[TCP]: Appropriate Byte Count support
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presnce of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/config.h>
67 #include <linux/mm.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
84
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
88 int sysctl_tcp_frto;
89 int sysctl_tcp_nometrics_save;
90
91 int sysctl_tcp_moderate_rcvbuf = 1;
92 int sysctl_tcp_abc = 1;
93
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114
115 /* Adapt the MSS value used to make delayed ack decision to the
116 * real world.
117 */
118 static inline void tcp_measure_rcv_mss(struct sock *sk,
119 const struct sk_buff *skb)
120 {
121 struct inet_connection_sock *icsk = inet_csk(sk);
122 const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 unsigned int len;
124
125 icsk->icsk_ack.last_seg_size = 0;
126
127 /* skb->len may jitter because of SACKs, even if peer
128 * sends good full-sized frames.
129 */
130 len = skb->len;
131 if (len >= icsk->icsk_ack.rcv_mss) {
132 icsk->icsk_ack.rcv_mss = len;
133 } else {
134 /* Otherwise, we make more careful check taking into account,
135 * that SACKs block is variable.
136 *
137 * "len" is invariant segment length, including TCP header.
138 */
139 len += skb->data - skb->h.raw;
140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 /* If PSH is not set, packet should be
142 * full sized, provided peer TCP is not badly broken.
143 * This observation (if it is correct 8)) allows
144 * to handle super-low mtu links fairly.
145 */
146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 /* Subtract also invariant (if peer is RFC compliant),
149 * tcp header plus fixed timestamp option length.
150 * Resulting "len" is MSS free of SACK jitter.
151 */
152 len -= tcp_sk(sk)->tcp_header_len;
153 icsk->icsk_ack.last_seg_size = len;
154 if (len == lss) {
155 icsk->icsk_ack.rcv_mss = len;
156 return;
157 }
158 }
159 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
160 }
161 }
162
163 static void tcp_incr_quickack(struct sock *sk)
164 {
165 struct inet_connection_sock *icsk = inet_csk(sk);
166 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
167
168 if (quickacks==0)
169 quickacks=2;
170 if (quickacks > icsk->icsk_ack.quick)
171 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
172 }
173
174 void tcp_enter_quickack_mode(struct sock *sk)
175 {
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 tcp_incr_quickack(sk);
178 icsk->icsk_ack.pingpong = 0;
179 icsk->icsk_ack.ato = TCP_ATO_MIN;
180 }
181
182 /* Send ACKs quickly, if "quick" count is not exhausted
183 * and the session is not interactive.
184 */
185
186 static inline int tcp_in_quickack_mode(const struct sock *sk)
187 {
188 const struct inet_connection_sock *icsk = inet_csk(sk);
189 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
190 }
191
192 /* Buffer size and advertised window tuning.
193 *
194 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
195 */
196
197 static void tcp_fixup_sndbuf(struct sock *sk)
198 {
199 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
200 sizeof(struct sk_buff);
201
202 if (sk->sk_sndbuf < 3 * sndmem)
203 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
204 }
205
206 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
207 *
208 * All tcp_full_space() is split to two parts: "network" buffer, allocated
209 * forward and advertised in receiver window (tp->rcv_wnd) and
210 * "application buffer", required to isolate scheduling/application
211 * latencies from network.
212 * window_clamp is maximal advertised window. It can be less than
213 * tcp_full_space(), in this case tcp_full_space() - window_clamp
214 * is reserved for "application" buffer. The less window_clamp is
215 * the smoother our behaviour from viewpoint of network, but the lower
216 * throughput and the higher sensitivity of the connection to losses. 8)
217 *
218 * rcv_ssthresh is more strict window_clamp used at "slow start"
219 * phase to predict further behaviour of this connection.
220 * It is used for two goals:
221 * - to enforce header prediction at sender, even when application
222 * requires some significant "application buffer". It is check #1.
223 * - to prevent pruning of receive queue because of misprediction
224 * of receiver window. Check #2.
225 *
226 * The scheme does not work when sender sends good segments opening
227 * window and then starts to feed us spagetti. But it should work
228 * in common situations. Otherwise, we have to rely on queue collapsing.
229 */
230
231 /* Slow part of check#2. */
232 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
233 const struct sk_buff *skb)
234 {
235 /* Optimize this! */
236 int truesize = tcp_win_from_space(skb->truesize)/2;
237 int window = tcp_full_space(sk)/2;
238
239 while (tp->rcv_ssthresh <= window) {
240 if (truesize <= skb->len)
241 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
242
243 truesize >>= 1;
244 window >>= 1;
245 }
246 return 0;
247 }
248
249 static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
250 struct sk_buff *skb)
251 {
252 /* Check #1 */
253 if (tp->rcv_ssthresh < tp->window_clamp &&
254 (int)tp->rcv_ssthresh < tcp_space(sk) &&
255 !tcp_memory_pressure) {
256 int incr;
257
258 /* Check #2. Increase window, if skb with such overhead
259 * will fit to rcvbuf in future.
260 */
261 if (tcp_win_from_space(skb->truesize) <= skb->len)
262 incr = 2*tp->advmss;
263 else
264 incr = __tcp_grow_window(sk, tp, skb);
265
266 if (incr) {
267 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
268 inet_csk(sk)->icsk_ack.quick |= 1;
269 }
270 }
271 }
272
273 /* 3. Tuning rcvbuf, when connection enters established state. */
274
275 static void tcp_fixup_rcvbuf(struct sock *sk)
276 {
277 struct tcp_sock *tp = tcp_sk(sk);
278 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
279
280 /* Try to select rcvbuf so that 4 mss-sized segments
281 * will fit to window and correspoding skbs will fit to our rcvbuf.
282 * (was 3; 4 is minimum to allow fast retransmit to work.)
283 */
284 while (tcp_win_from_space(rcvmem) < tp->advmss)
285 rcvmem += 128;
286 if (sk->sk_rcvbuf < 4 * rcvmem)
287 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
288 }
289
290 /* 4. Try to fixup all. It is made iimediately after connection enters
291 * established state.
292 */
293 static void tcp_init_buffer_space(struct sock *sk)
294 {
295 struct tcp_sock *tp = tcp_sk(sk);
296 int maxwin;
297
298 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
299 tcp_fixup_rcvbuf(sk);
300 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
301 tcp_fixup_sndbuf(sk);
302
303 tp->rcvq_space.space = tp->rcv_wnd;
304
305 maxwin = tcp_full_space(sk);
306
307 if (tp->window_clamp >= maxwin) {
308 tp->window_clamp = maxwin;
309
310 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
311 tp->window_clamp = max(maxwin -
312 (maxwin >> sysctl_tcp_app_win),
313 4 * tp->advmss);
314 }
315
316 /* Force reservation of one segment. */
317 if (sysctl_tcp_app_win &&
318 tp->window_clamp > 2 * tp->advmss &&
319 tp->window_clamp + tp->advmss > maxwin)
320 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
321
322 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
323 tp->snd_cwnd_stamp = tcp_time_stamp;
324 }
325
326 /* 5. Recalculate window clamp after socket hit its memory bounds. */
327 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
328 {
329 struct inet_connection_sock *icsk = inet_csk(sk);
330 struct sk_buff *skb;
331 unsigned int app_win = tp->rcv_nxt - tp->copied_seq;
332 int ofo_win = 0;
333
334 icsk->icsk_ack.quick = 0;
335
336 skb_queue_walk(&tp->out_of_order_queue, skb) {
337 ofo_win += skb->len;
338 }
339
340 /* If overcommit is due to out of order segments,
341 * do not clamp window. Try to expand rcvbuf instead.
342 */
343 if (ofo_win) {
344 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
345 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
346 !tcp_memory_pressure &&
347 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
348 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
349 sysctl_tcp_rmem[2]);
350 }
351 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
352 app_win += ofo_win;
353 if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf)
354 app_win >>= 1;
355 if (app_win > icsk->icsk_ack.rcv_mss)
356 app_win -= icsk->icsk_ack.rcv_mss;
357 app_win = max(app_win, 2U*tp->advmss);
358
359 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
360 }
361 }
362
363 /* Receiver "autotuning" code.
364 *
365 * The algorithm for RTT estimation w/o timestamps is based on
366 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
367 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
368 *
369 * More detail on this code can be found at
370 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
371 * though this reference is out of date. A new paper
372 * is pending.
373 */
374 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
375 {
376 u32 new_sample = tp->rcv_rtt_est.rtt;
377 long m = sample;
378
379 if (m == 0)
380 m = 1;
381
382 if (new_sample != 0) {
383 /* If we sample in larger samples in the non-timestamp
384 * case, we could grossly overestimate the RTT especially
385 * with chatty applications or bulk transfer apps which
386 * are stalled on filesystem I/O.
387 *
388 * Also, since we are only going for a minimum in the
389 * non-timestamp case, we do not smoothe things out
390 * else with timestamps disabled convergance takes too
391 * long.
392 */
393 if (!win_dep) {
394 m -= (new_sample >> 3);
395 new_sample += m;
396 } else if (m < new_sample)
397 new_sample = m << 3;
398 } else {
399 /* No previous mesaure. */
400 new_sample = m << 3;
401 }
402
403 if (tp->rcv_rtt_est.rtt != new_sample)
404 tp->rcv_rtt_est.rtt = new_sample;
405 }
406
407 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
408 {
409 if (tp->rcv_rtt_est.time == 0)
410 goto new_measure;
411 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
412 return;
413 tcp_rcv_rtt_update(tp,
414 jiffies - tp->rcv_rtt_est.time,
415 1);
416
417 new_measure:
418 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
419 tp->rcv_rtt_est.time = tcp_time_stamp;
420 }
421
422 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
423 {
424 struct tcp_sock *tp = tcp_sk(sk);
425 if (tp->rx_opt.rcv_tsecr &&
426 (TCP_SKB_CB(skb)->end_seq -
427 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
428 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
429 }
430
431 /*
432 * This function should be called every time data is copied to user space.
433 * It calculates the appropriate TCP receive buffer space.
434 */
435 void tcp_rcv_space_adjust(struct sock *sk)
436 {
437 struct tcp_sock *tp = tcp_sk(sk);
438 int time;
439 int space;
440
441 if (tp->rcvq_space.time == 0)
442 goto new_measure;
443
444 time = tcp_time_stamp - tp->rcvq_space.time;
445 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
446 tp->rcv_rtt_est.rtt == 0)
447 return;
448
449 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
450
451 space = max(tp->rcvq_space.space, space);
452
453 if (tp->rcvq_space.space != space) {
454 int rcvmem;
455
456 tp->rcvq_space.space = space;
457
458 if (sysctl_tcp_moderate_rcvbuf) {
459 int new_clamp = space;
460
461 /* Receive space grows, normalize in order to
462 * take into account packet headers and sk_buff
463 * structure overhead.
464 */
465 space /= tp->advmss;
466 if (!space)
467 space = 1;
468 rcvmem = (tp->advmss + MAX_TCP_HEADER +
469 16 + sizeof(struct sk_buff));
470 while (tcp_win_from_space(rcvmem) < tp->advmss)
471 rcvmem += 128;
472 space *= rcvmem;
473 space = min(space, sysctl_tcp_rmem[2]);
474 if (space > sk->sk_rcvbuf) {
475 sk->sk_rcvbuf = space;
476
477 /* Make the window clamp follow along. */
478 tp->window_clamp = new_clamp;
479 }
480 }
481 }
482
483 new_measure:
484 tp->rcvq_space.seq = tp->copied_seq;
485 tp->rcvq_space.time = tcp_time_stamp;
486 }
487
488 /* There is something which you must keep in mind when you analyze the
489 * behavior of the tp->ato delayed ack timeout interval. When a
490 * connection starts up, we want to ack as quickly as possible. The
491 * problem is that "good" TCP's do slow start at the beginning of data
492 * transmission. The means that until we send the first few ACK's the
493 * sender will sit on his end and only queue most of his data, because
494 * he can only send snd_cwnd unacked packets at any given time. For
495 * each ACK we send, he increments snd_cwnd and transmits more of his
496 * queue. -DaveM
497 */
498 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
499 {
500 struct inet_connection_sock *icsk = inet_csk(sk);
501 u32 now;
502
503 inet_csk_schedule_ack(sk);
504
505 tcp_measure_rcv_mss(sk, skb);
506
507 tcp_rcv_rtt_measure(tp);
508
509 now = tcp_time_stamp;
510
511 if (!icsk->icsk_ack.ato) {
512 /* The _first_ data packet received, initialize
513 * delayed ACK engine.
514 */
515 tcp_incr_quickack(sk);
516 icsk->icsk_ack.ato = TCP_ATO_MIN;
517 } else {
518 int m = now - icsk->icsk_ack.lrcvtime;
519
520 if (m <= TCP_ATO_MIN/2) {
521 /* The fastest case is the first. */
522 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
523 } else if (m < icsk->icsk_ack.ato) {
524 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
525 if (icsk->icsk_ack.ato > icsk->icsk_rto)
526 icsk->icsk_ack.ato = icsk->icsk_rto;
527 } else if (m > icsk->icsk_rto) {
528 /* Too long gap. Apparently sender falled to
529 * restart window, so that we send ACKs quickly.
530 */
531 tcp_incr_quickack(sk);
532 sk_stream_mem_reclaim(sk);
533 }
534 }
535 icsk->icsk_ack.lrcvtime = now;
536
537 TCP_ECN_check_ce(tp, skb);
538
539 if (skb->len >= 128)
540 tcp_grow_window(sk, tp, skb);
541 }
542
543 /* Called to compute a smoothed rtt estimate. The data fed to this
544 * routine either comes from timestamps, or from segments that were
545 * known _not_ to have been retransmitted [see Karn/Partridge
546 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
547 * piece by Van Jacobson.
548 * NOTE: the next three routines used to be one big routine.
549 * To save cycles in the RFC 1323 implementation it was better to break
550 * it up into three procedures. -- erics
551 */
552 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
553 {
554 struct tcp_sock *tp = tcp_sk(sk);
555 long m = mrtt; /* RTT */
556
557 /* The following amusing code comes from Jacobson's
558 * article in SIGCOMM '88. Note that rtt and mdev
559 * are scaled versions of rtt and mean deviation.
560 * This is designed to be as fast as possible
561 * m stands for "measurement".
562 *
563 * On a 1990 paper the rto value is changed to:
564 * RTO = rtt + 4 * mdev
565 *
566 * Funny. This algorithm seems to be very broken.
567 * These formulae increase RTO, when it should be decreased, increase
568 * too slowly, when it should be incresed fastly, decrease too fastly
569 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
570 * does not matter how to _calculate_ it. Seems, it was trap
571 * that VJ failed to avoid. 8)
572 */
573 if(m == 0)
574 m = 1;
575 if (tp->srtt != 0) {
576 m -= (tp->srtt >> 3); /* m is now error in rtt est */
577 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
578 if (m < 0) {
579 m = -m; /* m is now abs(error) */
580 m -= (tp->mdev >> 2); /* similar update on mdev */
581 /* This is similar to one of Eifel findings.
582 * Eifel blocks mdev updates when rtt decreases.
583 * This solution is a bit different: we use finer gain
584 * for mdev in this case (alpha*beta).
585 * Like Eifel it also prevents growth of rto,
586 * but also it limits too fast rto decreases,
587 * happening in pure Eifel.
588 */
589 if (m > 0)
590 m >>= 3;
591 } else {
592 m -= (tp->mdev >> 2); /* similar update on mdev */
593 }
594 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
595 if (tp->mdev > tp->mdev_max) {
596 tp->mdev_max = tp->mdev;
597 if (tp->mdev_max > tp->rttvar)
598 tp->rttvar = tp->mdev_max;
599 }
600 if (after(tp->snd_una, tp->rtt_seq)) {
601 if (tp->mdev_max < tp->rttvar)
602 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
603 tp->rtt_seq = tp->snd_nxt;
604 tp->mdev_max = TCP_RTO_MIN;
605 }
606 } else {
607 /* no previous measure. */
608 tp->srtt = m<<3; /* take the measured time to be rtt */
609 tp->mdev = m<<1; /* make sure rto = 3*rtt */
610 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
611 tp->rtt_seq = tp->snd_nxt;
612 }
613 }
614
615 /* Calculate rto without backoff. This is the second half of Van Jacobson's
616 * routine referred to above.
617 */
618 static inline void tcp_set_rto(struct sock *sk)
619 {
620 const struct tcp_sock *tp = tcp_sk(sk);
621 /* Old crap is replaced with new one. 8)
622 *
623 * More seriously:
624 * 1. If rtt variance happened to be less 50msec, it is hallucination.
625 * It cannot be less due to utterly erratic ACK generation made
626 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
627 * to do with delayed acks, because at cwnd>2 true delack timeout
628 * is invisible. Actually, Linux-2.4 also generates erratic
629 * ACKs in some curcumstances.
630 */
631 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
632
633 /* 2. Fixups made earlier cannot be right.
634 * If we do not estimate RTO correctly without them,
635 * all the algo is pure shit and should be replaced
636 * with correct one. It is exaclty, which we pretend to do.
637 */
638 }
639
640 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
641 * guarantees that rto is higher.
642 */
643 static inline void tcp_bound_rto(struct sock *sk)
644 {
645 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
646 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
647 }
648
649 /* Save metrics learned by this TCP session.
650 This function is called only, when TCP finishes successfully
651 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
652 */
653 void tcp_update_metrics(struct sock *sk)
654 {
655 struct tcp_sock *tp = tcp_sk(sk);
656 struct dst_entry *dst = __sk_dst_get(sk);
657
658 if (sysctl_tcp_nometrics_save)
659 return;
660
661 dst_confirm(dst);
662
663 if (dst && (dst->flags&DST_HOST)) {
664 const struct inet_connection_sock *icsk = inet_csk(sk);
665 int m;
666
667 if (icsk->icsk_backoff || !tp->srtt) {
668 /* This session failed to estimate rtt. Why?
669 * Probably, no packets returned in time.
670 * Reset our results.
671 */
672 if (!(dst_metric_locked(dst, RTAX_RTT)))
673 dst->metrics[RTAX_RTT-1] = 0;
674 return;
675 }
676
677 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
678
679 /* If newly calculated rtt larger than stored one,
680 * store new one. Otherwise, use EWMA. Remember,
681 * rtt overestimation is always better than underestimation.
682 */
683 if (!(dst_metric_locked(dst, RTAX_RTT))) {
684 if (m <= 0)
685 dst->metrics[RTAX_RTT-1] = tp->srtt;
686 else
687 dst->metrics[RTAX_RTT-1] -= (m>>3);
688 }
689
690 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
691 if (m < 0)
692 m = -m;
693
694 /* Scale deviation to rttvar fixed point */
695 m >>= 1;
696 if (m < tp->mdev)
697 m = tp->mdev;
698
699 if (m >= dst_metric(dst, RTAX_RTTVAR))
700 dst->metrics[RTAX_RTTVAR-1] = m;
701 else
702 dst->metrics[RTAX_RTTVAR-1] -=
703 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
704 }
705
706 if (tp->snd_ssthresh >= 0xFFFF) {
707 /* Slow start still did not finish. */
708 if (dst_metric(dst, RTAX_SSTHRESH) &&
709 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
710 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
711 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
712 if (!dst_metric_locked(dst, RTAX_CWND) &&
713 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
714 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
715 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
716 icsk->icsk_ca_state == TCP_CA_Open) {
717 /* Cong. avoidance phase, cwnd is reliable. */
718 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
719 dst->metrics[RTAX_SSTHRESH-1] =
720 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
721 if (!dst_metric_locked(dst, RTAX_CWND))
722 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
723 } else {
724 /* Else slow start did not finish, cwnd is non-sense,
725 ssthresh may be also invalid.
726 */
727 if (!dst_metric_locked(dst, RTAX_CWND))
728 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
729 if (dst->metrics[RTAX_SSTHRESH-1] &&
730 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
731 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
732 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
733 }
734
735 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
736 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
737 tp->reordering != sysctl_tcp_reordering)
738 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
739 }
740 }
741 }
742
743 /* Numbers are taken from RFC2414. */
744 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
745 {
746 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
747
748 if (!cwnd) {
749 if (tp->mss_cache > 1460)
750 cwnd = 2;
751 else
752 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
753 }
754 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
755 }
756
757 /* Initialize metrics on socket. */
758
759 static void tcp_init_metrics(struct sock *sk)
760 {
761 struct tcp_sock *tp = tcp_sk(sk);
762 struct dst_entry *dst = __sk_dst_get(sk);
763
764 if (dst == NULL)
765 goto reset;
766
767 dst_confirm(dst);
768
769 if (dst_metric_locked(dst, RTAX_CWND))
770 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
771 if (dst_metric(dst, RTAX_SSTHRESH)) {
772 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
773 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
774 tp->snd_ssthresh = tp->snd_cwnd_clamp;
775 }
776 if (dst_metric(dst, RTAX_REORDERING) &&
777 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
778 tp->rx_opt.sack_ok &= ~2;
779 tp->reordering = dst_metric(dst, RTAX_REORDERING);
780 }
781
782 if (dst_metric(dst, RTAX_RTT) == 0)
783 goto reset;
784
785 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
786 goto reset;
787
788 /* Initial rtt is determined from SYN,SYN-ACK.
789 * The segment is small and rtt may appear much
790 * less than real one. Use per-dst memory
791 * to make it more realistic.
792 *
793 * A bit of theory. RTT is time passed after "normal" sized packet
794 * is sent until it is ACKed. In normal curcumstances sending small
795 * packets force peer to delay ACKs and calculation is correct too.
796 * The algorithm is adaptive and, provided we follow specs, it
797 * NEVER underestimate RTT. BUT! If peer tries to make some clever
798 * tricks sort of "quick acks" for time long enough to decrease RTT
799 * to low value, and then abruptly stops to do it and starts to delay
800 * ACKs, wait for troubles.
801 */
802 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
803 tp->srtt = dst_metric(dst, RTAX_RTT);
804 tp->rtt_seq = tp->snd_nxt;
805 }
806 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
807 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
808 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
809 }
810 tcp_set_rto(sk);
811 tcp_bound_rto(sk);
812 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
813 goto reset;
814 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
815 tp->snd_cwnd_stamp = tcp_time_stamp;
816 return;
817
818 reset:
819 /* Play conservative. If timestamps are not
820 * supported, TCP will fail to recalculate correct
821 * rtt, if initial rto is too small. FORGET ALL AND RESET!
822 */
823 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
824 tp->srtt = 0;
825 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
826 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
827 }
828 }
829
830 static void tcp_update_reordering(struct sock *sk, const int metric,
831 const int ts)
832 {
833 struct tcp_sock *tp = tcp_sk(sk);
834 if (metric > tp->reordering) {
835 tp->reordering = min(TCP_MAX_REORDERING, metric);
836
837 /* This exciting event is worth to be remembered. 8) */
838 if (ts)
839 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
840 else if (IsReno(tp))
841 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
842 else if (IsFack(tp))
843 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
844 else
845 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
846 #if FASTRETRANS_DEBUG > 1
847 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
848 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
849 tp->reordering,
850 tp->fackets_out,
851 tp->sacked_out,
852 tp->undo_marker ? tp->undo_retrans : 0);
853 #endif
854 /* Disable FACK yet. */
855 tp->rx_opt.sack_ok &= ~2;
856 }
857 }
858
859 /* This procedure tags the retransmission queue when SACKs arrive.
860 *
861 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
862 * Packets in queue with these bits set are counted in variables
863 * sacked_out, retrans_out and lost_out, correspondingly.
864 *
865 * Valid combinations are:
866 * Tag InFlight Description
867 * 0 1 - orig segment is in flight.
868 * S 0 - nothing flies, orig reached receiver.
869 * L 0 - nothing flies, orig lost by net.
870 * R 2 - both orig and retransmit are in flight.
871 * L|R 1 - orig is lost, retransmit is in flight.
872 * S|R 1 - orig reached receiver, retrans is still in flight.
873 * (L|S|R is logically valid, it could occur when L|R is sacked,
874 * but it is equivalent to plain S and code short-curcuits it to S.
875 * L|S is logically invalid, it would mean -1 packet in flight 8))
876 *
877 * These 6 states form finite state machine, controlled by the following events:
878 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
879 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
880 * 3. Loss detection event of one of three flavors:
881 * A. Scoreboard estimator decided the packet is lost.
882 * A'. Reno "three dupacks" marks head of queue lost.
883 * A''. Its FACK modfication, head until snd.fack is lost.
884 * B. SACK arrives sacking data transmitted after never retransmitted
885 * hole was sent out.
886 * C. SACK arrives sacking SND.NXT at the moment, when the
887 * segment was retransmitted.
888 * 4. D-SACK added new rule: D-SACK changes any tag to S.
889 *
890 * It is pleasant to note, that state diagram turns out to be commutative,
891 * so that we are allowed not to be bothered by order of our actions,
892 * when multiple events arrive simultaneously. (see the function below).
893 *
894 * Reordering detection.
895 * --------------------
896 * Reordering metric is maximal distance, which a packet can be displaced
897 * in packet stream. With SACKs we can estimate it:
898 *
899 * 1. SACK fills old hole and the corresponding segment was not
900 * ever retransmitted -> reordering. Alas, we cannot use it
901 * when segment was retransmitted.
902 * 2. The last flaw is solved with D-SACK. D-SACK arrives
903 * for retransmitted and already SACKed segment -> reordering..
904 * Both of these heuristics are not used in Loss state, when we cannot
905 * account for retransmits accurately.
906 */
907 static int
908 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
909 {
910 const struct inet_connection_sock *icsk = inet_csk(sk);
911 struct tcp_sock *tp = tcp_sk(sk);
912 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
913 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
914 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
915 int reord = tp->packets_out;
916 int prior_fackets;
917 u32 lost_retrans = 0;
918 int flag = 0;
919 int i;
920
921 if (!tp->sacked_out)
922 tp->fackets_out = 0;
923 prior_fackets = tp->fackets_out;
924
925 for (i=0; i<num_sacks; i++, sp++) {
926 struct sk_buff *skb;
927 __u32 start_seq = ntohl(sp->start_seq);
928 __u32 end_seq = ntohl(sp->end_seq);
929 int fack_count = 0;
930 int dup_sack = 0;
931
932 /* Check for D-SACK. */
933 if (i == 0) {
934 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
935
936 if (before(start_seq, ack)) {
937 dup_sack = 1;
938 tp->rx_opt.sack_ok |= 4;
939 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
940 } else if (num_sacks > 1 &&
941 !after(end_seq, ntohl(sp[1].end_seq)) &&
942 !before(start_seq, ntohl(sp[1].start_seq))) {
943 dup_sack = 1;
944 tp->rx_opt.sack_ok |= 4;
945 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
946 }
947
948 /* D-SACK for already forgotten data...
949 * Do dumb counting. */
950 if (dup_sack &&
951 !after(end_seq, prior_snd_una) &&
952 after(end_seq, tp->undo_marker))
953 tp->undo_retrans--;
954
955 /* Eliminate too old ACKs, but take into
956 * account more or less fresh ones, they can
957 * contain valid SACK info.
958 */
959 if (before(ack, prior_snd_una - tp->max_window))
960 return 0;
961 }
962
963 /* Event "B" in the comment above. */
964 if (after(end_seq, tp->high_seq))
965 flag |= FLAG_DATA_LOST;
966
967 sk_stream_for_retrans_queue(skb, sk) {
968 int in_sack, pcount;
969 u8 sacked;
970
971 /* The retransmission queue is always in order, so
972 * we can short-circuit the walk early.
973 */
974 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
975 break;
976
977 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
978 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
979
980 pcount = tcp_skb_pcount(skb);
981
982 if (pcount > 1 && !in_sack &&
983 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
984 unsigned int pkt_len;
985
986 in_sack = !after(start_seq,
987 TCP_SKB_CB(skb)->seq);
988
989 if (!in_sack)
990 pkt_len = (start_seq -
991 TCP_SKB_CB(skb)->seq);
992 else
993 pkt_len = (end_seq -
994 TCP_SKB_CB(skb)->seq);
995 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->tso_size))
996 break;
997 pcount = tcp_skb_pcount(skb);
998 }
999
1000 fack_count += pcount;
1001
1002 sacked = TCP_SKB_CB(skb)->sacked;
1003
1004 /* Account D-SACK for retransmitted packet. */
1005 if ((dup_sack && in_sack) &&
1006 (sacked & TCPCB_RETRANS) &&
1007 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1008 tp->undo_retrans--;
1009
1010 /* The frame is ACKed. */
1011 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1012 if (sacked&TCPCB_RETRANS) {
1013 if ((dup_sack && in_sack) &&
1014 (sacked&TCPCB_SACKED_ACKED))
1015 reord = min(fack_count, reord);
1016 } else {
1017 /* If it was in a hole, we detected reordering. */
1018 if (fack_count < prior_fackets &&
1019 !(sacked&TCPCB_SACKED_ACKED))
1020 reord = min(fack_count, reord);
1021 }
1022
1023 /* Nothing to do; acked frame is about to be dropped. */
1024 continue;
1025 }
1026
1027 if ((sacked&TCPCB_SACKED_RETRANS) &&
1028 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1029 (!lost_retrans || after(end_seq, lost_retrans)))
1030 lost_retrans = end_seq;
1031
1032 if (!in_sack)
1033 continue;
1034
1035 if (!(sacked&TCPCB_SACKED_ACKED)) {
1036 if (sacked & TCPCB_SACKED_RETRANS) {
1037 /* If the segment is not tagged as lost,
1038 * we do not clear RETRANS, believing
1039 * that retransmission is still in flight.
1040 */
1041 if (sacked & TCPCB_LOST) {
1042 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1043 tp->lost_out -= tcp_skb_pcount(skb);
1044 tp->retrans_out -= tcp_skb_pcount(skb);
1045 }
1046 } else {
1047 /* New sack for not retransmitted frame,
1048 * which was in hole. It is reordering.
1049 */
1050 if (!(sacked & TCPCB_RETRANS) &&
1051 fack_count < prior_fackets)
1052 reord = min(fack_count, reord);
1053
1054 if (sacked & TCPCB_LOST) {
1055 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1056 tp->lost_out -= tcp_skb_pcount(skb);
1057 }
1058 }
1059
1060 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1061 flag |= FLAG_DATA_SACKED;
1062 tp->sacked_out += tcp_skb_pcount(skb);
1063
1064 if (fack_count > tp->fackets_out)
1065 tp->fackets_out = fack_count;
1066 } else {
1067 if (dup_sack && (sacked&TCPCB_RETRANS))
1068 reord = min(fack_count, reord);
1069 }
1070
1071 /* D-SACK. We can detect redundant retransmission
1072 * in S|R and plain R frames and clear it.
1073 * undo_retrans is decreased above, L|R frames
1074 * are accounted above as well.
1075 */
1076 if (dup_sack &&
1077 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1078 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1079 tp->retrans_out -= tcp_skb_pcount(skb);
1080 }
1081 }
1082 }
1083
1084 /* Check for lost retransmit. This superb idea is
1085 * borrowed from "ratehalving". Event "C".
1086 * Later note: FACK people cheated me again 8),
1087 * we have to account for reordering! Ugly,
1088 * but should help.
1089 */
1090 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1091 struct sk_buff *skb;
1092
1093 sk_stream_for_retrans_queue(skb, sk) {
1094 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1095 break;
1096 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1097 continue;
1098 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1099 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1100 (IsFack(tp) ||
1101 !before(lost_retrans,
1102 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1103 tp->mss_cache))) {
1104 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1105 tp->retrans_out -= tcp_skb_pcount(skb);
1106
1107 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1108 tp->lost_out += tcp_skb_pcount(skb);
1109 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1110 flag |= FLAG_DATA_SACKED;
1111 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1112 }
1113 }
1114 }
1115 }
1116
1117 tp->left_out = tp->sacked_out + tp->lost_out;
1118
1119 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1120 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1121
1122 #if FASTRETRANS_DEBUG > 0
1123 BUG_TRAP((int)tp->sacked_out >= 0);
1124 BUG_TRAP((int)tp->lost_out >= 0);
1125 BUG_TRAP((int)tp->retrans_out >= 0);
1126 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1127 #endif
1128 return flag;
1129 }
1130
1131 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1132 * segments to see from the next ACKs whether any data was really missing.
1133 * If the RTO was spurious, new ACKs should arrive.
1134 */
1135 void tcp_enter_frto(struct sock *sk)
1136 {
1137 const struct inet_connection_sock *icsk = inet_csk(sk);
1138 struct tcp_sock *tp = tcp_sk(sk);
1139 struct sk_buff *skb;
1140
1141 tp->frto_counter = 1;
1142
1143 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1144 tp->snd_una == tp->high_seq ||
1145 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1146 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1147 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1148 tcp_ca_event(sk, CA_EVENT_FRTO);
1149 }
1150
1151 /* Have to clear retransmission markers here to keep the bookkeeping
1152 * in shape, even though we are not yet in Loss state.
1153 * If something was really lost, it is eventually caught up
1154 * in tcp_enter_frto_loss.
1155 */
1156 tp->retrans_out = 0;
1157 tp->undo_marker = tp->snd_una;
1158 tp->undo_retrans = 0;
1159
1160 sk_stream_for_retrans_queue(skb, sk) {
1161 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1162 }
1163 tcp_sync_left_out(tp);
1164
1165 tcp_set_ca_state(sk, TCP_CA_Open);
1166 tp->frto_highmark = tp->snd_nxt;
1167 }
1168
1169 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1170 * which indicates that we should follow the traditional RTO recovery,
1171 * i.e. mark everything lost and do go-back-N retransmission.
1172 */
1173 static void tcp_enter_frto_loss(struct sock *sk)
1174 {
1175 struct tcp_sock *tp = tcp_sk(sk);
1176 struct sk_buff *skb;
1177 int cnt = 0;
1178
1179 tp->sacked_out = 0;
1180 tp->lost_out = 0;
1181 tp->fackets_out = 0;
1182
1183 sk_stream_for_retrans_queue(skb, sk) {
1184 cnt += tcp_skb_pcount(skb);
1185 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1186 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1187
1188 /* Do not mark those segments lost that were
1189 * forward transmitted after RTO
1190 */
1191 if (!after(TCP_SKB_CB(skb)->end_seq,
1192 tp->frto_highmark)) {
1193 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1194 tp->lost_out += tcp_skb_pcount(skb);
1195 }
1196 } else {
1197 tp->sacked_out += tcp_skb_pcount(skb);
1198 tp->fackets_out = cnt;
1199 }
1200 }
1201 tcp_sync_left_out(tp);
1202
1203 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1204 tp->snd_cwnd_cnt = 0;
1205 tp->snd_cwnd_stamp = tcp_time_stamp;
1206 tp->undo_marker = 0;
1207 tp->frto_counter = 0;
1208
1209 tp->reordering = min_t(unsigned int, tp->reordering,
1210 sysctl_tcp_reordering);
1211 tcp_set_ca_state(sk, TCP_CA_Loss);
1212 tp->high_seq = tp->frto_highmark;
1213 TCP_ECN_queue_cwr(tp);
1214 }
1215
1216 void tcp_clear_retrans(struct tcp_sock *tp)
1217 {
1218 tp->left_out = 0;
1219 tp->retrans_out = 0;
1220
1221 tp->fackets_out = 0;
1222 tp->sacked_out = 0;
1223 tp->lost_out = 0;
1224
1225 tp->undo_marker = 0;
1226 tp->undo_retrans = 0;
1227 }
1228
1229 /* Enter Loss state. If "how" is not zero, forget all SACK information
1230 * and reset tags completely, otherwise preserve SACKs. If receiver
1231 * dropped its ofo queue, we will know this due to reneging detection.
1232 */
1233 void tcp_enter_loss(struct sock *sk, int how)
1234 {
1235 const struct inet_connection_sock *icsk = inet_csk(sk);
1236 struct tcp_sock *tp = tcp_sk(sk);
1237 struct sk_buff *skb;
1238 int cnt = 0;
1239
1240 /* Reduce ssthresh if it has not yet been made inside this window. */
1241 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1242 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1243 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1244 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1245 tcp_ca_event(sk, CA_EVENT_LOSS);
1246 }
1247 tp->snd_cwnd = 1;
1248 tp->snd_cwnd_cnt = 0;
1249 tp->snd_cwnd_stamp = tcp_time_stamp;
1250
1251 tp->bytes_acked = 0;
1252 tcp_clear_retrans(tp);
1253
1254 /* Push undo marker, if it was plain RTO and nothing
1255 * was retransmitted. */
1256 if (!how)
1257 tp->undo_marker = tp->snd_una;
1258
1259 sk_stream_for_retrans_queue(skb, sk) {
1260 cnt += tcp_skb_pcount(skb);
1261 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1262 tp->undo_marker = 0;
1263 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1264 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1265 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1266 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1267 tp->lost_out += tcp_skb_pcount(skb);
1268 } else {
1269 tp->sacked_out += tcp_skb_pcount(skb);
1270 tp->fackets_out = cnt;
1271 }
1272 }
1273 tcp_sync_left_out(tp);
1274
1275 tp->reordering = min_t(unsigned int, tp->reordering,
1276 sysctl_tcp_reordering);
1277 tcp_set_ca_state(sk, TCP_CA_Loss);
1278 tp->high_seq = tp->snd_nxt;
1279 TCP_ECN_queue_cwr(tp);
1280 }
1281
1282 static int tcp_check_sack_reneging(struct sock *sk)
1283 {
1284 struct sk_buff *skb;
1285
1286 /* If ACK arrived pointing to a remembered SACK,
1287 * it means that our remembered SACKs do not reflect
1288 * real state of receiver i.e.
1289 * receiver _host_ is heavily congested (or buggy).
1290 * Do processing similar to RTO timeout.
1291 */
1292 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1293 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1294 struct inet_connection_sock *icsk = inet_csk(sk);
1295 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1296
1297 tcp_enter_loss(sk, 1);
1298 icsk->icsk_retransmits++;
1299 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1300 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1301 icsk->icsk_rto, TCP_RTO_MAX);
1302 return 1;
1303 }
1304 return 0;
1305 }
1306
1307 static inline int tcp_fackets_out(struct tcp_sock *tp)
1308 {
1309 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1310 }
1311
1312 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1313 {
1314 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1315 }
1316
1317 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1318 {
1319 return tp->packets_out &&
1320 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1321 }
1322
1323 /* Linux NewReno/SACK/FACK/ECN state machine.
1324 * --------------------------------------
1325 *
1326 * "Open" Normal state, no dubious events, fast path.
1327 * "Disorder" In all the respects it is "Open",
1328 * but requires a bit more attention. It is entered when
1329 * we see some SACKs or dupacks. It is split of "Open"
1330 * mainly to move some processing from fast path to slow one.
1331 * "CWR" CWND was reduced due to some Congestion Notification event.
1332 * It can be ECN, ICMP source quench, local device congestion.
1333 * "Recovery" CWND was reduced, we are fast-retransmitting.
1334 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1335 *
1336 * tcp_fastretrans_alert() is entered:
1337 * - each incoming ACK, if state is not "Open"
1338 * - when arrived ACK is unusual, namely:
1339 * * SACK
1340 * * Duplicate ACK.
1341 * * ECN ECE.
1342 *
1343 * Counting packets in flight is pretty simple.
1344 *
1345 * in_flight = packets_out - left_out + retrans_out
1346 *
1347 * packets_out is SND.NXT-SND.UNA counted in packets.
1348 *
1349 * retrans_out is number of retransmitted segments.
1350 *
1351 * left_out is number of segments left network, but not ACKed yet.
1352 *
1353 * left_out = sacked_out + lost_out
1354 *
1355 * sacked_out: Packets, which arrived to receiver out of order
1356 * and hence not ACKed. With SACKs this number is simply
1357 * amount of SACKed data. Even without SACKs
1358 * it is easy to give pretty reliable estimate of this number,
1359 * counting duplicate ACKs.
1360 *
1361 * lost_out: Packets lost by network. TCP has no explicit
1362 * "loss notification" feedback from network (for now).
1363 * It means that this number can be only _guessed_.
1364 * Actually, it is the heuristics to predict lossage that
1365 * distinguishes different algorithms.
1366 *
1367 * F.e. after RTO, when all the queue is considered as lost,
1368 * lost_out = packets_out and in_flight = retrans_out.
1369 *
1370 * Essentially, we have now two algorithms counting
1371 * lost packets.
1372 *
1373 * FACK: It is the simplest heuristics. As soon as we decided
1374 * that something is lost, we decide that _all_ not SACKed
1375 * packets until the most forward SACK are lost. I.e.
1376 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1377 * It is absolutely correct estimate, if network does not reorder
1378 * packets. And it loses any connection to reality when reordering
1379 * takes place. We use FACK by default until reordering
1380 * is suspected on the path to this destination.
1381 *
1382 * NewReno: when Recovery is entered, we assume that one segment
1383 * is lost (classic Reno). While we are in Recovery and
1384 * a partial ACK arrives, we assume that one more packet
1385 * is lost (NewReno). This heuristics are the same in NewReno
1386 * and SACK.
1387 *
1388 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1389 * deflation etc. CWND is real congestion window, never inflated, changes
1390 * only according to classic VJ rules.
1391 *
1392 * Really tricky (and requiring careful tuning) part of algorithm
1393 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1394 * The first determines the moment _when_ we should reduce CWND and,
1395 * hence, slow down forward transmission. In fact, it determines the moment
1396 * when we decide that hole is caused by loss, rather than by a reorder.
1397 *
1398 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1399 * holes, caused by lost packets.
1400 *
1401 * And the most logically complicated part of algorithm is undo
1402 * heuristics. We detect false retransmits due to both too early
1403 * fast retransmit (reordering) and underestimated RTO, analyzing
1404 * timestamps and D-SACKs. When we detect that some segments were
1405 * retransmitted by mistake and CWND reduction was wrong, we undo
1406 * window reduction and abort recovery phase. This logic is hidden
1407 * inside several functions named tcp_try_undo_<something>.
1408 */
1409
1410 /* This function decides, when we should leave Disordered state
1411 * and enter Recovery phase, reducing congestion window.
1412 *
1413 * Main question: may we further continue forward transmission
1414 * with the same cwnd?
1415 */
1416 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1417 {
1418 __u32 packets_out;
1419
1420 /* Trick#1: The loss is proven. */
1421 if (tp->lost_out)
1422 return 1;
1423
1424 /* Not-A-Trick#2 : Classic rule... */
1425 if (tcp_fackets_out(tp) > tp->reordering)
1426 return 1;
1427
1428 /* Trick#3 : when we use RFC2988 timer restart, fast
1429 * retransmit can be triggered by timeout of queue head.
1430 */
1431 if (tcp_head_timedout(sk, tp))
1432 return 1;
1433
1434 /* Trick#4: It is still not OK... But will it be useful to delay
1435 * recovery more?
1436 */
1437 packets_out = tp->packets_out;
1438 if (packets_out <= tp->reordering &&
1439 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1440 !tcp_may_send_now(sk, tp)) {
1441 /* We have nothing to send. This connection is limited
1442 * either by receiver window or by application.
1443 */
1444 return 1;
1445 }
1446
1447 return 0;
1448 }
1449
1450 /* If we receive more dupacks than we expected counting segments
1451 * in assumption of absent reordering, interpret this as reordering.
1452 * The only another reason could be bug in receiver TCP.
1453 */
1454 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1455 {
1456 struct tcp_sock *tp = tcp_sk(sk);
1457 u32 holes;
1458
1459 holes = max(tp->lost_out, 1U);
1460 holes = min(holes, tp->packets_out);
1461
1462 if ((tp->sacked_out + holes) > tp->packets_out) {
1463 tp->sacked_out = tp->packets_out - holes;
1464 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1465 }
1466 }
1467
1468 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1469
1470 static void tcp_add_reno_sack(struct sock *sk)
1471 {
1472 struct tcp_sock *tp = tcp_sk(sk);
1473 tp->sacked_out++;
1474 tcp_check_reno_reordering(sk, 0);
1475 tcp_sync_left_out(tp);
1476 }
1477
1478 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1479
1480 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1481 {
1482 if (acked > 0) {
1483 /* One ACK acked hole. The rest eat duplicate ACKs. */
1484 if (acked-1 >= tp->sacked_out)
1485 tp->sacked_out = 0;
1486 else
1487 tp->sacked_out -= acked-1;
1488 }
1489 tcp_check_reno_reordering(sk, acked);
1490 tcp_sync_left_out(tp);
1491 }
1492
1493 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1494 {
1495 tp->sacked_out = 0;
1496 tp->left_out = tp->lost_out;
1497 }
1498
1499 /* Mark head of queue up as lost. */
1500 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1501 int packets, u32 high_seq)
1502 {
1503 struct sk_buff *skb;
1504 int cnt = packets;
1505
1506 BUG_TRAP(cnt <= tp->packets_out);
1507
1508 sk_stream_for_retrans_queue(skb, sk) {
1509 cnt -= tcp_skb_pcount(skb);
1510 if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1511 break;
1512 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1513 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1514 tp->lost_out += tcp_skb_pcount(skb);
1515 }
1516 }
1517 tcp_sync_left_out(tp);
1518 }
1519
1520 /* Account newly detected lost packet(s) */
1521
1522 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1523 {
1524 if (IsFack(tp)) {
1525 int lost = tp->fackets_out - tp->reordering;
1526 if (lost <= 0)
1527 lost = 1;
1528 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1529 } else {
1530 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1531 }
1532
1533 /* New heuristics: it is possible only after we switched
1534 * to restart timer each time when something is ACKed.
1535 * Hence, we can detect timed out packets during fast
1536 * retransmit without falling to slow start.
1537 */
1538 if (tcp_head_timedout(sk, tp)) {
1539 struct sk_buff *skb;
1540
1541 sk_stream_for_retrans_queue(skb, sk) {
1542 if (tcp_skb_timedout(sk, skb) &&
1543 !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1544 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1545 tp->lost_out += tcp_skb_pcount(skb);
1546 }
1547 }
1548 tcp_sync_left_out(tp);
1549 }
1550 }
1551
1552 /* CWND moderation, preventing bursts due to too big ACKs
1553 * in dubious situations.
1554 */
1555 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1556 {
1557 tp->snd_cwnd = min(tp->snd_cwnd,
1558 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1559 tp->snd_cwnd_stamp = tcp_time_stamp;
1560 }
1561
1562 /* Decrease cwnd each second ack. */
1563 static void tcp_cwnd_down(struct sock *sk)
1564 {
1565 const struct inet_connection_sock *icsk = inet_csk(sk);
1566 struct tcp_sock *tp = tcp_sk(sk);
1567 int decr = tp->snd_cwnd_cnt + 1;
1568
1569 tp->snd_cwnd_cnt = decr&1;
1570 decr >>= 1;
1571
1572 if (decr && tp->snd_cwnd > icsk->icsk_ca_ops->min_cwnd(sk))
1573 tp->snd_cwnd -= decr;
1574
1575 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1576 tp->snd_cwnd_stamp = tcp_time_stamp;
1577 }
1578
1579 /* Nothing was retransmitted or returned timestamp is less
1580 * than timestamp of the first retransmission.
1581 */
1582 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1583 {
1584 return !tp->retrans_stamp ||
1585 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1586 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1587 }
1588
1589 /* Undo procedures. */
1590
1591 #if FASTRETRANS_DEBUG > 1
1592 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1593 {
1594 struct inet_sock *inet = inet_sk(sk);
1595 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1596 msg,
1597 NIPQUAD(inet->daddr), ntohs(inet->dport),
1598 tp->snd_cwnd, tp->left_out,
1599 tp->snd_ssthresh, tp->prior_ssthresh,
1600 tp->packets_out);
1601 }
1602 #else
1603 #define DBGUNDO(x...) do { } while (0)
1604 #endif
1605
1606 static void tcp_undo_cwr(struct sock *sk, const int undo)
1607 {
1608 struct tcp_sock *tp = tcp_sk(sk);
1609
1610 if (tp->prior_ssthresh) {
1611 const struct inet_connection_sock *icsk = inet_csk(sk);
1612
1613 if (icsk->icsk_ca_ops->undo_cwnd)
1614 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1615 else
1616 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1617
1618 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1619 tp->snd_ssthresh = tp->prior_ssthresh;
1620 TCP_ECN_withdraw_cwr(tp);
1621 }
1622 } else {
1623 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1624 }
1625 tcp_moderate_cwnd(tp);
1626 tp->snd_cwnd_stamp = tcp_time_stamp;
1627 }
1628
1629 static inline int tcp_may_undo(struct tcp_sock *tp)
1630 {
1631 return tp->undo_marker &&
1632 (!tp->undo_retrans || tcp_packet_delayed(tp));
1633 }
1634
1635 /* People celebrate: "We love our President!" */
1636 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1637 {
1638 if (tcp_may_undo(tp)) {
1639 /* Happy end! We did not retransmit anything
1640 * or our original transmission succeeded.
1641 */
1642 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1643 tcp_undo_cwr(sk, 1);
1644 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1645 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1646 else
1647 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1648 tp->undo_marker = 0;
1649 }
1650 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1651 /* Hold old state until something *above* high_seq
1652 * is ACKed. For Reno it is MUST to prevent false
1653 * fast retransmits (RFC2582). SACK TCP is safe. */
1654 tcp_moderate_cwnd(tp);
1655 return 1;
1656 }
1657 tcp_set_ca_state(sk, TCP_CA_Open);
1658 return 0;
1659 }
1660
1661 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1662 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1663 {
1664 if (tp->undo_marker && !tp->undo_retrans) {
1665 DBGUNDO(sk, tp, "D-SACK");
1666 tcp_undo_cwr(sk, 1);
1667 tp->undo_marker = 0;
1668 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1669 }
1670 }
1671
1672 /* Undo during fast recovery after partial ACK. */
1673
1674 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1675 int acked)
1676 {
1677 /* Partial ACK arrived. Force Hoe's retransmit. */
1678 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1679
1680 if (tcp_may_undo(tp)) {
1681 /* Plain luck! Hole if filled with delayed
1682 * packet, rather than with a retransmit.
1683 */
1684 if (tp->retrans_out == 0)
1685 tp->retrans_stamp = 0;
1686
1687 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1688
1689 DBGUNDO(sk, tp, "Hoe");
1690 tcp_undo_cwr(sk, 0);
1691 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1692
1693 /* So... Do not make Hoe's retransmit yet.
1694 * If the first packet was delayed, the rest
1695 * ones are most probably delayed as well.
1696 */
1697 failed = 0;
1698 }
1699 return failed;
1700 }
1701
1702 /* Undo during loss recovery after partial ACK. */
1703 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1704 {
1705 if (tcp_may_undo(tp)) {
1706 struct sk_buff *skb;
1707 sk_stream_for_retrans_queue(skb, sk) {
1708 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1709 }
1710 DBGUNDO(sk, tp, "partial loss");
1711 tp->lost_out = 0;
1712 tp->left_out = tp->sacked_out;
1713 tcp_undo_cwr(sk, 1);
1714 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1715 inet_csk(sk)->icsk_retransmits = 0;
1716 tp->undo_marker = 0;
1717 if (!IsReno(tp))
1718 tcp_set_ca_state(sk, TCP_CA_Open);
1719 return 1;
1720 }
1721 return 0;
1722 }
1723
1724 static inline void tcp_complete_cwr(struct sock *sk)
1725 {
1726 struct tcp_sock *tp = tcp_sk(sk);
1727 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1728 tp->snd_cwnd_stamp = tcp_time_stamp;
1729 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1730 }
1731
1732 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1733 {
1734 tp->left_out = tp->sacked_out;
1735
1736 if (tp->retrans_out == 0)
1737 tp->retrans_stamp = 0;
1738
1739 if (flag&FLAG_ECE)
1740 tcp_enter_cwr(sk);
1741
1742 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1743 int state = TCP_CA_Open;
1744
1745 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1746 state = TCP_CA_Disorder;
1747
1748 if (inet_csk(sk)->icsk_ca_state != state) {
1749 tcp_set_ca_state(sk, state);
1750 tp->high_seq = tp->snd_nxt;
1751 }
1752 tcp_moderate_cwnd(tp);
1753 } else {
1754 tcp_cwnd_down(sk);
1755 }
1756 }
1757
1758 /* Process an event, which can update packets-in-flight not trivially.
1759 * Main goal of this function is to calculate new estimate for left_out,
1760 * taking into account both packets sitting in receiver's buffer and
1761 * packets lost by network.
1762 *
1763 * Besides that it does CWND reduction, when packet loss is detected
1764 * and changes state of machine.
1765 *
1766 * It does _not_ decide what to send, it is made in function
1767 * tcp_xmit_retransmit_queue().
1768 */
1769 static void
1770 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1771 int prior_packets, int flag)
1772 {
1773 struct inet_connection_sock *icsk = inet_csk(sk);
1774 struct tcp_sock *tp = tcp_sk(sk);
1775 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1776
1777 /* Some technical things:
1778 * 1. Reno does not count dupacks (sacked_out) automatically. */
1779 if (!tp->packets_out)
1780 tp->sacked_out = 0;
1781 /* 2. SACK counts snd_fack in packets inaccurately. */
1782 if (tp->sacked_out == 0)
1783 tp->fackets_out = 0;
1784
1785 /* Now state machine starts.
1786 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1787 if (flag&FLAG_ECE)
1788 tp->prior_ssthresh = 0;
1789
1790 /* B. In all the states check for reneging SACKs. */
1791 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1792 return;
1793
1794 /* C. Process data loss notification, provided it is valid. */
1795 if ((flag&FLAG_DATA_LOST) &&
1796 before(tp->snd_una, tp->high_seq) &&
1797 icsk->icsk_ca_state != TCP_CA_Open &&
1798 tp->fackets_out > tp->reordering) {
1799 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1800 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1801 }
1802
1803 /* D. Synchronize left_out to current state. */
1804 tcp_sync_left_out(tp);
1805
1806 /* E. Check state exit conditions. State can be terminated
1807 * when high_seq is ACKed. */
1808 if (icsk->icsk_ca_state == TCP_CA_Open) {
1809 if (!sysctl_tcp_frto)
1810 BUG_TRAP(tp->retrans_out == 0);
1811 tp->retrans_stamp = 0;
1812 } else if (!before(tp->snd_una, tp->high_seq)) {
1813 switch (icsk->icsk_ca_state) {
1814 case TCP_CA_Loss:
1815 icsk->icsk_retransmits = 0;
1816 if (tcp_try_undo_recovery(sk, tp))
1817 return;
1818 break;
1819
1820 case TCP_CA_CWR:
1821 /* CWR is to be held something *above* high_seq
1822 * is ACKed for CWR bit to reach receiver. */
1823 if (tp->snd_una != tp->high_seq) {
1824 tcp_complete_cwr(sk);
1825 tcp_set_ca_state(sk, TCP_CA_Open);
1826 }
1827 break;
1828
1829 case TCP_CA_Disorder:
1830 tcp_try_undo_dsack(sk, tp);
1831 if (!tp->undo_marker ||
1832 /* For SACK case do not Open to allow to undo
1833 * catching for all duplicate ACKs. */
1834 IsReno(tp) || tp->snd_una != tp->high_seq) {
1835 tp->undo_marker = 0;
1836 tcp_set_ca_state(sk, TCP_CA_Open);
1837 }
1838 break;
1839
1840 case TCP_CA_Recovery:
1841 if (IsReno(tp))
1842 tcp_reset_reno_sack(tp);
1843 if (tcp_try_undo_recovery(sk, tp))
1844 return;
1845 tcp_complete_cwr(sk);
1846 break;
1847 }
1848 }
1849
1850 /* F. Process state. */
1851 switch (icsk->icsk_ca_state) {
1852 case TCP_CA_Recovery:
1853 if (prior_snd_una == tp->snd_una) {
1854 if (IsReno(tp) && is_dupack)
1855 tcp_add_reno_sack(sk);
1856 } else {
1857 int acked = prior_packets - tp->packets_out;
1858 if (IsReno(tp))
1859 tcp_remove_reno_sacks(sk, tp, acked);
1860 is_dupack = tcp_try_undo_partial(sk, tp, acked);
1861 }
1862 break;
1863 case TCP_CA_Loss:
1864 if (flag&FLAG_DATA_ACKED)
1865 icsk->icsk_retransmits = 0;
1866 if (!tcp_try_undo_loss(sk, tp)) {
1867 tcp_moderate_cwnd(tp);
1868 tcp_xmit_retransmit_queue(sk);
1869 return;
1870 }
1871 if (icsk->icsk_ca_state != TCP_CA_Open)
1872 return;
1873 /* Loss is undone; fall through to processing in Open state. */
1874 default:
1875 if (IsReno(tp)) {
1876 if (tp->snd_una != prior_snd_una)
1877 tcp_reset_reno_sack(tp);
1878 if (is_dupack)
1879 tcp_add_reno_sack(sk);
1880 }
1881
1882 if (icsk->icsk_ca_state == TCP_CA_Disorder)
1883 tcp_try_undo_dsack(sk, tp);
1884
1885 if (!tcp_time_to_recover(sk, tp)) {
1886 tcp_try_to_open(sk, tp, flag);
1887 return;
1888 }
1889
1890 /* Otherwise enter Recovery state */
1891
1892 if (IsReno(tp))
1893 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
1894 else
1895 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
1896
1897 tp->high_seq = tp->snd_nxt;
1898 tp->prior_ssthresh = 0;
1899 tp->undo_marker = tp->snd_una;
1900 tp->undo_retrans = tp->retrans_out;
1901
1902 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1903 if (!(flag&FLAG_ECE))
1904 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1905 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1906 TCP_ECN_queue_cwr(tp);
1907 }
1908
1909 tp->bytes_acked = 0;
1910 tp->snd_cwnd_cnt = 0;
1911 tcp_set_ca_state(sk, TCP_CA_Recovery);
1912 }
1913
1914 if (is_dupack || tcp_head_timedout(sk, tp))
1915 tcp_update_scoreboard(sk, tp);
1916 tcp_cwnd_down(sk);
1917 tcp_xmit_retransmit_queue(sk);
1918 }
1919
1920 /* Read draft-ietf-tcplw-high-performance before mucking
1921 * with this code. (Superceeds RFC1323)
1922 */
1923 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1924 {
1925 /* RTTM Rule: A TSecr value received in a segment is used to
1926 * update the averaged RTT measurement only if the segment
1927 * acknowledges some new data, i.e., only if it advances the
1928 * left edge of the send window.
1929 *
1930 * See draft-ietf-tcplw-high-performance-00, section 3.3.
1931 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
1932 *
1933 * Changed: reset backoff as soon as we see the first valid sample.
1934 * If we do not, we get strongly overstimated rto. With timestamps
1935 * samples are accepted even from very old segments: f.e., when rtt=1
1936 * increases to 8, we retransmit 5 times and after 8 seconds delayed
1937 * answer arrives rto becomes 120 seconds! If at least one of segments
1938 * in window is lost... Voila. --ANK (010210)
1939 */
1940 struct tcp_sock *tp = tcp_sk(sk);
1941 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
1942 tcp_rtt_estimator(sk, seq_rtt);
1943 tcp_set_rto(sk);
1944 inet_csk(sk)->icsk_backoff = 0;
1945 tcp_bound_rto(sk);
1946 }
1947
1948 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1949 {
1950 /* We don't have a timestamp. Can only use
1951 * packets that are not retransmitted to determine
1952 * rtt estimates. Also, we must not reset the
1953 * backoff for rto until we get a non-retransmitted
1954 * packet. This allows us to deal with a situation
1955 * where the network delay has increased suddenly.
1956 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
1957 */
1958
1959 if (flag & FLAG_RETRANS_DATA_ACKED)
1960 return;
1961
1962 tcp_rtt_estimator(sk, seq_rtt);
1963 tcp_set_rto(sk);
1964 inet_csk(sk)->icsk_backoff = 0;
1965 tcp_bound_rto(sk);
1966 }
1967
1968 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
1969 const s32 seq_rtt)
1970 {
1971 const struct tcp_sock *tp = tcp_sk(sk);
1972 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
1973 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
1974 tcp_ack_saw_tstamp(sk, flag);
1975 else if (seq_rtt >= 0)
1976 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1977 }
1978
1979 static inline void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
1980 u32 in_flight, int good)
1981 {
1982 const struct inet_connection_sock *icsk = inet_csk(sk);
1983 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
1984 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1985 }
1986
1987 /* Restart timer after forward progress on connection.
1988 * RFC2988 recommends to restart timer to now+rto.
1989 */
1990
1991 static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
1992 {
1993 if (!tp->packets_out) {
1994 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1995 } else {
1996 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1997 }
1998 }
1999
2000 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2001 __u32 now, __s32 *seq_rtt)
2002 {
2003 struct tcp_sock *tp = tcp_sk(sk);
2004 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2005 __u32 seq = tp->snd_una;
2006 __u32 packets_acked;
2007 int acked = 0;
2008
2009 /* If we get here, the whole TSO packet has not been
2010 * acked.
2011 */
2012 BUG_ON(!after(scb->end_seq, seq));
2013
2014 packets_acked = tcp_skb_pcount(skb);
2015 if (tcp_trim_head(sk, skb, seq - scb->seq))
2016 return 0;
2017 packets_acked -= tcp_skb_pcount(skb);
2018
2019 if (packets_acked) {
2020 __u8 sacked = scb->sacked;
2021
2022 acked |= FLAG_DATA_ACKED;
2023 if (sacked) {
2024 if (sacked & TCPCB_RETRANS) {
2025 if (sacked & TCPCB_SACKED_RETRANS)
2026 tp->retrans_out -= packets_acked;
2027 acked |= FLAG_RETRANS_DATA_ACKED;
2028 *seq_rtt = -1;
2029 } else if (*seq_rtt < 0)
2030 *seq_rtt = now - scb->when;
2031 if (sacked & TCPCB_SACKED_ACKED)
2032 tp->sacked_out -= packets_acked;
2033 if (sacked & TCPCB_LOST)
2034 tp->lost_out -= packets_acked;
2035 if (sacked & TCPCB_URG) {
2036 if (tp->urg_mode &&
2037 !before(seq, tp->snd_up))
2038 tp->urg_mode = 0;
2039 }
2040 } else if (*seq_rtt < 0)
2041 *seq_rtt = now - scb->when;
2042
2043 if (tp->fackets_out) {
2044 __u32 dval = min(tp->fackets_out, packets_acked);
2045 tp->fackets_out -= dval;
2046 }
2047 tp->packets_out -= packets_acked;
2048
2049 BUG_ON(tcp_skb_pcount(skb) == 0);
2050 BUG_ON(!before(scb->seq, scb->end_seq));
2051 }
2052
2053 return acked;
2054 }
2055
2056 static inline u32 tcp_usrtt(const struct sk_buff *skb)
2057 {
2058 struct timeval tv, now;
2059
2060 do_gettimeofday(&now);
2061 skb_get_timestamp(skb, &tv);
2062 return (now.tv_sec - tv.tv_sec) * 1000000 + (now.tv_usec - tv.tv_usec);
2063 }
2064
2065 /* Remove acknowledged frames from the retransmission queue. */
2066 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2067 {
2068 struct tcp_sock *tp = tcp_sk(sk);
2069 const struct inet_connection_sock *icsk = inet_csk(sk);
2070 struct sk_buff *skb;
2071 __u32 now = tcp_time_stamp;
2072 int acked = 0;
2073 __s32 seq_rtt = -1;
2074 u32 pkts_acked = 0;
2075 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2076 = icsk->icsk_ca_ops->rtt_sample;
2077
2078 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2079 skb != sk->sk_send_head) {
2080 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2081 __u8 sacked = scb->sacked;
2082
2083 /* If our packet is before the ack sequence we can
2084 * discard it as it's confirmed to have arrived at
2085 * the other end.
2086 */
2087 if (after(scb->end_seq, tp->snd_una)) {
2088 if (tcp_skb_pcount(skb) > 1 &&
2089 after(tp->snd_una, scb->seq))
2090 acked |= tcp_tso_acked(sk, skb,
2091 now, &seq_rtt);
2092 break;
2093 }
2094
2095 /* Initial outgoing SYN's get put onto the write_queue
2096 * just like anything else we transmit. It is not
2097 * true data, and if we misinform our callers that
2098 * this ACK acks real data, we will erroneously exit
2099 * connection startup slow start one packet too
2100 * quickly. This is severely frowned upon behavior.
2101 */
2102 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2103 acked |= FLAG_DATA_ACKED;
2104 ++pkts_acked;
2105 } else {
2106 acked |= FLAG_SYN_ACKED;
2107 tp->retrans_stamp = 0;
2108 }
2109
2110 if (sacked) {
2111 if (sacked & TCPCB_RETRANS) {
2112 if(sacked & TCPCB_SACKED_RETRANS)
2113 tp->retrans_out -= tcp_skb_pcount(skb);
2114 acked |= FLAG_RETRANS_DATA_ACKED;
2115 seq_rtt = -1;
2116 } else if (seq_rtt < 0) {
2117 seq_rtt = now - scb->when;
2118 if (rtt_sample)
2119 (*rtt_sample)(sk, tcp_usrtt(skb));
2120 }
2121 if (sacked & TCPCB_SACKED_ACKED)
2122 tp->sacked_out -= tcp_skb_pcount(skb);
2123 if (sacked & TCPCB_LOST)
2124 tp->lost_out -= tcp_skb_pcount(skb);
2125 if (sacked & TCPCB_URG) {
2126 if (tp->urg_mode &&
2127 !before(scb->end_seq, tp->snd_up))
2128 tp->urg_mode = 0;
2129 }
2130 } else if (seq_rtt < 0) {
2131 seq_rtt = now - scb->when;
2132 if (rtt_sample)
2133 (*rtt_sample)(sk, tcp_usrtt(skb));
2134 }
2135 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2136 tcp_packets_out_dec(tp, skb);
2137 __skb_unlink(skb, &sk->sk_write_queue);
2138 sk_stream_free_skb(sk, skb);
2139 }
2140
2141 if (acked&FLAG_ACKED) {
2142 tcp_ack_update_rtt(sk, acked, seq_rtt);
2143 tcp_ack_packets_out(sk, tp);
2144
2145 if (icsk->icsk_ca_ops->pkts_acked)
2146 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2147 }
2148
2149 #if FASTRETRANS_DEBUG > 0
2150 BUG_TRAP((int)tp->sacked_out >= 0);
2151 BUG_TRAP((int)tp->lost_out >= 0);
2152 BUG_TRAP((int)tp->retrans_out >= 0);
2153 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2154 const struct inet_connection_sock *icsk = inet_csk(sk);
2155 if (tp->lost_out) {
2156 printk(KERN_DEBUG "Leak l=%u %d\n",
2157 tp->lost_out, icsk->icsk_ca_state);
2158 tp->lost_out = 0;
2159 }
2160 if (tp->sacked_out) {
2161 printk(KERN_DEBUG "Leak s=%u %d\n",
2162 tp->sacked_out, icsk->icsk_ca_state);
2163 tp->sacked_out = 0;
2164 }
2165 if (tp->retrans_out) {
2166 printk(KERN_DEBUG "Leak r=%u %d\n",
2167 tp->retrans_out, icsk->icsk_ca_state);
2168 tp->retrans_out = 0;
2169 }
2170 }
2171 #endif
2172 *seq_rtt_p = seq_rtt;
2173 return acked;
2174 }
2175
2176 static void tcp_ack_probe(struct sock *sk)
2177 {
2178 const struct tcp_sock *tp = tcp_sk(sk);
2179 struct inet_connection_sock *icsk = inet_csk(sk);
2180
2181 /* Was it a usable window open? */
2182
2183 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2184 tp->snd_una + tp->snd_wnd)) {
2185 icsk->icsk_backoff = 0;
2186 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2187 /* Socket must be waked up by subsequent tcp_data_snd_check().
2188 * This function is not for random using!
2189 */
2190 } else {
2191 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2192 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2193 TCP_RTO_MAX);
2194 }
2195 }
2196
2197 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2198 {
2199 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2200 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2201 }
2202
2203 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2204 {
2205 const struct tcp_sock *tp = tcp_sk(sk);
2206 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2207 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2208 }
2209
2210 /* Check that window update is acceptable.
2211 * The function assumes that snd_una<=ack<=snd_next.
2212 */
2213 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2214 const u32 ack_seq, const u32 nwin)
2215 {
2216 return (after(ack, tp->snd_una) ||
2217 after(ack_seq, tp->snd_wl1) ||
2218 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2219 }
2220
2221 /* Update our send window.
2222 *
2223 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2224 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2225 */
2226 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2227 struct sk_buff *skb, u32 ack, u32 ack_seq)
2228 {
2229 int flag = 0;
2230 u32 nwin = ntohs(skb->h.th->window);
2231
2232 if (likely(!skb->h.th->syn))
2233 nwin <<= tp->rx_opt.snd_wscale;
2234
2235 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2236 flag |= FLAG_WIN_UPDATE;
2237 tcp_update_wl(tp, ack, ack_seq);
2238
2239 if (tp->snd_wnd != nwin) {
2240 tp->snd_wnd = nwin;
2241
2242 /* Note, it is the only place, where
2243 * fast path is recovered for sending TCP.
2244 */
2245 tp->pred_flags = 0;
2246 tcp_fast_path_check(sk, tp);
2247
2248 if (nwin > tp->max_window) {
2249 tp->max_window = nwin;
2250 tcp_sync_mss(sk, tp->pmtu_cookie);
2251 }
2252 }
2253 }
2254
2255 tp->snd_una = ack;
2256
2257 return flag;
2258 }
2259
2260 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2261 {
2262 struct tcp_sock *tp = tcp_sk(sk);
2263
2264 tcp_sync_left_out(tp);
2265
2266 if (tp->snd_una == prior_snd_una ||
2267 !before(tp->snd_una, tp->frto_highmark)) {
2268 /* RTO was caused by loss, start retransmitting in
2269 * go-back-N slow start
2270 */
2271 tcp_enter_frto_loss(sk);
2272 return;
2273 }
2274
2275 if (tp->frto_counter == 1) {
2276 /* First ACK after RTO advances the window: allow two new
2277 * segments out.
2278 */
2279 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2280 } else {
2281 /* Also the second ACK after RTO advances the window.
2282 * The RTO was likely spurious. Reduce cwnd and continue
2283 * in congestion avoidance
2284 */
2285 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2286 tcp_moderate_cwnd(tp);
2287 }
2288
2289 /* F-RTO affects on two new ACKs following RTO.
2290 * At latest on third ACK the TCP behavor is back to normal.
2291 */
2292 tp->frto_counter = (tp->frto_counter + 1) % 3;
2293 }
2294
2295 /* This routine deals with incoming acks, but not outgoing ones. */
2296 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2297 {
2298 struct inet_connection_sock *icsk = inet_csk(sk);
2299 struct tcp_sock *tp = tcp_sk(sk);
2300 u32 prior_snd_una = tp->snd_una;
2301 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2302 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2303 u32 prior_in_flight;
2304 s32 seq_rtt;
2305 int prior_packets;
2306
2307 /* If the ack is newer than sent or older than previous acks
2308 * then we can probably ignore it.
2309 */
2310 if (after(ack, tp->snd_nxt))
2311 goto uninteresting_ack;
2312
2313 if (before(ack, prior_snd_una))
2314 goto old_ack;
2315
2316 if (sysctl_tcp_abc && icsk->icsk_ca_state < TCP_CA_CWR)
2317 tp->bytes_acked += ack - prior_snd_una;
2318
2319 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2320 /* Window is constant, pure forward advance.
2321 * No more checks are required.
2322 * Note, we use the fact that SND.UNA>=SND.WL2.
2323 */
2324 tcp_update_wl(tp, ack, ack_seq);
2325 tp->snd_una = ack;
2326 flag |= FLAG_WIN_UPDATE;
2327
2328 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2329
2330 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2331 } else {
2332 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2333 flag |= FLAG_DATA;
2334 else
2335 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2336
2337 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2338
2339 if (TCP_SKB_CB(skb)->sacked)
2340 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2341
2342 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2343 flag |= FLAG_ECE;
2344
2345 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2346 }
2347
2348 /* We passed data and got it acked, remove any soft error
2349 * log. Something worked...
2350 */
2351 sk->sk_err_soft = 0;
2352 tp->rcv_tstamp = tcp_time_stamp;
2353 prior_packets = tp->packets_out;
2354 if (!prior_packets)
2355 goto no_queue;
2356
2357 prior_in_flight = tcp_packets_in_flight(tp);
2358
2359 /* See if we can take anything off of the retransmit queue. */
2360 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2361
2362 if (tp->frto_counter)
2363 tcp_process_frto(sk, prior_snd_una);
2364
2365 if (tcp_ack_is_dubious(sk, flag)) {
2366 /* Advanve CWND, if state allows this. */
2367 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2368 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2369 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2370 } else {
2371 if ((flag & FLAG_DATA_ACKED))
2372 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2373 }
2374
2375 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2376 dst_confirm(sk->sk_dst_cache);
2377
2378 return 1;
2379
2380 no_queue:
2381 icsk->icsk_probes_out = 0;
2382
2383 /* If this ack opens up a zero window, clear backoff. It was
2384 * being used to time the probes, and is probably far higher than
2385 * it needs to be for normal retransmission.
2386 */
2387 if (sk->sk_send_head)
2388 tcp_ack_probe(sk);
2389 return 1;
2390
2391 old_ack:
2392 if (TCP_SKB_CB(skb)->sacked)
2393 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2394
2395 uninteresting_ack:
2396 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2397 return 0;
2398 }
2399
2400
2401 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2402 * But, this can also be called on packets in the established flow when
2403 * the fast version below fails.
2404 */
2405 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2406 {
2407 unsigned char *ptr;
2408 struct tcphdr *th = skb->h.th;
2409 int length=(th->doff*4)-sizeof(struct tcphdr);
2410
2411 ptr = (unsigned char *)(th + 1);
2412 opt_rx->saw_tstamp = 0;
2413
2414 while(length>0) {
2415 int opcode=*ptr++;
2416 int opsize;
2417
2418 switch (opcode) {
2419 case TCPOPT_EOL:
2420 return;
2421 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2422 length--;
2423 continue;
2424 default:
2425 opsize=*ptr++;
2426 if (opsize < 2) /* "silly options" */
2427 return;
2428 if (opsize > length)
2429 return; /* don't parse partial options */
2430 switch(opcode) {
2431 case TCPOPT_MSS:
2432 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2433 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2434 if (in_mss) {
2435 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2436 in_mss = opt_rx->user_mss;
2437 opt_rx->mss_clamp = in_mss;
2438 }
2439 }
2440 break;
2441 case TCPOPT_WINDOW:
2442 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2443 if (sysctl_tcp_window_scaling) {
2444 __u8 snd_wscale = *(__u8 *) ptr;
2445 opt_rx->wscale_ok = 1;
2446 if (snd_wscale > 14) {
2447 if(net_ratelimit())
2448 printk(KERN_INFO "tcp_parse_options: Illegal window "
2449 "scaling value %d >14 received.\n",
2450 snd_wscale);
2451 snd_wscale = 14;
2452 }
2453 opt_rx->snd_wscale = snd_wscale;
2454 }
2455 break;
2456 case TCPOPT_TIMESTAMP:
2457 if(opsize==TCPOLEN_TIMESTAMP) {
2458 if ((estab && opt_rx->tstamp_ok) ||
2459 (!estab && sysctl_tcp_timestamps)) {
2460 opt_rx->saw_tstamp = 1;
2461 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2462 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2463 }
2464 }
2465 break;
2466 case TCPOPT_SACK_PERM:
2467 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2468 if (sysctl_tcp_sack) {
2469 opt_rx->sack_ok = 1;
2470 tcp_sack_reset(opt_rx);
2471 }
2472 }
2473 break;
2474
2475 case TCPOPT_SACK:
2476 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2477 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2478 opt_rx->sack_ok) {
2479 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2480 }
2481 };
2482 ptr+=opsize-2;
2483 length-=opsize;
2484 };
2485 }
2486 }
2487
2488 /* Fast parse options. This hopes to only see timestamps.
2489 * If it is wrong it falls back on tcp_parse_options().
2490 */
2491 static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2492 struct tcp_sock *tp)
2493 {
2494 if (th->doff == sizeof(struct tcphdr)>>2) {
2495 tp->rx_opt.saw_tstamp = 0;
2496 return 0;
2497 } else if (tp->rx_opt.tstamp_ok &&
2498 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2499 __u32 *ptr = (__u32 *)(th + 1);
2500 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2501 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2502 tp->rx_opt.saw_tstamp = 1;
2503 ++ptr;
2504 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2505 ++ptr;
2506 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2507 return 1;
2508 }
2509 }
2510 tcp_parse_options(skb, &tp->rx_opt, 1);
2511 return 1;
2512 }
2513
2514 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2515 {
2516 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2517 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2518 }
2519
2520 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2521 {
2522 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2523 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2524 * extra check below makes sure this can only happen
2525 * for pure ACK frames. -DaveM
2526 *
2527 * Not only, also it occurs for expired timestamps.
2528 */
2529
2530 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2531 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2532 tcp_store_ts_recent(tp);
2533 }
2534 }
2535
2536 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2537 *
2538 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2539 * it can pass through stack. So, the following predicate verifies that
2540 * this segment is not used for anything but congestion avoidance or
2541 * fast retransmit. Moreover, we even are able to eliminate most of such
2542 * second order effects, if we apply some small "replay" window (~RTO)
2543 * to timestamp space.
2544 *
2545 * All these measures still do not guarantee that we reject wrapped ACKs
2546 * on networks with high bandwidth, when sequence space is recycled fastly,
2547 * but it guarantees that such events will be very rare and do not affect
2548 * connection seriously. This doesn't look nice, but alas, PAWS is really
2549 * buggy extension.
2550 *
2551 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2552 * states that events when retransmit arrives after original data are rare.
2553 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2554 * the biggest problem on large power networks even with minor reordering.
2555 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2556 * up to bandwidth of 18Gigabit/sec. 8) ]
2557 */
2558
2559 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2560 {
2561 struct tcp_sock *tp = tcp_sk(sk);
2562 struct tcphdr *th = skb->h.th;
2563 u32 seq = TCP_SKB_CB(skb)->seq;
2564 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2565
2566 return (/* 1. Pure ACK with correct sequence number. */
2567 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2568
2569 /* 2. ... and duplicate ACK. */
2570 ack == tp->snd_una &&
2571
2572 /* 3. ... and does not update window. */
2573 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2574
2575 /* 4. ... and sits in replay window. */
2576 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2577 }
2578
2579 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2580 {
2581 const struct tcp_sock *tp = tcp_sk(sk);
2582 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2583 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2584 !tcp_disordered_ack(sk, skb));
2585 }
2586
2587 /* Check segment sequence number for validity.
2588 *
2589 * Segment controls are considered valid, if the segment
2590 * fits to the window after truncation to the window. Acceptability
2591 * of data (and SYN, FIN, of course) is checked separately.
2592 * See tcp_data_queue(), for example.
2593 *
2594 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2595 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2596 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2597 * (borrowed from freebsd)
2598 */
2599
2600 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2601 {
2602 return !before(end_seq, tp->rcv_wup) &&
2603 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2604 }
2605
2606 /* When we get a reset we do this. */
2607 static void tcp_reset(struct sock *sk)
2608 {
2609 /* We want the right error as BSD sees it (and indeed as we do). */
2610 switch (sk->sk_state) {
2611 case TCP_SYN_SENT:
2612 sk->sk_err = ECONNREFUSED;
2613 break;
2614 case TCP_CLOSE_WAIT:
2615 sk->sk_err = EPIPE;
2616 break;
2617 case TCP_CLOSE:
2618 return;
2619 default:
2620 sk->sk_err = ECONNRESET;
2621 }
2622
2623 if (!sock_flag(sk, SOCK_DEAD))
2624 sk->sk_error_report(sk);
2625
2626 tcp_done(sk);
2627 }
2628
2629 /*
2630 * Process the FIN bit. This now behaves as it is supposed to work
2631 * and the FIN takes effect when it is validly part of sequence
2632 * space. Not before when we get holes.
2633 *
2634 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2635 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2636 * TIME-WAIT)
2637 *
2638 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2639 * close and we go into CLOSING (and later onto TIME-WAIT)
2640 *
2641 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2642 */
2643 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2644 {
2645 struct tcp_sock *tp = tcp_sk(sk);
2646
2647 inet_csk_schedule_ack(sk);
2648
2649 sk->sk_shutdown |= RCV_SHUTDOWN;
2650 sock_set_flag(sk, SOCK_DONE);
2651
2652 switch (sk->sk_state) {
2653 case TCP_SYN_RECV:
2654 case TCP_ESTABLISHED:
2655 /* Move to CLOSE_WAIT */
2656 tcp_set_state(sk, TCP_CLOSE_WAIT);
2657 inet_csk(sk)->icsk_ack.pingpong = 1;
2658 break;
2659
2660 case TCP_CLOSE_WAIT:
2661 case TCP_CLOSING:
2662 /* Received a retransmission of the FIN, do
2663 * nothing.
2664 */
2665 break;
2666 case TCP_LAST_ACK:
2667 /* RFC793: Remain in the LAST-ACK state. */
2668 break;
2669
2670 case TCP_FIN_WAIT1:
2671 /* This case occurs when a simultaneous close
2672 * happens, we must ack the received FIN and
2673 * enter the CLOSING state.
2674 */
2675 tcp_send_ack(sk);
2676 tcp_set_state(sk, TCP_CLOSING);
2677 break;
2678 case TCP_FIN_WAIT2:
2679 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2680 tcp_send_ack(sk);
2681 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2682 break;
2683 default:
2684 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2685 * cases we should never reach this piece of code.
2686 */
2687 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2688 __FUNCTION__, sk->sk_state);
2689 break;
2690 };
2691
2692 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2693 * Probably, we should reset in this case. For now drop them.
2694 */
2695 __skb_queue_purge(&tp->out_of_order_queue);
2696 if (tp->rx_opt.sack_ok)
2697 tcp_sack_reset(&tp->rx_opt);
2698 sk_stream_mem_reclaim(sk);
2699
2700 if (!sock_flag(sk, SOCK_DEAD)) {
2701 sk->sk_state_change(sk);
2702
2703 /* Do not send POLL_HUP for half duplex close. */
2704 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2705 sk->sk_state == TCP_CLOSE)
2706 sk_wake_async(sk, 1, POLL_HUP);
2707 else
2708 sk_wake_async(sk, 1, POLL_IN);
2709 }
2710 }
2711
2712 static __inline__ int
2713 tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2714 {
2715 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2716 if (before(seq, sp->start_seq))
2717 sp->start_seq = seq;
2718 if (after(end_seq, sp->end_seq))
2719 sp->end_seq = end_seq;
2720 return 1;
2721 }
2722 return 0;
2723 }
2724
2725 static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2726 {
2727 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2728 if (before(seq, tp->rcv_nxt))
2729 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2730 else
2731 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2732
2733 tp->rx_opt.dsack = 1;
2734 tp->duplicate_sack[0].start_seq = seq;
2735 tp->duplicate_sack[0].end_seq = end_seq;
2736 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2737 }
2738 }
2739
2740 static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2741 {
2742 if (!tp->rx_opt.dsack)
2743 tcp_dsack_set(tp, seq, end_seq);
2744 else
2745 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2746 }
2747
2748 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2749 {
2750 struct tcp_sock *tp = tcp_sk(sk);
2751
2752 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2753 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2754 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2755 tcp_enter_quickack_mode(sk);
2756
2757 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2758 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2759
2760 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2761 end_seq = tp->rcv_nxt;
2762 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2763 }
2764 }
2765
2766 tcp_send_ack(sk);
2767 }
2768
2769 /* These routines update the SACK block as out-of-order packets arrive or
2770 * in-order packets close up the sequence space.
2771 */
2772 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2773 {
2774 int this_sack;
2775 struct tcp_sack_block *sp = &tp->selective_acks[0];
2776 struct tcp_sack_block *swalk = sp+1;
2777
2778 /* See if the recent change to the first SACK eats into
2779 * or hits the sequence space of other SACK blocks, if so coalesce.
2780 */
2781 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2782 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2783 int i;
2784
2785 /* Zap SWALK, by moving every further SACK up by one slot.
2786 * Decrease num_sacks.
2787 */
2788 tp->rx_opt.num_sacks--;
2789 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2790 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2791 sp[i] = sp[i+1];
2792 continue;
2793 }
2794 this_sack++, swalk++;
2795 }
2796 }
2797
2798 static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2799 {
2800 __u32 tmp;
2801
2802 tmp = sack1->start_seq;
2803 sack1->start_seq = sack2->start_seq;
2804 sack2->start_seq = tmp;
2805
2806 tmp = sack1->end_seq;
2807 sack1->end_seq = sack2->end_seq;
2808 sack2->end_seq = tmp;
2809 }
2810
2811 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2812 {
2813 struct tcp_sock *tp = tcp_sk(sk);
2814 struct tcp_sack_block *sp = &tp->selective_acks[0];
2815 int cur_sacks = tp->rx_opt.num_sacks;
2816 int this_sack;
2817
2818 if (!cur_sacks)
2819 goto new_sack;
2820
2821 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
2822 if (tcp_sack_extend(sp, seq, end_seq)) {
2823 /* Rotate this_sack to the first one. */
2824 for (; this_sack>0; this_sack--, sp--)
2825 tcp_sack_swap(sp, sp-1);
2826 if (cur_sacks > 1)
2827 tcp_sack_maybe_coalesce(tp);
2828 return;
2829 }
2830 }
2831
2832 /* Could not find an adjacent existing SACK, build a new one,
2833 * put it at the front, and shift everyone else down. We
2834 * always know there is at least one SACK present already here.
2835 *
2836 * If the sack array is full, forget about the last one.
2837 */
2838 if (this_sack >= 4) {
2839 this_sack--;
2840 tp->rx_opt.num_sacks--;
2841 sp--;
2842 }
2843 for(; this_sack > 0; this_sack--, sp--)
2844 *sp = *(sp-1);
2845
2846 new_sack:
2847 /* Build the new head SACK, and we're done. */
2848 sp->start_seq = seq;
2849 sp->end_seq = end_seq;
2850 tp->rx_opt.num_sacks++;
2851 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2852 }
2853
2854 /* RCV.NXT advances, some SACKs should be eaten. */
2855
2856 static void tcp_sack_remove(struct tcp_sock *tp)
2857 {
2858 struct tcp_sack_block *sp = &tp->selective_acks[0];
2859 int num_sacks = tp->rx_opt.num_sacks;
2860 int this_sack;
2861
2862 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
2863 if (skb_queue_empty(&tp->out_of_order_queue)) {
2864 tp->rx_opt.num_sacks = 0;
2865 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
2866 return;
2867 }
2868
2869 for(this_sack = 0; this_sack < num_sacks; ) {
2870 /* Check if the start of the sack is covered by RCV.NXT. */
2871 if (!before(tp->rcv_nxt, sp->start_seq)) {
2872 int i;
2873
2874 /* RCV.NXT must cover all the block! */
2875 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
2876
2877 /* Zap this SACK, by moving forward any other SACKS. */
2878 for (i=this_sack+1; i < num_sacks; i++)
2879 tp->selective_acks[i-1] = tp->selective_acks[i];
2880 num_sacks--;
2881 continue;
2882 }
2883 this_sack++;
2884 sp++;
2885 }
2886 if (num_sacks != tp->rx_opt.num_sacks) {
2887 tp->rx_opt.num_sacks = num_sacks;
2888 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2889 }
2890 }
2891
2892 /* This one checks to see if we can put data from the
2893 * out_of_order queue into the receive_queue.
2894 */
2895 static void tcp_ofo_queue(struct sock *sk)
2896 {
2897 struct tcp_sock *tp = tcp_sk(sk);
2898 __u32 dsack_high = tp->rcv_nxt;
2899 struct sk_buff *skb;
2900
2901 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
2902 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
2903 break;
2904
2905 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
2906 __u32 dsack = dsack_high;
2907 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
2908 dsack_high = TCP_SKB_CB(skb)->end_seq;
2909 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
2910 }
2911
2912 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2913 SOCK_DEBUG(sk, "ofo packet was already received \n");
2914 __skb_unlink(skb, &tp->out_of_order_queue);
2915 __kfree_skb(skb);
2916 continue;
2917 }
2918 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
2919 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2920 TCP_SKB_CB(skb)->end_seq);
2921
2922 __skb_unlink(skb, &tp->out_of_order_queue);
2923 __skb_queue_tail(&sk->sk_receive_queue, skb);
2924 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2925 if(skb->h.th->fin)
2926 tcp_fin(skb, sk, skb->h.th);
2927 }
2928 }
2929
2930 static int tcp_prune_queue(struct sock *sk);
2931
2932 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
2933 {
2934 struct tcphdr *th = skb->h.th;
2935 struct tcp_sock *tp = tcp_sk(sk);
2936 int eaten = -1;
2937
2938 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
2939 goto drop;
2940
2941 __skb_pull(skb, th->doff*4);
2942
2943 TCP_ECN_accept_cwr(tp, skb);
2944
2945 if (tp->rx_opt.dsack) {
2946 tp->rx_opt.dsack = 0;
2947 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
2948 4 - tp->rx_opt.tstamp_ok);
2949 }
2950
2951 /* Queue data for delivery to the user.
2952 * Packets in sequence go to the receive queue.
2953 * Out of sequence packets to the out_of_order_queue.
2954 */
2955 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
2956 if (tcp_receive_window(tp) == 0)
2957 goto out_of_window;
2958
2959 /* Ok. In sequence. In window. */
2960 if (tp->ucopy.task == current &&
2961 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
2962 sock_owned_by_user(sk) && !tp->urg_data) {
2963 int chunk = min_t(unsigned int, skb->len,
2964 tp->ucopy.len);
2965
2966 __set_current_state(TASK_RUNNING);
2967
2968 local_bh_enable();
2969 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
2970 tp->ucopy.len -= chunk;
2971 tp->copied_seq += chunk;
2972 eaten = (chunk == skb->len && !th->fin);
2973 tcp_rcv_space_adjust(sk);
2974 }
2975 local_bh_disable();
2976 }
2977
2978 if (eaten <= 0) {
2979 queue_and_out:
2980 if (eaten < 0 &&
2981 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
2982 !sk_stream_rmem_schedule(sk, skb))) {
2983 if (tcp_prune_queue(sk) < 0 ||
2984 !sk_stream_rmem_schedule(sk, skb))
2985 goto drop;
2986 }
2987 sk_stream_set_owner_r(skb, sk);
2988 __skb_queue_tail(&sk->sk_receive_queue, skb);
2989 }
2990 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2991 if(skb->len)
2992 tcp_event_data_recv(sk, tp, skb);
2993 if(th->fin)
2994 tcp_fin(skb, sk, th);
2995
2996 if (!skb_queue_empty(&tp->out_of_order_queue)) {
2997 tcp_ofo_queue(sk);
2998
2999 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3000 * gap in queue is filled.
3001 */
3002 if (skb_queue_empty(&tp->out_of_order_queue))
3003 inet_csk(sk)->icsk_ack.pingpong = 0;
3004 }
3005
3006 if (tp->rx_opt.num_sacks)
3007 tcp_sack_remove(tp);
3008
3009 tcp_fast_path_check(sk, tp);
3010
3011 if (eaten > 0)
3012 __kfree_skb(skb);
3013 else if (!sock_flag(sk, SOCK_DEAD))
3014 sk->sk_data_ready(sk, 0);
3015 return;
3016 }
3017
3018 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3019 /* A retransmit, 2nd most common case. Force an immediate ack. */
3020 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3021 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3022
3023 out_of_window:
3024 tcp_enter_quickack_mode(sk);
3025 inet_csk_schedule_ack(sk);
3026 drop:
3027 __kfree_skb(skb);
3028 return;
3029 }
3030
3031 /* Out of window. F.e. zero window probe. */
3032 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3033 goto out_of_window;
3034
3035 tcp_enter_quickack_mode(sk);
3036
3037 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3038 /* Partial packet, seq < rcv_next < end_seq */
3039 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3040 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3041 TCP_SKB_CB(skb)->end_seq);
3042
3043 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3044
3045 /* If window is closed, drop tail of packet. But after
3046 * remembering D-SACK for its head made in previous line.
3047 */
3048 if (!tcp_receive_window(tp))
3049 goto out_of_window;
3050 goto queue_and_out;
3051 }
3052
3053 TCP_ECN_check_ce(tp, skb);
3054
3055 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3056 !sk_stream_rmem_schedule(sk, skb)) {
3057 if (tcp_prune_queue(sk) < 0 ||
3058 !sk_stream_rmem_schedule(sk, skb))
3059 goto drop;
3060 }
3061
3062 /* Disable header prediction. */
3063 tp->pred_flags = 0;
3064 inet_csk_schedule_ack(sk);
3065
3066 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3067 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3068
3069 sk_stream_set_owner_r(skb, sk);
3070
3071 if (!skb_peek(&tp->out_of_order_queue)) {
3072 /* Initial out of order segment, build 1 SACK. */
3073 if (tp->rx_opt.sack_ok) {
3074 tp->rx_opt.num_sacks = 1;
3075 tp->rx_opt.dsack = 0;
3076 tp->rx_opt.eff_sacks = 1;
3077 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3078 tp->selective_acks[0].end_seq =
3079 TCP_SKB_CB(skb)->end_seq;
3080 }
3081 __skb_queue_head(&tp->out_of_order_queue,skb);
3082 } else {
3083 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3084 u32 seq = TCP_SKB_CB(skb)->seq;
3085 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3086
3087 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3088 __skb_append(skb1, skb, &tp->out_of_order_queue);
3089
3090 if (!tp->rx_opt.num_sacks ||
3091 tp->selective_acks[0].end_seq != seq)
3092 goto add_sack;
3093
3094 /* Common case: data arrive in order after hole. */
3095 tp->selective_acks[0].end_seq = end_seq;
3096 return;
3097 }
3098
3099 /* Find place to insert this segment. */
3100 do {
3101 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3102 break;
3103 } while ((skb1 = skb1->prev) !=
3104 (struct sk_buff*)&tp->out_of_order_queue);
3105
3106 /* Do skb overlap to previous one? */
3107 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3108 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3109 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3110 /* All the bits are present. Drop. */
3111 __kfree_skb(skb);
3112 tcp_dsack_set(tp, seq, end_seq);
3113 goto add_sack;
3114 }
3115 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3116 /* Partial overlap. */
3117 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3118 } else {
3119 skb1 = skb1->prev;
3120 }
3121 }
3122 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3123
3124 /* And clean segments covered by new one as whole. */
3125 while ((skb1 = skb->next) !=
3126 (struct sk_buff*)&tp->out_of_order_queue &&
3127 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3128 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3129 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3130 break;
3131 }
3132 __skb_unlink(skb1, &tp->out_of_order_queue);
3133 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3134 __kfree_skb(skb1);
3135 }
3136
3137 add_sack:
3138 if (tp->rx_opt.sack_ok)
3139 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3140 }
3141 }
3142
3143 /* Collapse contiguous sequence of skbs head..tail with
3144 * sequence numbers start..end.
3145 * Segments with FIN/SYN are not collapsed (only because this
3146 * simplifies code)
3147 */
3148 static void
3149 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3150 struct sk_buff *head, struct sk_buff *tail,
3151 u32 start, u32 end)
3152 {
3153 struct sk_buff *skb;
3154
3155 /* First, check that queue is collapsable and find
3156 * the point where collapsing can be useful. */
3157 for (skb = head; skb != tail; ) {
3158 /* No new bits? It is possible on ofo queue. */
3159 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3160 struct sk_buff *next = skb->next;
3161 __skb_unlink(skb, list);
3162 __kfree_skb(skb);
3163 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3164 skb = next;
3165 continue;
3166 }
3167
3168 /* The first skb to collapse is:
3169 * - not SYN/FIN and
3170 * - bloated or contains data before "start" or
3171 * overlaps to the next one.
3172 */
3173 if (!skb->h.th->syn && !skb->h.th->fin &&
3174 (tcp_win_from_space(skb->truesize) > skb->len ||
3175 before(TCP_SKB_CB(skb)->seq, start) ||
3176 (skb->next != tail &&
3177 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3178 break;
3179
3180 /* Decided to skip this, advance start seq. */
3181 start = TCP_SKB_CB(skb)->end_seq;
3182 skb = skb->next;
3183 }
3184 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3185 return;
3186
3187 while (before(start, end)) {
3188 struct sk_buff *nskb;
3189 int header = skb_headroom(skb);
3190 int copy = SKB_MAX_ORDER(header, 0);
3191
3192 /* Too big header? This can happen with IPv6. */
3193 if (copy < 0)
3194 return;
3195 if (end-start < copy)
3196 copy = end-start;
3197 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3198 if (!nskb)
3199 return;
3200 skb_reserve(nskb, header);
3201 memcpy(nskb->head, skb->head, header);
3202 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3203 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3204 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3205 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3206 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3207 __skb_insert(nskb, skb->prev, skb, list);
3208 sk_stream_set_owner_r(nskb, sk);
3209
3210 /* Copy data, releasing collapsed skbs. */
3211 while (copy > 0) {
3212 int offset = start - TCP_SKB_CB(skb)->seq;
3213 int size = TCP_SKB_CB(skb)->end_seq - start;
3214
3215 if (offset < 0) BUG();
3216 if (size > 0) {
3217 size = min(copy, size);
3218 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3219 BUG();
3220 TCP_SKB_CB(nskb)->end_seq += size;
3221 copy -= size;
3222 start += size;
3223 }
3224 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3225 struct sk_buff *next = skb->next;
3226 __skb_unlink(skb, list);
3227 __kfree_skb(skb);
3228 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3229 skb = next;
3230 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3231 return;
3232 }
3233 }
3234 }
3235 }
3236
3237 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3238 * and tcp_collapse() them until all the queue is collapsed.
3239 */
3240 static void tcp_collapse_ofo_queue(struct sock *sk)
3241 {
3242 struct tcp_sock *tp = tcp_sk(sk);
3243 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3244 struct sk_buff *head;
3245 u32 start, end;
3246
3247 if (skb == NULL)
3248 return;
3249
3250 start = TCP_SKB_CB(skb)->seq;
3251 end = TCP_SKB_CB(skb)->end_seq;
3252 head = skb;
3253
3254 for (;;) {
3255 skb = skb->next;
3256
3257 /* Segment is terminated when we see gap or when
3258 * we are at the end of all the queue. */
3259 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3260 after(TCP_SKB_CB(skb)->seq, end) ||
3261 before(TCP_SKB_CB(skb)->end_seq, start)) {
3262 tcp_collapse(sk, &tp->out_of_order_queue,
3263 head, skb, start, end);
3264 head = skb;
3265 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3266 break;
3267 /* Start new segment */
3268 start = TCP_SKB_CB(skb)->seq;
3269 end = TCP_SKB_CB(skb)->end_seq;
3270 } else {
3271 if (before(TCP_SKB_CB(skb)->seq, start))
3272 start = TCP_SKB_CB(skb)->seq;
3273 if (after(TCP_SKB_CB(skb)->end_seq, end))
3274 end = TCP_SKB_CB(skb)->end_seq;
3275 }
3276 }
3277 }
3278
3279 /* Reduce allocated memory if we can, trying to get
3280 * the socket within its memory limits again.
3281 *
3282 * Return less than zero if we should start dropping frames
3283 * until the socket owning process reads some of the data
3284 * to stabilize the situation.
3285 */
3286 static int tcp_prune_queue(struct sock *sk)
3287 {
3288 struct tcp_sock *tp = tcp_sk(sk);
3289
3290 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3291
3292 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3293
3294 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3295 tcp_clamp_window(sk, tp);
3296 else if (tcp_memory_pressure)
3297 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3298
3299 tcp_collapse_ofo_queue(sk);
3300 tcp_collapse(sk, &sk->sk_receive_queue,
3301 sk->sk_receive_queue.next,
3302 (struct sk_buff*)&sk->sk_receive_queue,
3303 tp->copied_seq, tp->rcv_nxt);
3304 sk_stream_mem_reclaim(sk);
3305
3306 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3307 return 0;
3308
3309 /* Collapsing did not help, destructive actions follow.
3310 * This must not ever occur. */
3311
3312 /* First, purge the out_of_order queue. */
3313 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3314 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3315 __skb_queue_purge(&tp->out_of_order_queue);
3316
3317 /* Reset SACK state. A conforming SACK implementation will
3318 * do the same at a timeout based retransmit. When a connection
3319 * is in a sad state like this, we care only about integrity
3320 * of the connection not performance.
3321 */
3322 if (tp->rx_opt.sack_ok)
3323 tcp_sack_reset(&tp->rx_opt);
3324 sk_stream_mem_reclaim(sk);
3325 }
3326
3327 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3328 return 0;
3329
3330 /* If we are really being abused, tell the caller to silently
3331 * drop receive data on the floor. It will get retransmitted
3332 * and hopefully then we'll have sufficient space.
3333 */
3334 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3335
3336 /* Massive buffer overcommit. */
3337 tp->pred_flags = 0;
3338 return -1;
3339 }
3340
3341
3342 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3343 * As additional protections, we do not touch cwnd in retransmission phases,
3344 * and if application hit its sndbuf limit recently.
3345 */
3346 void tcp_cwnd_application_limited(struct sock *sk)
3347 {
3348 struct tcp_sock *tp = tcp_sk(sk);
3349
3350 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3351 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3352 /* Limited by application or receiver window. */
3353 u32 win_used = max(tp->snd_cwnd_used, 2U);
3354 if (win_used < tp->snd_cwnd) {
3355 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3356 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3357 }
3358 tp->snd_cwnd_used = 0;
3359 }
3360 tp->snd_cwnd_stamp = tcp_time_stamp;
3361 }
3362
3363 static inline int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3364 {
3365 /* If the user specified a specific send buffer setting, do
3366 * not modify it.
3367 */
3368 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3369 return 0;
3370
3371 /* If we are under global TCP memory pressure, do not expand. */
3372 if (tcp_memory_pressure)
3373 return 0;
3374
3375 /* If we are under soft global TCP memory pressure, do not expand. */
3376 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3377 return 0;
3378
3379 /* If we filled the congestion window, do not expand. */
3380 if (tp->packets_out >= tp->snd_cwnd)
3381 return 0;
3382
3383 return 1;
3384 }
3385
3386 /* When incoming ACK allowed to free some skb from write_queue,
3387 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3388 * on the exit from tcp input handler.
3389 *
3390 * PROBLEM: sndbuf expansion does not work well with largesend.
3391 */
3392 static void tcp_new_space(struct sock *sk)
3393 {
3394 struct tcp_sock *tp = tcp_sk(sk);
3395
3396 if (tcp_should_expand_sndbuf(sk, tp)) {
3397 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3398 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3399 demanded = max_t(unsigned int, tp->snd_cwnd,
3400 tp->reordering + 1);
3401 sndmem *= 2*demanded;
3402 if (sndmem > sk->sk_sndbuf)
3403 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3404 tp->snd_cwnd_stamp = tcp_time_stamp;
3405 }
3406
3407 sk->sk_write_space(sk);
3408 }
3409
3410 static inline void tcp_check_space(struct sock *sk)
3411 {
3412 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3413 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3414 if (sk->sk_socket &&
3415 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3416 tcp_new_space(sk);
3417 }
3418 }
3419
3420 static __inline__ void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3421 {
3422 tcp_push_pending_frames(sk, tp);
3423 tcp_check_space(sk);
3424 }
3425
3426 /*
3427 * Check if sending an ack is needed.
3428 */
3429 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3430 {
3431 struct tcp_sock *tp = tcp_sk(sk);
3432
3433 /* More than one full frame received... */
3434 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3435 /* ... and right edge of window advances far enough.
3436 * (tcp_recvmsg() will send ACK otherwise). Or...
3437 */
3438 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3439 /* We ACK each frame or... */
3440 tcp_in_quickack_mode(sk) ||
3441 /* We have out of order data. */
3442 (ofo_possible &&
3443 skb_peek(&tp->out_of_order_queue))) {
3444 /* Then ack it now */
3445 tcp_send_ack(sk);
3446 } else {
3447 /* Else, send delayed ack. */
3448 tcp_send_delayed_ack(sk);
3449 }
3450 }
3451
3452 static __inline__ void tcp_ack_snd_check(struct sock *sk)
3453 {
3454 if (!inet_csk_ack_scheduled(sk)) {
3455 /* We sent a data segment already. */
3456 return;
3457 }
3458 __tcp_ack_snd_check(sk, 1);
3459 }
3460
3461 /*
3462 * This routine is only called when we have urgent data
3463 * signalled. Its the 'slow' part of tcp_urg. It could be
3464 * moved inline now as tcp_urg is only called from one
3465 * place. We handle URGent data wrong. We have to - as
3466 * BSD still doesn't use the correction from RFC961.
3467 * For 1003.1g we should support a new option TCP_STDURG to permit
3468 * either form (or just set the sysctl tcp_stdurg).
3469 */
3470
3471 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3472 {
3473 struct tcp_sock *tp = tcp_sk(sk);
3474 u32 ptr = ntohs(th->urg_ptr);
3475
3476 if (ptr && !sysctl_tcp_stdurg)
3477 ptr--;
3478 ptr += ntohl(th->seq);
3479
3480 /* Ignore urgent data that we've already seen and read. */
3481 if (after(tp->copied_seq, ptr))
3482 return;
3483
3484 /* Do not replay urg ptr.
3485 *
3486 * NOTE: interesting situation not covered by specs.
3487 * Misbehaving sender may send urg ptr, pointing to segment,
3488 * which we already have in ofo queue. We are not able to fetch
3489 * such data and will stay in TCP_URG_NOTYET until will be eaten
3490 * by recvmsg(). Seems, we are not obliged to handle such wicked
3491 * situations. But it is worth to think about possibility of some
3492 * DoSes using some hypothetical application level deadlock.
3493 */
3494 if (before(ptr, tp->rcv_nxt))
3495 return;
3496
3497 /* Do we already have a newer (or duplicate) urgent pointer? */
3498 if (tp->urg_data && !after(ptr, tp->urg_seq))
3499 return;
3500
3501 /* Tell the world about our new urgent pointer. */
3502 sk_send_sigurg(sk);
3503
3504 /* We may be adding urgent data when the last byte read was
3505 * urgent. To do this requires some care. We cannot just ignore
3506 * tp->copied_seq since we would read the last urgent byte again
3507 * as data, nor can we alter copied_seq until this data arrives
3508 * or we break the sematics of SIOCATMARK (and thus sockatmark())
3509 *
3510 * NOTE. Double Dutch. Rendering to plain English: author of comment
3511 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3512 * and expect that both A and B disappear from stream. This is _wrong_.
3513 * Though this happens in BSD with high probability, this is occasional.
3514 * Any application relying on this is buggy. Note also, that fix "works"
3515 * only in this artificial test. Insert some normal data between A and B and we will
3516 * decline of BSD again. Verdict: it is better to remove to trap
3517 * buggy users.
3518 */
3519 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3520 !sock_flag(sk, SOCK_URGINLINE) &&
3521 tp->copied_seq != tp->rcv_nxt) {
3522 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3523 tp->copied_seq++;
3524 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3525 __skb_unlink(skb, &sk->sk_receive_queue);
3526 __kfree_skb(skb);
3527 }
3528 }
3529
3530 tp->urg_data = TCP_URG_NOTYET;
3531 tp->urg_seq = ptr;
3532
3533 /* Disable header prediction. */
3534 tp->pred_flags = 0;
3535 }
3536
3537 /* This is the 'fast' part of urgent handling. */
3538 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3539 {
3540 struct tcp_sock *tp = tcp_sk(sk);
3541
3542 /* Check if we get a new urgent pointer - normally not. */
3543 if (th->urg)
3544 tcp_check_urg(sk,th);
3545
3546 /* Do we wait for any urgent data? - normally not... */
3547 if (tp->urg_data == TCP_URG_NOTYET) {
3548 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3549 th->syn;
3550
3551 /* Is the urgent pointer pointing into this packet? */
3552 if (ptr < skb->len) {
3553 u8 tmp;
3554 if (skb_copy_bits(skb, ptr, &tmp, 1))
3555 BUG();
3556 tp->urg_data = TCP_URG_VALID | tmp;
3557 if (!sock_flag(sk, SOCK_DEAD))
3558 sk->sk_data_ready(sk, 0);
3559 }
3560 }
3561 }
3562
3563 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3564 {
3565 struct tcp_sock *tp = tcp_sk(sk);
3566 int chunk = skb->len - hlen;
3567 int err;
3568
3569 local_bh_enable();
3570 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3571 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3572 else
3573 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3574 tp->ucopy.iov);
3575
3576 if (!err) {
3577 tp->ucopy.len -= chunk;
3578 tp->copied_seq += chunk;
3579 tcp_rcv_space_adjust(sk);
3580 }
3581
3582 local_bh_disable();
3583 return err;
3584 }
3585
3586 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3587 {
3588 int result;
3589
3590 if (sock_owned_by_user(sk)) {
3591 local_bh_enable();
3592 result = __tcp_checksum_complete(skb);
3593 local_bh_disable();
3594 } else {
3595 result = __tcp_checksum_complete(skb);
3596 }
3597 return result;
3598 }
3599
3600 static __inline__ int
3601 tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3602 {
3603 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3604 __tcp_checksum_complete_user(sk, skb);
3605 }
3606
3607 /*
3608 * TCP receive function for the ESTABLISHED state.
3609 *
3610 * It is split into a fast path and a slow path. The fast path is
3611 * disabled when:
3612 * - A zero window was announced from us - zero window probing
3613 * is only handled properly in the slow path.
3614 * - Out of order segments arrived.
3615 * - Urgent data is expected.
3616 * - There is no buffer space left
3617 * - Unexpected TCP flags/window values/header lengths are received
3618 * (detected by checking the TCP header against pred_flags)
3619 * - Data is sent in both directions. Fast path only supports pure senders
3620 * or pure receivers (this means either the sequence number or the ack
3621 * value must stay constant)
3622 * - Unexpected TCP option.
3623 *
3624 * When these conditions are not satisfied it drops into a standard
3625 * receive procedure patterned after RFC793 to handle all cases.
3626 * The first three cases are guaranteed by proper pred_flags setting,
3627 * the rest is checked inline. Fast processing is turned on in
3628 * tcp_data_queue when everything is OK.
3629 */
3630 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3631 struct tcphdr *th, unsigned len)
3632 {
3633 struct tcp_sock *tp = tcp_sk(sk);
3634
3635 /*
3636 * Header prediction.
3637 * The code loosely follows the one in the famous
3638 * "30 instruction TCP receive" Van Jacobson mail.
3639 *
3640 * Van's trick is to deposit buffers into socket queue
3641 * on a device interrupt, to call tcp_recv function
3642 * on the receive process context and checksum and copy
3643 * the buffer to user space. smart...
3644 *
3645 * Our current scheme is not silly either but we take the
3646 * extra cost of the net_bh soft interrupt processing...
3647 * We do checksum and copy also but from device to kernel.
3648 */
3649
3650 tp->rx_opt.saw_tstamp = 0;
3651
3652 /* pred_flags is 0xS?10 << 16 + snd_wnd
3653 * if header_predition is to be made
3654 * 'S' will always be tp->tcp_header_len >> 2
3655 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3656 * turn it off (when there are holes in the receive
3657 * space for instance)
3658 * PSH flag is ignored.
3659 */
3660
3661 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3662 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3663 int tcp_header_len = tp->tcp_header_len;
3664
3665 /* Timestamp header prediction: tcp_header_len
3666 * is automatically equal to th->doff*4 due to pred_flags
3667 * match.
3668 */
3669
3670 /* Check timestamp */
3671 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3672 __u32 *ptr = (__u32 *)(th + 1);
3673
3674 /* No? Slow path! */
3675 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3676 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3677 goto slow_path;
3678
3679 tp->rx_opt.saw_tstamp = 1;
3680 ++ptr;
3681 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3682 ++ptr;
3683 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3684
3685 /* If PAWS failed, check it more carefully in slow path */
3686 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3687 goto slow_path;
3688
3689 /* DO NOT update ts_recent here, if checksum fails
3690 * and timestamp was corrupted part, it will result
3691 * in a hung connection since we will drop all
3692 * future packets due to the PAWS test.
3693 */
3694 }
3695
3696 if (len <= tcp_header_len) {
3697 /* Bulk data transfer: sender */
3698 if (len == tcp_header_len) {
3699 /* Predicted packet is in window by definition.
3700 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3701 * Hence, check seq<=rcv_wup reduces to:
3702 */
3703 if (tcp_header_len ==
3704 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3705 tp->rcv_nxt == tp->rcv_wup)
3706 tcp_store_ts_recent(tp);
3707
3708 tcp_rcv_rtt_measure_ts(sk, skb);
3709
3710 /* We know that such packets are checksummed
3711 * on entry.
3712 */
3713 tcp_ack(sk, skb, 0);
3714 __kfree_skb(skb);
3715 tcp_data_snd_check(sk, tp);
3716 return 0;
3717 } else { /* Header too small */
3718 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3719 goto discard;
3720 }
3721 } else {
3722 int eaten = 0;
3723
3724 if (tp->ucopy.task == current &&
3725 tp->copied_seq == tp->rcv_nxt &&
3726 len - tcp_header_len <= tp->ucopy.len &&
3727 sock_owned_by_user(sk)) {
3728 __set_current_state(TASK_RUNNING);
3729
3730 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3731 /* Predicted packet is in window by definition.
3732 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3733 * Hence, check seq<=rcv_wup reduces to:
3734 */
3735 if (tcp_header_len ==
3736 (sizeof(struct tcphdr) +
3737 TCPOLEN_TSTAMP_ALIGNED) &&
3738 tp->rcv_nxt == tp->rcv_wup)
3739 tcp_store_ts_recent(tp);
3740
3741 tcp_rcv_rtt_measure_ts(sk, skb);
3742
3743 __skb_pull(skb, tcp_header_len);
3744 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3745 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3746 eaten = 1;
3747 }
3748 }
3749 if (!eaten) {
3750 if (tcp_checksum_complete_user(sk, skb))
3751 goto csum_error;
3752
3753 /* Predicted packet is in window by definition.
3754 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3755 * Hence, check seq<=rcv_wup reduces to:
3756 */
3757 if (tcp_header_len ==
3758 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3759 tp->rcv_nxt == tp->rcv_wup)
3760 tcp_store_ts_recent(tp);
3761
3762 tcp_rcv_rtt_measure_ts(sk, skb);
3763
3764 if ((int)skb->truesize > sk->sk_forward_alloc)
3765 goto step5;
3766
3767 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3768
3769 /* Bulk data transfer: receiver */
3770 __skb_pull(skb,tcp_header_len);
3771 __skb_queue_tail(&sk->sk_receive_queue, skb);
3772 sk_stream_set_owner_r(skb, sk);
3773 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3774 }
3775
3776 tcp_event_data_recv(sk, tp, skb);
3777
3778 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3779 /* Well, only one small jumplet in fast path... */
3780 tcp_ack(sk, skb, FLAG_DATA);
3781 tcp_data_snd_check(sk, tp);
3782 if (!inet_csk_ack_scheduled(sk))
3783 goto no_ack;
3784 }
3785
3786 __tcp_ack_snd_check(sk, 0);
3787 no_ack:
3788 if (eaten)
3789 __kfree_skb(skb);
3790 else
3791 sk->sk_data_ready(sk, 0);
3792 return 0;
3793 }
3794 }
3795
3796 slow_path:
3797 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3798 goto csum_error;
3799
3800 /*
3801 * RFC1323: H1. Apply PAWS check first.
3802 */
3803 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
3804 tcp_paws_discard(sk, skb)) {
3805 if (!th->rst) {
3806 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3807 tcp_send_dupack(sk, skb);
3808 goto discard;
3809 }
3810 /* Resets are accepted even if PAWS failed.
3811
3812 ts_recent update must be made after we are sure
3813 that the packet is in window.
3814 */
3815 }
3816
3817 /*
3818 * Standard slow path.
3819 */
3820
3821 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
3822 /* RFC793, page 37: "In all states except SYN-SENT, all reset
3823 * (RST) segments are validated by checking their SEQ-fields."
3824 * And page 69: "If an incoming segment is not acceptable,
3825 * an acknowledgment should be sent in reply (unless the RST bit
3826 * is set, if so drop the segment and return)".
3827 */
3828 if (!th->rst)
3829 tcp_send_dupack(sk, skb);
3830 goto discard;
3831 }
3832
3833 if(th->rst) {
3834 tcp_reset(sk);
3835 goto discard;
3836 }
3837
3838 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3839
3840 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3841 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3842 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
3843 tcp_reset(sk);
3844 return 1;
3845 }
3846
3847 step5:
3848 if(th->ack)
3849 tcp_ack(sk, skb, FLAG_SLOWPATH);
3850
3851 tcp_rcv_rtt_measure_ts(sk, skb);
3852
3853 /* Process urgent data. */
3854 tcp_urg(sk, skb, th);
3855
3856 /* step 7: process the segment text */
3857 tcp_data_queue(sk, skb);
3858
3859 tcp_data_snd_check(sk, tp);
3860 tcp_ack_snd_check(sk);
3861 return 0;
3862
3863 csum_error:
3864 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3865
3866 discard:
3867 __kfree_skb(skb);
3868 return 0;
3869 }
3870
3871 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
3872 struct tcphdr *th, unsigned len)
3873 {
3874 struct tcp_sock *tp = tcp_sk(sk);
3875 int saved_clamp = tp->rx_opt.mss_clamp;
3876
3877 tcp_parse_options(skb, &tp->rx_opt, 0);
3878
3879 if (th->ack) {
3880 struct inet_connection_sock *icsk;
3881 /* rfc793:
3882 * "If the state is SYN-SENT then
3883 * first check the ACK bit
3884 * If the ACK bit is set
3885 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
3886 * a reset (unless the RST bit is set, if so drop
3887 * the segment and return)"
3888 *
3889 * We do not send data with SYN, so that RFC-correct
3890 * test reduces to:
3891 */
3892 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
3893 goto reset_and_undo;
3894
3895 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3896 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
3897 tcp_time_stamp)) {
3898 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
3899 goto reset_and_undo;
3900 }
3901
3902 /* Now ACK is acceptable.
3903 *
3904 * "If the RST bit is set
3905 * If the ACK was acceptable then signal the user "error:
3906 * connection reset", drop the segment, enter CLOSED state,
3907 * delete TCB, and return."
3908 */
3909
3910 if (th->rst) {
3911 tcp_reset(sk);
3912 goto discard;
3913 }
3914
3915 /* rfc793:
3916 * "fifth, if neither of the SYN or RST bits is set then
3917 * drop the segment and return."
3918 *
3919 * See note below!
3920 * --ANK(990513)
3921 */
3922 if (!th->syn)
3923 goto discard_and_undo;
3924
3925 /* rfc793:
3926 * "If the SYN bit is on ...
3927 * are acceptable then ...
3928 * (our SYN has been ACKed), change the connection
3929 * state to ESTABLISHED..."
3930 */
3931
3932 TCP_ECN_rcv_synack(tp, th);
3933 if (tp->ecn_flags&TCP_ECN_OK)
3934 sock_set_flag(sk, SOCK_NO_LARGESEND);
3935
3936 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
3937 tcp_ack(sk, skb, FLAG_SLOWPATH);
3938
3939 /* Ok.. it's good. Set up sequence numbers and
3940 * move to established.
3941 */
3942 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
3943 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
3944
3945 /* RFC1323: The window in SYN & SYN/ACK segments is
3946 * never scaled.
3947 */
3948 tp->snd_wnd = ntohs(th->window);
3949 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
3950
3951 if (!tp->rx_opt.wscale_ok) {
3952 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
3953 tp->window_clamp = min(tp->window_clamp, 65535U);
3954 }
3955
3956 if (tp->rx_opt.saw_tstamp) {
3957 tp->rx_opt.tstamp_ok = 1;
3958 tp->tcp_header_len =
3959 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
3960 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
3961 tcp_store_ts_recent(tp);
3962 } else {
3963 tp->tcp_header_len = sizeof(struct tcphdr);
3964 }
3965
3966 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
3967 tp->rx_opt.sack_ok |= 2;
3968
3969 tcp_sync_mss(sk, tp->pmtu_cookie);
3970 tcp_initialize_rcv_mss(sk);
3971
3972 /* Remember, tcp_poll() does not lock socket!
3973 * Change state from SYN-SENT only after copied_seq
3974 * is initialized. */
3975 tp->copied_seq = tp->rcv_nxt;
3976 mb();
3977 tcp_set_state(sk, TCP_ESTABLISHED);
3978
3979 /* Make sure socket is routed, for correct metrics. */
3980 tp->af_specific->rebuild_header(sk);
3981
3982 tcp_init_metrics(sk);
3983
3984 tcp_init_congestion_control(sk);
3985
3986 /* Prevent spurious tcp_cwnd_restart() on first data
3987 * packet.
3988 */
3989 tp->lsndtime = tcp_time_stamp;
3990
3991 tcp_init_buffer_space(sk);
3992
3993 if (sock_flag(sk, SOCK_KEEPOPEN))
3994 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
3995
3996 if (!tp->rx_opt.snd_wscale)
3997 __tcp_fast_path_on(tp, tp->snd_wnd);
3998 else
3999 tp->pred_flags = 0;
4000
4001 if (!sock_flag(sk, SOCK_DEAD)) {
4002 sk->sk_state_change(sk);
4003 sk_wake_async(sk, 0, POLL_OUT);
4004 }
4005
4006 icsk = inet_csk(sk);
4007
4008 if (sk->sk_write_pending ||
4009 icsk->icsk_accept_queue.rskq_defer_accept ||
4010 icsk->icsk_ack.pingpong) {
4011 /* Save one ACK. Data will be ready after
4012 * several ticks, if write_pending is set.
4013 *
4014 * It may be deleted, but with this feature tcpdumps
4015 * look so _wonderfully_ clever, that I was not able
4016 * to stand against the temptation 8) --ANK
4017 */
4018 inet_csk_schedule_ack(sk);
4019 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4020 icsk->icsk_ack.ato = TCP_ATO_MIN;
4021 tcp_incr_quickack(sk);
4022 tcp_enter_quickack_mode(sk);
4023 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4024 TCP_DELACK_MAX, TCP_RTO_MAX);
4025
4026 discard:
4027 __kfree_skb(skb);
4028 return 0;
4029 } else {
4030 tcp_send_ack(sk);
4031 }
4032 return -1;
4033 }
4034
4035 /* No ACK in the segment */
4036
4037 if (th->rst) {
4038 /* rfc793:
4039 * "If the RST bit is set
4040 *
4041 * Otherwise (no ACK) drop the segment and return."
4042 */
4043
4044 goto discard_and_undo;
4045 }
4046
4047 /* PAWS check. */
4048 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4049 goto discard_and_undo;
4050
4051 if (th->syn) {
4052 /* We see SYN without ACK. It is attempt of
4053 * simultaneous connect with crossed SYNs.
4054 * Particularly, it can be connect to self.
4055 */
4056 tcp_set_state(sk, TCP_SYN_RECV);
4057
4058 if (tp->rx_opt.saw_tstamp) {
4059 tp->rx_opt.tstamp_ok = 1;
4060 tcp_store_ts_recent(tp);
4061 tp->tcp_header_len =
4062 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4063 } else {
4064 tp->tcp_header_len = sizeof(struct tcphdr);
4065 }
4066
4067 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4068 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4069
4070 /* RFC1323: The window in SYN & SYN/ACK segments is
4071 * never scaled.
4072 */
4073 tp->snd_wnd = ntohs(th->window);
4074 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4075 tp->max_window = tp->snd_wnd;
4076
4077 TCP_ECN_rcv_syn(tp, th);
4078 if (tp->ecn_flags&TCP_ECN_OK)
4079 sock_set_flag(sk, SOCK_NO_LARGESEND);
4080
4081 tcp_sync_mss(sk, tp->pmtu_cookie);
4082 tcp_initialize_rcv_mss(sk);
4083
4084
4085 tcp_send_synack(sk);
4086 #if 0
4087 /* Note, we could accept data and URG from this segment.
4088 * There are no obstacles to make this.
4089 *
4090 * However, if we ignore data in ACKless segments sometimes,
4091 * we have no reasons to accept it sometimes.
4092 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4093 * is not flawless. So, discard packet for sanity.
4094 * Uncomment this return to process the data.
4095 */
4096 return -1;
4097 #else
4098 goto discard;
4099 #endif
4100 }
4101 /* "fifth, if neither of the SYN or RST bits is set then
4102 * drop the segment and return."
4103 */
4104
4105 discard_and_undo:
4106 tcp_clear_options(&tp->rx_opt);
4107 tp->rx_opt.mss_clamp = saved_clamp;
4108 goto discard;
4109
4110 reset_and_undo:
4111 tcp_clear_options(&tp->rx_opt);
4112 tp->rx_opt.mss_clamp = saved_clamp;
4113 return 1;
4114 }
4115
4116
4117 /*
4118 * This function implements the receiving procedure of RFC 793 for
4119 * all states except ESTABLISHED and TIME_WAIT.
4120 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4121 * address independent.
4122 */
4123
4124 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4125 struct tcphdr *th, unsigned len)
4126 {
4127 struct tcp_sock *tp = tcp_sk(sk);
4128 int queued = 0;
4129
4130 tp->rx_opt.saw_tstamp = 0;
4131
4132 switch (sk->sk_state) {
4133 case TCP_CLOSE:
4134 goto discard;
4135
4136 case TCP_LISTEN:
4137 if(th->ack)
4138 return 1;
4139
4140 if(th->rst)
4141 goto discard;
4142
4143 if(th->syn) {
4144 if(tp->af_specific->conn_request(sk, skb) < 0)
4145 return 1;
4146
4147 /* Now we have several options: In theory there is
4148 * nothing else in the frame. KA9Q has an option to
4149 * send data with the syn, BSD accepts data with the
4150 * syn up to the [to be] advertised window and
4151 * Solaris 2.1 gives you a protocol error. For now
4152 * we just ignore it, that fits the spec precisely
4153 * and avoids incompatibilities. It would be nice in
4154 * future to drop through and process the data.
4155 *
4156 * Now that TTCP is starting to be used we ought to
4157 * queue this data.
4158 * But, this leaves one open to an easy denial of
4159 * service attack, and SYN cookies can't defend
4160 * against this problem. So, we drop the data
4161 * in the interest of security over speed.
4162 */
4163 goto discard;
4164 }
4165 goto discard;
4166
4167 case TCP_SYN_SENT:
4168 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4169 if (queued >= 0)
4170 return queued;
4171
4172 /* Do step6 onward by hand. */
4173 tcp_urg(sk, skb, th);
4174 __kfree_skb(skb);
4175 tcp_data_snd_check(sk, tp);
4176 return 0;
4177 }
4178
4179 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4180 tcp_paws_discard(sk, skb)) {
4181 if (!th->rst) {
4182 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4183 tcp_send_dupack(sk, skb);
4184 goto discard;
4185 }
4186 /* Reset is accepted even if it did not pass PAWS. */
4187 }
4188
4189 /* step 1: check sequence number */
4190 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4191 if (!th->rst)
4192 tcp_send_dupack(sk, skb);
4193 goto discard;
4194 }
4195
4196 /* step 2: check RST bit */
4197 if(th->rst) {
4198 tcp_reset(sk);
4199 goto discard;
4200 }
4201
4202 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4203
4204 /* step 3: check security and precedence [ignored] */
4205
4206 /* step 4:
4207 *
4208 * Check for a SYN in window.
4209 */
4210 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4211 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4212 tcp_reset(sk);
4213 return 1;
4214 }
4215
4216 /* step 5: check the ACK field */
4217 if (th->ack) {
4218 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4219
4220 switch(sk->sk_state) {
4221 case TCP_SYN_RECV:
4222 if (acceptable) {
4223 tp->copied_seq = tp->rcv_nxt;
4224 mb();
4225 tcp_set_state(sk, TCP_ESTABLISHED);
4226 sk->sk_state_change(sk);
4227
4228 /* Note, that this wakeup is only for marginal
4229 * crossed SYN case. Passively open sockets
4230 * are not waked up, because sk->sk_sleep ==
4231 * NULL and sk->sk_socket == NULL.
4232 */
4233 if (sk->sk_socket) {
4234 sk_wake_async(sk,0,POLL_OUT);
4235 }
4236
4237 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4238 tp->snd_wnd = ntohs(th->window) <<
4239 tp->rx_opt.snd_wscale;
4240 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4241 TCP_SKB_CB(skb)->seq);
4242
4243 /* tcp_ack considers this ACK as duplicate
4244 * and does not calculate rtt.
4245 * Fix it at least with timestamps.
4246 */
4247 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4248 !tp->srtt)
4249 tcp_ack_saw_tstamp(sk, 0);
4250
4251 if (tp->rx_opt.tstamp_ok)
4252 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4253
4254 /* Make sure socket is routed, for
4255 * correct metrics.
4256 */
4257 tp->af_specific->rebuild_header(sk);
4258
4259 tcp_init_metrics(sk);
4260
4261 tcp_init_congestion_control(sk);
4262
4263 /* Prevent spurious tcp_cwnd_restart() on
4264 * first data packet.
4265 */
4266 tp->lsndtime = tcp_time_stamp;
4267
4268 tcp_initialize_rcv_mss(sk);
4269 tcp_init_buffer_space(sk);
4270 tcp_fast_path_on(tp);
4271 } else {
4272 return 1;
4273 }
4274 break;
4275
4276 case TCP_FIN_WAIT1:
4277 if (tp->snd_una == tp->write_seq) {
4278 tcp_set_state(sk, TCP_FIN_WAIT2);
4279 sk->sk_shutdown |= SEND_SHUTDOWN;
4280 dst_confirm(sk->sk_dst_cache);
4281
4282 if (!sock_flag(sk, SOCK_DEAD))
4283 /* Wake up lingering close() */
4284 sk->sk_state_change(sk);
4285 else {
4286 int tmo;
4287
4288 if (tp->linger2 < 0 ||
4289 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4290 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4291 tcp_done(sk);
4292 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4293 return 1;
4294 }
4295
4296 tmo = tcp_fin_time(sk);
4297 if (tmo > TCP_TIMEWAIT_LEN) {
4298 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4299 } else if (th->fin || sock_owned_by_user(sk)) {
4300 /* Bad case. We could lose such FIN otherwise.
4301 * It is not a big problem, but it looks confusing
4302 * and not so rare event. We still can lose it now,
4303 * if it spins in bh_lock_sock(), but it is really
4304 * marginal case.
4305 */
4306 inet_csk_reset_keepalive_timer(sk, tmo);
4307 } else {
4308 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4309 goto discard;
4310 }
4311 }
4312 }
4313 break;
4314
4315 case TCP_CLOSING:
4316 if (tp->snd_una == tp->write_seq) {
4317 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4318 goto discard;
4319 }
4320 break;
4321
4322 case TCP_LAST_ACK:
4323 if (tp->snd_una == tp->write_seq) {
4324 tcp_update_metrics(sk);
4325 tcp_done(sk);
4326 goto discard;
4327 }
4328 break;
4329 }
4330 } else
4331 goto discard;
4332
4333 /* step 6: check the URG bit */
4334 tcp_urg(sk, skb, th);
4335
4336 /* step 7: process the segment text */
4337 switch (sk->sk_state) {
4338 case TCP_CLOSE_WAIT:
4339 case TCP_CLOSING:
4340 case TCP_LAST_ACK:
4341 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4342 break;
4343 case TCP_FIN_WAIT1:
4344 case TCP_FIN_WAIT2:
4345 /* RFC 793 says to queue data in these states,
4346 * RFC 1122 says we MUST send a reset.
4347 * BSD 4.4 also does reset.
4348 */
4349 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4350 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4351 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4352 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4353 tcp_reset(sk);
4354 return 1;
4355 }
4356 }
4357 /* Fall through */
4358 case TCP_ESTABLISHED:
4359 tcp_data_queue(sk, skb);
4360 queued = 1;
4361 break;
4362 }
4363
4364 /* tcp_data could move socket to TIME-WAIT */
4365 if (sk->sk_state != TCP_CLOSE) {
4366 tcp_data_snd_check(sk, tp);
4367 tcp_ack_snd_check(sk);
4368 }
4369
4370 if (!queued) {
4371 discard:
4372 __kfree_skb(skb);
4373 }
4374 return 0;
4375 }
4376
4377 EXPORT_SYMBOL(sysctl_tcp_ecn);
4378 EXPORT_SYMBOL(sysctl_tcp_reordering);
4379 EXPORT_SYMBOL(sysctl_tcp_abc);
4380 EXPORT_SYMBOL(tcp_parse_options);
4381 EXPORT_SYMBOL(tcp_rcv_established);
4382 EXPORT_SYMBOL(tcp_rcv_state_process);
This page took 0.122038 seconds and 5 git commands to generate.