
2825 tcp_moderate_cwnd(tp);
2826 } else {
2827 tcp_cwnd_down(sk, flag);
2828 }
2829 }
2830
2831 static void tcp_mtup_probe_failed(struct sock *sk)
2832 {
2833 struct inet_connection_sock *icsk = inet_csk(sk);
2834
2835 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2836 icsk->icsk_mtup.probe_size = 0;
2837 }
2838
2839 static void tcp_mtup_probe_success(struct sock *sk)
2840 {
2841 struct tcp_sock *tp = tcp_sk(sk);
2842 struct inet_connection_sock *icsk = inet_csk(sk);
2843
2844 /* FIXME: breaks with very large cwnd */
2845 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2846 tp->snd_cwnd = tp->snd_cwnd *
2847 tcp_mss_to_mtu(sk, tp->mss_cache) /
2848 icsk->icsk_mtup.probe_size;
2849 tp->snd_cwnd_cnt = 0;
2850 tp->snd_cwnd_stamp = tcp_time_stamp;
2851 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2852
2853 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2854 icsk->icsk_mtup.probe_size = 0;
2855 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2856 }
2857
2858 /* Do a simple retransmit without using the backoff mechanisms in
2859 * tcp_timer. This is used for path mtu discovery.
2860 * The socket is already locked here.
2861 */
2862 void tcp_simple_retransmit(struct sock *sk)
2863 {
2864 const struct inet_connection_sock *icsk = inet_csk(sk);
2865 struct tcp_sock *tp = tcp_sk(sk);
2866 struct sk_buff *skb;
2867 unsigned int mss = tcp_current_mss(sk, 0);
2868 u32 prior_lost = tp->lost_out;
2869
2870 tcp_for_write_queue(skb, sk) {
2871 if (skb == tcp_send_head(sk))
2872 break;
2873 if (tcp_skb_seglen(skb) > mss &&
2874 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2875 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2876 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2877 tp->retrans_out -= tcp_skb_pcount(skb);
2878 }
2879 tcp_skb_mark_lost_uncond_verify(tp, skb);
2880 }
2881 }
2882
2883 tcp_clear_retrans_hints_partial(tp);
2884
2885 if (prior_lost == tp->lost_out)
2886 return;
2887
2888 if (tcp_is_reno(tp))
2889 tcp_limit_reno_sacked(tp);
2890
2891 tcp_verify_left_out(tp);
2892
2893 /* Don't muck with the congestion window here.
2894 * Reason is that we do not increase amount of _data_
2895 * in network, but units changed and effective
2896 * cwnd/ssthresh really reduced now.
2897 */
2898 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2899 tp->high_seq = tp->snd_nxt;
2900 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2901 tp->prior_ssthresh = 0;
2902 tp->undo_marker = 0;
2903 tcp_set_ca_state(sk, TCP_CA_Loss);
2904 }
2905 tcp_xmit_retransmit_queue(sk);
2906 }
2907
2908 /* Process an event, which can update packets-in-flight not trivially.
2909 * Main goal of this function is to calculate new estimate for left_out,
2910 * taking into account both packets sitting in receiver's buffer and
2911 * packets lost by network.
2912 *
2913 * Besides that it does CWND reduction, when packet loss is detected
2914 * and changes state of machine.
2915 *
2916 * It does _not_ decide what to send, it is made in function
2917 * tcp_xmit_retransmit_queue().
2918 */
2919 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2920 {
2921 struct inet_connection_sock *icsk = inet_csk(sk);
2922 struct tcp_sock *tp = tcp_sk(sk);
2923 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2924 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2925 (tcp_fackets_out(tp) > tp->reordering));
2926 int fast_rexmit = 0, mib_idx;
2927
2928 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2929 tp->sacked_out = 0;
2930 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2931 tp->fackets_out = 0;
2932
2933 /* Now state machine starts.
2934 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2935 if (flag & FLAG_ECE)
2936 tp->prior_ssthresh = 0;
2937
2938 /* B. In all the states check for reneging SACKs. */
2939 if (tcp_check_sack_reneging(sk, flag))
2940 return;
2941
2942 /* C. Process data loss notification, provided it is valid. */
2943 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2944 before(tp->snd_una, tp->high_seq) &&
2945 icsk->icsk_ca_state != TCP_CA_Open &&
2946 tp->fackets_out > tp->reordering) {
2947 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2948 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2949 }
2950
2951 /* D. Check consistency of the current state. */
2952 tcp_verify_left_out(tp);
2953
2954 /* E. Check state exit conditions. State can be terminated
2955 * when high_seq is ACKed. */
2956 if (icsk->icsk_ca_state == TCP_CA_Open) {
2957 WARN_ON(tp->retrans_out != 0);
2958 tp->retrans_stamp = 0;
2959 } else if (!before(tp->snd_una, tp->high_seq)) {
2960 switch (icsk->icsk_ca_state) {
2961 case TCP_CA_Loss:
2962 icsk->icsk_retransmits = 0;
2963 if (tcp_try_undo_recovery(sk))
2964 return;
2965 break;
2966
2967 case TCP_CA_CWR:
2968 /* CWR is to be held something *above* high_seq
2969 * is ACKed for CWR bit to reach receiver. */
2970 if (tp->snd_una != tp->high_seq) {
2971 tcp_complete_cwr(sk);
2972 tcp_set_ca_state(sk, TCP_CA_Open);
2973 }
2974 break;
2975
2976 case TCP_CA_Disorder:
2977 tcp_try_undo_dsack(sk);
2978 if (!tp->undo_marker ||
2979 /* For SACK case do not Open to allow to undo
2980 * catching for all duplicate ACKs. */
2981 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2982 tp->undo_marker = 0;
2983 tcp_set_ca_state(sk, TCP_CA_Open);
2984 }
2985 break;
2986
2987 case TCP_CA_Recovery:
2988 if (tcp_is_reno(tp))
2989 tcp_reset_reno_sack(tp);
2990 if (tcp_try_undo_recovery(sk))
2991 return;
2992 tcp_complete_cwr(sk);
2993 break;
2994 }
2995 }
2996
2997 /* F. Process state. */
2998 switch (icsk->icsk_ca_state) {
2999 case TCP_CA_Recovery:
3000 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3001 if (tcp_is_reno(tp) && is_dupack)
3002 tcp_add_reno_sack(sk);
3003 } else
3004 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3005 break;
3006 case TCP_CA_Loss:
3007 if (flag & FLAG_DATA_ACKED)
3008 icsk->icsk_retransmits = 0;
3009 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3010 tcp_reset_reno_sack(tp);
3011 if (!tcp_try_undo_loss(sk)) {
3012 tcp_moderate_cwnd(tp);
3013 tcp_xmit_retransmit_queue(sk);
3014 return;
3015 }
3016 if (icsk->icsk_ca_state != TCP_CA_Open)
3017 return;
3018 /* Loss is undone; fall through to processing in Open state. */
3019 default:
3020 if (tcp_is_reno(tp)) {
3021 if (flag & FLAG_SND_UNA_ADVANCED)
3022 tcp_reset_reno_sack(tp);
3023 if (is_dupack)
3024 tcp_add_reno_sack(sk);
3025 }
3026
3027 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3028 tcp_try_undo_dsack(sk);
3029
3030 if (!tcp_time_to_recover(sk)) {
3031 tcp_try_to_open(sk, flag);
3032 return;
3033 }
3034
3035 /* MTU probe failure: don't reduce cwnd */
3036 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3037 icsk->icsk_mtup.probe_size &&
3038 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3039 tcp_mtup_probe_failed(sk);
3040 /* Restores the reduction we did in tcp_mtup_probe() */
3041 tp->snd_cwnd++;
3042 tcp_simple_retransmit(sk);
3043 return;
3044 }
3045
3046 /* Otherwise enter Recovery state */
3047
3048 if (tcp_is_reno(tp))
3049 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3050 else
3051 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3052
3053 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3054
3055 tp->high_seq = tp->snd_nxt;
3056 tp->prior_ssthresh = 0;
3057 tp->undo_marker = tp->snd_una;
3058 tp->undo_retrans = tp->retrans_out;
3059
3060 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3061 if (!(flag & FLAG_ECE))
3062 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3063 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3064 TCP_ECN_queue_cwr(tp);
3065 }
3066
3067 tp->bytes_acked = 0;
3068 tp->snd_cwnd_cnt = 0;
3069 tcp_set_ca_state(sk, TCP_CA_Recovery);
3070 fast_rexmit = 1;
3071 }
3072
3073 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3074 tcp_update_scoreboard(sk, fast_rexmit);
3075 tcp_cwnd_down(sk, flag);
3076 tcp_xmit_retransmit_queue(sk);
3077 }
3078
3079 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3080 {
3081 tcp_rtt_estimator(sk, seq_rtt);
3082 tcp_set_rto(sk);
3083 inet_csk(sk)->icsk_backoff = 0;
3084 }
3085
3086 /* Read draft-ietf-tcplw-high-performance before mucking
3087 * with this code. (Supersedes RFC1323)
3088 */
3089 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3090 {
3091 /* RTTM Rule: A TSecr value received in a segment is used to
3092 * update the averaged RTT measurement only if the segment
3093 * acknowledges some new data, i.e., only if it advances the
3094 * left edge of the send window.
3095 *
3096 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3097 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3098 *
3099 * Changed: reset backoff as soon as we see the first valid sample.
3100 * If we do not, we get strongly overestimated rto. With timestamps
3101 * samples are accepted even from very old segments: f.e., when rtt=1
3102 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3103 * answer arrives rto becomes 120 seconds! If at least one of segments
3104 * in window is lost... Voila. --ANK (010210)
3105 */
3106 struct tcp_sock *tp = tcp_sk(sk);
3107
3108 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3109 }
3110
3111 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3112 {
3113 /* We don't have a timestamp. Can only use
3114 * packets that are not retransmitted to determine
3115 * rtt estimates. Also, we must not reset the
3116 * backoff for rto until we get a non-retransmitted
3117 * packet. This allows us to deal with a situation
3118 * where the network delay has increased suddenly.
3119 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3120 */
3121
3122 if (flag & FLAG_RETRANS_DATA_ACKED)
3123 return;
3124
3125 tcp_valid_rtt_meas(sk, seq_rtt);
3126 }
3127
3128 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3129 const s32 seq_rtt)
3130 {
3131 const struct tcp_sock *tp = tcp_sk(sk);
3132 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3133 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3134 tcp_ack_saw_tstamp(sk, flag);
3135 else if (seq_rtt >= 0)
3136 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3137 }
3138
3139 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3140 {
3141 const struct inet_connection_sock *icsk = inet_csk(sk);
3142 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3143 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3144 }
3145
3146 /* Restart timer after forward progress on connection.
3147 * RFC2988 recommends to restart timer to now+rto.
3148 */
3149 static void tcp_rearm_rto(struct sock *sk)
3150 {
3151 struct tcp_sock *tp = tcp_sk(sk);
3152
3153 if (!tp->packets_out) {
3154 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3155 } else {
3156 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3157 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3158 }
3159 }
3160
3161 /* If we get here, the whole TSO packet has not been acked. */
3162 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3163 {
3164 struct tcp_sock *tp = tcp_sk(sk);
3165 u32 packets_acked;
3166
3167 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3168
3169 packets_acked = tcp_skb_pcount(skb);
3170 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3171 return 0;
3172 packets_acked -= tcp_skb_pcount(skb);
3173
3174 if (packets_acked) {
3175 BUG_ON(tcp_skb_pcount(skb) == 0);
3176 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3177 }
3178
3179 return packets_acked;
3180 }
3181
3182 /* Remove acknowledged frames from the retransmission queue. If our packet
3183 * is before the ack sequence we can discard it as it's confirmed to have
3184 * arrived at the other end.
3185 */
3186 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3187 u32 prior_snd_una)
3188 {
3189 struct tcp_sock *tp = tcp_sk(sk);
3190 const struct inet_connection_sock *icsk = inet_csk(sk);
3191 struct sk_buff *skb;
3192 u32 now = tcp_time_stamp;
3193 int fully_acked = 1;
3194 int flag = 0;
3195 u32 pkts_acked = 0;
3196 u32 reord = tp->packets_out;
3197 u32 prior_sacked = tp->sacked_out;
3198 s32 seq_rtt = -1;
3199 s32 ca_seq_rtt = -1;
3200 ktime_t last_ackt = net_invalid_timestamp();
3201
3202 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3203 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3204 u32 acked_pcount;
3205 u8 sacked = scb->sacked;
3206
3207 /* Determine how many packets and what bytes were acked, tso and else */
3208 if (after(scb->end_seq, tp->snd_una)) {
3209 if (tcp_skb_pcount(skb) == 1 ||
3210 !after(tp->snd_una, scb->seq))
3211 break;
3212
3213 acked_pcount = tcp_tso_acked(sk, skb);
3214 if (!acked_pcount)
3215 break;
3216
3217 fully_acked = 0;
3218 } else {
3219 acked_pcount = tcp_skb_pcount(skb);
3220 }
3221
3222 if (sacked & TCPCB_RETRANS) {
3223 if (sacked & TCPCB_SACKED_RETRANS)
3224 tp->retrans_out -= acked_pcount;
3225 flag |= FLAG_RETRANS_DATA_ACKED;
3226 ca_seq_rtt = -1;
3227 seq_rtt = -1;
3228 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3229 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3230 } else {
3231 ca_seq_rtt = now - scb->when;
3232 last_ackt = skb->tstamp;
3233 if (seq_rtt < 0) {
3234 seq_rtt = ca_seq_rtt;
3235 }
3236 if (!(sacked & TCPCB_SACKED_ACKED))
3237 reord = min(pkts_acked, reord);
3238 }
3239
3240 if (sacked & TCPCB_SACKED_ACKED)
3241 tp->sacked_out -= acked_pcount;
3242 if (sacked & TCPCB_LOST)
3243 tp->lost_out -= acked_pcount;
3244
3245 tp->packets_out -= acked_pcount;
3246 pkts_acked += acked_pcount;
3247
3248 /* Initial outgoing SYN's get put onto the write_queue
3249 * just like anything else we transmit. It is not
3250 * true data, and if we misinform our callers that
3251 * this ACK acks real data, we will erroneously exit
3252 * connection startup slow start one packet too
3253 * quickly. This is severely frowned upon behavior.
3254 */
3255 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3256 flag |= FLAG_DATA_ACKED;
3257 } else {
3258 flag |= FLAG_SYN_ACKED;
3259 tp->retrans_stamp = 0;
3260 }
3261
3262 if (!fully_acked)
3263 break;
3264
3265 tcp_unlink_write_queue(skb, sk);
3266 sk_wmem_free_skb(sk, skb);
3267 tp->scoreboard_skb_hint = NULL;
3268 if (skb == tp->retransmit_skb_hint)
3269 tp->retransmit_skb_hint = NULL;
3270 if (skb == tp->lost_skb_hint)
3271 tp->lost_skb_hint = NULL;
3272 }
3273
3274 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3275 tp->snd_up = tp->snd_una;
3276
3277 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3278 flag |= FLAG_SACK_RENEGING;
3279
3280 if (flag & FLAG_ACKED) {
3281 const struct tcp_congestion_ops *ca_ops
3282 = inet_csk(sk)->icsk_ca_ops;
3283
3284 if (unlikely(icsk->icsk_mtup.probe_size &&
3285 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3286 tcp_mtup_probe_success(sk);
3287 }
3288
3289 tcp_ack_update_rtt(sk, flag, seq_rtt);
3290 tcp_rearm_rto(sk);
3291
3292 if (tcp_is_reno(tp)) {
3293 tcp_remove_reno_sacks(sk, pkts_acked);
3294 } else {
3295 int delta;
3296
3297 /* Non-retransmitted hole got filled? That's reordering */
3298 if (reord < prior_fackets)
3299 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3300
3301 delta = tcp_is_fack(tp) ? pkts_acked :
3302 prior_sacked - tp->sacked_out;
3303 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3304 }
3305
3306 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3307
3308 if (ca_ops->pkts_acked) {
3309 s32 rtt_us = -1;
3310
3311 /* Is the ACK triggering packet unambiguous? */
3312 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3313 /* High resolution needed and available? */
3314 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3315 !ktime_equal(last_ackt,
3316 net_invalid_timestamp()))
3317 rtt_us = ktime_us_delta(ktime_get_real(),
3318 last_ackt);
3319 else if (ca_seq_rtt > 0)
3320 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3321 }
3322
3323 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3324 }
3325 }
3326
3327 #if FASTRETRANS_DEBUG > 0
3328 WARN_ON((int)tp->sacked_out < 0);
3329 WARN_ON((int)tp->lost_out < 0);
3330 WARN_ON((int)tp->retrans_out < 0);
3331 if (!tp->packets_out && tcp_is_sack(tp)) {
3332 icsk = inet_csk(sk);
3333 if (tp->lost_out) {
3334 printk(KERN_DEBUG "Leak l=%u %d\n",
3335 tp->lost_out, icsk->icsk_ca_state);
3336 tp->lost_out = 0;
3337 }
3338 if (tp->sacked_out) {
3339 printk(KERN_DEBUG "Leak s=%u %d\n",
3340 tp->sacked_out, icsk->icsk_ca_state);
3341 tp->sacked_out = 0;
3342 }
3343 if (tp->retrans_out) {
3344 printk(KERN_DEBUG "Leak r=%u %d\n",
3345 tp->retrans_out, icsk->icsk_ca_state);
3346 tp->retrans_out = 0;
3347 }
3348 }
3349 #endif
3350 return flag;
3351 }
3352
3353 static void tcp_ack_probe(struct sock *sk)
3354 {
3355 const struct tcp_sock *tp = tcp_sk(sk);
3356 struct inet_connection_sock *icsk = inet_csk(sk);
3357
3358 /* Was it a usable window open? */
3359
3360 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3361 icsk->icsk_backoff = 0;
3362 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3363 /* Socket must be waked up by subsequent tcp_data_snd_check().
3364 * This function is not for random using!
3365 */
3366 } else {
3367 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3368 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3369 TCP_RTO_MAX);
3370 }
3371 }
3372
3373 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3374 {
3375 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3376 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3377 }
3378
3379 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3380 {
3381 const struct tcp_sock *tp = tcp_sk(sk);
3382 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3383 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3384 }
3385
3386 /* Check that window update is acceptable.
3387 * The function assumes that snd_una<=ack<=snd_next.
3388 */
3389 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3390 const u32 ack, const u32 ack_seq,
3391 const u32 nwin)
3392 {
3393 return (after(ack, tp->snd_una) ||
3394 after(ack_seq, tp->snd_wl1) ||
3395 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3396 }
3397
3398 /* Update our send window.
3399 *
3400 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3401 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3402 */
3403 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3404 u32 ack_seq)
3405 {
3406 struct tcp_sock *tp = tcp_sk(sk);
3407 int flag = 0;
3408 u32 nwin = ntohs(tcp_hdr(skb)->window);
3409
3410 if (likely(!tcp_hdr(skb)->syn))
3411 nwin <<= tp->rx_opt.snd_wscale;
3412
3413 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3414 flag |= FLAG_WIN_UPDATE;
3415 tcp_update_wl(tp, ack_seq);
3416
3417 if (tp->snd_wnd != nwin) {
3418 tp->snd_wnd = nwin;
3419
3420 /* Note, it is the only place, where
3421 * fast path is recovered for sending TCP.
3422 */
3423 tp->pred_flags = 0;
3424 tcp_fast_path_check(sk);
3425
3426 if (nwin > tp->max_window) {
3427 tp->max_window = nwin;
3428 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3429 }
3430 }
3431 }
3432
3433 tp->snd_una = ack;
3434
3435 return flag;
3436 }
3437
3438 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3439 * continue in congestion avoidance.
3440 */
3441 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3442 {
3443 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3444 tp->snd_cwnd_cnt = 0;
3445 tp->bytes_acked = 0;
3446 TCP_ECN_queue_cwr(tp);
3447 tcp_moderate_cwnd(tp);
3448 }
3449
3450 /* A conservative spurious RTO response algorithm: reduce cwnd using
3451 * rate halving and continue in congestion avoidance.
3452 */
3453 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3454 {
3455 tcp_enter_cwr(sk, 0);
3456 }
3457
3458 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3459 {
3460 if (flag & FLAG_ECE)
3461 tcp_ratehalving_spur_to_response(sk);
3462 else
3463 tcp_undo_cwr(sk, 1);
3464 }
3465
3466 /* F-RTO spurious RTO detection algorithm (RFC4138)
3467 *
3468 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3469 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3470 * window (but not to or beyond highest sequence sent before RTO):
3471 * On First ACK, send two new segments out.
3472 * On Second ACK, RTO was likely spurious. Do spurious response (response
3473 * algorithm is not part of the F-RTO detection algorithm
3474 * given in RFC4138 but can be selected separately).
3475 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3476 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3477 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3478 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3479 *
3480 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3481 * original window even after we transmit two new data segments.
3482 *
3483 * SACK version:
3484 * on first step, wait until first cumulative ACK arrives, then move to
3485 * the second step. In second step, the next ACK decides.
3486 *
3487 * F-RTO is implemented (mainly) in four functions:
3488 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3489 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3490 * called when tcp_use_frto() showed green light
3491 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3492 * - tcp_enter_frto_loss() is called if there is not enough evidence
3493 * to prove that the RTO is indeed spurious. It transfers the control
3494 * from F-RTO to the conventional RTO recovery
3495 */
3496 static int tcp_process_frto(struct sock *sk, int flag)
3497 {
3498 struct tcp_sock *tp = tcp_sk(sk);
3499
3500 tcp_verify_left_out(tp);
3501
3502 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3503 if (flag & FLAG_DATA_ACKED)
3504 inet_csk(sk)->icsk_retransmits = 0;
3505
3506 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3507 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3508 tp->undo_marker = 0;
3509
3510 if (!before(tp->snd_una, tp->frto_highmark)) {
3511 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3512 return 1;
3513 }
3514
3515 if (!tcp_is_sackfrto(tp)) {
3516 /* RFC4138 shortcoming in step 2; should also have case c):
3517 * ACK isn't duplicate nor advances window, e.g., opposite dir
3518 * data, winupdate
3519 */
3520 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3521 return 1;
3522
3523 if (!(flag & FLAG_DATA_ACKED)) {
3524 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3525 flag);
3526 return 1;
3527 }
3528 } else {
3529 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3530 /* Prevent sending of new data. */
3531 tp->snd_cwnd = min(tp->snd_cwnd,
3532 tcp_packets_in_flight(tp));
3533 return 1;
3534 }
3535
3536 if ((tp->frto_counter >= 2) &&
3537 (!(flag & FLAG_FORWARD_PROGRESS) ||
3538 ((flag & FLAG_DATA_SACKED) &&
3539 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3540 /* RFC4138 shortcoming (see comment above) */
3541 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3542 (flag & FLAG_NOT_DUP))
3543 return 1;
3544
3545 tcp_enter_frto_loss(sk, 3, flag);
3546 return 1;
3547 }
3548 }
3549
3550 if (tp->frto_counter == 1) {
3551 /* tcp_may_send_now needs to see updated state */
3552 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3553 tp->frto_counter = 2;
3554
3555 if (!tcp_may_send_now(sk))
3556 tcp_enter_frto_loss(sk, 2, flag);
3557
3558 return 1;
3559 } else {
3560 switch (sysctl_tcp_frto_response) {
3561 case 2:
3562 tcp_undo_spur_to_response(sk, flag);
3563 break;
3564 case 1:
3565 tcp_conservative_spur_to_response(tp);
3566 break;
3567 default:
3568 tcp_ratehalving_spur_to_response(sk);
3569 break;
3570 }
3571 tp->frto_counter = 0;
3572 tp->undo_marker = 0;
3573 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3574 }
3575 return 0;
3576 }
3577
3578 /* This routine deals with incoming acks, but not outgoing ones. */
3579 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3580 {
3581 struct inet_connection_sock *icsk = inet_csk(sk);
3582 struct tcp_sock *tp = tcp_sk(sk);
3583 u32 prior_snd_una = tp->snd_una;
3584 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3585 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3586 u32 prior_in_flight;
3587 u32 prior_fackets;
3588 int prior_packets;
3589 int frto_cwnd = 0;
3590
3591 /* If the ack is newer than sent or older than previous acks
3592 * then we can probably ignore it.
3593 */
3594 if (after(ack, tp->snd_nxt))
3595 goto uninteresting_ack;
3596
3597 if (before(ack, prior_snd_una))
3598 goto old_ack;
3599
3600 if (after(ack, prior_snd_una))
3601 flag |= FLAG_SND_UNA_ADVANCED;
3602
3603 if (sysctl_tcp_abc) {
3604 if (icsk->icsk_ca_state < TCP_CA_CWR)
3605 tp->bytes_acked += ack - prior_snd_una;
3606 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3607 /* we assume just one segment left network */
3608 tp->bytes_acked += min(ack - prior_snd_una,
3609 tp->mss_cache);
3610 }
3611
3612 prior_fackets = tp->fackets_out;
3613 prior_in_flight = tcp_packets_in_flight(tp);
3614
3615 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3616 /* Window is constant, pure forward advance.
3617 * No more checks are required.
3618 * Note, we use the fact that SND.UNA>=SND.WL2.
3619 */
3620 tcp_update_wl(tp, ack_seq);
3621 tp->snd_una = ack;
3622 flag |= FLAG_WIN_UPDATE;
3623
3624 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3625
3626 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3627 } else {
3628 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3629 flag |= FLAG_DATA;
3630 else
3631 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3632
3633 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3634
3635 if (TCP_SKB_CB(skb)->sacked)
3636 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3637
3638 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3639 flag |= FLAG_ECE;
3640
3641 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3642 }
3643
3644 /* We passed data and got it acked, remove any soft error
3645 * log. Something worked...
3646 */
3647 sk->sk_err_soft = 0;
3648 icsk->icsk_probes_out = 0;
3649 tp->rcv_tstamp = tcp_time_stamp;
3650 prior_packets = tp->packets_out;
3651 if (!prior_packets)
3652 goto no_queue;
3653
3654 /* See if we can take anything off of the retransmit queue. */
3655 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3656
3657 if (tp->frto_counter)
3658 frto_cwnd = tcp_process_frto(sk, flag);
3659 /* Guarantee sacktag reordering detection against wrap-arounds */
3660 if (before(tp->frto_highmark, tp->snd_una))
3661 tp->frto_highmark = 0;
3662
3663 if (tcp_ack_is_dubious(sk, flag)) {
3664 /* Advance CWND, if state allows this. */
3665 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3666 tcp_may_raise_cwnd(sk, flag))
3667 tcp_cong_avoid(sk, ack, prior_in_flight);
3668 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3669 flag);
3670 } else {
3671 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3672 tcp_cong_avoid(sk, ack, prior_in_flight);
3673 }
3674
3675 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3676 dst_confirm(sk->sk_dst_cache);
3677
3678 return 1;
3679
3680 no_queue:
3681 /* If this ack opens up a zero window, clear backoff. It was
3682 * being used to time the probes, and is probably far higher than
3683 * it needs to be for normal retransmission.
3684 */
3685 if (tcp_send_head(sk))
3686 tcp_ack_probe(sk);
3687 return 1;
3688
3689 old_ack:
3690 if (TCP_SKB_CB(skb)->sacked) {
3691 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3692 if (icsk->icsk_ca_state == TCP_CA_Open)
3693 tcp_try_keep_open(sk);
3694 }
3695
3696 uninteresting_ack:
3697 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3698 return 0;
3699 }
3700
3701 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3702 * But, this can also be called on packets in the established flow when
3703 * the fast version below fails.
3704 */
3705 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3706 int estab)
3707 {
3708 unsigned char *ptr;
3709 struct tcphdr *th = tcp_hdr(skb);
3710 int length = (th->doff * 4) - sizeof(struct tcphdr);
3711
3712 ptr = (unsigned char *)(th + 1);
3713 opt_rx->saw_tstamp = 0;
3714
3715 while (length > 0) {
3716 int opcode = *ptr++;
3717 int opsize;
3718
3719 switch (opcode) {
3720 case TCPOPT_EOL:
3721 return;
3722 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3723 length--;
3724 continue;
3725 default:
3726 opsize = *ptr++;
3727 if (opsize < 2) /* "silly options" */
3728 return;
3729 if (opsize > length)
3730 return; /* don't parse partial options */
3731 switch (opcode) {
3732 case TCPOPT_MSS:
3733 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3734 u16 in_mss = get_unaligned_be16(ptr);
3735 if (in_mss) {
3736 if (opt_rx->user_mss &&
3737 opt_rx->user_mss < in_mss)
3738 in_mss = opt_rx->user_mss;
3739 opt_rx->mss_clamp = in_mss;
3740 }
3741 }
3742 break;
3743 case TCPOPT_WINDOW:
3744 if (opsize == TCPOLEN_WINDOW && th->syn &&
3745 !estab && sysctl_tcp_window_scaling) {
3746 __u8 snd_wscale = *(__u8 *)ptr;
3747 opt_rx->wscale_ok = 1;
3748 if (snd_wscale > 14) {
3749 if (net_ratelimit())
3750 printk(KERN_INFO "tcp_parse_options: Illegal window "
3751 "scaling value %d >14 received.\n",
3752 snd_wscale);
3753 snd_wscale = 14;
3754 }
3755 opt_rx->snd_wscale = snd_wscale;
3756 }
3757 break;
3758 case TCPOPT_TIMESTAMP:
3759 if ((opsize == TCPOLEN_TIMESTAMP) &&
3760 ((estab && opt_rx->tstamp_ok) ||
3761 (!estab && sysctl_tcp_timestamps))) {
3762 opt_rx->saw_tstamp = 1;
3763 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3764 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3765 }
3766 break;
3767 case TCPOPT_SACK_PERM:
3768 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3769 !estab && sysctl_tcp_sack) {
3770 opt_rx->sack_ok = 1;
3771 tcp_sack_reset(opt_rx);
3772 }
3773 break;
3774
3775 case TCPOPT_SACK:
3776 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3777 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3778 opt_rx->sack_ok) {
3779 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3780 }
3781 break;
3782 #ifdef CONFIG_TCP_MD5SIG
3783 case TCPOPT_MD5SIG:
3784 /*
3785 * The MD5 Hash has already been
3786 * checked (see tcp_v{4,6}_do_rcv()).
3787 */
3788 break;
3789 #endif
3790 }
3791
3792 ptr += opsize-2;
3793 length -= opsize;
3794 }
3795 }
3796 }
3797
3798 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3799 {
3800 __be32 *ptr = (__be32 *)(th + 1);
3801
3802 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3803 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3804 tp->rx_opt.saw_tstamp = 1;
3805 ++ptr;
3806 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3807 ++ptr;
3808 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3809 return 1;
3810 }
3811 return 0;
3812 }
3813
3814 /* Fast parse options. This hopes to only see timestamps.
3815 * If it is wrong it falls back on tcp_parse_options().
3816 */
3817 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3818 struct tcp_sock *tp)
3819 {
3820 if (th->doff == sizeof(struct tcphdr) >> 2) {
3821 tp->rx_opt.saw_tstamp = 0;
3822 return 0;
3823 } else if (tp->rx_opt.tstamp_ok &&
3824 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3825 if (tcp_parse_aligned_timestamp(tp, th))
3826 return 1;
3827 }
3828 tcp_parse_options(skb, &tp->rx_opt, 1);
3829 return 1;
3830 }
3831
3832 #ifdef CONFIG_TCP_MD5SIG
3833 /*
3834 * Parse MD5 Signature option
3835 */
3836 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3837 {
3838 int length = (th->doff << 2) - sizeof (*th);
3839 u8 *ptr = (u8*)(th + 1);
3840
3841 /* If the TCP option is too short, we can short cut */
3842 if (length < TCPOLEN_MD5SIG)
3843 return NULL;
3844
3845 while (length > 0) {
3846 int opcode = *ptr++;
3847 int opsize;
3848
3849 switch(opcode) {
3850 case TCPOPT_EOL:
3851 return NULL;
3852 case TCPOPT_NOP:
3853 length--;
3854 continue;
3855 default:
3856 opsize = *ptr++;
3857 if (opsize < 2 || opsize > length)
3858 return NULL;
3859 if (opcode == TCPOPT_MD5SIG)
3860 return ptr;
3861 }
3862 ptr += opsize - 2;
3863 length -= opsize;
3864 }
3865 return NULL;
3866 }
3867 #endif
3868
3869 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3870 {
3871 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3872 tp->rx_opt.ts_recent_stamp = get_seconds();
3873 }
3874
3875 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3876 {
3877 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3878 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3879 * extra check below makes sure this can only happen
3880 * for pure ACK frames. -DaveM
3881 *
3882 * Not only, also it occurs for expired timestamps.
3883 */
3884
3885 if (tcp_paws_check(&tp->rx_opt, 0))
3886 tcp_store_ts_recent(tp);
3887 }
3888 }
3889
3890 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3891 *
3892 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3893 * it can pass through stack. So, the following predicate verifies that
3894 * this segment is not used for anything but congestion avoidance or
3895 * fast retransmit. Moreover, we even are able to eliminate most of such
3896 * second order effects, if we apply some small "replay" window (~RTO)
3897 * to timestamp space.
3898 *
3899 * All these measures still do not guarantee that we reject wrapped ACKs
3900 * on networks with high bandwidth, when sequence space is recycled fastly,
3901 * but it guarantees that such events will be very rare and do not affect
3902 * connection seriously. This doesn't look nice, but alas, PAWS is really
3903 * buggy extension.
3904 *
3905 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3906 * states that events when retransmit arrives after original data are rare.
3907 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3908 * the biggest problem on large power networks even with minor reordering.
3909 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3910 * up to bandwidth of 18Gigabit/sec. 8) ]
3911 */
3912
3913 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3914 {
3915 struct tcp_sock *tp = tcp_sk(sk);
3916 struct tcphdr *th = tcp_hdr(skb);
3917 u32 seq = TCP_SKB_CB(skb)->seq;
3918 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3919
3920 return (/* 1. Pure ACK with correct sequence number. */
3921 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3922
3923 /* 2. ... and duplicate ACK. */
3924 ack == tp->snd_una &&
3925
3926 /* 3. ... and does not update window. */
3927 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3928
3929 /* 4. ... and sits in replay window. */
3930 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3931 }
3932
3933 static inline int tcp_paws_discard(const struct sock *sk,
3934 const struct sk_buff *skb)
3935 {
3936 const struct tcp_sock *tp = tcp_sk(sk);
3937
3938 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3939 !tcp_disordered_ack(sk, skb);
3940 }
3941
3942 /* Check segment sequence number for validity.
3943 *
3944 * Segment controls are considered valid, if the segment
3945 * fits to the window after truncation to the window. Acceptability
3946 * of data (and SYN, FIN, of course) is checked separately.
3947 * See tcp_data_queue(), for example.
3948 *
3949 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3950 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3951 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3952 * (borrowed from freebsd)
3953 */
3954
3955 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3956 {
3957 return !before(end_seq, tp->rcv_wup) &&
3958 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3959 }
3960
3961 /* When we get a reset we do this. */
3962 static void tcp_reset(struct sock *sk)
3963 {
3964 /* We want the right error as BSD sees it (and indeed as we do). */
3965 switch (sk->sk_state) {
3966 case TCP_SYN_SENT:
3967 sk->sk_err = ECONNREFUSED;
3968 break;
3969 case TCP_CLOSE_WAIT:
3970 sk->sk_err = EPIPE;
3971 break;
3972 case TCP_CLOSE:
3973 return;
3974 default:
3975 sk->sk_err = ECONNRESET;
3976 }
3977
3978 if (!sock_flag(sk, SOCK_DEAD))
3979 sk->sk_error_report(sk);
3980
3981 tcp_done(sk);
3982 }
3983
3984 /*
3985 * Process the FIN bit. This now behaves as it is supposed to work
3986 * and the FIN takes effect when it is validly part of sequence
3987 * space. Not before when we get holes.
3988 *
3989 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3990 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3991 * TIME-WAIT)
3992 *
3993 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3994 * close and we go into CLOSING (and later onto TIME-WAIT)
3995 *
3996 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3997 */
3998 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3999 {
4000 struct tcp_sock *tp = tcp_sk(sk);
4001
4002 inet_csk_schedule_ack(sk);
4003
4004 sk->sk_shutdown |= RCV_SHUTDOWN;
4005 sock_set_flag(sk, SOCK_DONE);
4006
4007 switch (sk->sk_state) {
4008 case TCP_SYN_RECV:
4009 case TCP_ESTABLISHED:
4010 /* Move to CLOSE_WAIT */
4011 tcp_set_state(sk, TCP_CLOSE_WAIT);
4012 inet_csk(sk)->icsk_ack.pingpong = 1;
4013 break;
4014
4015 case TCP_CLOSE_WAIT:
4016 case TCP_CLOSING:
4017 /* Received a retransmission of the FIN, do
4018 * nothing.
4019 */
4020 break;
4021 case TCP_LAST_ACK:
4022 /* RFC793: Remain in the LAST-ACK state. */
4023 break;
4024
4025 case TCP_FIN_WAIT1:
4026 /* This case occurs when a simultaneous close
4027 * happens, we must ack the received FIN and
4028 * enter the CLOSING state.
4029 */
4030 tcp_send_ack(sk);
4031 tcp_set_state(sk, TCP_CLOSING);
4032 break;
4033 case TCP_FIN_WAIT2:
4034 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4035 tcp_send_ack(sk);
4036 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4037 break;
4038 default:
4039 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4040 * cases we should never reach this piece of code.
4041 */
4042 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4043 __func__, sk->sk_state);
4044 break;
4045 }
4046
4047 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4048 * Probably, we should reset in this case. For now drop them.
4049 */
4050 __skb_queue_purge(&tp->out_of_order_queue);
4051 if (tcp_is_sack(tp))
4052 tcp_sack_reset(&tp->rx_opt);
4053 sk_mem_reclaim(sk);
4054
4055 if (!sock_flag(sk, SOCK_DEAD)) {
4056 sk->sk_state_change(sk);
4057
4058 /* Do not send POLL_HUP for half duplex close. */
4059 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4060 sk->sk_state == TCP_CLOSE)
4061 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4062 else
4063 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4064 }
4065 }
4066
4067 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4068 u32 end_seq)
4069 {
4070 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4071 if (before(seq, sp->start_seq))
4072 sp->start_seq = seq;
4073 if (after(end_seq, sp->end_seq))
4074 sp->end_seq = end_seq;
4075 return 1;
4076 }
4077 return 0;
4078 }
4079
4080 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4081 {
4082 struct tcp_sock *tp = tcp_sk(sk);
4083
4084 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4085 int mib_idx;
4086
4087 if (before(seq, tp->rcv_nxt))
4088 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4089 else
4090 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4091
4092 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4093
4094 tp->rx_opt.dsack = 1;
4095 tp->duplicate_sack[0].start_seq = seq;
4096 tp->duplicate_sack[0].end_seq = end_seq;
4097 }
4098 }
4099
4100 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4101 {
4102 struct tcp_sock *tp = tcp_sk(sk);
4103
4104 if (!tp->rx_opt.dsack)
4105 tcp_dsack_set(sk, seq, end_seq);
4106 else
4107 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4108 }
4109
4110 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4111 {
4112 struct tcp_sock *tp = tcp_sk(sk);
4113
4114 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4115 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4116 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4117 tcp_enter_quickack_mode(sk);
4118
4119 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4120 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4121
4122 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4123 end_seq = tp->rcv_nxt;
4124 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4125 }
4126 }
4127
4128 tcp_send_ack(sk);
4129 }
4130
4131 /* These routines update the SACK block as out-of-order packets arrive or
4132 * in-order packets close up the sequence space.
4133 */
4134 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4135 {
4136 int this_sack;
4137 struct tcp_sack_block *sp = &tp->selective_acks[0];
4138 struct tcp_sack_block *swalk = sp + 1;
4139
4140 /* See if the recent change to the first SACK eats into
4141 * or hits the sequence space of other SACK blocks, if so coalesce.
4142 */
4143 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4144 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4145 int i;
4146
4147 /* Zap SWALK, by moving every further SACK up by one slot.
4148 * Decrease num_sacks.
4149 */
4150 tp->rx_opt.num_sacks--;
4151 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4152 sp[i] = sp[i + 1];
4153 continue;
4154 }
4155 this_sack++, swalk++;
4156 }
4157 }
4158
4159 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
4160 struct tcp_sack_block *sack2)
4161 {
4162 __u32 tmp;
4163
4164 tmp = sack1->start_seq;
4165 sack1->start_seq = sack2->start_seq;
4166 sack2->start_seq = tmp;
4167
4168 tmp = sack1->end_seq;
4169 sack1->end_seq = sack2->end_seq;
4170 sack2->end_seq = tmp;
4171 }
4172
4173 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4174 {
4175 struct tcp_sock *tp = tcp_sk(sk);
4176 struct tcp_sack_block *sp = &tp->selective_acks[0];
4177 int cur_sacks = tp->rx_opt.num_sacks;
4178 int this_sack;
4179
4180 if (!cur_sacks)
4181 goto new_sack;
4182
4183 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4184 if (tcp_sack_extend(sp, seq, end_seq)) {
4185 /* Rotate this_sack to the first one. */
4186 for (; this_sack > 0; this_sack--, sp--)
4187 tcp_sack_swap(sp, sp - 1);
4188 if (cur_sacks > 1)
4189 tcp_sack_maybe_coalesce(tp);
4190 return;
4191 }
4192 }
4193
4194 /* Could not find an adjacent existing SACK, build a new one,
4195 * put it at the front, and shift everyone else down. We
4196 * always know there is at least one SACK present already here.
4197 *
4198 * If the sack array is full, forget about the last one.
4199 */
4200 if (this_sack >= TCP_NUM_SACKS) {
4201 this_sack--;
4202 tp->rx_opt.num_sacks--;
4203 sp--;
4204 }
4205 for (; this_sack > 0; this_sack--, sp--)
4206 *sp = *(sp - 1);
4207
4208 new_sack:
4209 /* Build the new head SACK, and we're done. */
4210 sp->start_seq = seq;
4211 sp->end_seq = end_seq;
4212 tp->rx_opt.num_sacks++;
4213 }
4214
4215 /* RCV.NXT advances, some SACKs should be eaten. */
4216
4217 static void tcp_sack_remove(struct tcp_sock *tp)
4218 {
4219 struct tcp_sack_block *sp = &tp->selective_acks[0];
4220 int num_sacks = tp->rx_opt.num_sacks;
4221 int this_sack;
4222
4223 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4224 if (skb_queue_empty(&tp->out_of_order_queue)) {
4225 tp->rx_opt.num_sacks = 0;
4226 return;
4227 }
4228
4229 for (this_sack = 0; this_sack < num_sacks;) {
4230 /* Check if the start of the sack is covered by RCV.NXT. */
4231 if (!before(tp->rcv_nxt, sp->start_seq)) {
4232 int i;
4233
4234 /* RCV.NXT must cover all the block! */
4235 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4236
4237 /* Zap this SACK, by moving forward any other SACKS. */
4238 for (i=this_sack+1; i < num_sacks; i++)
4239 tp->selective_acks[i-1] = tp->selective_acks[i];
4240 num_sacks--;
4241 continue;
4242 }
4243 this_sack++;
4244 sp++;
4245 }
4246 tp->rx_opt.num_sacks = num_sacks;
4247 }
4248
4249 /* This one checks to see if we can put data from the
4250 * out_of_order queue into the receive_queue.
4251 */
4252 static void tcp_ofo_queue(struct sock *sk)
4253 {
4254 struct tcp_sock *tp = tcp_sk(sk);
4255 __u32 dsack_high = tp->rcv_nxt;
4256 struct sk_buff *skb;
4257
4258 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4259 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4260 break;
4261
4262 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4263 __u32 dsack = dsack_high;
4264 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4265 dsack_high = TCP_SKB_CB(skb)->end_seq;
4266 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4267 }
4268
4269 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4270 SOCK_DEBUG(sk, "ofo packet was already received \n");
4271 __skb_unlink(skb, &tp->out_of_order_queue);
4272 __kfree_skb(skb);
4273 continue;
4274 }
4275 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4276 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4277 TCP_SKB_CB(skb)->end_seq);
4278
4279 __skb_unlink(skb, &tp->out_of_order_queue);
4280 __skb_queue_tail(&sk->sk_receive_queue, skb);
4281 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4282 if (tcp_hdr(skb)->fin)
4283 tcp_fin(skb, sk, tcp_hdr(skb));
4284 }
4285 }
4286
4287 static int tcp_prune_ofo_queue(struct sock *sk);
4288 static int tcp_prune_queue(struct sock *sk);
4289
4290 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4291 {
4292 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4293 !sk_rmem_schedule(sk, size)) {
4294
4295 if (tcp_prune_queue(sk) < 0)
4296 return -1;
4297
4298 if (!sk_rmem_schedule(sk, size)) {
4299 if (!tcp_prune_ofo_queue(sk))
4300 return -1;
4301
4302 if (!sk_rmem_schedule(sk, size))
4303 return -1;
4304 }
4305 }
4306 return 0;
4307 }
4308
4309 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4310 {
4311 struct tcphdr *th = tcp_hdr(skb);
4312 struct tcp_sock *tp = tcp_sk(sk);
4313 int eaten = -1;
4314
4315 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4316 goto drop;
4317
4318 __skb_pull(skb, th->doff * 4);
4319
4320 TCP_ECN_accept_cwr(tp, skb);
4321
4322 tp->rx_opt.dsack = 0;
4323
4324 /* Queue data for delivery to the user.
4325 * Packets in sequence go to the receive queue.
4326 * Out of sequence packets to the out_of_order_queue.
4327 */
4328 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4329 if (tcp_receive_window(tp) == 0)
4330 goto out_of_window;
4331
4332 /* Ok. In sequence. In window. */
4333 if (tp->ucopy.task == current &&
4334 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4335 sock_owned_by_user(sk) && !tp->urg_data) {
4336 int chunk = min_t(unsigned int, skb->len,
4337 tp->ucopy.len);
4338
4339 __set_current_state(TASK_RUNNING);
4340
4341 local_bh_enable();
4342 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4343 tp->ucopy.len -= chunk;
4344 tp->copied_seq += chunk;
4345 eaten = (chunk == skb->len && !th->fin);
4346 tcp_rcv_space_adjust(sk);
4347 }
4348 local_bh_disable();
4349 }
4350
4351 if (eaten <= 0) {
4352 queue_and_out:
4353 if (eaten < 0 &&
4354 tcp_try_rmem_schedule(sk, skb->truesize))
4355 goto drop;
4356
4357 skb_set_owner_r(skb, sk);
4358 __skb_queue_tail(&sk->sk_receive_queue, skb);
4359 }
4360 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4361 if (skb->len)
4362 tcp_event_data_recv(sk, skb);
4363 if (th->fin)
4364 tcp_fin(skb, sk, th);
4365
4366 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4367 tcp_ofo_queue(sk);
4368
4369 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4370 * gap in queue is filled.
4371 */
4372 if (skb_queue_empty(&tp->out_of_order_queue))
4373 inet_csk(sk)->icsk_ack.pingpong = 0;
4374 }
4375
4376 if (tp->rx_opt.num_sacks)
4377 tcp_sack_remove(tp);
4378
4379 tcp_fast_path_check(sk);
4380
4381 if (eaten > 0)
4382 __kfree_skb(skb);
4383 else if (!sock_flag(sk, SOCK_DEAD))
4384 sk->sk_data_ready(sk, 0);
4385 return;
4386 }
4387
4388 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4389 /* A retransmit, 2nd most common case. Force an immediate ack. */
4390 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4391 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4392
4393 out_of_window:
4394 tcp_enter_quickack_mode(sk);
4395 inet_csk_schedule_ack(sk);
4396 drop:
4397 __kfree_skb(skb);
4398 return;
4399 }
4400
4401 /* Out of window. F.e. zero window probe. */
4402 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4403 goto out_of_window;
4404
4405 tcp_enter_quickack_mode(sk);
4406
4407 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4408 /* Partial packet, seq < rcv_next < end_seq */
4409 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4410 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4411 TCP_SKB_CB(skb)->end_seq);
4412
4413 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4414
4415 /* If window is closed, drop tail of packet. But after
4416 * remembering D-SACK for its head made in previous line.
4417 */
4418 if (!tcp_receive_window(tp))
4419 goto out_of_window;
4420 goto queue_and_out;
4421 }
4422
4423 TCP_ECN_check_ce(tp, skb);
4424
4425 if (tcp_try_rmem_schedule(sk, skb->truesize))
4426 goto drop;
4427
4428 /* Disable header prediction. */
4429 tp->pred_flags = 0;
4430 inet_csk_schedule_ack(sk);
4431
4432 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4433 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4434
4435 skb_set_owner_r(skb, sk);
4436
4437 if (!skb_peek(&tp->out_of_order_queue)) {
4438 /* Initial out of order segment, build 1 SACK. */
4439 if (tcp_is_sack(tp)) {
4440 tp->rx_opt.num_sacks = 1;
4441 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4442 tp->selective_acks[0].end_seq =
4443 TCP_SKB_CB(skb)->end_seq;
4444 }
4445 __skb_queue_head(&tp->out_of_order_queue, skb);
4446 } else {
4447 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4448 u32 seq = TCP_SKB_CB(skb)->seq;
4449 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4450
4451 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4452 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4453
4454 if (!tp->rx_opt.num_sacks ||
4455 tp->selective_acks[0].end_seq != seq)
4456 goto add_sack;
4457
4458 /* Common case: data arrive in order after hole. */
4459 tp->selective_acks[0].end_seq = end_seq;
4460 return;
4461 }
4462
4463 /* Find place to insert this segment. */
4464 do {
4465 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4466 break;
4467 } while ((skb1 = skb1->prev) !=
4468 (struct sk_buff *)&tp->out_of_order_queue);
4469
4470 /* Do skb overlap to previous one? */
4471 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4472 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4473 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4474 /* All the bits are present. Drop. */
4475 __kfree_skb(skb);
4476 tcp_dsack_set(sk, seq, end_seq);
4477 goto add_sack;
4478 }
4479 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4480 /* Partial overlap. */
4481 tcp_dsack_set(sk, seq,
4482 TCP_SKB_CB(skb1)->end_seq);
4483 } else {
4484 skb1 = skb1->prev;
4485 }
4486 }
4487 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4488
4489 /* And clean segments covered by new one as whole. */
4490 while ((skb1 = skb->next) !=
4491 (struct sk_buff *)&tp->out_of_order_queue &&
4492 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4493 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4494 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4495 end_seq);
4496 break;
4497 }
4498 __skb_unlink(skb1, &tp->out_of_order_queue);
4499 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4500 TCP_SKB_CB(skb1)->end_seq);
4501 __kfree_skb(skb1);
4502 }
4503
4504 add_sack:
4505 if (tcp_is_sack(tp))
4506 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4507 }
4508 }
4509
4510 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4511 struct sk_buff_head *list)
4512 {
4513 struct sk_buff *next = skb->next;
4514
4515 __skb_unlink(skb, list);
4516 __kfree_skb(skb);
4517 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4518
4519 return next;
4520 }
4521
4522 /* Collapse contiguous sequence of skbs head..tail with
4523 * sequence numbers start..end.
4524 * Segments with FIN/SYN are not collapsed (only because this
4525 * simplifies code)
4526 */
4527 static void
4528 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4529 struct sk_buff *head, struct sk_buff *tail,
4530 u32 start, u32 end)
4531 {
4532 struct sk_buff *skb;
4533
4534 /* First, check that queue is collapsible and find
4535 * the point where collapsing can be useful. */
4536 for (skb = head; skb != tail;) {
4537 /* No new bits? It is possible on ofo queue. */
4538 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4539 skb = tcp_collapse_one(sk, skb, list);
4540 continue;
4541 }
4542
4543 /* The first skb to collapse is:
4544 * - not SYN/FIN and
4545 * - bloated or contains data before "start" or
4546 * overlaps to the next one.
4547 */
4548 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4549 (tcp_win_from_space(skb->truesize) > skb->len ||
4550 before(TCP_SKB_CB(skb)->seq, start) ||
4551 (skb->next != tail &&
4552 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4553 break;
4554
4555 /* Decided to skip this, advance start seq. */
4556 start = TCP_SKB_CB(skb)->end_seq;
4557 skb = skb->next;
4558 }
4559 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4560 return;
4561
4562 while (before(start, end)) {
4563 struct sk_buff *nskb;
4564 unsigned int header = skb_headroom(skb);
4565 int copy = SKB_MAX_ORDER(header, 0);
4566
4567 /* Too big header? This can happen with IPv6. */
4568 if (copy < 0)
4569 return;
4570 if (end - start < copy)
4571 copy = end - start;
4572 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4573 if (!nskb)
4574 return;
4575
4576 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4577 skb_set_network_header(nskb, (skb_network_header(skb) -
4578 skb->head));
4579 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4580 skb->head));
4581 skb_reserve(nskb, header);
4582 memcpy(nskb->head, skb->head, header);
4583 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4584 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4585 __skb_queue_before(list, skb, nskb);
4586 skb_set_owner_r(nskb, sk);
4587
4588 /* Copy data, releasing collapsed skbs. */
4589 while (copy > 0) {
4590 int offset = start - TCP_SKB_CB(skb)->seq;
4591 int size = TCP_SKB_CB(skb)->end_seq - start;
4592
4593 BUG_ON(offset < 0);
4594 if (size > 0) {
4595 size = min(copy, size);
4596 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4597 BUG();
4598 TCP_SKB_CB(nskb)->end_seq += size;
4599 copy -= size;
4600 start += size;
4601 }
4602 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4603 skb = tcp_collapse_one(sk, skb, list);
4604 if (skb == tail ||
4605 tcp_hdr(skb)->syn ||
4606 tcp_hdr(skb)->fin)
4607 return;
4608 }
4609 }
4610 }
4611 }
4612
4613 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4614 * and tcp_collapse() them until all the queue is collapsed.
4615 */
4616 static void tcp_collapse_ofo_queue(struct sock *sk)
4617 {
4618 struct tcp_sock *tp = tcp_sk(sk);
4619 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4620 struct sk_buff *head;
4621 u32 start, end;
4622
4623 if (skb == NULL)
4624 return;
4625
4626 start = TCP_SKB_CB(skb)->seq;
4627 end = TCP_SKB_CB(skb)->end_seq;
4628 head = skb;
4629
4630 for (;;) {
4631 skb = skb->next;
4632
4633 /* Segment is terminated when we see gap or when
4634 * we are at the end of all the queue. */
4635 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4636 after(TCP_SKB_CB(skb)->seq, end) ||
4637 before(TCP_SKB_CB(skb)->end_seq, start)) {
4638 tcp_collapse(sk, &tp->out_of_order_queue,
4639 head, skb, start, end);
4640 head = skb;
4641 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4642 break;
4643 /* Start new segment */
4644 start = TCP_SKB_CB(skb)->seq;
4645 end = TCP_SKB_CB(skb)->end_seq;
4646 } else {
4647 if (before(TCP_SKB_CB(skb)->seq, start))
4648 start = TCP_SKB_CB(skb)->seq;
4649 if (after(TCP_SKB_CB(skb)->end_seq, end))
4650 end = TCP_SKB_CB(skb)->end_seq;
4651 }
4652 }
4653 }
4654
4655 /*
4656 * Purge the out-of-order queue.
4657 * Return true if queue was pruned.
4658 */
4659 static int tcp_prune_ofo_queue(struct sock *sk)
4660 {
4661 struct tcp_sock *tp = tcp_sk(sk);
4662 int res = 0;
4663
4664 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4665 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4666 __skb_queue_purge(&tp->out_of_order_queue);
4667
4668 /* Reset SACK state. A conforming SACK implementation will
4669 * do the same at a timeout based retransmit. When a connection
4670 * is in a sad state like this, we care only about integrity
4671 * of the connection not performance.
4672 */
4673 if (tp->rx_opt.sack_ok)
4674 tcp_sack_reset(&tp->rx_opt);
4675 sk_mem_reclaim(sk);
4676 res = 1;
4677 }
4678 return res;
4679 }
4680
4681 /* Reduce allocated memory if we can, trying to get
4682 * the socket within its memory limits again.
4683 *
4684 * Return less than zero if we should start dropping frames
4685 * until the socket owning process reads some of the data
4686 * to stabilize the situation.
4687 */
4688 static int tcp_prune_queue(struct sock *sk)
4689 {
4690 struct tcp_sock *tp = tcp_sk(sk);
4691
4692 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4693
4694 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4695
4696 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4697 tcp_clamp_window(sk);
4698 else if (tcp_memory_pressure)
4699 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4700
4701 tcp_collapse_ofo_queue(sk);
4702 tcp_collapse(sk, &sk->sk_receive_queue,
4703 sk->sk_receive_queue.next,
4704 (struct sk_buff *)&sk->sk_receive_queue,
4705 tp->copied_seq, tp->rcv_nxt);
4706 sk_mem_reclaim(sk);
4707
4708 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4709 return 0;
4710
4711 /* Collapsing did not help, destructive actions follow.
4712 * This must not ever occur. */
4713
4714 tcp_prune_ofo_queue(sk);
4715
4716 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4717 return 0;
4718
4719 /* If we are really being abused, tell the caller to silently
4720 * drop receive data on the floor. It will get retransmitted
4721 * and hopefully then we'll have sufficient space.
4722 */
4723 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4724
4725 /* Massive buffer overcommit. */
4726 tp->pred_flags = 0;
4727 return -1;
4728 }
4729
4730 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4731 * As additional protections, we do not touch cwnd in retransmission phases,
4732 * and if application hit its sndbuf limit recently.
4733 */
4734 void tcp_cwnd_application_limited(struct sock *sk)
4735 {
4736 struct tcp_sock *tp = tcp_sk(sk);
4737
4738 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4739 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4740 /* Limited by application or receiver window. */
4741 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4742 u32 win_used = max(tp->snd_cwnd_used, init_win);
4743 if (win_used < tp->snd_cwnd) {
4744 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4745 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4746 }
4747 tp->snd_cwnd_used = 0;
4748 }
4749 tp->snd_cwnd_stamp = tcp_time_stamp;
4750 }
4751
4752 static int tcp_should_expand_sndbuf(struct sock *sk)
4753 {
4754 struct tcp_sock *tp = tcp_sk(sk);
4755
4756 /* If the user specified a specific send buffer setting, do
4757 * not modify it.
4758 */
4759 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4760 return 0;
4761
4762 /* If we are under global TCP memory pressure, do not expand. */
4763 if (tcp_memory_pressure)
4764 return 0;
4765
4766 /* If we are under soft global TCP memory pressure, do not expand. */
4767 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4768 return 0;
4769
4770 /* If we filled the congestion window, do not expand. */
4771 if (tp->packets_out >= tp->snd_cwnd)
4772 return 0;
4773
4774 return 1;
4775 }
4776
4777 /* When incoming ACK allowed to free some skb from write_queue,
4778 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4779 * on the exit from tcp input handler.
4780 *
4781 * PROBLEM: sndbuf expansion does not work well with largesend.
4782 */
4783 static void tcp_new_space(struct sock *sk)
4784 {
4785 struct tcp_sock *tp = tcp_sk(sk);
4786
4787 if (tcp_should_expand_sndbuf(sk)) {
4788 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4789 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4790 int demanded = max_t(unsigned int, tp->snd_cwnd,
4791 tp->reordering + 1);
4792 sndmem *= 2 * demanded;
4793 if (sndmem > sk->sk_sndbuf)
4794 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4795 tp->snd_cwnd_stamp = tcp_time_stamp;
4796 }
4797
4798 sk->sk_write_space(sk);
4799 }
4800
4801 static void tcp_check_space(struct sock *sk)
4802 {
4803 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4804 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4805 if (sk->sk_socket &&
4806 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4807 tcp_new_space(sk);
4808 }
4809 }
4810
4811 static inline void tcp_data_snd_check(struct sock *sk)
4812 {
4813 tcp_push_pending_frames(sk);
4814 tcp_check_space(sk);
4815 }
4816
4817 /*
4818 * Check if sending an ack is needed.
4819 */
4820 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4821 {
4822 struct tcp_sock *tp = tcp_sk(sk);
4823
4824 /* More than one full frame received... */
4825 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4826 /* ... and right edge of window advances far enough.
4827 * (tcp_recvmsg() will send ACK otherwise). Or...
4828 */
4829 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4830 /* We ACK each frame or... */
4831 tcp_in_quickack_mode(sk) ||
4832 /* We have out of order data. */
4833 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4834 /* Then ack it now */
4835 tcp_send_ack(sk);
4836 } else {
4837 /* Else, send delayed ack. */
4838 tcp_send_delayed_ack(sk);
4839 }
4840 }
4841
4842 static inline void tcp_ack_snd_check(struct sock *sk)
4843 {
4844 if (!inet_csk_ack_scheduled(sk)) {
4845 /* We sent a data segment already. */
4846 return;
4847 }
4848 __tcp_ack_snd_check(sk, 1);
4849 }
4850
4851 /*
4852 * This routine is only called when we have urgent data
4853 * signaled. Its the 'slow' part of tcp_urg. It could be
4854 * moved inline now as tcp_urg is only called from one
4855 * place. We handle URGent data wrong. We have to - as
4856 * BSD still doesn't use the correction from RFC961.
4857 * For 1003.1g we should support a new option TCP_STDURG to permit
4858 * either form (or just set the sysctl tcp_stdurg).
4859 */
4860
4861 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4862 {
4863 struct tcp_sock *tp = tcp_sk(sk);
4864 u32 ptr = ntohs(th->urg_ptr);
4865
4866 if (ptr && !sysctl_tcp_stdurg)
4867 ptr--;
4868 ptr += ntohl(th->seq);
4869
4870 /* Ignore urgent data that we've already seen and read. */
4871 if (after(tp->copied_seq, ptr))
4872 return;
4873
4874 /* Do not replay urg ptr.
4875 *
4876 * NOTE: interesting situation not covered by specs.
4877 * Misbehaving sender may send urg ptr, pointing to segment,
4878 * which we already have in ofo queue. We are not able to fetch
4879 * such data and will stay in TCP_URG_NOTYET until will be eaten
4880 * by recvmsg(). Seems, we are not obliged to handle such wicked
4881 * situations. But it is worth to think about possibility of some
4882 * DoSes using some hypothetical application level deadlock.
4883 */
4884 if (before(ptr, tp->rcv_nxt))
4885 return;
4886
4887 /* Do we already have a newer (or duplicate) urgent pointer? */
4888 if (tp->urg_data && !after(ptr, tp->urg_seq))
4889 return;
4890
4891 /* Tell the world about our new urgent pointer. */
4892 sk_send_sigurg(sk);
4893
4894 /* We may be adding urgent data when the last byte read was
4895 * urgent. To do this requires some care. We cannot just ignore
4896 * tp->copied_seq since we would read the last urgent byte again
4897 * as data, nor can we alter copied_seq until this data arrives
4898 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4899 *
4900 * NOTE. Double Dutch. Rendering to plain English: author of comment
4901 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4902 * and expect that both A and B disappear from stream. This is _wrong_.
4903 * Though this happens in BSD with high probability, this is occasional.
4904 * Any application relying on this is buggy. Note also, that fix "works"
4905 * only in this artificial test. Insert some normal data between A and B and we will
4906 * decline of BSD again. Verdict: it is better to remove to trap
4907 * buggy users.
4908 */
4909 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4910 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4911 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4912 tp->copied_seq++;
4913 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4914 __skb_unlink(skb, &sk->sk_receive_queue);
4915 __kfree_skb(skb);
4916 }
4917 }
4918
4919 tp->urg_data = TCP_URG_NOTYET;
4920 tp->urg_seq = ptr;
4921
4922 /* Disable header prediction. */
4923 tp->pred_flags = 0;
4924 }
4925
4926 /* This is the 'fast' part of urgent handling. */
4927 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4928 {
4929 struct tcp_sock *tp = tcp_sk(sk);
4930
4931 /* Check if we get a new urgent pointer - normally not. */
4932 if (th->urg)
4933 tcp_check_urg(sk, th);
4934
4935 /* Do we wait for any urgent data? - normally not... */
4936 if (tp->urg_data == TCP_URG_NOTYET) {
4937 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4938 th->syn;
4939
4940 /* Is the urgent pointer pointing into this packet? */
4941 if (ptr < skb->len) {
4942 u8 tmp;
4943 if (skb_copy_bits(skb, ptr, &tmp, 1))
4944 BUG();
4945 tp->urg_data = TCP_URG_VALID | tmp;
4946 if (!sock_flag(sk, SOCK_DEAD))
4947 sk->sk_data_ready(sk, 0);
4948 }
4949 }
4950 }
4951
4952 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4953 {
4954 struct tcp_sock *tp = tcp_sk(sk);
4955 int chunk = skb->len - hlen;
4956 int err;
4957
4958 local_bh_enable();
4959 if (skb_csum_unnecessary(skb))
4960 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4961 else
4962 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4963 tp->ucopy.iov);
4964
4965 if (!err) {
4966 tp->ucopy.len -= chunk;
4967 tp->copied_seq += chunk;
4968 tcp_rcv_space_adjust(sk);
4969 }
4970
4971 local_bh_disable();
4972 return err;
4973 }
4974
4975 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4976 struct sk_buff *skb)
4977 {
4978 __sum16 result;
4979
4980 if (sock_owned_by_user(sk)) {
4981 local_bh_enable();
4982 result = __tcp_checksum_complete(skb);
4983 local_bh_disable();
4984 } else {
4985 result = __tcp_checksum_complete(skb);
4986 }
4987 return result;
4988 }
4989
4990 static inline int tcp_checksum_complete_user(struct sock *sk,
4991 struct sk_buff *skb)
4992 {
4993 return !skb_csum_unnecessary(skb) &&
4994 __tcp_checksum_complete_user(sk, skb);
4995 }
4996
4997 #ifdef CONFIG_NET_DMA
4998 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4999 int hlen)
5000 {
5001 struct tcp_sock *tp = tcp_sk(sk);
5002 int chunk = skb->len - hlen;
5003 int dma_cookie;
5004 int copied_early = 0;
5005
5006 if (tp->ucopy.wakeup)
5007 return 0;
5008
5009 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5010 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5011
5012 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5013
5014 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5015 skb, hlen,
5016 tp->ucopy.iov, chunk,
5017 tp->ucopy.pinned_list);
5018
5019 if (dma_cookie < 0)
5020 goto out;
5021
5022 tp->ucopy.dma_cookie = dma_cookie;
5023 copied_early = 1;
5024
5025 tp->ucopy.len -= chunk;
5026 tp->copied_seq += chunk;
5027 tcp_rcv_space_adjust(sk);
5028
5029 if ((tp->ucopy.len == 0) ||
5030 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5031 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5032 tp->ucopy.wakeup = 1;
5033 sk->sk_data_ready(sk, 0);
5034 }
5035 } else if (chunk > 0) {
5036 tp->ucopy.wakeup = 1;
5037 sk->sk_data_ready(sk, 0);
5038 }
5039 out:
5040 return copied_early;
5041 }
5042 #endif /* CONFIG_NET_DMA */
5043
5044 /* Does PAWS and seqno based validation of an incoming segment, flags will
5045 * play significant role here.
5046 */
5047 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5048 struct tcphdr *th, int syn_inerr)
5049 {
5050 struct tcp_sock *tp = tcp_sk(sk);
5051
5052 /* RFC1323: H1. Apply PAWS check first. */
5053 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5054 tcp_paws_discard(sk, skb)) {
5055 if (!th->rst) {
5056 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5057 tcp_send_dupack(sk, skb);
5058 goto discard;
5059 }
5060 /* Reset is accepted even if it did not pass PAWS. */
5061 }
5062
5063 /* Step 1: check sequence number */
5064 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5065 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5066 * (RST) segments are validated by checking their SEQ-fields."
5067 * And page 69: "If an incoming segment is not acceptable,
5068 * an acknowledgment should be sent in reply (unless the RST
5069 * bit is set, if so drop the segment and return)".
5070 */
5071 if (!th->rst)
5072 tcp_send_dupack(sk, skb);
5073 goto discard;
5074 }
5075
5076 /* Step 2: check RST bit */
5077 if (th->rst) {
5078 tcp_reset(sk);
5079 goto discard;
5080 }
5081
5082 /* ts_recent update must be made after we are sure that the packet
5083 * is in window.
5084 */
5085 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5086
5087 /* step 3: check security and precedence [ignored] */
5088
5089 /* step 4: Check for a SYN in window. */
5090 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5091 if (syn_inerr)
5092 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5093 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5094 tcp_reset(sk);
5095 return -1;
5096 }
5097
5098 return 1;
5099
5100 discard:
5101 __kfree_skb(skb);
5102 return 0;
5103 }
5104
5105 /*
5106 * TCP receive function for the ESTABLISHED state.
5107 *
5108 * It is split into a fast path and a slow path. The fast path is
5109 * disabled when:
5110 * - A zero window was announced from us - zero window probing
5111 * is only handled properly in the slow path.
5112 * - Out of order segments arrived.
5113 * - Urgent data is expected.
5114 * - There is no buffer space left
5115 * - Unexpected TCP flags/window values/header lengths are received
5116 * (detected by checking the TCP header against pred_flags)
5117 * - Data is sent in both directions. Fast path only supports pure senders
5118 * or pure receivers (this means either the sequence number or the ack
5119 * value must stay constant)
5120 * - Unexpected TCP option.
5121 *
5122 * When these conditions are not satisfied it drops into a standard
5123 * receive procedure patterned after RFC793 to handle all cases.
5124 * The first three cases are guaranteed by proper pred_flags setting,
5125 * the rest is checked inline. Fast processing is turned on in
5126 * tcp_data_queue when everything is OK.
5127 */
5128 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5129 struct tcphdr *th, unsigned len)
5130 {
5131 struct tcp_sock *tp = tcp_sk(sk);
5132 int res;
5133
5134 /*
5135 * Header prediction.
5136 * The code loosely follows the one in the famous
5137 * "30 instruction TCP receive" Van Jacobson mail.
5138 *
5139 * Van's trick is to deposit buffers into socket queue
5140 * on a device interrupt, to call tcp_recv function
5141 * on the receive process context and checksum and copy
5142 * the buffer to user space. smart...
5143 *
5144 * Our current scheme is not silly either but we take the
5145 * extra cost of the net_bh soft interrupt processing...
5146 * We do checksum and copy also but from device to kernel.
5147 */
5148
5149 tp->rx_opt.saw_tstamp = 0;
5150
5151 /* pred_flags is 0xS?10 << 16 + snd_wnd
5152 * if header_prediction is to be made
5153 * 'S' will always be tp->tcp_header_len >> 2
5154 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5155 * turn it off (when there are holes in the receive
5156 * space for instance)
5157 * PSH flag is ignored.
5158 */
5159
5160 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5161 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5162 int tcp_header_len = tp->tcp_header_len;
5163
5164 /* Timestamp header prediction: tcp_header_len
5165 * is automatically equal to th->doff*4 due to pred_flags
5166 * match.
5167 */
5168
5169 /* Check timestamp */
5170 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5171 /* No? Slow path! */
5172 if (!tcp_parse_aligned_timestamp(tp, th))
5173 goto slow_path;
5174
5175 /* If PAWS failed, check it more carefully in slow path */
5176 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5177 goto slow_path;
5178
5179 /* DO NOT update ts_recent here, if checksum fails
5180 * and timestamp was corrupted part, it will result
5181 * in a hung connection since we will drop all
5182 * future packets due to the PAWS test.
5183 */
5184 }
5185
5186 if (len <= tcp_header_len) {
5187 /* Bulk data transfer: sender */
5188 if (len == tcp_header_len) {
5189 /* Predicted packet is in window by definition.
5190 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5191 * Hence, check seq<=rcv_wup reduces to:
5192 */
5193 if (tcp_header_len ==
5194 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5195 tp->rcv_nxt == tp->rcv_wup)
5196 tcp_store_ts_recent(tp);
5197
5198 /* We know that such packets are checksummed
5199 * on entry.
5200 */
5201 tcp_ack(sk, skb, 0);
5202 __kfree_skb(skb);
5203 tcp_data_snd_check(sk);
5204 return 0;
5205 } else { /* Header too small */
5206 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5207 goto discard;
5208 }
5209 } else {
5210 int eaten = 0;
5211 int copied_early = 0;
5212
5213 if (tp->copied_seq == tp->rcv_nxt &&
5214 len - tcp_header_len <= tp->ucopy.len) {
5215 #ifdef CONFIG_NET_DMA
5216 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5217 copied_early = 1;
5218 eaten = 1;
5219 }
5220 #endif
5221 if (tp->ucopy.task == current &&
5222 sock_owned_by_user(sk) && !copied_early) {
5223 __set_current_state(TASK_RUNNING);
5224
5225 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5226 eaten = 1;
5227 }
5228 if (eaten) {
5229 /* Predicted packet is in window by definition.
5230 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5231 * Hence, check seq<=rcv_wup reduces to:
5232 */
5233 if (tcp_header_len ==
5234 (sizeof(struct tcphdr) +
5235 TCPOLEN_TSTAMP_ALIGNED) &&
5236 tp->rcv_nxt == tp->rcv_wup)
5237 tcp_store_ts_recent(tp);
5238
5239 tcp_rcv_rtt_measure_ts(sk, skb);
5240
5241 __skb_pull(skb, tcp_header_len);
5242 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5243 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5244 }
5245 if (copied_early)
5246 tcp_cleanup_rbuf(sk, skb->len);
5247 }
5248 if (!eaten) {
5249 if (tcp_checksum_complete_user(sk, skb))
5250 goto csum_error;
5251
5252 /* Predicted packet is in window by definition.
5253 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5254 * Hence, check seq<=rcv_wup reduces to:
5255 */
5256 if (tcp_header_len ==
5257 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5258 tp->rcv_nxt == tp->rcv_wup)
5259 tcp_store_ts_recent(tp);
5260
5261 tcp_rcv_rtt_measure_ts(sk, skb);
5262
5263 if ((int)skb->truesize > sk->sk_forward_alloc)
5264 goto step5;
5265
5266 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5267
5268 /* Bulk data transfer: receiver */
5269 __skb_pull(skb, tcp_header_len);
5270 __skb_queue_tail(&sk->sk_receive_queue, skb);
5271 skb_set_owner_r(skb, sk);
5272 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5273 }
5274
5275 tcp_event_data_recv(sk, skb);
5276
5277 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5278 /* Well, only one small jumplet in fast path... */
5279 tcp_ack(sk, skb, FLAG_DATA);
5280 tcp_data_snd_check(sk);
5281 if (!inet_csk_ack_scheduled(sk))
5282 goto no_ack;
5283 }
5284
5285 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5286 __tcp_ack_snd_check(sk, 0);
5287 no_ack:
5288 #ifdef CONFIG_NET_DMA
5289 if (copied_early)
5290 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5291 else
5292 #endif
5293 if (eaten)
5294 __kfree_skb(skb);
5295 else
5296 sk->sk_data_ready(sk, 0);
5297 return 0;
5298 }
5299 }
5300
5301 slow_path:
5302 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5303 goto csum_error;
5304
5305 /*
5306 * Standard slow path.
5307 */
5308
5309 res = tcp_validate_incoming(sk, skb, th, 1);
5310 if (res <= 0)
5311 return -res;
5312
5313 step5:
5314 if (th->ack)
5315 tcp_ack(sk, skb, FLAG_SLOWPATH);
5316
5317 tcp_rcv_rtt_measure_ts(sk, skb);
5318
5319 /* Process urgent data. */
5320 tcp_urg(sk, skb, th);
5321
5322 /* step 7: process the segment text */
5323 tcp_data_queue(sk, skb);
5324
5325 tcp_data_snd_check(sk);
5326 tcp_ack_snd_check(sk);
5327 return 0;
5328
5329 csum_error:
5330 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5331
5332 discard:
5333 __kfree_skb(skb);
5334 return 0;
5335 }
5336
5337 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5338 struct tcphdr *th, unsigned len)
5339 {
5340 struct tcp_sock *tp = tcp_sk(sk);
5341 struct inet_connection_sock *icsk = inet_csk(sk);
5342 int saved_clamp = tp->rx_opt.mss_clamp;
5343
5344 tcp_parse_options(skb, &tp->rx_opt, 0);
5345
5346 if (th->ack) {
5347 /* rfc793:
5348 * "If the state is SYN-SENT then
5349 * first check the ACK bit
5350 * If the ACK bit is set
5351 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5352 * a reset (unless the RST bit is set, if so drop
5353 * the segment and return)"
5354 *
5355 * We do not send data with SYN, so that RFC-correct
5356 * test reduces to:
5357 */
5358 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5359 goto reset_and_undo;
5360
5361 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5362 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5363 tcp_time_stamp)) {
5364 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5365 goto reset_and_undo;
5366 }
5367
5368 /* Now ACK is acceptable.
5369 *
5370 * "If the RST bit is set
5371 * If the ACK was acceptable then signal the user "error:
5372 * connection reset", drop the segment, enter CLOSED state,
5373 * delete TCB, and return."
5374 */
5375
5376 if (th->rst) {
5377 tcp_reset(sk);
5378 goto discard;
5379 }
5380
5381 /* rfc793:
5382 * "fifth, if neither of the SYN or RST bits is set then
5383 * drop the segment and return."
5384 *
5385 * See note below!
5386 * --ANK(990513)
5387 */
5388 if (!th->syn)
5389 goto discard_and_undo;
5390
5391 /* rfc793:
5392 * "If the SYN bit is on ...
5393 * are acceptable then ...
5394 * (our SYN has been ACKed), change the connection
5395 * state to ESTABLISHED..."
5396 */
5397
5398 TCP_ECN_rcv_synack(tp, th);
5399
5400 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5401 tcp_ack(sk, skb, FLAG_SLOWPATH);
5402
5403 /* Ok.. it's good. Set up sequence numbers and
5404 * move to established.
5405 */
5406 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5407 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5408
5409 /* RFC1323: The window in SYN & SYN/ACK segments is
5410 * never scaled.
5411 */
5412 tp->snd_wnd = ntohs(th->window);
5413 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5414
5415 if (!tp->rx_opt.wscale_ok) {
5416 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5417 tp->window_clamp = min(tp->window_clamp, 65535U);
5418 }
5419
5420 if (tp->rx_opt.saw_tstamp) {
5421 tp->rx_opt.tstamp_ok = 1;
5422 tp->tcp_header_len =
5423 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5424 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5425 tcp_store_ts_recent(tp);
5426 } else {
5427 tp->tcp_header_len = sizeof(struct tcphdr);
5428 }
5429
5430 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5431 tcp_enable_fack(tp);
5432
5433 tcp_mtup_init(sk);
5434 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5435 tcp_initialize_rcv_mss(sk);
5436
5437 /* Remember, tcp_poll() does not lock socket!
5438 * Change state from SYN-SENT only after copied_seq
5439 * is initialized. */
5440 tp->copied_seq = tp->rcv_nxt;
5441 smp_mb();
5442 tcp_set_state(sk, TCP_ESTABLISHED);
5443
5444 security_inet_conn_established(sk, skb);
5445
5446 /* Make sure socket is routed, for correct metrics. */
5447 icsk->icsk_af_ops->rebuild_header(sk);
5448
5449 tcp_init_metrics(sk);
5450
5451 tcp_init_congestion_control(sk);
5452
5453 /* Prevent spurious tcp_cwnd_restart() on first data
5454 * packet.
5455 */
5456 tp->lsndtime = tcp_time_stamp;
5457
5458 tcp_init_buffer_space(sk);
5459
5460 if (sock_flag(sk, SOCK_KEEPOPEN))
5461 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5462
5463 if (!tp->rx_opt.snd_wscale)
5464 __tcp_fast_path_on(tp, tp->snd_wnd);
5465 else
5466 tp->pred_flags = 0;
5467
5468 if (!sock_flag(sk, SOCK_DEAD)) {
5469 sk->sk_state_change(sk);
5470 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5471 }
5472
5473 if (sk->sk_write_pending ||
5474 icsk->icsk_accept_queue.rskq_defer_accept ||
5475 icsk->icsk_ack.pingpong) {
5476 /* Save one ACK. Data will be ready after
5477 * several ticks, if write_pending is set.
5478 *
5479 * It may be deleted, but with this feature tcpdumps
5480 * look so _wonderfully_ clever, that I was not able
5481 * to stand against the temptation 8) --ANK
5482 */
5483 inet_csk_schedule_ack(sk);
5484 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5485 icsk->icsk_ack.ato = TCP_ATO_MIN;
5486 tcp_incr_quickack(sk);
5487 tcp_enter_quickack_mode(sk);
5488 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5489 TCP_DELACK_MAX, TCP_RTO_MAX);
5490
5491 discard:
5492 __kfree_skb(skb);
5493 return 0;
5494 } else {
5495 tcp_send_ack(sk);
5496 }
5497 return -1;
5498 }
5499
5500 /* No ACK in the segment */
5501
5502 if (th->rst) {
5503 /* rfc793:
5504 * "If the RST bit is set
5505 *
5506 * Otherwise (no ACK) drop the segment and return."
5507 */
5508
5509 goto discard_and_undo;
5510 }
5511
5512 /* PAWS check. */
5513 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5514 tcp_paws_reject(&tp->rx_opt, 0))
5515 goto discard_and_undo;
5516
5517 if (th->syn) {
5518 /* We see SYN without ACK. It is attempt of
5519 * simultaneous connect with crossed SYNs.
5520 * Particularly, it can be connect to self.
5521 */
5522 tcp_set_state(sk, TCP_SYN_RECV);
5523
5524 if (tp->rx_opt.saw_tstamp) {
5525 tp->rx_opt.tstamp_ok = 1;
5526 tcp_store_ts_recent(tp);
5527 tp->tcp_header_len =
5528 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5529 } else {
5530 tp->tcp_header_len = sizeof(struct tcphdr);
5531 }
5532
5533 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5534 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5535
5536 /* RFC1323: The window in SYN & SYN/ACK segments is
5537 * never scaled.
5538 */
5539 tp->snd_wnd = ntohs(th->window);
5540 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5541 tp->max_window = tp->snd_wnd;
5542
5543 TCP_ECN_rcv_syn(tp, th);
5544
5545 tcp_mtup_init(sk);
5546 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5547 tcp_initialize_rcv_mss(sk);
5548
5549 tcp_send_synack(sk);
5550 #if 0
5551 /* Note, we could accept data and URG from this segment.
5552 * There are no obstacles to make this.
5553 *
5554 * However, if we ignore data in ACKless segments sometimes,
5555 * we have no reasons to accept it sometimes.
5556 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5557 * is not flawless. So, discard packet for sanity.
5558 * Uncomment this return to process the data.
5559 */
5560 return -1;
5561 #else
5562 goto discard;
5563 #endif
5564 }
5565 /* "fifth, if neither of the SYN or RST bits is set then
5566 * drop the segment and return."
5567 */
5568
5569 discard_and_undo:
5570 tcp_clear_options(&tp->rx_opt);
5571 tp->rx_opt.mss_clamp = saved_clamp;
5572 goto discard;
5573
5574 reset_and_undo:
5575 tcp_clear_options(&tp->rx_opt);
5576 tp->rx_opt.mss_clamp = saved_clamp;
5577 return 1;
5578 }
5579
5580 /*
5581 * This function implements the receiving procedure of RFC 793 for
5582 * all states except ESTABLISHED and TIME_WAIT.
5583 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5584 * address independent.
5585 */
5586
5587 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5588 struct tcphdr *th, unsigned len)
5589 {
5590 struct tcp_sock *tp = tcp_sk(sk);
5591 struct inet_connection_sock *icsk = inet_csk(sk);
5592 int queued = 0;
5593 int res;
5594
5595 tp->rx_opt.saw_tstamp = 0;
5596
5597 switch (sk->sk_state) {
5598 case TCP_CLOSE:
5599 goto discard;
5600
5601 case TCP_LISTEN:
5602 if (th->ack)
5603 return 1;
5604
5605 if (th->rst)
5606 goto discard;
5607
5608 if (th->syn) {
5609 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5610 return 1;
5611
5612 /* Now we have several options: In theory there is
5613 * nothing else in the frame. KA9Q has an option to
5614 * send data with the syn, BSD accepts data with the
5615 * syn up to the [to be] advertised window and
5616 * Solaris 2.1 gives you a protocol error. For now
5617 * we just ignore it, that fits the spec precisely
5618 * and avoids incompatibilities. It would be nice in
5619 * future to drop through and process the data.
5620 *
5621 * Now that TTCP is starting to be used we ought to
5622 * queue this data.
5623 * But, this leaves one open to an easy denial of
5624 * service attack, and SYN cookies can't defend
5625 * against this problem. So, we drop the data
5626 * in the interest of security over speed unless
5627 * it's still in use.
5628 */
5629 kfree_skb(skb);
5630 return 0;
5631 }
5632 goto discard;
5633
5634 case TCP_SYN_SENT:
5635 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5636 if (queued >= 0)
5637 return queued;
5638
5639 /* Do step6 onward by hand. */
5640 tcp_urg(sk, skb, th);
5641 __kfree_skb(skb);
5642 tcp_data_snd_check(sk);
5643 return 0;
5644 }
5645
5646 res = tcp_validate_incoming(sk, skb, th, 0);
5647 if (res <= 0)
5648 return -res;
5649
5650 /* step 5: check the ACK field */
5651 if (th->ack) {
5652 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5653
5654 switch (sk->sk_state) {
5655 case TCP_SYN_RECV:
5656 if (acceptable) {
5657 tp->copied_seq = tp->rcv_nxt;
5658 smp_mb();
5659 tcp_set_state(sk, TCP_ESTABLISHED);
5660 sk->sk_state_change(sk);
5661
5662 /* Note, that this wakeup is only for marginal
5663 * crossed SYN case. Passively open sockets
5664 * are not waked up, because sk->sk_sleep ==
5665 * NULL and sk->sk_socket == NULL.
5666 */
5667 if (sk->sk_socket)
5668 sk_wake_async(sk,
5669 SOCK_WAKE_IO, POLL_OUT);
5670
5671 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5672 tp->snd_wnd = ntohs(th->window) <<
5673 tp->rx_opt.snd_wscale;
5674 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5675
5676 /* tcp_ack considers this ACK as duplicate
5677 * and does not calculate rtt.
5678 * Fix it at least with timestamps.
5679 */
5680 if (tp->rx_opt.saw_tstamp &&
5681 tp->rx_opt.rcv_tsecr && !tp->srtt)
5682 tcp_ack_saw_tstamp(sk, 0);
5683
5684 if (tp->rx_opt.tstamp_ok)
5685 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5686
5687 /* Make sure socket is routed, for
5688 * correct metrics.
5689 */
5690 icsk->icsk_af_ops->rebuild_header(sk);
5691
5692 tcp_init_metrics(sk);
5693
5694 tcp_init_congestion_control(sk);
5695
5696 /* Prevent spurious tcp_cwnd_restart() on
5697 * first data packet.
5698 */
5699 tp->lsndtime = tcp_time_stamp;
5700
5701 tcp_mtup_init(sk);
5702 tcp_initialize_rcv_mss(sk);
5703 tcp_init_buffer_space(sk);
5704 tcp_fast_path_on(tp);
5705 } else {
5706 return 1;
5707 }
5708 break;
5709
5710 case TCP_FIN_WAIT1:
5711 if (tp->snd_una == tp->write_seq) {
5712 tcp_set_state(sk, TCP_FIN_WAIT2);
5713 sk->sk_shutdown |= SEND_SHUTDOWN;
5714 dst_confirm(sk->sk_dst_cache);
5715
5716 if (!sock_flag(sk, SOCK_DEAD))
5717 /* Wake up lingering close() */
5718 sk->sk_state_change(sk);
5719 else {
5720 int tmo;
5721
5722 if (tp->linger2 < 0 ||
5723 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5724 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5725 tcp_done(sk);
5726 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5727 return 1;
5728 }
5729
5730 tmo = tcp_fin_time(sk);
5731 if (tmo > TCP_TIMEWAIT_LEN) {
5732 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5733 } else if (th->fin || sock_owned_by_user(sk)) {
5734 /* Bad case. We could lose such FIN otherwise.
5735 * It is not a big problem, but it looks confusing
5736 * and not so rare event. We still can lose it now,
5737 * if it spins in bh_lock_sock(), but it is really
5738 * marginal case.
5739 */
5740 inet_csk_reset_keepalive_timer(sk, tmo);
5741 } else {
5742 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5743 goto discard;
5744 }
5745 }
5746 }
5747 break;
5748
5749 case TCP_CLOSING:
5750 if (tp->snd_una == tp->write_seq) {
5751 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5752 goto discard;
5753 }
5754 break;
5755
5756 case TCP_LAST_ACK:
5757 if (tp->snd_una == tp->write_seq) {
5758 tcp_update_metrics(sk);
5759 tcp_done(sk);
5760 goto discard;
5761 }
5762 break;
5763 }
5764 } else
5765 goto discard;
5766
5767 /* step 6: check the URG bit */
5768 tcp_urg(sk, skb, th);
5769
5770 /* step 7: process the segment text */
5771 switch (sk->sk_state) {
5772 case TCP_CLOSE_WAIT:
5773 case TCP_CLOSING:
5774 case TCP_LAST_ACK:
5775 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5776 break;
5777 case TCP_FIN_WAIT1:
5778 case TCP_FIN_WAIT2:
5779 /* RFC 793 says to queue data in these states,
5780 * RFC 1122 says we MUST send a reset.
5781 * BSD 4.4 also does reset.
5782 */
5783 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5784 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5785 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5786 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5787 tcp_reset(sk);
5788 return 1;
5789 }
5790 }
5791 /* Fall through */
5792 case TCP_ESTABLISHED:
5793 tcp_data_queue(sk, skb);
5794 queued = 1;
5795 break;
5796 }
5797
5798 /* tcp_data could move socket to TIME-WAIT */
5799 if (sk->sk_state != TCP_CLOSE) {
5800 tcp_data_snd_check(sk);
5801 tcp_ack_snd_check(sk);
5802 }
5803
5804 if (!queued) {
5805 discard:
5806 __kfree_skb(skb);
5807 }
5808 return 0;
5809 }
5810
5811 EXPORT_SYMBOL(sysctl_tcp_ecn);
5812 EXPORT_SYMBOL(sysctl_tcp_reordering);
5813 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5814 EXPORT_SYMBOL(tcp_parse_options);
5815 #ifdef CONFIG_TCP_MD5SIG
5816 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5817 #endif
5818 EXPORT_SYMBOL(tcp_rcv_established);
5819 EXPORT_SYMBOL(tcp_rcv_state_process);
5820 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.177155 seconds and 5 git commands to generate.