[TCP]: reno sacked_out count fix
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/config.h>
67 #include <linux/mm.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
84
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
88 int sysctl_tcp_frto;
89 int sysctl_tcp_nometrics_save;
90
91 int sysctl_tcp_moderate_rcvbuf = 1;
92 int sysctl_tcp_abc = 1;
93
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114
115 /* Adapt the MSS value used to make delayed ack decision to the
116 * real world.
117 */
118 static void tcp_measure_rcv_mss(struct sock *sk,
119 const struct sk_buff *skb)
120 {
121 struct inet_connection_sock *icsk = inet_csk(sk);
122 const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 unsigned int len;
124
125 icsk->icsk_ack.last_seg_size = 0;
126
127 /* skb->len may jitter because of SACKs, even if peer
128 * sends good full-sized frames.
129 */
130 len = skb->len;
131 if (len >= icsk->icsk_ack.rcv_mss) {
132 icsk->icsk_ack.rcv_mss = len;
133 } else {
134 /* Otherwise, we make more careful check taking into account,
135 * that SACKs block is variable.
136 *
137 * "len" is invariant segment length, including TCP header.
138 */
139 len += skb->data - skb->h.raw;
140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 /* If PSH is not set, packet should be
142 * full sized, provided peer TCP is not badly broken.
143 * This observation (if it is correct 8)) allows
144 * to handle super-low mtu links fairly.
145 */
146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 /* Subtract also invariant (if peer is RFC compliant),
149 * tcp header plus fixed timestamp option length.
150 * Resulting "len" is MSS free of SACK jitter.
151 */
152 len -= tcp_sk(sk)->tcp_header_len;
153 icsk->icsk_ack.last_seg_size = len;
154 if (len == lss) {
155 icsk->icsk_ack.rcv_mss = len;
156 return;
157 }
158 }
159 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
160 }
161 }
162
163 static void tcp_incr_quickack(struct sock *sk)
164 {
165 struct inet_connection_sock *icsk = inet_csk(sk);
166 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
167
168 if (quickacks==0)
169 quickacks=2;
170 if (quickacks > icsk->icsk_ack.quick)
171 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
172 }
173
174 void tcp_enter_quickack_mode(struct sock *sk)
175 {
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 tcp_incr_quickack(sk);
178 icsk->icsk_ack.pingpong = 0;
179 icsk->icsk_ack.ato = TCP_ATO_MIN;
180 }
181
182 /* Send ACKs quickly, if "quick" count is not exhausted
183 * and the session is not interactive.
184 */
185
186 static inline int tcp_in_quickack_mode(const struct sock *sk)
187 {
188 const struct inet_connection_sock *icsk = inet_csk(sk);
189 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
190 }
191
192 /* Buffer size and advertised window tuning.
193 *
194 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
195 */
196
197 static void tcp_fixup_sndbuf(struct sock *sk)
198 {
199 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
200 sizeof(struct sk_buff);
201
202 if (sk->sk_sndbuf < 3 * sndmem)
203 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
204 }
205
206 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
207 *
208 * All tcp_full_space() is split to two parts: "network" buffer, allocated
209 * forward and advertised in receiver window (tp->rcv_wnd) and
210 * "application buffer", required to isolate scheduling/application
211 * latencies from network.
212 * window_clamp is maximal advertised window. It can be less than
213 * tcp_full_space(), in this case tcp_full_space() - window_clamp
214 * is reserved for "application" buffer. The less window_clamp is
215 * the smoother our behaviour from viewpoint of network, but the lower
216 * throughput and the higher sensitivity of the connection to losses. 8)
217 *
218 * rcv_ssthresh is more strict window_clamp used at "slow start"
219 * phase to predict further behaviour of this connection.
220 * It is used for two goals:
221 * - to enforce header prediction at sender, even when application
222 * requires some significant "application buffer". It is check #1.
223 * - to prevent pruning of receive queue because of misprediction
224 * of receiver window. Check #2.
225 *
226 * The scheme does not work when sender sends good segments opening
227 * window and then starts to feed us spaghetti. But it should work
228 * in common situations. Otherwise, we have to rely on queue collapsing.
229 */
230
231 /* Slow part of check#2. */
232 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
233 const struct sk_buff *skb)
234 {
235 /* Optimize this! */
236 int truesize = tcp_win_from_space(skb->truesize)/2;
237 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
238
239 while (tp->rcv_ssthresh <= window) {
240 if (truesize <= skb->len)
241 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
242
243 truesize >>= 1;
244 window >>= 1;
245 }
246 return 0;
247 }
248
249 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
250 struct sk_buff *skb)
251 {
252 /* Check #1 */
253 if (tp->rcv_ssthresh < tp->window_clamp &&
254 (int)tp->rcv_ssthresh < tcp_space(sk) &&
255 !tcp_memory_pressure) {
256 int incr;
257
258 /* Check #2. Increase window, if skb with such overhead
259 * will fit to rcvbuf in future.
260 */
261 if (tcp_win_from_space(skb->truesize) <= skb->len)
262 incr = 2*tp->advmss;
263 else
264 incr = __tcp_grow_window(sk, tp, skb);
265
266 if (incr) {
267 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
268 inet_csk(sk)->icsk_ack.quick |= 1;
269 }
270 }
271 }
272
273 /* 3. Tuning rcvbuf, when connection enters established state. */
274
275 static void tcp_fixup_rcvbuf(struct sock *sk)
276 {
277 struct tcp_sock *tp = tcp_sk(sk);
278 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
279
280 /* Try to select rcvbuf so that 4 mss-sized segments
281 * will fit to window and corresponding skbs will fit to our rcvbuf.
282 * (was 3; 4 is minimum to allow fast retransmit to work.)
283 */
284 while (tcp_win_from_space(rcvmem) < tp->advmss)
285 rcvmem += 128;
286 if (sk->sk_rcvbuf < 4 * rcvmem)
287 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
288 }
289
290 /* 4. Try to fixup all. It is made immediately after connection enters
291 * established state.
292 */
293 static void tcp_init_buffer_space(struct sock *sk)
294 {
295 struct tcp_sock *tp = tcp_sk(sk);
296 int maxwin;
297
298 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
299 tcp_fixup_rcvbuf(sk);
300 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
301 tcp_fixup_sndbuf(sk);
302
303 tp->rcvq_space.space = tp->rcv_wnd;
304
305 maxwin = tcp_full_space(sk);
306
307 if (tp->window_clamp >= maxwin) {
308 tp->window_clamp = maxwin;
309
310 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
311 tp->window_clamp = max(maxwin -
312 (maxwin >> sysctl_tcp_app_win),
313 4 * tp->advmss);
314 }
315
316 /* Force reservation of one segment. */
317 if (sysctl_tcp_app_win &&
318 tp->window_clamp > 2 * tp->advmss &&
319 tp->window_clamp + tp->advmss > maxwin)
320 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
321
322 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
323 tp->snd_cwnd_stamp = tcp_time_stamp;
324 }
325
326 /* 5. Recalculate window clamp after socket hit its memory bounds. */
327 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
328 {
329 struct inet_connection_sock *icsk = inet_csk(sk);
330
331 icsk->icsk_ack.quick = 0;
332
333 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
334 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
335 !tcp_memory_pressure &&
336 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
337 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
338 sysctl_tcp_rmem[2]);
339 }
340 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
341 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
342 }
343
344
345 /* Initialize RCV_MSS value.
346 * RCV_MSS is an our guess about MSS used by the peer.
347 * We haven't any direct information about the MSS.
348 * It's better to underestimate the RCV_MSS rather than overestimate.
349 * Overestimations make us ACKing less frequently than needed.
350 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
351 */
352 void tcp_initialize_rcv_mss(struct sock *sk)
353 {
354 struct tcp_sock *tp = tcp_sk(sk);
355 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
356
357 hint = min(hint, tp->rcv_wnd/2);
358 hint = min(hint, TCP_MIN_RCVMSS);
359 hint = max(hint, TCP_MIN_MSS);
360
361 inet_csk(sk)->icsk_ack.rcv_mss = hint;
362 }
363
364 /* Receiver "autotuning" code.
365 *
366 * The algorithm for RTT estimation w/o timestamps is based on
367 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
368 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
369 *
370 * More detail on this code can be found at
371 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
372 * though this reference is out of date. A new paper
373 * is pending.
374 */
375 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
376 {
377 u32 new_sample = tp->rcv_rtt_est.rtt;
378 long m = sample;
379
380 if (m == 0)
381 m = 1;
382
383 if (new_sample != 0) {
384 /* If we sample in larger samples in the non-timestamp
385 * case, we could grossly overestimate the RTT especially
386 * with chatty applications or bulk transfer apps which
387 * are stalled on filesystem I/O.
388 *
389 * Also, since we are only going for a minimum in the
390 * non-timestamp case, we do not smooth things out
391 * else with timestamps disabled convergence takes too
392 * long.
393 */
394 if (!win_dep) {
395 m -= (new_sample >> 3);
396 new_sample += m;
397 } else if (m < new_sample)
398 new_sample = m << 3;
399 } else {
400 /* No previous measure. */
401 new_sample = m << 3;
402 }
403
404 if (tp->rcv_rtt_est.rtt != new_sample)
405 tp->rcv_rtt_est.rtt = new_sample;
406 }
407
408 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
409 {
410 if (tp->rcv_rtt_est.time == 0)
411 goto new_measure;
412 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
413 return;
414 tcp_rcv_rtt_update(tp,
415 jiffies - tp->rcv_rtt_est.time,
416 1);
417
418 new_measure:
419 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
420 tp->rcv_rtt_est.time = tcp_time_stamp;
421 }
422
423 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
424 {
425 struct tcp_sock *tp = tcp_sk(sk);
426 if (tp->rx_opt.rcv_tsecr &&
427 (TCP_SKB_CB(skb)->end_seq -
428 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
429 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
430 }
431
432 /*
433 * This function should be called every time data is copied to user space.
434 * It calculates the appropriate TCP receive buffer space.
435 */
436 void tcp_rcv_space_adjust(struct sock *sk)
437 {
438 struct tcp_sock *tp = tcp_sk(sk);
439 int time;
440 int space;
441
442 if (tp->rcvq_space.time == 0)
443 goto new_measure;
444
445 time = tcp_time_stamp - tp->rcvq_space.time;
446 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
447 tp->rcv_rtt_est.rtt == 0)
448 return;
449
450 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
451
452 space = max(tp->rcvq_space.space, space);
453
454 if (tp->rcvq_space.space != space) {
455 int rcvmem;
456
457 tp->rcvq_space.space = space;
458
459 if (sysctl_tcp_moderate_rcvbuf &&
460 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
461 int new_clamp = space;
462
463 /* Receive space grows, normalize in order to
464 * take into account packet headers and sk_buff
465 * structure overhead.
466 */
467 space /= tp->advmss;
468 if (!space)
469 space = 1;
470 rcvmem = (tp->advmss + MAX_TCP_HEADER +
471 16 + sizeof(struct sk_buff));
472 while (tcp_win_from_space(rcvmem) < tp->advmss)
473 rcvmem += 128;
474 space *= rcvmem;
475 space = min(space, sysctl_tcp_rmem[2]);
476 if (space > sk->sk_rcvbuf) {
477 sk->sk_rcvbuf = space;
478
479 /* Make the window clamp follow along. */
480 tp->window_clamp = new_clamp;
481 }
482 }
483 }
484
485 new_measure:
486 tp->rcvq_space.seq = tp->copied_seq;
487 tp->rcvq_space.time = tcp_time_stamp;
488 }
489
490 /* There is something which you must keep in mind when you analyze the
491 * behavior of the tp->ato delayed ack timeout interval. When a
492 * connection starts up, we want to ack as quickly as possible. The
493 * problem is that "good" TCP's do slow start at the beginning of data
494 * transmission. The means that until we send the first few ACK's the
495 * sender will sit on his end and only queue most of his data, because
496 * he can only send snd_cwnd unacked packets at any given time. For
497 * each ACK we send, he increments snd_cwnd and transmits more of his
498 * queue. -DaveM
499 */
500 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
501 {
502 struct inet_connection_sock *icsk = inet_csk(sk);
503 u32 now;
504
505 inet_csk_schedule_ack(sk);
506
507 tcp_measure_rcv_mss(sk, skb);
508
509 tcp_rcv_rtt_measure(tp);
510
511 now = tcp_time_stamp;
512
513 if (!icsk->icsk_ack.ato) {
514 /* The _first_ data packet received, initialize
515 * delayed ACK engine.
516 */
517 tcp_incr_quickack(sk);
518 icsk->icsk_ack.ato = TCP_ATO_MIN;
519 } else {
520 int m = now - icsk->icsk_ack.lrcvtime;
521
522 if (m <= TCP_ATO_MIN/2) {
523 /* The fastest case is the first. */
524 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
525 } else if (m < icsk->icsk_ack.ato) {
526 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
527 if (icsk->icsk_ack.ato > icsk->icsk_rto)
528 icsk->icsk_ack.ato = icsk->icsk_rto;
529 } else if (m > icsk->icsk_rto) {
530 /* Too long gap. Apparently sender failed to
531 * restart window, so that we send ACKs quickly.
532 */
533 tcp_incr_quickack(sk);
534 sk_stream_mem_reclaim(sk);
535 }
536 }
537 icsk->icsk_ack.lrcvtime = now;
538
539 TCP_ECN_check_ce(tp, skb);
540
541 if (skb->len >= 128)
542 tcp_grow_window(sk, tp, skb);
543 }
544
545 /* Called to compute a smoothed rtt estimate. The data fed to this
546 * routine either comes from timestamps, or from segments that were
547 * known _not_ to have been retransmitted [see Karn/Partridge
548 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
549 * piece by Van Jacobson.
550 * NOTE: the next three routines used to be one big routine.
551 * To save cycles in the RFC 1323 implementation it was better to break
552 * it up into three procedures. -- erics
553 */
554 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
555 {
556 struct tcp_sock *tp = tcp_sk(sk);
557 long m = mrtt; /* RTT */
558
559 /* The following amusing code comes from Jacobson's
560 * article in SIGCOMM '88. Note that rtt and mdev
561 * are scaled versions of rtt and mean deviation.
562 * This is designed to be as fast as possible
563 * m stands for "measurement".
564 *
565 * On a 1990 paper the rto value is changed to:
566 * RTO = rtt + 4 * mdev
567 *
568 * Funny. This algorithm seems to be very broken.
569 * These formulae increase RTO, when it should be decreased, increase
570 * too slowly, when it should be increased quickly, decrease too quickly
571 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
572 * does not matter how to _calculate_ it. Seems, it was trap
573 * that VJ failed to avoid. 8)
574 */
575 if(m == 0)
576 m = 1;
577 if (tp->srtt != 0) {
578 m -= (tp->srtt >> 3); /* m is now error in rtt est */
579 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
580 if (m < 0) {
581 m = -m; /* m is now abs(error) */
582 m -= (tp->mdev >> 2); /* similar update on mdev */
583 /* This is similar to one of Eifel findings.
584 * Eifel blocks mdev updates when rtt decreases.
585 * This solution is a bit different: we use finer gain
586 * for mdev in this case (alpha*beta).
587 * Like Eifel it also prevents growth of rto,
588 * but also it limits too fast rto decreases,
589 * happening in pure Eifel.
590 */
591 if (m > 0)
592 m >>= 3;
593 } else {
594 m -= (tp->mdev >> 2); /* similar update on mdev */
595 }
596 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
597 if (tp->mdev > tp->mdev_max) {
598 tp->mdev_max = tp->mdev;
599 if (tp->mdev_max > tp->rttvar)
600 tp->rttvar = tp->mdev_max;
601 }
602 if (after(tp->snd_una, tp->rtt_seq)) {
603 if (tp->mdev_max < tp->rttvar)
604 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
605 tp->rtt_seq = tp->snd_nxt;
606 tp->mdev_max = TCP_RTO_MIN;
607 }
608 } else {
609 /* no previous measure. */
610 tp->srtt = m<<3; /* take the measured time to be rtt */
611 tp->mdev = m<<1; /* make sure rto = 3*rtt */
612 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
613 tp->rtt_seq = tp->snd_nxt;
614 }
615 }
616
617 /* Calculate rto without backoff. This is the second half of Van Jacobson's
618 * routine referred to above.
619 */
620 static inline void tcp_set_rto(struct sock *sk)
621 {
622 const struct tcp_sock *tp = tcp_sk(sk);
623 /* Old crap is replaced with new one. 8)
624 *
625 * More seriously:
626 * 1. If rtt variance happened to be less 50msec, it is hallucination.
627 * It cannot be less due to utterly erratic ACK generation made
628 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
629 * to do with delayed acks, because at cwnd>2 true delack timeout
630 * is invisible. Actually, Linux-2.4 also generates erratic
631 * ACKs in some circumstances.
632 */
633 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
634
635 /* 2. Fixups made earlier cannot be right.
636 * If we do not estimate RTO correctly without them,
637 * all the algo is pure shit and should be replaced
638 * with correct one. It is exactly, which we pretend to do.
639 */
640 }
641
642 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
643 * guarantees that rto is higher.
644 */
645 static inline void tcp_bound_rto(struct sock *sk)
646 {
647 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
648 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
649 }
650
651 /* Save metrics learned by this TCP session.
652 This function is called only, when TCP finishes successfully
653 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
654 */
655 void tcp_update_metrics(struct sock *sk)
656 {
657 struct tcp_sock *tp = tcp_sk(sk);
658 struct dst_entry *dst = __sk_dst_get(sk);
659
660 if (sysctl_tcp_nometrics_save)
661 return;
662
663 dst_confirm(dst);
664
665 if (dst && (dst->flags&DST_HOST)) {
666 const struct inet_connection_sock *icsk = inet_csk(sk);
667 int m;
668
669 if (icsk->icsk_backoff || !tp->srtt) {
670 /* This session failed to estimate rtt. Why?
671 * Probably, no packets returned in time.
672 * Reset our results.
673 */
674 if (!(dst_metric_locked(dst, RTAX_RTT)))
675 dst->metrics[RTAX_RTT-1] = 0;
676 return;
677 }
678
679 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
680
681 /* If newly calculated rtt larger than stored one,
682 * store new one. Otherwise, use EWMA. Remember,
683 * rtt overestimation is always better than underestimation.
684 */
685 if (!(dst_metric_locked(dst, RTAX_RTT))) {
686 if (m <= 0)
687 dst->metrics[RTAX_RTT-1] = tp->srtt;
688 else
689 dst->metrics[RTAX_RTT-1] -= (m>>3);
690 }
691
692 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
693 if (m < 0)
694 m = -m;
695
696 /* Scale deviation to rttvar fixed point */
697 m >>= 1;
698 if (m < tp->mdev)
699 m = tp->mdev;
700
701 if (m >= dst_metric(dst, RTAX_RTTVAR))
702 dst->metrics[RTAX_RTTVAR-1] = m;
703 else
704 dst->metrics[RTAX_RTTVAR-1] -=
705 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
706 }
707
708 if (tp->snd_ssthresh >= 0xFFFF) {
709 /* Slow start still did not finish. */
710 if (dst_metric(dst, RTAX_SSTHRESH) &&
711 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
712 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
713 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
714 if (!dst_metric_locked(dst, RTAX_CWND) &&
715 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
716 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
717 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
718 icsk->icsk_ca_state == TCP_CA_Open) {
719 /* Cong. avoidance phase, cwnd is reliable. */
720 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
721 dst->metrics[RTAX_SSTHRESH-1] =
722 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
723 if (!dst_metric_locked(dst, RTAX_CWND))
724 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
725 } else {
726 /* Else slow start did not finish, cwnd is non-sense,
727 ssthresh may be also invalid.
728 */
729 if (!dst_metric_locked(dst, RTAX_CWND))
730 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
731 if (dst->metrics[RTAX_SSTHRESH-1] &&
732 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
733 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
734 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
735 }
736
737 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
738 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
739 tp->reordering != sysctl_tcp_reordering)
740 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
741 }
742 }
743 }
744
745 /* Numbers are taken from RFC2414. */
746 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
747 {
748 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
749
750 if (!cwnd) {
751 if (tp->mss_cache > 1460)
752 cwnd = 2;
753 else
754 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
755 }
756 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
757 }
758
759 /* Set slow start threshold and cwnd not falling to slow start */
760 void tcp_enter_cwr(struct sock *sk)
761 {
762 struct tcp_sock *tp = tcp_sk(sk);
763
764 tp->prior_ssthresh = 0;
765 tp->bytes_acked = 0;
766 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
767 tp->undo_marker = 0;
768 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
769 tp->snd_cwnd = min(tp->snd_cwnd,
770 tcp_packets_in_flight(tp) + 1U);
771 tp->snd_cwnd_cnt = 0;
772 tp->high_seq = tp->snd_nxt;
773 tp->snd_cwnd_stamp = tcp_time_stamp;
774 TCP_ECN_queue_cwr(tp);
775
776 tcp_set_ca_state(sk, TCP_CA_CWR);
777 }
778 }
779
780 /* Initialize metrics on socket. */
781
782 static void tcp_init_metrics(struct sock *sk)
783 {
784 struct tcp_sock *tp = tcp_sk(sk);
785 struct dst_entry *dst = __sk_dst_get(sk);
786
787 if (dst == NULL)
788 goto reset;
789
790 dst_confirm(dst);
791
792 if (dst_metric_locked(dst, RTAX_CWND))
793 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
794 if (dst_metric(dst, RTAX_SSTHRESH)) {
795 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
796 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
797 tp->snd_ssthresh = tp->snd_cwnd_clamp;
798 }
799 if (dst_metric(dst, RTAX_REORDERING) &&
800 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
801 tp->rx_opt.sack_ok &= ~2;
802 tp->reordering = dst_metric(dst, RTAX_REORDERING);
803 }
804
805 if (dst_metric(dst, RTAX_RTT) == 0)
806 goto reset;
807
808 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
809 goto reset;
810
811 /* Initial rtt is determined from SYN,SYN-ACK.
812 * The segment is small and rtt may appear much
813 * less than real one. Use per-dst memory
814 * to make it more realistic.
815 *
816 * A bit of theory. RTT is time passed after "normal" sized packet
817 * is sent until it is ACKed. In normal circumstances sending small
818 * packets force peer to delay ACKs and calculation is correct too.
819 * The algorithm is adaptive and, provided we follow specs, it
820 * NEVER underestimate RTT. BUT! If peer tries to make some clever
821 * tricks sort of "quick acks" for time long enough to decrease RTT
822 * to low value, and then abruptly stops to do it and starts to delay
823 * ACKs, wait for troubles.
824 */
825 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
826 tp->srtt = dst_metric(dst, RTAX_RTT);
827 tp->rtt_seq = tp->snd_nxt;
828 }
829 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
830 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
831 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
832 }
833 tcp_set_rto(sk);
834 tcp_bound_rto(sk);
835 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
836 goto reset;
837 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
838 tp->snd_cwnd_stamp = tcp_time_stamp;
839 return;
840
841 reset:
842 /* Play conservative. If timestamps are not
843 * supported, TCP will fail to recalculate correct
844 * rtt, if initial rto is too small. FORGET ALL AND RESET!
845 */
846 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
847 tp->srtt = 0;
848 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
849 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
850 }
851 }
852
853 static void tcp_update_reordering(struct sock *sk, const int metric,
854 const int ts)
855 {
856 struct tcp_sock *tp = tcp_sk(sk);
857 if (metric > tp->reordering) {
858 tp->reordering = min(TCP_MAX_REORDERING, metric);
859
860 /* This exciting event is worth to be remembered. 8) */
861 if (ts)
862 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
863 else if (IsReno(tp))
864 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
865 else if (IsFack(tp))
866 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
867 else
868 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
869 #if FASTRETRANS_DEBUG > 1
870 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
871 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
872 tp->reordering,
873 tp->fackets_out,
874 tp->sacked_out,
875 tp->undo_marker ? tp->undo_retrans : 0);
876 #endif
877 /* Disable FACK yet. */
878 tp->rx_opt.sack_ok &= ~2;
879 }
880 }
881
882 /* This procedure tags the retransmission queue when SACKs arrive.
883 *
884 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
885 * Packets in queue with these bits set are counted in variables
886 * sacked_out, retrans_out and lost_out, correspondingly.
887 *
888 * Valid combinations are:
889 * Tag InFlight Description
890 * 0 1 - orig segment is in flight.
891 * S 0 - nothing flies, orig reached receiver.
892 * L 0 - nothing flies, orig lost by net.
893 * R 2 - both orig and retransmit are in flight.
894 * L|R 1 - orig is lost, retransmit is in flight.
895 * S|R 1 - orig reached receiver, retrans is still in flight.
896 * (L|S|R is logically valid, it could occur when L|R is sacked,
897 * but it is equivalent to plain S and code short-curcuits it to S.
898 * L|S is logically invalid, it would mean -1 packet in flight 8))
899 *
900 * These 6 states form finite state machine, controlled by the following events:
901 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
902 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
903 * 3. Loss detection event of one of three flavors:
904 * A. Scoreboard estimator decided the packet is lost.
905 * A'. Reno "three dupacks" marks head of queue lost.
906 * A''. Its FACK modfication, head until snd.fack is lost.
907 * B. SACK arrives sacking data transmitted after never retransmitted
908 * hole was sent out.
909 * C. SACK arrives sacking SND.NXT at the moment, when the
910 * segment was retransmitted.
911 * 4. D-SACK added new rule: D-SACK changes any tag to S.
912 *
913 * It is pleasant to note, that state diagram turns out to be commutative,
914 * so that we are allowed not to be bothered by order of our actions,
915 * when multiple events arrive simultaneously. (see the function below).
916 *
917 * Reordering detection.
918 * --------------------
919 * Reordering metric is maximal distance, which a packet can be displaced
920 * in packet stream. With SACKs we can estimate it:
921 *
922 * 1. SACK fills old hole and the corresponding segment was not
923 * ever retransmitted -> reordering. Alas, we cannot use it
924 * when segment was retransmitted.
925 * 2. The last flaw is solved with D-SACK. D-SACK arrives
926 * for retransmitted and already SACKed segment -> reordering..
927 * Both of these heuristics are not used in Loss state, when we cannot
928 * account for retransmits accurately.
929 */
930 static int
931 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
932 {
933 const struct inet_connection_sock *icsk = inet_csk(sk);
934 struct tcp_sock *tp = tcp_sk(sk);
935 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
936 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
937 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
938 int reord = tp->packets_out;
939 int prior_fackets;
940 u32 lost_retrans = 0;
941 int flag = 0;
942 int dup_sack = 0;
943 int i;
944
945 if (!tp->sacked_out)
946 tp->fackets_out = 0;
947 prior_fackets = tp->fackets_out;
948
949 /* SACK fastpath:
950 * if the only SACK change is the increase of the end_seq of
951 * the first block then only apply that SACK block
952 * and use retrans queue hinting otherwise slowpath */
953 flag = 1;
954 for (i = 0; i< num_sacks; i++) {
955 __u32 start_seq = ntohl(sp[i].start_seq);
956 __u32 end_seq = ntohl(sp[i].end_seq);
957
958 if (i == 0){
959 if (tp->recv_sack_cache[i].start_seq != start_seq)
960 flag = 0;
961 } else {
962 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
963 (tp->recv_sack_cache[i].end_seq != end_seq))
964 flag = 0;
965 }
966 tp->recv_sack_cache[i].start_seq = start_seq;
967 tp->recv_sack_cache[i].end_seq = end_seq;
968
969 /* Check for D-SACK. */
970 if (i == 0) {
971 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
972
973 if (before(start_seq, ack)) {
974 dup_sack = 1;
975 tp->rx_opt.sack_ok |= 4;
976 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
977 } else if (num_sacks > 1 &&
978 !after(end_seq, ntohl(sp[1].end_seq)) &&
979 !before(start_seq, ntohl(sp[1].start_seq))) {
980 dup_sack = 1;
981 tp->rx_opt.sack_ok |= 4;
982 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
983 }
984
985 /* D-SACK for already forgotten data...
986 * Do dumb counting. */
987 if (dup_sack &&
988 !after(end_seq, prior_snd_una) &&
989 after(end_seq, tp->undo_marker))
990 tp->undo_retrans--;
991
992 /* Eliminate too old ACKs, but take into
993 * account more or less fresh ones, they can
994 * contain valid SACK info.
995 */
996 if (before(ack, prior_snd_una - tp->max_window))
997 return 0;
998 }
999 }
1000
1001 if (flag)
1002 num_sacks = 1;
1003 else {
1004 int j;
1005 tp->fastpath_skb_hint = NULL;
1006
1007 /* order SACK blocks to allow in order walk of the retrans queue */
1008 for (i = num_sacks-1; i > 0; i--) {
1009 for (j = 0; j < i; j++){
1010 if (after(ntohl(sp[j].start_seq),
1011 ntohl(sp[j+1].start_seq))){
1012 sp[j].start_seq = htonl(tp->recv_sack_cache[j+1].start_seq);
1013 sp[j].end_seq = htonl(tp->recv_sack_cache[j+1].end_seq);
1014 sp[j+1].start_seq = htonl(tp->recv_sack_cache[j].start_seq);
1015 sp[j+1].end_seq = htonl(tp->recv_sack_cache[j].end_seq);
1016 }
1017
1018 }
1019 }
1020 }
1021
1022 /* clear flag as used for different purpose in following code */
1023 flag = 0;
1024
1025 for (i=0; i<num_sacks; i++, sp++) {
1026 struct sk_buff *skb;
1027 __u32 start_seq = ntohl(sp->start_seq);
1028 __u32 end_seq = ntohl(sp->end_seq);
1029 int fack_count;
1030
1031 /* Use SACK fastpath hint if valid */
1032 if (tp->fastpath_skb_hint) {
1033 skb = tp->fastpath_skb_hint;
1034 fack_count = tp->fastpath_cnt_hint;
1035 } else {
1036 skb = sk->sk_write_queue.next;
1037 fack_count = 0;
1038 }
1039
1040 /* Event "B" in the comment above. */
1041 if (after(end_seq, tp->high_seq))
1042 flag |= FLAG_DATA_LOST;
1043
1044 sk_stream_for_retrans_queue_from(skb, sk) {
1045 int in_sack, pcount;
1046 u8 sacked;
1047
1048 tp->fastpath_skb_hint = skb;
1049 tp->fastpath_cnt_hint = fack_count;
1050
1051 /* The retransmission queue is always in order, so
1052 * we can short-circuit the walk early.
1053 */
1054 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1055 break;
1056
1057 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1058 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1059
1060 pcount = tcp_skb_pcount(skb);
1061
1062 if (pcount > 1 && !in_sack &&
1063 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1064 unsigned int pkt_len;
1065
1066 in_sack = !after(start_seq,
1067 TCP_SKB_CB(skb)->seq);
1068
1069 if (!in_sack)
1070 pkt_len = (start_seq -
1071 TCP_SKB_CB(skb)->seq);
1072 else
1073 pkt_len = (end_seq -
1074 TCP_SKB_CB(skb)->seq);
1075 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->tso_size))
1076 break;
1077 pcount = tcp_skb_pcount(skb);
1078 }
1079
1080 fack_count += pcount;
1081
1082 sacked = TCP_SKB_CB(skb)->sacked;
1083
1084 /* Account D-SACK for retransmitted packet. */
1085 if ((dup_sack && in_sack) &&
1086 (sacked & TCPCB_RETRANS) &&
1087 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1088 tp->undo_retrans--;
1089
1090 /* The frame is ACKed. */
1091 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1092 if (sacked&TCPCB_RETRANS) {
1093 if ((dup_sack && in_sack) &&
1094 (sacked&TCPCB_SACKED_ACKED))
1095 reord = min(fack_count, reord);
1096 } else {
1097 /* If it was in a hole, we detected reordering. */
1098 if (fack_count < prior_fackets &&
1099 !(sacked&TCPCB_SACKED_ACKED))
1100 reord = min(fack_count, reord);
1101 }
1102
1103 /* Nothing to do; acked frame is about to be dropped. */
1104 continue;
1105 }
1106
1107 if ((sacked&TCPCB_SACKED_RETRANS) &&
1108 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1109 (!lost_retrans || after(end_seq, lost_retrans)))
1110 lost_retrans = end_seq;
1111
1112 if (!in_sack)
1113 continue;
1114
1115 if (!(sacked&TCPCB_SACKED_ACKED)) {
1116 if (sacked & TCPCB_SACKED_RETRANS) {
1117 /* If the segment is not tagged as lost,
1118 * we do not clear RETRANS, believing
1119 * that retransmission is still in flight.
1120 */
1121 if (sacked & TCPCB_LOST) {
1122 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1123 tp->lost_out -= tcp_skb_pcount(skb);
1124 tp->retrans_out -= tcp_skb_pcount(skb);
1125
1126 /* clear lost hint */
1127 tp->retransmit_skb_hint = NULL;
1128 }
1129 } else {
1130 /* New sack for not retransmitted frame,
1131 * which was in hole. It is reordering.
1132 */
1133 if (!(sacked & TCPCB_RETRANS) &&
1134 fack_count < prior_fackets)
1135 reord = min(fack_count, reord);
1136
1137 if (sacked & TCPCB_LOST) {
1138 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1139 tp->lost_out -= tcp_skb_pcount(skb);
1140
1141 /* clear lost hint */
1142 tp->retransmit_skb_hint = NULL;
1143 }
1144 }
1145
1146 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1147 flag |= FLAG_DATA_SACKED;
1148 tp->sacked_out += tcp_skb_pcount(skb);
1149
1150 if (fack_count > tp->fackets_out)
1151 tp->fackets_out = fack_count;
1152 } else {
1153 if (dup_sack && (sacked&TCPCB_RETRANS))
1154 reord = min(fack_count, reord);
1155 }
1156
1157 /* D-SACK. We can detect redundant retransmission
1158 * in S|R and plain R frames and clear it.
1159 * undo_retrans is decreased above, L|R frames
1160 * are accounted above as well.
1161 */
1162 if (dup_sack &&
1163 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1164 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1165 tp->retrans_out -= tcp_skb_pcount(skb);
1166 tp->retransmit_skb_hint = NULL;
1167 }
1168 }
1169 }
1170
1171 /* Check for lost retransmit. This superb idea is
1172 * borrowed from "ratehalving". Event "C".
1173 * Later note: FACK people cheated me again 8),
1174 * we have to account for reordering! Ugly,
1175 * but should help.
1176 */
1177 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1178 struct sk_buff *skb;
1179
1180 sk_stream_for_retrans_queue(skb, sk) {
1181 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1182 break;
1183 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1184 continue;
1185 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1186 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1187 (IsFack(tp) ||
1188 !before(lost_retrans,
1189 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1190 tp->mss_cache))) {
1191 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1192 tp->retrans_out -= tcp_skb_pcount(skb);
1193
1194 /* clear lost hint */
1195 tp->retransmit_skb_hint = NULL;
1196
1197 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1198 tp->lost_out += tcp_skb_pcount(skb);
1199 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1200 flag |= FLAG_DATA_SACKED;
1201 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1202 }
1203 }
1204 }
1205 }
1206
1207 tp->left_out = tp->sacked_out + tp->lost_out;
1208
1209 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1210 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1211
1212 #if FASTRETRANS_DEBUG > 0
1213 BUG_TRAP((int)tp->sacked_out >= 0);
1214 BUG_TRAP((int)tp->lost_out >= 0);
1215 BUG_TRAP((int)tp->retrans_out >= 0);
1216 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1217 #endif
1218 return flag;
1219 }
1220
1221 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1222 * segments to see from the next ACKs whether any data was really missing.
1223 * If the RTO was spurious, new ACKs should arrive.
1224 */
1225 void tcp_enter_frto(struct sock *sk)
1226 {
1227 const struct inet_connection_sock *icsk = inet_csk(sk);
1228 struct tcp_sock *tp = tcp_sk(sk);
1229 struct sk_buff *skb;
1230
1231 tp->frto_counter = 1;
1232
1233 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1234 tp->snd_una == tp->high_seq ||
1235 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1236 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1237 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1238 tcp_ca_event(sk, CA_EVENT_FRTO);
1239 }
1240
1241 /* Have to clear retransmission markers here to keep the bookkeeping
1242 * in shape, even though we are not yet in Loss state.
1243 * If something was really lost, it is eventually caught up
1244 * in tcp_enter_frto_loss.
1245 */
1246 tp->retrans_out = 0;
1247 tp->undo_marker = tp->snd_una;
1248 tp->undo_retrans = 0;
1249
1250 sk_stream_for_retrans_queue(skb, sk) {
1251 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1252 }
1253 tcp_sync_left_out(tp);
1254
1255 tcp_set_ca_state(sk, TCP_CA_Open);
1256 tp->frto_highmark = tp->snd_nxt;
1257 }
1258
1259 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1260 * which indicates that we should follow the traditional RTO recovery,
1261 * i.e. mark everything lost and do go-back-N retransmission.
1262 */
1263 static void tcp_enter_frto_loss(struct sock *sk)
1264 {
1265 struct tcp_sock *tp = tcp_sk(sk);
1266 struct sk_buff *skb;
1267 int cnt = 0;
1268
1269 tp->sacked_out = 0;
1270 tp->lost_out = 0;
1271 tp->fackets_out = 0;
1272
1273 sk_stream_for_retrans_queue(skb, sk) {
1274 cnt += tcp_skb_pcount(skb);
1275 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1276 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1277
1278 /* Do not mark those segments lost that were
1279 * forward transmitted after RTO
1280 */
1281 if (!after(TCP_SKB_CB(skb)->end_seq,
1282 tp->frto_highmark)) {
1283 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1284 tp->lost_out += tcp_skb_pcount(skb);
1285 }
1286 } else {
1287 tp->sacked_out += tcp_skb_pcount(skb);
1288 tp->fackets_out = cnt;
1289 }
1290 }
1291 tcp_sync_left_out(tp);
1292
1293 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1294 tp->snd_cwnd_cnt = 0;
1295 tp->snd_cwnd_stamp = tcp_time_stamp;
1296 tp->undo_marker = 0;
1297 tp->frto_counter = 0;
1298
1299 tp->reordering = min_t(unsigned int, tp->reordering,
1300 sysctl_tcp_reordering);
1301 tcp_set_ca_state(sk, TCP_CA_Loss);
1302 tp->high_seq = tp->frto_highmark;
1303 TCP_ECN_queue_cwr(tp);
1304
1305 clear_all_retrans_hints(tp);
1306 }
1307
1308 void tcp_clear_retrans(struct tcp_sock *tp)
1309 {
1310 tp->left_out = 0;
1311 tp->retrans_out = 0;
1312
1313 tp->fackets_out = 0;
1314 tp->sacked_out = 0;
1315 tp->lost_out = 0;
1316
1317 tp->undo_marker = 0;
1318 tp->undo_retrans = 0;
1319 }
1320
1321 /* Enter Loss state. If "how" is not zero, forget all SACK information
1322 * and reset tags completely, otherwise preserve SACKs. If receiver
1323 * dropped its ofo queue, we will know this due to reneging detection.
1324 */
1325 void tcp_enter_loss(struct sock *sk, int how)
1326 {
1327 const struct inet_connection_sock *icsk = inet_csk(sk);
1328 struct tcp_sock *tp = tcp_sk(sk);
1329 struct sk_buff *skb;
1330 int cnt = 0;
1331
1332 /* Reduce ssthresh if it has not yet been made inside this window. */
1333 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1334 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1335 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1336 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1337 tcp_ca_event(sk, CA_EVENT_LOSS);
1338 }
1339 tp->snd_cwnd = 1;
1340 tp->snd_cwnd_cnt = 0;
1341 tp->snd_cwnd_stamp = tcp_time_stamp;
1342
1343 tp->bytes_acked = 0;
1344 tcp_clear_retrans(tp);
1345
1346 /* Push undo marker, if it was plain RTO and nothing
1347 * was retransmitted. */
1348 if (!how)
1349 tp->undo_marker = tp->snd_una;
1350
1351 sk_stream_for_retrans_queue(skb, sk) {
1352 cnt += tcp_skb_pcount(skb);
1353 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1354 tp->undo_marker = 0;
1355 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1356 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1357 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1358 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1359 tp->lost_out += tcp_skb_pcount(skb);
1360 } else {
1361 tp->sacked_out += tcp_skb_pcount(skb);
1362 tp->fackets_out = cnt;
1363 }
1364 }
1365 tcp_sync_left_out(tp);
1366
1367 tp->reordering = min_t(unsigned int, tp->reordering,
1368 sysctl_tcp_reordering);
1369 tcp_set_ca_state(sk, TCP_CA_Loss);
1370 tp->high_seq = tp->snd_nxt;
1371 TCP_ECN_queue_cwr(tp);
1372
1373 clear_all_retrans_hints(tp);
1374 }
1375
1376 static int tcp_check_sack_reneging(struct sock *sk)
1377 {
1378 struct sk_buff *skb;
1379
1380 /* If ACK arrived pointing to a remembered SACK,
1381 * it means that our remembered SACKs do not reflect
1382 * real state of receiver i.e.
1383 * receiver _host_ is heavily congested (or buggy).
1384 * Do processing similar to RTO timeout.
1385 */
1386 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1387 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1388 struct inet_connection_sock *icsk = inet_csk(sk);
1389 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1390
1391 tcp_enter_loss(sk, 1);
1392 icsk->icsk_retransmits++;
1393 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1394 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1395 icsk->icsk_rto, TCP_RTO_MAX);
1396 return 1;
1397 }
1398 return 0;
1399 }
1400
1401 static inline int tcp_fackets_out(struct tcp_sock *tp)
1402 {
1403 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1404 }
1405
1406 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1407 {
1408 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1409 }
1410
1411 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1412 {
1413 return tp->packets_out &&
1414 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1415 }
1416
1417 /* Linux NewReno/SACK/FACK/ECN state machine.
1418 * --------------------------------------
1419 *
1420 * "Open" Normal state, no dubious events, fast path.
1421 * "Disorder" In all the respects it is "Open",
1422 * but requires a bit more attention. It is entered when
1423 * we see some SACKs or dupacks. It is split of "Open"
1424 * mainly to move some processing from fast path to slow one.
1425 * "CWR" CWND was reduced due to some Congestion Notification event.
1426 * It can be ECN, ICMP source quench, local device congestion.
1427 * "Recovery" CWND was reduced, we are fast-retransmitting.
1428 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1429 *
1430 * tcp_fastretrans_alert() is entered:
1431 * - each incoming ACK, if state is not "Open"
1432 * - when arrived ACK is unusual, namely:
1433 * * SACK
1434 * * Duplicate ACK.
1435 * * ECN ECE.
1436 *
1437 * Counting packets in flight is pretty simple.
1438 *
1439 * in_flight = packets_out - left_out + retrans_out
1440 *
1441 * packets_out is SND.NXT-SND.UNA counted in packets.
1442 *
1443 * retrans_out is number of retransmitted segments.
1444 *
1445 * left_out is number of segments left network, but not ACKed yet.
1446 *
1447 * left_out = sacked_out + lost_out
1448 *
1449 * sacked_out: Packets, which arrived to receiver out of order
1450 * and hence not ACKed. With SACKs this number is simply
1451 * amount of SACKed data. Even without SACKs
1452 * it is easy to give pretty reliable estimate of this number,
1453 * counting duplicate ACKs.
1454 *
1455 * lost_out: Packets lost by network. TCP has no explicit
1456 * "loss notification" feedback from network (for now).
1457 * It means that this number can be only _guessed_.
1458 * Actually, it is the heuristics to predict lossage that
1459 * distinguishes different algorithms.
1460 *
1461 * F.e. after RTO, when all the queue is considered as lost,
1462 * lost_out = packets_out and in_flight = retrans_out.
1463 *
1464 * Essentially, we have now two algorithms counting
1465 * lost packets.
1466 *
1467 * FACK: It is the simplest heuristics. As soon as we decided
1468 * that something is lost, we decide that _all_ not SACKed
1469 * packets until the most forward SACK are lost. I.e.
1470 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1471 * It is absolutely correct estimate, if network does not reorder
1472 * packets. And it loses any connection to reality when reordering
1473 * takes place. We use FACK by default until reordering
1474 * is suspected on the path to this destination.
1475 *
1476 * NewReno: when Recovery is entered, we assume that one segment
1477 * is lost (classic Reno). While we are in Recovery and
1478 * a partial ACK arrives, we assume that one more packet
1479 * is lost (NewReno). This heuristics are the same in NewReno
1480 * and SACK.
1481 *
1482 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1483 * deflation etc. CWND is real congestion window, never inflated, changes
1484 * only according to classic VJ rules.
1485 *
1486 * Really tricky (and requiring careful tuning) part of algorithm
1487 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1488 * The first determines the moment _when_ we should reduce CWND and,
1489 * hence, slow down forward transmission. In fact, it determines the moment
1490 * when we decide that hole is caused by loss, rather than by a reorder.
1491 *
1492 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1493 * holes, caused by lost packets.
1494 *
1495 * And the most logically complicated part of algorithm is undo
1496 * heuristics. We detect false retransmits due to both too early
1497 * fast retransmit (reordering) and underestimated RTO, analyzing
1498 * timestamps and D-SACKs. When we detect that some segments were
1499 * retransmitted by mistake and CWND reduction was wrong, we undo
1500 * window reduction and abort recovery phase. This logic is hidden
1501 * inside several functions named tcp_try_undo_<something>.
1502 */
1503
1504 /* This function decides, when we should leave Disordered state
1505 * and enter Recovery phase, reducing congestion window.
1506 *
1507 * Main question: may we further continue forward transmission
1508 * with the same cwnd?
1509 */
1510 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1511 {
1512 __u32 packets_out;
1513
1514 /* Trick#1: The loss is proven. */
1515 if (tp->lost_out)
1516 return 1;
1517
1518 /* Not-A-Trick#2 : Classic rule... */
1519 if (tcp_fackets_out(tp) > tp->reordering)
1520 return 1;
1521
1522 /* Trick#3 : when we use RFC2988 timer restart, fast
1523 * retransmit can be triggered by timeout of queue head.
1524 */
1525 if (tcp_head_timedout(sk, tp))
1526 return 1;
1527
1528 /* Trick#4: It is still not OK... But will it be useful to delay
1529 * recovery more?
1530 */
1531 packets_out = tp->packets_out;
1532 if (packets_out <= tp->reordering &&
1533 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1534 !tcp_may_send_now(sk, tp)) {
1535 /* We have nothing to send. This connection is limited
1536 * either by receiver window or by application.
1537 */
1538 return 1;
1539 }
1540
1541 return 0;
1542 }
1543
1544 /* If we receive more dupacks than we expected counting segments
1545 * in assumption of absent reordering, interpret this as reordering.
1546 * The only another reason could be bug in receiver TCP.
1547 */
1548 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1549 {
1550 struct tcp_sock *tp = tcp_sk(sk);
1551 u32 holes;
1552
1553 holes = max(tp->lost_out, 1U);
1554 holes = min(holes, tp->packets_out);
1555
1556 if ((tp->sacked_out + holes) > tp->packets_out) {
1557 tp->sacked_out = tp->packets_out - holes;
1558 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1559 }
1560 }
1561
1562 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1563
1564 static void tcp_add_reno_sack(struct sock *sk)
1565 {
1566 struct tcp_sock *tp = tcp_sk(sk);
1567 tp->sacked_out++;
1568 tcp_check_reno_reordering(sk, 0);
1569 tcp_sync_left_out(tp);
1570 }
1571
1572 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1573
1574 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1575 {
1576 if (acked > 0) {
1577 /* One ACK acked hole. The rest eat duplicate ACKs. */
1578 if (acked-1 >= tp->sacked_out)
1579 tp->sacked_out = 0;
1580 else
1581 tp->sacked_out -= acked-1;
1582 }
1583 tcp_check_reno_reordering(sk, acked);
1584 tcp_sync_left_out(tp);
1585 }
1586
1587 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1588 {
1589 tp->sacked_out = 0;
1590 tp->left_out = tp->lost_out;
1591 }
1592
1593 /* Mark head of queue up as lost. */
1594 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1595 int packets, u32 high_seq)
1596 {
1597 struct sk_buff *skb;
1598 int cnt;
1599
1600 BUG_TRAP(packets <= tp->packets_out);
1601 if (tp->lost_skb_hint) {
1602 skb = tp->lost_skb_hint;
1603 cnt = tp->lost_cnt_hint;
1604 } else {
1605 skb = sk->sk_write_queue.next;
1606 cnt = 0;
1607 }
1608
1609 sk_stream_for_retrans_queue_from(skb, sk) {
1610 /* TODO: do this better */
1611 /* this is not the most efficient way to do this... */
1612 tp->lost_skb_hint = skb;
1613 tp->lost_cnt_hint = cnt;
1614 cnt += tcp_skb_pcount(skb);
1615 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1616 break;
1617 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1618 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1619 tp->lost_out += tcp_skb_pcount(skb);
1620
1621 /* clear xmit_retransmit_queue hints
1622 * if this is beyond hint */
1623 if(tp->retransmit_skb_hint != NULL &&
1624 before(TCP_SKB_CB(skb)->seq,
1625 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1626
1627 tp->retransmit_skb_hint = NULL;
1628 }
1629 }
1630 }
1631 tcp_sync_left_out(tp);
1632 }
1633
1634 /* Account newly detected lost packet(s) */
1635
1636 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1637 {
1638 if (IsFack(tp)) {
1639 int lost = tp->fackets_out - tp->reordering;
1640 if (lost <= 0)
1641 lost = 1;
1642 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1643 } else {
1644 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1645 }
1646
1647 /* New heuristics: it is possible only after we switched
1648 * to restart timer each time when something is ACKed.
1649 * Hence, we can detect timed out packets during fast
1650 * retransmit without falling to slow start.
1651 */
1652 if (tcp_head_timedout(sk, tp)) {
1653 struct sk_buff *skb;
1654
1655 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1656 : sk->sk_write_queue.next;
1657
1658 sk_stream_for_retrans_queue_from(skb, sk) {
1659 if (!tcp_skb_timedout(sk, skb))
1660 break;
1661
1662 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1663 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1664 tp->lost_out += tcp_skb_pcount(skb);
1665 if (IsReno(tp))
1666 tcp_remove_reno_sacks(sk, tp, tcp_skb_pcount(skb) + 1);
1667
1668 /* clear xmit_retrans hint */
1669 if (tp->retransmit_skb_hint &&
1670 before(TCP_SKB_CB(skb)->seq,
1671 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1672
1673 tp->retransmit_skb_hint = NULL;
1674 }
1675 }
1676
1677 tp->scoreboard_skb_hint = skb;
1678
1679 tcp_sync_left_out(tp);
1680 }
1681 }
1682
1683 /* CWND moderation, preventing bursts due to too big ACKs
1684 * in dubious situations.
1685 */
1686 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1687 {
1688 tp->snd_cwnd = min(tp->snd_cwnd,
1689 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1690 tp->snd_cwnd_stamp = tcp_time_stamp;
1691 }
1692
1693 /* Decrease cwnd each second ack. */
1694 static void tcp_cwnd_down(struct sock *sk)
1695 {
1696 const struct inet_connection_sock *icsk = inet_csk(sk);
1697 struct tcp_sock *tp = tcp_sk(sk);
1698 int decr = tp->snd_cwnd_cnt + 1;
1699
1700 tp->snd_cwnd_cnt = decr&1;
1701 decr >>= 1;
1702
1703 if (decr && tp->snd_cwnd > icsk->icsk_ca_ops->min_cwnd(sk))
1704 tp->snd_cwnd -= decr;
1705
1706 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1707 tp->snd_cwnd_stamp = tcp_time_stamp;
1708 }
1709
1710 /* Nothing was retransmitted or returned timestamp is less
1711 * than timestamp of the first retransmission.
1712 */
1713 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1714 {
1715 return !tp->retrans_stamp ||
1716 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1717 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1718 }
1719
1720 /* Undo procedures. */
1721
1722 #if FASTRETRANS_DEBUG > 1
1723 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1724 {
1725 struct inet_sock *inet = inet_sk(sk);
1726 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1727 msg,
1728 NIPQUAD(inet->daddr), ntohs(inet->dport),
1729 tp->snd_cwnd, tp->left_out,
1730 tp->snd_ssthresh, tp->prior_ssthresh,
1731 tp->packets_out);
1732 }
1733 #else
1734 #define DBGUNDO(x...) do { } while (0)
1735 #endif
1736
1737 static void tcp_undo_cwr(struct sock *sk, const int undo)
1738 {
1739 struct tcp_sock *tp = tcp_sk(sk);
1740
1741 if (tp->prior_ssthresh) {
1742 const struct inet_connection_sock *icsk = inet_csk(sk);
1743
1744 if (icsk->icsk_ca_ops->undo_cwnd)
1745 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1746 else
1747 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1748
1749 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1750 tp->snd_ssthresh = tp->prior_ssthresh;
1751 TCP_ECN_withdraw_cwr(tp);
1752 }
1753 } else {
1754 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1755 }
1756 tcp_moderate_cwnd(tp);
1757 tp->snd_cwnd_stamp = tcp_time_stamp;
1758
1759 /* There is something screwy going on with the retrans hints after
1760 an undo */
1761 clear_all_retrans_hints(tp);
1762 }
1763
1764 static inline int tcp_may_undo(struct tcp_sock *tp)
1765 {
1766 return tp->undo_marker &&
1767 (!tp->undo_retrans || tcp_packet_delayed(tp));
1768 }
1769
1770 /* People celebrate: "We love our President!" */
1771 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1772 {
1773 if (tcp_may_undo(tp)) {
1774 /* Happy end! We did not retransmit anything
1775 * or our original transmission succeeded.
1776 */
1777 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1778 tcp_undo_cwr(sk, 1);
1779 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1780 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1781 else
1782 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1783 tp->undo_marker = 0;
1784 }
1785 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1786 /* Hold old state until something *above* high_seq
1787 * is ACKed. For Reno it is MUST to prevent false
1788 * fast retransmits (RFC2582). SACK TCP is safe. */
1789 tcp_moderate_cwnd(tp);
1790 return 1;
1791 }
1792 tcp_set_ca_state(sk, TCP_CA_Open);
1793 return 0;
1794 }
1795
1796 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1797 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1798 {
1799 if (tp->undo_marker && !tp->undo_retrans) {
1800 DBGUNDO(sk, tp, "D-SACK");
1801 tcp_undo_cwr(sk, 1);
1802 tp->undo_marker = 0;
1803 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1804 }
1805 }
1806
1807 /* Undo during fast recovery after partial ACK. */
1808
1809 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1810 int acked)
1811 {
1812 /* Partial ACK arrived. Force Hoe's retransmit. */
1813 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1814
1815 if (tcp_may_undo(tp)) {
1816 /* Plain luck! Hole if filled with delayed
1817 * packet, rather than with a retransmit.
1818 */
1819 if (tp->retrans_out == 0)
1820 tp->retrans_stamp = 0;
1821
1822 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1823
1824 DBGUNDO(sk, tp, "Hoe");
1825 tcp_undo_cwr(sk, 0);
1826 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1827
1828 /* So... Do not make Hoe's retransmit yet.
1829 * If the first packet was delayed, the rest
1830 * ones are most probably delayed as well.
1831 */
1832 failed = 0;
1833 }
1834 return failed;
1835 }
1836
1837 /* Undo during loss recovery after partial ACK. */
1838 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1839 {
1840 if (tcp_may_undo(tp)) {
1841 struct sk_buff *skb;
1842 sk_stream_for_retrans_queue(skb, sk) {
1843 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1844 }
1845
1846 clear_all_retrans_hints(tp);
1847
1848 DBGUNDO(sk, tp, "partial loss");
1849 tp->lost_out = 0;
1850 tp->left_out = tp->sacked_out;
1851 tcp_undo_cwr(sk, 1);
1852 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1853 inet_csk(sk)->icsk_retransmits = 0;
1854 tp->undo_marker = 0;
1855 if (!IsReno(tp))
1856 tcp_set_ca_state(sk, TCP_CA_Open);
1857 return 1;
1858 }
1859 return 0;
1860 }
1861
1862 static inline void tcp_complete_cwr(struct sock *sk)
1863 {
1864 struct tcp_sock *tp = tcp_sk(sk);
1865 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1866 tp->snd_cwnd_stamp = tcp_time_stamp;
1867 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1868 }
1869
1870 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1871 {
1872 tp->left_out = tp->sacked_out;
1873
1874 if (tp->retrans_out == 0)
1875 tp->retrans_stamp = 0;
1876
1877 if (flag&FLAG_ECE)
1878 tcp_enter_cwr(sk);
1879
1880 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1881 int state = TCP_CA_Open;
1882
1883 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1884 state = TCP_CA_Disorder;
1885
1886 if (inet_csk(sk)->icsk_ca_state != state) {
1887 tcp_set_ca_state(sk, state);
1888 tp->high_seq = tp->snd_nxt;
1889 }
1890 tcp_moderate_cwnd(tp);
1891 } else {
1892 tcp_cwnd_down(sk);
1893 }
1894 }
1895
1896 static void tcp_mtup_probe_failed(struct sock *sk)
1897 {
1898 struct inet_connection_sock *icsk = inet_csk(sk);
1899
1900 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1901 icsk->icsk_mtup.probe_size = 0;
1902 }
1903
1904 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1905 {
1906 struct tcp_sock *tp = tcp_sk(sk);
1907 struct inet_connection_sock *icsk = inet_csk(sk);
1908
1909 /* FIXME: breaks with very large cwnd */
1910 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1911 tp->snd_cwnd = tp->snd_cwnd *
1912 tcp_mss_to_mtu(sk, tp->mss_cache) /
1913 icsk->icsk_mtup.probe_size;
1914 tp->snd_cwnd_cnt = 0;
1915 tp->snd_cwnd_stamp = tcp_time_stamp;
1916 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1917
1918 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1919 icsk->icsk_mtup.probe_size = 0;
1920 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1921 }
1922
1923
1924 /* Process an event, which can update packets-in-flight not trivially.
1925 * Main goal of this function is to calculate new estimate for left_out,
1926 * taking into account both packets sitting in receiver's buffer and
1927 * packets lost by network.
1928 *
1929 * Besides that it does CWND reduction, when packet loss is detected
1930 * and changes state of machine.
1931 *
1932 * It does _not_ decide what to send, it is made in function
1933 * tcp_xmit_retransmit_queue().
1934 */
1935 static void
1936 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1937 int prior_packets, int flag)
1938 {
1939 struct inet_connection_sock *icsk = inet_csk(sk);
1940 struct tcp_sock *tp = tcp_sk(sk);
1941 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1942
1943 /* Some technical things:
1944 * 1. Reno does not count dupacks (sacked_out) automatically. */
1945 if (!tp->packets_out)
1946 tp->sacked_out = 0;
1947 /* 2. SACK counts snd_fack in packets inaccurately. */
1948 if (tp->sacked_out == 0)
1949 tp->fackets_out = 0;
1950
1951 /* Now state machine starts.
1952 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1953 if (flag&FLAG_ECE)
1954 tp->prior_ssthresh = 0;
1955
1956 /* B. In all the states check for reneging SACKs. */
1957 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1958 return;
1959
1960 /* C. Process data loss notification, provided it is valid. */
1961 if ((flag&FLAG_DATA_LOST) &&
1962 before(tp->snd_una, tp->high_seq) &&
1963 icsk->icsk_ca_state != TCP_CA_Open &&
1964 tp->fackets_out > tp->reordering) {
1965 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1966 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1967 }
1968
1969 /* D. Synchronize left_out to current state. */
1970 tcp_sync_left_out(tp);
1971
1972 /* E. Check state exit conditions. State can be terminated
1973 * when high_seq is ACKed. */
1974 if (icsk->icsk_ca_state == TCP_CA_Open) {
1975 if (!sysctl_tcp_frto)
1976 BUG_TRAP(tp->retrans_out == 0);
1977 tp->retrans_stamp = 0;
1978 } else if (!before(tp->snd_una, tp->high_seq)) {
1979 switch (icsk->icsk_ca_state) {
1980 case TCP_CA_Loss:
1981 icsk->icsk_retransmits = 0;
1982 if (tcp_try_undo_recovery(sk, tp))
1983 return;
1984 break;
1985
1986 case TCP_CA_CWR:
1987 /* CWR is to be held something *above* high_seq
1988 * is ACKed for CWR bit to reach receiver. */
1989 if (tp->snd_una != tp->high_seq) {
1990 tcp_complete_cwr(sk);
1991 tcp_set_ca_state(sk, TCP_CA_Open);
1992 }
1993 break;
1994
1995 case TCP_CA_Disorder:
1996 tcp_try_undo_dsack(sk, tp);
1997 if (!tp->undo_marker ||
1998 /* For SACK case do not Open to allow to undo
1999 * catching for all duplicate ACKs. */
2000 IsReno(tp) || tp->snd_una != tp->high_seq) {
2001 tp->undo_marker = 0;
2002 tcp_set_ca_state(sk, TCP_CA_Open);
2003 }
2004 break;
2005
2006 case TCP_CA_Recovery:
2007 if (IsReno(tp))
2008 tcp_reset_reno_sack(tp);
2009 if (tcp_try_undo_recovery(sk, tp))
2010 return;
2011 tcp_complete_cwr(sk);
2012 break;
2013 }
2014 }
2015
2016 /* F. Process state. */
2017 switch (icsk->icsk_ca_state) {
2018 case TCP_CA_Recovery:
2019 if (prior_snd_una == tp->snd_una) {
2020 if (IsReno(tp) && is_dupack)
2021 tcp_add_reno_sack(sk);
2022 } else {
2023 int acked = prior_packets - tp->packets_out;
2024 if (IsReno(tp))
2025 tcp_remove_reno_sacks(sk, tp, acked);
2026 is_dupack = tcp_try_undo_partial(sk, tp, acked);
2027 }
2028 break;
2029 case TCP_CA_Loss:
2030 if (flag&FLAG_DATA_ACKED)
2031 icsk->icsk_retransmits = 0;
2032 if (!tcp_try_undo_loss(sk, tp)) {
2033 tcp_moderate_cwnd(tp);
2034 tcp_xmit_retransmit_queue(sk);
2035 return;
2036 }
2037 if (icsk->icsk_ca_state != TCP_CA_Open)
2038 return;
2039 /* Loss is undone; fall through to processing in Open state. */
2040 default:
2041 if (IsReno(tp)) {
2042 if (tp->snd_una != prior_snd_una)
2043 tcp_reset_reno_sack(tp);
2044 if (is_dupack)
2045 tcp_add_reno_sack(sk);
2046 }
2047
2048 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2049 tcp_try_undo_dsack(sk, tp);
2050
2051 if (!tcp_time_to_recover(sk, tp)) {
2052 tcp_try_to_open(sk, tp, flag);
2053 return;
2054 }
2055
2056 /* MTU probe failure: don't reduce cwnd */
2057 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2058 icsk->icsk_mtup.probe_size &&
2059 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2060 tcp_mtup_probe_failed(sk);
2061 /* Restores the reduction we did in tcp_mtup_probe() */
2062 tp->snd_cwnd++;
2063 tcp_simple_retransmit(sk);
2064 return;
2065 }
2066
2067 /* Otherwise enter Recovery state */
2068
2069 if (IsReno(tp))
2070 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2071 else
2072 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2073
2074 tp->high_seq = tp->snd_nxt;
2075 tp->prior_ssthresh = 0;
2076 tp->undo_marker = tp->snd_una;
2077 tp->undo_retrans = tp->retrans_out;
2078
2079 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2080 if (!(flag&FLAG_ECE))
2081 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2082 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2083 TCP_ECN_queue_cwr(tp);
2084 }
2085
2086 tp->bytes_acked = 0;
2087 tp->snd_cwnd_cnt = 0;
2088 tcp_set_ca_state(sk, TCP_CA_Recovery);
2089 }
2090
2091 if (is_dupack || tcp_head_timedout(sk, tp))
2092 tcp_update_scoreboard(sk, tp);
2093 tcp_cwnd_down(sk);
2094 tcp_xmit_retransmit_queue(sk);
2095 }
2096
2097 /* Read draft-ietf-tcplw-high-performance before mucking
2098 * with this code. (Supersedes RFC1323)
2099 */
2100 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2101 {
2102 /* RTTM Rule: A TSecr value received in a segment is used to
2103 * update the averaged RTT measurement only if the segment
2104 * acknowledges some new data, i.e., only if it advances the
2105 * left edge of the send window.
2106 *
2107 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2108 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2109 *
2110 * Changed: reset backoff as soon as we see the first valid sample.
2111 * If we do not, we get strongly overestimated rto. With timestamps
2112 * samples are accepted even from very old segments: f.e., when rtt=1
2113 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2114 * answer arrives rto becomes 120 seconds! If at least one of segments
2115 * in window is lost... Voila. --ANK (010210)
2116 */
2117 struct tcp_sock *tp = tcp_sk(sk);
2118 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2119 tcp_rtt_estimator(sk, seq_rtt);
2120 tcp_set_rto(sk);
2121 inet_csk(sk)->icsk_backoff = 0;
2122 tcp_bound_rto(sk);
2123 }
2124
2125 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2126 {
2127 /* We don't have a timestamp. Can only use
2128 * packets that are not retransmitted to determine
2129 * rtt estimates. Also, we must not reset the
2130 * backoff for rto until we get a non-retransmitted
2131 * packet. This allows us to deal with a situation
2132 * where the network delay has increased suddenly.
2133 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2134 */
2135
2136 if (flag & FLAG_RETRANS_DATA_ACKED)
2137 return;
2138
2139 tcp_rtt_estimator(sk, seq_rtt);
2140 tcp_set_rto(sk);
2141 inet_csk(sk)->icsk_backoff = 0;
2142 tcp_bound_rto(sk);
2143 }
2144
2145 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2146 const s32 seq_rtt)
2147 {
2148 const struct tcp_sock *tp = tcp_sk(sk);
2149 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2150 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2151 tcp_ack_saw_tstamp(sk, flag);
2152 else if (seq_rtt >= 0)
2153 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2154 }
2155
2156 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2157 u32 in_flight, int good)
2158 {
2159 const struct inet_connection_sock *icsk = inet_csk(sk);
2160 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2161 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2162 }
2163
2164 /* Restart timer after forward progress on connection.
2165 * RFC2988 recommends to restart timer to now+rto.
2166 */
2167
2168 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2169 {
2170 if (!tp->packets_out) {
2171 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2172 } else {
2173 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2174 }
2175 }
2176
2177 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2178 __u32 now, __s32 *seq_rtt)
2179 {
2180 struct tcp_sock *tp = tcp_sk(sk);
2181 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2182 __u32 seq = tp->snd_una;
2183 __u32 packets_acked;
2184 int acked = 0;
2185
2186 /* If we get here, the whole TSO packet has not been
2187 * acked.
2188 */
2189 BUG_ON(!after(scb->end_seq, seq));
2190
2191 packets_acked = tcp_skb_pcount(skb);
2192 if (tcp_trim_head(sk, skb, seq - scb->seq))
2193 return 0;
2194 packets_acked -= tcp_skb_pcount(skb);
2195
2196 if (packets_acked) {
2197 __u8 sacked = scb->sacked;
2198
2199 acked |= FLAG_DATA_ACKED;
2200 if (sacked) {
2201 if (sacked & TCPCB_RETRANS) {
2202 if (sacked & TCPCB_SACKED_RETRANS)
2203 tp->retrans_out -= packets_acked;
2204 acked |= FLAG_RETRANS_DATA_ACKED;
2205 *seq_rtt = -1;
2206 } else if (*seq_rtt < 0)
2207 *seq_rtt = now - scb->when;
2208 if (sacked & TCPCB_SACKED_ACKED)
2209 tp->sacked_out -= packets_acked;
2210 if (sacked & TCPCB_LOST)
2211 tp->lost_out -= packets_acked;
2212 if (sacked & TCPCB_URG) {
2213 if (tp->urg_mode &&
2214 !before(seq, tp->snd_up))
2215 tp->urg_mode = 0;
2216 }
2217 } else if (*seq_rtt < 0)
2218 *seq_rtt = now - scb->when;
2219
2220 if (tp->fackets_out) {
2221 __u32 dval = min(tp->fackets_out, packets_acked);
2222 tp->fackets_out -= dval;
2223 }
2224 tp->packets_out -= packets_acked;
2225
2226 BUG_ON(tcp_skb_pcount(skb) == 0);
2227 BUG_ON(!before(scb->seq, scb->end_seq));
2228 }
2229
2230 return acked;
2231 }
2232
2233 static u32 tcp_usrtt(const struct sk_buff *skb)
2234 {
2235 struct timeval tv, now;
2236
2237 do_gettimeofday(&now);
2238 skb_get_timestamp(skb, &tv);
2239 return (now.tv_sec - tv.tv_sec) * 1000000 + (now.tv_usec - tv.tv_usec);
2240 }
2241
2242 /* Remove acknowledged frames from the retransmission queue. */
2243 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2244 {
2245 struct tcp_sock *tp = tcp_sk(sk);
2246 const struct inet_connection_sock *icsk = inet_csk(sk);
2247 struct sk_buff *skb;
2248 __u32 now = tcp_time_stamp;
2249 int acked = 0;
2250 __s32 seq_rtt = -1;
2251 u32 pkts_acked = 0;
2252 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2253 = icsk->icsk_ca_ops->rtt_sample;
2254
2255 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2256 skb != sk->sk_send_head) {
2257 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2258 __u8 sacked = scb->sacked;
2259
2260 /* If our packet is before the ack sequence we can
2261 * discard it as it's confirmed to have arrived at
2262 * the other end.
2263 */
2264 if (after(scb->end_seq, tp->snd_una)) {
2265 if (tcp_skb_pcount(skb) > 1 &&
2266 after(tp->snd_una, scb->seq))
2267 acked |= tcp_tso_acked(sk, skb,
2268 now, &seq_rtt);
2269 break;
2270 }
2271
2272 /* Initial outgoing SYN's get put onto the write_queue
2273 * just like anything else we transmit. It is not
2274 * true data, and if we misinform our callers that
2275 * this ACK acks real data, we will erroneously exit
2276 * connection startup slow start one packet too
2277 * quickly. This is severely frowned upon behavior.
2278 */
2279 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2280 acked |= FLAG_DATA_ACKED;
2281 ++pkts_acked;
2282 } else {
2283 acked |= FLAG_SYN_ACKED;
2284 tp->retrans_stamp = 0;
2285 }
2286
2287 /* MTU probing checks */
2288 if (icsk->icsk_mtup.probe_size) {
2289 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2290 tcp_mtup_probe_success(sk, skb);
2291 }
2292 }
2293
2294 if (sacked) {
2295 if (sacked & TCPCB_RETRANS) {
2296 if(sacked & TCPCB_SACKED_RETRANS)
2297 tp->retrans_out -= tcp_skb_pcount(skb);
2298 acked |= FLAG_RETRANS_DATA_ACKED;
2299 seq_rtt = -1;
2300 } else if (seq_rtt < 0) {
2301 seq_rtt = now - scb->when;
2302 if (rtt_sample)
2303 (*rtt_sample)(sk, tcp_usrtt(skb));
2304 }
2305 if (sacked & TCPCB_SACKED_ACKED)
2306 tp->sacked_out -= tcp_skb_pcount(skb);
2307 if (sacked & TCPCB_LOST)
2308 tp->lost_out -= tcp_skb_pcount(skb);
2309 if (sacked & TCPCB_URG) {
2310 if (tp->urg_mode &&
2311 !before(scb->end_seq, tp->snd_up))
2312 tp->urg_mode = 0;
2313 }
2314 } else if (seq_rtt < 0) {
2315 seq_rtt = now - scb->when;
2316 if (rtt_sample)
2317 (*rtt_sample)(sk, tcp_usrtt(skb));
2318 }
2319 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2320 tcp_packets_out_dec(tp, skb);
2321 __skb_unlink(skb, &sk->sk_write_queue);
2322 sk_stream_free_skb(sk, skb);
2323 clear_all_retrans_hints(tp);
2324 }
2325
2326 if (acked&FLAG_ACKED) {
2327 tcp_ack_update_rtt(sk, acked, seq_rtt);
2328 tcp_ack_packets_out(sk, tp);
2329
2330 if (icsk->icsk_ca_ops->pkts_acked)
2331 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2332 }
2333
2334 #if FASTRETRANS_DEBUG > 0
2335 BUG_TRAP((int)tp->sacked_out >= 0);
2336 BUG_TRAP((int)tp->lost_out >= 0);
2337 BUG_TRAP((int)tp->retrans_out >= 0);
2338 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2339 const struct inet_connection_sock *icsk = inet_csk(sk);
2340 if (tp->lost_out) {
2341 printk(KERN_DEBUG "Leak l=%u %d\n",
2342 tp->lost_out, icsk->icsk_ca_state);
2343 tp->lost_out = 0;
2344 }
2345 if (tp->sacked_out) {
2346 printk(KERN_DEBUG "Leak s=%u %d\n",
2347 tp->sacked_out, icsk->icsk_ca_state);
2348 tp->sacked_out = 0;
2349 }
2350 if (tp->retrans_out) {
2351 printk(KERN_DEBUG "Leak r=%u %d\n",
2352 tp->retrans_out, icsk->icsk_ca_state);
2353 tp->retrans_out = 0;
2354 }
2355 }
2356 #endif
2357 *seq_rtt_p = seq_rtt;
2358 return acked;
2359 }
2360
2361 static void tcp_ack_probe(struct sock *sk)
2362 {
2363 const struct tcp_sock *tp = tcp_sk(sk);
2364 struct inet_connection_sock *icsk = inet_csk(sk);
2365
2366 /* Was it a usable window open? */
2367
2368 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2369 tp->snd_una + tp->snd_wnd)) {
2370 icsk->icsk_backoff = 0;
2371 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2372 /* Socket must be waked up by subsequent tcp_data_snd_check().
2373 * This function is not for random using!
2374 */
2375 } else {
2376 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2377 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2378 TCP_RTO_MAX);
2379 }
2380 }
2381
2382 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2383 {
2384 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2385 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2386 }
2387
2388 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2389 {
2390 const struct tcp_sock *tp = tcp_sk(sk);
2391 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2392 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2393 }
2394
2395 /* Check that window update is acceptable.
2396 * The function assumes that snd_una<=ack<=snd_next.
2397 */
2398 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2399 const u32 ack_seq, const u32 nwin)
2400 {
2401 return (after(ack, tp->snd_una) ||
2402 after(ack_seq, tp->snd_wl1) ||
2403 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2404 }
2405
2406 /* Update our send window.
2407 *
2408 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2409 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2410 */
2411 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2412 struct sk_buff *skb, u32 ack, u32 ack_seq)
2413 {
2414 int flag = 0;
2415 u32 nwin = ntohs(skb->h.th->window);
2416
2417 if (likely(!skb->h.th->syn))
2418 nwin <<= tp->rx_opt.snd_wscale;
2419
2420 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2421 flag |= FLAG_WIN_UPDATE;
2422 tcp_update_wl(tp, ack, ack_seq);
2423
2424 if (tp->snd_wnd != nwin) {
2425 tp->snd_wnd = nwin;
2426
2427 /* Note, it is the only place, where
2428 * fast path is recovered for sending TCP.
2429 */
2430 tp->pred_flags = 0;
2431 tcp_fast_path_check(sk, tp);
2432
2433 if (nwin > tp->max_window) {
2434 tp->max_window = nwin;
2435 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2436 }
2437 }
2438 }
2439
2440 tp->snd_una = ack;
2441
2442 return flag;
2443 }
2444
2445 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2446 {
2447 struct tcp_sock *tp = tcp_sk(sk);
2448
2449 tcp_sync_left_out(tp);
2450
2451 if (tp->snd_una == prior_snd_una ||
2452 !before(tp->snd_una, tp->frto_highmark)) {
2453 /* RTO was caused by loss, start retransmitting in
2454 * go-back-N slow start
2455 */
2456 tcp_enter_frto_loss(sk);
2457 return;
2458 }
2459
2460 if (tp->frto_counter == 1) {
2461 /* First ACK after RTO advances the window: allow two new
2462 * segments out.
2463 */
2464 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2465 } else {
2466 /* Also the second ACK after RTO advances the window.
2467 * The RTO was likely spurious. Reduce cwnd and continue
2468 * in congestion avoidance
2469 */
2470 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2471 tcp_moderate_cwnd(tp);
2472 }
2473
2474 /* F-RTO affects on two new ACKs following RTO.
2475 * At latest on third ACK the TCP behavior is back to normal.
2476 */
2477 tp->frto_counter = (tp->frto_counter + 1) % 3;
2478 }
2479
2480 /* This routine deals with incoming acks, but not outgoing ones. */
2481 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2482 {
2483 struct inet_connection_sock *icsk = inet_csk(sk);
2484 struct tcp_sock *tp = tcp_sk(sk);
2485 u32 prior_snd_una = tp->snd_una;
2486 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2487 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2488 u32 prior_in_flight;
2489 s32 seq_rtt;
2490 int prior_packets;
2491
2492 /* If the ack is newer than sent or older than previous acks
2493 * then we can probably ignore it.
2494 */
2495 if (after(ack, tp->snd_nxt))
2496 goto uninteresting_ack;
2497
2498 if (before(ack, prior_snd_una))
2499 goto old_ack;
2500
2501 if (sysctl_tcp_abc && icsk->icsk_ca_state < TCP_CA_CWR)
2502 tp->bytes_acked += ack - prior_snd_una;
2503
2504 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2505 /* Window is constant, pure forward advance.
2506 * No more checks are required.
2507 * Note, we use the fact that SND.UNA>=SND.WL2.
2508 */
2509 tcp_update_wl(tp, ack, ack_seq);
2510 tp->snd_una = ack;
2511 flag |= FLAG_WIN_UPDATE;
2512
2513 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2514
2515 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2516 } else {
2517 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2518 flag |= FLAG_DATA;
2519 else
2520 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2521
2522 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2523
2524 if (TCP_SKB_CB(skb)->sacked)
2525 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2526
2527 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2528 flag |= FLAG_ECE;
2529
2530 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2531 }
2532
2533 /* We passed data and got it acked, remove any soft error
2534 * log. Something worked...
2535 */
2536 sk->sk_err_soft = 0;
2537 tp->rcv_tstamp = tcp_time_stamp;
2538 prior_packets = tp->packets_out;
2539 if (!prior_packets)
2540 goto no_queue;
2541
2542 prior_in_flight = tcp_packets_in_flight(tp);
2543
2544 /* See if we can take anything off of the retransmit queue. */
2545 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2546
2547 if (tp->frto_counter)
2548 tcp_process_frto(sk, prior_snd_una);
2549
2550 if (tcp_ack_is_dubious(sk, flag)) {
2551 /* Advance CWND, if state allows this. */
2552 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2553 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2554 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2555 } else {
2556 if ((flag & FLAG_DATA_ACKED))
2557 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2558 }
2559
2560 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2561 dst_confirm(sk->sk_dst_cache);
2562
2563 return 1;
2564
2565 no_queue:
2566 icsk->icsk_probes_out = 0;
2567
2568 /* If this ack opens up a zero window, clear backoff. It was
2569 * being used to time the probes, and is probably far higher than
2570 * it needs to be for normal retransmission.
2571 */
2572 if (sk->sk_send_head)
2573 tcp_ack_probe(sk);
2574 return 1;
2575
2576 old_ack:
2577 if (TCP_SKB_CB(skb)->sacked)
2578 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2579
2580 uninteresting_ack:
2581 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2582 return 0;
2583 }
2584
2585
2586 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2587 * But, this can also be called on packets in the established flow when
2588 * the fast version below fails.
2589 */
2590 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2591 {
2592 unsigned char *ptr;
2593 struct tcphdr *th = skb->h.th;
2594 int length=(th->doff*4)-sizeof(struct tcphdr);
2595
2596 ptr = (unsigned char *)(th + 1);
2597 opt_rx->saw_tstamp = 0;
2598
2599 while(length>0) {
2600 int opcode=*ptr++;
2601 int opsize;
2602
2603 switch (opcode) {
2604 case TCPOPT_EOL:
2605 return;
2606 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2607 length--;
2608 continue;
2609 default:
2610 opsize=*ptr++;
2611 if (opsize < 2) /* "silly options" */
2612 return;
2613 if (opsize > length)
2614 return; /* don't parse partial options */
2615 switch(opcode) {
2616 case TCPOPT_MSS:
2617 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2618 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2619 if (in_mss) {
2620 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2621 in_mss = opt_rx->user_mss;
2622 opt_rx->mss_clamp = in_mss;
2623 }
2624 }
2625 break;
2626 case TCPOPT_WINDOW:
2627 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2628 if (sysctl_tcp_window_scaling) {
2629 __u8 snd_wscale = *(__u8 *) ptr;
2630 opt_rx->wscale_ok = 1;
2631 if (snd_wscale > 14) {
2632 if(net_ratelimit())
2633 printk(KERN_INFO "tcp_parse_options: Illegal window "
2634 "scaling value %d >14 received.\n",
2635 snd_wscale);
2636 snd_wscale = 14;
2637 }
2638 opt_rx->snd_wscale = snd_wscale;
2639 }
2640 break;
2641 case TCPOPT_TIMESTAMP:
2642 if(opsize==TCPOLEN_TIMESTAMP) {
2643 if ((estab && opt_rx->tstamp_ok) ||
2644 (!estab && sysctl_tcp_timestamps)) {
2645 opt_rx->saw_tstamp = 1;
2646 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2647 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2648 }
2649 }
2650 break;
2651 case TCPOPT_SACK_PERM:
2652 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2653 if (sysctl_tcp_sack) {
2654 opt_rx->sack_ok = 1;
2655 tcp_sack_reset(opt_rx);
2656 }
2657 }
2658 break;
2659
2660 case TCPOPT_SACK:
2661 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2662 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2663 opt_rx->sack_ok) {
2664 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2665 }
2666 };
2667 ptr+=opsize-2;
2668 length-=opsize;
2669 };
2670 }
2671 }
2672
2673 /* Fast parse options. This hopes to only see timestamps.
2674 * If it is wrong it falls back on tcp_parse_options().
2675 */
2676 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2677 struct tcp_sock *tp)
2678 {
2679 if (th->doff == sizeof(struct tcphdr)>>2) {
2680 tp->rx_opt.saw_tstamp = 0;
2681 return 0;
2682 } else if (tp->rx_opt.tstamp_ok &&
2683 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2684 __u32 *ptr = (__u32 *)(th + 1);
2685 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2686 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2687 tp->rx_opt.saw_tstamp = 1;
2688 ++ptr;
2689 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2690 ++ptr;
2691 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2692 return 1;
2693 }
2694 }
2695 tcp_parse_options(skb, &tp->rx_opt, 1);
2696 return 1;
2697 }
2698
2699 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2700 {
2701 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2702 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2703 }
2704
2705 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2706 {
2707 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2708 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2709 * extra check below makes sure this can only happen
2710 * for pure ACK frames. -DaveM
2711 *
2712 * Not only, also it occurs for expired timestamps.
2713 */
2714
2715 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2716 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2717 tcp_store_ts_recent(tp);
2718 }
2719 }
2720
2721 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2722 *
2723 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2724 * it can pass through stack. So, the following predicate verifies that
2725 * this segment is not used for anything but congestion avoidance or
2726 * fast retransmit. Moreover, we even are able to eliminate most of such
2727 * second order effects, if we apply some small "replay" window (~RTO)
2728 * to timestamp space.
2729 *
2730 * All these measures still do not guarantee that we reject wrapped ACKs
2731 * on networks with high bandwidth, when sequence space is recycled fastly,
2732 * but it guarantees that such events will be very rare and do not affect
2733 * connection seriously. This doesn't look nice, but alas, PAWS is really
2734 * buggy extension.
2735 *
2736 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2737 * states that events when retransmit arrives after original data are rare.
2738 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2739 * the biggest problem on large power networks even with minor reordering.
2740 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2741 * up to bandwidth of 18Gigabit/sec. 8) ]
2742 */
2743
2744 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2745 {
2746 struct tcp_sock *tp = tcp_sk(sk);
2747 struct tcphdr *th = skb->h.th;
2748 u32 seq = TCP_SKB_CB(skb)->seq;
2749 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2750
2751 return (/* 1. Pure ACK with correct sequence number. */
2752 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2753
2754 /* 2. ... and duplicate ACK. */
2755 ack == tp->snd_una &&
2756
2757 /* 3. ... and does not update window. */
2758 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2759
2760 /* 4. ... and sits in replay window. */
2761 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2762 }
2763
2764 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2765 {
2766 const struct tcp_sock *tp = tcp_sk(sk);
2767 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2768 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2769 !tcp_disordered_ack(sk, skb));
2770 }
2771
2772 /* Check segment sequence number for validity.
2773 *
2774 * Segment controls are considered valid, if the segment
2775 * fits to the window after truncation to the window. Acceptability
2776 * of data (and SYN, FIN, of course) is checked separately.
2777 * See tcp_data_queue(), for example.
2778 *
2779 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2780 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2781 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2782 * (borrowed from freebsd)
2783 */
2784
2785 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2786 {
2787 return !before(end_seq, tp->rcv_wup) &&
2788 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2789 }
2790
2791 /* When we get a reset we do this. */
2792 static void tcp_reset(struct sock *sk)
2793 {
2794 /* We want the right error as BSD sees it (and indeed as we do). */
2795 switch (sk->sk_state) {
2796 case TCP_SYN_SENT:
2797 sk->sk_err = ECONNREFUSED;
2798 break;
2799 case TCP_CLOSE_WAIT:
2800 sk->sk_err = EPIPE;
2801 break;
2802 case TCP_CLOSE:
2803 return;
2804 default:
2805 sk->sk_err = ECONNRESET;
2806 }
2807
2808 if (!sock_flag(sk, SOCK_DEAD))
2809 sk->sk_error_report(sk);
2810
2811 tcp_done(sk);
2812 }
2813
2814 /*
2815 * Process the FIN bit. This now behaves as it is supposed to work
2816 * and the FIN takes effect when it is validly part of sequence
2817 * space. Not before when we get holes.
2818 *
2819 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2820 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2821 * TIME-WAIT)
2822 *
2823 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2824 * close and we go into CLOSING (and later onto TIME-WAIT)
2825 *
2826 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2827 */
2828 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2829 {
2830 struct tcp_sock *tp = tcp_sk(sk);
2831
2832 inet_csk_schedule_ack(sk);
2833
2834 sk->sk_shutdown |= RCV_SHUTDOWN;
2835 sock_set_flag(sk, SOCK_DONE);
2836
2837 switch (sk->sk_state) {
2838 case TCP_SYN_RECV:
2839 case TCP_ESTABLISHED:
2840 /* Move to CLOSE_WAIT */
2841 tcp_set_state(sk, TCP_CLOSE_WAIT);
2842 inet_csk(sk)->icsk_ack.pingpong = 1;
2843 break;
2844
2845 case TCP_CLOSE_WAIT:
2846 case TCP_CLOSING:
2847 /* Received a retransmission of the FIN, do
2848 * nothing.
2849 */
2850 break;
2851 case TCP_LAST_ACK:
2852 /* RFC793: Remain in the LAST-ACK state. */
2853 break;
2854
2855 case TCP_FIN_WAIT1:
2856 /* This case occurs when a simultaneous close
2857 * happens, we must ack the received FIN and
2858 * enter the CLOSING state.
2859 */
2860 tcp_send_ack(sk);
2861 tcp_set_state(sk, TCP_CLOSING);
2862 break;
2863 case TCP_FIN_WAIT2:
2864 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2865 tcp_send_ack(sk);
2866 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2867 break;
2868 default:
2869 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2870 * cases we should never reach this piece of code.
2871 */
2872 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2873 __FUNCTION__, sk->sk_state);
2874 break;
2875 };
2876
2877 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2878 * Probably, we should reset in this case. For now drop them.
2879 */
2880 __skb_queue_purge(&tp->out_of_order_queue);
2881 if (tp->rx_opt.sack_ok)
2882 tcp_sack_reset(&tp->rx_opt);
2883 sk_stream_mem_reclaim(sk);
2884
2885 if (!sock_flag(sk, SOCK_DEAD)) {
2886 sk->sk_state_change(sk);
2887
2888 /* Do not send POLL_HUP for half duplex close. */
2889 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2890 sk->sk_state == TCP_CLOSE)
2891 sk_wake_async(sk, 1, POLL_HUP);
2892 else
2893 sk_wake_async(sk, 1, POLL_IN);
2894 }
2895 }
2896
2897 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2898 {
2899 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2900 if (before(seq, sp->start_seq))
2901 sp->start_seq = seq;
2902 if (after(end_seq, sp->end_seq))
2903 sp->end_seq = end_seq;
2904 return 1;
2905 }
2906 return 0;
2907 }
2908
2909 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2910 {
2911 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2912 if (before(seq, tp->rcv_nxt))
2913 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2914 else
2915 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2916
2917 tp->rx_opt.dsack = 1;
2918 tp->duplicate_sack[0].start_seq = seq;
2919 tp->duplicate_sack[0].end_seq = end_seq;
2920 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2921 }
2922 }
2923
2924 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2925 {
2926 if (!tp->rx_opt.dsack)
2927 tcp_dsack_set(tp, seq, end_seq);
2928 else
2929 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2930 }
2931
2932 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2933 {
2934 struct tcp_sock *tp = tcp_sk(sk);
2935
2936 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2937 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2938 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2939 tcp_enter_quickack_mode(sk);
2940
2941 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2942 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2943
2944 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2945 end_seq = tp->rcv_nxt;
2946 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2947 }
2948 }
2949
2950 tcp_send_ack(sk);
2951 }
2952
2953 /* These routines update the SACK block as out-of-order packets arrive or
2954 * in-order packets close up the sequence space.
2955 */
2956 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2957 {
2958 int this_sack;
2959 struct tcp_sack_block *sp = &tp->selective_acks[0];
2960 struct tcp_sack_block *swalk = sp+1;
2961
2962 /* See if the recent change to the first SACK eats into
2963 * or hits the sequence space of other SACK blocks, if so coalesce.
2964 */
2965 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2966 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2967 int i;
2968
2969 /* Zap SWALK, by moving every further SACK up by one slot.
2970 * Decrease num_sacks.
2971 */
2972 tp->rx_opt.num_sacks--;
2973 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2974 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2975 sp[i] = sp[i+1];
2976 continue;
2977 }
2978 this_sack++, swalk++;
2979 }
2980 }
2981
2982 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2983 {
2984 __u32 tmp;
2985
2986 tmp = sack1->start_seq;
2987 sack1->start_seq = sack2->start_seq;
2988 sack2->start_seq = tmp;
2989
2990 tmp = sack1->end_seq;
2991 sack1->end_seq = sack2->end_seq;
2992 sack2->end_seq = tmp;
2993 }
2994
2995 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2996 {
2997 struct tcp_sock *tp = tcp_sk(sk);
2998 struct tcp_sack_block *sp = &tp->selective_acks[0];
2999 int cur_sacks = tp->rx_opt.num_sacks;
3000 int this_sack;
3001
3002 if (!cur_sacks)
3003 goto new_sack;
3004
3005 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3006 if (tcp_sack_extend(sp, seq, end_seq)) {
3007 /* Rotate this_sack to the first one. */
3008 for (; this_sack>0; this_sack--, sp--)
3009 tcp_sack_swap(sp, sp-1);
3010 if (cur_sacks > 1)
3011 tcp_sack_maybe_coalesce(tp);
3012 return;
3013 }
3014 }
3015
3016 /* Could not find an adjacent existing SACK, build a new one,
3017 * put it at the front, and shift everyone else down. We
3018 * always know there is at least one SACK present already here.
3019 *
3020 * If the sack array is full, forget about the last one.
3021 */
3022 if (this_sack >= 4) {
3023 this_sack--;
3024 tp->rx_opt.num_sacks--;
3025 sp--;
3026 }
3027 for(; this_sack > 0; this_sack--, sp--)
3028 *sp = *(sp-1);
3029
3030 new_sack:
3031 /* Build the new head SACK, and we're done. */
3032 sp->start_seq = seq;
3033 sp->end_seq = end_seq;
3034 tp->rx_opt.num_sacks++;
3035 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3036 }
3037
3038 /* RCV.NXT advances, some SACKs should be eaten. */
3039
3040 static void tcp_sack_remove(struct tcp_sock *tp)
3041 {
3042 struct tcp_sack_block *sp = &tp->selective_acks[0];
3043 int num_sacks = tp->rx_opt.num_sacks;
3044 int this_sack;
3045
3046 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3047 if (skb_queue_empty(&tp->out_of_order_queue)) {
3048 tp->rx_opt.num_sacks = 0;
3049 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3050 return;
3051 }
3052
3053 for(this_sack = 0; this_sack < num_sacks; ) {
3054 /* Check if the start of the sack is covered by RCV.NXT. */
3055 if (!before(tp->rcv_nxt, sp->start_seq)) {
3056 int i;
3057
3058 /* RCV.NXT must cover all the block! */
3059 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3060
3061 /* Zap this SACK, by moving forward any other SACKS. */
3062 for (i=this_sack+1; i < num_sacks; i++)
3063 tp->selective_acks[i-1] = tp->selective_acks[i];
3064 num_sacks--;
3065 continue;
3066 }
3067 this_sack++;
3068 sp++;
3069 }
3070 if (num_sacks != tp->rx_opt.num_sacks) {
3071 tp->rx_opt.num_sacks = num_sacks;
3072 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3073 }
3074 }
3075
3076 /* This one checks to see if we can put data from the
3077 * out_of_order queue into the receive_queue.
3078 */
3079 static void tcp_ofo_queue(struct sock *sk)
3080 {
3081 struct tcp_sock *tp = tcp_sk(sk);
3082 __u32 dsack_high = tp->rcv_nxt;
3083 struct sk_buff *skb;
3084
3085 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3086 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3087 break;
3088
3089 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3090 __u32 dsack = dsack_high;
3091 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3092 dsack_high = TCP_SKB_CB(skb)->end_seq;
3093 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3094 }
3095
3096 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3097 SOCK_DEBUG(sk, "ofo packet was already received \n");
3098 __skb_unlink(skb, &tp->out_of_order_queue);
3099 __kfree_skb(skb);
3100 continue;
3101 }
3102 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3103 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3104 TCP_SKB_CB(skb)->end_seq);
3105
3106 __skb_unlink(skb, &tp->out_of_order_queue);
3107 __skb_queue_tail(&sk->sk_receive_queue, skb);
3108 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3109 if(skb->h.th->fin)
3110 tcp_fin(skb, sk, skb->h.th);
3111 }
3112 }
3113
3114 static int tcp_prune_queue(struct sock *sk);
3115
3116 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3117 {
3118 struct tcphdr *th = skb->h.th;
3119 struct tcp_sock *tp = tcp_sk(sk);
3120 int eaten = -1;
3121
3122 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3123 goto drop;
3124
3125 __skb_pull(skb, th->doff*4);
3126
3127 TCP_ECN_accept_cwr(tp, skb);
3128
3129 if (tp->rx_opt.dsack) {
3130 tp->rx_opt.dsack = 0;
3131 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3132 4 - tp->rx_opt.tstamp_ok);
3133 }
3134
3135 /* Queue data for delivery to the user.
3136 * Packets in sequence go to the receive queue.
3137 * Out of sequence packets to the out_of_order_queue.
3138 */
3139 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3140 if (tcp_receive_window(tp) == 0)
3141 goto out_of_window;
3142
3143 /* Ok. In sequence. In window. */
3144 if (tp->ucopy.task == current &&
3145 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3146 sock_owned_by_user(sk) && !tp->urg_data) {
3147 int chunk = min_t(unsigned int, skb->len,
3148 tp->ucopy.len);
3149
3150 __set_current_state(TASK_RUNNING);
3151
3152 local_bh_enable();
3153 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3154 tp->ucopy.len -= chunk;
3155 tp->copied_seq += chunk;
3156 eaten = (chunk == skb->len && !th->fin);
3157 tcp_rcv_space_adjust(sk);
3158 }
3159 local_bh_disable();
3160 }
3161
3162 if (eaten <= 0) {
3163 queue_and_out:
3164 if (eaten < 0 &&
3165 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3166 !sk_stream_rmem_schedule(sk, skb))) {
3167 if (tcp_prune_queue(sk) < 0 ||
3168 !sk_stream_rmem_schedule(sk, skb))
3169 goto drop;
3170 }
3171 sk_stream_set_owner_r(skb, sk);
3172 __skb_queue_tail(&sk->sk_receive_queue, skb);
3173 }
3174 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3175 if(skb->len)
3176 tcp_event_data_recv(sk, tp, skb);
3177 if(th->fin)
3178 tcp_fin(skb, sk, th);
3179
3180 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3181 tcp_ofo_queue(sk);
3182
3183 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3184 * gap in queue is filled.
3185 */
3186 if (skb_queue_empty(&tp->out_of_order_queue))
3187 inet_csk(sk)->icsk_ack.pingpong = 0;
3188 }
3189
3190 if (tp->rx_opt.num_sacks)
3191 tcp_sack_remove(tp);
3192
3193 tcp_fast_path_check(sk, tp);
3194
3195 if (eaten > 0)
3196 __kfree_skb(skb);
3197 else if (!sock_flag(sk, SOCK_DEAD))
3198 sk->sk_data_ready(sk, 0);
3199 return;
3200 }
3201
3202 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3203 /* A retransmit, 2nd most common case. Force an immediate ack. */
3204 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3205 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3206
3207 out_of_window:
3208 tcp_enter_quickack_mode(sk);
3209 inet_csk_schedule_ack(sk);
3210 drop:
3211 __kfree_skb(skb);
3212 return;
3213 }
3214
3215 /* Out of window. F.e. zero window probe. */
3216 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3217 goto out_of_window;
3218
3219 tcp_enter_quickack_mode(sk);
3220
3221 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3222 /* Partial packet, seq < rcv_next < end_seq */
3223 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3224 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3225 TCP_SKB_CB(skb)->end_seq);
3226
3227 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3228
3229 /* If window is closed, drop tail of packet. But after
3230 * remembering D-SACK for its head made in previous line.
3231 */
3232 if (!tcp_receive_window(tp))
3233 goto out_of_window;
3234 goto queue_and_out;
3235 }
3236
3237 TCP_ECN_check_ce(tp, skb);
3238
3239 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3240 !sk_stream_rmem_schedule(sk, skb)) {
3241 if (tcp_prune_queue(sk) < 0 ||
3242 !sk_stream_rmem_schedule(sk, skb))
3243 goto drop;
3244 }
3245
3246 /* Disable header prediction. */
3247 tp->pred_flags = 0;
3248 inet_csk_schedule_ack(sk);
3249
3250 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3251 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3252
3253 sk_stream_set_owner_r(skb, sk);
3254
3255 if (!skb_peek(&tp->out_of_order_queue)) {
3256 /* Initial out of order segment, build 1 SACK. */
3257 if (tp->rx_opt.sack_ok) {
3258 tp->rx_opt.num_sacks = 1;
3259 tp->rx_opt.dsack = 0;
3260 tp->rx_opt.eff_sacks = 1;
3261 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3262 tp->selective_acks[0].end_seq =
3263 TCP_SKB_CB(skb)->end_seq;
3264 }
3265 __skb_queue_head(&tp->out_of_order_queue,skb);
3266 } else {
3267 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3268 u32 seq = TCP_SKB_CB(skb)->seq;
3269 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3270
3271 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3272 __skb_append(skb1, skb, &tp->out_of_order_queue);
3273
3274 if (!tp->rx_opt.num_sacks ||
3275 tp->selective_acks[0].end_seq != seq)
3276 goto add_sack;
3277
3278 /* Common case: data arrive in order after hole. */
3279 tp->selective_acks[0].end_seq = end_seq;
3280 return;
3281 }
3282
3283 /* Find place to insert this segment. */
3284 do {
3285 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3286 break;
3287 } while ((skb1 = skb1->prev) !=
3288 (struct sk_buff*)&tp->out_of_order_queue);
3289
3290 /* Do skb overlap to previous one? */
3291 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3292 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3293 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3294 /* All the bits are present. Drop. */
3295 __kfree_skb(skb);
3296 tcp_dsack_set(tp, seq, end_seq);
3297 goto add_sack;
3298 }
3299 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3300 /* Partial overlap. */
3301 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3302 } else {
3303 skb1 = skb1->prev;
3304 }
3305 }
3306 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3307
3308 /* And clean segments covered by new one as whole. */
3309 while ((skb1 = skb->next) !=
3310 (struct sk_buff*)&tp->out_of_order_queue &&
3311 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3312 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3313 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3314 break;
3315 }
3316 __skb_unlink(skb1, &tp->out_of_order_queue);
3317 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3318 __kfree_skb(skb1);
3319 }
3320
3321 add_sack:
3322 if (tp->rx_opt.sack_ok)
3323 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3324 }
3325 }
3326
3327 /* Collapse contiguous sequence of skbs head..tail with
3328 * sequence numbers start..end.
3329 * Segments with FIN/SYN are not collapsed (only because this
3330 * simplifies code)
3331 */
3332 static void
3333 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3334 struct sk_buff *head, struct sk_buff *tail,
3335 u32 start, u32 end)
3336 {
3337 struct sk_buff *skb;
3338
3339 /* First, check that queue is collapsible and find
3340 * the point where collapsing can be useful. */
3341 for (skb = head; skb != tail; ) {
3342 /* No new bits? It is possible on ofo queue. */
3343 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3344 struct sk_buff *next = skb->next;
3345 __skb_unlink(skb, list);
3346 __kfree_skb(skb);
3347 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3348 skb = next;
3349 continue;
3350 }
3351
3352 /* The first skb to collapse is:
3353 * - not SYN/FIN and
3354 * - bloated or contains data before "start" or
3355 * overlaps to the next one.
3356 */
3357 if (!skb->h.th->syn && !skb->h.th->fin &&
3358 (tcp_win_from_space(skb->truesize) > skb->len ||
3359 before(TCP_SKB_CB(skb)->seq, start) ||
3360 (skb->next != tail &&
3361 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3362 break;
3363
3364 /* Decided to skip this, advance start seq. */
3365 start = TCP_SKB_CB(skb)->end_seq;
3366 skb = skb->next;
3367 }
3368 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3369 return;
3370
3371 while (before(start, end)) {
3372 struct sk_buff *nskb;
3373 int header = skb_headroom(skb);
3374 int copy = SKB_MAX_ORDER(header, 0);
3375
3376 /* Too big header? This can happen with IPv6. */
3377 if (copy < 0)
3378 return;
3379 if (end-start < copy)
3380 copy = end-start;
3381 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3382 if (!nskb)
3383 return;
3384 skb_reserve(nskb, header);
3385 memcpy(nskb->head, skb->head, header);
3386 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3387 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3388 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3389 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3390 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3391 __skb_insert(nskb, skb->prev, skb, list);
3392 sk_stream_set_owner_r(nskb, sk);
3393
3394 /* Copy data, releasing collapsed skbs. */
3395 while (copy > 0) {
3396 int offset = start - TCP_SKB_CB(skb)->seq;
3397 int size = TCP_SKB_CB(skb)->end_seq - start;
3398
3399 BUG_ON(offset < 0);
3400 if (size > 0) {
3401 size = min(copy, size);
3402 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3403 BUG();
3404 TCP_SKB_CB(nskb)->end_seq += size;
3405 copy -= size;
3406 start += size;
3407 }
3408 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3409 struct sk_buff *next = skb->next;
3410 __skb_unlink(skb, list);
3411 __kfree_skb(skb);
3412 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3413 skb = next;
3414 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3415 return;
3416 }
3417 }
3418 }
3419 }
3420
3421 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3422 * and tcp_collapse() them until all the queue is collapsed.
3423 */
3424 static void tcp_collapse_ofo_queue(struct sock *sk)
3425 {
3426 struct tcp_sock *tp = tcp_sk(sk);
3427 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3428 struct sk_buff *head;
3429 u32 start, end;
3430
3431 if (skb == NULL)
3432 return;
3433
3434 start = TCP_SKB_CB(skb)->seq;
3435 end = TCP_SKB_CB(skb)->end_seq;
3436 head = skb;
3437
3438 for (;;) {
3439 skb = skb->next;
3440
3441 /* Segment is terminated when we see gap or when
3442 * we are at the end of all the queue. */
3443 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3444 after(TCP_SKB_CB(skb)->seq, end) ||
3445 before(TCP_SKB_CB(skb)->end_seq, start)) {
3446 tcp_collapse(sk, &tp->out_of_order_queue,
3447 head, skb, start, end);
3448 head = skb;
3449 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3450 break;
3451 /* Start new segment */
3452 start = TCP_SKB_CB(skb)->seq;
3453 end = TCP_SKB_CB(skb)->end_seq;
3454 } else {
3455 if (before(TCP_SKB_CB(skb)->seq, start))
3456 start = TCP_SKB_CB(skb)->seq;
3457 if (after(TCP_SKB_CB(skb)->end_seq, end))
3458 end = TCP_SKB_CB(skb)->end_seq;
3459 }
3460 }
3461 }
3462
3463 /* Reduce allocated memory if we can, trying to get
3464 * the socket within its memory limits again.
3465 *
3466 * Return less than zero if we should start dropping frames
3467 * until the socket owning process reads some of the data
3468 * to stabilize the situation.
3469 */
3470 static int tcp_prune_queue(struct sock *sk)
3471 {
3472 struct tcp_sock *tp = tcp_sk(sk);
3473
3474 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3475
3476 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3477
3478 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3479 tcp_clamp_window(sk, tp);
3480 else if (tcp_memory_pressure)
3481 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3482
3483 tcp_collapse_ofo_queue(sk);
3484 tcp_collapse(sk, &sk->sk_receive_queue,
3485 sk->sk_receive_queue.next,
3486 (struct sk_buff*)&sk->sk_receive_queue,
3487 tp->copied_seq, tp->rcv_nxt);
3488 sk_stream_mem_reclaim(sk);
3489
3490 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3491 return 0;
3492
3493 /* Collapsing did not help, destructive actions follow.
3494 * This must not ever occur. */
3495
3496 /* First, purge the out_of_order queue. */
3497 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3498 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3499 __skb_queue_purge(&tp->out_of_order_queue);
3500
3501 /* Reset SACK state. A conforming SACK implementation will
3502 * do the same at a timeout based retransmit. When a connection
3503 * is in a sad state like this, we care only about integrity
3504 * of the connection not performance.
3505 */
3506 if (tp->rx_opt.sack_ok)
3507 tcp_sack_reset(&tp->rx_opt);
3508 sk_stream_mem_reclaim(sk);
3509 }
3510
3511 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3512 return 0;
3513
3514 /* If we are really being abused, tell the caller to silently
3515 * drop receive data on the floor. It will get retransmitted
3516 * and hopefully then we'll have sufficient space.
3517 */
3518 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3519
3520 /* Massive buffer overcommit. */
3521 tp->pred_flags = 0;
3522 return -1;
3523 }
3524
3525
3526 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3527 * As additional protections, we do not touch cwnd in retransmission phases,
3528 * and if application hit its sndbuf limit recently.
3529 */
3530 void tcp_cwnd_application_limited(struct sock *sk)
3531 {
3532 struct tcp_sock *tp = tcp_sk(sk);
3533
3534 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3535 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3536 /* Limited by application or receiver window. */
3537 u32 win_used = max(tp->snd_cwnd_used, 2U);
3538 if (win_used < tp->snd_cwnd) {
3539 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3540 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3541 }
3542 tp->snd_cwnd_used = 0;
3543 }
3544 tp->snd_cwnd_stamp = tcp_time_stamp;
3545 }
3546
3547 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3548 {
3549 /* If the user specified a specific send buffer setting, do
3550 * not modify it.
3551 */
3552 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3553 return 0;
3554
3555 /* If we are under global TCP memory pressure, do not expand. */
3556 if (tcp_memory_pressure)
3557 return 0;
3558
3559 /* If we are under soft global TCP memory pressure, do not expand. */
3560 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3561 return 0;
3562
3563 /* If we filled the congestion window, do not expand. */
3564 if (tp->packets_out >= tp->snd_cwnd)
3565 return 0;
3566
3567 return 1;
3568 }
3569
3570 /* When incoming ACK allowed to free some skb from write_queue,
3571 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3572 * on the exit from tcp input handler.
3573 *
3574 * PROBLEM: sndbuf expansion does not work well with largesend.
3575 */
3576 static void tcp_new_space(struct sock *sk)
3577 {
3578 struct tcp_sock *tp = tcp_sk(sk);
3579
3580 if (tcp_should_expand_sndbuf(sk, tp)) {
3581 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3582 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3583 demanded = max_t(unsigned int, tp->snd_cwnd,
3584 tp->reordering + 1);
3585 sndmem *= 2*demanded;
3586 if (sndmem > sk->sk_sndbuf)
3587 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3588 tp->snd_cwnd_stamp = tcp_time_stamp;
3589 }
3590
3591 sk->sk_write_space(sk);
3592 }
3593
3594 static void tcp_check_space(struct sock *sk)
3595 {
3596 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3597 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3598 if (sk->sk_socket &&
3599 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3600 tcp_new_space(sk);
3601 }
3602 }
3603
3604 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3605 {
3606 tcp_push_pending_frames(sk, tp);
3607 tcp_check_space(sk);
3608 }
3609
3610 /*
3611 * Check if sending an ack is needed.
3612 */
3613 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3614 {
3615 struct tcp_sock *tp = tcp_sk(sk);
3616
3617 /* More than one full frame received... */
3618 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3619 /* ... and right edge of window advances far enough.
3620 * (tcp_recvmsg() will send ACK otherwise). Or...
3621 */
3622 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3623 /* We ACK each frame or... */
3624 tcp_in_quickack_mode(sk) ||
3625 /* We have out of order data. */
3626 (ofo_possible &&
3627 skb_peek(&tp->out_of_order_queue))) {
3628 /* Then ack it now */
3629 tcp_send_ack(sk);
3630 } else {
3631 /* Else, send delayed ack. */
3632 tcp_send_delayed_ack(sk);
3633 }
3634 }
3635
3636 static inline void tcp_ack_snd_check(struct sock *sk)
3637 {
3638 if (!inet_csk_ack_scheduled(sk)) {
3639 /* We sent a data segment already. */
3640 return;
3641 }
3642 __tcp_ack_snd_check(sk, 1);
3643 }
3644
3645 /*
3646 * This routine is only called when we have urgent data
3647 * signaled. Its the 'slow' part of tcp_urg. It could be
3648 * moved inline now as tcp_urg is only called from one
3649 * place. We handle URGent data wrong. We have to - as
3650 * BSD still doesn't use the correction from RFC961.
3651 * For 1003.1g we should support a new option TCP_STDURG to permit
3652 * either form (or just set the sysctl tcp_stdurg).
3653 */
3654
3655 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3656 {
3657 struct tcp_sock *tp = tcp_sk(sk);
3658 u32 ptr = ntohs(th->urg_ptr);
3659
3660 if (ptr && !sysctl_tcp_stdurg)
3661 ptr--;
3662 ptr += ntohl(th->seq);
3663
3664 /* Ignore urgent data that we've already seen and read. */
3665 if (after(tp->copied_seq, ptr))
3666 return;
3667
3668 /* Do not replay urg ptr.
3669 *
3670 * NOTE: interesting situation not covered by specs.
3671 * Misbehaving sender may send urg ptr, pointing to segment,
3672 * which we already have in ofo queue. We are not able to fetch
3673 * such data and will stay in TCP_URG_NOTYET until will be eaten
3674 * by recvmsg(). Seems, we are not obliged to handle such wicked
3675 * situations. But it is worth to think about possibility of some
3676 * DoSes using some hypothetical application level deadlock.
3677 */
3678 if (before(ptr, tp->rcv_nxt))
3679 return;
3680
3681 /* Do we already have a newer (or duplicate) urgent pointer? */
3682 if (tp->urg_data && !after(ptr, tp->urg_seq))
3683 return;
3684
3685 /* Tell the world about our new urgent pointer. */
3686 sk_send_sigurg(sk);
3687
3688 /* We may be adding urgent data when the last byte read was
3689 * urgent. To do this requires some care. We cannot just ignore
3690 * tp->copied_seq since we would read the last urgent byte again
3691 * as data, nor can we alter copied_seq until this data arrives
3692 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3693 *
3694 * NOTE. Double Dutch. Rendering to plain English: author of comment
3695 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3696 * and expect that both A and B disappear from stream. This is _wrong_.
3697 * Though this happens in BSD with high probability, this is occasional.
3698 * Any application relying on this is buggy. Note also, that fix "works"
3699 * only in this artificial test. Insert some normal data between A and B and we will
3700 * decline of BSD again. Verdict: it is better to remove to trap
3701 * buggy users.
3702 */
3703 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3704 !sock_flag(sk, SOCK_URGINLINE) &&
3705 tp->copied_seq != tp->rcv_nxt) {
3706 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3707 tp->copied_seq++;
3708 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3709 __skb_unlink(skb, &sk->sk_receive_queue);
3710 __kfree_skb(skb);
3711 }
3712 }
3713
3714 tp->urg_data = TCP_URG_NOTYET;
3715 tp->urg_seq = ptr;
3716
3717 /* Disable header prediction. */
3718 tp->pred_flags = 0;
3719 }
3720
3721 /* This is the 'fast' part of urgent handling. */
3722 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3723 {
3724 struct tcp_sock *tp = tcp_sk(sk);
3725
3726 /* Check if we get a new urgent pointer - normally not. */
3727 if (th->urg)
3728 tcp_check_urg(sk,th);
3729
3730 /* Do we wait for any urgent data? - normally not... */
3731 if (tp->urg_data == TCP_URG_NOTYET) {
3732 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3733 th->syn;
3734
3735 /* Is the urgent pointer pointing into this packet? */
3736 if (ptr < skb->len) {
3737 u8 tmp;
3738 if (skb_copy_bits(skb, ptr, &tmp, 1))
3739 BUG();
3740 tp->urg_data = TCP_URG_VALID | tmp;
3741 if (!sock_flag(sk, SOCK_DEAD))
3742 sk->sk_data_ready(sk, 0);
3743 }
3744 }
3745 }
3746
3747 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3748 {
3749 struct tcp_sock *tp = tcp_sk(sk);
3750 int chunk = skb->len - hlen;
3751 int err;
3752
3753 local_bh_enable();
3754 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3755 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3756 else
3757 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3758 tp->ucopy.iov);
3759
3760 if (!err) {
3761 tp->ucopy.len -= chunk;
3762 tp->copied_seq += chunk;
3763 tcp_rcv_space_adjust(sk);
3764 }
3765
3766 local_bh_disable();
3767 return err;
3768 }
3769
3770 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3771 {
3772 int result;
3773
3774 if (sock_owned_by_user(sk)) {
3775 local_bh_enable();
3776 result = __tcp_checksum_complete(skb);
3777 local_bh_disable();
3778 } else {
3779 result = __tcp_checksum_complete(skb);
3780 }
3781 return result;
3782 }
3783
3784 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3785 {
3786 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3787 __tcp_checksum_complete_user(sk, skb);
3788 }
3789
3790 /*
3791 * TCP receive function for the ESTABLISHED state.
3792 *
3793 * It is split into a fast path and a slow path. The fast path is
3794 * disabled when:
3795 * - A zero window was announced from us - zero window probing
3796 * is only handled properly in the slow path.
3797 * - Out of order segments arrived.
3798 * - Urgent data is expected.
3799 * - There is no buffer space left
3800 * - Unexpected TCP flags/window values/header lengths are received
3801 * (detected by checking the TCP header against pred_flags)
3802 * - Data is sent in both directions. Fast path only supports pure senders
3803 * or pure receivers (this means either the sequence number or the ack
3804 * value must stay constant)
3805 * - Unexpected TCP option.
3806 *
3807 * When these conditions are not satisfied it drops into a standard
3808 * receive procedure patterned after RFC793 to handle all cases.
3809 * The first three cases are guaranteed by proper pred_flags setting,
3810 * the rest is checked inline. Fast processing is turned on in
3811 * tcp_data_queue when everything is OK.
3812 */
3813 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3814 struct tcphdr *th, unsigned len)
3815 {
3816 struct tcp_sock *tp = tcp_sk(sk);
3817
3818 /*
3819 * Header prediction.
3820 * The code loosely follows the one in the famous
3821 * "30 instruction TCP receive" Van Jacobson mail.
3822 *
3823 * Van's trick is to deposit buffers into socket queue
3824 * on a device interrupt, to call tcp_recv function
3825 * on the receive process context and checksum and copy
3826 * the buffer to user space. smart...
3827 *
3828 * Our current scheme is not silly either but we take the
3829 * extra cost of the net_bh soft interrupt processing...
3830 * We do checksum and copy also but from device to kernel.
3831 */
3832
3833 tp->rx_opt.saw_tstamp = 0;
3834
3835 /* pred_flags is 0xS?10 << 16 + snd_wnd
3836 * if header_prediction is to be made
3837 * 'S' will always be tp->tcp_header_len >> 2
3838 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3839 * turn it off (when there are holes in the receive
3840 * space for instance)
3841 * PSH flag is ignored.
3842 */
3843
3844 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3845 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3846 int tcp_header_len = tp->tcp_header_len;
3847
3848 /* Timestamp header prediction: tcp_header_len
3849 * is automatically equal to th->doff*4 due to pred_flags
3850 * match.
3851 */
3852
3853 /* Check timestamp */
3854 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3855 __u32 *ptr = (__u32 *)(th + 1);
3856
3857 /* No? Slow path! */
3858 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3859 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3860 goto slow_path;
3861
3862 tp->rx_opt.saw_tstamp = 1;
3863 ++ptr;
3864 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3865 ++ptr;
3866 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3867
3868 /* If PAWS failed, check it more carefully in slow path */
3869 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3870 goto slow_path;
3871
3872 /* DO NOT update ts_recent here, if checksum fails
3873 * and timestamp was corrupted part, it will result
3874 * in a hung connection since we will drop all
3875 * future packets due to the PAWS test.
3876 */
3877 }
3878
3879 if (len <= tcp_header_len) {
3880 /* Bulk data transfer: sender */
3881 if (len == tcp_header_len) {
3882 /* Predicted packet is in window by definition.
3883 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3884 * Hence, check seq<=rcv_wup reduces to:
3885 */
3886 if (tcp_header_len ==
3887 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3888 tp->rcv_nxt == tp->rcv_wup)
3889 tcp_store_ts_recent(tp);
3890
3891 tcp_rcv_rtt_measure_ts(sk, skb);
3892
3893 /* We know that such packets are checksummed
3894 * on entry.
3895 */
3896 tcp_ack(sk, skb, 0);
3897 __kfree_skb(skb);
3898 tcp_data_snd_check(sk, tp);
3899 return 0;
3900 } else { /* Header too small */
3901 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3902 goto discard;
3903 }
3904 } else {
3905 int eaten = 0;
3906
3907 if (tp->ucopy.task == current &&
3908 tp->copied_seq == tp->rcv_nxt &&
3909 len - tcp_header_len <= tp->ucopy.len &&
3910 sock_owned_by_user(sk)) {
3911 __set_current_state(TASK_RUNNING);
3912
3913 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3914 /* Predicted packet is in window by definition.
3915 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3916 * Hence, check seq<=rcv_wup reduces to:
3917 */
3918 if (tcp_header_len ==
3919 (sizeof(struct tcphdr) +
3920 TCPOLEN_TSTAMP_ALIGNED) &&
3921 tp->rcv_nxt == tp->rcv_wup)
3922 tcp_store_ts_recent(tp);
3923
3924 tcp_rcv_rtt_measure_ts(sk, skb);
3925
3926 __skb_pull(skb, tcp_header_len);
3927 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3928 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3929 eaten = 1;
3930 }
3931 }
3932 if (!eaten) {
3933 if (tcp_checksum_complete_user(sk, skb))
3934 goto csum_error;
3935
3936 /* Predicted packet is in window by definition.
3937 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3938 * Hence, check seq<=rcv_wup reduces to:
3939 */
3940 if (tcp_header_len ==
3941 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3942 tp->rcv_nxt == tp->rcv_wup)
3943 tcp_store_ts_recent(tp);
3944
3945 tcp_rcv_rtt_measure_ts(sk, skb);
3946
3947 if ((int)skb->truesize > sk->sk_forward_alloc)
3948 goto step5;
3949
3950 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3951
3952 /* Bulk data transfer: receiver */
3953 __skb_pull(skb,tcp_header_len);
3954 __skb_queue_tail(&sk->sk_receive_queue, skb);
3955 sk_stream_set_owner_r(skb, sk);
3956 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3957 }
3958
3959 tcp_event_data_recv(sk, tp, skb);
3960
3961 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3962 /* Well, only one small jumplet in fast path... */
3963 tcp_ack(sk, skb, FLAG_DATA);
3964 tcp_data_snd_check(sk, tp);
3965 if (!inet_csk_ack_scheduled(sk))
3966 goto no_ack;
3967 }
3968
3969 __tcp_ack_snd_check(sk, 0);
3970 no_ack:
3971 if (eaten)
3972 __kfree_skb(skb);
3973 else
3974 sk->sk_data_ready(sk, 0);
3975 return 0;
3976 }
3977 }
3978
3979 slow_path:
3980 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3981 goto csum_error;
3982
3983 /*
3984 * RFC1323: H1. Apply PAWS check first.
3985 */
3986 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
3987 tcp_paws_discard(sk, skb)) {
3988 if (!th->rst) {
3989 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3990 tcp_send_dupack(sk, skb);
3991 goto discard;
3992 }
3993 /* Resets are accepted even if PAWS failed.
3994
3995 ts_recent update must be made after we are sure
3996 that the packet is in window.
3997 */
3998 }
3999
4000 /*
4001 * Standard slow path.
4002 */
4003
4004 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4005 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4006 * (RST) segments are validated by checking their SEQ-fields."
4007 * And page 69: "If an incoming segment is not acceptable,
4008 * an acknowledgment should be sent in reply (unless the RST bit
4009 * is set, if so drop the segment and return)".
4010 */
4011 if (!th->rst)
4012 tcp_send_dupack(sk, skb);
4013 goto discard;
4014 }
4015
4016 if(th->rst) {
4017 tcp_reset(sk);
4018 goto discard;
4019 }
4020
4021 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4022
4023 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4024 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4025 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4026 tcp_reset(sk);
4027 return 1;
4028 }
4029
4030 step5:
4031 if(th->ack)
4032 tcp_ack(sk, skb, FLAG_SLOWPATH);
4033
4034 tcp_rcv_rtt_measure_ts(sk, skb);
4035
4036 /* Process urgent data. */
4037 tcp_urg(sk, skb, th);
4038
4039 /* step 7: process the segment text */
4040 tcp_data_queue(sk, skb);
4041
4042 tcp_data_snd_check(sk, tp);
4043 tcp_ack_snd_check(sk);
4044 return 0;
4045
4046 csum_error:
4047 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4048
4049 discard:
4050 __kfree_skb(skb);
4051 return 0;
4052 }
4053
4054 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4055 struct tcphdr *th, unsigned len)
4056 {
4057 struct tcp_sock *tp = tcp_sk(sk);
4058 struct inet_connection_sock *icsk = inet_csk(sk);
4059 int saved_clamp = tp->rx_opt.mss_clamp;
4060
4061 tcp_parse_options(skb, &tp->rx_opt, 0);
4062
4063 if (th->ack) {
4064 /* rfc793:
4065 * "If the state is SYN-SENT then
4066 * first check the ACK bit
4067 * If the ACK bit is set
4068 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4069 * a reset (unless the RST bit is set, if so drop
4070 * the segment and return)"
4071 *
4072 * We do not send data with SYN, so that RFC-correct
4073 * test reduces to:
4074 */
4075 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4076 goto reset_and_undo;
4077
4078 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4079 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4080 tcp_time_stamp)) {
4081 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4082 goto reset_and_undo;
4083 }
4084
4085 /* Now ACK is acceptable.
4086 *
4087 * "If the RST bit is set
4088 * If the ACK was acceptable then signal the user "error:
4089 * connection reset", drop the segment, enter CLOSED state,
4090 * delete TCB, and return."
4091 */
4092
4093 if (th->rst) {
4094 tcp_reset(sk);
4095 goto discard;
4096 }
4097
4098 /* rfc793:
4099 * "fifth, if neither of the SYN or RST bits is set then
4100 * drop the segment and return."
4101 *
4102 * See note below!
4103 * --ANK(990513)
4104 */
4105 if (!th->syn)
4106 goto discard_and_undo;
4107
4108 /* rfc793:
4109 * "If the SYN bit is on ...
4110 * are acceptable then ...
4111 * (our SYN has been ACKed), change the connection
4112 * state to ESTABLISHED..."
4113 */
4114
4115 TCP_ECN_rcv_synack(tp, th);
4116 if (tp->ecn_flags&TCP_ECN_OK)
4117 sock_set_flag(sk, SOCK_NO_LARGESEND);
4118
4119 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4120 tcp_ack(sk, skb, FLAG_SLOWPATH);
4121
4122 /* Ok.. it's good. Set up sequence numbers and
4123 * move to established.
4124 */
4125 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4126 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4127
4128 /* RFC1323: The window in SYN & SYN/ACK segments is
4129 * never scaled.
4130 */
4131 tp->snd_wnd = ntohs(th->window);
4132 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4133
4134 if (!tp->rx_opt.wscale_ok) {
4135 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4136 tp->window_clamp = min(tp->window_clamp, 65535U);
4137 }
4138
4139 if (tp->rx_opt.saw_tstamp) {
4140 tp->rx_opt.tstamp_ok = 1;
4141 tp->tcp_header_len =
4142 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4143 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4144 tcp_store_ts_recent(tp);
4145 } else {
4146 tp->tcp_header_len = sizeof(struct tcphdr);
4147 }
4148
4149 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4150 tp->rx_opt.sack_ok |= 2;
4151
4152 tcp_mtup_init(sk);
4153 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4154 tcp_initialize_rcv_mss(sk);
4155
4156 /* Remember, tcp_poll() does not lock socket!
4157 * Change state from SYN-SENT only after copied_seq
4158 * is initialized. */
4159 tp->copied_seq = tp->rcv_nxt;
4160 mb();
4161 tcp_set_state(sk, TCP_ESTABLISHED);
4162
4163 /* Make sure socket is routed, for correct metrics. */
4164 icsk->icsk_af_ops->rebuild_header(sk);
4165
4166 tcp_init_metrics(sk);
4167
4168 tcp_init_congestion_control(sk);
4169
4170 /* Prevent spurious tcp_cwnd_restart() on first data
4171 * packet.
4172 */
4173 tp->lsndtime = tcp_time_stamp;
4174
4175 tcp_init_buffer_space(sk);
4176
4177 if (sock_flag(sk, SOCK_KEEPOPEN))
4178 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4179
4180 if (!tp->rx_opt.snd_wscale)
4181 __tcp_fast_path_on(tp, tp->snd_wnd);
4182 else
4183 tp->pred_flags = 0;
4184
4185 if (!sock_flag(sk, SOCK_DEAD)) {
4186 sk->sk_state_change(sk);
4187 sk_wake_async(sk, 0, POLL_OUT);
4188 }
4189
4190 if (sk->sk_write_pending ||
4191 icsk->icsk_accept_queue.rskq_defer_accept ||
4192 icsk->icsk_ack.pingpong) {
4193 /* Save one ACK. Data will be ready after
4194 * several ticks, if write_pending is set.
4195 *
4196 * It may be deleted, but with this feature tcpdumps
4197 * look so _wonderfully_ clever, that I was not able
4198 * to stand against the temptation 8) --ANK
4199 */
4200 inet_csk_schedule_ack(sk);
4201 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4202 icsk->icsk_ack.ato = TCP_ATO_MIN;
4203 tcp_incr_quickack(sk);
4204 tcp_enter_quickack_mode(sk);
4205 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4206 TCP_DELACK_MAX, TCP_RTO_MAX);
4207
4208 discard:
4209 __kfree_skb(skb);
4210 return 0;
4211 } else {
4212 tcp_send_ack(sk);
4213 }
4214 return -1;
4215 }
4216
4217 /* No ACK in the segment */
4218
4219 if (th->rst) {
4220 /* rfc793:
4221 * "If the RST bit is set
4222 *
4223 * Otherwise (no ACK) drop the segment and return."
4224 */
4225
4226 goto discard_and_undo;
4227 }
4228
4229 /* PAWS check. */
4230 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4231 goto discard_and_undo;
4232
4233 if (th->syn) {
4234 /* We see SYN without ACK. It is attempt of
4235 * simultaneous connect with crossed SYNs.
4236 * Particularly, it can be connect to self.
4237 */
4238 tcp_set_state(sk, TCP_SYN_RECV);
4239
4240 if (tp->rx_opt.saw_tstamp) {
4241 tp->rx_opt.tstamp_ok = 1;
4242 tcp_store_ts_recent(tp);
4243 tp->tcp_header_len =
4244 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4245 } else {
4246 tp->tcp_header_len = sizeof(struct tcphdr);
4247 }
4248
4249 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4250 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4251
4252 /* RFC1323: The window in SYN & SYN/ACK segments is
4253 * never scaled.
4254 */
4255 tp->snd_wnd = ntohs(th->window);
4256 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4257 tp->max_window = tp->snd_wnd;
4258
4259 TCP_ECN_rcv_syn(tp, th);
4260 if (tp->ecn_flags&TCP_ECN_OK)
4261 sock_set_flag(sk, SOCK_NO_LARGESEND);
4262
4263 tcp_mtup_init(sk);
4264 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4265 tcp_initialize_rcv_mss(sk);
4266
4267
4268 tcp_send_synack(sk);
4269 #if 0
4270 /* Note, we could accept data and URG from this segment.
4271 * There are no obstacles to make this.
4272 *
4273 * However, if we ignore data in ACKless segments sometimes,
4274 * we have no reasons to accept it sometimes.
4275 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4276 * is not flawless. So, discard packet for sanity.
4277 * Uncomment this return to process the data.
4278 */
4279 return -1;
4280 #else
4281 goto discard;
4282 #endif
4283 }
4284 /* "fifth, if neither of the SYN or RST bits is set then
4285 * drop the segment and return."
4286 */
4287
4288 discard_and_undo:
4289 tcp_clear_options(&tp->rx_opt);
4290 tp->rx_opt.mss_clamp = saved_clamp;
4291 goto discard;
4292
4293 reset_and_undo:
4294 tcp_clear_options(&tp->rx_opt);
4295 tp->rx_opt.mss_clamp = saved_clamp;
4296 return 1;
4297 }
4298
4299
4300 /*
4301 * This function implements the receiving procedure of RFC 793 for
4302 * all states except ESTABLISHED and TIME_WAIT.
4303 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4304 * address independent.
4305 */
4306
4307 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4308 struct tcphdr *th, unsigned len)
4309 {
4310 struct tcp_sock *tp = tcp_sk(sk);
4311 struct inet_connection_sock *icsk = inet_csk(sk);
4312 int queued = 0;
4313
4314 tp->rx_opt.saw_tstamp = 0;
4315
4316 switch (sk->sk_state) {
4317 case TCP_CLOSE:
4318 goto discard;
4319
4320 case TCP_LISTEN:
4321 if(th->ack)
4322 return 1;
4323
4324 if(th->rst)
4325 goto discard;
4326
4327 if(th->syn) {
4328 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4329 return 1;
4330
4331 /* Now we have several options: In theory there is
4332 * nothing else in the frame. KA9Q has an option to
4333 * send data with the syn, BSD accepts data with the
4334 * syn up to the [to be] advertised window and
4335 * Solaris 2.1 gives you a protocol error. For now
4336 * we just ignore it, that fits the spec precisely
4337 * and avoids incompatibilities. It would be nice in
4338 * future to drop through and process the data.
4339 *
4340 * Now that TTCP is starting to be used we ought to
4341 * queue this data.
4342 * But, this leaves one open to an easy denial of
4343 * service attack, and SYN cookies can't defend
4344 * against this problem. So, we drop the data
4345 * in the interest of security over speed.
4346 */
4347 goto discard;
4348 }
4349 goto discard;
4350
4351 case TCP_SYN_SENT:
4352 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4353 if (queued >= 0)
4354 return queued;
4355
4356 /* Do step6 onward by hand. */
4357 tcp_urg(sk, skb, th);
4358 __kfree_skb(skb);
4359 tcp_data_snd_check(sk, tp);
4360 return 0;
4361 }
4362
4363 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4364 tcp_paws_discard(sk, skb)) {
4365 if (!th->rst) {
4366 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4367 tcp_send_dupack(sk, skb);
4368 goto discard;
4369 }
4370 /* Reset is accepted even if it did not pass PAWS. */
4371 }
4372
4373 /* step 1: check sequence number */
4374 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4375 if (!th->rst)
4376 tcp_send_dupack(sk, skb);
4377 goto discard;
4378 }
4379
4380 /* step 2: check RST bit */
4381 if(th->rst) {
4382 tcp_reset(sk);
4383 goto discard;
4384 }
4385
4386 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4387
4388 /* step 3: check security and precedence [ignored] */
4389
4390 /* step 4:
4391 *
4392 * Check for a SYN in window.
4393 */
4394 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4395 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4396 tcp_reset(sk);
4397 return 1;
4398 }
4399
4400 /* step 5: check the ACK field */
4401 if (th->ack) {
4402 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4403
4404 switch(sk->sk_state) {
4405 case TCP_SYN_RECV:
4406 if (acceptable) {
4407 tp->copied_seq = tp->rcv_nxt;
4408 mb();
4409 tcp_set_state(sk, TCP_ESTABLISHED);
4410 sk->sk_state_change(sk);
4411
4412 /* Note, that this wakeup is only for marginal
4413 * crossed SYN case. Passively open sockets
4414 * are not waked up, because sk->sk_sleep ==
4415 * NULL and sk->sk_socket == NULL.
4416 */
4417 if (sk->sk_socket) {
4418 sk_wake_async(sk,0,POLL_OUT);
4419 }
4420
4421 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4422 tp->snd_wnd = ntohs(th->window) <<
4423 tp->rx_opt.snd_wscale;
4424 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4425 TCP_SKB_CB(skb)->seq);
4426
4427 /* tcp_ack considers this ACK as duplicate
4428 * and does not calculate rtt.
4429 * Fix it at least with timestamps.
4430 */
4431 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4432 !tp->srtt)
4433 tcp_ack_saw_tstamp(sk, 0);
4434
4435 if (tp->rx_opt.tstamp_ok)
4436 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4437
4438 /* Make sure socket is routed, for
4439 * correct metrics.
4440 */
4441 icsk->icsk_af_ops->rebuild_header(sk);
4442
4443 tcp_init_metrics(sk);
4444
4445 tcp_init_congestion_control(sk);
4446
4447 /* Prevent spurious tcp_cwnd_restart() on
4448 * first data packet.
4449 */
4450 tp->lsndtime = tcp_time_stamp;
4451
4452 tcp_mtup_init(sk);
4453 tcp_initialize_rcv_mss(sk);
4454 tcp_init_buffer_space(sk);
4455 tcp_fast_path_on(tp);
4456 } else {
4457 return 1;
4458 }
4459 break;
4460
4461 case TCP_FIN_WAIT1:
4462 if (tp->snd_una == tp->write_seq) {
4463 tcp_set_state(sk, TCP_FIN_WAIT2);
4464 sk->sk_shutdown |= SEND_SHUTDOWN;
4465 dst_confirm(sk->sk_dst_cache);
4466
4467 if (!sock_flag(sk, SOCK_DEAD))
4468 /* Wake up lingering close() */
4469 sk->sk_state_change(sk);
4470 else {
4471 int tmo;
4472
4473 if (tp->linger2 < 0 ||
4474 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4475 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4476 tcp_done(sk);
4477 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4478 return 1;
4479 }
4480
4481 tmo = tcp_fin_time(sk);
4482 if (tmo > TCP_TIMEWAIT_LEN) {
4483 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4484 } else if (th->fin || sock_owned_by_user(sk)) {
4485 /* Bad case. We could lose such FIN otherwise.
4486 * It is not a big problem, but it looks confusing
4487 * and not so rare event. We still can lose it now,
4488 * if it spins in bh_lock_sock(), but it is really
4489 * marginal case.
4490 */
4491 inet_csk_reset_keepalive_timer(sk, tmo);
4492 } else {
4493 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4494 goto discard;
4495 }
4496 }
4497 }
4498 break;
4499
4500 case TCP_CLOSING:
4501 if (tp->snd_una == tp->write_seq) {
4502 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4503 goto discard;
4504 }
4505 break;
4506
4507 case TCP_LAST_ACK:
4508 if (tp->snd_una == tp->write_seq) {
4509 tcp_update_metrics(sk);
4510 tcp_done(sk);
4511 goto discard;
4512 }
4513 break;
4514 }
4515 } else
4516 goto discard;
4517
4518 /* step 6: check the URG bit */
4519 tcp_urg(sk, skb, th);
4520
4521 /* step 7: process the segment text */
4522 switch (sk->sk_state) {
4523 case TCP_CLOSE_WAIT:
4524 case TCP_CLOSING:
4525 case TCP_LAST_ACK:
4526 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4527 break;
4528 case TCP_FIN_WAIT1:
4529 case TCP_FIN_WAIT2:
4530 /* RFC 793 says to queue data in these states,
4531 * RFC 1122 says we MUST send a reset.
4532 * BSD 4.4 also does reset.
4533 */
4534 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4535 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4536 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4537 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4538 tcp_reset(sk);
4539 return 1;
4540 }
4541 }
4542 /* Fall through */
4543 case TCP_ESTABLISHED:
4544 tcp_data_queue(sk, skb);
4545 queued = 1;
4546 break;
4547 }
4548
4549 /* tcp_data could move socket to TIME-WAIT */
4550 if (sk->sk_state != TCP_CLOSE) {
4551 tcp_data_snd_check(sk, tp);
4552 tcp_ack_snd_check(sk);
4553 }
4554
4555 if (!queued) {
4556 discard:
4557 __kfree_skb(skb);
4558 }
4559 return 0;
4560 }
4561
4562 EXPORT_SYMBOL(sysctl_tcp_ecn);
4563 EXPORT_SYMBOL(sysctl_tcp_reordering);
4564 EXPORT_SYMBOL(tcp_parse_options);
4565 EXPORT_SYMBOL(tcp_rcv_established);
4566 EXPORT_SYMBOL(tcp_rcv_state_process);
4567 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.190065 seconds and 5 git commands to generate.