3c426cb318e7061795c7abce24189fbb7ea443f0
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95
96 int sysctl_tcp_thin_dupack __read_mostly;
97
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
115
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125 /* Adapt the MSS value used to make delayed ack decision to the
126 * real world.
127 */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130 struct inet_connection_sock *icsk = inet_csk(sk);
131 const unsigned int lss = icsk->icsk_ack.last_seg_size;
132 unsigned int len;
133
134 icsk->icsk_ack.last_seg_size = 0;
135
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
138 */
139 len = skb_shinfo(skb)->gso_size ? : skb->len;
140 if (len >= icsk->icsk_ack.rcv_mss) {
141 icsk->icsk_ack.rcv_mss = len;
142 } else {
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
145 *
146 * "len" is invariant segment length, including TCP header.
147 */
148 len += skb->data - skb_transport_header(skb);
149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
154 */
155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
160 */
161 len -= tcp_sk(sk)->tcp_header_len;
162 icsk->icsk_ack.last_seg_size = len;
163 if (len == lss) {
164 icsk->icsk_ack.rcv_mss = len;
165 return;
166 }
167 }
168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171 }
172 }
173
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178
179 if (quickacks == 0)
180 quickacks = 2;
181 if (quickacks > icsk->icsk_ack.quick)
182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184
185 void tcp_enter_quickack_mode(struct sock *sk)
186 {
187 struct inet_connection_sock *icsk = inet_csk(sk);
188 tcp_incr_quickack(sk);
189 icsk->icsk_ack.pingpong = 0;
190 icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192
193 /* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
195 */
196
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 {
199 const struct inet_connection_sock *icsk = inet_csk(sk);
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210 {
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221 {
222 if (tp->ecn_flags & TCP_ECN_OK) {
223 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225 /* Funny extension: if ECT is not set on a segment,
226 * it is surely retransmit. It is not in ECN RFC,
227 * but Linux follows this rule. */
228 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229 tcp_enter_quickack_mode((struct sock *)tp);
230 }
231 }
232
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234 {
235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236 tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240 {
241 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242 tp->ecn_flags &= ~TCP_ECN_OK;
243 }
244
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246 {
247 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
248 return 1;
249 return 0;
250 }
251
252 /* Buffer size and advertised window tuning.
253 *
254 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255 */
256
257 static void tcp_fixup_sndbuf(struct sock *sk)
258 {
259 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260 sizeof(struct sk_buff);
261
262 if (sk->sk_sndbuf < 3 * sndmem)
263 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
264 }
265
266 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
267 *
268 * All tcp_full_space() is split to two parts: "network" buffer, allocated
269 * forward and advertised in receiver window (tp->rcv_wnd) and
270 * "application buffer", required to isolate scheduling/application
271 * latencies from network.
272 * window_clamp is maximal advertised window. It can be less than
273 * tcp_full_space(), in this case tcp_full_space() - window_clamp
274 * is reserved for "application" buffer. The less window_clamp is
275 * the smoother our behaviour from viewpoint of network, but the lower
276 * throughput and the higher sensitivity of the connection to losses. 8)
277 *
278 * rcv_ssthresh is more strict window_clamp used at "slow start"
279 * phase to predict further behaviour of this connection.
280 * It is used for two goals:
281 * - to enforce header prediction at sender, even when application
282 * requires some significant "application buffer". It is check #1.
283 * - to prevent pruning of receive queue because of misprediction
284 * of receiver window. Check #2.
285 *
286 * The scheme does not work when sender sends good segments opening
287 * window and then starts to feed us spaghetti. But it should work
288 * in common situations. Otherwise, we have to rely on queue collapsing.
289 */
290
291 /* Slow part of check#2. */
292 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
293 {
294 struct tcp_sock *tp = tcp_sk(sk);
295 /* Optimize this! */
296 int truesize = tcp_win_from_space(skb->truesize) >> 1;
297 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
298
299 while (tp->rcv_ssthresh <= window) {
300 if (truesize <= skb->len)
301 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
302
303 truesize >>= 1;
304 window >>= 1;
305 }
306 return 0;
307 }
308
309 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
310 {
311 struct tcp_sock *tp = tcp_sk(sk);
312
313 /* Check #1 */
314 if (tp->rcv_ssthresh < tp->window_clamp &&
315 (int)tp->rcv_ssthresh < tcp_space(sk) &&
316 !tcp_memory_pressure) {
317 int incr;
318
319 /* Check #2. Increase window, if skb with such overhead
320 * will fit to rcvbuf in future.
321 */
322 if (tcp_win_from_space(skb->truesize) <= skb->len)
323 incr = 2 * tp->advmss;
324 else
325 incr = __tcp_grow_window(sk, skb);
326
327 if (incr) {
328 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
329 tp->window_clamp);
330 inet_csk(sk)->icsk_ack.quick |= 1;
331 }
332 }
333 }
334
335 /* 3. Tuning rcvbuf, when connection enters established state. */
336
337 static void tcp_fixup_rcvbuf(struct sock *sk)
338 {
339 struct tcp_sock *tp = tcp_sk(sk);
340 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
341
342 /* Try to select rcvbuf so that 4 mss-sized segments
343 * will fit to window and corresponding skbs will fit to our rcvbuf.
344 * (was 3; 4 is minimum to allow fast retransmit to work.)
345 */
346 while (tcp_win_from_space(rcvmem) < tp->advmss)
347 rcvmem += 128;
348 if (sk->sk_rcvbuf < 4 * rcvmem)
349 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
350 }
351
352 /* 4. Try to fixup all. It is made immediately after connection enters
353 * established state.
354 */
355 static void tcp_init_buffer_space(struct sock *sk)
356 {
357 struct tcp_sock *tp = tcp_sk(sk);
358 int maxwin;
359
360 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
361 tcp_fixup_rcvbuf(sk);
362 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
363 tcp_fixup_sndbuf(sk);
364
365 tp->rcvq_space.space = tp->rcv_wnd;
366
367 maxwin = tcp_full_space(sk);
368
369 if (tp->window_clamp >= maxwin) {
370 tp->window_clamp = maxwin;
371
372 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
373 tp->window_clamp = max(maxwin -
374 (maxwin >> sysctl_tcp_app_win),
375 4 * tp->advmss);
376 }
377
378 /* Force reservation of one segment. */
379 if (sysctl_tcp_app_win &&
380 tp->window_clamp > 2 * tp->advmss &&
381 tp->window_clamp + tp->advmss > maxwin)
382 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
383
384 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
385 tp->snd_cwnd_stamp = tcp_time_stamp;
386 }
387
388 /* 5. Recalculate window clamp after socket hit its memory bounds. */
389 static void tcp_clamp_window(struct sock *sk)
390 {
391 struct tcp_sock *tp = tcp_sk(sk);
392 struct inet_connection_sock *icsk = inet_csk(sk);
393
394 icsk->icsk_ack.quick = 0;
395
396 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
397 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
398 !tcp_memory_pressure &&
399 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
400 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
401 sysctl_tcp_rmem[2]);
402 }
403 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
404 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
405 }
406
407 /* Initialize RCV_MSS value.
408 * RCV_MSS is an our guess about MSS used by the peer.
409 * We haven't any direct information about the MSS.
410 * It's better to underestimate the RCV_MSS rather than overestimate.
411 * Overestimations make us ACKing less frequently than needed.
412 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
413 */
414 void tcp_initialize_rcv_mss(struct sock *sk)
415 {
416 struct tcp_sock *tp = tcp_sk(sk);
417 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
418
419 hint = min(hint, tp->rcv_wnd / 2);
420 hint = min(hint, TCP_MSS_DEFAULT);
421 hint = max(hint, TCP_MIN_MSS);
422
423 inet_csk(sk)->icsk_ack.rcv_mss = hint;
424 }
425 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
426
427 /* Receiver "autotuning" code.
428 *
429 * The algorithm for RTT estimation w/o timestamps is based on
430 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
431 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
432 *
433 * More detail on this code can be found at
434 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
435 * though this reference is out of date. A new paper
436 * is pending.
437 */
438 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
439 {
440 u32 new_sample = tp->rcv_rtt_est.rtt;
441 long m = sample;
442
443 if (m == 0)
444 m = 1;
445
446 if (new_sample != 0) {
447 /* If we sample in larger samples in the non-timestamp
448 * case, we could grossly overestimate the RTT especially
449 * with chatty applications or bulk transfer apps which
450 * are stalled on filesystem I/O.
451 *
452 * Also, since we are only going for a minimum in the
453 * non-timestamp case, we do not smooth things out
454 * else with timestamps disabled convergence takes too
455 * long.
456 */
457 if (!win_dep) {
458 m -= (new_sample >> 3);
459 new_sample += m;
460 } else if (m < new_sample)
461 new_sample = m << 3;
462 } else {
463 /* No previous measure. */
464 new_sample = m << 3;
465 }
466
467 if (tp->rcv_rtt_est.rtt != new_sample)
468 tp->rcv_rtt_est.rtt = new_sample;
469 }
470
471 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
472 {
473 if (tp->rcv_rtt_est.time == 0)
474 goto new_measure;
475 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
476 return;
477 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
478
479 new_measure:
480 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
481 tp->rcv_rtt_est.time = tcp_time_stamp;
482 }
483
484 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
485 const struct sk_buff *skb)
486 {
487 struct tcp_sock *tp = tcp_sk(sk);
488 if (tp->rx_opt.rcv_tsecr &&
489 (TCP_SKB_CB(skb)->end_seq -
490 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
491 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
492 }
493
494 /*
495 * This function should be called every time data is copied to user space.
496 * It calculates the appropriate TCP receive buffer space.
497 */
498 void tcp_rcv_space_adjust(struct sock *sk)
499 {
500 struct tcp_sock *tp = tcp_sk(sk);
501 int time;
502 int space;
503
504 if (tp->rcvq_space.time == 0)
505 goto new_measure;
506
507 time = tcp_time_stamp - tp->rcvq_space.time;
508 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
509 return;
510
511 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
512
513 space = max(tp->rcvq_space.space, space);
514
515 if (tp->rcvq_space.space != space) {
516 int rcvmem;
517
518 tp->rcvq_space.space = space;
519
520 if (sysctl_tcp_moderate_rcvbuf &&
521 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
522 int new_clamp = space;
523
524 /* Receive space grows, normalize in order to
525 * take into account packet headers and sk_buff
526 * structure overhead.
527 */
528 space /= tp->advmss;
529 if (!space)
530 space = 1;
531 rcvmem = (tp->advmss + MAX_TCP_HEADER +
532 16 + sizeof(struct sk_buff));
533 while (tcp_win_from_space(rcvmem) < tp->advmss)
534 rcvmem += 128;
535 space *= rcvmem;
536 space = min(space, sysctl_tcp_rmem[2]);
537 if (space > sk->sk_rcvbuf) {
538 sk->sk_rcvbuf = space;
539
540 /* Make the window clamp follow along. */
541 tp->window_clamp = new_clamp;
542 }
543 }
544 }
545
546 new_measure:
547 tp->rcvq_space.seq = tp->copied_seq;
548 tp->rcvq_space.time = tcp_time_stamp;
549 }
550
551 /* There is something which you must keep in mind when you analyze the
552 * behavior of the tp->ato delayed ack timeout interval. When a
553 * connection starts up, we want to ack as quickly as possible. The
554 * problem is that "good" TCP's do slow start at the beginning of data
555 * transmission. The means that until we send the first few ACK's the
556 * sender will sit on his end and only queue most of his data, because
557 * he can only send snd_cwnd unacked packets at any given time. For
558 * each ACK we send, he increments snd_cwnd and transmits more of his
559 * queue. -DaveM
560 */
561 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
562 {
563 struct tcp_sock *tp = tcp_sk(sk);
564 struct inet_connection_sock *icsk = inet_csk(sk);
565 u32 now;
566
567 inet_csk_schedule_ack(sk);
568
569 tcp_measure_rcv_mss(sk, skb);
570
571 tcp_rcv_rtt_measure(tp);
572
573 now = tcp_time_stamp;
574
575 if (!icsk->icsk_ack.ato) {
576 /* The _first_ data packet received, initialize
577 * delayed ACK engine.
578 */
579 tcp_incr_quickack(sk);
580 icsk->icsk_ack.ato = TCP_ATO_MIN;
581 } else {
582 int m = now - icsk->icsk_ack.lrcvtime;
583
584 if (m <= TCP_ATO_MIN / 2) {
585 /* The fastest case is the first. */
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
587 } else if (m < icsk->icsk_ack.ato) {
588 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
589 if (icsk->icsk_ack.ato > icsk->icsk_rto)
590 icsk->icsk_ack.ato = icsk->icsk_rto;
591 } else if (m > icsk->icsk_rto) {
592 /* Too long gap. Apparently sender failed to
593 * restart window, so that we send ACKs quickly.
594 */
595 tcp_incr_quickack(sk);
596 sk_mem_reclaim(sk);
597 }
598 }
599 icsk->icsk_ack.lrcvtime = now;
600
601 TCP_ECN_check_ce(tp, skb);
602
603 if (skb->len >= 128)
604 tcp_grow_window(sk, skb);
605 }
606
607 /* Called to compute a smoothed rtt estimate. The data fed to this
608 * routine either comes from timestamps, or from segments that were
609 * known _not_ to have been retransmitted [see Karn/Partridge
610 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
611 * piece by Van Jacobson.
612 * NOTE: the next three routines used to be one big routine.
613 * To save cycles in the RFC 1323 implementation it was better to break
614 * it up into three procedures. -- erics
615 */
616 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
617 {
618 struct tcp_sock *tp = tcp_sk(sk);
619 long m = mrtt; /* RTT */
620
621 /* The following amusing code comes from Jacobson's
622 * article in SIGCOMM '88. Note that rtt and mdev
623 * are scaled versions of rtt and mean deviation.
624 * This is designed to be as fast as possible
625 * m stands for "measurement".
626 *
627 * On a 1990 paper the rto value is changed to:
628 * RTO = rtt + 4 * mdev
629 *
630 * Funny. This algorithm seems to be very broken.
631 * These formulae increase RTO, when it should be decreased, increase
632 * too slowly, when it should be increased quickly, decrease too quickly
633 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
634 * does not matter how to _calculate_ it. Seems, it was trap
635 * that VJ failed to avoid. 8)
636 */
637 if (m == 0)
638 m = 1;
639 if (tp->srtt != 0) {
640 m -= (tp->srtt >> 3); /* m is now error in rtt est */
641 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
642 if (m < 0) {
643 m = -m; /* m is now abs(error) */
644 m -= (tp->mdev >> 2); /* similar update on mdev */
645 /* This is similar to one of Eifel findings.
646 * Eifel blocks mdev updates when rtt decreases.
647 * This solution is a bit different: we use finer gain
648 * for mdev in this case (alpha*beta).
649 * Like Eifel it also prevents growth of rto,
650 * but also it limits too fast rto decreases,
651 * happening in pure Eifel.
652 */
653 if (m > 0)
654 m >>= 3;
655 } else {
656 m -= (tp->mdev >> 2); /* similar update on mdev */
657 }
658 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
659 if (tp->mdev > tp->mdev_max) {
660 tp->mdev_max = tp->mdev;
661 if (tp->mdev_max > tp->rttvar)
662 tp->rttvar = tp->mdev_max;
663 }
664 if (after(tp->snd_una, tp->rtt_seq)) {
665 if (tp->mdev_max < tp->rttvar)
666 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
667 tp->rtt_seq = tp->snd_nxt;
668 tp->mdev_max = tcp_rto_min(sk);
669 }
670 } else {
671 /* no previous measure. */
672 tp->srtt = m << 3; /* take the measured time to be rtt */
673 tp->mdev = m << 1; /* make sure rto = 3*rtt */
674 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
675 tp->rtt_seq = tp->snd_nxt;
676 }
677 }
678
679 /* Calculate rto without backoff. This is the second half of Van Jacobson's
680 * routine referred to above.
681 */
682 static inline void tcp_set_rto(struct sock *sk)
683 {
684 const struct tcp_sock *tp = tcp_sk(sk);
685 /* Old crap is replaced with new one. 8)
686 *
687 * More seriously:
688 * 1. If rtt variance happened to be less 50msec, it is hallucination.
689 * It cannot be less due to utterly erratic ACK generation made
690 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
691 * to do with delayed acks, because at cwnd>2 true delack timeout
692 * is invisible. Actually, Linux-2.4 also generates erratic
693 * ACKs in some circumstances.
694 */
695 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
696
697 /* 2. Fixups made earlier cannot be right.
698 * If we do not estimate RTO correctly without them,
699 * all the algo is pure shit and should be replaced
700 * with correct one. It is exactly, which we pretend to do.
701 */
702
703 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
704 * guarantees that rto is higher.
705 */
706 tcp_bound_rto(sk);
707 }
708
709 /* Save metrics learned by this TCP session.
710 This function is called only, when TCP finishes successfully
711 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
712 */
713 void tcp_update_metrics(struct sock *sk)
714 {
715 struct tcp_sock *tp = tcp_sk(sk);
716 struct dst_entry *dst = __sk_dst_get(sk);
717
718 if (sysctl_tcp_nometrics_save)
719 return;
720
721 dst_confirm(dst);
722
723 if (dst && (dst->flags & DST_HOST)) {
724 const struct inet_connection_sock *icsk = inet_csk(sk);
725 int m;
726 unsigned long rtt;
727
728 if (icsk->icsk_backoff || !tp->srtt) {
729 /* This session failed to estimate rtt. Why?
730 * Probably, no packets returned in time.
731 * Reset our results.
732 */
733 if (!(dst_metric_locked(dst, RTAX_RTT)))
734 dst->metrics[RTAX_RTT - 1] = 0;
735 return;
736 }
737
738 rtt = dst_metric_rtt(dst, RTAX_RTT);
739 m = rtt - tp->srtt;
740
741 /* If newly calculated rtt larger than stored one,
742 * store new one. Otherwise, use EWMA. Remember,
743 * rtt overestimation is always better than underestimation.
744 */
745 if (!(dst_metric_locked(dst, RTAX_RTT))) {
746 if (m <= 0)
747 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
748 else
749 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
750 }
751
752 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
753 unsigned long var;
754 if (m < 0)
755 m = -m;
756
757 /* Scale deviation to rttvar fixed point */
758 m >>= 1;
759 if (m < tp->mdev)
760 m = tp->mdev;
761
762 var = dst_metric_rtt(dst, RTAX_RTTVAR);
763 if (m >= var)
764 var = m;
765 else
766 var -= (var - m) >> 2;
767
768 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
769 }
770
771 if (tcp_in_initial_slowstart(tp)) {
772 /* Slow start still did not finish. */
773 if (dst_metric(dst, RTAX_SSTHRESH) &&
774 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
775 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
776 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
777 if (!dst_metric_locked(dst, RTAX_CWND) &&
778 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
779 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
780 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
781 icsk->icsk_ca_state == TCP_CA_Open) {
782 /* Cong. avoidance phase, cwnd is reliable. */
783 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
784 dst->metrics[RTAX_SSTHRESH-1] =
785 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
786 if (!dst_metric_locked(dst, RTAX_CWND))
787 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
788 } else {
789 /* Else slow start did not finish, cwnd is non-sense,
790 ssthresh may be also invalid.
791 */
792 if (!dst_metric_locked(dst, RTAX_CWND))
793 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
794 if (dst_metric(dst, RTAX_SSTHRESH) &&
795 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
796 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
797 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
798 }
799
800 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
801 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
802 tp->reordering != sysctl_tcp_reordering)
803 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
804 }
805 }
806 }
807
808 /* Numbers are taken from RFC3390.
809 *
810 * John Heffner states:
811 *
812 * The RFC specifies a window of no more than 4380 bytes
813 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
814 * is a bit misleading because they use a clamp at 4380 bytes
815 * rather than use a multiplier in the relevant range.
816 */
817 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
818 {
819 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
820
821 if (!cwnd) {
822 if (tp->mss_cache > 1460)
823 cwnd = 2;
824 else
825 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
826 }
827 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
828 }
829
830 /* Set slow start threshold and cwnd not falling to slow start */
831 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
832 {
833 struct tcp_sock *tp = tcp_sk(sk);
834 const struct inet_connection_sock *icsk = inet_csk(sk);
835
836 tp->prior_ssthresh = 0;
837 tp->bytes_acked = 0;
838 if (icsk->icsk_ca_state < TCP_CA_CWR) {
839 tp->undo_marker = 0;
840 if (set_ssthresh)
841 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
842 tp->snd_cwnd = min(tp->snd_cwnd,
843 tcp_packets_in_flight(tp) + 1U);
844 tp->snd_cwnd_cnt = 0;
845 tp->high_seq = tp->snd_nxt;
846 tp->snd_cwnd_stamp = tcp_time_stamp;
847 TCP_ECN_queue_cwr(tp);
848
849 tcp_set_ca_state(sk, TCP_CA_CWR);
850 }
851 }
852
853 /*
854 * Packet counting of FACK is based on in-order assumptions, therefore TCP
855 * disables it when reordering is detected
856 */
857 static void tcp_disable_fack(struct tcp_sock *tp)
858 {
859 /* RFC3517 uses different metric in lost marker => reset on change */
860 if (tcp_is_fack(tp))
861 tp->lost_skb_hint = NULL;
862 tp->rx_opt.sack_ok &= ~2;
863 }
864
865 /* Take a notice that peer is sending D-SACKs */
866 static void tcp_dsack_seen(struct tcp_sock *tp)
867 {
868 tp->rx_opt.sack_ok |= 4;
869 }
870
871 /* Initialize metrics on socket. */
872
873 static void tcp_init_metrics(struct sock *sk)
874 {
875 struct tcp_sock *tp = tcp_sk(sk);
876 struct dst_entry *dst = __sk_dst_get(sk);
877
878 if (dst == NULL)
879 goto reset;
880
881 dst_confirm(dst);
882
883 if (dst_metric_locked(dst, RTAX_CWND))
884 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
885 if (dst_metric(dst, RTAX_SSTHRESH)) {
886 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
887 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
888 tp->snd_ssthresh = tp->snd_cwnd_clamp;
889 }
890 if (dst_metric(dst, RTAX_REORDERING) &&
891 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
892 tcp_disable_fack(tp);
893 tp->reordering = dst_metric(dst, RTAX_REORDERING);
894 }
895
896 if (dst_metric(dst, RTAX_RTT) == 0)
897 goto reset;
898
899 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
900 goto reset;
901
902 /* Initial rtt is determined from SYN,SYN-ACK.
903 * The segment is small and rtt may appear much
904 * less than real one. Use per-dst memory
905 * to make it more realistic.
906 *
907 * A bit of theory. RTT is time passed after "normal" sized packet
908 * is sent until it is ACKed. In normal circumstances sending small
909 * packets force peer to delay ACKs and calculation is correct too.
910 * The algorithm is adaptive and, provided we follow specs, it
911 * NEVER underestimate RTT. BUT! If peer tries to make some clever
912 * tricks sort of "quick acks" for time long enough to decrease RTT
913 * to low value, and then abruptly stops to do it and starts to delay
914 * ACKs, wait for troubles.
915 */
916 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
917 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
918 tp->rtt_seq = tp->snd_nxt;
919 }
920 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
921 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
922 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
923 }
924 tcp_set_rto(sk);
925 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
926 goto reset;
927
928 cwnd:
929 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
930 tp->snd_cwnd_stamp = tcp_time_stamp;
931 return;
932
933 reset:
934 /* Play conservative. If timestamps are not
935 * supported, TCP will fail to recalculate correct
936 * rtt, if initial rto is too small. FORGET ALL AND RESET!
937 */
938 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
939 tp->srtt = 0;
940 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
941 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
942 }
943 goto cwnd;
944 }
945
946 static void tcp_update_reordering(struct sock *sk, const int metric,
947 const int ts)
948 {
949 struct tcp_sock *tp = tcp_sk(sk);
950 if (metric > tp->reordering) {
951 int mib_idx;
952
953 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955 /* This exciting event is worth to be remembered. 8) */
956 if (ts)
957 mib_idx = LINUX_MIB_TCPTSREORDER;
958 else if (tcp_is_reno(tp))
959 mib_idx = LINUX_MIB_TCPRENOREORDER;
960 else if (tcp_is_fack(tp))
961 mib_idx = LINUX_MIB_TCPFACKREORDER;
962 else
963 mib_idx = LINUX_MIB_TCPSACKREORDER;
964
965 NET_INC_STATS_BH(sock_net(sk), mib_idx);
966 #if FASTRETRANS_DEBUG > 1
967 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
968 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
969 tp->reordering,
970 tp->fackets_out,
971 tp->sacked_out,
972 tp->undo_marker ? tp->undo_retrans : 0);
973 #endif
974 tcp_disable_fack(tp);
975 }
976 }
977
978 /* This must be called before lost_out is incremented */
979 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
980 {
981 if ((tp->retransmit_skb_hint == NULL) ||
982 before(TCP_SKB_CB(skb)->seq,
983 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
984 tp->retransmit_skb_hint = skb;
985
986 if (!tp->lost_out ||
987 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
988 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
989 }
990
991 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
992 {
993 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
994 tcp_verify_retransmit_hint(tp, skb);
995
996 tp->lost_out += tcp_skb_pcount(skb);
997 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
998 }
999 }
1000
1001 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1002 struct sk_buff *skb)
1003 {
1004 tcp_verify_retransmit_hint(tp, skb);
1005
1006 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1007 tp->lost_out += tcp_skb_pcount(skb);
1008 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1009 }
1010 }
1011
1012 /* This procedure tags the retransmission queue when SACKs arrive.
1013 *
1014 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1015 * Packets in queue with these bits set are counted in variables
1016 * sacked_out, retrans_out and lost_out, correspondingly.
1017 *
1018 * Valid combinations are:
1019 * Tag InFlight Description
1020 * 0 1 - orig segment is in flight.
1021 * S 0 - nothing flies, orig reached receiver.
1022 * L 0 - nothing flies, orig lost by net.
1023 * R 2 - both orig and retransmit are in flight.
1024 * L|R 1 - orig is lost, retransmit is in flight.
1025 * S|R 1 - orig reached receiver, retrans is still in flight.
1026 * (L|S|R is logically valid, it could occur when L|R is sacked,
1027 * but it is equivalent to plain S and code short-curcuits it to S.
1028 * L|S is logically invalid, it would mean -1 packet in flight 8))
1029 *
1030 * These 6 states form finite state machine, controlled by the following events:
1031 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1032 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1033 * 3. Loss detection event of one of three flavors:
1034 * A. Scoreboard estimator decided the packet is lost.
1035 * A'. Reno "three dupacks" marks head of queue lost.
1036 * A''. Its FACK modfication, head until snd.fack is lost.
1037 * B. SACK arrives sacking data transmitted after never retransmitted
1038 * hole was sent out.
1039 * C. SACK arrives sacking SND.NXT at the moment, when the
1040 * segment was retransmitted.
1041 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1042 *
1043 * It is pleasant to note, that state diagram turns out to be commutative,
1044 * so that we are allowed not to be bothered by order of our actions,
1045 * when multiple events arrive simultaneously. (see the function below).
1046 *
1047 * Reordering detection.
1048 * --------------------
1049 * Reordering metric is maximal distance, which a packet can be displaced
1050 * in packet stream. With SACKs we can estimate it:
1051 *
1052 * 1. SACK fills old hole and the corresponding segment was not
1053 * ever retransmitted -> reordering. Alas, we cannot use it
1054 * when segment was retransmitted.
1055 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1056 * for retransmitted and already SACKed segment -> reordering..
1057 * Both of these heuristics are not used in Loss state, when we cannot
1058 * account for retransmits accurately.
1059 *
1060 * SACK block validation.
1061 * ----------------------
1062 *
1063 * SACK block range validation checks that the received SACK block fits to
1064 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1065 * Note that SND.UNA is not included to the range though being valid because
1066 * it means that the receiver is rather inconsistent with itself reporting
1067 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1068 * perfectly valid, however, in light of RFC2018 which explicitly states
1069 * that "SACK block MUST reflect the newest segment. Even if the newest
1070 * segment is going to be discarded ...", not that it looks very clever
1071 * in case of head skb. Due to potentional receiver driven attacks, we
1072 * choose to avoid immediate execution of a walk in write queue due to
1073 * reneging and defer head skb's loss recovery to standard loss recovery
1074 * procedure that will eventually trigger (nothing forbids us doing this).
1075 *
1076 * Implements also blockage to start_seq wrap-around. Problem lies in the
1077 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1078 * there's no guarantee that it will be before snd_nxt (n). The problem
1079 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1080 * wrap (s_w):
1081 *
1082 * <- outs wnd -> <- wrapzone ->
1083 * u e n u_w e_w s n_w
1084 * | | | | | | |
1085 * |<------------+------+----- TCP seqno space --------------+---------->|
1086 * ...-- <2^31 ->| |<--------...
1087 * ...---- >2^31 ------>| |<--------...
1088 *
1089 * Current code wouldn't be vulnerable but it's better still to discard such
1090 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1091 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1092 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1093 * equal to the ideal case (infinite seqno space without wrap caused issues).
1094 *
1095 * With D-SACK the lower bound is extended to cover sequence space below
1096 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1097 * again, D-SACK block must not to go across snd_una (for the same reason as
1098 * for the normal SACK blocks, explained above). But there all simplicity
1099 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1100 * fully below undo_marker they do not affect behavior in anyway and can
1101 * therefore be safely ignored. In rare cases (which are more or less
1102 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1103 * fragmentation and packet reordering past skb's retransmission. To consider
1104 * them correctly, the acceptable range must be extended even more though
1105 * the exact amount is rather hard to quantify. However, tp->max_window can
1106 * be used as an exaggerated estimate.
1107 */
1108 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1109 u32 start_seq, u32 end_seq)
1110 {
1111 /* Too far in future, or reversed (interpretation is ambiguous) */
1112 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1113 return 0;
1114
1115 /* Nasty start_seq wrap-around check (see comments above) */
1116 if (!before(start_seq, tp->snd_nxt))
1117 return 0;
1118
1119 /* In outstanding window? ...This is valid exit for D-SACKs too.
1120 * start_seq == snd_una is non-sensical (see comments above)
1121 */
1122 if (after(start_seq, tp->snd_una))
1123 return 1;
1124
1125 if (!is_dsack || !tp->undo_marker)
1126 return 0;
1127
1128 /* ...Then it's D-SACK, and must reside below snd_una completely */
1129 if (!after(end_seq, tp->snd_una))
1130 return 0;
1131
1132 if (!before(start_seq, tp->undo_marker))
1133 return 1;
1134
1135 /* Too old */
1136 if (!after(end_seq, tp->undo_marker))
1137 return 0;
1138
1139 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1140 * start_seq < undo_marker and end_seq >= undo_marker.
1141 */
1142 return !before(start_seq, end_seq - tp->max_window);
1143 }
1144
1145 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1146 * Event "C". Later note: FACK people cheated me again 8), we have to account
1147 * for reordering! Ugly, but should help.
1148 *
1149 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1150 * less than what is now known to be received by the other end (derived from
1151 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1152 * retransmitted skbs to avoid some costly processing per ACKs.
1153 */
1154 static void tcp_mark_lost_retrans(struct sock *sk)
1155 {
1156 const struct inet_connection_sock *icsk = inet_csk(sk);
1157 struct tcp_sock *tp = tcp_sk(sk);
1158 struct sk_buff *skb;
1159 int cnt = 0;
1160 u32 new_low_seq = tp->snd_nxt;
1161 u32 received_upto = tcp_highest_sack_seq(tp);
1162
1163 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1164 !after(received_upto, tp->lost_retrans_low) ||
1165 icsk->icsk_ca_state != TCP_CA_Recovery)
1166 return;
1167
1168 tcp_for_write_queue(skb, sk) {
1169 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1170
1171 if (skb == tcp_send_head(sk))
1172 break;
1173 if (cnt == tp->retrans_out)
1174 break;
1175 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1176 continue;
1177
1178 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1179 continue;
1180
1181 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1182 * constraint here (see above) but figuring out that at
1183 * least tp->reordering SACK blocks reside between ack_seq
1184 * and received_upto is not easy task to do cheaply with
1185 * the available datastructures.
1186 *
1187 * Whether FACK should check here for tp->reordering segs
1188 * in-between one could argue for either way (it would be
1189 * rather simple to implement as we could count fack_count
1190 * during the walk and do tp->fackets_out - fack_count).
1191 */
1192 if (after(received_upto, ack_seq)) {
1193 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1194 tp->retrans_out -= tcp_skb_pcount(skb);
1195
1196 tcp_skb_mark_lost_uncond_verify(tp, skb);
1197 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1198 } else {
1199 if (before(ack_seq, new_low_seq))
1200 new_low_seq = ack_seq;
1201 cnt += tcp_skb_pcount(skb);
1202 }
1203 }
1204
1205 if (tp->retrans_out)
1206 tp->lost_retrans_low = new_low_seq;
1207 }
1208
1209 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1210 struct tcp_sack_block_wire *sp, int num_sacks,
1211 u32 prior_snd_una)
1212 {
1213 struct tcp_sock *tp = tcp_sk(sk);
1214 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1215 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1216 int dup_sack = 0;
1217
1218 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1219 dup_sack = 1;
1220 tcp_dsack_seen(tp);
1221 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1222 } else if (num_sacks > 1) {
1223 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1224 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1225
1226 if (!after(end_seq_0, end_seq_1) &&
1227 !before(start_seq_0, start_seq_1)) {
1228 dup_sack = 1;
1229 tcp_dsack_seen(tp);
1230 NET_INC_STATS_BH(sock_net(sk),
1231 LINUX_MIB_TCPDSACKOFORECV);
1232 }
1233 }
1234
1235 /* D-SACK for already forgotten data... Do dumb counting. */
1236 if (dup_sack &&
1237 !after(end_seq_0, prior_snd_una) &&
1238 after(end_seq_0, tp->undo_marker))
1239 tp->undo_retrans--;
1240
1241 return dup_sack;
1242 }
1243
1244 struct tcp_sacktag_state {
1245 int reord;
1246 int fack_count;
1247 int flag;
1248 };
1249
1250 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1251 * the incoming SACK may not exactly match but we can find smaller MSS
1252 * aligned portion of it that matches. Therefore we might need to fragment
1253 * which may fail and creates some hassle (caller must handle error case
1254 * returns).
1255 *
1256 * FIXME: this could be merged to shift decision code
1257 */
1258 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1259 u32 start_seq, u32 end_seq)
1260 {
1261 int in_sack, err;
1262 unsigned int pkt_len;
1263 unsigned int mss;
1264
1265 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1266 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1267
1268 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1269 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1270 mss = tcp_skb_mss(skb);
1271 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1272
1273 if (!in_sack) {
1274 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1275 if (pkt_len < mss)
1276 pkt_len = mss;
1277 } else {
1278 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1279 if (pkt_len < mss)
1280 return -EINVAL;
1281 }
1282
1283 /* Round if necessary so that SACKs cover only full MSSes
1284 * and/or the remaining small portion (if present)
1285 */
1286 if (pkt_len > mss) {
1287 unsigned int new_len = (pkt_len / mss) * mss;
1288 if (!in_sack && new_len < pkt_len) {
1289 new_len += mss;
1290 if (new_len > skb->len)
1291 return 0;
1292 }
1293 pkt_len = new_len;
1294 }
1295 err = tcp_fragment(sk, skb, pkt_len, mss);
1296 if (err < 0)
1297 return err;
1298 }
1299
1300 return in_sack;
1301 }
1302
1303 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1304 struct tcp_sacktag_state *state,
1305 int dup_sack, int pcount)
1306 {
1307 struct tcp_sock *tp = tcp_sk(sk);
1308 u8 sacked = TCP_SKB_CB(skb)->sacked;
1309 int fack_count = state->fack_count;
1310
1311 /* Account D-SACK for retransmitted packet. */
1312 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1313 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1314 tp->undo_retrans--;
1315 if (sacked & TCPCB_SACKED_ACKED)
1316 state->reord = min(fack_count, state->reord);
1317 }
1318
1319 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1320 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1321 return sacked;
1322
1323 if (!(sacked & TCPCB_SACKED_ACKED)) {
1324 if (sacked & TCPCB_SACKED_RETRANS) {
1325 /* If the segment is not tagged as lost,
1326 * we do not clear RETRANS, believing
1327 * that retransmission is still in flight.
1328 */
1329 if (sacked & TCPCB_LOST) {
1330 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1331 tp->lost_out -= pcount;
1332 tp->retrans_out -= pcount;
1333 }
1334 } else {
1335 if (!(sacked & TCPCB_RETRANS)) {
1336 /* New sack for not retransmitted frame,
1337 * which was in hole. It is reordering.
1338 */
1339 if (before(TCP_SKB_CB(skb)->seq,
1340 tcp_highest_sack_seq(tp)))
1341 state->reord = min(fack_count,
1342 state->reord);
1343
1344 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1345 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1346 state->flag |= FLAG_ONLY_ORIG_SACKED;
1347 }
1348
1349 if (sacked & TCPCB_LOST) {
1350 sacked &= ~TCPCB_LOST;
1351 tp->lost_out -= pcount;
1352 }
1353 }
1354
1355 sacked |= TCPCB_SACKED_ACKED;
1356 state->flag |= FLAG_DATA_SACKED;
1357 tp->sacked_out += pcount;
1358
1359 fack_count += pcount;
1360
1361 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1362 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1363 before(TCP_SKB_CB(skb)->seq,
1364 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1365 tp->lost_cnt_hint += pcount;
1366
1367 if (fack_count > tp->fackets_out)
1368 tp->fackets_out = fack_count;
1369 }
1370
1371 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1372 * frames and clear it. undo_retrans is decreased above, L|R frames
1373 * are accounted above as well.
1374 */
1375 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1376 sacked &= ~TCPCB_SACKED_RETRANS;
1377 tp->retrans_out -= pcount;
1378 }
1379
1380 return sacked;
1381 }
1382
1383 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1384 struct tcp_sacktag_state *state,
1385 unsigned int pcount, int shifted, int mss,
1386 int dup_sack)
1387 {
1388 struct tcp_sock *tp = tcp_sk(sk);
1389 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1390
1391 BUG_ON(!pcount);
1392
1393 /* Tweak before seqno plays */
1394 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1395 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1396 tp->lost_cnt_hint += pcount;
1397
1398 TCP_SKB_CB(prev)->end_seq += shifted;
1399 TCP_SKB_CB(skb)->seq += shifted;
1400
1401 skb_shinfo(prev)->gso_segs += pcount;
1402 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1403 skb_shinfo(skb)->gso_segs -= pcount;
1404
1405 /* When we're adding to gso_segs == 1, gso_size will be zero,
1406 * in theory this shouldn't be necessary but as long as DSACK
1407 * code can come after this skb later on it's better to keep
1408 * setting gso_size to something.
1409 */
1410 if (!skb_shinfo(prev)->gso_size) {
1411 skb_shinfo(prev)->gso_size = mss;
1412 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1413 }
1414
1415 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1416 if (skb_shinfo(skb)->gso_segs <= 1) {
1417 skb_shinfo(skb)->gso_size = 0;
1418 skb_shinfo(skb)->gso_type = 0;
1419 }
1420
1421 /* We discard results */
1422 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1423
1424 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1425 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1426
1427 if (skb->len > 0) {
1428 BUG_ON(!tcp_skb_pcount(skb));
1429 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1430 return 0;
1431 }
1432
1433 /* Whole SKB was eaten :-) */
1434
1435 if (skb == tp->retransmit_skb_hint)
1436 tp->retransmit_skb_hint = prev;
1437 if (skb == tp->scoreboard_skb_hint)
1438 tp->scoreboard_skb_hint = prev;
1439 if (skb == tp->lost_skb_hint) {
1440 tp->lost_skb_hint = prev;
1441 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1442 }
1443
1444 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1445 if (skb == tcp_highest_sack(sk))
1446 tcp_advance_highest_sack(sk, skb);
1447
1448 tcp_unlink_write_queue(skb, sk);
1449 sk_wmem_free_skb(sk, skb);
1450
1451 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1452
1453 return 1;
1454 }
1455
1456 /* I wish gso_size would have a bit more sane initialization than
1457 * something-or-zero which complicates things
1458 */
1459 static int tcp_skb_seglen(struct sk_buff *skb)
1460 {
1461 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1462 }
1463
1464 /* Shifting pages past head area doesn't work */
1465 static int skb_can_shift(struct sk_buff *skb)
1466 {
1467 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1468 }
1469
1470 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1471 * skb.
1472 */
1473 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1474 struct tcp_sacktag_state *state,
1475 u32 start_seq, u32 end_seq,
1476 int dup_sack)
1477 {
1478 struct tcp_sock *tp = tcp_sk(sk);
1479 struct sk_buff *prev;
1480 int mss;
1481 int pcount = 0;
1482 int len;
1483 int in_sack;
1484
1485 if (!sk_can_gso(sk))
1486 goto fallback;
1487
1488 /* Normally R but no L won't result in plain S */
1489 if (!dup_sack &&
1490 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1491 goto fallback;
1492 if (!skb_can_shift(skb))
1493 goto fallback;
1494 /* This frame is about to be dropped (was ACKed). */
1495 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1496 goto fallback;
1497
1498 /* Can only happen with delayed DSACK + discard craziness */
1499 if (unlikely(skb == tcp_write_queue_head(sk)))
1500 goto fallback;
1501 prev = tcp_write_queue_prev(sk, skb);
1502
1503 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1504 goto fallback;
1505
1506 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1507 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1508
1509 if (in_sack) {
1510 len = skb->len;
1511 pcount = tcp_skb_pcount(skb);
1512 mss = tcp_skb_seglen(skb);
1513
1514 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1515 * drop this restriction as unnecessary
1516 */
1517 if (mss != tcp_skb_seglen(prev))
1518 goto fallback;
1519 } else {
1520 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1521 goto noop;
1522 /* CHECKME: This is non-MSS split case only?, this will
1523 * cause skipped skbs due to advancing loop btw, original
1524 * has that feature too
1525 */
1526 if (tcp_skb_pcount(skb) <= 1)
1527 goto noop;
1528
1529 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1530 if (!in_sack) {
1531 /* TODO: head merge to next could be attempted here
1532 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1533 * though it might not be worth of the additional hassle
1534 *
1535 * ...we can probably just fallback to what was done
1536 * previously. We could try merging non-SACKed ones
1537 * as well but it probably isn't going to buy off
1538 * because later SACKs might again split them, and
1539 * it would make skb timestamp tracking considerably
1540 * harder problem.
1541 */
1542 goto fallback;
1543 }
1544
1545 len = end_seq - TCP_SKB_CB(skb)->seq;
1546 BUG_ON(len < 0);
1547 BUG_ON(len > skb->len);
1548
1549 /* MSS boundaries should be honoured or else pcount will
1550 * severely break even though it makes things bit trickier.
1551 * Optimize common case to avoid most of the divides
1552 */
1553 mss = tcp_skb_mss(skb);
1554
1555 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1556 * drop this restriction as unnecessary
1557 */
1558 if (mss != tcp_skb_seglen(prev))
1559 goto fallback;
1560
1561 if (len == mss) {
1562 pcount = 1;
1563 } else if (len < mss) {
1564 goto noop;
1565 } else {
1566 pcount = len / mss;
1567 len = pcount * mss;
1568 }
1569 }
1570
1571 if (!skb_shift(prev, skb, len))
1572 goto fallback;
1573 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1574 goto out;
1575
1576 /* Hole filled allows collapsing with the next as well, this is very
1577 * useful when hole on every nth skb pattern happens
1578 */
1579 if (prev == tcp_write_queue_tail(sk))
1580 goto out;
1581 skb = tcp_write_queue_next(sk, prev);
1582
1583 if (!skb_can_shift(skb) ||
1584 (skb == tcp_send_head(sk)) ||
1585 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1586 (mss != tcp_skb_seglen(skb)))
1587 goto out;
1588
1589 len = skb->len;
1590 if (skb_shift(prev, skb, len)) {
1591 pcount += tcp_skb_pcount(skb);
1592 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1593 }
1594
1595 out:
1596 state->fack_count += pcount;
1597 return prev;
1598
1599 noop:
1600 return skb;
1601
1602 fallback:
1603 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1604 return NULL;
1605 }
1606
1607 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1608 struct tcp_sack_block *next_dup,
1609 struct tcp_sacktag_state *state,
1610 u32 start_seq, u32 end_seq,
1611 int dup_sack_in)
1612 {
1613 struct tcp_sock *tp = tcp_sk(sk);
1614 struct sk_buff *tmp;
1615
1616 tcp_for_write_queue_from(skb, sk) {
1617 int in_sack = 0;
1618 int dup_sack = dup_sack_in;
1619
1620 if (skb == tcp_send_head(sk))
1621 break;
1622
1623 /* queue is in-order => we can short-circuit the walk early */
1624 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1625 break;
1626
1627 if ((next_dup != NULL) &&
1628 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1629 in_sack = tcp_match_skb_to_sack(sk, skb,
1630 next_dup->start_seq,
1631 next_dup->end_seq);
1632 if (in_sack > 0)
1633 dup_sack = 1;
1634 }
1635
1636 /* skb reference here is a bit tricky to get right, since
1637 * shifting can eat and free both this skb and the next,
1638 * so not even _safe variant of the loop is enough.
1639 */
1640 if (in_sack <= 0) {
1641 tmp = tcp_shift_skb_data(sk, skb, state,
1642 start_seq, end_seq, dup_sack);
1643 if (tmp != NULL) {
1644 if (tmp != skb) {
1645 skb = tmp;
1646 continue;
1647 }
1648
1649 in_sack = 0;
1650 } else {
1651 in_sack = tcp_match_skb_to_sack(sk, skb,
1652 start_seq,
1653 end_seq);
1654 }
1655 }
1656
1657 if (unlikely(in_sack < 0))
1658 break;
1659
1660 if (in_sack) {
1661 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1662 state,
1663 dup_sack,
1664 tcp_skb_pcount(skb));
1665
1666 if (!before(TCP_SKB_CB(skb)->seq,
1667 tcp_highest_sack_seq(tp)))
1668 tcp_advance_highest_sack(sk, skb);
1669 }
1670
1671 state->fack_count += tcp_skb_pcount(skb);
1672 }
1673 return skb;
1674 }
1675
1676 /* Avoid all extra work that is being done by sacktag while walking in
1677 * a normal way
1678 */
1679 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1680 struct tcp_sacktag_state *state,
1681 u32 skip_to_seq)
1682 {
1683 tcp_for_write_queue_from(skb, sk) {
1684 if (skb == tcp_send_head(sk))
1685 break;
1686
1687 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1688 break;
1689
1690 state->fack_count += tcp_skb_pcount(skb);
1691 }
1692 return skb;
1693 }
1694
1695 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1696 struct sock *sk,
1697 struct tcp_sack_block *next_dup,
1698 struct tcp_sacktag_state *state,
1699 u32 skip_to_seq)
1700 {
1701 if (next_dup == NULL)
1702 return skb;
1703
1704 if (before(next_dup->start_seq, skip_to_seq)) {
1705 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1706 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1707 next_dup->start_seq, next_dup->end_seq,
1708 1);
1709 }
1710
1711 return skb;
1712 }
1713
1714 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1715 {
1716 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1717 }
1718
1719 static int
1720 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1721 u32 prior_snd_una)
1722 {
1723 const struct inet_connection_sock *icsk = inet_csk(sk);
1724 struct tcp_sock *tp = tcp_sk(sk);
1725 unsigned char *ptr = (skb_transport_header(ack_skb) +
1726 TCP_SKB_CB(ack_skb)->sacked);
1727 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1728 struct tcp_sack_block sp[TCP_NUM_SACKS];
1729 struct tcp_sack_block *cache;
1730 struct tcp_sacktag_state state;
1731 struct sk_buff *skb;
1732 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1733 int used_sacks;
1734 int found_dup_sack = 0;
1735 int i, j;
1736 int first_sack_index;
1737
1738 state.flag = 0;
1739 state.reord = tp->packets_out;
1740
1741 if (!tp->sacked_out) {
1742 if (WARN_ON(tp->fackets_out))
1743 tp->fackets_out = 0;
1744 tcp_highest_sack_reset(sk);
1745 }
1746
1747 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1748 num_sacks, prior_snd_una);
1749 if (found_dup_sack)
1750 state.flag |= FLAG_DSACKING_ACK;
1751
1752 /* Eliminate too old ACKs, but take into
1753 * account more or less fresh ones, they can
1754 * contain valid SACK info.
1755 */
1756 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1757 return 0;
1758
1759 if (!tp->packets_out)
1760 goto out;
1761
1762 used_sacks = 0;
1763 first_sack_index = 0;
1764 for (i = 0; i < num_sacks; i++) {
1765 int dup_sack = !i && found_dup_sack;
1766
1767 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1768 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1769
1770 if (!tcp_is_sackblock_valid(tp, dup_sack,
1771 sp[used_sacks].start_seq,
1772 sp[used_sacks].end_seq)) {
1773 int mib_idx;
1774
1775 if (dup_sack) {
1776 if (!tp->undo_marker)
1777 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1778 else
1779 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1780 } else {
1781 /* Don't count olds caused by ACK reordering */
1782 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1783 !after(sp[used_sacks].end_seq, tp->snd_una))
1784 continue;
1785 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1786 }
1787
1788 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1789 if (i == 0)
1790 first_sack_index = -1;
1791 continue;
1792 }
1793
1794 /* Ignore very old stuff early */
1795 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1796 continue;
1797
1798 used_sacks++;
1799 }
1800
1801 /* order SACK blocks to allow in order walk of the retrans queue */
1802 for (i = used_sacks - 1; i > 0; i--) {
1803 for (j = 0; j < i; j++) {
1804 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1805 swap(sp[j], sp[j + 1]);
1806
1807 /* Track where the first SACK block goes to */
1808 if (j == first_sack_index)
1809 first_sack_index = j + 1;
1810 }
1811 }
1812 }
1813
1814 skb = tcp_write_queue_head(sk);
1815 state.fack_count = 0;
1816 i = 0;
1817
1818 if (!tp->sacked_out) {
1819 /* It's already past, so skip checking against it */
1820 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1821 } else {
1822 cache = tp->recv_sack_cache;
1823 /* Skip empty blocks in at head of the cache */
1824 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1825 !cache->end_seq)
1826 cache++;
1827 }
1828
1829 while (i < used_sacks) {
1830 u32 start_seq = sp[i].start_seq;
1831 u32 end_seq = sp[i].end_seq;
1832 int dup_sack = (found_dup_sack && (i == first_sack_index));
1833 struct tcp_sack_block *next_dup = NULL;
1834
1835 if (found_dup_sack && ((i + 1) == first_sack_index))
1836 next_dup = &sp[i + 1];
1837
1838 /* Event "B" in the comment above. */
1839 if (after(end_seq, tp->high_seq))
1840 state.flag |= FLAG_DATA_LOST;
1841
1842 /* Skip too early cached blocks */
1843 while (tcp_sack_cache_ok(tp, cache) &&
1844 !before(start_seq, cache->end_seq))
1845 cache++;
1846
1847 /* Can skip some work by looking recv_sack_cache? */
1848 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1849 after(end_seq, cache->start_seq)) {
1850
1851 /* Head todo? */
1852 if (before(start_seq, cache->start_seq)) {
1853 skb = tcp_sacktag_skip(skb, sk, &state,
1854 start_seq);
1855 skb = tcp_sacktag_walk(skb, sk, next_dup,
1856 &state,
1857 start_seq,
1858 cache->start_seq,
1859 dup_sack);
1860 }
1861
1862 /* Rest of the block already fully processed? */
1863 if (!after(end_seq, cache->end_seq))
1864 goto advance_sp;
1865
1866 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1867 &state,
1868 cache->end_seq);
1869
1870 /* ...tail remains todo... */
1871 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1872 /* ...but better entrypoint exists! */
1873 skb = tcp_highest_sack(sk);
1874 if (skb == NULL)
1875 break;
1876 state.fack_count = tp->fackets_out;
1877 cache++;
1878 goto walk;
1879 }
1880
1881 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1882 /* Check overlap against next cached too (past this one already) */
1883 cache++;
1884 continue;
1885 }
1886
1887 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1888 skb = tcp_highest_sack(sk);
1889 if (skb == NULL)
1890 break;
1891 state.fack_count = tp->fackets_out;
1892 }
1893 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1894
1895 walk:
1896 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1897 start_seq, end_seq, dup_sack);
1898
1899 advance_sp:
1900 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1901 * due to in-order walk
1902 */
1903 if (after(end_seq, tp->frto_highmark))
1904 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1905
1906 i++;
1907 }
1908
1909 /* Clear the head of the cache sack blocks so we can skip it next time */
1910 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1911 tp->recv_sack_cache[i].start_seq = 0;
1912 tp->recv_sack_cache[i].end_seq = 0;
1913 }
1914 for (j = 0; j < used_sacks; j++)
1915 tp->recv_sack_cache[i++] = sp[j];
1916
1917 tcp_mark_lost_retrans(sk);
1918
1919 tcp_verify_left_out(tp);
1920
1921 if ((state.reord < tp->fackets_out) &&
1922 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1923 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1924 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1925
1926 out:
1927
1928 #if FASTRETRANS_DEBUG > 0
1929 WARN_ON((int)tp->sacked_out < 0);
1930 WARN_ON((int)tp->lost_out < 0);
1931 WARN_ON((int)tp->retrans_out < 0);
1932 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1933 #endif
1934 return state.flag;
1935 }
1936
1937 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1938 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1939 */
1940 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1941 {
1942 u32 holes;
1943
1944 holes = max(tp->lost_out, 1U);
1945 holes = min(holes, tp->packets_out);
1946
1947 if ((tp->sacked_out + holes) > tp->packets_out) {
1948 tp->sacked_out = tp->packets_out - holes;
1949 return 1;
1950 }
1951 return 0;
1952 }
1953
1954 /* If we receive more dupacks than we expected counting segments
1955 * in assumption of absent reordering, interpret this as reordering.
1956 * The only another reason could be bug in receiver TCP.
1957 */
1958 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1959 {
1960 struct tcp_sock *tp = tcp_sk(sk);
1961 if (tcp_limit_reno_sacked(tp))
1962 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1963 }
1964
1965 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1966
1967 static void tcp_add_reno_sack(struct sock *sk)
1968 {
1969 struct tcp_sock *tp = tcp_sk(sk);
1970 tp->sacked_out++;
1971 tcp_check_reno_reordering(sk, 0);
1972 tcp_verify_left_out(tp);
1973 }
1974
1975 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1976
1977 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1978 {
1979 struct tcp_sock *tp = tcp_sk(sk);
1980
1981 if (acked > 0) {
1982 /* One ACK acked hole. The rest eat duplicate ACKs. */
1983 if (acked - 1 >= tp->sacked_out)
1984 tp->sacked_out = 0;
1985 else
1986 tp->sacked_out -= acked - 1;
1987 }
1988 tcp_check_reno_reordering(sk, acked);
1989 tcp_verify_left_out(tp);
1990 }
1991
1992 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1993 {
1994 tp->sacked_out = 0;
1995 }
1996
1997 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1998 {
1999 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2000 }
2001
2002 /* F-RTO can only be used if TCP has never retransmitted anything other than
2003 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2004 */
2005 int tcp_use_frto(struct sock *sk)
2006 {
2007 const struct tcp_sock *tp = tcp_sk(sk);
2008 const struct inet_connection_sock *icsk = inet_csk(sk);
2009 struct sk_buff *skb;
2010
2011 if (!sysctl_tcp_frto)
2012 return 0;
2013
2014 /* MTU probe and F-RTO won't really play nicely along currently */
2015 if (icsk->icsk_mtup.probe_size)
2016 return 0;
2017
2018 if (tcp_is_sackfrto(tp))
2019 return 1;
2020
2021 /* Avoid expensive walking of rexmit queue if possible */
2022 if (tp->retrans_out > 1)
2023 return 0;
2024
2025 skb = tcp_write_queue_head(sk);
2026 if (tcp_skb_is_last(sk, skb))
2027 return 1;
2028 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2029 tcp_for_write_queue_from(skb, sk) {
2030 if (skb == tcp_send_head(sk))
2031 break;
2032 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2033 return 0;
2034 /* Short-circuit when first non-SACKed skb has been checked */
2035 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2036 break;
2037 }
2038 return 1;
2039 }
2040
2041 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2042 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2043 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2044 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2045 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2046 * bits are handled if the Loss state is really to be entered (in
2047 * tcp_enter_frto_loss).
2048 *
2049 * Do like tcp_enter_loss() would; when RTO expires the second time it
2050 * does:
2051 * "Reduce ssthresh if it has not yet been made inside this window."
2052 */
2053 void tcp_enter_frto(struct sock *sk)
2054 {
2055 const struct inet_connection_sock *icsk = inet_csk(sk);
2056 struct tcp_sock *tp = tcp_sk(sk);
2057 struct sk_buff *skb;
2058
2059 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2060 tp->snd_una == tp->high_seq ||
2061 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2062 !icsk->icsk_retransmits)) {
2063 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2064 /* Our state is too optimistic in ssthresh() call because cwnd
2065 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2066 * recovery has not yet completed. Pattern would be this: RTO,
2067 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2068 * up here twice).
2069 * RFC4138 should be more specific on what to do, even though
2070 * RTO is quite unlikely to occur after the first Cumulative ACK
2071 * due to back-off and complexity of triggering events ...
2072 */
2073 if (tp->frto_counter) {
2074 u32 stored_cwnd;
2075 stored_cwnd = tp->snd_cwnd;
2076 tp->snd_cwnd = 2;
2077 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2078 tp->snd_cwnd = stored_cwnd;
2079 } else {
2080 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2081 }
2082 /* ... in theory, cong.control module could do "any tricks" in
2083 * ssthresh(), which means that ca_state, lost bits and lost_out
2084 * counter would have to be faked before the call occurs. We
2085 * consider that too expensive, unlikely and hacky, so modules
2086 * using these in ssthresh() must deal these incompatibility
2087 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2088 */
2089 tcp_ca_event(sk, CA_EVENT_FRTO);
2090 }
2091
2092 tp->undo_marker = tp->snd_una;
2093 tp->undo_retrans = 0;
2094
2095 skb = tcp_write_queue_head(sk);
2096 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2097 tp->undo_marker = 0;
2098 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2099 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2100 tp->retrans_out -= tcp_skb_pcount(skb);
2101 }
2102 tcp_verify_left_out(tp);
2103
2104 /* Too bad if TCP was application limited */
2105 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2106
2107 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2108 * The last condition is necessary at least in tp->frto_counter case.
2109 */
2110 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2111 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2112 after(tp->high_seq, tp->snd_una)) {
2113 tp->frto_highmark = tp->high_seq;
2114 } else {
2115 tp->frto_highmark = tp->snd_nxt;
2116 }
2117 tcp_set_ca_state(sk, TCP_CA_Disorder);
2118 tp->high_seq = tp->snd_nxt;
2119 tp->frto_counter = 1;
2120 }
2121
2122 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2123 * which indicates that we should follow the traditional RTO recovery,
2124 * i.e. mark everything lost and do go-back-N retransmission.
2125 */
2126 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2127 {
2128 struct tcp_sock *tp = tcp_sk(sk);
2129 struct sk_buff *skb;
2130
2131 tp->lost_out = 0;
2132 tp->retrans_out = 0;
2133 if (tcp_is_reno(tp))
2134 tcp_reset_reno_sack(tp);
2135
2136 tcp_for_write_queue(skb, sk) {
2137 if (skb == tcp_send_head(sk))
2138 break;
2139
2140 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2141 /*
2142 * Count the retransmission made on RTO correctly (only when
2143 * waiting for the first ACK and did not get it)...
2144 */
2145 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2146 /* For some reason this R-bit might get cleared? */
2147 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2148 tp->retrans_out += tcp_skb_pcount(skb);
2149 /* ...enter this if branch just for the first segment */
2150 flag |= FLAG_DATA_ACKED;
2151 } else {
2152 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2153 tp->undo_marker = 0;
2154 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2155 }
2156
2157 /* Marking forward transmissions that were made after RTO lost
2158 * can cause unnecessary retransmissions in some scenarios,
2159 * SACK blocks will mitigate that in some but not in all cases.
2160 * We used to not mark them but it was causing break-ups with
2161 * receivers that do only in-order receival.
2162 *
2163 * TODO: we could detect presence of such receiver and select
2164 * different behavior per flow.
2165 */
2166 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2167 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2168 tp->lost_out += tcp_skb_pcount(skb);
2169 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2170 }
2171 }
2172 tcp_verify_left_out(tp);
2173
2174 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2175 tp->snd_cwnd_cnt = 0;
2176 tp->snd_cwnd_stamp = tcp_time_stamp;
2177 tp->frto_counter = 0;
2178 tp->bytes_acked = 0;
2179
2180 tp->reordering = min_t(unsigned int, tp->reordering,
2181 sysctl_tcp_reordering);
2182 tcp_set_ca_state(sk, TCP_CA_Loss);
2183 tp->high_seq = tp->snd_nxt;
2184 TCP_ECN_queue_cwr(tp);
2185
2186 tcp_clear_all_retrans_hints(tp);
2187 }
2188
2189 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2190 {
2191 tp->retrans_out = 0;
2192 tp->lost_out = 0;
2193
2194 tp->undo_marker = 0;
2195 tp->undo_retrans = 0;
2196 }
2197
2198 void tcp_clear_retrans(struct tcp_sock *tp)
2199 {
2200 tcp_clear_retrans_partial(tp);
2201
2202 tp->fackets_out = 0;
2203 tp->sacked_out = 0;
2204 }
2205
2206 /* Enter Loss state. If "how" is not zero, forget all SACK information
2207 * and reset tags completely, otherwise preserve SACKs. If receiver
2208 * dropped its ofo queue, we will know this due to reneging detection.
2209 */
2210 void tcp_enter_loss(struct sock *sk, int how)
2211 {
2212 const struct inet_connection_sock *icsk = inet_csk(sk);
2213 struct tcp_sock *tp = tcp_sk(sk);
2214 struct sk_buff *skb;
2215
2216 /* Reduce ssthresh if it has not yet been made inside this window. */
2217 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2218 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2219 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2220 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2221 tcp_ca_event(sk, CA_EVENT_LOSS);
2222 }
2223 tp->snd_cwnd = 1;
2224 tp->snd_cwnd_cnt = 0;
2225 tp->snd_cwnd_stamp = tcp_time_stamp;
2226
2227 tp->bytes_acked = 0;
2228 tcp_clear_retrans_partial(tp);
2229
2230 if (tcp_is_reno(tp))
2231 tcp_reset_reno_sack(tp);
2232
2233 if (!how) {
2234 /* Push undo marker, if it was plain RTO and nothing
2235 * was retransmitted. */
2236 tp->undo_marker = tp->snd_una;
2237 } else {
2238 tp->sacked_out = 0;
2239 tp->fackets_out = 0;
2240 }
2241 tcp_clear_all_retrans_hints(tp);
2242
2243 tcp_for_write_queue(skb, sk) {
2244 if (skb == tcp_send_head(sk))
2245 break;
2246
2247 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2248 tp->undo_marker = 0;
2249 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2250 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2251 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2252 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2253 tp->lost_out += tcp_skb_pcount(skb);
2254 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2255 }
2256 }
2257 tcp_verify_left_out(tp);
2258
2259 tp->reordering = min_t(unsigned int, tp->reordering,
2260 sysctl_tcp_reordering);
2261 tcp_set_ca_state(sk, TCP_CA_Loss);
2262 tp->high_seq = tp->snd_nxt;
2263 TCP_ECN_queue_cwr(tp);
2264 /* Abort F-RTO algorithm if one is in progress */
2265 tp->frto_counter = 0;
2266 }
2267
2268 /* If ACK arrived pointing to a remembered SACK, it means that our
2269 * remembered SACKs do not reflect real state of receiver i.e.
2270 * receiver _host_ is heavily congested (or buggy).
2271 *
2272 * Do processing similar to RTO timeout.
2273 */
2274 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2275 {
2276 if (flag & FLAG_SACK_RENEGING) {
2277 struct inet_connection_sock *icsk = inet_csk(sk);
2278 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2279
2280 tcp_enter_loss(sk, 1);
2281 icsk->icsk_retransmits++;
2282 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2283 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2284 icsk->icsk_rto, TCP_RTO_MAX);
2285 return 1;
2286 }
2287 return 0;
2288 }
2289
2290 static inline int tcp_fackets_out(struct tcp_sock *tp)
2291 {
2292 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2293 }
2294
2295 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2296 * counter when SACK is enabled (without SACK, sacked_out is used for
2297 * that purpose).
2298 *
2299 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2300 * segments up to the highest received SACK block so far and holes in
2301 * between them.
2302 *
2303 * With reordering, holes may still be in flight, so RFC3517 recovery
2304 * uses pure sacked_out (total number of SACKed segments) even though
2305 * it violates the RFC that uses duplicate ACKs, often these are equal
2306 * but when e.g. out-of-window ACKs or packet duplication occurs,
2307 * they differ. Since neither occurs due to loss, TCP should really
2308 * ignore them.
2309 */
2310 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2311 {
2312 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2313 }
2314
2315 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2316 {
2317 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2318 }
2319
2320 static inline int tcp_head_timedout(struct sock *sk)
2321 {
2322 struct tcp_sock *tp = tcp_sk(sk);
2323
2324 return tp->packets_out &&
2325 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2326 }
2327
2328 /* Linux NewReno/SACK/FACK/ECN state machine.
2329 * --------------------------------------
2330 *
2331 * "Open" Normal state, no dubious events, fast path.
2332 * "Disorder" In all the respects it is "Open",
2333 * but requires a bit more attention. It is entered when
2334 * we see some SACKs or dupacks. It is split of "Open"
2335 * mainly to move some processing from fast path to slow one.
2336 * "CWR" CWND was reduced due to some Congestion Notification event.
2337 * It can be ECN, ICMP source quench, local device congestion.
2338 * "Recovery" CWND was reduced, we are fast-retransmitting.
2339 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2340 *
2341 * tcp_fastretrans_alert() is entered:
2342 * - each incoming ACK, if state is not "Open"
2343 * - when arrived ACK is unusual, namely:
2344 * * SACK
2345 * * Duplicate ACK.
2346 * * ECN ECE.
2347 *
2348 * Counting packets in flight is pretty simple.
2349 *
2350 * in_flight = packets_out - left_out + retrans_out
2351 *
2352 * packets_out is SND.NXT-SND.UNA counted in packets.
2353 *
2354 * retrans_out is number of retransmitted segments.
2355 *
2356 * left_out is number of segments left network, but not ACKed yet.
2357 *
2358 * left_out = sacked_out + lost_out
2359 *
2360 * sacked_out: Packets, which arrived to receiver out of order
2361 * and hence not ACKed. With SACKs this number is simply
2362 * amount of SACKed data. Even without SACKs
2363 * it is easy to give pretty reliable estimate of this number,
2364 * counting duplicate ACKs.
2365 *
2366 * lost_out: Packets lost by network. TCP has no explicit
2367 * "loss notification" feedback from network (for now).
2368 * It means that this number can be only _guessed_.
2369 * Actually, it is the heuristics to predict lossage that
2370 * distinguishes different algorithms.
2371 *
2372 * F.e. after RTO, when all the queue is considered as lost,
2373 * lost_out = packets_out and in_flight = retrans_out.
2374 *
2375 * Essentially, we have now two algorithms counting
2376 * lost packets.
2377 *
2378 * FACK: It is the simplest heuristics. As soon as we decided
2379 * that something is lost, we decide that _all_ not SACKed
2380 * packets until the most forward SACK are lost. I.e.
2381 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2382 * It is absolutely correct estimate, if network does not reorder
2383 * packets. And it loses any connection to reality when reordering
2384 * takes place. We use FACK by default until reordering
2385 * is suspected on the path to this destination.
2386 *
2387 * NewReno: when Recovery is entered, we assume that one segment
2388 * is lost (classic Reno). While we are in Recovery and
2389 * a partial ACK arrives, we assume that one more packet
2390 * is lost (NewReno). This heuristics are the same in NewReno
2391 * and SACK.
2392 *
2393 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2394 * deflation etc. CWND is real congestion window, never inflated, changes
2395 * only according to classic VJ rules.
2396 *
2397 * Really tricky (and requiring careful tuning) part of algorithm
2398 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2399 * The first determines the moment _when_ we should reduce CWND and,
2400 * hence, slow down forward transmission. In fact, it determines the moment
2401 * when we decide that hole is caused by loss, rather than by a reorder.
2402 *
2403 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2404 * holes, caused by lost packets.
2405 *
2406 * And the most logically complicated part of algorithm is undo
2407 * heuristics. We detect false retransmits due to both too early
2408 * fast retransmit (reordering) and underestimated RTO, analyzing
2409 * timestamps and D-SACKs. When we detect that some segments were
2410 * retransmitted by mistake and CWND reduction was wrong, we undo
2411 * window reduction and abort recovery phase. This logic is hidden
2412 * inside several functions named tcp_try_undo_<something>.
2413 */
2414
2415 /* This function decides, when we should leave Disordered state
2416 * and enter Recovery phase, reducing congestion window.
2417 *
2418 * Main question: may we further continue forward transmission
2419 * with the same cwnd?
2420 */
2421 static int tcp_time_to_recover(struct sock *sk)
2422 {
2423 struct tcp_sock *tp = tcp_sk(sk);
2424 __u32 packets_out;
2425
2426 /* Do not perform any recovery during F-RTO algorithm */
2427 if (tp->frto_counter)
2428 return 0;
2429
2430 /* Trick#1: The loss is proven. */
2431 if (tp->lost_out)
2432 return 1;
2433
2434 /* Not-A-Trick#2 : Classic rule... */
2435 if (tcp_dupack_heuristics(tp) > tp->reordering)
2436 return 1;
2437
2438 /* Trick#3 : when we use RFC2988 timer restart, fast
2439 * retransmit can be triggered by timeout of queue head.
2440 */
2441 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2442 return 1;
2443
2444 /* Trick#4: It is still not OK... But will it be useful to delay
2445 * recovery more?
2446 */
2447 packets_out = tp->packets_out;
2448 if (packets_out <= tp->reordering &&
2449 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2450 !tcp_may_send_now(sk)) {
2451 /* We have nothing to send. This connection is limited
2452 * either by receiver window or by application.
2453 */
2454 return 1;
2455 }
2456
2457 /* If a thin stream is detected, retransmit after first
2458 * received dupack. Employ only if SACK is supported in order
2459 * to avoid possible corner-case series of spurious retransmissions
2460 * Use only if there are no unsent data.
2461 */
2462 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2463 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2464 tcp_is_sack(tp) && !tcp_send_head(sk))
2465 return 1;
2466
2467 return 0;
2468 }
2469
2470 /* New heuristics: it is possible only after we switched to restart timer
2471 * each time when something is ACKed. Hence, we can detect timed out packets
2472 * during fast retransmit without falling to slow start.
2473 *
2474 * Usefulness of this as is very questionable, since we should know which of
2475 * the segments is the next to timeout which is relatively expensive to find
2476 * in general case unless we add some data structure just for that. The
2477 * current approach certainly won't find the right one too often and when it
2478 * finally does find _something_ it usually marks large part of the window
2479 * right away (because a retransmission with a larger timestamp blocks the
2480 * loop from advancing). -ij
2481 */
2482 static void tcp_timeout_skbs(struct sock *sk)
2483 {
2484 struct tcp_sock *tp = tcp_sk(sk);
2485 struct sk_buff *skb;
2486
2487 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2488 return;
2489
2490 skb = tp->scoreboard_skb_hint;
2491 if (tp->scoreboard_skb_hint == NULL)
2492 skb = tcp_write_queue_head(sk);
2493
2494 tcp_for_write_queue_from(skb, sk) {
2495 if (skb == tcp_send_head(sk))
2496 break;
2497 if (!tcp_skb_timedout(sk, skb))
2498 break;
2499
2500 tcp_skb_mark_lost(tp, skb);
2501 }
2502
2503 tp->scoreboard_skb_hint = skb;
2504
2505 tcp_verify_left_out(tp);
2506 }
2507
2508 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2509 * is against sacked "cnt", otherwise it's against facked "cnt"
2510 */
2511 static void tcp_mark_head_lost(struct sock *sk, int packets)
2512 {
2513 struct tcp_sock *tp = tcp_sk(sk);
2514 struct sk_buff *skb;
2515 int cnt, oldcnt;
2516 int err;
2517 unsigned int mss;
2518
2519 if (packets == 0)
2520 return;
2521
2522 WARN_ON(packets > tp->packets_out);
2523 if (tp->lost_skb_hint) {
2524 skb = tp->lost_skb_hint;
2525 cnt = tp->lost_cnt_hint;
2526 } else {
2527 skb = tcp_write_queue_head(sk);
2528 cnt = 0;
2529 }
2530
2531 tcp_for_write_queue_from(skb, sk) {
2532 if (skb == tcp_send_head(sk))
2533 break;
2534 /* TODO: do this better */
2535 /* this is not the most efficient way to do this... */
2536 tp->lost_skb_hint = skb;
2537 tp->lost_cnt_hint = cnt;
2538
2539 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2540 break;
2541
2542 oldcnt = cnt;
2543 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2544 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2545 cnt += tcp_skb_pcount(skb);
2546
2547 if (cnt > packets) {
2548 if (tcp_is_sack(tp) || (oldcnt >= packets))
2549 break;
2550
2551 mss = skb_shinfo(skb)->gso_size;
2552 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2553 if (err < 0)
2554 break;
2555 cnt = packets;
2556 }
2557
2558 tcp_skb_mark_lost(tp, skb);
2559 }
2560 tcp_verify_left_out(tp);
2561 }
2562
2563 /* Account newly detected lost packet(s) */
2564
2565 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2566 {
2567 struct tcp_sock *tp = tcp_sk(sk);
2568
2569 if (tcp_is_reno(tp)) {
2570 tcp_mark_head_lost(sk, 1);
2571 } else if (tcp_is_fack(tp)) {
2572 int lost = tp->fackets_out - tp->reordering;
2573 if (lost <= 0)
2574 lost = 1;
2575 tcp_mark_head_lost(sk, lost);
2576 } else {
2577 int sacked_upto = tp->sacked_out - tp->reordering;
2578 if (sacked_upto < fast_rexmit)
2579 sacked_upto = fast_rexmit;
2580 tcp_mark_head_lost(sk, sacked_upto);
2581 }
2582
2583 tcp_timeout_skbs(sk);
2584 }
2585
2586 /* CWND moderation, preventing bursts due to too big ACKs
2587 * in dubious situations.
2588 */
2589 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2590 {
2591 tp->snd_cwnd = min(tp->snd_cwnd,
2592 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2593 tp->snd_cwnd_stamp = tcp_time_stamp;
2594 }
2595
2596 /* Lower bound on congestion window is slow start threshold
2597 * unless congestion avoidance choice decides to overide it.
2598 */
2599 static inline u32 tcp_cwnd_min(const struct sock *sk)
2600 {
2601 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2602
2603 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2604 }
2605
2606 /* Decrease cwnd each second ack. */
2607 static void tcp_cwnd_down(struct sock *sk, int flag)
2608 {
2609 struct tcp_sock *tp = tcp_sk(sk);
2610 int decr = tp->snd_cwnd_cnt + 1;
2611
2612 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2613 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2614 tp->snd_cwnd_cnt = decr & 1;
2615 decr >>= 1;
2616
2617 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2618 tp->snd_cwnd -= decr;
2619
2620 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2621 tp->snd_cwnd_stamp = tcp_time_stamp;
2622 }
2623 }
2624
2625 /* Nothing was retransmitted or returned timestamp is less
2626 * than timestamp of the first retransmission.
2627 */
2628 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2629 {
2630 return !tp->retrans_stamp ||
2631 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2632 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2633 }
2634
2635 /* Undo procedures. */
2636
2637 #if FASTRETRANS_DEBUG > 1
2638 static void DBGUNDO(struct sock *sk, const char *msg)
2639 {
2640 struct tcp_sock *tp = tcp_sk(sk);
2641 struct inet_sock *inet = inet_sk(sk);
2642
2643 if (sk->sk_family == AF_INET) {
2644 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2645 msg,
2646 &inet->inet_daddr, ntohs(inet->inet_dport),
2647 tp->snd_cwnd, tcp_left_out(tp),
2648 tp->snd_ssthresh, tp->prior_ssthresh,
2649 tp->packets_out);
2650 }
2651 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2652 else if (sk->sk_family == AF_INET6) {
2653 struct ipv6_pinfo *np = inet6_sk(sk);
2654 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2655 msg,
2656 &np->daddr, ntohs(inet->inet_dport),
2657 tp->snd_cwnd, tcp_left_out(tp),
2658 tp->snd_ssthresh, tp->prior_ssthresh,
2659 tp->packets_out);
2660 }
2661 #endif
2662 }
2663 #else
2664 #define DBGUNDO(x...) do { } while (0)
2665 #endif
2666
2667 static void tcp_undo_cwr(struct sock *sk, const int undo)
2668 {
2669 struct tcp_sock *tp = tcp_sk(sk);
2670
2671 if (tp->prior_ssthresh) {
2672 const struct inet_connection_sock *icsk = inet_csk(sk);
2673
2674 if (icsk->icsk_ca_ops->undo_cwnd)
2675 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2676 else
2677 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2678
2679 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2680 tp->snd_ssthresh = tp->prior_ssthresh;
2681 TCP_ECN_withdraw_cwr(tp);
2682 }
2683 } else {
2684 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2685 }
2686 tcp_moderate_cwnd(tp);
2687 tp->snd_cwnd_stamp = tcp_time_stamp;
2688 }
2689
2690 static inline int tcp_may_undo(struct tcp_sock *tp)
2691 {
2692 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2693 }
2694
2695 /* People celebrate: "We love our President!" */
2696 static int tcp_try_undo_recovery(struct sock *sk)
2697 {
2698 struct tcp_sock *tp = tcp_sk(sk);
2699
2700 if (tcp_may_undo(tp)) {
2701 int mib_idx;
2702
2703 /* Happy end! We did not retransmit anything
2704 * or our original transmission succeeded.
2705 */
2706 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2707 tcp_undo_cwr(sk, 1);
2708 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2709 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2710 else
2711 mib_idx = LINUX_MIB_TCPFULLUNDO;
2712
2713 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2714 tp->undo_marker = 0;
2715 }
2716 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2717 /* Hold old state until something *above* high_seq
2718 * is ACKed. For Reno it is MUST to prevent false
2719 * fast retransmits (RFC2582). SACK TCP is safe. */
2720 tcp_moderate_cwnd(tp);
2721 return 1;
2722 }
2723 tcp_set_ca_state(sk, TCP_CA_Open);
2724 return 0;
2725 }
2726
2727 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2728 static void tcp_try_undo_dsack(struct sock *sk)
2729 {
2730 struct tcp_sock *tp = tcp_sk(sk);
2731
2732 if (tp->undo_marker && !tp->undo_retrans) {
2733 DBGUNDO(sk, "D-SACK");
2734 tcp_undo_cwr(sk, 1);
2735 tp->undo_marker = 0;
2736 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2737 }
2738 }
2739
2740 /* We can clear retrans_stamp when there are no retransmissions in the
2741 * window. It would seem that it is trivially available for us in
2742 * tp->retrans_out, however, that kind of assumptions doesn't consider
2743 * what will happen if errors occur when sending retransmission for the
2744 * second time. ...It could the that such segment has only
2745 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2746 * the head skb is enough except for some reneging corner cases that
2747 * are not worth the effort.
2748 *
2749 * Main reason for all this complexity is the fact that connection dying
2750 * time now depends on the validity of the retrans_stamp, in particular,
2751 * that successive retransmissions of a segment must not advance
2752 * retrans_stamp under any conditions.
2753 */
2754 static int tcp_any_retrans_done(struct sock *sk)
2755 {
2756 struct tcp_sock *tp = tcp_sk(sk);
2757 struct sk_buff *skb;
2758
2759 if (tp->retrans_out)
2760 return 1;
2761
2762 skb = tcp_write_queue_head(sk);
2763 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2764 return 1;
2765
2766 return 0;
2767 }
2768
2769 /* Undo during fast recovery after partial ACK. */
2770
2771 static int tcp_try_undo_partial(struct sock *sk, int acked)
2772 {
2773 struct tcp_sock *tp = tcp_sk(sk);
2774 /* Partial ACK arrived. Force Hoe's retransmit. */
2775 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2776
2777 if (tcp_may_undo(tp)) {
2778 /* Plain luck! Hole if filled with delayed
2779 * packet, rather than with a retransmit.
2780 */
2781 if (!tcp_any_retrans_done(sk))
2782 tp->retrans_stamp = 0;
2783
2784 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2785
2786 DBGUNDO(sk, "Hoe");
2787 tcp_undo_cwr(sk, 0);
2788 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2789
2790 /* So... Do not make Hoe's retransmit yet.
2791 * If the first packet was delayed, the rest
2792 * ones are most probably delayed as well.
2793 */
2794 failed = 0;
2795 }
2796 return failed;
2797 }
2798
2799 /* Undo during loss recovery after partial ACK. */
2800 static int tcp_try_undo_loss(struct sock *sk)
2801 {
2802 struct tcp_sock *tp = tcp_sk(sk);
2803
2804 if (tcp_may_undo(tp)) {
2805 struct sk_buff *skb;
2806 tcp_for_write_queue(skb, sk) {
2807 if (skb == tcp_send_head(sk))
2808 break;
2809 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2810 }
2811
2812 tcp_clear_all_retrans_hints(tp);
2813
2814 DBGUNDO(sk, "partial loss");
2815 tp->lost_out = 0;
2816 tcp_undo_cwr(sk, 1);
2817 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2818 inet_csk(sk)->icsk_retransmits = 0;
2819 tp->undo_marker = 0;
2820 if (tcp_is_sack(tp))
2821 tcp_set_ca_state(sk, TCP_CA_Open);
2822 return 1;
2823 }
2824 return 0;
2825 }
2826
2827 static inline void tcp_complete_cwr(struct sock *sk)
2828 {
2829 struct tcp_sock *tp = tcp_sk(sk);
2830 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2831 tp->snd_cwnd_stamp = tcp_time_stamp;
2832 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2833 }
2834
2835 static void tcp_try_keep_open(struct sock *sk)
2836 {
2837 struct tcp_sock *tp = tcp_sk(sk);
2838 int state = TCP_CA_Open;
2839
2840 if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2841 state = TCP_CA_Disorder;
2842
2843 if (inet_csk(sk)->icsk_ca_state != state) {
2844 tcp_set_ca_state(sk, state);
2845 tp->high_seq = tp->snd_nxt;
2846 }
2847 }
2848
2849 static void tcp_try_to_open(struct sock *sk, int flag)
2850 {
2851 struct tcp_sock *tp = tcp_sk(sk);
2852
2853 tcp_verify_left_out(tp);
2854
2855 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2856 tp->retrans_stamp = 0;
2857
2858 if (flag & FLAG_ECE)
2859 tcp_enter_cwr(sk, 1);
2860
2861 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2862 tcp_try_keep_open(sk);
2863 tcp_moderate_cwnd(tp);
2864 } else {
2865 tcp_cwnd_down(sk, flag);
2866 }
2867 }
2868
2869 static void tcp_mtup_probe_failed(struct sock *sk)
2870 {
2871 struct inet_connection_sock *icsk = inet_csk(sk);
2872
2873 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2874 icsk->icsk_mtup.probe_size = 0;
2875 }
2876
2877 static void tcp_mtup_probe_success(struct sock *sk)
2878 {
2879 struct tcp_sock *tp = tcp_sk(sk);
2880 struct inet_connection_sock *icsk = inet_csk(sk);
2881
2882 /* FIXME: breaks with very large cwnd */
2883 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2884 tp->snd_cwnd = tp->snd_cwnd *
2885 tcp_mss_to_mtu(sk, tp->mss_cache) /
2886 icsk->icsk_mtup.probe_size;
2887 tp->snd_cwnd_cnt = 0;
2888 tp->snd_cwnd_stamp = tcp_time_stamp;
2889 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2890
2891 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2892 icsk->icsk_mtup.probe_size = 0;
2893 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2894 }
2895
2896 /* Do a simple retransmit without using the backoff mechanisms in
2897 * tcp_timer. This is used for path mtu discovery.
2898 * The socket is already locked here.
2899 */
2900 void tcp_simple_retransmit(struct sock *sk)
2901 {
2902 const struct inet_connection_sock *icsk = inet_csk(sk);
2903 struct tcp_sock *tp = tcp_sk(sk);
2904 struct sk_buff *skb;
2905 unsigned int mss = tcp_current_mss(sk);
2906 u32 prior_lost = tp->lost_out;
2907
2908 tcp_for_write_queue(skb, sk) {
2909 if (skb == tcp_send_head(sk))
2910 break;
2911 if (tcp_skb_seglen(skb) > mss &&
2912 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2913 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2914 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2915 tp->retrans_out -= tcp_skb_pcount(skb);
2916 }
2917 tcp_skb_mark_lost_uncond_verify(tp, skb);
2918 }
2919 }
2920
2921 tcp_clear_retrans_hints_partial(tp);
2922
2923 if (prior_lost == tp->lost_out)
2924 return;
2925
2926 if (tcp_is_reno(tp))
2927 tcp_limit_reno_sacked(tp);
2928
2929 tcp_verify_left_out(tp);
2930
2931 /* Don't muck with the congestion window here.
2932 * Reason is that we do not increase amount of _data_
2933 * in network, but units changed and effective
2934 * cwnd/ssthresh really reduced now.
2935 */
2936 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2937 tp->high_seq = tp->snd_nxt;
2938 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2939 tp->prior_ssthresh = 0;
2940 tp->undo_marker = 0;
2941 tcp_set_ca_state(sk, TCP_CA_Loss);
2942 }
2943 tcp_xmit_retransmit_queue(sk);
2944 }
2945 EXPORT_SYMBOL(tcp_simple_retransmit);
2946
2947 /* Process an event, which can update packets-in-flight not trivially.
2948 * Main goal of this function is to calculate new estimate for left_out,
2949 * taking into account both packets sitting in receiver's buffer and
2950 * packets lost by network.
2951 *
2952 * Besides that it does CWND reduction, when packet loss is detected
2953 * and changes state of machine.
2954 *
2955 * It does _not_ decide what to send, it is made in function
2956 * tcp_xmit_retransmit_queue().
2957 */
2958 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2959 {
2960 struct inet_connection_sock *icsk = inet_csk(sk);
2961 struct tcp_sock *tp = tcp_sk(sk);
2962 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2963 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2964 (tcp_fackets_out(tp) > tp->reordering));
2965 int fast_rexmit = 0, mib_idx;
2966
2967 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2968 tp->sacked_out = 0;
2969 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2970 tp->fackets_out = 0;
2971
2972 /* Now state machine starts.
2973 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2974 if (flag & FLAG_ECE)
2975 tp->prior_ssthresh = 0;
2976
2977 /* B. In all the states check for reneging SACKs. */
2978 if (tcp_check_sack_reneging(sk, flag))
2979 return;
2980
2981 /* C. Process data loss notification, provided it is valid. */
2982 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2983 before(tp->snd_una, tp->high_seq) &&
2984 icsk->icsk_ca_state != TCP_CA_Open &&
2985 tp->fackets_out > tp->reordering) {
2986 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2987 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2988 }
2989
2990 /* D. Check consistency of the current state. */
2991 tcp_verify_left_out(tp);
2992
2993 /* E. Check state exit conditions. State can be terminated
2994 * when high_seq is ACKed. */
2995 if (icsk->icsk_ca_state == TCP_CA_Open) {
2996 WARN_ON(tp->retrans_out != 0);
2997 tp->retrans_stamp = 0;
2998 } else if (!before(tp->snd_una, tp->high_seq)) {
2999 switch (icsk->icsk_ca_state) {
3000 case TCP_CA_Loss:
3001 icsk->icsk_retransmits = 0;
3002 if (tcp_try_undo_recovery(sk))
3003 return;
3004 break;
3005
3006 case TCP_CA_CWR:
3007 /* CWR is to be held something *above* high_seq
3008 * is ACKed for CWR bit to reach receiver. */
3009 if (tp->snd_una != tp->high_seq) {
3010 tcp_complete_cwr(sk);
3011 tcp_set_ca_state(sk, TCP_CA_Open);
3012 }
3013 break;
3014
3015 case TCP_CA_Disorder:
3016 tcp_try_undo_dsack(sk);
3017 if (!tp->undo_marker ||
3018 /* For SACK case do not Open to allow to undo
3019 * catching for all duplicate ACKs. */
3020 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3021 tp->undo_marker = 0;
3022 tcp_set_ca_state(sk, TCP_CA_Open);
3023 }
3024 break;
3025
3026 case TCP_CA_Recovery:
3027 if (tcp_is_reno(tp))
3028 tcp_reset_reno_sack(tp);
3029 if (tcp_try_undo_recovery(sk))
3030 return;
3031 tcp_complete_cwr(sk);
3032 break;
3033 }
3034 }
3035
3036 /* F. Process state. */
3037 switch (icsk->icsk_ca_state) {
3038 case TCP_CA_Recovery:
3039 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3040 if (tcp_is_reno(tp) && is_dupack)
3041 tcp_add_reno_sack(sk);
3042 } else
3043 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3044 break;
3045 case TCP_CA_Loss:
3046 if (flag & FLAG_DATA_ACKED)
3047 icsk->icsk_retransmits = 0;
3048 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3049 tcp_reset_reno_sack(tp);
3050 if (!tcp_try_undo_loss(sk)) {
3051 tcp_moderate_cwnd(tp);
3052 tcp_xmit_retransmit_queue(sk);
3053 return;
3054 }
3055 if (icsk->icsk_ca_state != TCP_CA_Open)
3056 return;
3057 /* Loss is undone; fall through to processing in Open state. */
3058 default:
3059 if (tcp_is_reno(tp)) {
3060 if (flag & FLAG_SND_UNA_ADVANCED)
3061 tcp_reset_reno_sack(tp);
3062 if (is_dupack)
3063 tcp_add_reno_sack(sk);
3064 }
3065
3066 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3067 tcp_try_undo_dsack(sk);
3068
3069 if (!tcp_time_to_recover(sk)) {
3070 tcp_try_to_open(sk, flag);
3071 return;
3072 }
3073
3074 /* MTU probe failure: don't reduce cwnd */
3075 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3076 icsk->icsk_mtup.probe_size &&
3077 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3078 tcp_mtup_probe_failed(sk);
3079 /* Restores the reduction we did in tcp_mtup_probe() */
3080 tp->snd_cwnd++;
3081 tcp_simple_retransmit(sk);
3082 return;
3083 }
3084
3085 /* Otherwise enter Recovery state */
3086
3087 if (tcp_is_reno(tp))
3088 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3089 else
3090 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3091
3092 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3093
3094 tp->high_seq = tp->snd_nxt;
3095 tp->prior_ssthresh = 0;
3096 tp->undo_marker = tp->snd_una;
3097 tp->undo_retrans = tp->retrans_out;
3098
3099 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3100 if (!(flag & FLAG_ECE))
3101 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3102 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3103 TCP_ECN_queue_cwr(tp);
3104 }
3105
3106 tp->bytes_acked = 0;
3107 tp->snd_cwnd_cnt = 0;
3108 tcp_set_ca_state(sk, TCP_CA_Recovery);
3109 fast_rexmit = 1;
3110 }
3111
3112 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3113 tcp_update_scoreboard(sk, fast_rexmit);
3114 tcp_cwnd_down(sk, flag);
3115 tcp_xmit_retransmit_queue(sk);
3116 }
3117
3118 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3119 {
3120 tcp_rtt_estimator(sk, seq_rtt);
3121 tcp_set_rto(sk);
3122 inet_csk(sk)->icsk_backoff = 0;
3123 }
3124
3125 /* Read draft-ietf-tcplw-high-performance before mucking
3126 * with this code. (Supersedes RFC1323)
3127 */
3128 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3129 {
3130 /* RTTM Rule: A TSecr value received in a segment is used to
3131 * update the averaged RTT measurement only if the segment
3132 * acknowledges some new data, i.e., only if it advances the
3133 * left edge of the send window.
3134 *
3135 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3136 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3137 *
3138 * Changed: reset backoff as soon as we see the first valid sample.
3139 * If we do not, we get strongly overestimated rto. With timestamps
3140 * samples are accepted even from very old segments: f.e., when rtt=1
3141 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3142 * answer arrives rto becomes 120 seconds! If at least one of segments
3143 * in window is lost... Voila. --ANK (010210)
3144 */
3145 struct tcp_sock *tp = tcp_sk(sk);
3146
3147 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3148 }
3149
3150 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3151 {
3152 /* We don't have a timestamp. Can only use
3153 * packets that are not retransmitted to determine
3154 * rtt estimates. Also, we must not reset the
3155 * backoff for rto until we get a non-retransmitted
3156 * packet. This allows us to deal with a situation
3157 * where the network delay has increased suddenly.
3158 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3159 */
3160
3161 if (flag & FLAG_RETRANS_DATA_ACKED)
3162 return;
3163
3164 tcp_valid_rtt_meas(sk, seq_rtt);
3165 }
3166
3167 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3168 const s32 seq_rtt)
3169 {
3170 const struct tcp_sock *tp = tcp_sk(sk);
3171 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3172 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3173 tcp_ack_saw_tstamp(sk, flag);
3174 else if (seq_rtt >= 0)
3175 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3176 }
3177
3178 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3179 {
3180 const struct inet_connection_sock *icsk = inet_csk(sk);
3181 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3182 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3183 }
3184
3185 /* Restart timer after forward progress on connection.
3186 * RFC2988 recommends to restart timer to now+rto.
3187 */
3188 static void tcp_rearm_rto(struct sock *sk)
3189 {
3190 struct tcp_sock *tp = tcp_sk(sk);
3191
3192 if (!tp->packets_out) {
3193 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3194 } else {
3195 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3196 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3197 }
3198 }
3199
3200 /* If we get here, the whole TSO packet has not been acked. */
3201 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3202 {
3203 struct tcp_sock *tp = tcp_sk(sk);
3204 u32 packets_acked;
3205
3206 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3207
3208 packets_acked = tcp_skb_pcount(skb);
3209 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3210 return 0;
3211 packets_acked -= tcp_skb_pcount(skb);
3212
3213 if (packets_acked) {
3214 BUG_ON(tcp_skb_pcount(skb) == 0);
3215 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3216 }
3217
3218 return packets_acked;
3219 }
3220
3221 /* Remove acknowledged frames from the retransmission queue. If our packet
3222 * is before the ack sequence we can discard it as it's confirmed to have
3223 * arrived at the other end.
3224 */
3225 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3226 u32 prior_snd_una)
3227 {
3228 struct tcp_sock *tp = tcp_sk(sk);
3229 const struct inet_connection_sock *icsk = inet_csk(sk);
3230 struct sk_buff *skb;
3231 u32 now = tcp_time_stamp;
3232 int fully_acked = 1;
3233 int flag = 0;
3234 u32 pkts_acked = 0;
3235 u32 reord = tp->packets_out;
3236 u32 prior_sacked = tp->sacked_out;
3237 s32 seq_rtt = -1;
3238 s32 ca_seq_rtt = -1;
3239 ktime_t last_ackt = net_invalid_timestamp();
3240
3241 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3242 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3243 u32 acked_pcount;
3244 u8 sacked = scb->sacked;
3245
3246 /* Determine how many packets and what bytes were acked, tso and else */
3247 if (after(scb->end_seq, tp->snd_una)) {
3248 if (tcp_skb_pcount(skb) == 1 ||
3249 !after(tp->snd_una, scb->seq))
3250 break;
3251
3252 acked_pcount = tcp_tso_acked(sk, skb);
3253 if (!acked_pcount)
3254 break;
3255
3256 fully_acked = 0;
3257 } else {
3258 acked_pcount = tcp_skb_pcount(skb);
3259 }
3260
3261 if (sacked & TCPCB_RETRANS) {
3262 if (sacked & TCPCB_SACKED_RETRANS)
3263 tp->retrans_out -= acked_pcount;
3264 flag |= FLAG_RETRANS_DATA_ACKED;
3265 ca_seq_rtt = -1;
3266 seq_rtt = -1;
3267 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3268 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3269 } else {
3270 ca_seq_rtt = now - scb->when;
3271 last_ackt = skb->tstamp;
3272 if (seq_rtt < 0) {
3273 seq_rtt = ca_seq_rtt;
3274 }
3275 if (!(sacked & TCPCB_SACKED_ACKED))
3276 reord = min(pkts_acked, reord);
3277 }
3278
3279 if (sacked & TCPCB_SACKED_ACKED)
3280 tp->sacked_out -= acked_pcount;
3281 if (sacked & TCPCB_LOST)
3282 tp->lost_out -= acked_pcount;
3283
3284 tp->packets_out -= acked_pcount;
3285 pkts_acked += acked_pcount;
3286
3287 /* Initial outgoing SYN's get put onto the write_queue
3288 * just like anything else we transmit. It is not
3289 * true data, and if we misinform our callers that
3290 * this ACK acks real data, we will erroneously exit
3291 * connection startup slow start one packet too
3292 * quickly. This is severely frowned upon behavior.
3293 */
3294 if (!(scb->flags & TCPHDR_SYN)) {
3295 flag |= FLAG_DATA_ACKED;
3296 } else {
3297 flag |= FLAG_SYN_ACKED;
3298 tp->retrans_stamp = 0;
3299 }
3300
3301 if (!fully_acked)
3302 break;
3303
3304 tcp_unlink_write_queue(skb, sk);
3305 sk_wmem_free_skb(sk, skb);
3306 tp->scoreboard_skb_hint = NULL;
3307 if (skb == tp->retransmit_skb_hint)
3308 tp->retransmit_skb_hint = NULL;
3309 if (skb == tp->lost_skb_hint)
3310 tp->lost_skb_hint = NULL;
3311 }
3312
3313 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3314 tp->snd_up = tp->snd_una;
3315
3316 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3317 flag |= FLAG_SACK_RENEGING;
3318
3319 if (flag & FLAG_ACKED) {
3320 const struct tcp_congestion_ops *ca_ops
3321 = inet_csk(sk)->icsk_ca_ops;
3322
3323 if (unlikely(icsk->icsk_mtup.probe_size &&
3324 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3325 tcp_mtup_probe_success(sk);
3326 }
3327
3328 tcp_ack_update_rtt(sk, flag, seq_rtt);
3329 tcp_rearm_rto(sk);
3330
3331 if (tcp_is_reno(tp)) {
3332 tcp_remove_reno_sacks(sk, pkts_acked);
3333 } else {
3334 int delta;
3335
3336 /* Non-retransmitted hole got filled? That's reordering */
3337 if (reord < prior_fackets)
3338 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3339
3340 delta = tcp_is_fack(tp) ? pkts_acked :
3341 prior_sacked - tp->sacked_out;
3342 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3343 }
3344
3345 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3346
3347 if (ca_ops->pkts_acked) {
3348 s32 rtt_us = -1;
3349
3350 /* Is the ACK triggering packet unambiguous? */
3351 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3352 /* High resolution needed and available? */
3353 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3354 !ktime_equal(last_ackt,
3355 net_invalid_timestamp()))
3356 rtt_us = ktime_us_delta(ktime_get_real(),
3357 last_ackt);
3358 else if (ca_seq_rtt > 0)
3359 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3360 }
3361
3362 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3363 }
3364 }
3365
3366 #if FASTRETRANS_DEBUG > 0
3367 WARN_ON((int)tp->sacked_out < 0);
3368 WARN_ON((int)tp->lost_out < 0);
3369 WARN_ON((int)tp->retrans_out < 0);
3370 if (!tp->packets_out && tcp_is_sack(tp)) {
3371 icsk = inet_csk(sk);
3372 if (tp->lost_out) {
3373 printk(KERN_DEBUG "Leak l=%u %d\n",
3374 tp->lost_out, icsk->icsk_ca_state);
3375 tp->lost_out = 0;
3376 }
3377 if (tp->sacked_out) {
3378 printk(KERN_DEBUG "Leak s=%u %d\n",
3379 tp->sacked_out, icsk->icsk_ca_state);
3380 tp->sacked_out = 0;
3381 }
3382 if (tp->retrans_out) {
3383 printk(KERN_DEBUG "Leak r=%u %d\n",
3384 tp->retrans_out, icsk->icsk_ca_state);
3385 tp->retrans_out = 0;
3386 }
3387 }
3388 #endif
3389 return flag;
3390 }
3391
3392 static void tcp_ack_probe(struct sock *sk)
3393 {
3394 const struct tcp_sock *tp = tcp_sk(sk);
3395 struct inet_connection_sock *icsk = inet_csk(sk);
3396
3397 /* Was it a usable window open? */
3398
3399 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3400 icsk->icsk_backoff = 0;
3401 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3402 /* Socket must be waked up by subsequent tcp_data_snd_check().
3403 * This function is not for random using!
3404 */
3405 } else {
3406 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3407 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3408 TCP_RTO_MAX);
3409 }
3410 }
3411
3412 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3413 {
3414 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3415 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3416 }
3417
3418 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3419 {
3420 const struct tcp_sock *tp = tcp_sk(sk);
3421 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3422 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3423 }
3424
3425 /* Check that window update is acceptable.
3426 * The function assumes that snd_una<=ack<=snd_next.
3427 */
3428 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3429 const u32 ack, const u32 ack_seq,
3430 const u32 nwin)
3431 {
3432 return (after(ack, tp->snd_una) ||
3433 after(ack_seq, tp->snd_wl1) ||
3434 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3435 }
3436
3437 /* Update our send window.
3438 *
3439 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3440 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3441 */
3442 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3443 u32 ack_seq)
3444 {
3445 struct tcp_sock *tp = tcp_sk(sk);
3446 int flag = 0;
3447 u32 nwin = ntohs(tcp_hdr(skb)->window);
3448
3449 if (likely(!tcp_hdr(skb)->syn))
3450 nwin <<= tp->rx_opt.snd_wscale;
3451
3452 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3453 flag |= FLAG_WIN_UPDATE;
3454 tcp_update_wl(tp, ack_seq);
3455
3456 if (tp->snd_wnd != nwin) {
3457 tp->snd_wnd = nwin;
3458
3459 /* Note, it is the only place, where
3460 * fast path is recovered for sending TCP.
3461 */
3462 tp->pred_flags = 0;
3463 tcp_fast_path_check(sk);
3464
3465 if (nwin > tp->max_window) {
3466 tp->max_window = nwin;
3467 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3468 }
3469 }
3470 }
3471
3472 tp->snd_una = ack;
3473
3474 return flag;
3475 }
3476
3477 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3478 * continue in congestion avoidance.
3479 */
3480 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3481 {
3482 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3483 tp->snd_cwnd_cnt = 0;
3484 tp->bytes_acked = 0;
3485 TCP_ECN_queue_cwr(tp);
3486 tcp_moderate_cwnd(tp);
3487 }
3488
3489 /* A conservative spurious RTO response algorithm: reduce cwnd using
3490 * rate halving and continue in congestion avoidance.
3491 */
3492 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3493 {
3494 tcp_enter_cwr(sk, 0);
3495 }
3496
3497 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3498 {
3499 if (flag & FLAG_ECE)
3500 tcp_ratehalving_spur_to_response(sk);
3501 else
3502 tcp_undo_cwr(sk, 1);
3503 }
3504
3505 /* F-RTO spurious RTO detection algorithm (RFC4138)
3506 *
3507 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3508 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3509 * window (but not to or beyond highest sequence sent before RTO):
3510 * On First ACK, send two new segments out.
3511 * On Second ACK, RTO was likely spurious. Do spurious response (response
3512 * algorithm is not part of the F-RTO detection algorithm
3513 * given in RFC4138 but can be selected separately).
3514 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3515 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3516 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3517 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3518 *
3519 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3520 * original window even after we transmit two new data segments.
3521 *
3522 * SACK version:
3523 * on first step, wait until first cumulative ACK arrives, then move to
3524 * the second step. In second step, the next ACK decides.
3525 *
3526 * F-RTO is implemented (mainly) in four functions:
3527 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3528 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3529 * called when tcp_use_frto() showed green light
3530 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3531 * - tcp_enter_frto_loss() is called if there is not enough evidence
3532 * to prove that the RTO is indeed spurious. It transfers the control
3533 * from F-RTO to the conventional RTO recovery
3534 */
3535 static int tcp_process_frto(struct sock *sk, int flag)
3536 {
3537 struct tcp_sock *tp = tcp_sk(sk);
3538
3539 tcp_verify_left_out(tp);
3540
3541 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3542 if (flag & FLAG_DATA_ACKED)
3543 inet_csk(sk)->icsk_retransmits = 0;
3544
3545 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3546 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3547 tp->undo_marker = 0;
3548
3549 if (!before(tp->snd_una, tp->frto_highmark)) {
3550 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3551 return 1;
3552 }
3553
3554 if (!tcp_is_sackfrto(tp)) {
3555 /* RFC4138 shortcoming in step 2; should also have case c):
3556 * ACK isn't duplicate nor advances window, e.g., opposite dir
3557 * data, winupdate
3558 */
3559 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3560 return 1;
3561
3562 if (!(flag & FLAG_DATA_ACKED)) {
3563 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3564 flag);
3565 return 1;
3566 }
3567 } else {
3568 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3569 /* Prevent sending of new data. */
3570 tp->snd_cwnd = min(tp->snd_cwnd,
3571 tcp_packets_in_flight(tp));
3572 return 1;
3573 }
3574
3575 if ((tp->frto_counter >= 2) &&
3576 (!(flag & FLAG_FORWARD_PROGRESS) ||
3577 ((flag & FLAG_DATA_SACKED) &&
3578 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3579 /* RFC4138 shortcoming (see comment above) */
3580 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3581 (flag & FLAG_NOT_DUP))
3582 return 1;
3583
3584 tcp_enter_frto_loss(sk, 3, flag);
3585 return 1;
3586 }
3587 }
3588
3589 if (tp->frto_counter == 1) {
3590 /* tcp_may_send_now needs to see updated state */
3591 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3592 tp->frto_counter = 2;
3593
3594 if (!tcp_may_send_now(sk))
3595 tcp_enter_frto_loss(sk, 2, flag);
3596
3597 return 1;
3598 } else {
3599 switch (sysctl_tcp_frto_response) {
3600 case 2:
3601 tcp_undo_spur_to_response(sk, flag);
3602 break;
3603 case 1:
3604 tcp_conservative_spur_to_response(tp);
3605 break;
3606 default:
3607 tcp_ratehalving_spur_to_response(sk);
3608 break;
3609 }
3610 tp->frto_counter = 0;
3611 tp->undo_marker = 0;
3612 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3613 }
3614 return 0;
3615 }
3616
3617 /* This routine deals with incoming acks, but not outgoing ones. */
3618 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3619 {
3620 struct inet_connection_sock *icsk = inet_csk(sk);
3621 struct tcp_sock *tp = tcp_sk(sk);
3622 u32 prior_snd_una = tp->snd_una;
3623 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3624 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3625 u32 prior_in_flight;
3626 u32 prior_fackets;
3627 int prior_packets;
3628 int frto_cwnd = 0;
3629
3630 /* If the ack is older than previous acks
3631 * then we can probably ignore it.
3632 */
3633 if (before(ack, prior_snd_una))
3634 goto old_ack;
3635
3636 /* If the ack includes data we haven't sent yet, discard
3637 * this segment (RFC793 Section 3.9).
3638 */
3639 if (after(ack, tp->snd_nxt))
3640 goto invalid_ack;
3641
3642 if (after(ack, prior_snd_una))
3643 flag |= FLAG_SND_UNA_ADVANCED;
3644
3645 if (sysctl_tcp_abc) {
3646 if (icsk->icsk_ca_state < TCP_CA_CWR)
3647 tp->bytes_acked += ack - prior_snd_una;
3648 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3649 /* we assume just one segment left network */
3650 tp->bytes_acked += min(ack - prior_snd_una,
3651 tp->mss_cache);
3652 }
3653
3654 prior_fackets = tp->fackets_out;
3655 prior_in_flight = tcp_packets_in_flight(tp);
3656
3657 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3658 /* Window is constant, pure forward advance.
3659 * No more checks are required.
3660 * Note, we use the fact that SND.UNA>=SND.WL2.
3661 */
3662 tcp_update_wl(tp, ack_seq);
3663 tp->snd_una = ack;
3664 flag |= FLAG_WIN_UPDATE;
3665
3666 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3667
3668 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3669 } else {
3670 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3671 flag |= FLAG_DATA;
3672 else
3673 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3674
3675 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3676
3677 if (TCP_SKB_CB(skb)->sacked)
3678 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3679
3680 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3681 flag |= FLAG_ECE;
3682
3683 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3684 }
3685
3686 /* We passed data and got it acked, remove any soft error
3687 * log. Something worked...
3688 */
3689 sk->sk_err_soft = 0;
3690 icsk->icsk_probes_out = 0;
3691 tp->rcv_tstamp = tcp_time_stamp;
3692 prior_packets = tp->packets_out;
3693 if (!prior_packets)
3694 goto no_queue;
3695
3696 /* See if we can take anything off of the retransmit queue. */
3697 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3698
3699 if (tp->frto_counter)
3700 frto_cwnd = tcp_process_frto(sk, flag);
3701 /* Guarantee sacktag reordering detection against wrap-arounds */
3702 if (before(tp->frto_highmark, tp->snd_una))
3703 tp->frto_highmark = 0;
3704
3705 if (tcp_ack_is_dubious(sk, flag)) {
3706 /* Advance CWND, if state allows this. */
3707 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3708 tcp_may_raise_cwnd(sk, flag))
3709 tcp_cong_avoid(sk, ack, prior_in_flight);
3710 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3711 flag);
3712 } else {
3713 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3714 tcp_cong_avoid(sk, ack, prior_in_flight);
3715 }
3716
3717 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3718 dst_confirm(__sk_dst_get(sk));
3719
3720 return 1;
3721
3722 no_queue:
3723 /* If this ack opens up a zero window, clear backoff. It was
3724 * being used to time the probes, and is probably far higher than
3725 * it needs to be for normal retransmission.
3726 */
3727 if (tcp_send_head(sk))
3728 tcp_ack_probe(sk);
3729 return 1;
3730
3731 invalid_ack:
3732 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3733 return -1;
3734
3735 old_ack:
3736 if (TCP_SKB_CB(skb)->sacked) {
3737 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3738 if (icsk->icsk_ca_state == TCP_CA_Open)
3739 tcp_try_keep_open(sk);
3740 }
3741
3742 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3743 return 0;
3744 }
3745
3746 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3747 * But, this can also be called on packets in the established flow when
3748 * the fast version below fails.
3749 */
3750 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3751 u8 **hvpp, int estab)
3752 {
3753 unsigned char *ptr;
3754 struct tcphdr *th = tcp_hdr(skb);
3755 int length = (th->doff * 4) - sizeof(struct tcphdr);
3756
3757 ptr = (unsigned char *)(th + 1);
3758 opt_rx->saw_tstamp = 0;
3759
3760 while (length > 0) {
3761 int opcode = *ptr++;
3762 int opsize;
3763
3764 switch (opcode) {
3765 case TCPOPT_EOL:
3766 return;
3767 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3768 length--;
3769 continue;
3770 default:
3771 opsize = *ptr++;
3772 if (opsize < 2) /* "silly options" */
3773 return;
3774 if (opsize > length)
3775 return; /* don't parse partial options */
3776 switch (opcode) {
3777 case TCPOPT_MSS:
3778 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3779 u16 in_mss = get_unaligned_be16(ptr);
3780 if (in_mss) {
3781 if (opt_rx->user_mss &&
3782 opt_rx->user_mss < in_mss)
3783 in_mss = opt_rx->user_mss;
3784 opt_rx->mss_clamp = in_mss;
3785 }
3786 }
3787 break;
3788 case TCPOPT_WINDOW:
3789 if (opsize == TCPOLEN_WINDOW && th->syn &&
3790 !estab && sysctl_tcp_window_scaling) {
3791 __u8 snd_wscale = *(__u8 *)ptr;
3792 opt_rx->wscale_ok = 1;
3793 if (snd_wscale > 14) {
3794 if (net_ratelimit())
3795 printk(KERN_INFO "tcp_parse_options: Illegal window "
3796 "scaling value %d >14 received.\n",
3797 snd_wscale);
3798 snd_wscale = 14;
3799 }
3800 opt_rx->snd_wscale = snd_wscale;
3801 }
3802 break;
3803 case TCPOPT_TIMESTAMP:
3804 if ((opsize == TCPOLEN_TIMESTAMP) &&
3805 ((estab && opt_rx->tstamp_ok) ||
3806 (!estab && sysctl_tcp_timestamps))) {
3807 opt_rx->saw_tstamp = 1;
3808 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3809 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3810 }
3811 break;
3812 case TCPOPT_SACK_PERM:
3813 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3814 !estab && sysctl_tcp_sack) {
3815 opt_rx->sack_ok = 1;
3816 tcp_sack_reset(opt_rx);
3817 }
3818 break;
3819
3820 case TCPOPT_SACK:
3821 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3822 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3823 opt_rx->sack_ok) {
3824 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3825 }
3826 break;
3827 #ifdef CONFIG_TCP_MD5SIG
3828 case TCPOPT_MD5SIG:
3829 /*
3830 * The MD5 Hash has already been
3831 * checked (see tcp_v{4,6}_do_rcv()).
3832 */
3833 break;
3834 #endif
3835 case TCPOPT_COOKIE:
3836 /* This option is variable length.
3837 */
3838 switch (opsize) {
3839 case TCPOLEN_COOKIE_BASE:
3840 /* not yet implemented */
3841 break;
3842 case TCPOLEN_COOKIE_PAIR:
3843 /* not yet implemented */
3844 break;
3845 case TCPOLEN_COOKIE_MIN+0:
3846 case TCPOLEN_COOKIE_MIN+2:
3847 case TCPOLEN_COOKIE_MIN+4:
3848 case TCPOLEN_COOKIE_MIN+6:
3849 case TCPOLEN_COOKIE_MAX:
3850 /* 16-bit multiple */
3851 opt_rx->cookie_plus = opsize;
3852 *hvpp = ptr;
3853 break;
3854 default:
3855 /* ignore option */
3856 break;
3857 }
3858 break;
3859 }
3860
3861 ptr += opsize-2;
3862 length -= opsize;
3863 }
3864 }
3865 }
3866 EXPORT_SYMBOL(tcp_parse_options);
3867
3868 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3869 {
3870 __be32 *ptr = (__be32 *)(th + 1);
3871
3872 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3873 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3874 tp->rx_opt.saw_tstamp = 1;
3875 ++ptr;
3876 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3877 ++ptr;
3878 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3879 return 1;
3880 }
3881 return 0;
3882 }
3883
3884 /* Fast parse options. This hopes to only see timestamps.
3885 * If it is wrong it falls back on tcp_parse_options().
3886 */
3887 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3888 struct tcp_sock *tp, u8 **hvpp)
3889 {
3890 /* In the spirit of fast parsing, compare doff directly to constant
3891 * values. Because equality is used, short doff can be ignored here.
3892 */
3893 if (th->doff == (sizeof(*th) / 4)) {
3894 tp->rx_opt.saw_tstamp = 0;
3895 return 0;
3896 } else if (tp->rx_opt.tstamp_ok &&
3897 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3898 if (tcp_parse_aligned_timestamp(tp, th))
3899 return 1;
3900 }
3901 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3902 return 1;
3903 }
3904
3905 #ifdef CONFIG_TCP_MD5SIG
3906 /*
3907 * Parse MD5 Signature option
3908 */
3909 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3910 {
3911 int length = (th->doff << 2) - sizeof (*th);
3912 u8 *ptr = (u8*)(th + 1);
3913
3914 /* If the TCP option is too short, we can short cut */
3915 if (length < TCPOLEN_MD5SIG)
3916 return NULL;
3917
3918 while (length > 0) {
3919 int opcode = *ptr++;
3920 int opsize;
3921
3922 switch(opcode) {
3923 case TCPOPT_EOL:
3924 return NULL;
3925 case TCPOPT_NOP:
3926 length--;
3927 continue;
3928 default:
3929 opsize = *ptr++;
3930 if (opsize < 2 || opsize > length)
3931 return NULL;
3932 if (opcode == TCPOPT_MD5SIG)
3933 return ptr;
3934 }
3935 ptr += opsize - 2;
3936 length -= opsize;
3937 }
3938 return NULL;
3939 }
3940 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3941 #endif
3942
3943 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3944 {
3945 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3946 tp->rx_opt.ts_recent_stamp = get_seconds();
3947 }
3948
3949 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3950 {
3951 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3952 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3953 * extra check below makes sure this can only happen
3954 * for pure ACK frames. -DaveM
3955 *
3956 * Not only, also it occurs for expired timestamps.
3957 */
3958
3959 if (tcp_paws_check(&tp->rx_opt, 0))
3960 tcp_store_ts_recent(tp);
3961 }
3962 }
3963
3964 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3965 *
3966 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3967 * it can pass through stack. So, the following predicate verifies that
3968 * this segment is not used for anything but congestion avoidance or
3969 * fast retransmit. Moreover, we even are able to eliminate most of such
3970 * second order effects, if we apply some small "replay" window (~RTO)
3971 * to timestamp space.
3972 *
3973 * All these measures still do not guarantee that we reject wrapped ACKs
3974 * on networks with high bandwidth, when sequence space is recycled fastly,
3975 * but it guarantees that such events will be very rare and do not affect
3976 * connection seriously. This doesn't look nice, but alas, PAWS is really
3977 * buggy extension.
3978 *
3979 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3980 * states that events when retransmit arrives after original data are rare.
3981 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3982 * the biggest problem on large power networks even with minor reordering.
3983 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3984 * up to bandwidth of 18Gigabit/sec. 8) ]
3985 */
3986
3987 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3988 {
3989 struct tcp_sock *tp = tcp_sk(sk);
3990 struct tcphdr *th = tcp_hdr(skb);
3991 u32 seq = TCP_SKB_CB(skb)->seq;
3992 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3993
3994 return (/* 1. Pure ACK with correct sequence number. */
3995 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3996
3997 /* 2. ... and duplicate ACK. */
3998 ack == tp->snd_una &&
3999
4000 /* 3. ... and does not update window. */
4001 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4002
4003 /* 4. ... and sits in replay window. */
4004 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4005 }
4006
4007 static inline int tcp_paws_discard(const struct sock *sk,
4008 const struct sk_buff *skb)
4009 {
4010 const struct tcp_sock *tp = tcp_sk(sk);
4011
4012 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4013 !tcp_disordered_ack(sk, skb);
4014 }
4015
4016 /* Check segment sequence number for validity.
4017 *
4018 * Segment controls are considered valid, if the segment
4019 * fits to the window after truncation to the window. Acceptability
4020 * of data (and SYN, FIN, of course) is checked separately.
4021 * See tcp_data_queue(), for example.
4022 *
4023 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4024 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4025 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4026 * (borrowed from freebsd)
4027 */
4028
4029 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4030 {
4031 return !before(end_seq, tp->rcv_wup) &&
4032 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4033 }
4034
4035 /* When we get a reset we do this. */
4036 static void tcp_reset(struct sock *sk)
4037 {
4038 /* We want the right error as BSD sees it (and indeed as we do). */
4039 switch (sk->sk_state) {
4040 case TCP_SYN_SENT:
4041 sk->sk_err = ECONNREFUSED;
4042 break;
4043 case TCP_CLOSE_WAIT:
4044 sk->sk_err = EPIPE;
4045 break;
4046 case TCP_CLOSE:
4047 return;
4048 default:
4049 sk->sk_err = ECONNRESET;
4050 }
4051
4052 if (!sock_flag(sk, SOCK_DEAD))
4053 sk->sk_error_report(sk);
4054
4055 tcp_done(sk);
4056 }
4057
4058 /*
4059 * Process the FIN bit. This now behaves as it is supposed to work
4060 * and the FIN takes effect when it is validly part of sequence
4061 * space. Not before when we get holes.
4062 *
4063 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4064 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4065 * TIME-WAIT)
4066 *
4067 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4068 * close and we go into CLOSING (and later onto TIME-WAIT)
4069 *
4070 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4071 */
4072 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4073 {
4074 struct tcp_sock *tp = tcp_sk(sk);
4075
4076 inet_csk_schedule_ack(sk);
4077
4078 sk->sk_shutdown |= RCV_SHUTDOWN;
4079 sock_set_flag(sk, SOCK_DONE);
4080
4081 switch (sk->sk_state) {
4082 case TCP_SYN_RECV:
4083 case TCP_ESTABLISHED:
4084 /* Move to CLOSE_WAIT */
4085 tcp_set_state(sk, TCP_CLOSE_WAIT);
4086 inet_csk(sk)->icsk_ack.pingpong = 1;
4087 break;
4088
4089 case TCP_CLOSE_WAIT:
4090 case TCP_CLOSING:
4091 /* Received a retransmission of the FIN, do
4092 * nothing.
4093 */
4094 break;
4095 case TCP_LAST_ACK:
4096 /* RFC793: Remain in the LAST-ACK state. */
4097 break;
4098
4099 case TCP_FIN_WAIT1:
4100 /* This case occurs when a simultaneous close
4101 * happens, we must ack the received FIN and
4102 * enter the CLOSING state.
4103 */
4104 tcp_send_ack(sk);
4105 tcp_set_state(sk, TCP_CLOSING);
4106 break;
4107 case TCP_FIN_WAIT2:
4108 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4109 tcp_send_ack(sk);
4110 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4111 break;
4112 default:
4113 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4114 * cases we should never reach this piece of code.
4115 */
4116 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4117 __func__, sk->sk_state);
4118 break;
4119 }
4120
4121 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4122 * Probably, we should reset in this case. For now drop them.
4123 */
4124 __skb_queue_purge(&tp->out_of_order_queue);
4125 if (tcp_is_sack(tp))
4126 tcp_sack_reset(&tp->rx_opt);
4127 sk_mem_reclaim(sk);
4128
4129 if (!sock_flag(sk, SOCK_DEAD)) {
4130 sk->sk_state_change(sk);
4131
4132 /* Do not send POLL_HUP for half duplex close. */
4133 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4134 sk->sk_state == TCP_CLOSE)
4135 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4136 else
4137 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4138 }
4139 }
4140
4141 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4142 u32 end_seq)
4143 {
4144 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4145 if (before(seq, sp->start_seq))
4146 sp->start_seq = seq;
4147 if (after(end_seq, sp->end_seq))
4148 sp->end_seq = end_seq;
4149 return 1;
4150 }
4151 return 0;
4152 }
4153
4154 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4155 {
4156 struct tcp_sock *tp = tcp_sk(sk);
4157
4158 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4159 int mib_idx;
4160
4161 if (before(seq, tp->rcv_nxt))
4162 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4163 else
4164 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4165
4166 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4167
4168 tp->rx_opt.dsack = 1;
4169 tp->duplicate_sack[0].start_seq = seq;
4170 tp->duplicate_sack[0].end_seq = end_seq;
4171 }
4172 }
4173
4174 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4175 {
4176 struct tcp_sock *tp = tcp_sk(sk);
4177
4178 if (!tp->rx_opt.dsack)
4179 tcp_dsack_set(sk, seq, end_seq);
4180 else
4181 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4182 }
4183
4184 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4185 {
4186 struct tcp_sock *tp = tcp_sk(sk);
4187
4188 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4189 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4190 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4191 tcp_enter_quickack_mode(sk);
4192
4193 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4194 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4195
4196 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4197 end_seq = tp->rcv_nxt;
4198 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4199 }
4200 }
4201
4202 tcp_send_ack(sk);
4203 }
4204
4205 /* These routines update the SACK block as out-of-order packets arrive or
4206 * in-order packets close up the sequence space.
4207 */
4208 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4209 {
4210 int this_sack;
4211 struct tcp_sack_block *sp = &tp->selective_acks[0];
4212 struct tcp_sack_block *swalk = sp + 1;
4213
4214 /* See if the recent change to the first SACK eats into
4215 * or hits the sequence space of other SACK blocks, if so coalesce.
4216 */
4217 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4218 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4219 int i;
4220
4221 /* Zap SWALK, by moving every further SACK up by one slot.
4222 * Decrease num_sacks.
4223 */
4224 tp->rx_opt.num_sacks--;
4225 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4226 sp[i] = sp[i + 1];
4227 continue;
4228 }
4229 this_sack++, swalk++;
4230 }
4231 }
4232
4233 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4234 {
4235 struct tcp_sock *tp = tcp_sk(sk);
4236 struct tcp_sack_block *sp = &tp->selective_acks[0];
4237 int cur_sacks = tp->rx_opt.num_sacks;
4238 int this_sack;
4239
4240 if (!cur_sacks)
4241 goto new_sack;
4242
4243 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4244 if (tcp_sack_extend(sp, seq, end_seq)) {
4245 /* Rotate this_sack to the first one. */
4246 for (; this_sack > 0; this_sack--, sp--)
4247 swap(*sp, *(sp - 1));
4248 if (cur_sacks > 1)
4249 tcp_sack_maybe_coalesce(tp);
4250 return;
4251 }
4252 }
4253
4254 /* Could not find an adjacent existing SACK, build a new one,
4255 * put it at the front, and shift everyone else down. We
4256 * always know there is at least one SACK present already here.
4257 *
4258 * If the sack array is full, forget about the last one.
4259 */
4260 if (this_sack >= TCP_NUM_SACKS) {
4261 this_sack--;
4262 tp->rx_opt.num_sacks--;
4263 sp--;
4264 }
4265 for (; this_sack > 0; this_sack--, sp--)
4266 *sp = *(sp - 1);
4267
4268 new_sack:
4269 /* Build the new head SACK, and we're done. */
4270 sp->start_seq = seq;
4271 sp->end_seq = end_seq;
4272 tp->rx_opt.num_sacks++;
4273 }
4274
4275 /* RCV.NXT advances, some SACKs should be eaten. */
4276
4277 static void tcp_sack_remove(struct tcp_sock *tp)
4278 {
4279 struct tcp_sack_block *sp = &tp->selective_acks[0];
4280 int num_sacks = tp->rx_opt.num_sacks;
4281 int this_sack;
4282
4283 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4284 if (skb_queue_empty(&tp->out_of_order_queue)) {
4285 tp->rx_opt.num_sacks = 0;
4286 return;
4287 }
4288
4289 for (this_sack = 0; this_sack < num_sacks;) {
4290 /* Check if the start of the sack is covered by RCV.NXT. */
4291 if (!before(tp->rcv_nxt, sp->start_seq)) {
4292 int i;
4293
4294 /* RCV.NXT must cover all the block! */
4295 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4296
4297 /* Zap this SACK, by moving forward any other SACKS. */
4298 for (i=this_sack+1; i < num_sacks; i++)
4299 tp->selective_acks[i-1] = tp->selective_acks[i];
4300 num_sacks--;
4301 continue;
4302 }
4303 this_sack++;
4304 sp++;
4305 }
4306 tp->rx_opt.num_sacks = num_sacks;
4307 }
4308
4309 /* This one checks to see if we can put data from the
4310 * out_of_order queue into the receive_queue.
4311 */
4312 static void tcp_ofo_queue(struct sock *sk)
4313 {
4314 struct tcp_sock *tp = tcp_sk(sk);
4315 __u32 dsack_high = tp->rcv_nxt;
4316 struct sk_buff *skb;
4317
4318 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4319 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4320 break;
4321
4322 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4323 __u32 dsack = dsack_high;
4324 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4325 dsack_high = TCP_SKB_CB(skb)->end_seq;
4326 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4327 }
4328
4329 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4330 SOCK_DEBUG(sk, "ofo packet was already received\n");
4331 __skb_unlink(skb, &tp->out_of_order_queue);
4332 __kfree_skb(skb);
4333 continue;
4334 }
4335 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4336 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4337 TCP_SKB_CB(skb)->end_seq);
4338
4339 __skb_unlink(skb, &tp->out_of_order_queue);
4340 __skb_queue_tail(&sk->sk_receive_queue, skb);
4341 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4342 if (tcp_hdr(skb)->fin)
4343 tcp_fin(skb, sk, tcp_hdr(skb));
4344 }
4345 }
4346
4347 static int tcp_prune_ofo_queue(struct sock *sk);
4348 static int tcp_prune_queue(struct sock *sk);
4349
4350 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4351 {
4352 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4353 !sk_rmem_schedule(sk, size)) {
4354
4355 if (tcp_prune_queue(sk) < 0)
4356 return -1;
4357
4358 if (!sk_rmem_schedule(sk, size)) {
4359 if (!tcp_prune_ofo_queue(sk))
4360 return -1;
4361
4362 if (!sk_rmem_schedule(sk, size))
4363 return -1;
4364 }
4365 }
4366 return 0;
4367 }
4368
4369 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4370 {
4371 struct tcphdr *th = tcp_hdr(skb);
4372 struct tcp_sock *tp = tcp_sk(sk);
4373 int eaten = -1;
4374
4375 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4376 goto drop;
4377
4378 skb_dst_drop(skb);
4379 __skb_pull(skb, th->doff * 4);
4380
4381 TCP_ECN_accept_cwr(tp, skb);
4382
4383 tp->rx_opt.dsack = 0;
4384
4385 /* Queue data for delivery to the user.
4386 * Packets in sequence go to the receive queue.
4387 * Out of sequence packets to the out_of_order_queue.
4388 */
4389 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4390 if (tcp_receive_window(tp) == 0)
4391 goto out_of_window;
4392
4393 /* Ok. In sequence. In window. */
4394 if (tp->ucopy.task == current &&
4395 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4396 sock_owned_by_user(sk) && !tp->urg_data) {
4397 int chunk = min_t(unsigned int, skb->len,
4398 tp->ucopy.len);
4399
4400 __set_current_state(TASK_RUNNING);
4401
4402 local_bh_enable();
4403 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4404 tp->ucopy.len -= chunk;
4405 tp->copied_seq += chunk;
4406 eaten = (chunk == skb->len && !th->fin);
4407 tcp_rcv_space_adjust(sk);
4408 }
4409 local_bh_disable();
4410 }
4411
4412 if (eaten <= 0) {
4413 queue_and_out:
4414 if (eaten < 0 &&
4415 tcp_try_rmem_schedule(sk, skb->truesize))
4416 goto drop;
4417
4418 skb_set_owner_r(skb, sk);
4419 __skb_queue_tail(&sk->sk_receive_queue, skb);
4420 }
4421 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4422 if (skb->len)
4423 tcp_event_data_recv(sk, skb);
4424 if (th->fin)
4425 tcp_fin(skb, sk, th);
4426
4427 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4428 tcp_ofo_queue(sk);
4429
4430 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4431 * gap in queue is filled.
4432 */
4433 if (skb_queue_empty(&tp->out_of_order_queue))
4434 inet_csk(sk)->icsk_ack.pingpong = 0;
4435 }
4436
4437 if (tp->rx_opt.num_sacks)
4438 tcp_sack_remove(tp);
4439
4440 tcp_fast_path_check(sk);
4441
4442 if (eaten > 0)
4443 __kfree_skb(skb);
4444 else if (!sock_flag(sk, SOCK_DEAD))
4445 sk->sk_data_ready(sk, 0);
4446 return;
4447 }
4448
4449 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4450 /* A retransmit, 2nd most common case. Force an immediate ack. */
4451 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4452 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4453
4454 out_of_window:
4455 tcp_enter_quickack_mode(sk);
4456 inet_csk_schedule_ack(sk);
4457 drop:
4458 __kfree_skb(skb);
4459 return;
4460 }
4461
4462 /* Out of window. F.e. zero window probe. */
4463 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4464 goto out_of_window;
4465
4466 tcp_enter_quickack_mode(sk);
4467
4468 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4469 /* Partial packet, seq < rcv_next < end_seq */
4470 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4471 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4472 TCP_SKB_CB(skb)->end_seq);
4473
4474 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4475
4476 /* If window is closed, drop tail of packet. But after
4477 * remembering D-SACK for its head made in previous line.
4478 */
4479 if (!tcp_receive_window(tp))
4480 goto out_of_window;
4481 goto queue_and_out;
4482 }
4483
4484 TCP_ECN_check_ce(tp, skb);
4485
4486 if (tcp_try_rmem_schedule(sk, skb->truesize))
4487 goto drop;
4488
4489 /* Disable header prediction. */
4490 tp->pred_flags = 0;
4491 inet_csk_schedule_ack(sk);
4492
4493 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4494 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4495
4496 skb_set_owner_r(skb, sk);
4497
4498 if (!skb_peek(&tp->out_of_order_queue)) {
4499 /* Initial out of order segment, build 1 SACK. */
4500 if (tcp_is_sack(tp)) {
4501 tp->rx_opt.num_sacks = 1;
4502 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4503 tp->selective_acks[0].end_seq =
4504 TCP_SKB_CB(skb)->end_seq;
4505 }
4506 __skb_queue_head(&tp->out_of_order_queue, skb);
4507 } else {
4508 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4509 u32 seq = TCP_SKB_CB(skb)->seq;
4510 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4511
4512 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4513 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4514
4515 if (!tp->rx_opt.num_sacks ||
4516 tp->selective_acks[0].end_seq != seq)
4517 goto add_sack;
4518
4519 /* Common case: data arrive in order after hole. */
4520 tp->selective_acks[0].end_seq = end_seq;
4521 return;
4522 }
4523
4524 /* Find place to insert this segment. */
4525 while (1) {
4526 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4527 break;
4528 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4529 skb1 = NULL;
4530 break;
4531 }
4532 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4533 }
4534
4535 /* Do skb overlap to previous one? */
4536 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4537 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4538 /* All the bits are present. Drop. */
4539 __kfree_skb(skb);
4540 tcp_dsack_set(sk, seq, end_seq);
4541 goto add_sack;
4542 }
4543 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4544 /* Partial overlap. */
4545 tcp_dsack_set(sk, seq,
4546 TCP_SKB_CB(skb1)->end_seq);
4547 } else {
4548 if (skb_queue_is_first(&tp->out_of_order_queue,
4549 skb1))
4550 skb1 = NULL;
4551 else
4552 skb1 = skb_queue_prev(
4553 &tp->out_of_order_queue,
4554 skb1);
4555 }
4556 }
4557 if (!skb1)
4558 __skb_queue_head(&tp->out_of_order_queue, skb);
4559 else
4560 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4561
4562 /* And clean segments covered by new one as whole. */
4563 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4564 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4565
4566 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4567 break;
4568 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4569 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4570 end_seq);
4571 break;
4572 }
4573 __skb_unlink(skb1, &tp->out_of_order_queue);
4574 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4575 TCP_SKB_CB(skb1)->end_seq);
4576 __kfree_skb(skb1);
4577 }
4578
4579 add_sack:
4580 if (tcp_is_sack(tp))
4581 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4582 }
4583 }
4584
4585 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4586 struct sk_buff_head *list)
4587 {
4588 struct sk_buff *next = NULL;
4589
4590 if (!skb_queue_is_last(list, skb))
4591 next = skb_queue_next(list, skb);
4592
4593 __skb_unlink(skb, list);
4594 __kfree_skb(skb);
4595 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4596
4597 return next;
4598 }
4599
4600 /* Collapse contiguous sequence of skbs head..tail with
4601 * sequence numbers start..end.
4602 *
4603 * If tail is NULL, this means until the end of the list.
4604 *
4605 * Segments with FIN/SYN are not collapsed (only because this
4606 * simplifies code)
4607 */
4608 static void
4609 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4610 struct sk_buff *head, struct sk_buff *tail,
4611 u32 start, u32 end)
4612 {
4613 struct sk_buff *skb, *n;
4614 bool end_of_skbs;
4615
4616 /* First, check that queue is collapsible and find
4617 * the point where collapsing can be useful. */
4618 skb = head;
4619 restart:
4620 end_of_skbs = true;
4621 skb_queue_walk_from_safe(list, skb, n) {
4622 if (skb == tail)
4623 break;
4624 /* No new bits? It is possible on ofo queue. */
4625 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4626 skb = tcp_collapse_one(sk, skb, list);
4627 if (!skb)
4628 break;
4629 goto restart;
4630 }
4631
4632 /* The first skb to collapse is:
4633 * - not SYN/FIN and
4634 * - bloated or contains data before "start" or
4635 * overlaps to the next one.
4636 */
4637 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4638 (tcp_win_from_space(skb->truesize) > skb->len ||
4639 before(TCP_SKB_CB(skb)->seq, start))) {
4640 end_of_skbs = false;
4641 break;
4642 }
4643
4644 if (!skb_queue_is_last(list, skb)) {
4645 struct sk_buff *next = skb_queue_next(list, skb);
4646 if (next != tail &&
4647 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4648 end_of_skbs = false;
4649 break;
4650 }
4651 }
4652
4653 /* Decided to skip this, advance start seq. */
4654 start = TCP_SKB_CB(skb)->end_seq;
4655 }
4656 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4657 return;
4658
4659 while (before(start, end)) {
4660 struct sk_buff *nskb;
4661 unsigned int header = skb_headroom(skb);
4662 int copy = SKB_MAX_ORDER(header, 0);
4663
4664 /* Too big header? This can happen with IPv6. */
4665 if (copy < 0)
4666 return;
4667 if (end - start < copy)
4668 copy = end - start;
4669 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4670 if (!nskb)
4671 return;
4672
4673 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4674 skb_set_network_header(nskb, (skb_network_header(skb) -
4675 skb->head));
4676 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4677 skb->head));
4678 skb_reserve(nskb, header);
4679 memcpy(nskb->head, skb->head, header);
4680 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4681 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4682 __skb_queue_before(list, skb, nskb);
4683 skb_set_owner_r(nskb, sk);
4684
4685 /* Copy data, releasing collapsed skbs. */
4686 while (copy > 0) {
4687 int offset = start - TCP_SKB_CB(skb)->seq;
4688 int size = TCP_SKB_CB(skb)->end_seq - start;
4689
4690 BUG_ON(offset < 0);
4691 if (size > 0) {
4692 size = min(copy, size);
4693 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4694 BUG();
4695 TCP_SKB_CB(nskb)->end_seq += size;
4696 copy -= size;
4697 start += size;
4698 }
4699 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4700 skb = tcp_collapse_one(sk, skb, list);
4701 if (!skb ||
4702 skb == tail ||
4703 tcp_hdr(skb)->syn ||
4704 tcp_hdr(skb)->fin)
4705 return;
4706 }
4707 }
4708 }
4709 }
4710
4711 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4712 * and tcp_collapse() them until all the queue is collapsed.
4713 */
4714 static void tcp_collapse_ofo_queue(struct sock *sk)
4715 {
4716 struct tcp_sock *tp = tcp_sk(sk);
4717 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4718 struct sk_buff *head;
4719 u32 start, end;
4720
4721 if (skb == NULL)
4722 return;
4723
4724 start = TCP_SKB_CB(skb)->seq;
4725 end = TCP_SKB_CB(skb)->end_seq;
4726 head = skb;
4727
4728 for (;;) {
4729 struct sk_buff *next = NULL;
4730
4731 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4732 next = skb_queue_next(&tp->out_of_order_queue, skb);
4733 skb = next;
4734
4735 /* Segment is terminated when we see gap or when
4736 * we are at the end of all the queue. */
4737 if (!skb ||
4738 after(TCP_SKB_CB(skb)->seq, end) ||
4739 before(TCP_SKB_CB(skb)->end_seq, start)) {
4740 tcp_collapse(sk, &tp->out_of_order_queue,
4741 head, skb, start, end);
4742 head = skb;
4743 if (!skb)
4744 break;
4745 /* Start new segment */
4746 start = TCP_SKB_CB(skb)->seq;
4747 end = TCP_SKB_CB(skb)->end_seq;
4748 } else {
4749 if (before(TCP_SKB_CB(skb)->seq, start))
4750 start = TCP_SKB_CB(skb)->seq;
4751 if (after(TCP_SKB_CB(skb)->end_seq, end))
4752 end = TCP_SKB_CB(skb)->end_seq;
4753 }
4754 }
4755 }
4756
4757 /*
4758 * Purge the out-of-order queue.
4759 * Return true if queue was pruned.
4760 */
4761 static int tcp_prune_ofo_queue(struct sock *sk)
4762 {
4763 struct tcp_sock *tp = tcp_sk(sk);
4764 int res = 0;
4765
4766 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4767 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4768 __skb_queue_purge(&tp->out_of_order_queue);
4769
4770 /* Reset SACK state. A conforming SACK implementation will
4771 * do the same at a timeout based retransmit. When a connection
4772 * is in a sad state like this, we care only about integrity
4773 * of the connection not performance.
4774 */
4775 if (tp->rx_opt.sack_ok)
4776 tcp_sack_reset(&tp->rx_opt);
4777 sk_mem_reclaim(sk);
4778 res = 1;
4779 }
4780 return res;
4781 }
4782
4783 /* Reduce allocated memory if we can, trying to get
4784 * the socket within its memory limits again.
4785 *
4786 * Return less than zero if we should start dropping frames
4787 * until the socket owning process reads some of the data
4788 * to stabilize the situation.
4789 */
4790 static int tcp_prune_queue(struct sock *sk)
4791 {
4792 struct tcp_sock *tp = tcp_sk(sk);
4793
4794 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4795
4796 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4797
4798 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4799 tcp_clamp_window(sk);
4800 else if (tcp_memory_pressure)
4801 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4802
4803 tcp_collapse_ofo_queue(sk);
4804 if (!skb_queue_empty(&sk->sk_receive_queue))
4805 tcp_collapse(sk, &sk->sk_receive_queue,
4806 skb_peek(&sk->sk_receive_queue),
4807 NULL,
4808 tp->copied_seq, tp->rcv_nxt);
4809 sk_mem_reclaim(sk);
4810
4811 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4812 return 0;
4813
4814 /* Collapsing did not help, destructive actions follow.
4815 * This must not ever occur. */
4816
4817 tcp_prune_ofo_queue(sk);
4818
4819 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4820 return 0;
4821
4822 /* If we are really being abused, tell the caller to silently
4823 * drop receive data on the floor. It will get retransmitted
4824 * and hopefully then we'll have sufficient space.
4825 */
4826 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4827
4828 /* Massive buffer overcommit. */
4829 tp->pred_flags = 0;
4830 return -1;
4831 }
4832
4833 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4834 * As additional protections, we do not touch cwnd in retransmission phases,
4835 * and if application hit its sndbuf limit recently.
4836 */
4837 void tcp_cwnd_application_limited(struct sock *sk)
4838 {
4839 struct tcp_sock *tp = tcp_sk(sk);
4840
4841 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4842 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4843 /* Limited by application or receiver window. */
4844 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4845 u32 win_used = max(tp->snd_cwnd_used, init_win);
4846 if (win_used < tp->snd_cwnd) {
4847 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4848 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4849 }
4850 tp->snd_cwnd_used = 0;
4851 }
4852 tp->snd_cwnd_stamp = tcp_time_stamp;
4853 }
4854
4855 static int tcp_should_expand_sndbuf(struct sock *sk)
4856 {
4857 struct tcp_sock *tp = tcp_sk(sk);
4858
4859 /* If the user specified a specific send buffer setting, do
4860 * not modify it.
4861 */
4862 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4863 return 0;
4864
4865 /* If we are under global TCP memory pressure, do not expand. */
4866 if (tcp_memory_pressure)
4867 return 0;
4868
4869 /* If we are under soft global TCP memory pressure, do not expand. */
4870 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4871 return 0;
4872
4873 /* If we filled the congestion window, do not expand. */
4874 if (tp->packets_out >= tp->snd_cwnd)
4875 return 0;
4876
4877 return 1;
4878 }
4879
4880 /* When incoming ACK allowed to free some skb from write_queue,
4881 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4882 * on the exit from tcp input handler.
4883 *
4884 * PROBLEM: sndbuf expansion does not work well with largesend.
4885 */
4886 static void tcp_new_space(struct sock *sk)
4887 {
4888 struct tcp_sock *tp = tcp_sk(sk);
4889
4890 if (tcp_should_expand_sndbuf(sk)) {
4891 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4892 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4893 int demanded = max_t(unsigned int, tp->snd_cwnd,
4894 tp->reordering + 1);
4895 sndmem *= 2 * demanded;
4896 if (sndmem > sk->sk_sndbuf)
4897 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4898 tp->snd_cwnd_stamp = tcp_time_stamp;
4899 }
4900
4901 sk->sk_write_space(sk);
4902 }
4903
4904 static void tcp_check_space(struct sock *sk)
4905 {
4906 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4907 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4908 if (sk->sk_socket &&
4909 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4910 tcp_new_space(sk);
4911 }
4912 }
4913
4914 static inline void tcp_data_snd_check(struct sock *sk)
4915 {
4916 tcp_push_pending_frames(sk);
4917 tcp_check_space(sk);
4918 }
4919
4920 /*
4921 * Check if sending an ack is needed.
4922 */
4923 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4924 {
4925 struct tcp_sock *tp = tcp_sk(sk);
4926
4927 /* More than one full frame received... */
4928 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4929 /* ... and right edge of window advances far enough.
4930 * (tcp_recvmsg() will send ACK otherwise). Or...
4931 */
4932 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4933 /* We ACK each frame or... */
4934 tcp_in_quickack_mode(sk) ||
4935 /* We have out of order data. */
4936 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4937 /* Then ack it now */
4938 tcp_send_ack(sk);
4939 } else {
4940 /* Else, send delayed ack. */
4941 tcp_send_delayed_ack(sk);
4942 }
4943 }
4944
4945 static inline void tcp_ack_snd_check(struct sock *sk)
4946 {
4947 if (!inet_csk_ack_scheduled(sk)) {
4948 /* We sent a data segment already. */
4949 return;
4950 }
4951 __tcp_ack_snd_check(sk, 1);
4952 }
4953
4954 /*
4955 * This routine is only called when we have urgent data
4956 * signaled. Its the 'slow' part of tcp_urg. It could be
4957 * moved inline now as tcp_urg is only called from one
4958 * place. We handle URGent data wrong. We have to - as
4959 * BSD still doesn't use the correction from RFC961.
4960 * For 1003.1g we should support a new option TCP_STDURG to permit
4961 * either form (or just set the sysctl tcp_stdurg).
4962 */
4963
4964 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4965 {
4966 struct tcp_sock *tp = tcp_sk(sk);
4967 u32 ptr = ntohs(th->urg_ptr);
4968
4969 if (ptr && !sysctl_tcp_stdurg)
4970 ptr--;
4971 ptr += ntohl(th->seq);
4972
4973 /* Ignore urgent data that we've already seen and read. */
4974 if (after(tp->copied_seq, ptr))
4975 return;
4976
4977 /* Do not replay urg ptr.
4978 *
4979 * NOTE: interesting situation not covered by specs.
4980 * Misbehaving sender may send urg ptr, pointing to segment,
4981 * which we already have in ofo queue. We are not able to fetch
4982 * such data and will stay in TCP_URG_NOTYET until will be eaten
4983 * by recvmsg(). Seems, we are not obliged to handle such wicked
4984 * situations. But it is worth to think about possibility of some
4985 * DoSes using some hypothetical application level deadlock.
4986 */
4987 if (before(ptr, tp->rcv_nxt))
4988 return;
4989
4990 /* Do we already have a newer (or duplicate) urgent pointer? */
4991 if (tp->urg_data && !after(ptr, tp->urg_seq))
4992 return;
4993
4994 /* Tell the world about our new urgent pointer. */
4995 sk_send_sigurg(sk);
4996
4997 /* We may be adding urgent data when the last byte read was
4998 * urgent. To do this requires some care. We cannot just ignore
4999 * tp->copied_seq since we would read the last urgent byte again
5000 * as data, nor can we alter copied_seq until this data arrives
5001 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5002 *
5003 * NOTE. Double Dutch. Rendering to plain English: author of comment
5004 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5005 * and expect that both A and B disappear from stream. This is _wrong_.
5006 * Though this happens in BSD with high probability, this is occasional.
5007 * Any application relying on this is buggy. Note also, that fix "works"
5008 * only in this artificial test. Insert some normal data between A and B and we will
5009 * decline of BSD again. Verdict: it is better to remove to trap
5010 * buggy users.
5011 */
5012 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5013 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5014 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5015 tp->copied_seq++;
5016 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5017 __skb_unlink(skb, &sk->sk_receive_queue);
5018 __kfree_skb(skb);
5019 }
5020 }
5021
5022 tp->urg_data = TCP_URG_NOTYET;
5023 tp->urg_seq = ptr;
5024
5025 /* Disable header prediction. */
5026 tp->pred_flags = 0;
5027 }
5028
5029 /* This is the 'fast' part of urgent handling. */
5030 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5031 {
5032 struct tcp_sock *tp = tcp_sk(sk);
5033
5034 /* Check if we get a new urgent pointer - normally not. */
5035 if (th->urg)
5036 tcp_check_urg(sk, th);
5037
5038 /* Do we wait for any urgent data? - normally not... */
5039 if (tp->urg_data == TCP_URG_NOTYET) {
5040 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5041 th->syn;
5042
5043 /* Is the urgent pointer pointing into this packet? */
5044 if (ptr < skb->len) {
5045 u8 tmp;
5046 if (skb_copy_bits(skb, ptr, &tmp, 1))
5047 BUG();
5048 tp->urg_data = TCP_URG_VALID | tmp;
5049 if (!sock_flag(sk, SOCK_DEAD))
5050 sk->sk_data_ready(sk, 0);
5051 }
5052 }
5053 }
5054
5055 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5056 {
5057 struct tcp_sock *tp = tcp_sk(sk);
5058 int chunk = skb->len - hlen;
5059 int err;
5060
5061 local_bh_enable();
5062 if (skb_csum_unnecessary(skb))
5063 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5064 else
5065 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5066 tp->ucopy.iov);
5067
5068 if (!err) {
5069 tp->ucopy.len -= chunk;
5070 tp->copied_seq += chunk;
5071 tcp_rcv_space_adjust(sk);
5072 }
5073
5074 local_bh_disable();
5075 return err;
5076 }
5077
5078 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5079 struct sk_buff *skb)
5080 {
5081 __sum16 result;
5082
5083 if (sock_owned_by_user(sk)) {
5084 local_bh_enable();
5085 result = __tcp_checksum_complete(skb);
5086 local_bh_disable();
5087 } else {
5088 result = __tcp_checksum_complete(skb);
5089 }
5090 return result;
5091 }
5092
5093 static inline int tcp_checksum_complete_user(struct sock *sk,
5094 struct sk_buff *skb)
5095 {
5096 return !skb_csum_unnecessary(skb) &&
5097 __tcp_checksum_complete_user(sk, skb);
5098 }
5099
5100 #ifdef CONFIG_NET_DMA
5101 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5102 int hlen)
5103 {
5104 struct tcp_sock *tp = tcp_sk(sk);
5105 int chunk = skb->len - hlen;
5106 int dma_cookie;
5107 int copied_early = 0;
5108
5109 if (tp->ucopy.wakeup)
5110 return 0;
5111
5112 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5113 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5114
5115 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5116
5117 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5118 skb, hlen,
5119 tp->ucopy.iov, chunk,
5120 tp->ucopy.pinned_list);
5121
5122 if (dma_cookie < 0)
5123 goto out;
5124
5125 tp->ucopy.dma_cookie = dma_cookie;
5126 copied_early = 1;
5127
5128 tp->ucopy.len -= chunk;
5129 tp->copied_seq += chunk;
5130 tcp_rcv_space_adjust(sk);
5131
5132 if ((tp->ucopy.len == 0) ||
5133 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5134 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5135 tp->ucopy.wakeup = 1;
5136 sk->sk_data_ready(sk, 0);
5137 }
5138 } else if (chunk > 0) {
5139 tp->ucopy.wakeup = 1;
5140 sk->sk_data_ready(sk, 0);
5141 }
5142 out:
5143 return copied_early;
5144 }
5145 #endif /* CONFIG_NET_DMA */
5146
5147 /* Does PAWS and seqno based validation of an incoming segment, flags will
5148 * play significant role here.
5149 */
5150 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5151 struct tcphdr *th, int syn_inerr)
5152 {
5153 u8 *hash_location;
5154 struct tcp_sock *tp = tcp_sk(sk);
5155
5156 /* RFC1323: H1. Apply PAWS check first. */
5157 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5158 tp->rx_opt.saw_tstamp &&
5159 tcp_paws_discard(sk, skb)) {
5160 if (!th->rst) {
5161 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5162 tcp_send_dupack(sk, skb);
5163 goto discard;
5164 }
5165 /* Reset is accepted even if it did not pass PAWS. */
5166 }
5167
5168 /* Step 1: check sequence number */
5169 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5170 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5171 * (RST) segments are validated by checking their SEQ-fields."
5172 * And page 69: "If an incoming segment is not acceptable,
5173 * an acknowledgment should be sent in reply (unless the RST
5174 * bit is set, if so drop the segment and return)".
5175 */
5176 if (!th->rst)
5177 tcp_send_dupack(sk, skb);
5178 goto discard;
5179 }
5180
5181 /* Step 2: check RST bit */
5182 if (th->rst) {
5183 tcp_reset(sk);
5184 goto discard;
5185 }
5186
5187 /* ts_recent update must be made after we are sure that the packet
5188 * is in window.
5189 */
5190 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5191
5192 /* step 3: check security and precedence [ignored] */
5193
5194 /* step 4: Check for a SYN in window. */
5195 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5196 if (syn_inerr)
5197 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5198 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5199 tcp_reset(sk);
5200 return -1;
5201 }
5202
5203 return 1;
5204
5205 discard:
5206 __kfree_skb(skb);
5207 return 0;
5208 }
5209
5210 /*
5211 * TCP receive function for the ESTABLISHED state.
5212 *
5213 * It is split into a fast path and a slow path. The fast path is
5214 * disabled when:
5215 * - A zero window was announced from us - zero window probing
5216 * is only handled properly in the slow path.
5217 * - Out of order segments arrived.
5218 * - Urgent data is expected.
5219 * - There is no buffer space left
5220 * - Unexpected TCP flags/window values/header lengths are received
5221 * (detected by checking the TCP header against pred_flags)
5222 * - Data is sent in both directions. Fast path only supports pure senders
5223 * or pure receivers (this means either the sequence number or the ack
5224 * value must stay constant)
5225 * - Unexpected TCP option.
5226 *
5227 * When these conditions are not satisfied it drops into a standard
5228 * receive procedure patterned after RFC793 to handle all cases.
5229 * The first three cases are guaranteed by proper pred_flags setting,
5230 * the rest is checked inline. Fast processing is turned on in
5231 * tcp_data_queue when everything is OK.
5232 */
5233 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5234 struct tcphdr *th, unsigned len)
5235 {
5236 struct tcp_sock *tp = tcp_sk(sk);
5237 int res;
5238
5239 /*
5240 * Header prediction.
5241 * The code loosely follows the one in the famous
5242 * "30 instruction TCP receive" Van Jacobson mail.
5243 *
5244 * Van's trick is to deposit buffers into socket queue
5245 * on a device interrupt, to call tcp_recv function
5246 * on the receive process context and checksum and copy
5247 * the buffer to user space. smart...
5248 *
5249 * Our current scheme is not silly either but we take the
5250 * extra cost of the net_bh soft interrupt processing...
5251 * We do checksum and copy also but from device to kernel.
5252 */
5253
5254 tp->rx_opt.saw_tstamp = 0;
5255
5256 /* pred_flags is 0xS?10 << 16 + snd_wnd
5257 * if header_prediction is to be made
5258 * 'S' will always be tp->tcp_header_len >> 2
5259 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5260 * turn it off (when there are holes in the receive
5261 * space for instance)
5262 * PSH flag is ignored.
5263 */
5264
5265 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5266 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5267 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5268 int tcp_header_len = tp->tcp_header_len;
5269
5270 /* Timestamp header prediction: tcp_header_len
5271 * is automatically equal to th->doff*4 due to pred_flags
5272 * match.
5273 */
5274
5275 /* Check timestamp */
5276 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5277 /* No? Slow path! */
5278 if (!tcp_parse_aligned_timestamp(tp, th))
5279 goto slow_path;
5280
5281 /* If PAWS failed, check it more carefully in slow path */
5282 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5283 goto slow_path;
5284
5285 /* DO NOT update ts_recent here, if checksum fails
5286 * and timestamp was corrupted part, it will result
5287 * in a hung connection since we will drop all
5288 * future packets due to the PAWS test.
5289 */
5290 }
5291
5292 if (len <= tcp_header_len) {
5293 /* Bulk data transfer: sender */
5294 if (len == tcp_header_len) {
5295 /* Predicted packet is in window by definition.
5296 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5297 * Hence, check seq<=rcv_wup reduces to:
5298 */
5299 if (tcp_header_len ==
5300 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5301 tp->rcv_nxt == tp->rcv_wup)
5302 tcp_store_ts_recent(tp);
5303
5304 /* We know that such packets are checksummed
5305 * on entry.
5306 */
5307 tcp_ack(sk, skb, 0);
5308 __kfree_skb(skb);
5309 tcp_data_snd_check(sk);
5310 return 0;
5311 } else { /* Header too small */
5312 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5313 goto discard;
5314 }
5315 } else {
5316 int eaten = 0;
5317 int copied_early = 0;
5318
5319 if (tp->copied_seq == tp->rcv_nxt &&
5320 len - tcp_header_len <= tp->ucopy.len) {
5321 #ifdef CONFIG_NET_DMA
5322 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5323 copied_early = 1;
5324 eaten = 1;
5325 }
5326 #endif
5327 if (tp->ucopy.task == current &&
5328 sock_owned_by_user(sk) && !copied_early) {
5329 __set_current_state(TASK_RUNNING);
5330
5331 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5332 eaten = 1;
5333 }
5334 if (eaten) {
5335 /* Predicted packet is in window by definition.
5336 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5337 * Hence, check seq<=rcv_wup reduces to:
5338 */
5339 if (tcp_header_len ==
5340 (sizeof(struct tcphdr) +
5341 TCPOLEN_TSTAMP_ALIGNED) &&
5342 tp->rcv_nxt == tp->rcv_wup)
5343 tcp_store_ts_recent(tp);
5344
5345 tcp_rcv_rtt_measure_ts(sk, skb);
5346
5347 __skb_pull(skb, tcp_header_len);
5348 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5349 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5350 }
5351 if (copied_early)
5352 tcp_cleanup_rbuf(sk, skb->len);
5353 }
5354 if (!eaten) {
5355 if (tcp_checksum_complete_user(sk, skb))
5356 goto csum_error;
5357
5358 /* Predicted packet is in window by definition.
5359 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5360 * Hence, check seq<=rcv_wup reduces to:
5361 */
5362 if (tcp_header_len ==
5363 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5364 tp->rcv_nxt == tp->rcv_wup)
5365 tcp_store_ts_recent(tp);
5366
5367 tcp_rcv_rtt_measure_ts(sk, skb);
5368
5369 if ((int)skb->truesize > sk->sk_forward_alloc)
5370 goto step5;
5371
5372 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5373
5374 /* Bulk data transfer: receiver */
5375 __skb_pull(skb, tcp_header_len);
5376 __skb_queue_tail(&sk->sk_receive_queue, skb);
5377 skb_set_owner_r(skb, sk);
5378 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5379 }
5380
5381 tcp_event_data_recv(sk, skb);
5382
5383 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5384 /* Well, only one small jumplet in fast path... */
5385 tcp_ack(sk, skb, FLAG_DATA);
5386 tcp_data_snd_check(sk);
5387 if (!inet_csk_ack_scheduled(sk))
5388 goto no_ack;
5389 }
5390
5391 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5392 __tcp_ack_snd_check(sk, 0);
5393 no_ack:
5394 #ifdef CONFIG_NET_DMA
5395 if (copied_early)
5396 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5397 else
5398 #endif
5399 if (eaten)
5400 __kfree_skb(skb);
5401 else
5402 sk->sk_data_ready(sk, 0);
5403 return 0;
5404 }
5405 }
5406
5407 slow_path:
5408 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5409 goto csum_error;
5410
5411 /*
5412 * Standard slow path.
5413 */
5414
5415 res = tcp_validate_incoming(sk, skb, th, 1);
5416 if (res <= 0)
5417 return -res;
5418
5419 step5:
5420 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5421 goto discard;
5422
5423 tcp_rcv_rtt_measure_ts(sk, skb);
5424
5425 /* Process urgent data. */
5426 tcp_urg(sk, skb, th);
5427
5428 /* step 7: process the segment text */
5429 tcp_data_queue(sk, skb);
5430
5431 tcp_data_snd_check(sk);
5432 tcp_ack_snd_check(sk);
5433 return 0;
5434
5435 csum_error:
5436 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5437
5438 discard:
5439 __kfree_skb(skb);
5440 return 0;
5441 }
5442 EXPORT_SYMBOL(tcp_rcv_established);
5443
5444 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5445 struct tcphdr *th, unsigned len)
5446 {
5447 u8 *hash_location;
5448 struct inet_connection_sock *icsk = inet_csk(sk);
5449 struct tcp_sock *tp = tcp_sk(sk);
5450 struct tcp_cookie_values *cvp = tp->cookie_values;
5451 int saved_clamp = tp->rx_opt.mss_clamp;
5452
5453 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5454
5455 if (th->ack) {
5456 /* rfc793:
5457 * "If the state is SYN-SENT then
5458 * first check the ACK bit
5459 * If the ACK bit is set
5460 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5461 * a reset (unless the RST bit is set, if so drop
5462 * the segment and return)"
5463 *
5464 * We do not send data with SYN, so that RFC-correct
5465 * test reduces to:
5466 */
5467 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5468 goto reset_and_undo;
5469
5470 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5471 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5472 tcp_time_stamp)) {
5473 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5474 goto reset_and_undo;
5475 }
5476
5477 /* Now ACK is acceptable.
5478 *
5479 * "If the RST bit is set
5480 * If the ACK was acceptable then signal the user "error:
5481 * connection reset", drop the segment, enter CLOSED state,
5482 * delete TCB, and return."
5483 */
5484
5485 if (th->rst) {
5486 tcp_reset(sk);
5487 goto discard;
5488 }
5489
5490 /* rfc793:
5491 * "fifth, if neither of the SYN or RST bits is set then
5492 * drop the segment and return."
5493 *
5494 * See note below!
5495 * --ANK(990513)
5496 */
5497 if (!th->syn)
5498 goto discard_and_undo;
5499
5500 /* rfc793:
5501 * "If the SYN bit is on ...
5502 * are acceptable then ...
5503 * (our SYN has been ACKed), change the connection
5504 * state to ESTABLISHED..."
5505 */
5506
5507 TCP_ECN_rcv_synack(tp, th);
5508
5509 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5510 tcp_ack(sk, skb, FLAG_SLOWPATH);
5511
5512 /* Ok.. it's good. Set up sequence numbers and
5513 * move to established.
5514 */
5515 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5516 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5517
5518 /* RFC1323: The window in SYN & SYN/ACK segments is
5519 * never scaled.
5520 */
5521 tp->snd_wnd = ntohs(th->window);
5522 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5523
5524 if (!tp->rx_opt.wscale_ok) {
5525 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5526 tp->window_clamp = min(tp->window_clamp, 65535U);
5527 }
5528
5529 if (tp->rx_opt.saw_tstamp) {
5530 tp->rx_opt.tstamp_ok = 1;
5531 tp->tcp_header_len =
5532 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5533 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5534 tcp_store_ts_recent(tp);
5535 } else {
5536 tp->tcp_header_len = sizeof(struct tcphdr);
5537 }
5538
5539 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5540 tcp_enable_fack(tp);
5541
5542 tcp_mtup_init(sk);
5543 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5544 tcp_initialize_rcv_mss(sk);
5545
5546 /* Remember, tcp_poll() does not lock socket!
5547 * Change state from SYN-SENT only after copied_seq
5548 * is initialized. */
5549 tp->copied_seq = tp->rcv_nxt;
5550
5551 if (cvp != NULL &&
5552 cvp->cookie_pair_size > 0 &&
5553 tp->rx_opt.cookie_plus > 0) {
5554 int cookie_size = tp->rx_opt.cookie_plus
5555 - TCPOLEN_COOKIE_BASE;
5556 int cookie_pair_size = cookie_size
5557 + cvp->cookie_desired;
5558
5559 /* A cookie extension option was sent and returned.
5560 * Note that each incoming SYNACK replaces the
5561 * Responder cookie. The initial exchange is most
5562 * fragile, as protection against spoofing relies
5563 * entirely upon the sequence and timestamp (above).
5564 * This replacement strategy allows the correct pair to
5565 * pass through, while any others will be filtered via
5566 * Responder verification later.
5567 */
5568 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5569 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5570 hash_location, cookie_size);
5571 cvp->cookie_pair_size = cookie_pair_size;
5572 }
5573 }
5574
5575 smp_mb();
5576 tcp_set_state(sk, TCP_ESTABLISHED);
5577
5578 security_inet_conn_established(sk, skb);
5579
5580 /* Make sure socket is routed, for correct metrics. */
5581 icsk->icsk_af_ops->rebuild_header(sk);
5582
5583 tcp_init_metrics(sk);
5584
5585 tcp_init_congestion_control(sk);
5586
5587 /* Prevent spurious tcp_cwnd_restart() on first data
5588 * packet.
5589 */
5590 tp->lsndtime = tcp_time_stamp;
5591
5592 tcp_init_buffer_space(sk);
5593
5594 if (sock_flag(sk, SOCK_KEEPOPEN))
5595 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5596
5597 if (!tp->rx_opt.snd_wscale)
5598 __tcp_fast_path_on(tp, tp->snd_wnd);
5599 else
5600 tp->pred_flags = 0;
5601
5602 if (!sock_flag(sk, SOCK_DEAD)) {
5603 sk->sk_state_change(sk);
5604 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5605 }
5606
5607 if (sk->sk_write_pending ||
5608 icsk->icsk_accept_queue.rskq_defer_accept ||
5609 icsk->icsk_ack.pingpong) {
5610 /* Save one ACK. Data will be ready after
5611 * several ticks, if write_pending is set.
5612 *
5613 * It may be deleted, but with this feature tcpdumps
5614 * look so _wonderfully_ clever, that I was not able
5615 * to stand against the temptation 8) --ANK
5616 */
5617 inet_csk_schedule_ack(sk);
5618 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5619 icsk->icsk_ack.ato = TCP_ATO_MIN;
5620 tcp_incr_quickack(sk);
5621 tcp_enter_quickack_mode(sk);
5622 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5623 TCP_DELACK_MAX, TCP_RTO_MAX);
5624
5625 discard:
5626 __kfree_skb(skb);
5627 return 0;
5628 } else {
5629 tcp_send_ack(sk);
5630 }
5631 return -1;
5632 }
5633
5634 /* No ACK in the segment */
5635
5636 if (th->rst) {
5637 /* rfc793:
5638 * "If the RST bit is set
5639 *
5640 * Otherwise (no ACK) drop the segment and return."
5641 */
5642
5643 goto discard_and_undo;
5644 }
5645
5646 /* PAWS check. */
5647 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5648 tcp_paws_reject(&tp->rx_opt, 0))
5649 goto discard_and_undo;
5650
5651 if (th->syn) {
5652 /* We see SYN without ACK. It is attempt of
5653 * simultaneous connect with crossed SYNs.
5654 * Particularly, it can be connect to self.
5655 */
5656 tcp_set_state(sk, TCP_SYN_RECV);
5657
5658 if (tp->rx_opt.saw_tstamp) {
5659 tp->rx_opt.tstamp_ok = 1;
5660 tcp_store_ts_recent(tp);
5661 tp->tcp_header_len =
5662 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5663 } else {
5664 tp->tcp_header_len = sizeof(struct tcphdr);
5665 }
5666
5667 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5668 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5669
5670 /* RFC1323: The window in SYN & SYN/ACK segments is
5671 * never scaled.
5672 */
5673 tp->snd_wnd = ntohs(th->window);
5674 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5675 tp->max_window = tp->snd_wnd;
5676
5677 TCP_ECN_rcv_syn(tp, th);
5678
5679 tcp_mtup_init(sk);
5680 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5681 tcp_initialize_rcv_mss(sk);
5682
5683 tcp_send_synack(sk);
5684 #if 0
5685 /* Note, we could accept data and URG from this segment.
5686 * There are no obstacles to make this.
5687 *
5688 * However, if we ignore data in ACKless segments sometimes,
5689 * we have no reasons to accept it sometimes.
5690 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5691 * is not flawless. So, discard packet for sanity.
5692 * Uncomment this return to process the data.
5693 */
5694 return -1;
5695 #else
5696 goto discard;
5697 #endif
5698 }
5699 /* "fifth, if neither of the SYN or RST bits is set then
5700 * drop the segment and return."
5701 */
5702
5703 discard_and_undo:
5704 tcp_clear_options(&tp->rx_opt);
5705 tp->rx_opt.mss_clamp = saved_clamp;
5706 goto discard;
5707
5708 reset_and_undo:
5709 tcp_clear_options(&tp->rx_opt);
5710 tp->rx_opt.mss_clamp = saved_clamp;
5711 return 1;
5712 }
5713
5714 /*
5715 * This function implements the receiving procedure of RFC 793 for
5716 * all states except ESTABLISHED and TIME_WAIT.
5717 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5718 * address independent.
5719 */
5720
5721 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5722 struct tcphdr *th, unsigned len)
5723 {
5724 struct tcp_sock *tp = tcp_sk(sk);
5725 struct inet_connection_sock *icsk = inet_csk(sk);
5726 int queued = 0;
5727 int res;
5728
5729 tp->rx_opt.saw_tstamp = 0;
5730
5731 switch (sk->sk_state) {
5732 case TCP_CLOSE:
5733 goto discard;
5734
5735 case TCP_LISTEN:
5736 if (th->ack)
5737 return 1;
5738
5739 if (th->rst)
5740 goto discard;
5741
5742 if (th->syn) {
5743 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5744 return 1;
5745
5746 /* Now we have several options: In theory there is
5747 * nothing else in the frame. KA9Q has an option to
5748 * send data with the syn, BSD accepts data with the
5749 * syn up to the [to be] advertised window and
5750 * Solaris 2.1 gives you a protocol error. For now
5751 * we just ignore it, that fits the spec precisely
5752 * and avoids incompatibilities. It would be nice in
5753 * future to drop through and process the data.
5754 *
5755 * Now that TTCP is starting to be used we ought to
5756 * queue this data.
5757 * But, this leaves one open to an easy denial of
5758 * service attack, and SYN cookies can't defend
5759 * against this problem. So, we drop the data
5760 * in the interest of security over speed unless
5761 * it's still in use.
5762 */
5763 kfree_skb(skb);
5764 return 0;
5765 }
5766 goto discard;
5767
5768 case TCP_SYN_SENT:
5769 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5770 if (queued >= 0)
5771 return queued;
5772
5773 /* Do step6 onward by hand. */
5774 tcp_urg(sk, skb, th);
5775 __kfree_skb(skb);
5776 tcp_data_snd_check(sk);
5777 return 0;
5778 }
5779
5780 res = tcp_validate_incoming(sk, skb, th, 0);
5781 if (res <= 0)
5782 return -res;
5783
5784 /* step 5: check the ACK field */
5785 if (th->ack) {
5786 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5787
5788 switch (sk->sk_state) {
5789 case TCP_SYN_RECV:
5790 if (acceptable) {
5791 tp->copied_seq = tp->rcv_nxt;
5792 smp_mb();
5793 tcp_set_state(sk, TCP_ESTABLISHED);
5794 sk->sk_state_change(sk);
5795
5796 /* Note, that this wakeup is only for marginal
5797 * crossed SYN case. Passively open sockets
5798 * are not waked up, because sk->sk_sleep ==
5799 * NULL and sk->sk_socket == NULL.
5800 */
5801 if (sk->sk_socket)
5802 sk_wake_async(sk,
5803 SOCK_WAKE_IO, POLL_OUT);
5804
5805 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5806 tp->snd_wnd = ntohs(th->window) <<
5807 tp->rx_opt.snd_wscale;
5808 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5809
5810 /* tcp_ack considers this ACK as duplicate
5811 * and does not calculate rtt.
5812 * Force it here.
5813 */
5814 tcp_ack_update_rtt(sk, 0, 0);
5815
5816 if (tp->rx_opt.tstamp_ok)
5817 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5818
5819 /* Make sure socket is routed, for
5820 * correct metrics.
5821 */
5822 icsk->icsk_af_ops->rebuild_header(sk);
5823
5824 tcp_init_metrics(sk);
5825
5826 tcp_init_congestion_control(sk);
5827
5828 /* Prevent spurious tcp_cwnd_restart() on
5829 * first data packet.
5830 */
5831 tp->lsndtime = tcp_time_stamp;
5832
5833 tcp_mtup_init(sk);
5834 tcp_initialize_rcv_mss(sk);
5835 tcp_init_buffer_space(sk);
5836 tcp_fast_path_on(tp);
5837 } else {
5838 return 1;
5839 }
5840 break;
5841
5842 case TCP_FIN_WAIT1:
5843 if (tp->snd_una == tp->write_seq) {
5844 tcp_set_state(sk, TCP_FIN_WAIT2);
5845 sk->sk_shutdown |= SEND_SHUTDOWN;
5846 dst_confirm(__sk_dst_get(sk));
5847
5848 if (!sock_flag(sk, SOCK_DEAD))
5849 /* Wake up lingering close() */
5850 sk->sk_state_change(sk);
5851 else {
5852 int tmo;
5853
5854 if (tp->linger2 < 0 ||
5855 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5856 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5857 tcp_done(sk);
5858 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5859 return 1;
5860 }
5861
5862 tmo = tcp_fin_time(sk);
5863 if (tmo > TCP_TIMEWAIT_LEN) {
5864 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5865 } else if (th->fin || sock_owned_by_user(sk)) {
5866 /* Bad case. We could lose such FIN otherwise.
5867 * It is not a big problem, but it looks confusing
5868 * and not so rare event. We still can lose it now,
5869 * if it spins in bh_lock_sock(), but it is really
5870 * marginal case.
5871 */
5872 inet_csk_reset_keepalive_timer(sk, tmo);
5873 } else {
5874 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5875 goto discard;
5876 }
5877 }
5878 }
5879 break;
5880
5881 case TCP_CLOSING:
5882 if (tp->snd_una == tp->write_seq) {
5883 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5884 goto discard;
5885 }
5886 break;
5887
5888 case TCP_LAST_ACK:
5889 if (tp->snd_una == tp->write_seq) {
5890 tcp_update_metrics(sk);
5891 tcp_done(sk);
5892 goto discard;
5893 }
5894 break;
5895 }
5896 } else
5897 goto discard;
5898
5899 /* step 6: check the URG bit */
5900 tcp_urg(sk, skb, th);
5901
5902 /* step 7: process the segment text */
5903 switch (sk->sk_state) {
5904 case TCP_CLOSE_WAIT:
5905 case TCP_CLOSING:
5906 case TCP_LAST_ACK:
5907 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5908 break;
5909 case TCP_FIN_WAIT1:
5910 case TCP_FIN_WAIT2:
5911 /* RFC 793 says to queue data in these states,
5912 * RFC 1122 says we MUST send a reset.
5913 * BSD 4.4 also does reset.
5914 */
5915 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5916 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5917 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5918 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5919 tcp_reset(sk);
5920 return 1;
5921 }
5922 }
5923 /* Fall through */
5924 case TCP_ESTABLISHED:
5925 tcp_data_queue(sk, skb);
5926 queued = 1;
5927 break;
5928 }
5929
5930 /* tcp_data could move socket to TIME-WAIT */
5931 if (sk->sk_state != TCP_CLOSE) {
5932 tcp_data_snd_check(sk);
5933 tcp_ack_snd_check(sk);
5934 }
5935
5936 if (!queued) {
5937 discard:
5938 __kfree_skb(skb);
5939 }
5940 return 0;
5941 }
5942 EXPORT_SYMBOL(tcp_rcv_state_process);
This page took 0.361666 seconds and 4 git commands to generate.