tcp: remove in_flight parameter from cong_avoid() methods
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96
97 int sysctl_tcp_thin_dupack __read_mostly;
98
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
101
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
115
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124 /* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
126 */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
132
133 icsk->icsk_ack.last_seg_size = 0;
134
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
137 */
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
144 *
145 * "len" is invariant segment length, including TCP header.
146 */
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
153 */
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
159 */
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
165 }
166 }
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 }
171 }
172
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
194 */
195
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
197 {
198 const struct inet_connection_sock *icsk = inet_csk(sk);
199
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222 if (!(tp->ecn_flags & TCP_ECN_OK))
223 return;
224
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
230 */
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 /* Better not delay acks, sender can have a very low cwnd */
237 tcp_enter_quickack_mode((struct sock *)tp);
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 }
240 /* fallinto */
241 default:
242 tp->ecn_flags |= TCP_ECN_SEEN;
243 }
244 }
245
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 return true;
262 return false;
263 }
264
265 /* Buffer size and advertised window tuning.
266 *
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268 */
269
270 static void tcp_sndbuf_expand(struct sock *sk)
271 {
272 const struct tcp_sock *tp = tcp_sk(sk);
273 int sndmem, per_mss;
274 u32 nr_segs;
275
276 /* Worst case is non GSO/TSO : each frame consumes one skb
277 * and skb->head is kmalloced using power of two area of memory
278 */
279 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
280 MAX_TCP_HEADER +
281 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
282
283 per_mss = roundup_pow_of_two(per_mss) +
284 SKB_DATA_ALIGN(sizeof(struct sk_buff));
285
286 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
287 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
288
289 /* Fast Recovery (RFC 5681 3.2) :
290 * Cubic needs 1.7 factor, rounded to 2 to include
291 * extra cushion (application might react slowly to POLLOUT)
292 */
293 sndmem = 2 * nr_segs * per_mss;
294
295 if (sk->sk_sndbuf < sndmem)
296 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
297 }
298
299 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
300 *
301 * All tcp_full_space() is split to two parts: "network" buffer, allocated
302 * forward and advertised in receiver window (tp->rcv_wnd) and
303 * "application buffer", required to isolate scheduling/application
304 * latencies from network.
305 * window_clamp is maximal advertised window. It can be less than
306 * tcp_full_space(), in this case tcp_full_space() - window_clamp
307 * is reserved for "application" buffer. The less window_clamp is
308 * the smoother our behaviour from viewpoint of network, but the lower
309 * throughput and the higher sensitivity of the connection to losses. 8)
310 *
311 * rcv_ssthresh is more strict window_clamp used at "slow start"
312 * phase to predict further behaviour of this connection.
313 * It is used for two goals:
314 * - to enforce header prediction at sender, even when application
315 * requires some significant "application buffer". It is check #1.
316 * - to prevent pruning of receive queue because of misprediction
317 * of receiver window. Check #2.
318 *
319 * The scheme does not work when sender sends good segments opening
320 * window and then starts to feed us spaghetti. But it should work
321 * in common situations. Otherwise, we have to rely on queue collapsing.
322 */
323
324 /* Slow part of check#2. */
325 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
326 {
327 struct tcp_sock *tp = tcp_sk(sk);
328 /* Optimize this! */
329 int truesize = tcp_win_from_space(skb->truesize) >> 1;
330 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
331
332 while (tp->rcv_ssthresh <= window) {
333 if (truesize <= skb->len)
334 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
335
336 truesize >>= 1;
337 window >>= 1;
338 }
339 return 0;
340 }
341
342 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
343 {
344 struct tcp_sock *tp = tcp_sk(sk);
345
346 /* Check #1 */
347 if (tp->rcv_ssthresh < tp->window_clamp &&
348 (int)tp->rcv_ssthresh < tcp_space(sk) &&
349 !sk_under_memory_pressure(sk)) {
350 int incr;
351
352 /* Check #2. Increase window, if skb with such overhead
353 * will fit to rcvbuf in future.
354 */
355 if (tcp_win_from_space(skb->truesize) <= skb->len)
356 incr = 2 * tp->advmss;
357 else
358 incr = __tcp_grow_window(sk, skb);
359
360 if (incr) {
361 incr = max_t(int, incr, 2 * skb->len);
362 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
363 tp->window_clamp);
364 inet_csk(sk)->icsk_ack.quick |= 1;
365 }
366 }
367 }
368
369 /* 3. Tuning rcvbuf, when connection enters established state. */
370 static void tcp_fixup_rcvbuf(struct sock *sk)
371 {
372 u32 mss = tcp_sk(sk)->advmss;
373 int rcvmem;
374
375 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
376 tcp_default_init_rwnd(mss);
377
378 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
379 * Allow enough cushion so that sender is not limited by our window
380 */
381 if (sysctl_tcp_moderate_rcvbuf)
382 rcvmem <<= 2;
383
384 if (sk->sk_rcvbuf < rcvmem)
385 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
386 }
387
388 /* 4. Try to fixup all. It is made immediately after connection enters
389 * established state.
390 */
391 void tcp_init_buffer_space(struct sock *sk)
392 {
393 struct tcp_sock *tp = tcp_sk(sk);
394 int maxwin;
395
396 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
397 tcp_fixup_rcvbuf(sk);
398 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
399 tcp_sndbuf_expand(sk);
400
401 tp->rcvq_space.space = tp->rcv_wnd;
402 tp->rcvq_space.time = tcp_time_stamp;
403 tp->rcvq_space.seq = tp->copied_seq;
404
405 maxwin = tcp_full_space(sk);
406
407 if (tp->window_clamp >= maxwin) {
408 tp->window_clamp = maxwin;
409
410 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
411 tp->window_clamp = max(maxwin -
412 (maxwin >> sysctl_tcp_app_win),
413 4 * tp->advmss);
414 }
415
416 /* Force reservation of one segment. */
417 if (sysctl_tcp_app_win &&
418 tp->window_clamp > 2 * tp->advmss &&
419 tp->window_clamp + tp->advmss > maxwin)
420 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
421
422 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
423 tp->snd_cwnd_stamp = tcp_time_stamp;
424 }
425
426 /* 5. Recalculate window clamp after socket hit its memory bounds. */
427 static void tcp_clamp_window(struct sock *sk)
428 {
429 struct tcp_sock *tp = tcp_sk(sk);
430 struct inet_connection_sock *icsk = inet_csk(sk);
431
432 icsk->icsk_ack.quick = 0;
433
434 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
435 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
436 !sk_under_memory_pressure(sk) &&
437 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
438 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
439 sysctl_tcp_rmem[2]);
440 }
441 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
442 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
443 }
444
445 /* Initialize RCV_MSS value.
446 * RCV_MSS is an our guess about MSS used by the peer.
447 * We haven't any direct information about the MSS.
448 * It's better to underestimate the RCV_MSS rather than overestimate.
449 * Overestimations make us ACKing less frequently than needed.
450 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
451 */
452 void tcp_initialize_rcv_mss(struct sock *sk)
453 {
454 const struct tcp_sock *tp = tcp_sk(sk);
455 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
456
457 hint = min(hint, tp->rcv_wnd / 2);
458 hint = min(hint, TCP_MSS_DEFAULT);
459 hint = max(hint, TCP_MIN_MSS);
460
461 inet_csk(sk)->icsk_ack.rcv_mss = hint;
462 }
463 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
464
465 /* Receiver "autotuning" code.
466 *
467 * The algorithm for RTT estimation w/o timestamps is based on
468 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
469 * <http://public.lanl.gov/radiant/pubs.html#DRS>
470 *
471 * More detail on this code can be found at
472 * <http://staff.psc.edu/jheffner/>,
473 * though this reference is out of date. A new paper
474 * is pending.
475 */
476 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
477 {
478 u32 new_sample = tp->rcv_rtt_est.rtt;
479 long m = sample;
480
481 if (m == 0)
482 m = 1;
483
484 if (new_sample != 0) {
485 /* If we sample in larger samples in the non-timestamp
486 * case, we could grossly overestimate the RTT especially
487 * with chatty applications or bulk transfer apps which
488 * are stalled on filesystem I/O.
489 *
490 * Also, since we are only going for a minimum in the
491 * non-timestamp case, we do not smooth things out
492 * else with timestamps disabled convergence takes too
493 * long.
494 */
495 if (!win_dep) {
496 m -= (new_sample >> 3);
497 new_sample += m;
498 } else {
499 m <<= 3;
500 if (m < new_sample)
501 new_sample = m;
502 }
503 } else {
504 /* No previous measure. */
505 new_sample = m << 3;
506 }
507
508 if (tp->rcv_rtt_est.rtt != new_sample)
509 tp->rcv_rtt_est.rtt = new_sample;
510 }
511
512 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
513 {
514 if (tp->rcv_rtt_est.time == 0)
515 goto new_measure;
516 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
517 return;
518 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
519
520 new_measure:
521 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
522 tp->rcv_rtt_est.time = tcp_time_stamp;
523 }
524
525 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
526 const struct sk_buff *skb)
527 {
528 struct tcp_sock *tp = tcp_sk(sk);
529 if (tp->rx_opt.rcv_tsecr &&
530 (TCP_SKB_CB(skb)->end_seq -
531 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
532 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
533 }
534
535 /*
536 * This function should be called every time data is copied to user space.
537 * It calculates the appropriate TCP receive buffer space.
538 */
539 void tcp_rcv_space_adjust(struct sock *sk)
540 {
541 struct tcp_sock *tp = tcp_sk(sk);
542 int time;
543 int copied;
544
545 time = tcp_time_stamp - tp->rcvq_space.time;
546 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
547 return;
548
549 /* Number of bytes copied to user in last RTT */
550 copied = tp->copied_seq - tp->rcvq_space.seq;
551 if (copied <= tp->rcvq_space.space)
552 goto new_measure;
553
554 /* A bit of theory :
555 * copied = bytes received in previous RTT, our base window
556 * To cope with packet losses, we need a 2x factor
557 * To cope with slow start, and sender growing its cwin by 100 %
558 * every RTT, we need a 4x factor, because the ACK we are sending
559 * now is for the next RTT, not the current one :
560 * <prev RTT . ><current RTT .. ><next RTT .... >
561 */
562
563 if (sysctl_tcp_moderate_rcvbuf &&
564 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
565 int rcvwin, rcvmem, rcvbuf;
566
567 /* minimal window to cope with packet losses, assuming
568 * steady state. Add some cushion because of small variations.
569 */
570 rcvwin = (copied << 1) + 16 * tp->advmss;
571
572 /* If rate increased by 25%,
573 * assume slow start, rcvwin = 3 * copied
574 * If rate increased by 50%,
575 * assume sender can use 2x growth, rcvwin = 4 * copied
576 */
577 if (copied >=
578 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
579 if (copied >=
580 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
581 rcvwin <<= 1;
582 else
583 rcvwin += (rcvwin >> 1);
584 }
585
586 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
587 while (tcp_win_from_space(rcvmem) < tp->advmss)
588 rcvmem += 128;
589
590 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
591 if (rcvbuf > sk->sk_rcvbuf) {
592 sk->sk_rcvbuf = rcvbuf;
593
594 /* Make the window clamp follow along. */
595 tp->window_clamp = rcvwin;
596 }
597 }
598 tp->rcvq_space.space = copied;
599
600 new_measure:
601 tp->rcvq_space.seq = tp->copied_seq;
602 tp->rcvq_space.time = tcp_time_stamp;
603 }
604
605 /* There is something which you must keep in mind when you analyze the
606 * behavior of the tp->ato delayed ack timeout interval. When a
607 * connection starts up, we want to ack as quickly as possible. The
608 * problem is that "good" TCP's do slow start at the beginning of data
609 * transmission. The means that until we send the first few ACK's the
610 * sender will sit on his end and only queue most of his data, because
611 * he can only send snd_cwnd unacked packets at any given time. For
612 * each ACK we send, he increments snd_cwnd and transmits more of his
613 * queue. -DaveM
614 */
615 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
616 {
617 struct tcp_sock *tp = tcp_sk(sk);
618 struct inet_connection_sock *icsk = inet_csk(sk);
619 u32 now;
620
621 inet_csk_schedule_ack(sk);
622
623 tcp_measure_rcv_mss(sk, skb);
624
625 tcp_rcv_rtt_measure(tp);
626
627 now = tcp_time_stamp;
628
629 if (!icsk->icsk_ack.ato) {
630 /* The _first_ data packet received, initialize
631 * delayed ACK engine.
632 */
633 tcp_incr_quickack(sk);
634 icsk->icsk_ack.ato = TCP_ATO_MIN;
635 } else {
636 int m = now - icsk->icsk_ack.lrcvtime;
637
638 if (m <= TCP_ATO_MIN / 2) {
639 /* The fastest case is the first. */
640 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
641 } else if (m < icsk->icsk_ack.ato) {
642 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
643 if (icsk->icsk_ack.ato > icsk->icsk_rto)
644 icsk->icsk_ack.ato = icsk->icsk_rto;
645 } else if (m > icsk->icsk_rto) {
646 /* Too long gap. Apparently sender failed to
647 * restart window, so that we send ACKs quickly.
648 */
649 tcp_incr_quickack(sk);
650 sk_mem_reclaim(sk);
651 }
652 }
653 icsk->icsk_ack.lrcvtime = now;
654
655 TCP_ECN_check_ce(tp, skb);
656
657 if (skb->len >= 128)
658 tcp_grow_window(sk, skb);
659 }
660
661 /* Called to compute a smoothed rtt estimate. The data fed to this
662 * routine either comes from timestamps, or from segments that were
663 * known _not_ to have been retransmitted [see Karn/Partridge
664 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
665 * piece by Van Jacobson.
666 * NOTE: the next three routines used to be one big routine.
667 * To save cycles in the RFC 1323 implementation it was better to break
668 * it up into three procedures. -- erics
669 */
670 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
671 {
672 struct tcp_sock *tp = tcp_sk(sk);
673 long m = mrtt_us; /* RTT */
674 u32 srtt = tp->srtt_us;
675
676 /* The following amusing code comes from Jacobson's
677 * article in SIGCOMM '88. Note that rtt and mdev
678 * are scaled versions of rtt and mean deviation.
679 * This is designed to be as fast as possible
680 * m stands for "measurement".
681 *
682 * On a 1990 paper the rto value is changed to:
683 * RTO = rtt + 4 * mdev
684 *
685 * Funny. This algorithm seems to be very broken.
686 * These formulae increase RTO, when it should be decreased, increase
687 * too slowly, when it should be increased quickly, decrease too quickly
688 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
689 * does not matter how to _calculate_ it. Seems, it was trap
690 * that VJ failed to avoid. 8)
691 */
692 if (srtt != 0) {
693 m -= (srtt >> 3); /* m is now error in rtt est */
694 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
695 if (m < 0) {
696 m = -m; /* m is now abs(error) */
697 m -= (tp->mdev_us >> 2); /* similar update on mdev */
698 /* This is similar to one of Eifel findings.
699 * Eifel blocks mdev updates when rtt decreases.
700 * This solution is a bit different: we use finer gain
701 * for mdev in this case (alpha*beta).
702 * Like Eifel it also prevents growth of rto,
703 * but also it limits too fast rto decreases,
704 * happening in pure Eifel.
705 */
706 if (m > 0)
707 m >>= 3;
708 } else {
709 m -= (tp->mdev_us >> 2); /* similar update on mdev */
710 }
711 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
712 if (tp->mdev_us > tp->mdev_max_us) {
713 tp->mdev_max_us = tp->mdev_us;
714 if (tp->mdev_max_us > tp->rttvar_us)
715 tp->rttvar_us = tp->mdev_max_us;
716 }
717 if (after(tp->snd_una, tp->rtt_seq)) {
718 if (tp->mdev_max_us < tp->rttvar_us)
719 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
720 tp->rtt_seq = tp->snd_nxt;
721 tp->mdev_max_us = tcp_rto_min_us(sk);
722 }
723 } else {
724 /* no previous measure. */
725 srtt = m << 3; /* take the measured time to be rtt */
726 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
727 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
728 tp->mdev_max_us = tp->rttvar_us;
729 tp->rtt_seq = tp->snd_nxt;
730 }
731 tp->srtt_us = max(1U, srtt);
732 }
733
734 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
735 * Note: TCP stack does not yet implement pacing.
736 * FQ packet scheduler can be used to implement cheap but effective
737 * TCP pacing, to smooth the burst on large writes when packets
738 * in flight is significantly lower than cwnd (or rwin)
739 */
740 static void tcp_update_pacing_rate(struct sock *sk)
741 {
742 const struct tcp_sock *tp = tcp_sk(sk);
743 u64 rate;
744
745 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
746 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
747
748 rate *= max(tp->snd_cwnd, tp->packets_out);
749
750 if (likely(tp->srtt_us))
751 do_div(rate, tp->srtt_us);
752
753 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
754 * without any lock. We want to make sure compiler wont store
755 * intermediate values in this location.
756 */
757 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
758 sk->sk_max_pacing_rate);
759 }
760
761 /* Calculate rto without backoff. This is the second half of Van Jacobson's
762 * routine referred to above.
763 */
764 static void tcp_set_rto(struct sock *sk)
765 {
766 const struct tcp_sock *tp = tcp_sk(sk);
767 /* Old crap is replaced with new one. 8)
768 *
769 * More seriously:
770 * 1. If rtt variance happened to be less 50msec, it is hallucination.
771 * It cannot be less due to utterly erratic ACK generation made
772 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
773 * to do with delayed acks, because at cwnd>2 true delack timeout
774 * is invisible. Actually, Linux-2.4 also generates erratic
775 * ACKs in some circumstances.
776 */
777 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
778
779 /* 2. Fixups made earlier cannot be right.
780 * If we do not estimate RTO correctly without them,
781 * all the algo is pure shit and should be replaced
782 * with correct one. It is exactly, which we pretend to do.
783 */
784
785 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
786 * guarantees that rto is higher.
787 */
788 tcp_bound_rto(sk);
789 }
790
791 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
792 {
793 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
794
795 if (!cwnd)
796 cwnd = TCP_INIT_CWND;
797 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
798 }
799
800 /*
801 * Packet counting of FACK is based on in-order assumptions, therefore TCP
802 * disables it when reordering is detected
803 */
804 void tcp_disable_fack(struct tcp_sock *tp)
805 {
806 /* RFC3517 uses different metric in lost marker => reset on change */
807 if (tcp_is_fack(tp))
808 tp->lost_skb_hint = NULL;
809 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
810 }
811
812 /* Take a notice that peer is sending D-SACKs */
813 static void tcp_dsack_seen(struct tcp_sock *tp)
814 {
815 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
816 }
817
818 static void tcp_update_reordering(struct sock *sk, const int metric,
819 const int ts)
820 {
821 struct tcp_sock *tp = tcp_sk(sk);
822 if (metric > tp->reordering) {
823 int mib_idx;
824
825 tp->reordering = min(TCP_MAX_REORDERING, metric);
826
827 /* This exciting event is worth to be remembered. 8) */
828 if (ts)
829 mib_idx = LINUX_MIB_TCPTSREORDER;
830 else if (tcp_is_reno(tp))
831 mib_idx = LINUX_MIB_TCPRENOREORDER;
832 else if (tcp_is_fack(tp))
833 mib_idx = LINUX_MIB_TCPFACKREORDER;
834 else
835 mib_idx = LINUX_MIB_TCPSACKREORDER;
836
837 NET_INC_STATS_BH(sock_net(sk), mib_idx);
838 #if FASTRETRANS_DEBUG > 1
839 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
840 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
841 tp->reordering,
842 tp->fackets_out,
843 tp->sacked_out,
844 tp->undo_marker ? tp->undo_retrans : 0);
845 #endif
846 tcp_disable_fack(tp);
847 }
848
849 if (metric > 0)
850 tcp_disable_early_retrans(tp);
851 }
852
853 /* This must be called before lost_out is incremented */
854 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
855 {
856 if ((tp->retransmit_skb_hint == NULL) ||
857 before(TCP_SKB_CB(skb)->seq,
858 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
859 tp->retransmit_skb_hint = skb;
860
861 if (!tp->lost_out ||
862 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
863 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
864 }
865
866 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
867 {
868 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
869 tcp_verify_retransmit_hint(tp, skb);
870
871 tp->lost_out += tcp_skb_pcount(skb);
872 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
873 }
874 }
875
876 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
877 struct sk_buff *skb)
878 {
879 tcp_verify_retransmit_hint(tp, skb);
880
881 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
882 tp->lost_out += tcp_skb_pcount(skb);
883 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
884 }
885 }
886
887 /* This procedure tags the retransmission queue when SACKs arrive.
888 *
889 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
890 * Packets in queue with these bits set are counted in variables
891 * sacked_out, retrans_out and lost_out, correspondingly.
892 *
893 * Valid combinations are:
894 * Tag InFlight Description
895 * 0 1 - orig segment is in flight.
896 * S 0 - nothing flies, orig reached receiver.
897 * L 0 - nothing flies, orig lost by net.
898 * R 2 - both orig and retransmit are in flight.
899 * L|R 1 - orig is lost, retransmit is in flight.
900 * S|R 1 - orig reached receiver, retrans is still in flight.
901 * (L|S|R is logically valid, it could occur when L|R is sacked,
902 * but it is equivalent to plain S and code short-curcuits it to S.
903 * L|S is logically invalid, it would mean -1 packet in flight 8))
904 *
905 * These 6 states form finite state machine, controlled by the following events:
906 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
907 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
908 * 3. Loss detection event of two flavors:
909 * A. Scoreboard estimator decided the packet is lost.
910 * A'. Reno "three dupacks" marks head of queue lost.
911 * A''. Its FACK modification, head until snd.fack is lost.
912 * B. SACK arrives sacking SND.NXT at the moment, when the
913 * segment was retransmitted.
914 * 4. D-SACK added new rule: D-SACK changes any tag to S.
915 *
916 * It is pleasant to note, that state diagram turns out to be commutative,
917 * so that we are allowed not to be bothered by order of our actions,
918 * when multiple events arrive simultaneously. (see the function below).
919 *
920 * Reordering detection.
921 * --------------------
922 * Reordering metric is maximal distance, which a packet can be displaced
923 * in packet stream. With SACKs we can estimate it:
924 *
925 * 1. SACK fills old hole and the corresponding segment was not
926 * ever retransmitted -> reordering. Alas, we cannot use it
927 * when segment was retransmitted.
928 * 2. The last flaw is solved with D-SACK. D-SACK arrives
929 * for retransmitted and already SACKed segment -> reordering..
930 * Both of these heuristics are not used in Loss state, when we cannot
931 * account for retransmits accurately.
932 *
933 * SACK block validation.
934 * ----------------------
935 *
936 * SACK block range validation checks that the received SACK block fits to
937 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
938 * Note that SND.UNA is not included to the range though being valid because
939 * it means that the receiver is rather inconsistent with itself reporting
940 * SACK reneging when it should advance SND.UNA. Such SACK block this is
941 * perfectly valid, however, in light of RFC2018 which explicitly states
942 * that "SACK block MUST reflect the newest segment. Even if the newest
943 * segment is going to be discarded ...", not that it looks very clever
944 * in case of head skb. Due to potentional receiver driven attacks, we
945 * choose to avoid immediate execution of a walk in write queue due to
946 * reneging and defer head skb's loss recovery to standard loss recovery
947 * procedure that will eventually trigger (nothing forbids us doing this).
948 *
949 * Implements also blockage to start_seq wrap-around. Problem lies in the
950 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
951 * there's no guarantee that it will be before snd_nxt (n). The problem
952 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
953 * wrap (s_w):
954 *
955 * <- outs wnd -> <- wrapzone ->
956 * u e n u_w e_w s n_w
957 * | | | | | | |
958 * |<------------+------+----- TCP seqno space --------------+---------->|
959 * ...-- <2^31 ->| |<--------...
960 * ...---- >2^31 ------>| |<--------...
961 *
962 * Current code wouldn't be vulnerable but it's better still to discard such
963 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
964 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
965 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
966 * equal to the ideal case (infinite seqno space without wrap caused issues).
967 *
968 * With D-SACK the lower bound is extended to cover sequence space below
969 * SND.UNA down to undo_marker, which is the last point of interest. Yet
970 * again, D-SACK block must not to go across snd_una (for the same reason as
971 * for the normal SACK blocks, explained above). But there all simplicity
972 * ends, TCP might receive valid D-SACKs below that. As long as they reside
973 * fully below undo_marker they do not affect behavior in anyway and can
974 * therefore be safely ignored. In rare cases (which are more or less
975 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
976 * fragmentation and packet reordering past skb's retransmission. To consider
977 * them correctly, the acceptable range must be extended even more though
978 * the exact amount is rather hard to quantify. However, tp->max_window can
979 * be used as an exaggerated estimate.
980 */
981 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
982 u32 start_seq, u32 end_seq)
983 {
984 /* Too far in future, or reversed (interpretation is ambiguous) */
985 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
986 return false;
987
988 /* Nasty start_seq wrap-around check (see comments above) */
989 if (!before(start_seq, tp->snd_nxt))
990 return false;
991
992 /* In outstanding window? ...This is valid exit for D-SACKs too.
993 * start_seq == snd_una is non-sensical (see comments above)
994 */
995 if (after(start_seq, tp->snd_una))
996 return true;
997
998 if (!is_dsack || !tp->undo_marker)
999 return false;
1000
1001 /* ...Then it's D-SACK, and must reside below snd_una completely */
1002 if (after(end_seq, tp->snd_una))
1003 return false;
1004
1005 if (!before(start_seq, tp->undo_marker))
1006 return true;
1007
1008 /* Too old */
1009 if (!after(end_seq, tp->undo_marker))
1010 return false;
1011
1012 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1013 * start_seq < undo_marker and end_seq >= undo_marker.
1014 */
1015 return !before(start_seq, end_seq - tp->max_window);
1016 }
1017
1018 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1019 * Event "B". Later note: FACK people cheated me again 8), we have to account
1020 * for reordering! Ugly, but should help.
1021 *
1022 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1023 * less than what is now known to be received by the other end (derived from
1024 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1025 * retransmitted skbs to avoid some costly processing per ACKs.
1026 */
1027 static void tcp_mark_lost_retrans(struct sock *sk)
1028 {
1029 const struct inet_connection_sock *icsk = inet_csk(sk);
1030 struct tcp_sock *tp = tcp_sk(sk);
1031 struct sk_buff *skb;
1032 int cnt = 0;
1033 u32 new_low_seq = tp->snd_nxt;
1034 u32 received_upto = tcp_highest_sack_seq(tp);
1035
1036 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1037 !after(received_upto, tp->lost_retrans_low) ||
1038 icsk->icsk_ca_state != TCP_CA_Recovery)
1039 return;
1040
1041 tcp_for_write_queue(skb, sk) {
1042 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1043
1044 if (skb == tcp_send_head(sk))
1045 break;
1046 if (cnt == tp->retrans_out)
1047 break;
1048 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1049 continue;
1050
1051 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1052 continue;
1053
1054 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1055 * constraint here (see above) but figuring out that at
1056 * least tp->reordering SACK blocks reside between ack_seq
1057 * and received_upto is not easy task to do cheaply with
1058 * the available datastructures.
1059 *
1060 * Whether FACK should check here for tp->reordering segs
1061 * in-between one could argue for either way (it would be
1062 * rather simple to implement as we could count fack_count
1063 * during the walk and do tp->fackets_out - fack_count).
1064 */
1065 if (after(received_upto, ack_seq)) {
1066 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1067 tp->retrans_out -= tcp_skb_pcount(skb);
1068
1069 tcp_skb_mark_lost_uncond_verify(tp, skb);
1070 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1071 } else {
1072 if (before(ack_seq, new_low_seq))
1073 new_low_seq = ack_seq;
1074 cnt += tcp_skb_pcount(skb);
1075 }
1076 }
1077
1078 if (tp->retrans_out)
1079 tp->lost_retrans_low = new_low_seq;
1080 }
1081
1082 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1083 struct tcp_sack_block_wire *sp, int num_sacks,
1084 u32 prior_snd_una)
1085 {
1086 struct tcp_sock *tp = tcp_sk(sk);
1087 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1088 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1089 bool dup_sack = false;
1090
1091 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1092 dup_sack = true;
1093 tcp_dsack_seen(tp);
1094 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1095 } else if (num_sacks > 1) {
1096 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1097 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1098
1099 if (!after(end_seq_0, end_seq_1) &&
1100 !before(start_seq_0, start_seq_1)) {
1101 dup_sack = true;
1102 tcp_dsack_seen(tp);
1103 NET_INC_STATS_BH(sock_net(sk),
1104 LINUX_MIB_TCPDSACKOFORECV);
1105 }
1106 }
1107
1108 /* D-SACK for already forgotten data... Do dumb counting. */
1109 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1110 !after(end_seq_0, prior_snd_una) &&
1111 after(end_seq_0, tp->undo_marker))
1112 tp->undo_retrans--;
1113
1114 return dup_sack;
1115 }
1116
1117 struct tcp_sacktag_state {
1118 int reord;
1119 int fack_count;
1120 long rtt_us; /* RTT measured by SACKing never-retransmitted data */
1121 int flag;
1122 };
1123
1124 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1125 * the incoming SACK may not exactly match but we can find smaller MSS
1126 * aligned portion of it that matches. Therefore we might need to fragment
1127 * which may fail and creates some hassle (caller must handle error case
1128 * returns).
1129 *
1130 * FIXME: this could be merged to shift decision code
1131 */
1132 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1133 u32 start_seq, u32 end_seq)
1134 {
1135 int err;
1136 bool in_sack;
1137 unsigned int pkt_len;
1138 unsigned int mss;
1139
1140 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1141 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1142
1143 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1144 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1145 mss = tcp_skb_mss(skb);
1146 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1147
1148 if (!in_sack) {
1149 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1150 if (pkt_len < mss)
1151 pkt_len = mss;
1152 } else {
1153 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1154 if (pkt_len < mss)
1155 return -EINVAL;
1156 }
1157
1158 /* Round if necessary so that SACKs cover only full MSSes
1159 * and/or the remaining small portion (if present)
1160 */
1161 if (pkt_len > mss) {
1162 unsigned int new_len = (pkt_len / mss) * mss;
1163 if (!in_sack && new_len < pkt_len) {
1164 new_len += mss;
1165 if (new_len > skb->len)
1166 return 0;
1167 }
1168 pkt_len = new_len;
1169 }
1170 err = tcp_fragment(sk, skb, pkt_len, mss);
1171 if (err < 0)
1172 return err;
1173 }
1174
1175 return in_sack;
1176 }
1177
1178 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1179 static u8 tcp_sacktag_one(struct sock *sk,
1180 struct tcp_sacktag_state *state, u8 sacked,
1181 u32 start_seq, u32 end_seq,
1182 int dup_sack, int pcount,
1183 const struct skb_mstamp *xmit_time)
1184 {
1185 struct tcp_sock *tp = tcp_sk(sk);
1186 int fack_count = state->fack_count;
1187
1188 /* Account D-SACK for retransmitted packet. */
1189 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1190 if (tp->undo_marker && tp->undo_retrans &&
1191 after(end_seq, tp->undo_marker))
1192 tp->undo_retrans--;
1193 if (sacked & TCPCB_SACKED_ACKED)
1194 state->reord = min(fack_count, state->reord);
1195 }
1196
1197 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1198 if (!after(end_seq, tp->snd_una))
1199 return sacked;
1200
1201 if (!(sacked & TCPCB_SACKED_ACKED)) {
1202 if (sacked & TCPCB_SACKED_RETRANS) {
1203 /* If the segment is not tagged as lost,
1204 * we do not clear RETRANS, believing
1205 * that retransmission is still in flight.
1206 */
1207 if (sacked & TCPCB_LOST) {
1208 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1209 tp->lost_out -= pcount;
1210 tp->retrans_out -= pcount;
1211 }
1212 } else {
1213 if (!(sacked & TCPCB_RETRANS)) {
1214 /* New sack for not retransmitted frame,
1215 * which was in hole. It is reordering.
1216 */
1217 if (before(start_seq,
1218 tcp_highest_sack_seq(tp)))
1219 state->reord = min(fack_count,
1220 state->reord);
1221 if (!after(end_seq, tp->high_seq))
1222 state->flag |= FLAG_ORIG_SACK_ACKED;
1223 /* Pick the earliest sequence sacked for RTT */
1224 if (state->rtt_us < 0) {
1225 struct skb_mstamp now;
1226
1227 skb_mstamp_get(&now);
1228 state->rtt_us = skb_mstamp_us_delta(&now,
1229 xmit_time);
1230 }
1231 }
1232
1233 if (sacked & TCPCB_LOST) {
1234 sacked &= ~TCPCB_LOST;
1235 tp->lost_out -= pcount;
1236 }
1237 }
1238
1239 sacked |= TCPCB_SACKED_ACKED;
1240 state->flag |= FLAG_DATA_SACKED;
1241 tp->sacked_out += pcount;
1242
1243 fack_count += pcount;
1244
1245 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1246 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1247 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1248 tp->lost_cnt_hint += pcount;
1249
1250 if (fack_count > tp->fackets_out)
1251 tp->fackets_out = fack_count;
1252 }
1253
1254 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1255 * frames and clear it. undo_retrans is decreased above, L|R frames
1256 * are accounted above as well.
1257 */
1258 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1259 sacked &= ~TCPCB_SACKED_RETRANS;
1260 tp->retrans_out -= pcount;
1261 }
1262
1263 return sacked;
1264 }
1265
1266 /* Shift newly-SACKed bytes from this skb to the immediately previous
1267 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1268 */
1269 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1270 struct tcp_sacktag_state *state,
1271 unsigned int pcount, int shifted, int mss,
1272 bool dup_sack)
1273 {
1274 struct tcp_sock *tp = tcp_sk(sk);
1275 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1276 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1277 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1278
1279 BUG_ON(!pcount);
1280
1281 /* Adjust counters and hints for the newly sacked sequence
1282 * range but discard the return value since prev is already
1283 * marked. We must tag the range first because the seq
1284 * advancement below implicitly advances
1285 * tcp_highest_sack_seq() when skb is highest_sack.
1286 */
1287 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1288 start_seq, end_seq, dup_sack, pcount,
1289 &skb->skb_mstamp);
1290
1291 if (skb == tp->lost_skb_hint)
1292 tp->lost_cnt_hint += pcount;
1293
1294 TCP_SKB_CB(prev)->end_seq += shifted;
1295 TCP_SKB_CB(skb)->seq += shifted;
1296
1297 skb_shinfo(prev)->gso_segs += pcount;
1298 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1299 skb_shinfo(skb)->gso_segs -= pcount;
1300
1301 /* When we're adding to gso_segs == 1, gso_size will be zero,
1302 * in theory this shouldn't be necessary but as long as DSACK
1303 * code can come after this skb later on it's better to keep
1304 * setting gso_size to something.
1305 */
1306 if (!skb_shinfo(prev)->gso_size) {
1307 skb_shinfo(prev)->gso_size = mss;
1308 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1309 }
1310
1311 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1312 if (skb_shinfo(skb)->gso_segs <= 1) {
1313 skb_shinfo(skb)->gso_size = 0;
1314 skb_shinfo(skb)->gso_type = 0;
1315 }
1316
1317 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1318 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1319
1320 if (skb->len > 0) {
1321 BUG_ON(!tcp_skb_pcount(skb));
1322 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1323 return false;
1324 }
1325
1326 /* Whole SKB was eaten :-) */
1327
1328 if (skb == tp->retransmit_skb_hint)
1329 tp->retransmit_skb_hint = prev;
1330 if (skb == tp->lost_skb_hint) {
1331 tp->lost_skb_hint = prev;
1332 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1333 }
1334
1335 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1336 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1337 TCP_SKB_CB(prev)->end_seq++;
1338
1339 if (skb == tcp_highest_sack(sk))
1340 tcp_advance_highest_sack(sk, skb);
1341
1342 tcp_unlink_write_queue(skb, sk);
1343 sk_wmem_free_skb(sk, skb);
1344
1345 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1346
1347 return true;
1348 }
1349
1350 /* I wish gso_size would have a bit more sane initialization than
1351 * something-or-zero which complicates things
1352 */
1353 static int tcp_skb_seglen(const struct sk_buff *skb)
1354 {
1355 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1356 }
1357
1358 /* Shifting pages past head area doesn't work */
1359 static int skb_can_shift(const struct sk_buff *skb)
1360 {
1361 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1362 }
1363
1364 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1365 * skb.
1366 */
1367 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1368 struct tcp_sacktag_state *state,
1369 u32 start_seq, u32 end_seq,
1370 bool dup_sack)
1371 {
1372 struct tcp_sock *tp = tcp_sk(sk);
1373 struct sk_buff *prev;
1374 int mss;
1375 int pcount = 0;
1376 int len;
1377 int in_sack;
1378
1379 if (!sk_can_gso(sk))
1380 goto fallback;
1381
1382 /* Normally R but no L won't result in plain S */
1383 if (!dup_sack &&
1384 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1385 goto fallback;
1386 if (!skb_can_shift(skb))
1387 goto fallback;
1388 /* This frame is about to be dropped (was ACKed). */
1389 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1390 goto fallback;
1391
1392 /* Can only happen with delayed DSACK + discard craziness */
1393 if (unlikely(skb == tcp_write_queue_head(sk)))
1394 goto fallback;
1395 prev = tcp_write_queue_prev(sk, skb);
1396
1397 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1398 goto fallback;
1399
1400 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1401 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1402
1403 if (in_sack) {
1404 len = skb->len;
1405 pcount = tcp_skb_pcount(skb);
1406 mss = tcp_skb_seglen(skb);
1407
1408 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1409 * drop this restriction as unnecessary
1410 */
1411 if (mss != tcp_skb_seglen(prev))
1412 goto fallback;
1413 } else {
1414 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1415 goto noop;
1416 /* CHECKME: This is non-MSS split case only?, this will
1417 * cause skipped skbs due to advancing loop btw, original
1418 * has that feature too
1419 */
1420 if (tcp_skb_pcount(skb) <= 1)
1421 goto noop;
1422
1423 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1424 if (!in_sack) {
1425 /* TODO: head merge to next could be attempted here
1426 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1427 * though it might not be worth of the additional hassle
1428 *
1429 * ...we can probably just fallback to what was done
1430 * previously. We could try merging non-SACKed ones
1431 * as well but it probably isn't going to buy off
1432 * because later SACKs might again split them, and
1433 * it would make skb timestamp tracking considerably
1434 * harder problem.
1435 */
1436 goto fallback;
1437 }
1438
1439 len = end_seq - TCP_SKB_CB(skb)->seq;
1440 BUG_ON(len < 0);
1441 BUG_ON(len > skb->len);
1442
1443 /* MSS boundaries should be honoured or else pcount will
1444 * severely break even though it makes things bit trickier.
1445 * Optimize common case to avoid most of the divides
1446 */
1447 mss = tcp_skb_mss(skb);
1448
1449 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1450 * drop this restriction as unnecessary
1451 */
1452 if (mss != tcp_skb_seglen(prev))
1453 goto fallback;
1454
1455 if (len == mss) {
1456 pcount = 1;
1457 } else if (len < mss) {
1458 goto noop;
1459 } else {
1460 pcount = len / mss;
1461 len = pcount * mss;
1462 }
1463 }
1464
1465 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1466 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1467 goto fallback;
1468
1469 if (!skb_shift(prev, skb, len))
1470 goto fallback;
1471 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1472 goto out;
1473
1474 /* Hole filled allows collapsing with the next as well, this is very
1475 * useful when hole on every nth skb pattern happens
1476 */
1477 if (prev == tcp_write_queue_tail(sk))
1478 goto out;
1479 skb = tcp_write_queue_next(sk, prev);
1480
1481 if (!skb_can_shift(skb) ||
1482 (skb == tcp_send_head(sk)) ||
1483 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1484 (mss != tcp_skb_seglen(skb)))
1485 goto out;
1486
1487 len = skb->len;
1488 if (skb_shift(prev, skb, len)) {
1489 pcount += tcp_skb_pcount(skb);
1490 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1491 }
1492
1493 out:
1494 state->fack_count += pcount;
1495 return prev;
1496
1497 noop:
1498 return skb;
1499
1500 fallback:
1501 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1502 return NULL;
1503 }
1504
1505 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1506 struct tcp_sack_block *next_dup,
1507 struct tcp_sacktag_state *state,
1508 u32 start_seq, u32 end_seq,
1509 bool dup_sack_in)
1510 {
1511 struct tcp_sock *tp = tcp_sk(sk);
1512 struct sk_buff *tmp;
1513
1514 tcp_for_write_queue_from(skb, sk) {
1515 int in_sack = 0;
1516 bool dup_sack = dup_sack_in;
1517
1518 if (skb == tcp_send_head(sk))
1519 break;
1520
1521 /* queue is in-order => we can short-circuit the walk early */
1522 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1523 break;
1524
1525 if ((next_dup != NULL) &&
1526 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1527 in_sack = tcp_match_skb_to_sack(sk, skb,
1528 next_dup->start_seq,
1529 next_dup->end_seq);
1530 if (in_sack > 0)
1531 dup_sack = true;
1532 }
1533
1534 /* skb reference here is a bit tricky to get right, since
1535 * shifting can eat and free both this skb and the next,
1536 * so not even _safe variant of the loop is enough.
1537 */
1538 if (in_sack <= 0) {
1539 tmp = tcp_shift_skb_data(sk, skb, state,
1540 start_seq, end_seq, dup_sack);
1541 if (tmp != NULL) {
1542 if (tmp != skb) {
1543 skb = tmp;
1544 continue;
1545 }
1546
1547 in_sack = 0;
1548 } else {
1549 in_sack = tcp_match_skb_to_sack(sk, skb,
1550 start_seq,
1551 end_seq);
1552 }
1553 }
1554
1555 if (unlikely(in_sack < 0))
1556 break;
1557
1558 if (in_sack) {
1559 TCP_SKB_CB(skb)->sacked =
1560 tcp_sacktag_one(sk,
1561 state,
1562 TCP_SKB_CB(skb)->sacked,
1563 TCP_SKB_CB(skb)->seq,
1564 TCP_SKB_CB(skb)->end_seq,
1565 dup_sack,
1566 tcp_skb_pcount(skb),
1567 &skb->skb_mstamp);
1568
1569 if (!before(TCP_SKB_CB(skb)->seq,
1570 tcp_highest_sack_seq(tp)))
1571 tcp_advance_highest_sack(sk, skb);
1572 }
1573
1574 state->fack_count += tcp_skb_pcount(skb);
1575 }
1576 return skb;
1577 }
1578
1579 /* Avoid all extra work that is being done by sacktag while walking in
1580 * a normal way
1581 */
1582 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1583 struct tcp_sacktag_state *state,
1584 u32 skip_to_seq)
1585 {
1586 tcp_for_write_queue_from(skb, sk) {
1587 if (skb == tcp_send_head(sk))
1588 break;
1589
1590 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1591 break;
1592
1593 state->fack_count += tcp_skb_pcount(skb);
1594 }
1595 return skb;
1596 }
1597
1598 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1599 struct sock *sk,
1600 struct tcp_sack_block *next_dup,
1601 struct tcp_sacktag_state *state,
1602 u32 skip_to_seq)
1603 {
1604 if (next_dup == NULL)
1605 return skb;
1606
1607 if (before(next_dup->start_seq, skip_to_seq)) {
1608 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1609 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1610 next_dup->start_seq, next_dup->end_seq,
1611 1);
1612 }
1613
1614 return skb;
1615 }
1616
1617 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1618 {
1619 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1620 }
1621
1622 static int
1623 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1624 u32 prior_snd_una, long *sack_rtt_us)
1625 {
1626 struct tcp_sock *tp = tcp_sk(sk);
1627 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1628 TCP_SKB_CB(ack_skb)->sacked);
1629 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1630 struct tcp_sack_block sp[TCP_NUM_SACKS];
1631 struct tcp_sack_block *cache;
1632 struct tcp_sacktag_state state;
1633 struct sk_buff *skb;
1634 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1635 int used_sacks;
1636 bool found_dup_sack = false;
1637 int i, j;
1638 int first_sack_index;
1639
1640 state.flag = 0;
1641 state.reord = tp->packets_out;
1642 state.rtt_us = -1L;
1643
1644 if (!tp->sacked_out) {
1645 if (WARN_ON(tp->fackets_out))
1646 tp->fackets_out = 0;
1647 tcp_highest_sack_reset(sk);
1648 }
1649
1650 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1651 num_sacks, prior_snd_una);
1652 if (found_dup_sack)
1653 state.flag |= FLAG_DSACKING_ACK;
1654
1655 /* Eliminate too old ACKs, but take into
1656 * account more or less fresh ones, they can
1657 * contain valid SACK info.
1658 */
1659 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1660 return 0;
1661
1662 if (!tp->packets_out)
1663 goto out;
1664
1665 used_sacks = 0;
1666 first_sack_index = 0;
1667 for (i = 0; i < num_sacks; i++) {
1668 bool dup_sack = !i && found_dup_sack;
1669
1670 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1671 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1672
1673 if (!tcp_is_sackblock_valid(tp, dup_sack,
1674 sp[used_sacks].start_seq,
1675 sp[used_sacks].end_seq)) {
1676 int mib_idx;
1677
1678 if (dup_sack) {
1679 if (!tp->undo_marker)
1680 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1681 else
1682 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1683 } else {
1684 /* Don't count olds caused by ACK reordering */
1685 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1686 !after(sp[used_sacks].end_seq, tp->snd_una))
1687 continue;
1688 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1689 }
1690
1691 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1692 if (i == 0)
1693 first_sack_index = -1;
1694 continue;
1695 }
1696
1697 /* Ignore very old stuff early */
1698 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1699 continue;
1700
1701 used_sacks++;
1702 }
1703
1704 /* order SACK blocks to allow in order walk of the retrans queue */
1705 for (i = used_sacks - 1; i > 0; i--) {
1706 for (j = 0; j < i; j++) {
1707 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1708 swap(sp[j], sp[j + 1]);
1709
1710 /* Track where the first SACK block goes to */
1711 if (j == first_sack_index)
1712 first_sack_index = j + 1;
1713 }
1714 }
1715 }
1716
1717 skb = tcp_write_queue_head(sk);
1718 state.fack_count = 0;
1719 i = 0;
1720
1721 if (!tp->sacked_out) {
1722 /* It's already past, so skip checking against it */
1723 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1724 } else {
1725 cache = tp->recv_sack_cache;
1726 /* Skip empty blocks in at head of the cache */
1727 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1728 !cache->end_seq)
1729 cache++;
1730 }
1731
1732 while (i < used_sacks) {
1733 u32 start_seq = sp[i].start_seq;
1734 u32 end_seq = sp[i].end_seq;
1735 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1736 struct tcp_sack_block *next_dup = NULL;
1737
1738 if (found_dup_sack && ((i + 1) == first_sack_index))
1739 next_dup = &sp[i + 1];
1740
1741 /* Skip too early cached blocks */
1742 while (tcp_sack_cache_ok(tp, cache) &&
1743 !before(start_seq, cache->end_seq))
1744 cache++;
1745
1746 /* Can skip some work by looking recv_sack_cache? */
1747 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1748 after(end_seq, cache->start_seq)) {
1749
1750 /* Head todo? */
1751 if (before(start_seq, cache->start_seq)) {
1752 skb = tcp_sacktag_skip(skb, sk, &state,
1753 start_seq);
1754 skb = tcp_sacktag_walk(skb, sk, next_dup,
1755 &state,
1756 start_seq,
1757 cache->start_seq,
1758 dup_sack);
1759 }
1760
1761 /* Rest of the block already fully processed? */
1762 if (!after(end_seq, cache->end_seq))
1763 goto advance_sp;
1764
1765 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1766 &state,
1767 cache->end_seq);
1768
1769 /* ...tail remains todo... */
1770 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1771 /* ...but better entrypoint exists! */
1772 skb = tcp_highest_sack(sk);
1773 if (skb == NULL)
1774 break;
1775 state.fack_count = tp->fackets_out;
1776 cache++;
1777 goto walk;
1778 }
1779
1780 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1781 /* Check overlap against next cached too (past this one already) */
1782 cache++;
1783 continue;
1784 }
1785
1786 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1787 skb = tcp_highest_sack(sk);
1788 if (skb == NULL)
1789 break;
1790 state.fack_count = tp->fackets_out;
1791 }
1792 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1793
1794 walk:
1795 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1796 start_seq, end_seq, dup_sack);
1797
1798 advance_sp:
1799 i++;
1800 }
1801
1802 /* Clear the head of the cache sack blocks so we can skip it next time */
1803 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1804 tp->recv_sack_cache[i].start_seq = 0;
1805 tp->recv_sack_cache[i].end_seq = 0;
1806 }
1807 for (j = 0; j < used_sacks; j++)
1808 tp->recv_sack_cache[i++] = sp[j];
1809
1810 tcp_mark_lost_retrans(sk);
1811
1812 tcp_verify_left_out(tp);
1813
1814 if ((state.reord < tp->fackets_out) &&
1815 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1816 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1817
1818 out:
1819
1820 #if FASTRETRANS_DEBUG > 0
1821 WARN_ON((int)tp->sacked_out < 0);
1822 WARN_ON((int)tp->lost_out < 0);
1823 WARN_ON((int)tp->retrans_out < 0);
1824 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1825 #endif
1826 *sack_rtt_us = state.rtt_us;
1827 return state.flag;
1828 }
1829
1830 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1831 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1832 */
1833 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1834 {
1835 u32 holes;
1836
1837 holes = max(tp->lost_out, 1U);
1838 holes = min(holes, tp->packets_out);
1839
1840 if ((tp->sacked_out + holes) > tp->packets_out) {
1841 tp->sacked_out = tp->packets_out - holes;
1842 return true;
1843 }
1844 return false;
1845 }
1846
1847 /* If we receive more dupacks than we expected counting segments
1848 * in assumption of absent reordering, interpret this as reordering.
1849 * The only another reason could be bug in receiver TCP.
1850 */
1851 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1852 {
1853 struct tcp_sock *tp = tcp_sk(sk);
1854 if (tcp_limit_reno_sacked(tp))
1855 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1856 }
1857
1858 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1859
1860 static void tcp_add_reno_sack(struct sock *sk)
1861 {
1862 struct tcp_sock *tp = tcp_sk(sk);
1863 tp->sacked_out++;
1864 tcp_check_reno_reordering(sk, 0);
1865 tcp_verify_left_out(tp);
1866 }
1867
1868 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1869
1870 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1871 {
1872 struct tcp_sock *tp = tcp_sk(sk);
1873
1874 if (acked > 0) {
1875 /* One ACK acked hole. The rest eat duplicate ACKs. */
1876 if (acked - 1 >= tp->sacked_out)
1877 tp->sacked_out = 0;
1878 else
1879 tp->sacked_out -= acked - 1;
1880 }
1881 tcp_check_reno_reordering(sk, acked);
1882 tcp_verify_left_out(tp);
1883 }
1884
1885 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1886 {
1887 tp->sacked_out = 0;
1888 }
1889
1890 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1891 {
1892 tp->retrans_out = 0;
1893 tp->lost_out = 0;
1894
1895 tp->undo_marker = 0;
1896 tp->undo_retrans = 0;
1897 }
1898
1899 void tcp_clear_retrans(struct tcp_sock *tp)
1900 {
1901 tcp_clear_retrans_partial(tp);
1902
1903 tp->fackets_out = 0;
1904 tp->sacked_out = 0;
1905 }
1906
1907 /* Enter Loss state. If "how" is not zero, forget all SACK information
1908 * and reset tags completely, otherwise preserve SACKs. If receiver
1909 * dropped its ofo queue, we will know this due to reneging detection.
1910 */
1911 void tcp_enter_loss(struct sock *sk, int how)
1912 {
1913 const struct inet_connection_sock *icsk = inet_csk(sk);
1914 struct tcp_sock *tp = tcp_sk(sk);
1915 struct sk_buff *skb;
1916 bool new_recovery = false;
1917
1918 /* Reduce ssthresh if it has not yet been made inside this window. */
1919 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1920 !after(tp->high_seq, tp->snd_una) ||
1921 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1922 new_recovery = true;
1923 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1924 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1925 tcp_ca_event(sk, CA_EVENT_LOSS);
1926 }
1927 tp->snd_cwnd = 1;
1928 tp->snd_cwnd_cnt = 0;
1929 tp->snd_cwnd_stamp = tcp_time_stamp;
1930
1931 tcp_clear_retrans_partial(tp);
1932
1933 if (tcp_is_reno(tp))
1934 tcp_reset_reno_sack(tp);
1935
1936 tp->undo_marker = tp->snd_una;
1937 if (how) {
1938 tp->sacked_out = 0;
1939 tp->fackets_out = 0;
1940 }
1941 tcp_clear_all_retrans_hints(tp);
1942
1943 tcp_for_write_queue(skb, sk) {
1944 if (skb == tcp_send_head(sk))
1945 break;
1946
1947 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1948 tp->undo_marker = 0;
1949
1950 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1951 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1952 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1953 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1954 tp->lost_out += tcp_skb_pcount(skb);
1955 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1956 }
1957 }
1958 tcp_verify_left_out(tp);
1959
1960 /* Timeout in disordered state after receiving substantial DUPACKs
1961 * suggests that the degree of reordering is over-estimated.
1962 */
1963 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1964 tp->sacked_out >= sysctl_tcp_reordering)
1965 tp->reordering = min_t(unsigned int, tp->reordering,
1966 sysctl_tcp_reordering);
1967 tcp_set_ca_state(sk, TCP_CA_Loss);
1968 tp->high_seq = tp->snd_nxt;
1969 TCP_ECN_queue_cwr(tp);
1970
1971 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1972 * loss recovery is underway except recurring timeout(s) on
1973 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1974 */
1975 tp->frto = sysctl_tcp_frto &&
1976 (new_recovery || icsk->icsk_retransmits) &&
1977 !inet_csk(sk)->icsk_mtup.probe_size;
1978 }
1979
1980 /* If ACK arrived pointing to a remembered SACK, it means that our
1981 * remembered SACKs do not reflect real state of receiver i.e.
1982 * receiver _host_ is heavily congested (or buggy).
1983 *
1984 * Do processing similar to RTO timeout.
1985 */
1986 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1987 {
1988 if (flag & FLAG_SACK_RENEGING) {
1989 struct inet_connection_sock *icsk = inet_csk(sk);
1990 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1991
1992 tcp_enter_loss(sk, 1);
1993 icsk->icsk_retransmits++;
1994 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1995 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1996 icsk->icsk_rto, TCP_RTO_MAX);
1997 return true;
1998 }
1999 return false;
2000 }
2001
2002 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2003 {
2004 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2005 }
2006
2007 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2008 * counter when SACK is enabled (without SACK, sacked_out is used for
2009 * that purpose).
2010 *
2011 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2012 * segments up to the highest received SACK block so far and holes in
2013 * between them.
2014 *
2015 * With reordering, holes may still be in flight, so RFC3517 recovery
2016 * uses pure sacked_out (total number of SACKed segments) even though
2017 * it violates the RFC that uses duplicate ACKs, often these are equal
2018 * but when e.g. out-of-window ACKs or packet duplication occurs,
2019 * they differ. Since neither occurs due to loss, TCP should really
2020 * ignore them.
2021 */
2022 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2023 {
2024 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2025 }
2026
2027 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2028 {
2029 struct tcp_sock *tp = tcp_sk(sk);
2030 unsigned long delay;
2031
2032 /* Delay early retransmit and entering fast recovery for
2033 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2034 * available, or RTO is scheduled to fire first.
2035 */
2036 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2037 (flag & FLAG_ECE) || !tp->srtt_us)
2038 return false;
2039
2040 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2041 msecs_to_jiffies(2));
2042
2043 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2044 return false;
2045
2046 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2047 TCP_RTO_MAX);
2048 return true;
2049 }
2050
2051 /* Linux NewReno/SACK/FACK/ECN state machine.
2052 * --------------------------------------
2053 *
2054 * "Open" Normal state, no dubious events, fast path.
2055 * "Disorder" In all the respects it is "Open",
2056 * but requires a bit more attention. It is entered when
2057 * we see some SACKs or dupacks. It is split of "Open"
2058 * mainly to move some processing from fast path to slow one.
2059 * "CWR" CWND was reduced due to some Congestion Notification event.
2060 * It can be ECN, ICMP source quench, local device congestion.
2061 * "Recovery" CWND was reduced, we are fast-retransmitting.
2062 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2063 *
2064 * tcp_fastretrans_alert() is entered:
2065 * - each incoming ACK, if state is not "Open"
2066 * - when arrived ACK is unusual, namely:
2067 * * SACK
2068 * * Duplicate ACK.
2069 * * ECN ECE.
2070 *
2071 * Counting packets in flight is pretty simple.
2072 *
2073 * in_flight = packets_out - left_out + retrans_out
2074 *
2075 * packets_out is SND.NXT-SND.UNA counted in packets.
2076 *
2077 * retrans_out is number of retransmitted segments.
2078 *
2079 * left_out is number of segments left network, but not ACKed yet.
2080 *
2081 * left_out = sacked_out + lost_out
2082 *
2083 * sacked_out: Packets, which arrived to receiver out of order
2084 * and hence not ACKed. With SACKs this number is simply
2085 * amount of SACKed data. Even without SACKs
2086 * it is easy to give pretty reliable estimate of this number,
2087 * counting duplicate ACKs.
2088 *
2089 * lost_out: Packets lost by network. TCP has no explicit
2090 * "loss notification" feedback from network (for now).
2091 * It means that this number can be only _guessed_.
2092 * Actually, it is the heuristics to predict lossage that
2093 * distinguishes different algorithms.
2094 *
2095 * F.e. after RTO, when all the queue is considered as lost,
2096 * lost_out = packets_out and in_flight = retrans_out.
2097 *
2098 * Essentially, we have now two algorithms counting
2099 * lost packets.
2100 *
2101 * FACK: It is the simplest heuristics. As soon as we decided
2102 * that something is lost, we decide that _all_ not SACKed
2103 * packets until the most forward SACK are lost. I.e.
2104 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2105 * It is absolutely correct estimate, if network does not reorder
2106 * packets. And it loses any connection to reality when reordering
2107 * takes place. We use FACK by default until reordering
2108 * is suspected on the path to this destination.
2109 *
2110 * NewReno: when Recovery is entered, we assume that one segment
2111 * is lost (classic Reno). While we are in Recovery and
2112 * a partial ACK arrives, we assume that one more packet
2113 * is lost (NewReno). This heuristics are the same in NewReno
2114 * and SACK.
2115 *
2116 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2117 * deflation etc. CWND is real congestion window, never inflated, changes
2118 * only according to classic VJ rules.
2119 *
2120 * Really tricky (and requiring careful tuning) part of algorithm
2121 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2122 * The first determines the moment _when_ we should reduce CWND and,
2123 * hence, slow down forward transmission. In fact, it determines the moment
2124 * when we decide that hole is caused by loss, rather than by a reorder.
2125 *
2126 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2127 * holes, caused by lost packets.
2128 *
2129 * And the most logically complicated part of algorithm is undo
2130 * heuristics. We detect false retransmits due to both too early
2131 * fast retransmit (reordering) and underestimated RTO, analyzing
2132 * timestamps and D-SACKs. When we detect that some segments were
2133 * retransmitted by mistake and CWND reduction was wrong, we undo
2134 * window reduction and abort recovery phase. This logic is hidden
2135 * inside several functions named tcp_try_undo_<something>.
2136 */
2137
2138 /* This function decides, when we should leave Disordered state
2139 * and enter Recovery phase, reducing congestion window.
2140 *
2141 * Main question: may we further continue forward transmission
2142 * with the same cwnd?
2143 */
2144 static bool tcp_time_to_recover(struct sock *sk, int flag)
2145 {
2146 struct tcp_sock *tp = tcp_sk(sk);
2147 __u32 packets_out;
2148
2149 /* Trick#1: The loss is proven. */
2150 if (tp->lost_out)
2151 return true;
2152
2153 /* Not-A-Trick#2 : Classic rule... */
2154 if (tcp_dupack_heuristics(tp) > tp->reordering)
2155 return true;
2156
2157 /* Trick#4: It is still not OK... But will it be useful to delay
2158 * recovery more?
2159 */
2160 packets_out = tp->packets_out;
2161 if (packets_out <= tp->reordering &&
2162 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2163 !tcp_may_send_now(sk)) {
2164 /* We have nothing to send. This connection is limited
2165 * either by receiver window or by application.
2166 */
2167 return true;
2168 }
2169
2170 /* If a thin stream is detected, retransmit after first
2171 * received dupack. Employ only if SACK is supported in order
2172 * to avoid possible corner-case series of spurious retransmissions
2173 * Use only if there are no unsent data.
2174 */
2175 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2176 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2177 tcp_is_sack(tp) && !tcp_send_head(sk))
2178 return true;
2179
2180 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2181 * retransmissions due to small network reorderings, we implement
2182 * Mitigation A.3 in the RFC and delay the retransmission for a short
2183 * interval if appropriate.
2184 */
2185 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2186 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2187 !tcp_may_send_now(sk))
2188 return !tcp_pause_early_retransmit(sk, flag);
2189
2190 return false;
2191 }
2192
2193 /* Detect loss in event "A" above by marking head of queue up as lost.
2194 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2195 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2196 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2197 * the maximum SACKed segments to pass before reaching this limit.
2198 */
2199 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2200 {
2201 struct tcp_sock *tp = tcp_sk(sk);
2202 struct sk_buff *skb;
2203 int cnt, oldcnt;
2204 int err;
2205 unsigned int mss;
2206 /* Use SACK to deduce losses of new sequences sent during recovery */
2207 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2208
2209 WARN_ON(packets > tp->packets_out);
2210 if (tp->lost_skb_hint) {
2211 skb = tp->lost_skb_hint;
2212 cnt = tp->lost_cnt_hint;
2213 /* Head already handled? */
2214 if (mark_head && skb != tcp_write_queue_head(sk))
2215 return;
2216 } else {
2217 skb = tcp_write_queue_head(sk);
2218 cnt = 0;
2219 }
2220
2221 tcp_for_write_queue_from(skb, sk) {
2222 if (skb == tcp_send_head(sk))
2223 break;
2224 /* TODO: do this better */
2225 /* this is not the most efficient way to do this... */
2226 tp->lost_skb_hint = skb;
2227 tp->lost_cnt_hint = cnt;
2228
2229 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2230 break;
2231
2232 oldcnt = cnt;
2233 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2234 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2235 cnt += tcp_skb_pcount(skb);
2236
2237 if (cnt > packets) {
2238 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2239 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2240 (oldcnt >= packets))
2241 break;
2242
2243 mss = skb_shinfo(skb)->gso_size;
2244 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2245 if (err < 0)
2246 break;
2247 cnt = packets;
2248 }
2249
2250 tcp_skb_mark_lost(tp, skb);
2251
2252 if (mark_head)
2253 break;
2254 }
2255 tcp_verify_left_out(tp);
2256 }
2257
2258 /* Account newly detected lost packet(s) */
2259
2260 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2261 {
2262 struct tcp_sock *tp = tcp_sk(sk);
2263
2264 if (tcp_is_reno(tp)) {
2265 tcp_mark_head_lost(sk, 1, 1);
2266 } else if (tcp_is_fack(tp)) {
2267 int lost = tp->fackets_out - tp->reordering;
2268 if (lost <= 0)
2269 lost = 1;
2270 tcp_mark_head_lost(sk, lost, 0);
2271 } else {
2272 int sacked_upto = tp->sacked_out - tp->reordering;
2273 if (sacked_upto >= 0)
2274 tcp_mark_head_lost(sk, sacked_upto, 0);
2275 else if (fast_rexmit)
2276 tcp_mark_head_lost(sk, 1, 1);
2277 }
2278 }
2279
2280 /* CWND moderation, preventing bursts due to too big ACKs
2281 * in dubious situations.
2282 */
2283 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2284 {
2285 tp->snd_cwnd = min(tp->snd_cwnd,
2286 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2287 tp->snd_cwnd_stamp = tcp_time_stamp;
2288 }
2289
2290 /* Nothing was retransmitted or returned timestamp is less
2291 * than timestamp of the first retransmission.
2292 */
2293 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2294 {
2295 return !tp->retrans_stamp ||
2296 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2297 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2298 }
2299
2300 /* Undo procedures. */
2301
2302 #if FASTRETRANS_DEBUG > 1
2303 static void DBGUNDO(struct sock *sk, const char *msg)
2304 {
2305 struct tcp_sock *tp = tcp_sk(sk);
2306 struct inet_sock *inet = inet_sk(sk);
2307
2308 if (sk->sk_family == AF_INET) {
2309 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2310 msg,
2311 &inet->inet_daddr, ntohs(inet->inet_dport),
2312 tp->snd_cwnd, tcp_left_out(tp),
2313 tp->snd_ssthresh, tp->prior_ssthresh,
2314 tp->packets_out);
2315 }
2316 #if IS_ENABLED(CONFIG_IPV6)
2317 else if (sk->sk_family == AF_INET6) {
2318 struct ipv6_pinfo *np = inet6_sk(sk);
2319 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2320 msg,
2321 &np->daddr, ntohs(inet->inet_dport),
2322 tp->snd_cwnd, tcp_left_out(tp),
2323 tp->snd_ssthresh, tp->prior_ssthresh,
2324 tp->packets_out);
2325 }
2326 #endif
2327 }
2328 #else
2329 #define DBGUNDO(x...) do { } while (0)
2330 #endif
2331
2332 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2333 {
2334 struct tcp_sock *tp = tcp_sk(sk);
2335
2336 if (unmark_loss) {
2337 struct sk_buff *skb;
2338
2339 tcp_for_write_queue(skb, sk) {
2340 if (skb == tcp_send_head(sk))
2341 break;
2342 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2343 }
2344 tp->lost_out = 0;
2345 tcp_clear_all_retrans_hints(tp);
2346 }
2347
2348 if (tp->prior_ssthresh) {
2349 const struct inet_connection_sock *icsk = inet_csk(sk);
2350
2351 if (icsk->icsk_ca_ops->undo_cwnd)
2352 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2353 else
2354 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2355
2356 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2357 tp->snd_ssthresh = tp->prior_ssthresh;
2358 TCP_ECN_withdraw_cwr(tp);
2359 }
2360 } else {
2361 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2362 }
2363 tp->snd_cwnd_stamp = tcp_time_stamp;
2364 tp->undo_marker = 0;
2365 }
2366
2367 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2368 {
2369 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2370 }
2371
2372 /* People celebrate: "We love our President!" */
2373 static bool tcp_try_undo_recovery(struct sock *sk)
2374 {
2375 struct tcp_sock *tp = tcp_sk(sk);
2376
2377 if (tcp_may_undo(tp)) {
2378 int mib_idx;
2379
2380 /* Happy end! We did not retransmit anything
2381 * or our original transmission succeeded.
2382 */
2383 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2384 tcp_undo_cwnd_reduction(sk, false);
2385 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2386 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2387 else
2388 mib_idx = LINUX_MIB_TCPFULLUNDO;
2389
2390 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2391 }
2392 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2393 /* Hold old state until something *above* high_seq
2394 * is ACKed. For Reno it is MUST to prevent false
2395 * fast retransmits (RFC2582). SACK TCP is safe. */
2396 tcp_moderate_cwnd(tp);
2397 return true;
2398 }
2399 tcp_set_ca_state(sk, TCP_CA_Open);
2400 return false;
2401 }
2402
2403 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2404 static bool tcp_try_undo_dsack(struct sock *sk)
2405 {
2406 struct tcp_sock *tp = tcp_sk(sk);
2407
2408 if (tp->undo_marker && !tp->undo_retrans) {
2409 DBGUNDO(sk, "D-SACK");
2410 tcp_undo_cwnd_reduction(sk, false);
2411 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2412 return true;
2413 }
2414 return false;
2415 }
2416
2417 /* We can clear retrans_stamp when there are no retransmissions in the
2418 * window. It would seem that it is trivially available for us in
2419 * tp->retrans_out, however, that kind of assumptions doesn't consider
2420 * what will happen if errors occur when sending retransmission for the
2421 * second time. ...It could the that such segment has only
2422 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2423 * the head skb is enough except for some reneging corner cases that
2424 * are not worth the effort.
2425 *
2426 * Main reason for all this complexity is the fact that connection dying
2427 * time now depends on the validity of the retrans_stamp, in particular,
2428 * that successive retransmissions of a segment must not advance
2429 * retrans_stamp under any conditions.
2430 */
2431 static bool tcp_any_retrans_done(const struct sock *sk)
2432 {
2433 const struct tcp_sock *tp = tcp_sk(sk);
2434 struct sk_buff *skb;
2435
2436 if (tp->retrans_out)
2437 return true;
2438
2439 skb = tcp_write_queue_head(sk);
2440 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2441 return true;
2442
2443 return false;
2444 }
2445
2446 /* Undo during loss recovery after partial ACK or using F-RTO. */
2447 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2448 {
2449 struct tcp_sock *tp = tcp_sk(sk);
2450
2451 if (frto_undo || tcp_may_undo(tp)) {
2452 tcp_undo_cwnd_reduction(sk, true);
2453
2454 DBGUNDO(sk, "partial loss");
2455 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2456 if (frto_undo)
2457 NET_INC_STATS_BH(sock_net(sk),
2458 LINUX_MIB_TCPSPURIOUSRTOS);
2459 inet_csk(sk)->icsk_retransmits = 0;
2460 if (frto_undo || tcp_is_sack(tp))
2461 tcp_set_ca_state(sk, TCP_CA_Open);
2462 return true;
2463 }
2464 return false;
2465 }
2466
2467 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2468 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2469 * It computes the number of packets to send (sndcnt) based on packets newly
2470 * delivered:
2471 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2472 * cwnd reductions across a full RTT.
2473 * 2) If packets in flight is lower than ssthresh (such as due to excess
2474 * losses and/or application stalls), do not perform any further cwnd
2475 * reductions, but instead slow start up to ssthresh.
2476 */
2477 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2478 {
2479 struct tcp_sock *tp = tcp_sk(sk);
2480
2481 tp->high_seq = tp->snd_nxt;
2482 tp->tlp_high_seq = 0;
2483 tp->snd_cwnd_cnt = 0;
2484 tp->prior_cwnd = tp->snd_cwnd;
2485 tp->prr_delivered = 0;
2486 tp->prr_out = 0;
2487 if (set_ssthresh)
2488 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2489 TCP_ECN_queue_cwr(tp);
2490 }
2491
2492 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2493 int fast_rexmit)
2494 {
2495 struct tcp_sock *tp = tcp_sk(sk);
2496 int sndcnt = 0;
2497 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2498 int newly_acked_sacked = prior_unsacked -
2499 (tp->packets_out - tp->sacked_out);
2500
2501 tp->prr_delivered += newly_acked_sacked;
2502 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2503 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2504 tp->prior_cwnd - 1;
2505 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2506 } else {
2507 sndcnt = min_t(int, delta,
2508 max_t(int, tp->prr_delivered - tp->prr_out,
2509 newly_acked_sacked) + 1);
2510 }
2511
2512 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2513 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2514 }
2515
2516 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2517 {
2518 struct tcp_sock *tp = tcp_sk(sk);
2519
2520 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2521 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2522 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2523 tp->snd_cwnd = tp->snd_ssthresh;
2524 tp->snd_cwnd_stamp = tcp_time_stamp;
2525 }
2526 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2527 }
2528
2529 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2530 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2531 {
2532 struct tcp_sock *tp = tcp_sk(sk);
2533
2534 tp->prior_ssthresh = 0;
2535 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2536 tp->undo_marker = 0;
2537 tcp_init_cwnd_reduction(sk, set_ssthresh);
2538 tcp_set_ca_state(sk, TCP_CA_CWR);
2539 }
2540 }
2541
2542 static void tcp_try_keep_open(struct sock *sk)
2543 {
2544 struct tcp_sock *tp = tcp_sk(sk);
2545 int state = TCP_CA_Open;
2546
2547 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2548 state = TCP_CA_Disorder;
2549
2550 if (inet_csk(sk)->icsk_ca_state != state) {
2551 tcp_set_ca_state(sk, state);
2552 tp->high_seq = tp->snd_nxt;
2553 }
2554 }
2555
2556 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2557 {
2558 struct tcp_sock *tp = tcp_sk(sk);
2559
2560 tcp_verify_left_out(tp);
2561
2562 if (!tcp_any_retrans_done(sk))
2563 tp->retrans_stamp = 0;
2564
2565 if (flag & FLAG_ECE)
2566 tcp_enter_cwr(sk, 1);
2567
2568 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2569 tcp_try_keep_open(sk);
2570 } else {
2571 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2572 }
2573 }
2574
2575 static void tcp_mtup_probe_failed(struct sock *sk)
2576 {
2577 struct inet_connection_sock *icsk = inet_csk(sk);
2578
2579 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2580 icsk->icsk_mtup.probe_size = 0;
2581 }
2582
2583 static void tcp_mtup_probe_success(struct sock *sk)
2584 {
2585 struct tcp_sock *tp = tcp_sk(sk);
2586 struct inet_connection_sock *icsk = inet_csk(sk);
2587
2588 /* FIXME: breaks with very large cwnd */
2589 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2590 tp->snd_cwnd = tp->snd_cwnd *
2591 tcp_mss_to_mtu(sk, tp->mss_cache) /
2592 icsk->icsk_mtup.probe_size;
2593 tp->snd_cwnd_cnt = 0;
2594 tp->snd_cwnd_stamp = tcp_time_stamp;
2595 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2596
2597 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2598 icsk->icsk_mtup.probe_size = 0;
2599 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2600 }
2601
2602 /* Do a simple retransmit without using the backoff mechanisms in
2603 * tcp_timer. This is used for path mtu discovery.
2604 * The socket is already locked here.
2605 */
2606 void tcp_simple_retransmit(struct sock *sk)
2607 {
2608 const struct inet_connection_sock *icsk = inet_csk(sk);
2609 struct tcp_sock *tp = tcp_sk(sk);
2610 struct sk_buff *skb;
2611 unsigned int mss = tcp_current_mss(sk);
2612 u32 prior_lost = tp->lost_out;
2613
2614 tcp_for_write_queue(skb, sk) {
2615 if (skb == tcp_send_head(sk))
2616 break;
2617 if (tcp_skb_seglen(skb) > mss &&
2618 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2619 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2620 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2621 tp->retrans_out -= tcp_skb_pcount(skb);
2622 }
2623 tcp_skb_mark_lost_uncond_verify(tp, skb);
2624 }
2625 }
2626
2627 tcp_clear_retrans_hints_partial(tp);
2628
2629 if (prior_lost == tp->lost_out)
2630 return;
2631
2632 if (tcp_is_reno(tp))
2633 tcp_limit_reno_sacked(tp);
2634
2635 tcp_verify_left_out(tp);
2636
2637 /* Don't muck with the congestion window here.
2638 * Reason is that we do not increase amount of _data_
2639 * in network, but units changed and effective
2640 * cwnd/ssthresh really reduced now.
2641 */
2642 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2643 tp->high_seq = tp->snd_nxt;
2644 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2645 tp->prior_ssthresh = 0;
2646 tp->undo_marker = 0;
2647 tcp_set_ca_state(sk, TCP_CA_Loss);
2648 }
2649 tcp_xmit_retransmit_queue(sk);
2650 }
2651 EXPORT_SYMBOL(tcp_simple_retransmit);
2652
2653 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2654 {
2655 struct tcp_sock *tp = tcp_sk(sk);
2656 int mib_idx;
2657
2658 if (tcp_is_reno(tp))
2659 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2660 else
2661 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2662
2663 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2664
2665 tp->prior_ssthresh = 0;
2666 tp->undo_marker = tp->snd_una;
2667 tp->undo_retrans = tp->retrans_out;
2668
2669 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2670 if (!ece_ack)
2671 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2672 tcp_init_cwnd_reduction(sk, true);
2673 }
2674 tcp_set_ca_state(sk, TCP_CA_Recovery);
2675 }
2676
2677 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2678 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2679 */
2680 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2681 {
2682 struct inet_connection_sock *icsk = inet_csk(sk);
2683 struct tcp_sock *tp = tcp_sk(sk);
2684 bool recovered = !before(tp->snd_una, tp->high_seq);
2685
2686 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2687 if (flag & FLAG_ORIG_SACK_ACKED) {
2688 /* Step 3.b. A timeout is spurious if not all data are
2689 * lost, i.e., never-retransmitted data are (s)acked.
2690 */
2691 tcp_try_undo_loss(sk, true);
2692 return;
2693 }
2694 if (after(tp->snd_nxt, tp->high_seq) &&
2695 (flag & FLAG_DATA_SACKED || is_dupack)) {
2696 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2697 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2698 tp->high_seq = tp->snd_nxt;
2699 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2700 TCP_NAGLE_OFF);
2701 if (after(tp->snd_nxt, tp->high_seq))
2702 return; /* Step 2.b */
2703 tp->frto = 0;
2704 }
2705 }
2706
2707 if (recovered) {
2708 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2709 icsk->icsk_retransmits = 0;
2710 tcp_try_undo_recovery(sk);
2711 return;
2712 }
2713 if (flag & FLAG_DATA_ACKED)
2714 icsk->icsk_retransmits = 0;
2715 if (tcp_is_reno(tp)) {
2716 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2717 * delivered. Lower inflight to clock out (re)tranmissions.
2718 */
2719 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2720 tcp_add_reno_sack(sk);
2721 else if (flag & FLAG_SND_UNA_ADVANCED)
2722 tcp_reset_reno_sack(tp);
2723 }
2724 if (tcp_try_undo_loss(sk, false))
2725 return;
2726 tcp_xmit_retransmit_queue(sk);
2727 }
2728
2729 /* Undo during fast recovery after partial ACK. */
2730 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2731 const int prior_unsacked)
2732 {
2733 struct tcp_sock *tp = tcp_sk(sk);
2734
2735 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2736 /* Plain luck! Hole if filled with delayed
2737 * packet, rather than with a retransmit.
2738 */
2739 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2740
2741 /* We are getting evidence that the reordering degree is higher
2742 * than we realized. If there are no retransmits out then we
2743 * can undo. Otherwise we clock out new packets but do not
2744 * mark more packets lost or retransmit more.
2745 */
2746 if (tp->retrans_out) {
2747 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2748 return true;
2749 }
2750
2751 if (!tcp_any_retrans_done(sk))
2752 tp->retrans_stamp = 0;
2753
2754 DBGUNDO(sk, "partial recovery");
2755 tcp_undo_cwnd_reduction(sk, true);
2756 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2757 tcp_try_keep_open(sk);
2758 return true;
2759 }
2760 return false;
2761 }
2762
2763 /* Process an event, which can update packets-in-flight not trivially.
2764 * Main goal of this function is to calculate new estimate for left_out,
2765 * taking into account both packets sitting in receiver's buffer and
2766 * packets lost by network.
2767 *
2768 * Besides that it does CWND reduction, when packet loss is detected
2769 * and changes state of machine.
2770 *
2771 * It does _not_ decide what to send, it is made in function
2772 * tcp_xmit_retransmit_queue().
2773 */
2774 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2775 const int prior_unsacked,
2776 bool is_dupack, int flag)
2777 {
2778 struct inet_connection_sock *icsk = inet_csk(sk);
2779 struct tcp_sock *tp = tcp_sk(sk);
2780 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2781 (tcp_fackets_out(tp) > tp->reordering));
2782 int fast_rexmit = 0;
2783
2784 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2785 tp->sacked_out = 0;
2786 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2787 tp->fackets_out = 0;
2788
2789 /* Now state machine starts.
2790 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2791 if (flag & FLAG_ECE)
2792 tp->prior_ssthresh = 0;
2793
2794 /* B. In all the states check for reneging SACKs. */
2795 if (tcp_check_sack_reneging(sk, flag))
2796 return;
2797
2798 /* C. Check consistency of the current state. */
2799 tcp_verify_left_out(tp);
2800
2801 /* D. Check state exit conditions. State can be terminated
2802 * when high_seq is ACKed. */
2803 if (icsk->icsk_ca_state == TCP_CA_Open) {
2804 WARN_ON(tp->retrans_out != 0);
2805 tp->retrans_stamp = 0;
2806 } else if (!before(tp->snd_una, tp->high_seq)) {
2807 switch (icsk->icsk_ca_state) {
2808 case TCP_CA_CWR:
2809 /* CWR is to be held something *above* high_seq
2810 * is ACKed for CWR bit to reach receiver. */
2811 if (tp->snd_una != tp->high_seq) {
2812 tcp_end_cwnd_reduction(sk);
2813 tcp_set_ca_state(sk, TCP_CA_Open);
2814 }
2815 break;
2816
2817 case TCP_CA_Recovery:
2818 if (tcp_is_reno(tp))
2819 tcp_reset_reno_sack(tp);
2820 if (tcp_try_undo_recovery(sk))
2821 return;
2822 tcp_end_cwnd_reduction(sk);
2823 break;
2824 }
2825 }
2826
2827 /* E. Process state. */
2828 switch (icsk->icsk_ca_state) {
2829 case TCP_CA_Recovery:
2830 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2831 if (tcp_is_reno(tp) && is_dupack)
2832 tcp_add_reno_sack(sk);
2833 } else {
2834 if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2835 return;
2836 /* Partial ACK arrived. Force fast retransmit. */
2837 do_lost = tcp_is_reno(tp) ||
2838 tcp_fackets_out(tp) > tp->reordering;
2839 }
2840 if (tcp_try_undo_dsack(sk)) {
2841 tcp_try_keep_open(sk);
2842 return;
2843 }
2844 break;
2845 case TCP_CA_Loss:
2846 tcp_process_loss(sk, flag, is_dupack);
2847 if (icsk->icsk_ca_state != TCP_CA_Open)
2848 return;
2849 /* Fall through to processing in Open state. */
2850 default:
2851 if (tcp_is_reno(tp)) {
2852 if (flag & FLAG_SND_UNA_ADVANCED)
2853 tcp_reset_reno_sack(tp);
2854 if (is_dupack)
2855 tcp_add_reno_sack(sk);
2856 }
2857
2858 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2859 tcp_try_undo_dsack(sk);
2860
2861 if (!tcp_time_to_recover(sk, flag)) {
2862 tcp_try_to_open(sk, flag, prior_unsacked);
2863 return;
2864 }
2865
2866 /* MTU probe failure: don't reduce cwnd */
2867 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2868 icsk->icsk_mtup.probe_size &&
2869 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2870 tcp_mtup_probe_failed(sk);
2871 /* Restores the reduction we did in tcp_mtup_probe() */
2872 tp->snd_cwnd++;
2873 tcp_simple_retransmit(sk);
2874 return;
2875 }
2876
2877 /* Otherwise enter Recovery state */
2878 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2879 fast_rexmit = 1;
2880 }
2881
2882 if (do_lost)
2883 tcp_update_scoreboard(sk, fast_rexmit);
2884 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2885 tcp_xmit_retransmit_queue(sk);
2886 }
2887
2888 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2889 long seq_rtt_us, long sack_rtt_us)
2890 {
2891 const struct tcp_sock *tp = tcp_sk(sk);
2892
2893 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2894 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2895 * Karn's algorithm forbids taking RTT if some retransmitted data
2896 * is acked (RFC6298).
2897 */
2898 if (flag & FLAG_RETRANS_DATA_ACKED)
2899 seq_rtt_us = -1L;
2900
2901 if (seq_rtt_us < 0)
2902 seq_rtt_us = sack_rtt_us;
2903
2904 /* RTTM Rule: A TSecr value received in a segment is used to
2905 * update the averaged RTT measurement only if the segment
2906 * acknowledges some new data, i.e., only if it advances the
2907 * left edge of the send window.
2908 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2909 */
2910 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2911 flag & FLAG_ACKED)
2912 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2913
2914 if (seq_rtt_us < 0)
2915 return false;
2916
2917 tcp_rtt_estimator(sk, seq_rtt_us);
2918 tcp_set_rto(sk);
2919
2920 /* RFC6298: only reset backoff on valid RTT measurement. */
2921 inet_csk(sk)->icsk_backoff = 0;
2922 return true;
2923 }
2924
2925 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2926 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2927 {
2928 struct tcp_sock *tp = tcp_sk(sk);
2929 long seq_rtt_us = -1L;
2930
2931 if (synack_stamp && !tp->total_retrans)
2932 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2933
2934 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2935 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2936 */
2937 if (!tp->srtt_us)
2938 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2939 }
2940
2941 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2942 {
2943 const struct inet_connection_sock *icsk = inet_csk(sk);
2944
2945 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2946 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2947 }
2948
2949 /* Restart timer after forward progress on connection.
2950 * RFC2988 recommends to restart timer to now+rto.
2951 */
2952 void tcp_rearm_rto(struct sock *sk)
2953 {
2954 const struct inet_connection_sock *icsk = inet_csk(sk);
2955 struct tcp_sock *tp = tcp_sk(sk);
2956
2957 /* If the retrans timer is currently being used by Fast Open
2958 * for SYN-ACK retrans purpose, stay put.
2959 */
2960 if (tp->fastopen_rsk)
2961 return;
2962
2963 if (!tp->packets_out) {
2964 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2965 } else {
2966 u32 rto = inet_csk(sk)->icsk_rto;
2967 /* Offset the time elapsed after installing regular RTO */
2968 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2969 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2970 struct sk_buff *skb = tcp_write_queue_head(sk);
2971 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2972 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2973 /* delta may not be positive if the socket is locked
2974 * when the retrans timer fires and is rescheduled.
2975 */
2976 if (delta > 0)
2977 rto = delta;
2978 }
2979 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2980 TCP_RTO_MAX);
2981 }
2982 }
2983
2984 /* This function is called when the delayed ER timer fires. TCP enters
2985 * fast recovery and performs fast-retransmit.
2986 */
2987 void tcp_resume_early_retransmit(struct sock *sk)
2988 {
2989 struct tcp_sock *tp = tcp_sk(sk);
2990
2991 tcp_rearm_rto(sk);
2992
2993 /* Stop if ER is disabled after the delayed ER timer is scheduled */
2994 if (!tp->do_early_retrans)
2995 return;
2996
2997 tcp_enter_recovery(sk, false);
2998 tcp_update_scoreboard(sk, 1);
2999 tcp_xmit_retransmit_queue(sk);
3000 }
3001
3002 /* If we get here, the whole TSO packet has not been acked. */
3003 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3004 {
3005 struct tcp_sock *tp = tcp_sk(sk);
3006 u32 packets_acked;
3007
3008 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3009
3010 packets_acked = tcp_skb_pcount(skb);
3011 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3012 return 0;
3013 packets_acked -= tcp_skb_pcount(skb);
3014
3015 if (packets_acked) {
3016 BUG_ON(tcp_skb_pcount(skb) == 0);
3017 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3018 }
3019
3020 return packets_acked;
3021 }
3022
3023 /* Remove acknowledged frames from the retransmission queue. If our packet
3024 * is before the ack sequence we can discard it as it's confirmed to have
3025 * arrived at the other end.
3026 */
3027 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3028 u32 prior_snd_una, long sack_rtt_us)
3029 {
3030 const struct inet_connection_sock *icsk = inet_csk(sk);
3031 struct skb_mstamp first_ackt, last_ackt, now;
3032 struct tcp_sock *tp = tcp_sk(sk);
3033 u32 prior_sacked = tp->sacked_out;
3034 u32 reord = tp->packets_out;
3035 bool fully_acked = true;
3036 long ca_seq_rtt_us = -1L;
3037 long seq_rtt_us = -1L;
3038 struct sk_buff *skb;
3039 u32 pkts_acked = 0;
3040 bool rtt_update;
3041 int flag = 0;
3042
3043 first_ackt.v64 = 0;
3044
3045 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3046 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3047 u8 sacked = scb->sacked;
3048 u32 acked_pcount;
3049
3050 /* Determine how many packets and what bytes were acked, tso and else */
3051 if (after(scb->end_seq, tp->snd_una)) {
3052 if (tcp_skb_pcount(skb) == 1 ||
3053 !after(tp->snd_una, scb->seq))
3054 break;
3055
3056 acked_pcount = tcp_tso_acked(sk, skb);
3057 if (!acked_pcount)
3058 break;
3059
3060 fully_acked = false;
3061 } else {
3062 acked_pcount = tcp_skb_pcount(skb);
3063 }
3064
3065 if (sacked & TCPCB_RETRANS) {
3066 if (sacked & TCPCB_SACKED_RETRANS)
3067 tp->retrans_out -= acked_pcount;
3068 flag |= FLAG_RETRANS_DATA_ACKED;
3069 } else {
3070 last_ackt = skb->skb_mstamp;
3071 WARN_ON_ONCE(last_ackt.v64 == 0);
3072 if (!first_ackt.v64)
3073 first_ackt = last_ackt;
3074
3075 if (!(sacked & TCPCB_SACKED_ACKED))
3076 reord = min(pkts_acked, reord);
3077 if (!after(scb->end_seq, tp->high_seq))
3078 flag |= FLAG_ORIG_SACK_ACKED;
3079 }
3080
3081 if (sacked & TCPCB_SACKED_ACKED)
3082 tp->sacked_out -= acked_pcount;
3083 if (sacked & TCPCB_LOST)
3084 tp->lost_out -= acked_pcount;
3085
3086 tp->packets_out -= acked_pcount;
3087 pkts_acked += acked_pcount;
3088
3089 /* Initial outgoing SYN's get put onto the write_queue
3090 * just like anything else we transmit. It is not
3091 * true data, and if we misinform our callers that
3092 * this ACK acks real data, we will erroneously exit
3093 * connection startup slow start one packet too
3094 * quickly. This is severely frowned upon behavior.
3095 */
3096 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3097 flag |= FLAG_DATA_ACKED;
3098 } else {
3099 flag |= FLAG_SYN_ACKED;
3100 tp->retrans_stamp = 0;
3101 }
3102
3103 if (!fully_acked)
3104 break;
3105
3106 tcp_unlink_write_queue(skb, sk);
3107 sk_wmem_free_skb(sk, skb);
3108 if (skb == tp->retransmit_skb_hint)
3109 tp->retransmit_skb_hint = NULL;
3110 if (skb == tp->lost_skb_hint)
3111 tp->lost_skb_hint = NULL;
3112 }
3113
3114 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3115 tp->snd_up = tp->snd_una;
3116
3117 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3118 flag |= FLAG_SACK_RENEGING;
3119
3120 skb_mstamp_get(&now);
3121 if (first_ackt.v64) {
3122 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3123 ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3124 }
3125
3126 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3127
3128 if (flag & FLAG_ACKED) {
3129 const struct tcp_congestion_ops *ca_ops
3130 = inet_csk(sk)->icsk_ca_ops;
3131
3132 tcp_rearm_rto(sk);
3133 if (unlikely(icsk->icsk_mtup.probe_size &&
3134 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3135 tcp_mtup_probe_success(sk);
3136 }
3137
3138 if (tcp_is_reno(tp)) {
3139 tcp_remove_reno_sacks(sk, pkts_acked);
3140 } else {
3141 int delta;
3142
3143 /* Non-retransmitted hole got filled? That's reordering */
3144 if (reord < prior_fackets)
3145 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3146
3147 delta = tcp_is_fack(tp) ? pkts_acked :
3148 prior_sacked - tp->sacked_out;
3149 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3150 }
3151
3152 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3153
3154 if (ca_ops->pkts_acked)
3155 ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
3156
3157 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3158 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3159 /* Do not re-arm RTO if the sack RTT is measured from data sent
3160 * after when the head was last (re)transmitted. Otherwise the
3161 * timeout may continue to extend in loss recovery.
3162 */
3163 tcp_rearm_rto(sk);
3164 }
3165
3166 #if FASTRETRANS_DEBUG > 0
3167 WARN_ON((int)tp->sacked_out < 0);
3168 WARN_ON((int)tp->lost_out < 0);
3169 WARN_ON((int)tp->retrans_out < 0);
3170 if (!tp->packets_out && tcp_is_sack(tp)) {
3171 icsk = inet_csk(sk);
3172 if (tp->lost_out) {
3173 pr_debug("Leak l=%u %d\n",
3174 tp->lost_out, icsk->icsk_ca_state);
3175 tp->lost_out = 0;
3176 }
3177 if (tp->sacked_out) {
3178 pr_debug("Leak s=%u %d\n",
3179 tp->sacked_out, icsk->icsk_ca_state);
3180 tp->sacked_out = 0;
3181 }
3182 if (tp->retrans_out) {
3183 pr_debug("Leak r=%u %d\n",
3184 tp->retrans_out, icsk->icsk_ca_state);
3185 tp->retrans_out = 0;
3186 }
3187 }
3188 #endif
3189 return flag;
3190 }
3191
3192 static void tcp_ack_probe(struct sock *sk)
3193 {
3194 const struct tcp_sock *tp = tcp_sk(sk);
3195 struct inet_connection_sock *icsk = inet_csk(sk);
3196
3197 /* Was it a usable window open? */
3198
3199 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3200 icsk->icsk_backoff = 0;
3201 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3202 /* Socket must be waked up by subsequent tcp_data_snd_check().
3203 * This function is not for random using!
3204 */
3205 } else {
3206 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3207 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3208 TCP_RTO_MAX);
3209 }
3210 }
3211
3212 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3213 {
3214 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3215 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3216 }
3217
3218 /* Decide wheather to run the increase function of congestion control. */
3219 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3220 {
3221 if (tcp_in_cwnd_reduction(sk))
3222 return false;
3223
3224 /* If reordering is high then always grow cwnd whenever data is
3225 * delivered regardless of its ordering. Otherwise stay conservative
3226 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3227 * new SACK or ECE mark may first advance cwnd here and later reduce
3228 * cwnd in tcp_fastretrans_alert() based on more states.
3229 */
3230 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3231 return flag & FLAG_FORWARD_PROGRESS;
3232
3233 return flag & FLAG_DATA_ACKED;
3234 }
3235
3236 /* Check that window update is acceptable.
3237 * The function assumes that snd_una<=ack<=snd_next.
3238 */
3239 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3240 const u32 ack, const u32 ack_seq,
3241 const u32 nwin)
3242 {
3243 return after(ack, tp->snd_una) ||
3244 after(ack_seq, tp->snd_wl1) ||
3245 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3246 }
3247
3248 /* Update our send window.
3249 *
3250 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3251 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3252 */
3253 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3254 u32 ack_seq)
3255 {
3256 struct tcp_sock *tp = tcp_sk(sk);
3257 int flag = 0;
3258 u32 nwin = ntohs(tcp_hdr(skb)->window);
3259
3260 if (likely(!tcp_hdr(skb)->syn))
3261 nwin <<= tp->rx_opt.snd_wscale;
3262
3263 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3264 flag |= FLAG_WIN_UPDATE;
3265 tcp_update_wl(tp, ack_seq);
3266
3267 if (tp->snd_wnd != nwin) {
3268 tp->snd_wnd = nwin;
3269
3270 /* Note, it is the only place, where
3271 * fast path is recovered for sending TCP.
3272 */
3273 tp->pred_flags = 0;
3274 tcp_fast_path_check(sk);
3275
3276 if (nwin > tp->max_window) {
3277 tp->max_window = nwin;
3278 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3279 }
3280 }
3281 }
3282
3283 tp->snd_una = ack;
3284
3285 return flag;
3286 }
3287
3288 /* RFC 5961 7 [ACK Throttling] */
3289 static void tcp_send_challenge_ack(struct sock *sk)
3290 {
3291 /* unprotected vars, we dont care of overwrites */
3292 static u32 challenge_timestamp;
3293 static unsigned int challenge_count;
3294 u32 now = jiffies / HZ;
3295
3296 if (now != challenge_timestamp) {
3297 challenge_timestamp = now;
3298 challenge_count = 0;
3299 }
3300 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3301 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3302 tcp_send_ack(sk);
3303 }
3304 }
3305
3306 static void tcp_store_ts_recent(struct tcp_sock *tp)
3307 {
3308 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3309 tp->rx_opt.ts_recent_stamp = get_seconds();
3310 }
3311
3312 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3313 {
3314 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3315 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3316 * extra check below makes sure this can only happen
3317 * for pure ACK frames. -DaveM
3318 *
3319 * Not only, also it occurs for expired timestamps.
3320 */
3321
3322 if (tcp_paws_check(&tp->rx_opt, 0))
3323 tcp_store_ts_recent(tp);
3324 }
3325 }
3326
3327 /* This routine deals with acks during a TLP episode.
3328 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3329 */
3330 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3331 {
3332 struct tcp_sock *tp = tcp_sk(sk);
3333 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3334 !(flag & (FLAG_SND_UNA_ADVANCED |
3335 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3336
3337 /* Mark the end of TLP episode on receiving TLP dupack or when
3338 * ack is after tlp_high_seq.
3339 */
3340 if (is_tlp_dupack) {
3341 tp->tlp_high_seq = 0;
3342 return;
3343 }
3344
3345 if (after(ack, tp->tlp_high_seq)) {
3346 tp->tlp_high_seq = 0;
3347 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3348 if (!(flag & FLAG_DSACKING_ACK)) {
3349 tcp_init_cwnd_reduction(sk, true);
3350 tcp_set_ca_state(sk, TCP_CA_CWR);
3351 tcp_end_cwnd_reduction(sk);
3352 tcp_try_keep_open(sk);
3353 NET_INC_STATS_BH(sock_net(sk),
3354 LINUX_MIB_TCPLOSSPROBERECOVERY);
3355 }
3356 }
3357 }
3358
3359 /* This routine deals with incoming acks, but not outgoing ones. */
3360 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3361 {
3362 struct inet_connection_sock *icsk = inet_csk(sk);
3363 struct tcp_sock *tp = tcp_sk(sk);
3364 u32 prior_snd_una = tp->snd_una;
3365 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3366 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3367 bool is_dupack = false;
3368 u32 prior_fackets;
3369 int prior_packets = tp->packets_out;
3370 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3371 int acked = 0; /* Number of packets newly acked */
3372 long sack_rtt_us = -1L;
3373
3374 /* If the ack is older than previous acks
3375 * then we can probably ignore it.
3376 */
3377 if (before(ack, prior_snd_una)) {
3378 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3379 if (before(ack, prior_snd_una - tp->max_window)) {
3380 tcp_send_challenge_ack(sk);
3381 return -1;
3382 }
3383 goto old_ack;
3384 }
3385
3386 /* If the ack includes data we haven't sent yet, discard
3387 * this segment (RFC793 Section 3.9).
3388 */
3389 if (after(ack, tp->snd_nxt))
3390 goto invalid_ack;
3391
3392 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3393 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3394 tcp_rearm_rto(sk);
3395
3396 if (after(ack, prior_snd_una))
3397 flag |= FLAG_SND_UNA_ADVANCED;
3398
3399 prior_fackets = tp->fackets_out;
3400
3401 /* ts_recent update must be made after we are sure that the packet
3402 * is in window.
3403 */
3404 if (flag & FLAG_UPDATE_TS_RECENT)
3405 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3406
3407 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3408 /* Window is constant, pure forward advance.
3409 * No more checks are required.
3410 * Note, we use the fact that SND.UNA>=SND.WL2.
3411 */
3412 tcp_update_wl(tp, ack_seq);
3413 tp->snd_una = ack;
3414 flag |= FLAG_WIN_UPDATE;
3415
3416 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3417
3418 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3419 } else {
3420 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3421 flag |= FLAG_DATA;
3422 else
3423 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3424
3425 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3426
3427 if (TCP_SKB_CB(skb)->sacked)
3428 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3429 &sack_rtt_us);
3430
3431 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3432 flag |= FLAG_ECE;
3433
3434 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3435 }
3436
3437 /* We passed data and got it acked, remove any soft error
3438 * log. Something worked...
3439 */
3440 sk->sk_err_soft = 0;
3441 icsk->icsk_probes_out = 0;
3442 tp->rcv_tstamp = tcp_time_stamp;
3443 if (!prior_packets)
3444 goto no_queue;
3445
3446 /* See if we can take anything off of the retransmit queue. */
3447 acked = tp->packets_out;
3448 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3449 sack_rtt_us);
3450 acked -= tp->packets_out;
3451
3452 /* Advance cwnd if state allows */
3453 if (tcp_may_raise_cwnd(sk, flag))
3454 tcp_cong_avoid(sk, ack, acked);
3455
3456 if (tcp_ack_is_dubious(sk, flag)) {
3457 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3458 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3459 is_dupack, flag);
3460 }
3461 if (tp->tlp_high_seq)
3462 tcp_process_tlp_ack(sk, ack, flag);
3463
3464 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3465 struct dst_entry *dst = __sk_dst_get(sk);
3466 if (dst)
3467 dst_confirm(dst);
3468 }
3469
3470 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3471 tcp_schedule_loss_probe(sk);
3472 tcp_update_pacing_rate(sk);
3473 return 1;
3474
3475 no_queue:
3476 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3477 if (flag & FLAG_DSACKING_ACK)
3478 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3479 is_dupack, flag);
3480 /* If this ack opens up a zero window, clear backoff. It was
3481 * being used to time the probes, and is probably far higher than
3482 * it needs to be for normal retransmission.
3483 */
3484 if (tcp_send_head(sk))
3485 tcp_ack_probe(sk);
3486
3487 if (tp->tlp_high_seq)
3488 tcp_process_tlp_ack(sk, ack, flag);
3489 return 1;
3490
3491 invalid_ack:
3492 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3493 return -1;
3494
3495 old_ack:
3496 /* If data was SACKed, tag it and see if we should send more data.
3497 * If data was DSACKed, see if we can undo a cwnd reduction.
3498 */
3499 if (TCP_SKB_CB(skb)->sacked) {
3500 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3501 &sack_rtt_us);
3502 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3503 is_dupack, flag);
3504 }
3505
3506 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3507 return 0;
3508 }
3509
3510 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3511 * But, this can also be called on packets in the established flow when
3512 * the fast version below fails.
3513 */
3514 void tcp_parse_options(const struct sk_buff *skb,
3515 struct tcp_options_received *opt_rx, int estab,
3516 struct tcp_fastopen_cookie *foc)
3517 {
3518 const unsigned char *ptr;
3519 const struct tcphdr *th = tcp_hdr(skb);
3520 int length = (th->doff * 4) - sizeof(struct tcphdr);
3521
3522 ptr = (const unsigned char *)(th + 1);
3523 opt_rx->saw_tstamp = 0;
3524
3525 while (length > 0) {
3526 int opcode = *ptr++;
3527 int opsize;
3528
3529 switch (opcode) {
3530 case TCPOPT_EOL:
3531 return;
3532 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3533 length--;
3534 continue;
3535 default:
3536 opsize = *ptr++;
3537 if (opsize < 2) /* "silly options" */
3538 return;
3539 if (opsize > length)
3540 return; /* don't parse partial options */
3541 switch (opcode) {
3542 case TCPOPT_MSS:
3543 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3544 u16 in_mss = get_unaligned_be16(ptr);
3545 if (in_mss) {
3546 if (opt_rx->user_mss &&
3547 opt_rx->user_mss < in_mss)
3548 in_mss = opt_rx->user_mss;
3549 opt_rx->mss_clamp = in_mss;
3550 }
3551 }
3552 break;
3553 case TCPOPT_WINDOW:
3554 if (opsize == TCPOLEN_WINDOW && th->syn &&
3555 !estab && sysctl_tcp_window_scaling) {
3556 __u8 snd_wscale = *(__u8 *)ptr;
3557 opt_rx->wscale_ok = 1;
3558 if (snd_wscale > 14) {
3559 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3560 __func__,
3561 snd_wscale);
3562 snd_wscale = 14;
3563 }
3564 opt_rx->snd_wscale = snd_wscale;
3565 }
3566 break;
3567 case TCPOPT_TIMESTAMP:
3568 if ((opsize == TCPOLEN_TIMESTAMP) &&
3569 ((estab && opt_rx->tstamp_ok) ||
3570 (!estab && sysctl_tcp_timestamps))) {
3571 opt_rx->saw_tstamp = 1;
3572 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3573 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3574 }
3575 break;
3576 case TCPOPT_SACK_PERM:
3577 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3578 !estab && sysctl_tcp_sack) {
3579 opt_rx->sack_ok = TCP_SACK_SEEN;
3580 tcp_sack_reset(opt_rx);
3581 }
3582 break;
3583
3584 case TCPOPT_SACK:
3585 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3586 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3587 opt_rx->sack_ok) {
3588 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3589 }
3590 break;
3591 #ifdef CONFIG_TCP_MD5SIG
3592 case TCPOPT_MD5SIG:
3593 /*
3594 * The MD5 Hash has already been
3595 * checked (see tcp_v{4,6}_do_rcv()).
3596 */
3597 break;
3598 #endif
3599 case TCPOPT_EXP:
3600 /* Fast Open option shares code 254 using a
3601 * 16 bits magic number. It's valid only in
3602 * SYN or SYN-ACK with an even size.
3603 */
3604 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3605 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3606 foc == NULL || !th->syn || (opsize & 1))
3607 break;
3608 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3609 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3610 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3611 memcpy(foc->val, ptr + 2, foc->len);
3612 else if (foc->len != 0)
3613 foc->len = -1;
3614 break;
3615
3616 }
3617 ptr += opsize-2;
3618 length -= opsize;
3619 }
3620 }
3621 }
3622 EXPORT_SYMBOL(tcp_parse_options);
3623
3624 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3625 {
3626 const __be32 *ptr = (const __be32 *)(th + 1);
3627
3628 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3629 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3630 tp->rx_opt.saw_tstamp = 1;
3631 ++ptr;
3632 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3633 ++ptr;
3634 if (*ptr)
3635 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3636 else
3637 tp->rx_opt.rcv_tsecr = 0;
3638 return true;
3639 }
3640 return false;
3641 }
3642
3643 /* Fast parse options. This hopes to only see timestamps.
3644 * If it is wrong it falls back on tcp_parse_options().
3645 */
3646 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3647 const struct tcphdr *th, struct tcp_sock *tp)
3648 {
3649 /* In the spirit of fast parsing, compare doff directly to constant
3650 * values. Because equality is used, short doff can be ignored here.
3651 */
3652 if (th->doff == (sizeof(*th) / 4)) {
3653 tp->rx_opt.saw_tstamp = 0;
3654 return false;
3655 } else if (tp->rx_opt.tstamp_ok &&
3656 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3657 if (tcp_parse_aligned_timestamp(tp, th))
3658 return true;
3659 }
3660
3661 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3662 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3663 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3664
3665 return true;
3666 }
3667
3668 #ifdef CONFIG_TCP_MD5SIG
3669 /*
3670 * Parse MD5 Signature option
3671 */
3672 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3673 {
3674 int length = (th->doff << 2) - sizeof(*th);
3675 const u8 *ptr = (const u8 *)(th + 1);
3676
3677 /* If the TCP option is too short, we can short cut */
3678 if (length < TCPOLEN_MD5SIG)
3679 return NULL;
3680
3681 while (length > 0) {
3682 int opcode = *ptr++;
3683 int opsize;
3684
3685 switch (opcode) {
3686 case TCPOPT_EOL:
3687 return NULL;
3688 case TCPOPT_NOP:
3689 length--;
3690 continue;
3691 default:
3692 opsize = *ptr++;
3693 if (opsize < 2 || opsize > length)
3694 return NULL;
3695 if (opcode == TCPOPT_MD5SIG)
3696 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3697 }
3698 ptr += opsize - 2;
3699 length -= opsize;
3700 }
3701 return NULL;
3702 }
3703 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3704 #endif
3705
3706 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3707 *
3708 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3709 * it can pass through stack. So, the following predicate verifies that
3710 * this segment is not used for anything but congestion avoidance or
3711 * fast retransmit. Moreover, we even are able to eliminate most of such
3712 * second order effects, if we apply some small "replay" window (~RTO)
3713 * to timestamp space.
3714 *
3715 * All these measures still do not guarantee that we reject wrapped ACKs
3716 * on networks with high bandwidth, when sequence space is recycled fastly,
3717 * but it guarantees that such events will be very rare and do not affect
3718 * connection seriously. This doesn't look nice, but alas, PAWS is really
3719 * buggy extension.
3720 *
3721 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3722 * states that events when retransmit arrives after original data are rare.
3723 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3724 * the biggest problem on large power networks even with minor reordering.
3725 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3726 * up to bandwidth of 18Gigabit/sec. 8) ]
3727 */
3728
3729 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3730 {
3731 const struct tcp_sock *tp = tcp_sk(sk);
3732 const struct tcphdr *th = tcp_hdr(skb);
3733 u32 seq = TCP_SKB_CB(skb)->seq;
3734 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3735
3736 return (/* 1. Pure ACK with correct sequence number. */
3737 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3738
3739 /* 2. ... and duplicate ACK. */
3740 ack == tp->snd_una &&
3741
3742 /* 3. ... and does not update window. */
3743 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3744
3745 /* 4. ... and sits in replay window. */
3746 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3747 }
3748
3749 static inline bool tcp_paws_discard(const struct sock *sk,
3750 const struct sk_buff *skb)
3751 {
3752 const struct tcp_sock *tp = tcp_sk(sk);
3753
3754 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3755 !tcp_disordered_ack(sk, skb);
3756 }
3757
3758 /* Check segment sequence number for validity.
3759 *
3760 * Segment controls are considered valid, if the segment
3761 * fits to the window after truncation to the window. Acceptability
3762 * of data (and SYN, FIN, of course) is checked separately.
3763 * See tcp_data_queue(), for example.
3764 *
3765 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3766 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3767 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3768 * (borrowed from freebsd)
3769 */
3770
3771 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3772 {
3773 return !before(end_seq, tp->rcv_wup) &&
3774 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3775 }
3776
3777 /* When we get a reset we do this. */
3778 void tcp_reset(struct sock *sk)
3779 {
3780 /* We want the right error as BSD sees it (and indeed as we do). */
3781 switch (sk->sk_state) {
3782 case TCP_SYN_SENT:
3783 sk->sk_err = ECONNREFUSED;
3784 break;
3785 case TCP_CLOSE_WAIT:
3786 sk->sk_err = EPIPE;
3787 break;
3788 case TCP_CLOSE:
3789 return;
3790 default:
3791 sk->sk_err = ECONNRESET;
3792 }
3793 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3794 smp_wmb();
3795
3796 if (!sock_flag(sk, SOCK_DEAD))
3797 sk->sk_error_report(sk);
3798
3799 tcp_done(sk);
3800 }
3801
3802 /*
3803 * Process the FIN bit. This now behaves as it is supposed to work
3804 * and the FIN takes effect when it is validly part of sequence
3805 * space. Not before when we get holes.
3806 *
3807 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3808 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3809 * TIME-WAIT)
3810 *
3811 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3812 * close and we go into CLOSING (and later onto TIME-WAIT)
3813 *
3814 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3815 */
3816 static void tcp_fin(struct sock *sk)
3817 {
3818 struct tcp_sock *tp = tcp_sk(sk);
3819 const struct dst_entry *dst;
3820
3821 inet_csk_schedule_ack(sk);
3822
3823 sk->sk_shutdown |= RCV_SHUTDOWN;
3824 sock_set_flag(sk, SOCK_DONE);
3825
3826 switch (sk->sk_state) {
3827 case TCP_SYN_RECV:
3828 case TCP_ESTABLISHED:
3829 /* Move to CLOSE_WAIT */
3830 tcp_set_state(sk, TCP_CLOSE_WAIT);
3831 dst = __sk_dst_get(sk);
3832 if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3833 inet_csk(sk)->icsk_ack.pingpong = 1;
3834 break;
3835
3836 case TCP_CLOSE_WAIT:
3837 case TCP_CLOSING:
3838 /* Received a retransmission of the FIN, do
3839 * nothing.
3840 */
3841 break;
3842 case TCP_LAST_ACK:
3843 /* RFC793: Remain in the LAST-ACK state. */
3844 break;
3845
3846 case TCP_FIN_WAIT1:
3847 /* This case occurs when a simultaneous close
3848 * happens, we must ack the received FIN and
3849 * enter the CLOSING state.
3850 */
3851 tcp_send_ack(sk);
3852 tcp_set_state(sk, TCP_CLOSING);
3853 break;
3854 case TCP_FIN_WAIT2:
3855 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3856 tcp_send_ack(sk);
3857 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3858 break;
3859 default:
3860 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3861 * cases we should never reach this piece of code.
3862 */
3863 pr_err("%s: Impossible, sk->sk_state=%d\n",
3864 __func__, sk->sk_state);
3865 break;
3866 }
3867
3868 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3869 * Probably, we should reset in this case. For now drop them.
3870 */
3871 __skb_queue_purge(&tp->out_of_order_queue);
3872 if (tcp_is_sack(tp))
3873 tcp_sack_reset(&tp->rx_opt);
3874 sk_mem_reclaim(sk);
3875
3876 if (!sock_flag(sk, SOCK_DEAD)) {
3877 sk->sk_state_change(sk);
3878
3879 /* Do not send POLL_HUP for half duplex close. */
3880 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3881 sk->sk_state == TCP_CLOSE)
3882 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3883 else
3884 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3885 }
3886 }
3887
3888 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3889 u32 end_seq)
3890 {
3891 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3892 if (before(seq, sp->start_seq))
3893 sp->start_seq = seq;
3894 if (after(end_seq, sp->end_seq))
3895 sp->end_seq = end_seq;
3896 return true;
3897 }
3898 return false;
3899 }
3900
3901 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3902 {
3903 struct tcp_sock *tp = tcp_sk(sk);
3904
3905 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3906 int mib_idx;
3907
3908 if (before(seq, tp->rcv_nxt))
3909 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3910 else
3911 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3912
3913 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3914
3915 tp->rx_opt.dsack = 1;
3916 tp->duplicate_sack[0].start_seq = seq;
3917 tp->duplicate_sack[0].end_seq = end_seq;
3918 }
3919 }
3920
3921 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3922 {
3923 struct tcp_sock *tp = tcp_sk(sk);
3924
3925 if (!tp->rx_opt.dsack)
3926 tcp_dsack_set(sk, seq, end_seq);
3927 else
3928 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3929 }
3930
3931 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3932 {
3933 struct tcp_sock *tp = tcp_sk(sk);
3934
3935 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3936 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3937 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3938 tcp_enter_quickack_mode(sk);
3939
3940 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3941 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3942
3943 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3944 end_seq = tp->rcv_nxt;
3945 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3946 }
3947 }
3948
3949 tcp_send_ack(sk);
3950 }
3951
3952 /* These routines update the SACK block as out-of-order packets arrive or
3953 * in-order packets close up the sequence space.
3954 */
3955 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3956 {
3957 int this_sack;
3958 struct tcp_sack_block *sp = &tp->selective_acks[0];
3959 struct tcp_sack_block *swalk = sp + 1;
3960
3961 /* See if the recent change to the first SACK eats into
3962 * or hits the sequence space of other SACK blocks, if so coalesce.
3963 */
3964 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3965 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3966 int i;
3967
3968 /* Zap SWALK, by moving every further SACK up by one slot.
3969 * Decrease num_sacks.
3970 */
3971 tp->rx_opt.num_sacks--;
3972 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3973 sp[i] = sp[i + 1];
3974 continue;
3975 }
3976 this_sack++, swalk++;
3977 }
3978 }
3979
3980 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3981 {
3982 struct tcp_sock *tp = tcp_sk(sk);
3983 struct tcp_sack_block *sp = &tp->selective_acks[0];
3984 int cur_sacks = tp->rx_opt.num_sacks;
3985 int this_sack;
3986
3987 if (!cur_sacks)
3988 goto new_sack;
3989
3990 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3991 if (tcp_sack_extend(sp, seq, end_seq)) {
3992 /* Rotate this_sack to the first one. */
3993 for (; this_sack > 0; this_sack--, sp--)
3994 swap(*sp, *(sp - 1));
3995 if (cur_sacks > 1)
3996 tcp_sack_maybe_coalesce(tp);
3997 return;
3998 }
3999 }
4000
4001 /* Could not find an adjacent existing SACK, build a new one,
4002 * put it at the front, and shift everyone else down. We
4003 * always know there is at least one SACK present already here.
4004 *
4005 * If the sack array is full, forget about the last one.
4006 */
4007 if (this_sack >= TCP_NUM_SACKS) {
4008 this_sack--;
4009 tp->rx_opt.num_sacks--;
4010 sp--;
4011 }
4012 for (; this_sack > 0; this_sack--, sp--)
4013 *sp = *(sp - 1);
4014
4015 new_sack:
4016 /* Build the new head SACK, and we're done. */
4017 sp->start_seq = seq;
4018 sp->end_seq = end_seq;
4019 tp->rx_opt.num_sacks++;
4020 }
4021
4022 /* RCV.NXT advances, some SACKs should be eaten. */
4023
4024 static void tcp_sack_remove(struct tcp_sock *tp)
4025 {
4026 struct tcp_sack_block *sp = &tp->selective_acks[0];
4027 int num_sacks = tp->rx_opt.num_sacks;
4028 int this_sack;
4029
4030 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4031 if (skb_queue_empty(&tp->out_of_order_queue)) {
4032 tp->rx_opt.num_sacks = 0;
4033 return;
4034 }
4035
4036 for (this_sack = 0; this_sack < num_sacks;) {
4037 /* Check if the start of the sack is covered by RCV.NXT. */
4038 if (!before(tp->rcv_nxt, sp->start_seq)) {
4039 int i;
4040
4041 /* RCV.NXT must cover all the block! */
4042 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4043
4044 /* Zap this SACK, by moving forward any other SACKS. */
4045 for (i = this_sack+1; i < num_sacks; i++)
4046 tp->selective_acks[i-1] = tp->selective_acks[i];
4047 num_sacks--;
4048 continue;
4049 }
4050 this_sack++;
4051 sp++;
4052 }
4053 tp->rx_opt.num_sacks = num_sacks;
4054 }
4055
4056 /* This one checks to see if we can put data from the
4057 * out_of_order queue into the receive_queue.
4058 */
4059 static void tcp_ofo_queue(struct sock *sk)
4060 {
4061 struct tcp_sock *tp = tcp_sk(sk);
4062 __u32 dsack_high = tp->rcv_nxt;
4063 struct sk_buff *skb;
4064
4065 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4066 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4067 break;
4068
4069 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4070 __u32 dsack = dsack_high;
4071 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4072 dsack_high = TCP_SKB_CB(skb)->end_seq;
4073 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4074 }
4075
4076 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4077 SOCK_DEBUG(sk, "ofo packet was already received\n");
4078 __skb_unlink(skb, &tp->out_of_order_queue);
4079 __kfree_skb(skb);
4080 continue;
4081 }
4082 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4083 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4084 TCP_SKB_CB(skb)->end_seq);
4085
4086 __skb_unlink(skb, &tp->out_of_order_queue);
4087 __skb_queue_tail(&sk->sk_receive_queue, skb);
4088 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4089 if (tcp_hdr(skb)->fin)
4090 tcp_fin(sk);
4091 }
4092 }
4093
4094 static bool tcp_prune_ofo_queue(struct sock *sk);
4095 static int tcp_prune_queue(struct sock *sk);
4096
4097 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4098 unsigned int size)
4099 {
4100 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4101 !sk_rmem_schedule(sk, skb, size)) {
4102
4103 if (tcp_prune_queue(sk) < 0)
4104 return -1;
4105
4106 if (!sk_rmem_schedule(sk, skb, size)) {
4107 if (!tcp_prune_ofo_queue(sk))
4108 return -1;
4109
4110 if (!sk_rmem_schedule(sk, skb, size))
4111 return -1;
4112 }
4113 }
4114 return 0;
4115 }
4116
4117 /**
4118 * tcp_try_coalesce - try to merge skb to prior one
4119 * @sk: socket
4120 * @to: prior buffer
4121 * @from: buffer to add in queue
4122 * @fragstolen: pointer to boolean
4123 *
4124 * Before queueing skb @from after @to, try to merge them
4125 * to reduce overall memory use and queue lengths, if cost is small.
4126 * Packets in ofo or receive queues can stay a long time.
4127 * Better try to coalesce them right now to avoid future collapses.
4128 * Returns true if caller should free @from instead of queueing it
4129 */
4130 static bool tcp_try_coalesce(struct sock *sk,
4131 struct sk_buff *to,
4132 struct sk_buff *from,
4133 bool *fragstolen)
4134 {
4135 int delta;
4136
4137 *fragstolen = false;
4138
4139 if (tcp_hdr(from)->fin)
4140 return false;
4141
4142 /* Its possible this segment overlaps with prior segment in queue */
4143 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4144 return false;
4145
4146 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4147 return false;
4148
4149 atomic_add(delta, &sk->sk_rmem_alloc);
4150 sk_mem_charge(sk, delta);
4151 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4152 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4153 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4154 return true;
4155 }
4156
4157 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4158 {
4159 struct tcp_sock *tp = tcp_sk(sk);
4160 struct sk_buff *skb1;
4161 u32 seq, end_seq;
4162
4163 TCP_ECN_check_ce(tp, skb);
4164
4165 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4166 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4167 __kfree_skb(skb);
4168 return;
4169 }
4170
4171 /* Disable header prediction. */
4172 tp->pred_flags = 0;
4173 inet_csk_schedule_ack(sk);
4174
4175 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4176 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4177 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4178
4179 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4180 if (!skb1) {
4181 /* Initial out of order segment, build 1 SACK. */
4182 if (tcp_is_sack(tp)) {
4183 tp->rx_opt.num_sacks = 1;
4184 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4185 tp->selective_acks[0].end_seq =
4186 TCP_SKB_CB(skb)->end_seq;
4187 }
4188 __skb_queue_head(&tp->out_of_order_queue, skb);
4189 goto end;
4190 }
4191
4192 seq = TCP_SKB_CB(skb)->seq;
4193 end_seq = TCP_SKB_CB(skb)->end_seq;
4194
4195 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4196 bool fragstolen;
4197
4198 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4199 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4200 } else {
4201 tcp_grow_window(sk, skb);
4202 kfree_skb_partial(skb, fragstolen);
4203 skb = NULL;
4204 }
4205
4206 if (!tp->rx_opt.num_sacks ||
4207 tp->selective_acks[0].end_seq != seq)
4208 goto add_sack;
4209
4210 /* Common case: data arrive in order after hole. */
4211 tp->selective_acks[0].end_seq = end_seq;
4212 goto end;
4213 }
4214
4215 /* Find place to insert this segment. */
4216 while (1) {
4217 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4218 break;
4219 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4220 skb1 = NULL;
4221 break;
4222 }
4223 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4224 }
4225
4226 /* Do skb overlap to previous one? */
4227 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4228 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4229 /* All the bits are present. Drop. */
4230 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4231 __kfree_skb(skb);
4232 skb = NULL;
4233 tcp_dsack_set(sk, seq, end_seq);
4234 goto add_sack;
4235 }
4236 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4237 /* Partial overlap. */
4238 tcp_dsack_set(sk, seq,
4239 TCP_SKB_CB(skb1)->end_seq);
4240 } else {
4241 if (skb_queue_is_first(&tp->out_of_order_queue,
4242 skb1))
4243 skb1 = NULL;
4244 else
4245 skb1 = skb_queue_prev(
4246 &tp->out_of_order_queue,
4247 skb1);
4248 }
4249 }
4250 if (!skb1)
4251 __skb_queue_head(&tp->out_of_order_queue, skb);
4252 else
4253 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4254
4255 /* And clean segments covered by new one as whole. */
4256 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4257 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4258
4259 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4260 break;
4261 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4262 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4263 end_seq);
4264 break;
4265 }
4266 __skb_unlink(skb1, &tp->out_of_order_queue);
4267 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4268 TCP_SKB_CB(skb1)->end_seq);
4269 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4270 __kfree_skb(skb1);
4271 }
4272
4273 add_sack:
4274 if (tcp_is_sack(tp))
4275 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4276 end:
4277 if (skb) {
4278 tcp_grow_window(sk, skb);
4279 skb_set_owner_r(skb, sk);
4280 }
4281 }
4282
4283 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4284 bool *fragstolen)
4285 {
4286 int eaten;
4287 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4288
4289 __skb_pull(skb, hdrlen);
4290 eaten = (tail &&
4291 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4292 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4293 if (!eaten) {
4294 __skb_queue_tail(&sk->sk_receive_queue, skb);
4295 skb_set_owner_r(skb, sk);
4296 }
4297 return eaten;
4298 }
4299
4300 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4301 {
4302 struct sk_buff *skb = NULL;
4303 struct tcphdr *th;
4304 bool fragstolen;
4305
4306 if (size == 0)
4307 return 0;
4308
4309 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4310 if (!skb)
4311 goto err;
4312
4313 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4314 goto err_free;
4315
4316 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4317 skb_reset_transport_header(skb);
4318 memset(th, 0, sizeof(*th));
4319
4320 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4321 goto err_free;
4322
4323 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4324 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4325 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4326
4327 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4328 WARN_ON_ONCE(fragstolen); /* should not happen */
4329 __kfree_skb(skb);
4330 }
4331 return size;
4332
4333 err_free:
4334 kfree_skb(skb);
4335 err:
4336 return -ENOMEM;
4337 }
4338
4339 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4340 {
4341 const struct tcphdr *th = tcp_hdr(skb);
4342 struct tcp_sock *tp = tcp_sk(sk);
4343 int eaten = -1;
4344 bool fragstolen = false;
4345
4346 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4347 goto drop;
4348
4349 skb_dst_drop(skb);
4350 __skb_pull(skb, th->doff * 4);
4351
4352 TCP_ECN_accept_cwr(tp, skb);
4353
4354 tp->rx_opt.dsack = 0;
4355
4356 /* Queue data for delivery to the user.
4357 * Packets in sequence go to the receive queue.
4358 * Out of sequence packets to the out_of_order_queue.
4359 */
4360 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4361 if (tcp_receive_window(tp) == 0)
4362 goto out_of_window;
4363
4364 /* Ok. In sequence. In window. */
4365 if (tp->ucopy.task == current &&
4366 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4367 sock_owned_by_user(sk) && !tp->urg_data) {
4368 int chunk = min_t(unsigned int, skb->len,
4369 tp->ucopy.len);
4370
4371 __set_current_state(TASK_RUNNING);
4372
4373 local_bh_enable();
4374 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4375 tp->ucopy.len -= chunk;
4376 tp->copied_seq += chunk;
4377 eaten = (chunk == skb->len);
4378 tcp_rcv_space_adjust(sk);
4379 }
4380 local_bh_disable();
4381 }
4382
4383 if (eaten <= 0) {
4384 queue_and_out:
4385 if (eaten < 0 &&
4386 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4387 goto drop;
4388
4389 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4390 }
4391 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4392 if (skb->len)
4393 tcp_event_data_recv(sk, skb);
4394 if (th->fin)
4395 tcp_fin(sk);
4396
4397 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4398 tcp_ofo_queue(sk);
4399
4400 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4401 * gap in queue is filled.
4402 */
4403 if (skb_queue_empty(&tp->out_of_order_queue))
4404 inet_csk(sk)->icsk_ack.pingpong = 0;
4405 }
4406
4407 if (tp->rx_opt.num_sacks)
4408 tcp_sack_remove(tp);
4409
4410 tcp_fast_path_check(sk);
4411
4412 if (eaten > 0)
4413 kfree_skb_partial(skb, fragstolen);
4414 if (!sock_flag(sk, SOCK_DEAD))
4415 sk->sk_data_ready(sk);
4416 return;
4417 }
4418
4419 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4420 /* A retransmit, 2nd most common case. Force an immediate ack. */
4421 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4422 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4423
4424 out_of_window:
4425 tcp_enter_quickack_mode(sk);
4426 inet_csk_schedule_ack(sk);
4427 drop:
4428 __kfree_skb(skb);
4429 return;
4430 }
4431
4432 /* Out of window. F.e. zero window probe. */
4433 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4434 goto out_of_window;
4435
4436 tcp_enter_quickack_mode(sk);
4437
4438 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4439 /* Partial packet, seq < rcv_next < end_seq */
4440 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4441 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4442 TCP_SKB_CB(skb)->end_seq);
4443
4444 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4445
4446 /* If window is closed, drop tail of packet. But after
4447 * remembering D-SACK for its head made in previous line.
4448 */
4449 if (!tcp_receive_window(tp))
4450 goto out_of_window;
4451 goto queue_and_out;
4452 }
4453
4454 tcp_data_queue_ofo(sk, skb);
4455 }
4456
4457 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4458 struct sk_buff_head *list)
4459 {
4460 struct sk_buff *next = NULL;
4461
4462 if (!skb_queue_is_last(list, skb))
4463 next = skb_queue_next(list, skb);
4464
4465 __skb_unlink(skb, list);
4466 __kfree_skb(skb);
4467 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4468
4469 return next;
4470 }
4471
4472 /* Collapse contiguous sequence of skbs head..tail with
4473 * sequence numbers start..end.
4474 *
4475 * If tail is NULL, this means until the end of the list.
4476 *
4477 * Segments with FIN/SYN are not collapsed (only because this
4478 * simplifies code)
4479 */
4480 static void
4481 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4482 struct sk_buff *head, struct sk_buff *tail,
4483 u32 start, u32 end)
4484 {
4485 struct sk_buff *skb, *n;
4486 bool end_of_skbs;
4487
4488 /* First, check that queue is collapsible and find
4489 * the point where collapsing can be useful. */
4490 skb = head;
4491 restart:
4492 end_of_skbs = true;
4493 skb_queue_walk_from_safe(list, skb, n) {
4494 if (skb == tail)
4495 break;
4496 /* No new bits? It is possible on ofo queue. */
4497 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4498 skb = tcp_collapse_one(sk, skb, list);
4499 if (!skb)
4500 break;
4501 goto restart;
4502 }
4503
4504 /* The first skb to collapse is:
4505 * - not SYN/FIN and
4506 * - bloated or contains data before "start" or
4507 * overlaps to the next one.
4508 */
4509 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4510 (tcp_win_from_space(skb->truesize) > skb->len ||
4511 before(TCP_SKB_CB(skb)->seq, start))) {
4512 end_of_skbs = false;
4513 break;
4514 }
4515
4516 if (!skb_queue_is_last(list, skb)) {
4517 struct sk_buff *next = skb_queue_next(list, skb);
4518 if (next != tail &&
4519 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4520 end_of_skbs = false;
4521 break;
4522 }
4523 }
4524
4525 /* Decided to skip this, advance start seq. */
4526 start = TCP_SKB_CB(skb)->end_seq;
4527 }
4528 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4529 return;
4530
4531 while (before(start, end)) {
4532 struct sk_buff *nskb;
4533 unsigned int header = skb_headroom(skb);
4534 int copy = SKB_MAX_ORDER(header, 0);
4535
4536 /* Too big header? This can happen with IPv6. */
4537 if (copy < 0)
4538 return;
4539 if (end - start < copy)
4540 copy = end - start;
4541 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4542 if (!nskb)
4543 return;
4544
4545 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4546 skb_set_network_header(nskb, (skb_network_header(skb) -
4547 skb->head));
4548 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4549 skb->head));
4550 skb_reserve(nskb, header);
4551 memcpy(nskb->head, skb->head, header);
4552 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4553 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4554 __skb_queue_before(list, skb, nskb);
4555 skb_set_owner_r(nskb, sk);
4556
4557 /* Copy data, releasing collapsed skbs. */
4558 while (copy > 0) {
4559 int offset = start - TCP_SKB_CB(skb)->seq;
4560 int size = TCP_SKB_CB(skb)->end_seq - start;
4561
4562 BUG_ON(offset < 0);
4563 if (size > 0) {
4564 size = min(copy, size);
4565 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4566 BUG();
4567 TCP_SKB_CB(nskb)->end_seq += size;
4568 copy -= size;
4569 start += size;
4570 }
4571 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4572 skb = tcp_collapse_one(sk, skb, list);
4573 if (!skb ||
4574 skb == tail ||
4575 tcp_hdr(skb)->syn ||
4576 tcp_hdr(skb)->fin)
4577 return;
4578 }
4579 }
4580 }
4581 }
4582
4583 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4584 * and tcp_collapse() them until all the queue is collapsed.
4585 */
4586 static void tcp_collapse_ofo_queue(struct sock *sk)
4587 {
4588 struct tcp_sock *tp = tcp_sk(sk);
4589 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4590 struct sk_buff *head;
4591 u32 start, end;
4592
4593 if (skb == NULL)
4594 return;
4595
4596 start = TCP_SKB_CB(skb)->seq;
4597 end = TCP_SKB_CB(skb)->end_seq;
4598 head = skb;
4599
4600 for (;;) {
4601 struct sk_buff *next = NULL;
4602
4603 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4604 next = skb_queue_next(&tp->out_of_order_queue, skb);
4605 skb = next;
4606
4607 /* Segment is terminated when we see gap or when
4608 * we are at the end of all the queue. */
4609 if (!skb ||
4610 after(TCP_SKB_CB(skb)->seq, end) ||
4611 before(TCP_SKB_CB(skb)->end_seq, start)) {
4612 tcp_collapse(sk, &tp->out_of_order_queue,
4613 head, skb, start, end);
4614 head = skb;
4615 if (!skb)
4616 break;
4617 /* Start new segment */
4618 start = TCP_SKB_CB(skb)->seq;
4619 end = TCP_SKB_CB(skb)->end_seq;
4620 } else {
4621 if (before(TCP_SKB_CB(skb)->seq, start))
4622 start = TCP_SKB_CB(skb)->seq;
4623 if (after(TCP_SKB_CB(skb)->end_seq, end))
4624 end = TCP_SKB_CB(skb)->end_seq;
4625 }
4626 }
4627 }
4628
4629 /*
4630 * Purge the out-of-order queue.
4631 * Return true if queue was pruned.
4632 */
4633 static bool tcp_prune_ofo_queue(struct sock *sk)
4634 {
4635 struct tcp_sock *tp = tcp_sk(sk);
4636 bool res = false;
4637
4638 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4639 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4640 __skb_queue_purge(&tp->out_of_order_queue);
4641
4642 /* Reset SACK state. A conforming SACK implementation will
4643 * do the same at a timeout based retransmit. When a connection
4644 * is in a sad state like this, we care only about integrity
4645 * of the connection not performance.
4646 */
4647 if (tp->rx_opt.sack_ok)
4648 tcp_sack_reset(&tp->rx_opt);
4649 sk_mem_reclaim(sk);
4650 res = true;
4651 }
4652 return res;
4653 }
4654
4655 /* Reduce allocated memory if we can, trying to get
4656 * the socket within its memory limits again.
4657 *
4658 * Return less than zero if we should start dropping frames
4659 * until the socket owning process reads some of the data
4660 * to stabilize the situation.
4661 */
4662 static int tcp_prune_queue(struct sock *sk)
4663 {
4664 struct tcp_sock *tp = tcp_sk(sk);
4665
4666 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4667
4668 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4669
4670 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4671 tcp_clamp_window(sk);
4672 else if (sk_under_memory_pressure(sk))
4673 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4674
4675 tcp_collapse_ofo_queue(sk);
4676 if (!skb_queue_empty(&sk->sk_receive_queue))
4677 tcp_collapse(sk, &sk->sk_receive_queue,
4678 skb_peek(&sk->sk_receive_queue),
4679 NULL,
4680 tp->copied_seq, tp->rcv_nxt);
4681 sk_mem_reclaim(sk);
4682
4683 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4684 return 0;
4685
4686 /* Collapsing did not help, destructive actions follow.
4687 * This must not ever occur. */
4688
4689 tcp_prune_ofo_queue(sk);
4690
4691 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4692 return 0;
4693
4694 /* If we are really being abused, tell the caller to silently
4695 * drop receive data on the floor. It will get retransmitted
4696 * and hopefully then we'll have sufficient space.
4697 */
4698 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4699
4700 /* Massive buffer overcommit. */
4701 tp->pred_flags = 0;
4702 return -1;
4703 }
4704
4705 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4706 {
4707 const struct tcp_sock *tp = tcp_sk(sk);
4708
4709 /* If the user specified a specific send buffer setting, do
4710 * not modify it.
4711 */
4712 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4713 return false;
4714
4715 /* If we are under global TCP memory pressure, do not expand. */
4716 if (sk_under_memory_pressure(sk))
4717 return false;
4718
4719 /* If we are under soft global TCP memory pressure, do not expand. */
4720 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4721 return false;
4722
4723 /* If we filled the congestion window, do not expand. */
4724 if (tp->packets_out >= tp->snd_cwnd)
4725 return false;
4726
4727 return true;
4728 }
4729
4730 /* When incoming ACK allowed to free some skb from write_queue,
4731 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4732 * on the exit from tcp input handler.
4733 *
4734 * PROBLEM: sndbuf expansion does not work well with largesend.
4735 */
4736 static void tcp_new_space(struct sock *sk)
4737 {
4738 struct tcp_sock *tp = tcp_sk(sk);
4739
4740 if (tcp_should_expand_sndbuf(sk)) {
4741 tcp_sndbuf_expand(sk);
4742 tp->snd_cwnd_stamp = tcp_time_stamp;
4743 }
4744
4745 sk->sk_write_space(sk);
4746 }
4747
4748 static void tcp_check_space(struct sock *sk)
4749 {
4750 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4751 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4752 if (sk->sk_socket &&
4753 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4754 tcp_new_space(sk);
4755 }
4756 }
4757
4758 static inline void tcp_data_snd_check(struct sock *sk)
4759 {
4760 tcp_push_pending_frames(sk);
4761 tcp_check_space(sk);
4762 }
4763
4764 /*
4765 * Check if sending an ack is needed.
4766 */
4767 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4768 {
4769 struct tcp_sock *tp = tcp_sk(sk);
4770
4771 /* More than one full frame received... */
4772 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4773 /* ... and right edge of window advances far enough.
4774 * (tcp_recvmsg() will send ACK otherwise). Or...
4775 */
4776 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4777 /* We ACK each frame or... */
4778 tcp_in_quickack_mode(sk) ||
4779 /* We have out of order data. */
4780 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4781 /* Then ack it now */
4782 tcp_send_ack(sk);
4783 } else {
4784 /* Else, send delayed ack. */
4785 tcp_send_delayed_ack(sk);
4786 }
4787 }
4788
4789 static inline void tcp_ack_snd_check(struct sock *sk)
4790 {
4791 if (!inet_csk_ack_scheduled(sk)) {
4792 /* We sent a data segment already. */
4793 return;
4794 }
4795 __tcp_ack_snd_check(sk, 1);
4796 }
4797
4798 /*
4799 * This routine is only called when we have urgent data
4800 * signaled. Its the 'slow' part of tcp_urg. It could be
4801 * moved inline now as tcp_urg is only called from one
4802 * place. We handle URGent data wrong. We have to - as
4803 * BSD still doesn't use the correction from RFC961.
4804 * For 1003.1g we should support a new option TCP_STDURG to permit
4805 * either form (or just set the sysctl tcp_stdurg).
4806 */
4807
4808 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4809 {
4810 struct tcp_sock *tp = tcp_sk(sk);
4811 u32 ptr = ntohs(th->urg_ptr);
4812
4813 if (ptr && !sysctl_tcp_stdurg)
4814 ptr--;
4815 ptr += ntohl(th->seq);
4816
4817 /* Ignore urgent data that we've already seen and read. */
4818 if (after(tp->copied_seq, ptr))
4819 return;
4820
4821 /* Do not replay urg ptr.
4822 *
4823 * NOTE: interesting situation not covered by specs.
4824 * Misbehaving sender may send urg ptr, pointing to segment,
4825 * which we already have in ofo queue. We are not able to fetch
4826 * such data and will stay in TCP_URG_NOTYET until will be eaten
4827 * by recvmsg(). Seems, we are not obliged to handle such wicked
4828 * situations. But it is worth to think about possibility of some
4829 * DoSes using some hypothetical application level deadlock.
4830 */
4831 if (before(ptr, tp->rcv_nxt))
4832 return;
4833
4834 /* Do we already have a newer (or duplicate) urgent pointer? */
4835 if (tp->urg_data && !after(ptr, tp->urg_seq))
4836 return;
4837
4838 /* Tell the world about our new urgent pointer. */
4839 sk_send_sigurg(sk);
4840
4841 /* We may be adding urgent data when the last byte read was
4842 * urgent. To do this requires some care. We cannot just ignore
4843 * tp->copied_seq since we would read the last urgent byte again
4844 * as data, nor can we alter copied_seq until this data arrives
4845 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4846 *
4847 * NOTE. Double Dutch. Rendering to plain English: author of comment
4848 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4849 * and expect that both A and B disappear from stream. This is _wrong_.
4850 * Though this happens in BSD with high probability, this is occasional.
4851 * Any application relying on this is buggy. Note also, that fix "works"
4852 * only in this artificial test. Insert some normal data between A and B and we will
4853 * decline of BSD again. Verdict: it is better to remove to trap
4854 * buggy users.
4855 */
4856 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4857 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4858 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4859 tp->copied_seq++;
4860 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4861 __skb_unlink(skb, &sk->sk_receive_queue);
4862 __kfree_skb(skb);
4863 }
4864 }
4865
4866 tp->urg_data = TCP_URG_NOTYET;
4867 tp->urg_seq = ptr;
4868
4869 /* Disable header prediction. */
4870 tp->pred_flags = 0;
4871 }
4872
4873 /* This is the 'fast' part of urgent handling. */
4874 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4875 {
4876 struct tcp_sock *tp = tcp_sk(sk);
4877
4878 /* Check if we get a new urgent pointer - normally not. */
4879 if (th->urg)
4880 tcp_check_urg(sk, th);
4881
4882 /* Do we wait for any urgent data? - normally not... */
4883 if (tp->urg_data == TCP_URG_NOTYET) {
4884 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4885 th->syn;
4886
4887 /* Is the urgent pointer pointing into this packet? */
4888 if (ptr < skb->len) {
4889 u8 tmp;
4890 if (skb_copy_bits(skb, ptr, &tmp, 1))
4891 BUG();
4892 tp->urg_data = TCP_URG_VALID | tmp;
4893 if (!sock_flag(sk, SOCK_DEAD))
4894 sk->sk_data_ready(sk);
4895 }
4896 }
4897 }
4898
4899 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4900 {
4901 struct tcp_sock *tp = tcp_sk(sk);
4902 int chunk = skb->len - hlen;
4903 int err;
4904
4905 local_bh_enable();
4906 if (skb_csum_unnecessary(skb))
4907 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4908 else
4909 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4910 tp->ucopy.iov);
4911
4912 if (!err) {
4913 tp->ucopy.len -= chunk;
4914 tp->copied_seq += chunk;
4915 tcp_rcv_space_adjust(sk);
4916 }
4917
4918 local_bh_disable();
4919 return err;
4920 }
4921
4922 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4923 struct sk_buff *skb)
4924 {
4925 __sum16 result;
4926
4927 if (sock_owned_by_user(sk)) {
4928 local_bh_enable();
4929 result = __tcp_checksum_complete(skb);
4930 local_bh_disable();
4931 } else {
4932 result = __tcp_checksum_complete(skb);
4933 }
4934 return result;
4935 }
4936
4937 static inline bool tcp_checksum_complete_user(struct sock *sk,
4938 struct sk_buff *skb)
4939 {
4940 return !skb_csum_unnecessary(skb) &&
4941 __tcp_checksum_complete_user(sk, skb);
4942 }
4943
4944 #ifdef CONFIG_NET_DMA
4945 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4946 int hlen)
4947 {
4948 struct tcp_sock *tp = tcp_sk(sk);
4949 int chunk = skb->len - hlen;
4950 int dma_cookie;
4951 bool copied_early = false;
4952
4953 if (tp->ucopy.wakeup)
4954 return false;
4955
4956 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4957 tp->ucopy.dma_chan = net_dma_find_channel();
4958
4959 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4960
4961 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4962 skb, hlen,
4963 tp->ucopy.iov, chunk,
4964 tp->ucopy.pinned_list);
4965
4966 if (dma_cookie < 0)
4967 goto out;
4968
4969 tp->ucopy.dma_cookie = dma_cookie;
4970 copied_early = true;
4971
4972 tp->ucopy.len -= chunk;
4973 tp->copied_seq += chunk;
4974 tcp_rcv_space_adjust(sk);
4975
4976 if ((tp->ucopy.len == 0) ||
4977 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4978 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4979 tp->ucopy.wakeup = 1;
4980 sk->sk_data_ready(sk);
4981 }
4982 } else if (chunk > 0) {
4983 tp->ucopy.wakeup = 1;
4984 sk->sk_data_ready(sk);
4985 }
4986 out:
4987 return copied_early;
4988 }
4989 #endif /* CONFIG_NET_DMA */
4990
4991 /* Does PAWS and seqno based validation of an incoming segment, flags will
4992 * play significant role here.
4993 */
4994 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4995 const struct tcphdr *th, int syn_inerr)
4996 {
4997 struct tcp_sock *tp = tcp_sk(sk);
4998
4999 /* RFC1323: H1. Apply PAWS check first. */
5000 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5001 tcp_paws_discard(sk, skb)) {
5002 if (!th->rst) {
5003 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5004 tcp_send_dupack(sk, skb);
5005 goto discard;
5006 }
5007 /* Reset is accepted even if it did not pass PAWS. */
5008 }
5009
5010 /* Step 1: check sequence number */
5011 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5012 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5013 * (RST) segments are validated by checking their SEQ-fields."
5014 * And page 69: "If an incoming segment is not acceptable,
5015 * an acknowledgment should be sent in reply (unless the RST
5016 * bit is set, if so drop the segment and return)".
5017 */
5018 if (!th->rst) {
5019 if (th->syn)
5020 goto syn_challenge;
5021 tcp_send_dupack(sk, skb);
5022 }
5023 goto discard;
5024 }
5025
5026 /* Step 2: check RST bit */
5027 if (th->rst) {
5028 /* RFC 5961 3.2 :
5029 * If sequence number exactly matches RCV.NXT, then
5030 * RESET the connection
5031 * else
5032 * Send a challenge ACK
5033 */
5034 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5035 tcp_reset(sk);
5036 else
5037 tcp_send_challenge_ack(sk);
5038 goto discard;
5039 }
5040
5041 /* step 3: check security and precedence [ignored] */
5042
5043 /* step 4: Check for a SYN
5044 * RFC 5691 4.2 : Send a challenge ack
5045 */
5046 if (th->syn) {
5047 syn_challenge:
5048 if (syn_inerr)
5049 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5050 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5051 tcp_send_challenge_ack(sk);
5052 goto discard;
5053 }
5054
5055 return true;
5056
5057 discard:
5058 __kfree_skb(skb);
5059 return false;
5060 }
5061
5062 /*
5063 * TCP receive function for the ESTABLISHED state.
5064 *
5065 * It is split into a fast path and a slow path. The fast path is
5066 * disabled when:
5067 * - A zero window was announced from us - zero window probing
5068 * is only handled properly in the slow path.
5069 * - Out of order segments arrived.
5070 * - Urgent data is expected.
5071 * - There is no buffer space left
5072 * - Unexpected TCP flags/window values/header lengths are received
5073 * (detected by checking the TCP header against pred_flags)
5074 * - Data is sent in both directions. Fast path only supports pure senders
5075 * or pure receivers (this means either the sequence number or the ack
5076 * value must stay constant)
5077 * - Unexpected TCP option.
5078 *
5079 * When these conditions are not satisfied it drops into a standard
5080 * receive procedure patterned after RFC793 to handle all cases.
5081 * The first three cases are guaranteed by proper pred_flags setting,
5082 * the rest is checked inline. Fast processing is turned on in
5083 * tcp_data_queue when everything is OK.
5084 */
5085 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5086 const struct tcphdr *th, unsigned int len)
5087 {
5088 struct tcp_sock *tp = tcp_sk(sk);
5089
5090 if (unlikely(sk->sk_rx_dst == NULL))
5091 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5092 /*
5093 * Header prediction.
5094 * The code loosely follows the one in the famous
5095 * "30 instruction TCP receive" Van Jacobson mail.
5096 *
5097 * Van's trick is to deposit buffers into socket queue
5098 * on a device interrupt, to call tcp_recv function
5099 * on the receive process context and checksum and copy
5100 * the buffer to user space. smart...
5101 *
5102 * Our current scheme is not silly either but we take the
5103 * extra cost of the net_bh soft interrupt processing...
5104 * We do checksum and copy also but from device to kernel.
5105 */
5106
5107 tp->rx_opt.saw_tstamp = 0;
5108
5109 /* pred_flags is 0xS?10 << 16 + snd_wnd
5110 * if header_prediction is to be made
5111 * 'S' will always be tp->tcp_header_len >> 2
5112 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5113 * turn it off (when there are holes in the receive
5114 * space for instance)
5115 * PSH flag is ignored.
5116 */
5117
5118 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5119 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5120 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5121 int tcp_header_len = tp->tcp_header_len;
5122
5123 /* Timestamp header prediction: tcp_header_len
5124 * is automatically equal to th->doff*4 due to pred_flags
5125 * match.
5126 */
5127
5128 /* Check timestamp */
5129 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5130 /* No? Slow path! */
5131 if (!tcp_parse_aligned_timestamp(tp, th))
5132 goto slow_path;
5133
5134 /* If PAWS failed, check it more carefully in slow path */
5135 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5136 goto slow_path;
5137
5138 /* DO NOT update ts_recent here, if checksum fails
5139 * and timestamp was corrupted part, it will result
5140 * in a hung connection since we will drop all
5141 * future packets due to the PAWS test.
5142 */
5143 }
5144
5145 if (len <= tcp_header_len) {
5146 /* Bulk data transfer: sender */
5147 if (len == tcp_header_len) {
5148 /* Predicted packet is in window by definition.
5149 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5150 * Hence, check seq<=rcv_wup reduces to:
5151 */
5152 if (tcp_header_len ==
5153 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5154 tp->rcv_nxt == tp->rcv_wup)
5155 tcp_store_ts_recent(tp);
5156
5157 /* We know that such packets are checksummed
5158 * on entry.
5159 */
5160 tcp_ack(sk, skb, 0);
5161 __kfree_skb(skb);
5162 tcp_data_snd_check(sk);
5163 return;
5164 } else { /* Header too small */
5165 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5166 goto discard;
5167 }
5168 } else {
5169 int eaten = 0;
5170 int copied_early = 0;
5171 bool fragstolen = false;
5172
5173 if (tp->copied_seq == tp->rcv_nxt &&
5174 len - tcp_header_len <= tp->ucopy.len) {
5175 #ifdef CONFIG_NET_DMA
5176 if (tp->ucopy.task == current &&
5177 sock_owned_by_user(sk) &&
5178 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5179 copied_early = 1;
5180 eaten = 1;
5181 }
5182 #endif
5183 if (tp->ucopy.task == current &&
5184 sock_owned_by_user(sk) && !copied_early) {
5185 __set_current_state(TASK_RUNNING);
5186
5187 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5188 eaten = 1;
5189 }
5190 if (eaten) {
5191 /* Predicted packet is in window by definition.
5192 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5193 * Hence, check seq<=rcv_wup reduces to:
5194 */
5195 if (tcp_header_len ==
5196 (sizeof(struct tcphdr) +
5197 TCPOLEN_TSTAMP_ALIGNED) &&
5198 tp->rcv_nxt == tp->rcv_wup)
5199 tcp_store_ts_recent(tp);
5200
5201 tcp_rcv_rtt_measure_ts(sk, skb);
5202
5203 __skb_pull(skb, tcp_header_len);
5204 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5205 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5206 }
5207 if (copied_early)
5208 tcp_cleanup_rbuf(sk, skb->len);
5209 }
5210 if (!eaten) {
5211 if (tcp_checksum_complete_user(sk, skb))
5212 goto csum_error;
5213
5214 if ((int)skb->truesize > sk->sk_forward_alloc)
5215 goto step5;
5216
5217 /* Predicted packet is in window by definition.
5218 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5219 * Hence, check seq<=rcv_wup reduces to:
5220 */
5221 if (tcp_header_len ==
5222 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5223 tp->rcv_nxt == tp->rcv_wup)
5224 tcp_store_ts_recent(tp);
5225
5226 tcp_rcv_rtt_measure_ts(sk, skb);
5227
5228 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5229
5230 /* Bulk data transfer: receiver */
5231 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5232 &fragstolen);
5233 }
5234
5235 tcp_event_data_recv(sk, skb);
5236
5237 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5238 /* Well, only one small jumplet in fast path... */
5239 tcp_ack(sk, skb, FLAG_DATA);
5240 tcp_data_snd_check(sk);
5241 if (!inet_csk_ack_scheduled(sk))
5242 goto no_ack;
5243 }
5244
5245 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5246 __tcp_ack_snd_check(sk, 0);
5247 no_ack:
5248 #ifdef CONFIG_NET_DMA
5249 if (copied_early)
5250 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5251 else
5252 #endif
5253 if (eaten)
5254 kfree_skb_partial(skb, fragstolen);
5255 sk->sk_data_ready(sk);
5256 return;
5257 }
5258 }
5259
5260 slow_path:
5261 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5262 goto csum_error;
5263
5264 if (!th->ack && !th->rst)
5265 goto discard;
5266
5267 /*
5268 * Standard slow path.
5269 */
5270
5271 if (!tcp_validate_incoming(sk, skb, th, 1))
5272 return;
5273
5274 step5:
5275 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5276 goto discard;
5277
5278 tcp_rcv_rtt_measure_ts(sk, skb);
5279
5280 /* Process urgent data. */
5281 tcp_urg(sk, skb, th);
5282
5283 /* step 7: process the segment text */
5284 tcp_data_queue(sk, skb);
5285
5286 tcp_data_snd_check(sk);
5287 tcp_ack_snd_check(sk);
5288 return;
5289
5290 csum_error:
5291 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5292 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5293
5294 discard:
5295 __kfree_skb(skb);
5296 }
5297 EXPORT_SYMBOL(tcp_rcv_established);
5298
5299 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5300 {
5301 struct tcp_sock *tp = tcp_sk(sk);
5302 struct inet_connection_sock *icsk = inet_csk(sk);
5303
5304 tcp_set_state(sk, TCP_ESTABLISHED);
5305
5306 if (skb != NULL) {
5307 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5308 security_inet_conn_established(sk, skb);
5309 }
5310
5311 /* Make sure socket is routed, for correct metrics. */
5312 icsk->icsk_af_ops->rebuild_header(sk);
5313
5314 tcp_init_metrics(sk);
5315
5316 tcp_init_congestion_control(sk);
5317
5318 /* Prevent spurious tcp_cwnd_restart() on first data
5319 * packet.
5320 */
5321 tp->lsndtime = tcp_time_stamp;
5322
5323 tcp_init_buffer_space(sk);
5324
5325 if (sock_flag(sk, SOCK_KEEPOPEN))
5326 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5327
5328 if (!tp->rx_opt.snd_wscale)
5329 __tcp_fast_path_on(tp, tp->snd_wnd);
5330 else
5331 tp->pred_flags = 0;
5332
5333 if (!sock_flag(sk, SOCK_DEAD)) {
5334 sk->sk_state_change(sk);
5335 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5336 }
5337 }
5338
5339 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5340 struct tcp_fastopen_cookie *cookie)
5341 {
5342 struct tcp_sock *tp = tcp_sk(sk);
5343 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5344 u16 mss = tp->rx_opt.mss_clamp;
5345 bool syn_drop;
5346
5347 if (mss == tp->rx_opt.user_mss) {
5348 struct tcp_options_received opt;
5349
5350 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5351 tcp_clear_options(&opt);
5352 opt.user_mss = opt.mss_clamp = 0;
5353 tcp_parse_options(synack, &opt, 0, NULL);
5354 mss = opt.mss_clamp;
5355 }
5356
5357 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5358 cookie->len = -1;
5359
5360 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5361 * the remote receives only the retransmitted (regular) SYNs: either
5362 * the original SYN-data or the corresponding SYN-ACK is lost.
5363 */
5364 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5365
5366 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5367
5368 if (data) { /* Retransmit unacked data in SYN */
5369 tcp_for_write_queue_from(data, sk) {
5370 if (data == tcp_send_head(sk) ||
5371 __tcp_retransmit_skb(sk, data))
5372 break;
5373 }
5374 tcp_rearm_rto(sk);
5375 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5376 return true;
5377 }
5378 tp->syn_data_acked = tp->syn_data;
5379 if (tp->syn_data_acked)
5380 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5381 return false;
5382 }
5383
5384 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5385 const struct tcphdr *th, unsigned int len)
5386 {
5387 struct inet_connection_sock *icsk = inet_csk(sk);
5388 struct tcp_sock *tp = tcp_sk(sk);
5389 struct tcp_fastopen_cookie foc = { .len = -1 };
5390 int saved_clamp = tp->rx_opt.mss_clamp;
5391
5392 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5393 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5394 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5395
5396 if (th->ack) {
5397 /* rfc793:
5398 * "If the state is SYN-SENT then
5399 * first check the ACK bit
5400 * If the ACK bit is set
5401 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5402 * a reset (unless the RST bit is set, if so drop
5403 * the segment and return)"
5404 */
5405 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5406 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5407 goto reset_and_undo;
5408
5409 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5410 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5411 tcp_time_stamp)) {
5412 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5413 goto reset_and_undo;
5414 }
5415
5416 /* Now ACK is acceptable.
5417 *
5418 * "If the RST bit is set
5419 * If the ACK was acceptable then signal the user "error:
5420 * connection reset", drop the segment, enter CLOSED state,
5421 * delete TCB, and return."
5422 */
5423
5424 if (th->rst) {
5425 tcp_reset(sk);
5426 goto discard;
5427 }
5428
5429 /* rfc793:
5430 * "fifth, if neither of the SYN or RST bits is set then
5431 * drop the segment and return."
5432 *
5433 * See note below!
5434 * --ANK(990513)
5435 */
5436 if (!th->syn)
5437 goto discard_and_undo;
5438
5439 /* rfc793:
5440 * "If the SYN bit is on ...
5441 * are acceptable then ...
5442 * (our SYN has been ACKed), change the connection
5443 * state to ESTABLISHED..."
5444 */
5445
5446 TCP_ECN_rcv_synack(tp, th);
5447
5448 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5449 tcp_ack(sk, skb, FLAG_SLOWPATH);
5450
5451 /* Ok.. it's good. Set up sequence numbers and
5452 * move to established.
5453 */
5454 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5455 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5456
5457 /* RFC1323: The window in SYN & SYN/ACK segments is
5458 * never scaled.
5459 */
5460 tp->snd_wnd = ntohs(th->window);
5461
5462 if (!tp->rx_opt.wscale_ok) {
5463 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5464 tp->window_clamp = min(tp->window_clamp, 65535U);
5465 }
5466
5467 if (tp->rx_opt.saw_tstamp) {
5468 tp->rx_opt.tstamp_ok = 1;
5469 tp->tcp_header_len =
5470 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5471 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5472 tcp_store_ts_recent(tp);
5473 } else {
5474 tp->tcp_header_len = sizeof(struct tcphdr);
5475 }
5476
5477 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5478 tcp_enable_fack(tp);
5479
5480 tcp_mtup_init(sk);
5481 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5482 tcp_initialize_rcv_mss(sk);
5483
5484 /* Remember, tcp_poll() does not lock socket!
5485 * Change state from SYN-SENT only after copied_seq
5486 * is initialized. */
5487 tp->copied_seq = tp->rcv_nxt;
5488
5489 smp_mb();
5490
5491 tcp_finish_connect(sk, skb);
5492
5493 if ((tp->syn_fastopen || tp->syn_data) &&
5494 tcp_rcv_fastopen_synack(sk, skb, &foc))
5495 return -1;
5496
5497 if (sk->sk_write_pending ||
5498 icsk->icsk_accept_queue.rskq_defer_accept ||
5499 icsk->icsk_ack.pingpong) {
5500 /* Save one ACK. Data will be ready after
5501 * several ticks, if write_pending is set.
5502 *
5503 * It may be deleted, but with this feature tcpdumps
5504 * look so _wonderfully_ clever, that I was not able
5505 * to stand against the temptation 8) --ANK
5506 */
5507 inet_csk_schedule_ack(sk);
5508 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5509 tcp_enter_quickack_mode(sk);
5510 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5511 TCP_DELACK_MAX, TCP_RTO_MAX);
5512
5513 discard:
5514 __kfree_skb(skb);
5515 return 0;
5516 } else {
5517 tcp_send_ack(sk);
5518 }
5519 return -1;
5520 }
5521
5522 /* No ACK in the segment */
5523
5524 if (th->rst) {
5525 /* rfc793:
5526 * "If the RST bit is set
5527 *
5528 * Otherwise (no ACK) drop the segment and return."
5529 */
5530
5531 goto discard_and_undo;
5532 }
5533
5534 /* PAWS check. */
5535 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5536 tcp_paws_reject(&tp->rx_opt, 0))
5537 goto discard_and_undo;
5538
5539 if (th->syn) {
5540 /* We see SYN without ACK. It is attempt of
5541 * simultaneous connect with crossed SYNs.
5542 * Particularly, it can be connect to self.
5543 */
5544 tcp_set_state(sk, TCP_SYN_RECV);
5545
5546 if (tp->rx_opt.saw_tstamp) {
5547 tp->rx_opt.tstamp_ok = 1;
5548 tcp_store_ts_recent(tp);
5549 tp->tcp_header_len =
5550 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5551 } else {
5552 tp->tcp_header_len = sizeof(struct tcphdr);
5553 }
5554
5555 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5556 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5557
5558 /* RFC1323: The window in SYN & SYN/ACK segments is
5559 * never scaled.
5560 */
5561 tp->snd_wnd = ntohs(th->window);
5562 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5563 tp->max_window = tp->snd_wnd;
5564
5565 TCP_ECN_rcv_syn(tp, th);
5566
5567 tcp_mtup_init(sk);
5568 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5569 tcp_initialize_rcv_mss(sk);
5570
5571 tcp_send_synack(sk);
5572 #if 0
5573 /* Note, we could accept data and URG from this segment.
5574 * There are no obstacles to make this (except that we must
5575 * either change tcp_recvmsg() to prevent it from returning data
5576 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5577 *
5578 * However, if we ignore data in ACKless segments sometimes,
5579 * we have no reasons to accept it sometimes.
5580 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5581 * is not flawless. So, discard packet for sanity.
5582 * Uncomment this return to process the data.
5583 */
5584 return -1;
5585 #else
5586 goto discard;
5587 #endif
5588 }
5589 /* "fifth, if neither of the SYN or RST bits is set then
5590 * drop the segment and return."
5591 */
5592
5593 discard_and_undo:
5594 tcp_clear_options(&tp->rx_opt);
5595 tp->rx_opt.mss_clamp = saved_clamp;
5596 goto discard;
5597
5598 reset_and_undo:
5599 tcp_clear_options(&tp->rx_opt);
5600 tp->rx_opt.mss_clamp = saved_clamp;
5601 return 1;
5602 }
5603
5604 /*
5605 * This function implements the receiving procedure of RFC 793 for
5606 * all states except ESTABLISHED and TIME_WAIT.
5607 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5608 * address independent.
5609 */
5610
5611 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5612 const struct tcphdr *th, unsigned int len)
5613 {
5614 struct tcp_sock *tp = tcp_sk(sk);
5615 struct inet_connection_sock *icsk = inet_csk(sk);
5616 struct request_sock *req;
5617 int queued = 0;
5618 bool acceptable;
5619 u32 synack_stamp;
5620
5621 tp->rx_opt.saw_tstamp = 0;
5622
5623 switch (sk->sk_state) {
5624 case TCP_CLOSE:
5625 goto discard;
5626
5627 case TCP_LISTEN:
5628 if (th->ack)
5629 return 1;
5630
5631 if (th->rst)
5632 goto discard;
5633
5634 if (th->syn) {
5635 if (th->fin)
5636 goto discard;
5637 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5638 return 1;
5639
5640 /* Now we have several options: In theory there is
5641 * nothing else in the frame. KA9Q has an option to
5642 * send data with the syn, BSD accepts data with the
5643 * syn up to the [to be] advertised window and
5644 * Solaris 2.1 gives you a protocol error. For now
5645 * we just ignore it, that fits the spec precisely
5646 * and avoids incompatibilities. It would be nice in
5647 * future to drop through and process the data.
5648 *
5649 * Now that TTCP is starting to be used we ought to
5650 * queue this data.
5651 * But, this leaves one open to an easy denial of
5652 * service attack, and SYN cookies can't defend
5653 * against this problem. So, we drop the data
5654 * in the interest of security over speed unless
5655 * it's still in use.
5656 */
5657 kfree_skb(skb);
5658 return 0;
5659 }
5660 goto discard;
5661
5662 case TCP_SYN_SENT:
5663 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5664 if (queued >= 0)
5665 return queued;
5666
5667 /* Do step6 onward by hand. */
5668 tcp_urg(sk, skb, th);
5669 __kfree_skb(skb);
5670 tcp_data_snd_check(sk);
5671 return 0;
5672 }
5673
5674 req = tp->fastopen_rsk;
5675 if (req != NULL) {
5676 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5677 sk->sk_state != TCP_FIN_WAIT1);
5678
5679 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5680 goto discard;
5681 }
5682
5683 if (!th->ack && !th->rst)
5684 goto discard;
5685
5686 if (!tcp_validate_incoming(sk, skb, th, 0))
5687 return 0;
5688
5689 /* step 5: check the ACK field */
5690 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5691 FLAG_UPDATE_TS_RECENT) > 0;
5692
5693 switch (sk->sk_state) {
5694 case TCP_SYN_RECV:
5695 if (!acceptable)
5696 return 1;
5697
5698 /* Once we leave TCP_SYN_RECV, we no longer need req
5699 * so release it.
5700 */
5701 if (req) {
5702 synack_stamp = tcp_rsk(req)->snt_synack;
5703 tp->total_retrans = req->num_retrans;
5704 reqsk_fastopen_remove(sk, req, false);
5705 } else {
5706 synack_stamp = tp->lsndtime;
5707 /* Make sure socket is routed, for correct metrics. */
5708 icsk->icsk_af_ops->rebuild_header(sk);
5709 tcp_init_congestion_control(sk);
5710
5711 tcp_mtup_init(sk);
5712 tp->copied_seq = tp->rcv_nxt;
5713 tcp_init_buffer_space(sk);
5714 }
5715 smp_mb();
5716 tcp_set_state(sk, TCP_ESTABLISHED);
5717 sk->sk_state_change(sk);
5718
5719 /* Note, that this wakeup is only for marginal crossed SYN case.
5720 * Passively open sockets are not waked up, because
5721 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5722 */
5723 if (sk->sk_socket)
5724 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5725
5726 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5727 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5728 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5729 tcp_synack_rtt_meas(sk, synack_stamp);
5730
5731 if (tp->rx_opt.tstamp_ok)
5732 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5733
5734 if (req) {
5735 /* Re-arm the timer because data may have been sent out.
5736 * This is similar to the regular data transmission case
5737 * when new data has just been ack'ed.
5738 *
5739 * (TFO) - we could try to be more aggressive and
5740 * retransmitting any data sooner based on when they
5741 * are sent out.
5742 */
5743 tcp_rearm_rto(sk);
5744 } else
5745 tcp_init_metrics(sk);
5746
5747 tcp_update_pacing_rate(sk);
5748
5749 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5750 tp->lsndtime = tcp_time_stamp;
5751
5752 tcp_initialize_rcv_mss(sk);
5753 tcp_fast_path_on(tp);
5754 break;
5755
5756 case TCP_FIN_WAIT1: {
5757 struct dst_entry *dst;
5758 int tmo;
5759
5760 /* If we enter the TCP_FIN_WAIT1 state and we are a
5761 * Fast Open socket and this is the first acceptable
5762 * ACK we have received, this would have acknowledged
5763 * our SYNACK so stop the SYNACK timer.
5764 */
5765 if (req != NULL) {
5766 /* Return RST if ack_seq is invalid.
5767 * Note that RFC793 only says to generate a
5768 * DUPACK for it but for TCP Fast Open it seems
5769 * better to treat this case like TCP_SYN_RECV
5770 * above.
5771 */
5772 if (!acceptable)
5773 return 1;
5774 /* We no longer need the request sock. */
5775 reqsk_fastopen_remove(sk, req, false);
5776 tcp_rearm_rto(sk);
5777 }
5778 if (tp->snd_una != tp->write_seq)
5779 break;
5780
5781 tcp_set_state(sk, TCP_FIN_WAIT2);
5782 sk->sk_shutdown |= SEND_SHUTDOWN;
5783
5784 dst = __sk_dst_get(sk);
5785 if (dst)
5786 dst_confirm(dst);
5787
5788 if (!sock_flag(sk, SOCK_DEAD)) {
5789 /* Wake up lingering close() */
5790 sk->sk_state_change(sk);
5791 break;
5792 }
5793
5794 if (tp->linger2 < 0 ||
5795 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5796 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5797 tcp_done(sk);
5798 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5799 return 1;
5800 }
5801
5802 tmo = tcp_fin_time(sk);
5803 if (tmo > TCP_TIMEWAIT_LEN) {
5804 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5805 } else if (th->fin || sock_owned_by_user(sk)) {
5806 /* Bad case. We could lose such FIN otherwise.
5807 * It is not a big problem, but it looks confusing
5808 * and not so rare event. We still can lose it now,
5809 * if it spins in bh_lock_sock(), but it is really
5810 * marginal case.
5811 */
5812 inet_csk_reset_keepalive_timer(sk, tmo);
5813 } else {
5814 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5815 goto discard;
5816 }
5817 break;
5818 }
5819
5820 case TCP_CLOSING:
5821 if (tp->snd_una == tp->write_seq) {
5822 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5823 goto discard;
5824 }
5825 break;
5826
5827 case TCP_LAST_ACK:
5828 if (tp->snd_una == tp->write_seq) {
5829 tcp_update_metrics(sk);
5830 tcp_done(sk);
5831 goto discard;
5832 }
5833 break;
5834 }
5835
5836 /* step 6: check the URG bit */
5837 tcp_urg(sk, skb, th);
5838
5839 /* step 7: process the segment text */
5840 switch (sk->sk_state) {
5841 case TCP_CLOSE_WAIT:
5842 case TCP_CLOSING:
5843 case TCP_LAST_ACK:
5844 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5845 break;
5846 case TCP_FIN_WAIT1:
5847 case TCP_FIN_WAIT2:
5848 /* RFC 793 says to queue data in these states,
5849 * RFC 1122 says we MUST send a reset.
5850 * BSD 4.4 also does reset.
5851 */
5852 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5853 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5854 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5855 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5856 tcp_reset(sk);
5857 return 1;
5858 }
5859 }
5860 /* Fall through */
5861 case TCP_ESTABLISHED:
5862 tcp_data_queue(sk, skb);
5863 queued = 1;
5864 break;
5865 }
5866
5867 /* tcp_data could move socket to TIME-WAIT */
5868 if (sk->sk_state != TCP_CLOSE) {
5869 tcp_data_snd_check(sk);
5870 tcp_ack_snd_check(sk);
5871 }
5872
5873 if (!queued) {
5874 discard:
5875 __kfree_skb(skb);
5876 }
5877 return 0;
5878 }
5879 EXPORT_SYMBOL(tcp_rcv_state_process);
This page took 0.152434 seconds and 5 git commands to generate.