4e4d6bcd0ca973226b9ebcf233f777ab3c68be7e
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 int sysctl_tcp_max_reordering __read_mostly = 300;
85 EXPORT_SYMBOL(sysctl_tcp_reordering);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 100;
93
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98
99 int sysctl_tcp_thin_dupack __read_mostly;
100
101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
102 int sysctl_tcp_early_retrans __read_mostly = 3;
103 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
104
105 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
106 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
107 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
108 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
109 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
110 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
111 #define FLAG_ECE 0x40 /* ECE in this ACK */
112 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
113 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
114 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
115 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
117 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
118 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
119
120 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
123 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
124
125 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
126 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
127
128 /* Adapt the MSS value used to make delayed ack decision to the
129 * real world.
130 */
131 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
132 {
133 struct inet_connection_sock *icsk = inet_csk(sk);
134 const unsigned int lss = icsk->icsk_ack.last_seg_size;
135 unsigned int len;
136
137 icsk->icsk_ack.last_seg_size = 0;
138
139 /* skb->len may jitter because of SACKs, even if peer
140 * sends good full-sized frames.
141 */
142 len = skb_shinfo(skb)->gso_size ? : skb->len;
143 if (len >= icsk->icsk_ack.rcv_mss) {
144 icsk->icsk_ack.rcv_mss = len;
145 } else {
146 /* Otherwise, we make more careful check taking into account,
147 * that SACKs block is variable.
148 *
149 * "len" is invariant segment length, including TCP header.
150 */
151 len += skb->data - skb_transport_header(skb);
152 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
153 /* If PSH is not set, packet should be
154 * full sized, provided peer TCP is not badly broken.
155 * This observation (if it is correct 8)) allows
156 * to handle super-low mtu links fairly.
157 */
158 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
159 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
160 /* Subtract also invariant (if peer is RFC compliant),
161 * tcp header plus fixed timestamp option length.
162 * Resulting "len" is MSS free of SACK jitter.
163 */
164 len -= tcp_sk(sk)->tcp_header_len;
165 icsk->icsk_ack.last_seg_size = len;
166 if (len == lss) {
167 icsk->icsk_ack.rcv_mss = len;
168 return;
169 }
170 }
171 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
173 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
174 }
175 }
176
177 static void tcp_incr_quickack(struct sock *sk)
178 {
179 struct inet_connection_sock *icsk = inet_csk(sk);
180 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
181
182 if (quickacks == 0)
183 quickacks = 2;
184 if (quickacks > icsk->icsk_ack.quick)
185 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
186 }
187
188 static void tcp_enter_quickack_mode(struct sock *sk)
189 {
190 struct inet_connection_sock *icsk = inet_csk(sk);
191 tcp_incr_quickack(sk);
192 icsk->icsk_ack.pingpong = 0;
193 icsk->icsk_ack.ato = TCP_ATO_MIN;
194 }
195
196 /* Send ACKs quickly, if "quick" count is not exhausted
197 * and the session is not interactive.
198 */
199
200 static bool tcp_in_quickack_mode(struct sock *sk)
201 {
202 const struct inet_connection_sock *icsk = inet_csk(sk);
203 const struct dst_entry *dst = __sk_dst_get(sk);
204
205 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
206 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
207 }
208
209 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
210 {
211 if (tp->ecn_flags & TCP_ECN_OK)
212 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
213 }
214
215 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
216 {
217 if (tcp_hdr(skb)->cwr)
218 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219 }
220
221 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
222 {
223 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
224 }
225
226 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
227 {
228 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
229 case INET_ECN_NOT_ECT:
230 /* Funny extension: if ECT is not set on a segment,
231 * and we already seen ECT on a previous segment,
232 * it is probably a retransmit.
233 */
234 if (tp->ecn_flags & TCP_ECN_SEEN)
235 tcp_enter_quickack_mode((struct sock *)tp);
236 break;
237 case INET_ECN_CE:
238 if (tcp_ca_needs_ecn((struct sock *)tp))
239 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
240
241 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
242 /* Better not delay acks, sender can have a very low cwnd */
243 tcp_enter_quickack_mode((struct sock *)tp);
244 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
245 }
246 tp->ecn_flags |= TCP_ECN_SEEN;
247 break;
248 default:
249 if (tcp_ca_needs_ecn((struct sock *)tp))
250 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
251 tp->ecn_flags |= TCP_ECN_SEEN;
252 break;
253 }
254 }
255
256 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
257 {
258 if (tp->ecn_flags & TCP_ECN_OK)
259 __tcp_ecn_check_ce(tp, skb);
260 }
261
262 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
263 {
264 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
265 tp->ecn_flags &= ~TCP_ECN_OK;
266 }
267
268 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
269 {
270 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
271 tp->ecn_flags &= ~TCP_ECN_OK;
272 }
273
274 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
275 {
276 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
277 return true;
278 return false;
279 }
280
281 /* Buffer size and advertised window tuning.
282 *
283 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
284 */
285
286 static void tcp_sndbuf_expand(struct sock *sk)
287 {
288 const struct tcp_sock *tp = tcp_sk(sk);
289 int sndmem, per_mss;
290 u32 nr_segs;
291
292 /* Worst case is non GSO/TSO : each frame consumes one skb
293 * and skb->head is kmalloced using power of two area of memory
294 */
295 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
296 MAX_TCP_HEADER +
297 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
298
299 per_mss = roundup_pow_of_two(per_mss) +
300 SKB_DATA_ALIGN(sizeof(struct sk_buff));
301
302 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
303 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
304
305 /* Fast Recovery (RFC 5681 3.2) :
306 * Cubic needs 1.7 factor, rounded to 2 to include
307 * extra cushion (application might react slowly to POLLOUT)
308 */
309 sndmem = 2 * nr_segs * per_mss;
310
311 if (sk->sk_sndbuf < sndmem)
312 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
313 }
314
315 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
316 *
317 * All tcp_full_space() is split to two parts: "network" buffer, allocated
318 * forward and advertised in receiver window (tp->rcv_wnd) and
319 * "application buffer", required to isolate scheduling/application
320 * latencies from network.
321 * window_clamp is maximal advertised window. It can be less than
322 * tcp_full_space(), in this case tcp_full_space() - window_clamp
323 * is reserved for "application" buffer. The less window_clamp is
324 * the smoother our behaviour from viewpoint of network, but the lower
325 * throughput and the higher sensitivity of the connection to losses. 8)
326 *
327 * rcv_ssthresh is more strict window_clamp used at "slow start"
328 * phase to predict further behaviour of this connection.
329 * It is used for two goals:
330 * - to enforce header prediction at sender, even when application
331 * requires some significant "application buffer". It is check #1.
332 * - to prevent pruning of receive queue because of misprediction
333 * of receiver window. Check #2.
334 *
335 * The scheme does not work when sender sends good segments opening
336 * window and then starts to feed us spaghetti. But it should work
337 * in common situations. Otherwise, we have to rely on queue collapsing.
338 */
339
340 /* Slow part of check#2. */
341 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
342 {
343 struct tcp_sock *tp = tcp_sk(sk);
344 /* Optimize this! */
345 int truesize = tcp_win_from_space(skb->truesize) >> 1;
346 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
347
348 while (tp->rcv_ssthresh <= window) {
349 if (truesize <= skb->len)
350 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
351
352 truesize >>= 1;
353 window >>= 1;
354 }
355 return 0;
356 }
357
358 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
359 {
360 struct tcp_sock *tp = tcp_sk(sk);
361
362 /* Check #1 */
363 if (tp->rcv_ssthresh < tp->window_clamp &&
364 (int)tp->rcv_ssthresh < tcp_space(sk) &&
365 !tcp_under_memory_pressure(sk)) {
366 int incr;
367
368 /* Check #2. Increase window, if skb with such overhead
369 * will fit to rcvbuf in future.
370 */
371 if (tcp_win_from_space(skb->truesize) <= skb->len)
372 incr = 2 * tp->advmss;
373 else
374 incr = __tcp_grow_window(sk, skb);
375
376 if (incr) {
377 incr = max_t(int, incr, 2 * skb->len);
378 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
379 tp->window_clamp);
380 inet_csk(sk)->icsk_ack.quick |= 1;
381 }
382 }
383 }
384
385 /* 3. Tuning rcvbuf, when connection enters established state. */
386 static void tcp_fixup_rcvbuf(struct sock *sk)
387 {
388 u32 mss = tcp_sk(sk)->advmss;
389 int rcvmem;
390
391 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
392 tcp_default_init_rwnd(mss);
393
394 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
395 * Allow enough cushion so that sender is not limited by our window
396 */
397 if (sysctl_tcp_moderate_rcvbuf)
398 rcvmem <<= 2;
399
400 if (sk->sk_rcvbuf < rcvmem)
401 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
402 }
403
404 /* 4. Try to fixup all. It is made immediately after connection enters
405 * established state.
406 */
407 void tcp_init_buffer_space(struct sock *sk)
408 {
409 struct tcp_sock *tp = tcp_sk(sk);
410 int maxwin;
411
412 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
413 tcp_fixup_rcvbuf(sk);
414 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
415 tcp_sndbuf_expand(sk);
416
417 tp->rcvq_space.space = tp->rcv_wnd;
418 tp->rcvq_space.time = tcp_time_stamp;
419 tp->rcvq_space.seq = tp->copied_seq;
420
421 maxwin = tcp_full_space(sk);
422
423 if (tp->window_clamp >= maxwin) {
424 tp->window_clamp = maxwin;
425
426 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
427 tp->window_clamp = max(maxwin -
428 (maxwin >> sysctl_tcp_app_win),
429 4 * tp->advmss);
430 }
431
432 /* Force reservation of one segment. */
433 if (sysctl_tcp_app_win &&
434 tp->window_clamp > 2 * tp->advmss &&
435 tp->window_clamp + tp->advmss > maxwin)
436 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
437
438 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
439 tp->snd_cwnd_stamp = tcp_time_stamp;
440 }
441
442 /* 5. Recalculate window clamp after socket hit its memory bounds. */
443 static void tcp_clamp_window(struct sock *sk)
444 {
445 struct tcp_sock *tp = tcp_sk(sk);
446 struct inet_connection_sock *icsk = inet_csk(sk);
447
448 icsk->icsk_ack.quick = 0;
449
450 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
451 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
452 !tcp_under_memory_pressure(sk) &&
453 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
454 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
455 sysctl_tcp_rmem[2]);
456 }
457 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
458 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
459 }
460
461 /* Initialize RCV_MSS value.
462 * RCV_MSS is an our guess about MSS used by the peer.
463 * We haven't any direct information about the MSS.
464 * It's better to underestimate the RCV_MSS rather than overestimate.
465 * Overestimations make us ACKing less frequently than needed.
466 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
467 */
468 void tcp_initialize_rcv_mss(struct sock *sk)
469 {
470 const struct tcp_sock *tp = tcp_sk(sk);
471 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
472
473 hint = min(hint, tp->rcv_wnd / 2);
474 hint = min(hint, TCP_MSS_DEFAULT);
475 hint = max(hint, TCP_MIN_MSS);
476
477 inet_csk(sk)->icsk_ack.rcv_mss = hint;
478 }
479 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
480
481 /* Receiver "autotuning" code.
482 *
483 * The algorithm for RTT estimation w/o timestamps is based on
484 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
485 * <http://public.lanl.gov/radiant/pubs.html#DRS>
486 *
487 * More detail on this code can be found at
488 * <http://staff.psc.edu/jheffner/>,
489 * though this reference is out of date. A new paper
490 * is pending.
491 */
492 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
493 {
494 u32 new_sample = tp->rcv_rtt_est.rtt;
495 long m = sample;
496
497 if (m == 0)
498 m = 1;
499
500 if (new_sample != 0) {
501 /* If we sample in larger samples in the non-timestamp
502 * case, we could grossly overestimate the RTT especially
503 * with chatty applications or bulk transfer apps which
504 * are stalled on filesystem I/O.
505 *
506 * Also, since we are only going for a minimum in the
507 * non-timestamp case, we do not smooth things out
508 * else with timestamps disabled convergence takes too
509 * long.
510 */
511 if (!win_dep) {
512 m -= (new_sample >> 3);
513 new_sample += m;
514 } else {
515 m <<= 3;
516 if (m < new_sample)
517 new_sample = m;
518 }
519 } else {
520 /* No previous measure. */
521 new_sample = m << 3;
522 }
523
524 if (tp->rcv_rtt_est.rtt != new_sample)
525 tp->rcv_rtt_est.rtt = new_sample;
526 }
527
528 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
529 {
530 if (tp->rcv_rtt_est.time == 0)
531 goto new_measure;
532 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
533 return;
534 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
535
536 new_measure:
537 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
538 tp->rcv_rtt_est.time = tcp_time_stamp;
539 }
540
541 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
542 const struct sk_buff *skb)
543 {
544 struct tcp_sock *tp = tcp_sk(sk);
545 if (tp->rx_opt.rcv_tsecr &&
546 (TCP_SKB_CB(skb)->end_seq -
547 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
548 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
549 }
550
551 /*
552 * This function should be called every time data is copied to user space.
553 * It calculates the appropriate TCP receive buffer space.
554 */
555 void tcp_rcv_space_adjust(struct sock *sk)
556 {
557 struct tcp_sock *tp = tcp_sk(sk);
558 int time;
559 int copied;
560
561 time = tcp_time_stamp - tp->rcvq_space.time;
562 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
563 return;
564
565 /* Number of bytes copied to user in last RTT */
566 copied = tp->copied_seq - tp->rcvq_space.seq;
567 if (copied <= tp->rcvq_space.space)
568 goto new_measure;
569
570 /* A bit of theory :
571 * copied = bytes received in previous RTT, our base window
572 * To cope with packet losses, we need a 2x factor
573 * To cope with slow start, and sender growing its cwin by 100 %
574 * every RTT, we need a 4x factor, because the ACK we are sending
575 * now is for the next RTT, not the current one :
576 * <prev RTT . ><current RTT .. ><next RTT .... >
577 */
578
579 if (sysctl_tcp_moderate_rcvbuf &&
580 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
581 int rcvwin, rcvmem, rcvbuf;
582
583 /* minimal window to cope with packet losses, assuming
584 * steady state. Add some cushion because of small variations.
585 */
586 rcvwin = (copied << 1) + 16 * tp->advmss;
587
588 /* If rate increased by 25%,
589 * assume slow start, rcvwin = 3 * copied
590 * If rate increased by 50%,
591 * assume sender can use 2x growth, rcvwin = 4 * copied
592 */
593 if (copied >=
594 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
595 if (copied >=
596 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
597 rcvwin <<= 1;
598 else
599 rcvwin += (rcvwin >> 1);
600 }
601
602 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
603 while (tcp_win_from_space(rcvmem) < tp->advmss)
604 rcvmem += 128;
605
606 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
607 if (rcvbuf > sk->sk_rcvbuf) {
608 sk->sk_rcvbuf = rcvbuf;
609
610 /* Make the window clamp follow along. */
611 tp->window_clamp = rcvwin;
612 }
613 }
614 tp->rcvq_space.space = copied;
615
616 new_measure:
617 tp->rcvq_space.seq = tp->copied_seq;
618 tp->rcvq_space.time = tcp_time_stamp;
619 }
620
621 /* There is something which you must keep in mind when you analyze the
622 * behavior of the tp->ato delayed ack timeout interval. When a
623 * connection starts up, we want to ack as quickly as possible. The
624 * problem is that "good" TCP's do slow start at the beginning of data
625 * transmission. The means that until we send the first few ACK's the
626 * sender will sit on his end and only queue most of his data, because
627 * he can only send snd_cwnd unacked packets at any given time. For
628 * each ACK we send, he increments snd_cwnd and transmits more of his
629 * queue. -DaveM
630 */
631 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
632 {
633 struct tcp_sock *tp = tcp_sk(sk);
634 struct inet_connection_sock *icsk = inet_csk(sk);
635 u32 now;
636
637 inet_csk_schedule_ack(sk);
638
639 tcp_measure_rcv_mss(sk, skb);
640
641 tcp_rcv_rtt_measure(tp);
642
643 now = tcp_time_stamp;
644
645 if (!icsk->icsk_ack.ato) {
646 /* The _first_ data packet received, initialize
647 * delayed ACK engine.
648 */
649 tcp_incr_quickack(sk);
650 icsk->icsk_ack.ato = TCP_ATO_MIN;
651 } else {
652 int m = now - icsk->icsk_ack.lrcvtime;
653
654 if (m <= TCP_ATO_MIN / 2) {
655 /* The fastest case is the first. */
656 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
657 } else if (m < icsk->icsk_ack.ato) {
658 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
659 if (icsk->icsk_ack.ato > icsk->icsk_rto)
660 icsk->icsk_ack.ato = icsk->icsk_rto;
661 } else if (m > icsk->icsk_rto) {
662 /* Too long gap. Apparently sender failed to
663 * restart window, so that we send ACKs quickly.
664 */
665 tcp_incr_quickack(sk);
666 sk_mem_reclaim(sk);
667 }
668 }
669 icsk->icsk_ack.lrcvtime = now;
670
671 tcp_ecn_check_ce(tp, skb);
672
673 if (skb->len >= 128)
674 tcp_grow_window(sk, skb);
675 }
676
677 /* Called to compute a smoothed rtt estimate. The data fed to this
678 * routine either comes from timestamps, or from segments that were
679 * known _not_ to have been retransmitted [see Karn/Partridge
680 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
681 * piece by Van Jacobson.
682 * NOTE: the next three routines used to be one big routine.
683 * To save cycles in the RFC 1323 implementation it was better to break
684 * it up into three procedures. -- erics
685 */
686 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
687 {
688 struct tcp_sock *tp = tcp_sk(sk);
689 long m = mrtt_us; /* RTT */
690 u32 srtt = tp->srtt_us;
691
692 /* The following amusing code comes from Jacobson's
693 * article in SIGCOMM '88. Note that rtt and mdev
694 * are scaled versions of rtt and mean deviation.
695 * This is designed to be as fast as possible
696 * m stands for "measurement".
697 *
698 * On a 1990 paper the rto value is changed to:
699 * RTO = rtt + 4 * mdev
700 *
701 * Funny. This algorithm seems to be very broken.
702 * These formulae increase RTO, when it should be decreased, increase
703 * too slowly, when it should be increased quickly, decrease too quickly
704 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
705 * does not matter how to _calculate_ it. Seems, it was trap
706 * that VJ failed to avoid. 8)
707 */
708 if (srtt != 0) {
709 m -= (srtt >> 3); /* m is now error in rtt est */
710 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
711 if (m < 0) {
712 m = -m; /* m is now abs(error) */
713 m -= (tp->mdev_us >> 2); /* similar update on mdev */
714 /* This is similar to one of Eifel findings.
715 * Eifel blocks mdev updates when rtt decreases.
716 * This solution is a bit different: we use finer gain
717 * for mdev in this case (alpha*beta).
718 * Like Eifel it also prevents growth of rto,
719 * but also it limits too fast rto decreases,
720 * happening in pure Eifel.
721 */
722 if (m > 0)
723 m >>= 3;
724 } else {
725 m -= (tp->mdev_us >> 2); /* similar update on mdev */
726 }
727 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
728 if (tp->mdev_us > tp->mdev_max_us) {
729 tp->mdev_max_us = tp->mdev_us;
730 if (tp->mdev_max_us > tp->rttvar_us)
731 tp->rttvar_us = tp->mdev_max_us;
732 }
733 if (after(tp->snd_una, tp->rtt_seq)) {
734 if (tp->mdev_max_us < tp->rttvar_us)
735 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
736 tp->rtt_seq = tp->snd_nxt;
737 tp->mdev_max_us = tcp_rto_min_us(sk);
738 }
739 } else {
740 /* no previous measure. */
741 srtt = m << 3; /* take the measured time to be rtt */
742 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
743 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
744 tp->mdev_max_us = tp->rttvar_us;
745 tp->rtt_seq = tp->snd_nxt;
746 }
747 tp->srtt_us = max(1U, srtt);
748 }
749
750 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
751 * Note: TCP stack does not yet implement pacing.
752 * FQ packet scheduler can be used to implement cheap but effective
753 * TCP pacing, to smooth the burst on large writes when packets
754 * in flight is significantly lower than cwnd (or rwin)
755 */
756 static void tcp_update_pacing_rate(struct sock *sk)
757 {
758 const struct tcp_sock *tp = tcp_sk(sk);
759 u64 rate;
760
761 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
762 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
763
764 rate *= max(tp->snd_cwnd, tp->packets_out);
765
766 if (likely(tp->srtt_us))
767 do_div(rate, tp->srtt_us);
768
769 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
770 * without any lock. We want to make sure compiler wont store
771 * intermediate values in this location.
772 */
773 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
774 sk->sk_max_pacing_rate);
775 }
776
777 /* Calculate rto without backoff. This is the second half of Van Jacobson's
778 * routine referred to above.
779 */
780 static void tcp_set_rto(struct sock *sk)
781 {
782 const struct tcp_sock *tp = tcp_sk(sk);
783 /* Old crap is replaced with new one. 8)
784 *
785 * More seriously:
786 * 1. If rtt variance happened to be less 50msec, it is hallucination.
787 * It cannot be less due to utterly erratic ACK generation made
788 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
789 * to do with delayed acks, because at cwnd>2 true delack timeout
790 * is invisible. Actually, Linux-2.4 also generates erratic
791 * ACKs in some circumstances.
792 */
793 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
794
795 /* 2. Fixups made earlier cannot be right.
796 * If we do not estimate RTO correctly without them,
797 * all the algo is pure shit and should be replaced
798 * with correct one. It is exactly, which we pretend to do.
799 */
800
801 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
802 * guarantees that rto is higher.
803 */
804 tcp_bound_rto(sk);
805 }
806
807 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
808 {
809 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
810
811 if (!cwnd)
812 cwnd = TCP_INIT_CWND;
813 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
814 }
815
816 /*
817 * Packet counting of FACK is based on in-order assumptions, therefore TCP
818 * disables it when reordering is detected
819 */
820 void tcp_disable_fack(struct tcp_sock *tp)
821 {
822 /* RFC3517 uses different metric in lost marker => reset on change */
823 if (tcp_is_fack(tp))
824 tp->lost_skb_hint = NULL;
825 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
826 }
827
828 /* Take a notice that peer is sending D-SACKs */
829 static void tcp_dsack_seen(struct tcp_sock *tp)
830 {
831 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
832 }
833
834 static void tcp_update_reordering(struct sock *sk, const int metric,
835 const int ts)
836 {
837 struct tcp_sock *tp = tcp_sk(sk);
838 if (metric > tp->reordering) {
839 int mib_idx;
840
841 tp->reordering = min(sysctl_tcp_max_reordering, metric);
842
843 /* This exciting event is worth to be remembered. 8) */
844 if (ts)
845 mib_idx = LINUX_MIB_TCPTSREORDER;
846 else if (tcp_is_reno(tp))
847 mib_idx = LINUX_MIB_TCPRENOREORDER;
848 else if (tcp_is_fack(tp))
849 mib_idx = LINUX_MIB_TCPFACKREORDER;
850 else
851 mib_idx = LINUX_MIB_TCPSACKREORDER;
852
853 NET_INC_STATS_BH(sock_net(sk), mib_idx);
854 #if FASTRETRANS_DEBUG > 1
855 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
856 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
857 tp->reordering,
858 tp->fackets_out,
859 tp->sacked_out,
860 tp->undo_marker ? tp->undo_retrans : 0);
861 #endif
862 tcp_disable_fack(tp);
863 }
864
865 if (metric > 0)
866 tcp_disable_early_retrans(tp);
867 }
868
869 /* This must be called before lost_out is incremented */
870 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
871 {
872 if (!tp->retransmit_skb_hint ||
873 before(TCP_SKB_CB(skb)->seq,
874 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
875 tp->retransmit_skb_hint = skb;
876
877 if (!tp->lost_out ||
878 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
879 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
880 }
881
882 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
883 {
884 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
885 tcp_verify_retransmit_hint(tp, skb);
886
887 tp->lost_out += tcp_skb_pcount(skb);
888 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
889 }
890 }
891
892 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
893 struct sk_buff *skb)
894 {
895 tcp_verify_retransmit_hint(tp, skb);
896
897 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
898 tp->lost_out += tcp_skb_pcount(skb);
899 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
900 }
901 }
902
903 /* This procedure tags the retransmission queue when SACKs arrive.
904 *
905 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
906 * Packets in queue with these bits set are counted in variables
907 * sacked_out, retrans_out and lost_out, correspondingly.
908 *
909 * Valid combinations are:
910 * Tag InFlight Description
911 * 0 1 - orig segment is in flight.
912 * S 0 - nothing flies, orig reached receiver.
913 * L 0 - nothing flies, orig lost by net.
914 * R 2 - both orig and retransmit are in flight.
915 * L|R 1 - orig is lost, retransmit is in flight.
916 * S|R 1 - orig reached receiver, retrans is still in flight.
917 * (L|S|R is logically valid, it could occur when L|R is sacked,
918 * but it is equivalent to plain S and code short-curcuits it to S.
919 * L|S is logically invalid, it would mean -1 packet in flight 8))
920 *
921 * These 6 states form finite state machine, controlled by the following events:
922 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
923 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
924 * 3. Loss detection event of two flavors:
925 * A. Scoreboard estimator decided the packet is lost.
926 * A'. Reno "three dupacks" marks head of queue lost.
927 * A''. Its FACK modification, head until snd.fack is lost.
928 * B. SACK arrives sacking SND.NXT at the moment, when the
929 * segment was retransmitted.
930 * 4. D-SACK added new rule: D-SACK changes any tag to S.
931 *
932 * It is pleasant to note, that state diagram turns out to be commutative,
933 * so that we are allowed not to be bothered by order of our actions,
934 * when multiple events arrive simultaneously. (see the function below).
935 *
936 * Reordering detection.
937 * --------------------
938 * Reordering metric is maximal distance, which a packet can be displaced
939 * in packet stream. With SACKs we can estimate it:
940 *
941 * 1. SACK fills old hole and the corresponding segment was not
942 * ever retransmitted -> reordering. Alas, we cannot use it
943 * when segment was retransmitted.
944 * 2. The last flaw is solved with D-SACK. D-SACK arrives
945 * for retransmitted and already SACKed segment -> reordering..
946 * Both of these heuristics are not used in Loss state, when we cannot
947 * account for retransmits accurately.
948 *
949 * SACK block validation.
950 * ----------------------
951 *
952 * SACK block range validation checks that the received SACK block fits to
953 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
954 * Note that SND.UNA is not included to the range though being valid because
955 * it means that the receiver is rather inconsistent with itself reporting
956 * SACK reneging when it should advance SND.UNA. Such SACK block this is
957 * perfectly valid, however, in light of RFC2018 which explicitly states
958 * that "SACK block MUST reflect the newest segment. Even if the newest
959 * segment is going to be discarded ...", not that it looks very clever
960 * in case of head skb. Due to potentional receiver driven attacks, we
961 * choose to avoid immediate execution of a walk in write queue due to
962 * reneging and defer head skb's loss recovery to standard loss recovery
963 * procedure that will eventually trigger (nothing forbids us doing this).
964 *
965 * Implements also blockage to start_seq wrap-around. Problem lies in the
966 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
967 * there's no guarantee that it will be before snd_nxt (n). The problem
968 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
969 * wrap (s_w):
970 *
971 * <- outs wnd -> <- wrapzone ->
972 * u e n u_w e_w s n_w
973 * | | | | | | |
974 * |<------------+------+----- TCP seqno space --------------+---------->|
975 * ...-- <2^31 ->| |<--------...
976 * ...---- >2^31 ------>| |<--------...
977 *
978 * Current code wouldn't be vulnerable but it's better still to discard such
979 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
980 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
981 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
982 * equal to the ideal case (infinite seqno space without wrap caused issues).
983 *
984 * With D-SACK the lower bound is extended to cover sequence space below
985 * SND.UNA down to undo_marker, which is the last point of interest. Yet
986 * again, D-SACK block must not to go across snd_una (for the same reason as
987 * for the normal SACK blocks, explained above). But there all simplicity
988 * ends, TCP might receive valid D-SACKs below that. As long as they reside
989 * fully below undo_marker they do not affect behavior in anyway and can
990 * therefore be safely ignored. In rare cases (which are more or less
991 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
992 * fragmentation and packet reordering past skb's retransmission. To consider
993 * them correctly, the acceptable range must be extended even more though
994 * the exact amount is rather hard to quantify. However, tp->max_window can
995 * be used as an exaggerated estimate.
996 */
997 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
998 u32 start_seq, u32 end_seq)
999 {
1000 /* Too far in future, or reversed (interpretation is ambiguous) */
1001 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1002 return false;
1003
1004 /* Nasty start_seq wrap-around check (see comments above) */
1005 if (!before(start_seq, tp->snd_nxt))
1006 return false;
1007
1008 /* In outstanding window? ...This is valid exit for D-SACKs too.
1009 * start_seq == snd_una is non-sensical (see comments above)
1010 */
1011 if (after(start_seq, tp->snd_una))
1012 return true;
1013
1014 if (!is_dsack || !tp->undo_marker)
1015 return false;
1016
1017 /* ...Then it's D-SACK, and must reside below snd_una completely */
1018 if (after(end_seq, tp->snd_una))
1019 return false;
1020
1021 if (!before(start_seq, tp->undo_marker))
1022 return true;
1023
1024 /* Too old */
1025 if (!after(end_seq, tp->undo_marker))
1026 return false;
1027
1028 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1029 * start_seq < undo_marker and end_seq >= undo_marker.
1030 */
1031 return !before(start_seq, end_seq - tp->max_window);
1032 }
1033
1034 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1035 * Event "B". Later note: FACK people cheated me again 8), we have to account
1036 * for reordering! Ugly, but should help.
1037 *
1038 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1039 * less than what is now known to be received by the other end (derived from
1040 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1041 * retransmitted skbs to avoid some costly processing per ACKs.
1042 */
1043 static void tcp_mark_lost_retrans(struct sock *sk, int *flag)
1044 {
1045 const struct inet_connection_sock *icsk = inet_csk(sk);
1046 struct tcp_sock *tp = tcp_sk(sk);
1047 struct sk_buff *skb;
1048 int cnt = 0;
1049 u32 new_low_seq = tp->snd_nxt;
1050 u32 received_upto = tcp_highest_sack_seq(tp);
1051
1052 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1053 !after(received_upto, tp->lost_retrans_low) ||
1054 icsk->icsk_ca_state != TCP_CA_Recovery)
1055 return;
1056
1057 tcp_for_write_queue(skb, sk) {
1058 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1059
1060 if (skb == tcp_send_head(sk))
1061 break;
1062 if (cnt == tp->retrans_out)
1063 break;
1064 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1065 continue;
1066
1067 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1068 continue;
1069
1070 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1071 * constraint here (see above) but figuring out that at
1072 * least tp->reordering SACK blocks reside between ack_seq
1073 * and received_upto is not easy task to do cheaply with
1074 * the available datastructures.
1075 *
1076 * Whether FACK should check here for tp->reordering segs
1077 * in-between one could argue for either way (it would be
1078 * rather simple to implement as we could count fack_count
1079 * during the walk and do tp->fackets_out - fack_count).
1080 */
1081 if (after(received_upto, ack_seq)) {
1082 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1083 tp->retrans_out -= tcp_skb_pcount(skb);
1084 *flag |= FLAG_LOST_RETRANS;
1085 tcp_skb_mark_lost_uncond_verify(tp, skb);
1086 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1087 } else {
1088 if (before(ack_seq, new_low_seq))
1089 new_low_seq = ack_seq;
1090 cnt += tcp_skb_pcount(skb);
1091 }
1092 }
1093
1094 if (tp->retrans_out)
1095 tp->lost_retrans_low = new_low_seq;
1096 }
1097
1098 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1099 struct tcp_sack_block_wire *sp, int num_sacks,
1100 u32 prior_snd_una)
1101 {
1102 struct tcp_sock *tp = tcp_sk(sk);
1103 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1104 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1105 bool dup_sack = false;
1106
1107 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1108 dup_sack = true;
1109 tcp_dsack_seen(tp);
1110 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1111 } else if (num_sacks > 1) {
1112 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1113 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1114
1115 if (!after(end_seq_0, end_seq_1) &&
1116 !before(start_seq_0, start_seq_1)) {
1117 dup_sack = true;
1118 tcp_dsack_seen(tp);
1119 NET_INC_STATS_BH(sock_net(sk),
1120 LINUX_MIB_TCPDSACKOFORECV);
1121 }
1122 }
1123
1124 /* D-SACK for already forgotten data... Do dumb counting. */
1125 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1126 !after(end_seq_0, prior_snd_una) &&
1127 after(end_seq_0, tp->undo_marker))
1128 tp->undo_retrans--;
1129
1130 return dup_sack;
1131 }
1132
1133 struct tcp_sacktag_state {
1134 int reord;
1135 int fack_count;
1136 /* Timestamps for earliest and latest never-retransmitted segment
1137 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1138 * but congestion control should still get an accurate delay signal.
1139 */
1140 struct skb_mstamp first_sackt;
1141 struct skb_mstamp last_sackt;
1142 int flag;
1143 };
1144
1145 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1146 * the incoming SACK may not exactly match but we can find smaller MSS
1147 * aligned portion of it that matches. Therefore we might need to fragment
1148 * which may fail and creates some hassle (caller must handle error case
1149 * returns).
1150 *
1151 * FIXME: this could be merged to shift decision code
1152 */
1153 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1154 u32 start_seq, u32 end_seq)
1155 {
1156 int err;
1157 bool in_sack;
1158 unsigned int pkt_len;
1159 unsigned int mss;
1160
1161 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1162 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1163
1164 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1165 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1166 mss = tcp_skb_mss(skb);
1167 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1168
1169 if (!in_sack) {
1170 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1171 if (pkt_len < mss)
1172 pkt_len = mss;
1173 } else {
1174 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1175 if (pkt_len < mss)
1176 return -EINVAL;
1177 }
1178
1179 /* Round if necessary so that SACKs cover only full MSSes
1180 * and/or the remaining small portion (if present)
1181 */
1182 if (pkt_len > mss) {
1183 unsigned int new_len = (pkt_len / mss) * mss;
1184 if (!in_sack && new_len < pkt_len) {
1185 new_len += mss;
1186 if (new_len >= skb->len)
1187 return 0;
1188 }
1189 pkt_len = new_len;
1190 }
1191 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1192 if (err < 0)
1193 return err;
1194 }
1195
1196 return in_sack;
1197 }
1198
1199 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1200 static u8 tcp_sacktag_one(struct sock *sk,
1201 struct tcp_sacktag_state *state, u8 sacked,
1202 u32 start_seq, u32 end_seq,
1203 int dup_sack, int pcount,
1204 const struct skb_mstamp *xmit_time)
1205 {
1206 struct tcp_sock *tp = tcp_sk(sk);
1207 int fack_count = state->fack_count;
1208
1209 /* Account D-SACK for retransmitted packet. */
1210 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1211 if (tp->undo_marker && tp->undo_retrans > 0 &&
1212 after(end_seq, tp->undo_marker))
1213 tp->undo_retrans--;
1214 if (sacked & TCPCB_SACKED_ACKED)
1215 state->reord = min(fack_count, state->reord);
1216 }
1217
1218 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1219 if (!after(end_seq, tp->snd_una))
1220 return sacked;
1221
1222 if (!(sacked & TCPCB_SACKED_ACKED)) {
1223 if (sacked & TCPCB_SACKED_RETRANS) {
1224 /* If the segment is not tagged as lost,
1225 * we do not clear RETRANS, believing
1226 * that retransmission is still in flight.
1227 */
1228 if (sacked & TCPCB_LOST) {
1229 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1230 tp->lost_out -= pcount;
1231 tp->retrans_out -= pcount;
1232 }
1233 } else {
1234 if (!(sacked & TCPCB_RETRANS)) {
1235 /* New sack for not retransmitted frame,
1236 * which was in hole. It is reordering.
1237 */
1238 if (before(start_seq,
1239 tcp_highest_sack_seq(tp)))
1240 state->reord = min(fack_count,
1241 state->reord);
1242 if (!after(end_seq, tp->high_seq))
1243 state->flag |= FLAG_ORIG_SACK_ACKED;
1244 if (state->first_sackt.v64 == 0)
1245 state->first_sackt = *xmit_time;
1246 state->last_sackt = *xmit_time;
1247 }
1248
1249 if (sacked & TCPCB_LOST) {
1250 sacked &= ~TCPCB_LOST;
1251 tp->lost_out -= pcount;
1252 }
1253 }
1254
1255 sacked |= TCPCB_SACKED_ACKED;
1256 state->flag |= FLAG_DATA_SACKED;
1257 tp->sacked_out += pcount;
1258
1259 fack_count += pcount;
1260
1261 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1262 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1263 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1264 tp->lost_cnt_hint += pcount;
1265
1266 if (fack_count > tp->fackets_out)
1267 tp->fackets_out = fack_count;
1268 }
1269
1270 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1271 * frames and clear it. undo_retrans is decreased above, L|R frames
1272 * are accounted above as well.
1273 */
1274 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1275 sacked &= ~TCPCB_SACKED_RETRANS;
1276 tp->retrans_out -= pcount;
1277 }
1278
1279 return sacked;
1280 }
1281
1282 /* Shift newly-SACKed bytes from this skb to the immediately previous
1283 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1284 */
1285 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1286 struct tcp_sacktag_state *state,
1287 unsigned int pcount, int shifted, int mss,
1288 bool dup_sack)
1289 {
1290 struct tcp_sock *tp = tcp_sk(sk);
1291 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1292 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1293 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1294
1295 BUG_ON(!pcount);
1296
1297 /* Adjust counters and hints for the newly sacked sequence
1298 * range but discard the return value since prev is already
1299 * marked. We must tag the range first because the seq
1300 * advancement below implicitly advances
1301 * tcp_highest_sack_seq() when skb is highest_sack.
1302 */
1303 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1304 start_seq, end_seq, dup_sack, pcount,
1305 &skb->skb_mstamp);
1306
1307 if (skb == tp->lost_skb_hint)
1308 tp->lost_cnt_hint += pcount;
1309
1310 TCP_SKB_CB(prev)->end_seq += shifted;
1311 TCP_SKB_CB(skb)->seq += shifted;
1312
1313 tcp_skb_pcount_add(prev, pcount);
1314 BUG_ON(tcp_skb_pcount(skb) < pcount);
1315 tcp_skb_pcount_add(skb, -pcount);
1316
1317 /* When we're adding to gso_segs == 1, gso_size will be zero,
1318 * in theory this shouldn't be necessary but as long as DSACK
1319 * code can come after this skb later on it's better to keep
1320 * setting gso_size to something.
1321 */
1322 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1323 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1324
1325 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1326 if (tcp_skb_pcount(skb) <= 1)
1327 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1328
1329 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1330 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1331
1332 if (skb->len > 0) {
1333 BUG_ON(!tcp_skb_pcount(skb));
1334 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1335 return false;
1336 }
1337
1338 /* Whole SKB was eaten :-) */
1339
1340 if (skb == tp->retransmit_skb_hint)
1341 tp->retransmit_skb_hint = prev;
1342 if (skb == tp->lost_skb_hint) {
1343 tp->lost_skb_hint = prev;
1344 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1345 }
1346
1347 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1348 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1349 TCP_SKB_CB(prev)->end_seq++;
1350
1351 if (skb == tcp_highest_sack(sk))
1352 tcp_advance_highest_sack(sk, skb);
1353
1354 tcp_unlink_write_queue(skb, sk);
1355 sk_wmem_free_skb(sk, skb);
1356
1357 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1358
1359 return true;
1360 }
1361
1362 /* I wish gso_size would have a bit more sane initialization than
1363 * something-or-zero which complicates things
1364 */
1365 static int tcp_skb_seglen(const struct sk_buff *skb)
1366 {
1367 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1368 }
1369
1370 /* Shifting pages past head area doesn't work */
1371 static int skb_can_shift(const struct sk_buff *skb)
1372 {
1373 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1374 }
1375
1376 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1377 * skb.
1378 */
1379 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1380 struct tcp_sacktag_state *state,
1381 u32 start_seq, u32 end_seq,
1382 bool dup_sack)
1383 {
1384 struct tcp_sock *tp = tcp_sk(sk);
1385 struct sk_buff *prev;
1386 int mss;
1387 int pcount = 0;
1388 int len;
1389 int in_sack;
1390
1391 if (!sk_can_gso(sk))
1392 goto fallback;
1393
1394 /* Normally R but no L won't result in plain S */
1395 if (!dup_sack &&
1396 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1397 goto fallback;
1398 if (!skb_can_shift(skb))
1399 goto fallback;
1400 /* This frame is about to be dropped (was ACKed). */
1401 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1402 goto fallback;
1403
1404 /* Can only happen with delayed DSACK + discard craziness */
1405 if (unlikely(skb == tcp_write_queue_head(sk)))
1406 goto fallback;
1407 prev = tcp_write_queue_prev(sk, skb);
1408
1409 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1410 goto fallback;
1411
1412 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1413 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1414
1415 if (in_sack) {
1416 len = skb->len;
1417 pcount = tcp_skb_pcount(skb);
1418 mss = tcp_skb_seglen(skb);
1419
1420 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1421 * drop this restriction as unnecessary
1422 */
1423 if (mss != tcp_skb_seglen(prev))
1424 goto fallback;
1425 } else {
1426 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1427 goto noop;
1428 /* CHECKME: This is non-MSS split case only?, this will
1429 * cause skipped skbs due to advancing loop btw, original
1430 * has that feature too
1431 */
1432 if (tcp_skb_pcount(skb) <= 1)
1433 goto noop;
1434
1435 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1436 if (!in_sack) {
1437 /* TODO: head merge to next could be attempted here
1438 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1439 * though it might not be worth of the additional hassle
1440 *
1441 * ...we can probably just fallback to what was done
1442 * previously. We could try merging non-SACKed ones
1443 * as well but it probably isn't going to buy off
1444 * because later SACKs might again split them, and
1445 * it would make skb timestamp tracking considerably
1446 * harder problem.
1447 */
1448 goto fallback;
1449 }
1450
1451 len = end_seq - TCP_SKB_CB(skb)->seq;
1452 BUG_ON(len < 0);
1453 BUG_ON(len > skb->len);
1454
1455 /* MSS boundaries should be honoured or else pcount will
1456 * severely break even though it makes things bit trickier.
1457 * Optimize common case to avoid most of the divides
1458 */
1459 mss = tcp_skb_mss(skb);
1460
1461 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1462 * drop this restriction as unnecessary
1463 */
1464 if (mss != tcp_skb_seglen(prev))
1465 goto fallback;
1466
1467 if (len == mss) {
1468 pcount = 1;
1469 } else if (len < mss) {
1470 goto noop;
1471 } else {
1472 pcount = len / mss;
1473 len = pcount * mss;
1474 }
1475 }
1476
1477 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1478 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1479 goto fallback;
1480
1481 if (!skb_shift(prev, skb, len))
1482 goto fallback;
1483 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1484 goto out;
1485
1486 /* Hole filled allows collapsing with the next as well, this is very
1487 * useful when hole on every nth skb pattern happens
1488 */
1489 if (prev == tcp_write_queue_tail(sk))
1490 goto out;
1491 skb = tcp_write_queue_next(sk, prev);
1492
1493 if (!skb_can_shift(skb) ||
1494 (skb == tcp_send_head(sk)) ||
1495 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1496 (mss != tcp_skb_seglen(skb)))
1497 goto out;
1498
1499 len = skb->len;
1500 if (skb_shift(prev, skb, len)) {
1501 pcount += tcp_skb_pcount(skb);
1502 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1503 }
1504
1505 out:
1506 state->fack_count += pcount;
1507 return prev;
1508
1509 noop:
1510 return skb;
1511
1512 fallback:
1513 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1514 return NULL;
1515 }
1516
1517 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1518 struct tcp_sack_block *next_dup,
1519 struct tcp_sacktag_state *state,
1520 u32 start_seq, u32 end_seq,
1521 bool dup_sack_in)
1522 {
1523 struct tcp_sock *tp = tcp_sk(sk);
1524 struct sk_buff *tmp;
1525
1526 tcp_for_write_queue_from(skb, sk) {
1527 int in_sack = 0;
1528 bool dup_sack = dup_sack_in;
1529
1530 if (skb == tcp_send_head(sk))
1531 break;
1532
1533 /* queue is in-order => we can short-circuit the walk early */
1534 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1535 break;
1536
1537 if (next_dup &&
1538 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1539 in_sack = tcp_match_skb_to_sack(sk, skb,
1540 next_dup->start_seq,
1541 next_dup->end_seq);
1542 if (in_sack > 0)
1543 dup_sack = true;
1544 }
1545
1546 /* skb reference here is a bit tricky to get right, since
1547 * shifting can eat and free both this skb and the next,
1548 * so not even _safe variant of the loop is enough.
1549 */
1550 if (in_sack <= 0) {
1551 tmp = tcp_shift_skb_data(sk, skb, state,
1552 start_seq, end_seq, dup_sack);
1553 if (tmp) {
1554 if (tmp != skb) {
1555 skb = tmp;
1556 continue;
1557 }
1558
1559 in_sack = 0;
1560 } else {
1561 in_sack = tcp_match_skb_to_sack(sk, skb,
1562 start_seq,
1563 end_seq);
1564 }
1565 }
1566
1567 if (unlikely(in_sack < 0))
1568 break;
1569
1570 if (in_sack) {
1571 TCP_SKB_CB(skb)->sacked =
1572 tcp_sacktag_one(sk,
1573 state,
1574 TCP_SKB_CB(skb)->sacked,
1575 TCP_SKB_CB(skb)->seq,
1576 TCP_SKB_CB(skb)->end_seq,
1577 dup_sack,
1578 tcp_skb_pcount(skb),
1579 &skb->skb_mstamp);
1580
1581 if (!before(TCP_SKB_CB(skb)->seq,
1582 tcp_highest_sack_seq(tp)))
1583 tcp_advance_highest_sack(sk, skb);
1584 }
1585
1586 state->fack_count += tcp_skb_pcount(skb);
1587 }
1588 return skb;
1589 }
1590
1591 /* Avoid all extra work that is being done by sacktag while walking in
1592 * a normal way
1593 */
1594 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1595 struct tcp_sacktag_state *state,
1596 u32 skip_to_seq)
1597 {
1598 tcp_for_write_queue_from(skb, sk) {
1599 if (skb == tcp_send_head(sk))
1600 break;
1601
1602 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1603 break;
1604
1605 state->fack_count += tcp_skb_pcount(skb);
1606 }
1607 return skb;
1608 }
1609
1610 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1611 struct sock *sk,
1612 struct tcp_sack_block *next_dup,
1613 struct tcp_sacktag_state *state,
1614 u32 skip_to_seq)
1615 {
1616 if (!next_dup)
1617 return skb;
1618
1619 if (before(next_dup->start_seq, skip_to_seq)) {
1620 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1621 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1622 next_dup->start_seq, next_dup->end_seq,
1623 1);
1624 }
1625
1626 return skb;
1627 }
1628
1629 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1630 {
1631 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1632 }
1633
1634 static int
1635 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1636 u32 prior_snd_una, struct tcp_sacktag_state *state)
1637 {
1638 struct tcp_sock *tp = tcp_sk(sk);
1639 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1640 TCP_SKB_CB(ack_skb)->sacked);
1641 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1642 struct tcp_sack_block sp[TCP_NUM_SACKS];
1643 struct tcp_sack_block *cache;
1644 struct sk_buff *skb;
1645 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1646 int used_sacks;
1647 bool found_dup_sack = false;
1648 int i, j;
1649 int first_sack_index;
1650
1651 state->flag = 0;
1652 state->reord = tp->packets_out;
1653
1654 if (!tp->sacked_out) {
1655 if (WARN_ON(tp->fackets_out))
1656 tp->fackets_out = 0;
1657 tcp_highest_sack_reset(sk);
1658 }
1659
1660 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1661 num_sacks, prior_snd_una);
1662 if (found_dup_sack)
1663 state->flag |= FLAG_DSACKING_ACK;
1664
1665 /* Eliminate too old ACKs, but take into
1666 * account more or less fresh ones, they can
1667 * contain valid SACK info.
1668 */
1669 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1670 return 0;
1671
1672 if (!tp->packets_out)
1673 goto out;
1674
1675 used_sacks = 0;
1676 first_sack_index = 0;
1677 for (i = 0; i < num_sacks; i++) {
1678 bool dup_sack = !i && found_dup_sack;
1679
1680 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1681 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1682
1683 if (!tcp_is_sackblock_valid(tp, dup_sack,
1684 sp[used_sacks].start_seq,
1685 sp[used_sacks].end_seq)) {
1686 int mib_idx;
1687
1688 if (dup_sack) {
1689 if (!tp->undo_marker)
1690 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1691 else
1692 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1693 } else {
1694 /* Don't count olds caused by ACK reordering */
1695 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1696 !after(sp[used_sacks].end_seq, tp->snd_una))
1697 continue;
1698 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1699 }
1700
1701 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1702 if (i == 0)
1703 first_sack_index = -1;
1704 continue;
1705 }
1706
1707 /* Ignore very old stuff early */
1708 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1709 continue;
1710
1711 used_sacks++;
1712 }
1713
1714 /* order SACK blocks to allow in order walk of the retrans queue */
1715 for (i = used_sacks - 1; i > 0; i--) {
1716 for (j = 0; j < i; j++) {
1717 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1718 swap(sp[j], sp[j + 1]);
1719
1720 /* Track where the first SACK block goes to */
1721 if (j == first_sack_index)
1722 first_sack_index = j + 1;
1723 }
1724 }
1725 }
1726
1727 skb = tcp_write_queue_head(sk);
1728 state->fack_count = 0;
1729 i = 0;
1730
1731 if (!tp->sacked_out) {
1732 /* It's already past, so skip checking against it */
1733 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1734 } else {
1735 cache = tp->recv_sack_cache;
1736 /* Skip empty blocks in at head of the cache */
1737 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1738 !cache->end_seq)
1739 cache++;
1740 }
1741
1742 while (i < used_sacks) {
1743 u32 start_seq = sp[i].start_seq;
1744 u32 end_seq = sp[i].end_seq;
1745 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1746 struct tcp_sack_block *next_dup = NULL;
1747
1748 if (found_dup_sack && ((i + 1) == first_sack_index))
1749 next_dup = &sp[i + 1];
1750
1751 /* Skip too early cached blocks */
1752 while (tcp_sack_cache_ok(tp, cache) &&
1753 !before(start_seq, cache->end_seq))
1754 cache++;
1755
1756 /* Can skip some work by looking recv_sack_cache? */
1757 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1758 after(end_seq, cache->start_seq)) {
1759
1760 /* Head todo? */
1761 if (before(start_seq, cache->start_seq)) {
1762 skb = tcp_sacktag_skip(skb, sk, state,
1763 start_seq);
1764 skb = tcp_sacktag_walk(skb, sk, next_dup,
1765 state,
1766 start_seq,
1767 cache->start_seq,
1768 dup_sack);
1769 }
1770
1771 /* Rest of the block already fully processed? */
1772 if (!after(end_seq, cache->end_seq))
1773 goto advance_sp;
1774
1775 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1776 state,
1777 cache->end_seq);
1778
1779 /* ...tail remains todo... */
1780 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1781 /* ...but better entrypoint exists! */
1782 skb = tcp_highest_sack(sk);
1783 if (!skb)
1784 break;
1785 state->fack_count = tp->fackets_out;
1786 cache++;
1787 goto walk;
1788 }
1789
1790 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1791 /* Check overlap against next cached too (past this one already) */
1792 cache++;
1793 continue;
1794 }
1795
1796 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1797 skb = tcp_highest_sack(sk);
1798 if (!skb)
1799 break;
1800 state->fack_count = tp->fackets_out;
1801 }
1802 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1803
1804 walk:
1805 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1806 start_seq, end_seq, dup_sack);
1807
1808 advance_sp:
1809 i++;
1810 }
1811
1812 /* Clear the head of the cache sack blocks so we can skip it next time */
1813 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1814 tp->recv_sack_cache[i].start_seq = 0;
1815 tp->recv_sack_cache[i].end_seq = 0;
1816 }
1817 for (j = 0; j < used_sacks; j++)
1818 tp->recv_sack_cache[i++] = sp[j];
1819
1820 if ((state->reord < tp->fackets_out) &&
1821 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1822 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1823
1824 tcp_mark_lost_retrans(sk, &state->flag);
1825 tcp_verify_left_out(tp);
1826 out:
1827
1828 #if FASTRETRANS_DEBUG > 0
1829 WARN_ON((int)tp->sacked_out < 0);
1830 WARN_ON((int)tp->lost_out < 0);
1831 WARN_ON((int)tp->retrans_out < 0);
1832 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1833 #endif
1834 return state->flag;
1835 }
1836
1837 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1838 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1839 */
1840 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1841 {
1842 u32 holes;
1843
1844 holes = max(tp->lost_out, 1U);
1845 holes = min(holes, tp->packets_out);
1846
1847 if ((tp->sacked_out + holes) > tp->packets_out) {
1848 tp->sacked_out = tp->packets_out - holes;
1849 return true;
1850 }
1851 return false;
1852 }
1853
1854 /* If we receive more dupacks than we expected counting segments
1855 * in assumption of absent reordering, interpret this as reordering.
1856 * The only another reason could be bug in receiver TCP.
1857 */
1858 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1859 {
1860 struct tcp_sock *tp = tcp_sk(sk);
1861 if (tcp_limit_reno_sacked(tp))
1862 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1863 }
1864
1865 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1866
1867 static void tcp_add_reno_sack(struct sock *sk)
1868 {
1869 struct tcp_sock *tp = tcp_sk(sk);
1870 tp->sacked_out++;
1871 tcp_check_reno_reordering(sk, 0);
1872 tcp_verify_left_out(tp);
1873 }
1874
1875 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1876
1877 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1878 {
1879 struct tcp_sock *tp = tcp_sk(sk);
1880
1881 if (acked > 0) {
1882 /* One ACK acked hole. The rest eat duplicate ACKs. */
1883 if (acked - 1 >= tp->sacked_out)
1884 tp->sacked_out = 0;
1885 else
1886 tp->sacked_out -= acked - 1;
1887 }
1888 tcp_check_reno_reordering(sk, acked);
1889 tcp_verify_left_out(tp);
1890 }
1891
1892 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1893 {
1894 tp->sacked_out = 0;
1895 }
1896
1897 void tcp_clear_retrans(struct tcp_sock *tp)
1898 {
1899 tp->retrans_out = 0;
1900 tp->lost_out = 0;
1901 tp->undo_marker = 0;
1902 tp->undo_retrans = -1;
1903 tp->fackets_out = 0;
1904 tp->sacked_out = 0;
1905 }
1906
1907 static inline void tcp_init_undo(struct tcp_sock *tp)
1908 {
1909 tp->undo_marker = tp->snd_una;
1910 /* Retransmission still in flight may cause DSACKs later. */
1911 tp->undo_retrans = tp->retrans_out ? : -1;
1912 }
1913
1914 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1915 * and reset tags completely, otherwise preserve SACKs. If receiver
1916 * dropped its ofo queue, we will know this due to reneging detection.
1917 */
1918 void tcp_enter_loss(struct sock *sk)
1919 {
1920 const struct inet_connection_sock *icsk = inet_csk(sk);
1921 struct tcp_sock *tp = tcp_sk(sk);
1922 struct sk_buff *skb;
1923 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1924 bool is_reneg; /* is receiver reneging on SACKs? */
1925
1926 /* Reduce ssthresh if it has not yet been made inside this window. */
1927 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1928 !after(tp->high_seq, tp->snd_una) ||
1929 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1930 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1931 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1932 tcp_ca_event(sk, CA_EVENT_LOSS);
1933 tcp_init_undo(tp);
1934 }
1935 tp->snd_cwnd = 1;
1936 tp->snd_cwnd_cnt = 0;
1937 tp->snd_cwnd_stamp = tcp_time_stamp;
1938
1939 tp->retrans_out = 0;
1940 tp->lost_out = 0;
1941
1942 if (tcp_is_reno(tp))
1943 tcp_reset_reno_sack(tp);
1944
1945 skb = tcp_write_queue_head(sk);
1946 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1947 if (is_reneg) {
1948 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1949 tp->sacked_out = 0;
1950 tp->fackets_out = 0;
1951 }
1952 tcp_clear_all_retrans_hints(tp);
1953
1954 tcp_for_write_queue(skb, sk) {
1955 if (skb == tcp_send_head(sk))
1956 break;
1957
1958 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1959 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1960 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1961 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1962 tp->lost_out += tcp_skb_pcount(skb);
1963 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1964 }
1965 }
1966 tcp_verify_left_out(tp);
1967
1968 /* Timeout in disordered state after receiving substantial DUPACKs
1969 * suggests that the degree of reordering is over-estimated.
1970 */
1971 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1972 tp->sacked_out >= sysctl_tcp_reordering)
1973 tp->reordering = min_t(unsigned int, tp->reordering,
1974 sysctl_tcp_reordering);
1975 tcp_set_ca_state(sk, TCP_CA_Loss);
1976 tp->high_seq = tp->snd_nxt;
1977 tcp_ecn_queue_cwr(tp);
1978
1979 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1980 * loss recovery is underway except recurring timeout(s) on
1981 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1982 */
1983 tp->frto = sysctl_tcp_frto &&
1984 (new_recovery || icsk->icsk_retransmits) &&
1985 !inet_csk(sk)->icsk_mtup.probe_size;
1986 }
1987
1988 /* If ACK arrived pointing to a remembered SACK, it means that our
1989 * remembered SACKs do not reflect real state of receiver i.e.
1990 * receiver _host_ is heavily congested (or buggy).
1991 *
1992 * To avoid big spurious retransmission bursts due to transient SACK
1993 * scoreboard oddities that look like reneging, we give the receiver a
1994 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1995 * restore sanity to the SACK scoreboard. If the apparent reneging
1996 * persists until this RTO then we'll clear the SACK scoreboard.
1997 */
1998 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1999 {
2000 if (flag & FLAG_SACK_RENEGING) {
2001 struct tcp_sock *tp = tcp_sk(sk);
2002 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2003 msecs_to_jiffies(10));
2004
2005 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2006 delay, TCP_RTO_MAX);
2007 return true;
2008 }
2009 return false;
2010 }
2011
2012 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2013 {
2014 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2015 }
2016
2017 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2018 * counter when SACK is enabled (without SACK, sacked_out is used for
2019 * that purpose).
2020 *
2021 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2022 * segments up to the highest received SACK block so far and holes in
2023 * between them.
2024 *
2025 * With reordering, holes may still be in flight, so RFC3517 recovery
2026 * uses pure sacked_out (total number of SACKed segments) even though
2027 * it violates the RFC that uses duplicate ACKs, often these are equal
2028 * but when e.g. out-of-window ACKs or packet duplication occurs,
2029 * they differ. Since neither occurs due to loss, TCP should really
2030 * ignore them.
2031 */
2032 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2033 {
2034 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2035 }
2036
2037 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2038 {
2039 struct tcp_sock *tp = tcp_sk(sk);
2040 unsigned long delay;
2041
2042 /* Delay early retransmit and entering fast recovery for
2043 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2044 * available, or RTO is scheduled to fire first.
2045 */
2046 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2047 (flag & FLAG_ECE) || !tp->srtt_us)
2048 return false;
2049
2050 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2051 msecs_to_jiffies(2));
2052
2053 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2054 return false;
2055
2056 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2057 TCP_RTO_MAX);
2058 return true;
2059 }
2060
2061 /* Linux NewReno/SACK/FACK/ECN state machine.
2062 * --------------------------------------
2063 *
2064 * "Open" Normal state, no dubious events, fast path.
2065 * "Disorder" In all the respects it is "Open",
2066 * but requires a bit more attention. It is entered when
2067 * we see some SACKs or dupacks. It is split of "Open"
2068 * mainly to move some processing from fast path to slow one.
2069 * "CWR" CWND was reduced due to some Congestion Notification event.
2070 * It can be ECN, ICMP source quench, local device congestion.
2071 * "Recovery" CWND was reduced, we are fast-retransmitting.
2072 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2073 *
2074 * tcp_fastretrans_alert() is entered:
2075 * - each incoming ACK, if state is not "Open"
2076 * - when arrived ACK is unusual, namely:
2077 * * SACK
2078 * * Duplicate ACK.
2079 * * ECN ECE.
2080 *
2081 * Counting packets in flight is pretty simple.
2082 *
2083 * in_flight = packets_out - left_out + retrans_out
2084 *
2085 * packets_out is SND.NXT-SND.UNA counted in packets.
2086 *
2087 * retrans_out is number of retransmitted segments.
2088 *
2089 * left_out is number of segments left network, but not ACKed yet.
2090 *
2091 * left_out = sacked_out + lost_out
2092 *
2093 * sacked_out: Packets, which arrived to receiver out of order
2094 * and hence not ACKed. With SACKs this number is simply
2095 * amount of SACKed data. Even without SACKs
2096 * it is easy to give pretty reliable estimate of this number,
2097 * counting duplicate ACKs.
2098 *
2099 * lost_out: Packets lost by network. TCP has no explicit
2100 * "loss notification" feedback from network (for now).
2101 * It means that this number can be only _guessed_.
2102 * Actually, it is the heuristics to predict lossage that
2103 * distinguishes different algorithms.
2104 *
2105 * F.e. after RTO, when all the queue is considered as lost,
2106 * lost_out = packets_out and in_flight = retrans_out.
2107 *
2108 * Essentially, we have now two algorithms counting
2109 * lost packets.
2110 *
2111 * FACK: It is the simplest heuristics. As soon as we decided
2112 * that something is lost, we decide that _all_ not SACKed
2113 * packets until the most forward SACK are lost. I.e.
2114 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2115 * It is absolutely correct estimate, if network does not reorder
2116 * packets. And it loses any connection to reality when reordering
2117 * takes place. We use FACK by default until reordering
2118 * is suspected on the path to this destination.
2119 *
2120 * NewReno: when Recovery is entered, we assume that one segment
2121 * is lost (classic Reno). While we are in Recovery and
2122 * a partial ACK arrives, we assume that one more packet
2123 * is lost (NewReno). This heuristics are the same in NewReno
2124 * and SACK.
2125 *
2126 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2127 * deflation etc. CWND is real congestion window, never inflated, changes
2128 * only according to classic VJ rules.
2129 *
2130 * Really tricky (and requiring careful tuning) part of algorithm
2131 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2132 * The first determines the moment _when_ we should reduce CWND and,
2133 * hence, slow down forward transmission. In fact, it determines the moment
2134 * when we decide that hole is caused by loss, rather than by a reorder.
2135 *
2136 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2137 * holes, caused by lost packets.
2138 *
2139 * And the most logically complicated part of algorithm is undo
2140 * heuristics. We detect false retransmits due to both too early
2141 * fast retransmit (reordering) and underestimated RTO, analyzing
2142 * timestamps and D-SACKs. When we detect that some segments were
2143 * retransmitted by mistake and CWND reduction was wrong, we undo
2144 * window reduction and abort recovery phase. This logic is hidden
2145 * inside several functions named tcp_try_undo_<something>.
2146 */
2147
2148 /* This function decides, when we should leave Disordered state
2149 * and enter Recovery phase, reducing congestion window.
2150 *
2151 * Main question: may we further continue forward transmission
2152 * with the same cwnd?
2153 */
2154 static bool tcp_time_to_recover(struct sock *sk, int flag)
2155 {
2156 struct tcp_sock *tp = tcp_sk(sk);
2157 __u32 packets_out;
2158
2159 /* Trick#1: The loss is proven. */
2160 if (tp->lost_out)
2161 return true;
2162
2163 /* Not-A-Trick#2 : Classic rule... */
2164 if (tcp_dupack_heuristics(tp) > tp->reordering)
2165 return true;
2166
2167 /* Trick#4: It is still not OK... But will it be useful to delay
2168 * recovery more?
2169 */
2170 packets_out = tp->packets_out;
2171 if (packets_out <= tp->reordering &&
2172 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2173 !tcp_may_send_now(sk)) {
2174 /* We have nothing to send. This connection is limited
2175 * either by receiver window or by application.
2176 */
2177 return true;
2178 }
2179
2180 /* If a thin stream is detected, retransmit after first
2181 * received dupack. Employ only if SACK is supported in order
2182 * to avoid possible corner-case series of spurious retransmissions
2183 * Use only if there are no unsent data.
2184 */
2185 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2186 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2187 tcp_is_sack(tp) && !tcp_send_head(sk))
2188 return true;
2189
2190 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2191 * retransmissions due to small network reorderings, we implement
2192 * Mitigation A.3 in the RFC and delay the retransmission for a short
2193 * interval if appropriate.
2194 */
2195 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2196 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2197 !tcp_may_send_now(sk))
2198 return !tcp_pause_early_retransmit(sk, flag);
2199
2200 return false;
2201 }
2202
2203 /* Detect loss in event "A" above by marking head of queue up as lost.
2204 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2205 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2206 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2207 * the maximum SACKed segments to pass before reaching this limit.
2208 */
2209 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2210 {
2211 struct tcp_sock *tp = tcp_sk(sk);
2212 struct sk_buff *skb;
2213 int cnt, oldcnt;
2214 int err;
2215 unsigned int mss;
2216 /* Use SACK to deduce losses of new sequences sent during recovery */
2217 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2218
2219 WARN_ON(packets > tp->packets_out);
2220 if (tp->lost_skb_hint) {
2221 skb = tp->lost_skb_hint;
2222 cnt = tp->lost_cnt_hint;
2223 /* Head already handled? */
2224 if (mark_head && skb != tcp_write_queue_head(sk))
2225 return;
2226 } else {
2227 skb = tcp_write_queue_head(sk);
2228 cnt = 0;
2229 }
2230
2231 tcp_for_write_queue_from(skb, sk) {
2232 if (skb == tcp_send_head(sk))
2233 break;
2234 /* TODO: do this better */
2235 /* this is not the most efficient way to do this... */
2236 tp->lost_skb_hint = skb;
2237 tp->lost_cnt_hint = cnt;
2238
2239 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2240 break;
2241
2242 oldcnt = cnt;
2243 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2244 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2245 cnt += tcp_skb_pcount(skb);
2246
2247 if (cnt > packets) {
2248 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2249 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2250 (oldcnt >= packets))
2251 break;
2252
2253 mss = tcp_skb_mss(skb);
2254 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2255 mss, GFP_ATOMIC);
2256 if (err < 0)
2257 break;
2258 cnt = packets;
2259 }
2260
2261 tcp_skb_mark_lost(tp, skb);
2262
2263 if (mark_head)
2264 break;
2265 }
2266 tcp_verify_left_out(tp);
2267 }
2268
2269 /* Account newly detected lost packet(s) */
2270
2271 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2272 {
2273 struct tcp_sock *tp = tcp_sk(sk);
2274
2275 if (tcp_is_reno(tp)) {
2276 tcp_mark_head_lost(sk, 1, 1);
2277 } else if (tcp_is_fack(tp)) {
2278 int lost = tp->fackets_out - tp->reordering;
2279 if (lost <= 0)
2280 lost = 1;
2281 tcp_mark_head_lost(sk, lost, 0);
2282 } else {
2283 int sacked_upto = tp->sacked_out - tp->reordering;
2284 if (sacked_upto >= 0)
2285 tcp_mark_head_lost(sk, sacked_upto, 0);
2286 else if (fast_rexmit)
2287 tcp_mark_head_lost(sk, 1, 1);
2288 }
2289 }
2290
2291 /* CWND moderation, preventing bursts due to too big ACKs
2292 * in dubious situations.
2293 */
2294 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2295 {
2296 tp->snd_cwnd = min(tp->snd_cwnd,
2297 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2298 tp->snd_cwnd_stamp = tcp_time_stamp;
2299 }
2300
2301 /* Nothing was retransmitted or returned timestamp is less
2302 * than timestamp of the first retransmission.
2303 */
2304 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2305 {
2306 return !tp->retrans_stamp ||
2307 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2308 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2309 }
2310
2311 /* Undo procedures. */
2312
2313 /* We can clear retrans_stamp when there are no retransmissions in the
2314 * window. It would seem that it is trivially available for us in
2315 * tp->retrans_out, however, that kind of assumptions doesn't consider
2316 * what will happen if errors occur when sending retransmission for the
2317 * second time. ...It could the that such segment has only
2318 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2319 * the head skb is enough except for some reneging corner cases that
2320 * are not worth the effort.
2321 *
2322 * Main reason for all this complexity is the fact that connection dying
2323 * time now depends on the validity of the retrans_stamp, in particular,
2324 * that successive retransmissions of a segment must not advance
2325 * retrans_stamp under any conditions.
2326 */
2327 static bool tcp_any_retrans_done(const struct sock *sk)
2328 {
2329 const struct tcp_sock *tp = tcp_sk(sk);
2330 struct sk_buff *skb;
2331
2332 if (tp->retrans_out)
2333 return true;
2334
2335 skb = tcp_write_queue_head(sk);
2336 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2337 return true;
2338
2339 return false;
2340 }
2341
2342 #if FASTRETRANS_DEBUG > 1
2343 static void DBGUNDO(struct sock *sk, const char *msg)
2344 {
2345 struct tcp_sock *tp = tcp_sk(sk);
2346 struct inet_sock *inet = inet_sk(sk);
2347
2348 if (sk->sk_family == AF_INET) {
2349 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2350 msg,
2351 &inet->inet_daddr, ntohs(inet->inet_dport),
2352 tp->snd_cwnd, tcp_left_out(tp),
2353 tp->snd_ssthresh, tp->prior_ssthresh,
2354 tp->packets_out);
2355 }
2356 #if IS_ENABLED(CONFIG_IPV6)
2357 else if (sk->sk_family == AF_INET6) {
2358 struct ipv6_pinfo *np = inet6_sk(sk);
2359 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2360 msg,
2361 &np->daddr, ntohs(inet->inet_dport),
2362 tp->snd_cwnd, tcp_left_out(tp),
2363 tp->snd_ssthresh, tp->prior_ssthresh,
2364 tp->packets_out);
2365 }
2366 #endif
2367 }
2368 #else
2369 #define DBGUNDO(x...) do { } while (0)
2370 #endif
2371
2372 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2373 {
2374 struct tcp_sock *tp = tcp_sk(sk);
2375
2376 if (unmark_loss) {
2377 struct sk_buff *skb;
2378
2379 tcp_for_write_queue(skb, sk) {
2380 if (skb == tcp_send_head(sk))
2381 break;
2382 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2383 }
2384 tp->lost_out = 0;
2385 tcp_clear_all_retrans_hints(tp);
2386 }
2387
2388 if (tp->prior_ssthresh) {
2389 const struct inet_connection_sock *icsk = inet_csk(sk);
2390
2391 if (icsk->icsk_ca_ops->undo_cwnd)
2392 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2393 else
2394 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2395
2396 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2397 tp->snd_ssthresh = tp->prior_ssthresh;
2398 tcp_ecn_withdraw_cwr(tp);
2399 }
2400 } else {
2401 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2402 }
2403 tp->snd_cwnd_stamp = tcp_time_stamp;
2404 tp->undo_marker = 0;
2405 }
2406
2407 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2408 {
2409 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2410 }
2411
2412 /* People celebrate: "We love our President!" */
2413 static bool tcp_try_undo_recovery(struct sock *sk)
2414 {
2415 struct tcp_sock *tp = tcp_sk(sk);
2416
2417 if (tcp_may_undo(tp)) {
2418 int mib_idx;
2419
2420 /* Happy end! We did not retransmit anything
2421 * or our original transmission succeeded.
2422 */
2423 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2424 tcp_undo_cwnd_reduction(sk, false);
2425 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2426 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2427 else
2428 mib_idx = LINUX_MIB_TCPFULLUNDO;
2429
2430 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2431 }
2432 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2433 /* Hold old state until something *above* high_seq
2434 * is ACKed. For Reno it is MUST to prevent false
2435 * fast retransmits (RFC2582). SACK TCP is safe. */
2436 tcp_moderate_cwnd(tp);
2437 if (!tcp_any_retrans_done(sk))
2438 tp->retrans_stamp = 0;
2439 return true;
2440 }
2441 tcp_set_ca_state(sk, TCP_CA_Open);
2442 return false;
2443 }
2444
2445 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2446 static bool tcp_try_undo_dsack(struct sock *sk)
2447 {
2448 struct tcp_sock *tp = tcp_sk(sk);
2449
2450 if (tp->undo_marker && !tp->undo_retrans) {
2451 DBGUNDO(sk, "D-SACK");
2452 tcp_undo_cwnd_reduction(sk, false);
2453 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2454 return true;
2455 }
2456 return false;
2457 }
2458
2459 /* Undo during loss recovery after partial ACK or using F-RTO. */
2460 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2461 {
2462 struct tcp_sock *tp = tcp_sk(sk);
2463
2464 if (frto_undo || tcp_may_undo(tp)) {
2465 tcp_undo_cwnd_reduction(sk, true);
2466
2467 DBGUNDO(sk, "partial loss");
2468 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2469 if (frto_undo)
2470 NET_INC_STATS_BH(sock_net(sk),
2471 LINUX_MIB_TCPSPURIOUSRTOS);
2472 inet_csk(sk)->icsk_retransmits = 0;
2473 if (frto_undo || tcp_is_sack(tp))
2474 tcp_set_ca_state(sk, TCP_CA_Open);
2475 return true;
2476 }
2477 return false;
2478 }
2479
2480 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2481 * It computes the number of packets to send (sndcnt) based on packets newly
2482 * delivered:
2483 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2484 * cwnd reductions across a full RTT.
2485 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2486 * But when the retransmits are acked without further losses, PRR
2487 * slow starts cwnd up to ssthresh to speed up the recovery.
2488 */
2489 static void tcp_init_cwnd_reduction(struct sock *sk)
2490 {
2491 struct tcp_sock *tp = tcp_sk(sk);
2492
2493 tp->high_seq = tp->snd_nxt;
2494 tp->tlp_high_seq = 0;
2495 tp->snd_cwnd_cnt = 0;
2496 tp->prior_cwnd = tp->snd_cwnd;
2497 tp->prr_delivered = 0;
2498 tp->prr_out = 0;
2499 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2500 tcp_ecn_queue_cwr(tp);
2501 }
2502
2503 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2504 int fast_rexmit, int flag)
2505 {
2506 struct tcp_sock *tp = tcp_sk(sk);
2507 int sndcnt = 0;
2508 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2509 int newly_acked_sacked = prior_unsacked -
2510 (tp->packets_out - tp->sacked_out);
2511
2512 tp->prr_delivered += newly_acked_sacked;
2513 if (delta < 0) {
2514 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2515 tp->prior_cwnd - 1;
2516 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2517 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2518 !(flag & FLAG_LOST_RETRANS)) {
2519 sndcnt = min_t(int, delta,
2520 max_t(int, tp->prr_delivered - tp->prr_out,
2521 newly_acked_sacked) + 1);
2522 } else {
2523 sndcnt = min(delta, newly_acked_sacked);
2524 }
2525 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2526 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2527 }
2528
2529 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2530 {
2531 struct tcp_sock *tp = tcp_sk(sk);
2532
2533 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2534 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2535 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2536 tp->snd_cwnd = tp->snd_ssthresh;
2537 tp->snd_cwnd_stamp = tcp_time_stamp;
2538 }
2539 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2540 }
2541
2542 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2543 void tcp_enter_cwr(struct sock *sk)
2544 {
2545 struct tcp_sock *tp = tcp_sk(sk);
2546
2547 tp->prior_ssthresh = 0;
2548 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2549 tp->undo_marker = 0;
2550 tcp_init_cwnd_reduction(sk);
2551 tcp_set_ca_state(sk, TCP_CA_CWR);
2552 }
2553 }
2554 EXPORT_SYMBOL(tcp_enter_cwr);
2555
2556 static void tcp_try_keep_open(struct sock *sk)
2557 {
2558 struct tcp_sock *tp = tcp_sk(sk);
2559 int state = TCP_CA_Open;
2560
2561 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2562 state = TCP_CA_Disorder;
2563
2564 if (inet_csk(sk)->icsk_ca_state != state) {
2565 tcp_set_ca_state(sk, state);
2566 tp->high_seq = tp->snd_nxt;
2567 }
2568 }
2569
2570 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2571 {
2572 struct tcp_sock *tp = tcp_sk(sk);
2573
2574 tcp_verify_left_out(tp);
2575
2576 if (!tcp_any_retrans_done(sk))
2577 tp->retrans_stamp = 0;
2578
2579 if (flag & FLAG_ECE)
2580 tcp_enter_cwr(sk);
2581
2582 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2583 tcp_try_keep_open(sk);
2584 } else {
2585 tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
2586 }
2587 }
2588
2589 static void tcp_mtup_probe_failed(struct sock *sk)
2590 {
2591 struct inet_connection_sock *icsk = inet_csk(sk);
2592
2593 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2594 icsk->icsk_mtup.probe_size = 0;
2595 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2596 }
2597
2598 static void tcp_mtup_probe_success(struct sock *sk)
2599 {
2600 struct tcp_sock *tp = tcp_sk(sk);
2601 struct inet_connection_sock *icsk = inet_csk(sk);
2602
2603 /* FIXME: breaks with very large cwnd */
2604 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2605 tp->snd_cwnd = tp->snd_cwnd *
2606 tcp_mss_to_mtu(sk, tp->mss_cache) /
2607 icsk->icsk_mtup.probe_size;
2608 tp->snd_cwnd_cnt = 0;
2609 tp->snd_cwnd_stamp = tcp_time_stamp;
2610 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2611
2612 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2613 icsk->icsk_mtup.probe_size = 0;
2614 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2615 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2616 }
2617
2618 /* Do a simple retransmit without using the backoff mechanisms in
2619 * tcp_timer. This is used for path mtu discovery.
2620 * The socket is already locked here.
2621 */
2622 void tcp_simple_retransmit(struct sock *sk)
2623 {
2624 const struct inet_connection_sock *icsk = inet_csk(sk);
2625 struct tcp_sock *tp = tcp_sk(sk);
2626 struct sk_buff *skb;
2627 unsigned int mss = tcp_current_mss(sk);
2628 u32 prior_lost = tp->lost_out;
2629
2630 tcp_for_write_queue(skb, sk) {
2631 if (skb == tcp_send_head(sk))
2632 break;
2633 if (tcp_skb_seglen(skb) > mss &&
2634 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2635 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2636 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2637 tp->retrans_out -= tcp_skb_pcount(skb);
2638 }
2639 tcp_skb_mark_lost_uncond_verify(tp, skb);
2640 }
2641 }
2642
2643 tcp_clear_retrans_hints_partial(tp);
2644
2645 if (prior_lost == tp->lost_out)
2646 return;
2647
2648 if (tcp_is_reno(tp))
2649 tcp_limit_reno_sacked(tp);
2650
2651 tcp_verify_left_out(tp);
2652
2653 /* Don't muck with the congestion window here.
2654 * Reason is that we do not increase amount of _data_
2655 * in network, but units changed and effective
2656 * cwnd/ssthresh really reduced now.
2657 */
2658 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2659 tp->high_seq = tp->snd_nxt;
2660 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2661 tp->prior_ssthresh = 0;
2662 tp->undo_marker = 0;
2663 tcp_set_ca_state(sk, TCP_CA_Loss);
2664 }
2665 tcp_xmit_retransmit_queue(sk);
2666 }
2667 EXPORT_SYMBOL(tcp_simple_retransmit);
2668
2669 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2670 {
2671 struct tcp_sock *tp = tcp_sk(sk);
2672 int mib_idx;
2673
2674 if (tcp_is_reno(tp))
2675 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2676 else
2677 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2678
2679 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2680
2681 tp->prior_ssthresh = 0;
2682 tcp_init_undo(tp);
2683
2684 if (!tcp_in_cwnd_reduction(sk)) {
2685 if (!ece_ack)
2686 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2687 tcp_init_cwnd_reduction(sk);
2688 }
2689 tcp_set_ca_state(sk, TCP_CA_Recovery);
2690 }
2691
2692 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2693 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2694 */
2695 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2696 {
2697 struct tcp_sock *tp = tcp_sk(sk);
2698 bool recovered = !before(tp->snd_una, tp->high_seq);
2699
2700 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2701 tcp_try_undo_loss(sk, false))
2702 return;
2703
2704 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2705 /* Step 3.b. A timeout is spurious if not all data are
2706 * lost, i.e., never-retransmitted data are (s)acked.
2707 */
2708 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2709 tcp_try_undo_loss(sk, true))
2710 return;
2711
2712 if (after(tp->snd_nxt, tp->high_seq)) {
2713 if (flag & FLAG_DATA_SACKED || is_dupack)
2714 tp->frto = 0; /* Step 3.a. loss was real */
2715 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2716 tp->high_seq = tp->snd_nxt;
2717 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2718 TCP_NAGLE_OFF);
2719 if (after(tp->snd_nxt, tp->high_seq))
2720 return; /* Step 2.b */
2721 tp->frto = 0;
2722 }
2723 }
2724
2725 if (recovered) {
2726 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2727 tcp_try_undo_recovery(sk);
2728 return;
2729 }
2730 if (tcp_is_reno(tp)) {
2731 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2732 * delivered. Lower inflight to clock out (re)tranmissions.
2733 */
2734 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2735 tcp_add_reno_sack(sk);
2736 else if (flag & FLAG_SND_UNA_ADVANCED)
2737 tcp_reset_reno_sack(tp);
2738 }
2739 tcp_xmit_retransmit_queue(sk);
2740 }
2741
2742 /* Undo during fast recovery after partial ACK. */
2743 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2744 const int prior_unsacked, int flag)
2745 {
2746 struct tcp_sock *tp = tcp_sk(sk);
2747
2748 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2749 /* Plain luck! Hole if filled with delayed
2750 * packet, rather than with a retransmit.
2751 */
2752 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2753
2754 /* We are getting evidence that the reordering degree is higher
2755 * than we realized. If there are no retransmits out then we
2756 * can undo. Otherwise we clock out new packets but do not
2757 * mark more packets lost or retransmit more.
2758 */
2759 if (tp->retrans_out) {
2760 tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
2761 return true;
2762 }
2763
2764 if (!tcp_any_retrans_done(sk))
2765 tp->retrans_stamp = 0;
2766
2767 DBGUNDO(sk, "partial recovery");
2768 tcp_undo_cwnd_reduction(sk, true);
2769 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2770 tcp_try_keep_open(sk);
2771 return true;
2772 }
2773 return false;
2774 }
2775
2776 /* Process an event, which can update packets-in-flight not trivially.
2777 * Main goal of this function is to calculate new estimate for left_out,
2778 * taking into account both packets sitting in receiver's buffer and
2779 * packets lost by network.
2780 *
2781 * Besides that it does CWND reduction, when packet loss is detected
2782 * and changes state of machine.
2783 *
2784 * It does _not_ decide what to send, it is made in function
2785 * tcp_xmit_retransmit_queue().
2786 */
2787 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2788 const int prior_unsacked,
2789 bool is_dupack, int flag)
2790 {
2791 struct inet_connection_sock *icsk = inet_csk(sk);
2792 struct tcp_sock *tp = tcp_sk(sk);
2793 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2794 (tcp_fackets_out(tp) > tp->reordering));
2795 int fast_rexmit = 0;
2796
2797 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2798 tp->sacked_out = 0;
2799 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2800 tp->fackets_out = 0;
2801
2802 /* Now state machine starts.
2803 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2804 if (flag & FLAG_ECE)
2805 tp->prior_ssthresh = 0;
2806
2807 /* B. In all the states check for reneging SACKs. */
2808 if (tcp_check_sack_reneging(sk, flag))
2809 return;
2810
2811 /* C. Check consistency of the current state. */
2812 tcp_verify_left_out(tp);
2813
2814 /* D. Check state exit conditions. State can be terminated
2815 * when high_seq is ACKed. */
2816 if (icsk->icsk_ca_state == TCP_CA_Open) {
2817 WARN_ON(tp->retrans_out != 0);
2818 tp->retrans_stamp = 0;
2819 } else if (!before(tp->snd_una, tp->high_seq)) {
2820 switch (icsk->icsk_ca_state) {
2821 case TCP_CA_CWR:
2822 /* CWR is to be held something *above* high_seq
2823 * is ACKed for CWR bit to reach receiver. */
2824 if (tp->snd_una != tp->high_seq) {
2825 tcp_end_cwnd_reduction(sk);
2826 tcp_set_ca_state(sk, TCP_CA_Open);
2827 }
2828 break;
2829
2830 case TCP_CA_Recovery:
2831 if (tcp_is_reno(tp))
2832 tcp_reset_reno_sack(tp);
2833 if (tcp_try_undo_recovery(sk))
2834 return;
2835 tcp_end_cwnd_reduction(sk);
2836 break;
2837 }
2838 }
2839
2840 /* E. Process state. */
2841 switch (icsk->icsk_ca_state) {
2842 case TCP_CA_Recovery:
2843 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2844 if (tcp_is_reno(tp) && is_dupack)
2845 tcp_add_reno_sack(sk);
2846 } else {
2847 if (tcp_try_undo_partial(sk, acked, prior_unsacked, flag))
2848 return;
2849 /* Partial ACK arrived. Force fast retransmit. */
2850 do_lost = tcp_is_reno(tp) ||
2851 tcp_fackets_out(tp) > tp->reordering;
2852 }
2853 if (tcp_try_undo_dsack(sk)) {
2854 tcp_try_keep_open(sk);
2855 return;
2856 }
2857 break;
2858 case TCP_CA_Loss:
2859 tcp_process_loss(sk, flag, is_dupack);
2860 if (icsk->icsk_ca_state != TCP_CA_Open &&
2861 !(flag & FLAG_LOST_RETRANS))
2862 return;
2863 /* Change state if cwnd is undone or retransmits are lost */
2864 default:
2865 if (tcp_is_reno(tp)) {
2866 if (flag & FLAG_SND_UNA_ADVANCED)
2867 tcp_reset_reno_sack(tp);
2868 if (is_dupack)
2869 tcp_add_reno_sack(sk);
2870 }
2871
2872 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2873 tcp_try_undo_dsack(sk);
2874
2875 if (!tcp_time_to_recover(sk, flag)) {
2876 tcp_try_to_open(sk, flag, prior_unsacked);
2877 return;
2878 }
2879
2880 /* MTU probe failure: don't reduce cwnd */
2881 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2882 icsk->icsk_mtup.probe_size &&
2883 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2884 tcp_mtup_probe_failed(sk);
2885 /* Restores the reduction we did in tcp_mtup_probe() */
2886 tp->snd_cwnd++;
2887 tcp_simple_retransmit(sk);
2888 return;
2889 }
2890
2891 /* Otherwise enter Recovery state */
2892 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2893 fast_rexmit = 1;
2894 }
2895
2896 if (do_lost)
2897 tcp_update_scoreboard(sk, fast_rexmit);
2898 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit, flag);
2899 tcp_xmit_retransmit_queue(sk);
2900 }
2901
2902 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2903 long seq_rtt_us, long sack_rtt_us)
2904 {
2905 const struct tcp_sock *tp = tcp_sk(sk);
2906
2907 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2908 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2909 * Karn's algorithm forbids taking RTT if some retransmitted data
2910 * is acked (RFC6298).
2911 */
2912 if (flag & FLAG_RETRANS_DATA_ACKED)
2913 seq_rtt_us = -1L;
2914
2915 if (seq_rtt_us < 0)
2916 seq_rtt_us = sack_rtt_us;
2917
2918 /* RTTM Rule: A TSecr value received in a segment is used to
2919 * update the averaged RTT measurement only if the segment
2920 * acknowledges some new data, i.e., only if it advances the
2921 * left edge of the send window.
2922 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2923 */
2924 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2925 flag & FLAG_ACKED)
2926 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2927
2928 if (seq_rtt_us < 0)
2929 return false;
2930
2931 tcp_rtt_estimator(sk, seq_rtt_us);
2932 tcp_set_rto(sk);
2933
2934 /* RFC6298: only reset backoff on valid RTT measurement. */
2935 inet_csk(sk)->icsk_backoff = 0;
2936 return true;
2937 }
2938
2939 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2940 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2941 {
2942 struct tcp_sock *tp = tcp_sk(sk);
2943 long seq_rtt_us = -1L;
2944
2945 if (synack_stamp && !tp->total_retrans)
2946 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2947
2948 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2949 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2950 */
2951 if (!tp->srtt_us)
2952 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2953 }
2954
2955 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2956 {
2957 const struct inet_connection_sock *icsk = inet_csk(sk);
2958
2959 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2960 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2961 }
2962
2963 /* Restart timer after forward progress on connection.
2964 * RFC2988 recommends to restart timer to now+rto.
2965 */
2966 void tcp_rearm_rto(struct sock *sk)
2967 {
2968 const struct inet_connection_sock *icsk = inet_csk(sk);
2969 struct tcp_sock *tp = tcp_sk(sk);
2970
2971 /* If the retrans timer is currently being used by Fast Open
2972 * for SYN-ACK retrans purpose, stay put.
2973 */
2974 if (tp->fastopen_rsk)
2975 return;
2976
2977 if (!tp->packets_out) {
2978 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2979 } else {
2980 u32 rto = inet_csk(sk)->icsk_rto;
2981 /* Offset the time elapsed after installing regular RTO */
2982 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2983 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2984 struct sk_buff *skb = tcp_write_queue_head(sk);
2985 const u32 rto_time_stamp =
2986 tcp_skb_timestamp(skb) + rto;
2987 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2988 /* delta may not be positive if the socket is locked
2989 * when the retrans timer fires and is rescheduled.
2990 */
2991 if (delta > 0)
2992 rto = delta;
2993 }
2994 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2995 TCP_RTO_MAX);
2996 }
2997 }
2998
2999 /* This function is called when the delayed ER timer fires. TCP enters
3000 * fast recovery and performs fast-retransmit.
3001 */
3002 void tcp_resume_early_retransmit(struct sock *sk)
3003 {
3004 struct tcp_sock *tp = tcp_sk(sk);
3005
3006 tcp_rearm_rto(sk);
3007
3008 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3009 if (!tp->do_early_retrans)
3010 return;
3011
3012 tcp_enter_recovery(sk, false);
3013 tcp_update_scoreboard(sk, 1);
3014 tcp_xmit_retransmit_queue(sk);
3015 }
3016
3017 /* If we get here, the whole TSO packet has not been acked. */
3018 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3019 {
3020 struct tcp_sock *tp = tcp_sk(sk);
3021 u32 packets_acked;
3022
3023 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3024
3025 packets_acked = tcp_skb_pcount(skb);
3026 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3027 return 0;
3028 packets_acked -= tcp_skb_pcount(skb);
3029
3030 if (packets_acked) {
3031 BUG_ON(tcp_skb_pcount(skb) == 0);
3032 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3033 }
3034
3035 return packets_acked;
3036 }
3037
3038 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3039 u32 prior_snd_una)
3040 {
3041 const struct skb_shared_info *shinfo;
3042
3043 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3044 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3045 return;
3046
3047 shinfo = skb_shinfo(skb);
3048 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3049 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3050 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3051 }
3052
3053 /* Remove acknowledged frames from the retransmission queue. If our packet
3054 * is before the ack sequence we can discard it as it's confirmed to have
3055 * arrived at the other end.
3056 */
3057 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3058 u32 prior_snd_una,
3059 struct tcp_sacktag_state *sack)
3060 {
3061 const struct inet_connection_sock *icsk = inet_csk(sk);
3062 struct skb_mstamp first_ackt, last_ackt, now;
3063 struct tcp_sock *tp = tcp_sk(sk);
3064 u32 prior_sacked = tp->sacked_out;
3065 u32 reord = tp->packets_out;
3066 bool fully_acked = true;
3067 long sack_rtt_us = -1L;
3068 long seq_rtt_us = -1L;
3069 long ca_rtt_us = -1L;
3070 struct sk_buff *skb;
3071 u32 pkts_acked = 0;
3072 bool rtt_update;
3073 int flag = 0;
3074
3075 first_ackt.v64 = 0;
3076
3077 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3078 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3079 u8 sacked = scb->sacked;
3080 u32 acked_pcount;
3081
3082 tcp_ack_tstamp(sk, skb, prior_snd_una);
3083
3084 /* Determine how many packets and what bytes were acked, tso and else */
3085 if (after(scb->end_seq, tp->snd_una)) {
3086 if (tcp_skb_pcount(skb) == 1 ||
3087 !after(tp->snd_una, scb->seq))
3088 break;
3089
3090 acked_pcount = tcp_tso_acked(sk, skb);
3091 if (!acked_pcount)
3092 break;
3093
3094 fully_acked = false;
3095 } else {
3096 /* Speedup tcp_unlink_write_queue() and next loop */
3097 prefetchw(skb->next);
3098 acked_pcount = tcp_skb_pcount(skb);
3099 }
3100
3101 if (unlikely(sacked & TCPCB_RETRANS)) {
3102 if (sacked & TCPCB_SACKED_RETRANS)
3103 tp->retrans_out -= acked_pcount;
3104 flag |= FLAG_RETRANS_DATA_ACKED;
3105 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3106 last_ackt = skb->skb_mstamp;
3107 WARN_ON_ONCE(last_ackt.v64 == 0);
3108 if (!first_ackt.v64)
3109 first_ackt = last_ackt;
3110
3111 reord = min(pkts_acked, reord);
3112 if (!after(scb->end_seq, tp->high_seq))
3113 flag |= FLAG_ORIG_SACK_ACKED;
3114 }
3115
3116 if (sacked & TCPCB_SACKED_ACKED)
3117 tp->sacked_out -= acked_pcount;
3118 if (sacked & TCPCB_LOST)
3119 tp->lost_out -= acked_pcount;
3120
3121 tp->packets_out -= acked_pcount;
3122 pkts_acked += acked_pcount;
3123
3124 /* Initial outgoing SYN's get put onto the write_queue
3125 * just like anything else we transmit. It is not
3126 * true data, and if we misinform our callers that
3127 * this ACK acks real data, we will erroneously exit
3128 * connection startup slow start one packet too
3129 * quickly. This is severely frowned upon behavior.
3130 */
3131 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3132 flag |= FLAG_DATA_ACKED;
3133 } else {
3134 flag |= FLAG_SYN_ACKED;
3135 tp->retrans_stamp = 0;
3136 }
3137
3138 if (!fully_acked)
3139 break;
3140
3141 tcp_unlink_write_queue(skb, sk);
3142 sk_wmem_free_skb(sk, skb);
3143 if (unlikely(skb == tp->retransmit_skb_hint))
3144 tp->retransmit_skb_hint = NULL;
3145 if (unlikely(skb == tp->lost_skb_hint))
3146 tp->lost_skb_hint = NULL;
3147 }
3148
3149 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3150 tp->snd_up = tp->snd_una;
3151
3152 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3153 flag |= FLAG_SACK_RENEGING;
3154
3155 skb_mstamp_get(&now);
3156 if (likely(first_ackt.v64)) {
3157 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3158 ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3159 }
3160 if (sack->first_sackt.v64) {
3161 sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3162 ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3163 }
3164
3165 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3166
3167 if (flag & FLAG_ACKED) {
3168 tcp_rearm_rto(sk);
3169 if (unlikely(icsk->icsk_mtup.probe_size &&
3170 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3171 tcp_mtup_probe_success(sk);
3172 }
3173
3174 if (tcp_is_reno(tp)) {
3175 tcp_remove_reno_sacks(sk, pkts_acked);
3176 } else {
3177 int delta;
3178
3179 /* Non-retransmitted hole got filled? That's reordering */
3180 if (reord < prior_fackets)
3181 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3182
3183 delta = tcp_is_fack(tp) ? pkts_acked :
3184 prior_sacked - tp->sacked_out;
3185 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3186 }
3187
3188 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3189
3190 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3191 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3192 /* Do not re-arm RTO if the sack RTT is measured from data sent
3193 * after when the head was last (re)transmitted. Otherwise the
3194 * timeout may continue to extend in loss recovery.
3195 */
3196 tcp_rearm_rto(sk);
3197 }
3198
3199 if (icsk->icsk_ca_ops->pkts_acked)
3200 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
3201
3202 #if FASTRETRANS_DEBUG > 0
3203 WARN_ON((int)tp->sacked_out < 0);
3204 WARN_ON((int)tp->lost_out < 0);
3205 WARN_ON((int)tp->retrans_out < 0);
3206 if (!tp->packets_out && tcp_is_sack(tp)) {
3207 icsk = inet_csk(sk);
3208 if (tp->lost_out) {
3209 pr_debug("Leak l=%u %d\n",
3210 tp->lost_out, icsk->icsk_ca_state);
3211 tp->lost_out = 0;
3212 }
3213 if (tp->sacked_out) {
3214 pr_debug("Leak s=%u %d\n",
3215 tp->sacked_out, icsk->icsk_ca_state);
3216 tp->sacked_out = 0;
3217 }
3218 if (tp->retrans_out) {
3219 pr_debug("Leak r=%u %d\n",
3220 tp->retrans_out, icsk->icsk_ca_state);
3221 tp->retrans_out = 0;
3222 }
3223 }
3224 #endif
3225 return flag;
3226 }
3227
3228 static void tcp_ack_probe(struct sock *sk)
3229 {
3230 const struct tcp_sock *tp = tcp_sk(sk);
3231 struct inet_connection_sock *icsk = inet_csk(sk);
3232
3233 /* Was it a usable window open? */
3234
3235 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3236 icsk->icsk_backoff = 0;
3237 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3238 /* Socket must be waked up by subsequent tcp_data_snd_check().
3239 * This function is not for random using!
3240 */
3241 } else {
3242 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3243
3244 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3245 when, TCP_RTO_MAX);
3246 }
3247 }
3248
3249 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3250 {
3251 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3252 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3253 }
3254
3255 /* Decide wheather to run the increase function of congestion control. */
3256 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3257 {
3258 if (tcp_in_cwnd_reduction(sk))
3259 return false;
3260
3261 /* If reordering is high then always grow cwnd whenever data is
3262 * delivered regardless of its ordering. Otherwise stay conservative
3263 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3264 * new SACK or ECE mark may first advance cwnd here and later reduce
3265 * cwnd in tcp_fastretrans_alert() based on more states.
3266 */
3267 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3268 return flag & FLAG_FORWARD_PROGRESS;
3269
3270 return flag & FLAG_DATA_ACKED;
3271 }
3272
3273 /* Check that window update is acceptable.
3274 * The function assumes that snd_una<=ack<=snd_next.
3275 */
3276 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3277 const u32 ack, const u32 ack_seq,
3278 const u32 nwin)
3279 {
3280 return after(ack, tp->snd_una) ||
3281 after(ack_seq, tp->snd_wl1) ||
3282 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3283 }
3284
3285 /* If we update tp->snd_una, also update tp->bytes_acked */
3286 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3287 {
3288 u32 delta = ack - tp->snd_una;
3289
3290 u64_stats_update_begin(&tp->syncp);
3291 tp->bytes_acked += delta;
3292 u64_stats_update_end(&tp->syncp);
3293 tp->snd_una = ack;
3294 }
3295
3296 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3297 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3298 {
3299 u32 delta = seq - tp->rcv_nxt;
3300
3301 u64_stats_update_begin(&tp->syncp);
3302 tp->bytes_received += delta;
3303 u64_stats_update_end(&tp->syncp);
3304 tp->rcv_nxt = seq;
3305 }
3306
3307 /* Update our send window.
3308 *
3309 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3310 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3311 */
3312 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3313 u32 ack_seq)
3314 {
3315 struct tcp_sock *tp = tcp_sk(sk);
3316 int flag = 0;
3317 u32 nwin = ntohs(tcp_hdr(skb)->window);
3318
3319 if (likely(!tcp_hdr(skb)->syn))
3320 nwin <<= tp->rx_opt.snd_wscale;
3321
3322 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3323 flag |= FLAG_WIN_UPDATE;
3324 tcp_update_wl(tp, ack_seq);
3325
3326 if (tp->snd_wnd != nwin) {
3327 tp->snd_wnd = nwin;
3328
3329 /* Note, it is the only place, where
3330 * fast path is recovered for sending TCP.
3331 */
3332 tp->pred_flags = 0;
3333 tcp_fast_path_check(sk);
3334
3335 if (nwin > tp->max_window) {
3336 tp->max_window = nwin;
3337 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3338 }
3339 }
3340 }
3341
3342 tcp_snd_una_update(tp, ack);
3343
3344 return flag;
3345 }
3346
3347 /* Return true if we're currently rate-limiting out-of-window ACKs and
3348 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3349 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3350 * attacks that send repeated SYNs or ACKs for the same connection. To
3351 * do this, we do not send a duplicate SYNACK or ACK if the remote
3352 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3353 */
3354 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3355 int mib_idx, u32 *last_oow_ack_time)
3356 {
3357 /* Data packets without SYNs are not likely part of an ACK loop. */
3358 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3359 !tcp_hdr(skb)->syn)
3360 goto not_rate_limited;
3361
3362 if (*last_oow_ack_time) {
3363 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3364
3365 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3366 NET_INC_STATS_BH(net, mib_idx);
3367 return true; /* rate-limited: don't send yet! */
3368 }
3369 }
3370
3371 *last_oow_ack_time = tcp_time_stamp;
3372
3373 not_rate_limited:
3374 return false; /* not rate-limited: go ahead, send dupack now! */
3375 }
3376
3377 /* RFC 5961 7 [ACK Throttling] */
3378 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3379 {
3380 /* unprotected vars, we dont care of overwrites */
3381 static u32 challenge_timestamp;
3382 static unsigned int challenge_count;
3383 struct tcp_sock *tp = tcp_sk(sk);
3384 u32 now;
3385
3386 /* First check our per-socket dupack rate limit. */
3387 if (tcp_oow_rate_limited(sock_net(sk), skb,
3388 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3389 &tp->last_oow_ack_time))
3390 return;
3391
3392 /* Then check the check host-wide RFC 5961 rate limit. */
3393 now = jiffies / HZ;
3394 if (now != challenge_timestamp) {
3395 challenge_timestamp = now;
3396 challenge_count = 0;
3397 }
3398 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3399 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3400 tcp_send_ack(sk);
3401 }
3402 }
3403
3404 static void tcp_store_ts_recent(struct tcp_sock *tp)
3405 {
3406 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3407 tp->rx_opt.ts_recent_stamp = get_seconds();
3408 }
3409
3410 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3411 {
3412 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3413 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3414 * extra check below makes sure this can only happen
3415 * for pure ACK frames. -DaveM
3416 *
3417 * Not only, also it occurs for expired timestamps.
3418 */
3419
3420 if (tcp_paws_check(&tp->rx_opt, 0))
3421 tcp_store_ts_recent(tp);
3422 }
3423 }
3424
3425 /* This routine deals with acks during a TLP episode.
3426 * We mark the end of a TLP episode on receiving TLP dupack or when
3427 * ack is after tlp_high_seq.
3428 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3429 */
3430 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3431 {
3432 struct tcp_sock *tp = tcp_sk(sk);
3433
3434 if (before(ack, tp->tlp_high_seq))
3435 return;
3436
3437 if (flag & FLAG_DSACKING_ACK) {
3438 /* This DSACK means original and TLP probe arrived; no loss */
3439 tp->tlp_high_seq = 0;
3440 } else if (after(ack, tp->tlp_high_seq)) {
3441 /* ACK advances: there was a loss, so reduce cwnd. Reset
3442 * tlp_high_seq in tcp_init_cwnd_reduction()
3443 */
3444 tcp_init_cwnd_reduction(sk);
3445 tcp_set_ca_state(sk, TCP_CA_CWR);
3446 tcp_end_cwnd_reduction(sk);
3447 tcp_try_keep_open(sk);
3448 NET_INC_STATS_BH(sock_net(sk),
3449 LINUX_MIB_TCPLOSSPROBERECOVERY);
3450 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3451 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3452 /* Pure dupack: original and TLP probe arrived; no loss */
3453 tp->tlp_high_seq = 0;
3454 }
3455 }
3456
3457 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3458 {
3459 const struct inet_connection_sock *icsk = inet_csk(sk);
3460
3461 if (icsk->icsk_ca_ops->in_ack_event)
3462 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3463 }
3464
3465 /* This routine deals with incoming acks, but not outgoing ones. */
3466 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3467 {
3468 struct inet_connection_sock *icsk = inet_csk(sk);
3469 struct tcp_sock *tp = tcp_sk(sk);
3470 struct tcp_sacktag_state sack_state;
3471 u32 prior_snd_una = tp->snd_una;
3472 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3473 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3474 bool is_dupack = false;
3475 u32 prior_fackets;
3476 int prior_packets = tp->packets_out;
3477 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3478 int acked = 0; /* Number of packets newly acked */
3479
3480 sack_state.first_sackt.v64 = 0;
3481
3482 /* We very likely will need to access write queue head. */
3483 prefetchw(sk->sk_write_queue.next);
3484
3485 /* If the ack is older than previous acks
3486 * then we can probably ignore it.
3487 */
3488 if (before(ack, prior_snd_una)) {
3489 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3490 if (before(ack, prior_snd_una - tp->max_window)) {
3491 tcp_send_challenge_ack(sk, skb);
3492 return -1;
3493 }
3494 goto old_ack;
3495 }
3496
3497 /* If the ack includes data we haven't sent yet, discard
3498 * this segment (RFC793 Section 3.9).
3499 */
3500 if (after(ack, tp->snd_nxt))
3501 goto invalid_ack;
3502
3503 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3504 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3505 tcp_rearm_rto(sk);
3506
3507 if (after(ack, prior_snd_una)) {
3508 flag |= FLAG_SND_UNA_ADVANCED;
3509 icsk->icsk_retransmits = 0;
3510 }
3511
3512 prior_fackets = tp->fackets_out;
3513
3514 /* ts_recent update must be made after we are sure that the packet
3515 * is in window.
3516 */
3517 if (flag & FLAG_UPDATE_TS_RECENT)
3518 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3519
3520 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3521 /* Window is constant, pure forward advance.
3522 * No more checks are required.
3523 * Note, we use the fact that SND.UNA>=SND.WL2.
3524 */
3525 tcp_update_wl(tp, ack_seq);
3526 tcp_snd_una_update(tp, ack);
3527 flag |= FLAG_WIN_UPDATE;
3528
3529 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3530
3531 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3532 } else {
3533 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3534
3535 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3536 flag |= FLAG_DATA;
3537 else
3538 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3539
3540 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3541
3542 if (TCP_SKB_CB(skb)->sacked)
3543 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3544 &sack_state);
3545
3546 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3547 flag |= FLAG_ECE;
3548 ack_ev_flags |= CA_ACK_ECE;
3549 }
3550
3551 if (flag & FLAG_WIN_UPDATE)
3552 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3553
3554 tcp_in_ack_event(sk, ack_ev_flags);
3555 }
3556
3557 /* We passed data and got it acked, remove any soft error
3558 * log. Something worked...
3559 */
3560 sk->sk_err_soft = 0;
3561 icsk->icsk_probes_out = 0;
3562 tp->rcv_tstamp = tcp_time_stamp;
3563 if (!prior_packets)
3564 goto no_queue;
3565
3566 /* See if we can take anything off of the retransmit queue. */
3567 acked = tp->packets_out;
3568 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3569 &sack_state);
3570 acked -= tp->packets_out;
3571
3572 if (tcp_ack_is_dubious(sk, flag)) {
3573 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3574 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3575 is_dupack, flag);
3576 }
3577 if (tp->tlp_high_seq)
3578 tcp_process_tlp_ack(sk, ack, flag);
3579
3580 /* Advance cwnd if state allows */
3581 if (tcp_may_raise_cwnd(sk, flag))
3582 tcp_cong_avoid(sk, ack, acked);
3583
3584 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3585 struct dst_entry *dst = __sk_dst_get(sk);
3586 if (dst)
3587 dst_confirm(dst);
3588 }
3589
3590 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3591 tcp_schedule_loss_probe(sk);
3592 tcp_update_pacing_rate(sk);
3593 return 1;
3594
3595 no_queue:
3596 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3597 if (flag & FLAG_DSACKING_ACK)
3598 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3599 is_dupack, flag);
3600 /* If this ack opens up a zero window, clear backoff. It was
3601 * being used to time the probes, and is probably far higher than
3602 * it needs to be for normal retransmission.
3603 */
3604 if (tcp_send_head(sk))
3605 tcp_ack_probe(sk);
3606
3607 if (tp->tlp_high_seq)
3608 tcp_process_tlp_ack(sk, ack, flag);
3609 return 1;
3610
3611 invalid_ack:
3612 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3613 return -1;
3614
3615 old_ack:
3616 /* If data was SACKed, tag it and see if we should send more data.
3617 * If data was DSACKed, see if we can undo a cwnd reduction.
3618 */
3619 if (TCP_SKB_CB(skb)->sacked) {
3620 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3621 &sack_state);
3622 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3623 is_dupack, flag);
3624 }
3625
3626 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3627 return 0;
3628 }
3629
3630 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3631 bool syn, struct tcp_fastopen_cookie *foc,
3632 bool exp_opt)
3633 {
3634 /* Valid only in SYN or SYN-ACK with an even length. */
3635 if (!foc || !syn || len < 0 || (len & 1))
3636 return;
3637
3638 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3639 len <= TCP_FASTOPEN_COOKIE_MAX)
3640 memcpy(foc->val, cookie, len);
3641 else if (len != 0)
3642 len = -1;
3643 foc->len = len;
3644 foc->exp = exp_opt;
3645 }
3646
3647 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3648 * But, this can also be called on packets in the established flow when
3649 * the fast version below fails.
3650 */
3651 void tcp_parse_options(const struct sk_buff *skb,
3652 struct tcp_options_received *opt_rx, int estab,
3653 struct tcp_fastopen_cookie *foc)
3654 {
3655 const unsigned char *ptr;
3656 const struct tcphdr *th = tcp_hdr(skb);
3657 int length = (th->doff * 4) - sizeof(struct tcphdr);
3658
3659 ptr = (const unsigned char *)(th + 1);
3660 opt_rx->saw_tstamp = 0;
3661
3662 while (length > 0) {
3663 int opcode = *ptr++;
3664 int opsize;
3665
3666 switch (opcode) {
3667 case TCPOPT_EOL:
3668 return;
3669 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3670 length--;
3671 continue;
3672 default:
3673 opsize = *ptr++;
3674 if (opsize < 2) /* "silly options" */
3675 return;
3676 if (opsize > length)
3677 return; /* don't parse partial options */
3678 switch (opcode) {
3679 case TCPOPT_MSS:
3680 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3681 u16 in_mss = get_unaligned_be16(ptr);
3682 if (in_mss) {
3683 if (opt_rx->user_mss &&
3684 opt_rx->user_mss < in_mss)
3685 in_mss = opt_rx->user_mss;
3686 opt_rx->mss_clamp = in_mss;
3687 }
3688 }
3689 break;
3690 case TCPOPT_WINDOW:
3691 if (opsize == TCPOLEN_WINDOW && th->syn &&
3692 !estab && sysctl_tcp_window_scaling) {
3693 __u8 snd_wscale = *(__u8 *)ptr;
3694 opt_rx->wscale_ok = 1;
3695 if (snd_wscale > 14) {
3696 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3697 __func__,
3698 snd_wscale);
3699 snd_wscale = 14;
3700 }
3701 opt_rx->snd_wscale = snd_wscale;
3702 }
3703 break;
3704 case TCPOPT_TIMESTAMP:
3705 if ((opsize == TCPOLEN_TIMESTAMP) &&
3706 ((estab && opt_rx->tstamp_ok) ||
3707 (!estab && sysctl_tcp_timestamps))) {
3708 opt_rx->saw_tstamp = 1;
3709 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3710 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3711 }
3712 break;
3713 case TCPOPT_SACK_PERM:
3714 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3715 !estab && sysctl_tcp_sack) {
3716 opt_rx->sack_ok = TCP_SACK_SEEN;
3717 tcp_sack_reset(opt_rx);
3718 }
3719 break;
3720
3721 case TCPOPT_SACK:
3722 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3723 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3724 opt_rx->sack_ok) {
3725 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3726 }
3727 break;
3728 #ifdef CONFIG_TCP_MD5SIG
3729 case TCPOPT_MD5SIG:
3730 /*
3731 * The MD5 Hash has already been
3732 * checked (see tcp_v{4,6}_do_rcv()).
3733 */
3734 break;
3735 #endif
3736 case TCPOPT_FASTOPEN:
3737 tcp_parse_fastopen_option(
3738 opsize - TCPOLEN_FASTOPEN_BASE,
3739 ptr, th->syn, foc, false);
3740 break;
3741
3742 case TCPOPT_EXP:
3743 /* Fast Open option shares code 254 using a
3744 * 16 bits magic number.
3745 */
3746 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3747 get_unaligned_be16(ptr) ==
3748 TCPOPT_FASTOPEN_MAGIC)
3749 tcp_parse_fastopen_option(opsize -
3750 TCPOLEN_EXP_FASTOPEN_BASE,
3751 ptr + 2, th->syn, foc, true);
3752 break;
3753
3754 }
3755 ptr += opsize-2;
3756 length -= opsize;
3757 }
3758 }
3759 }
3760 EXPORT_SYMBOL(tcp_parse_options);
3761
3762 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3763 {
3764 const __be32 *ptr = (const __be32 *)(th + 1);
3765
3766 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3767 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3768 tp->rx_opt.saw_tstamp = 1;
3769 ++ptr;
3770 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3771 ++ptr;
3772 if (*ptr)
3773 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3774 else
3775 tp->rx_opt.rcv_tsecr = 0;
3776 return true;
3777 }
3778 return false;
3779 }
3780
3781 /* Fast parse options. This hopes to only see timestamps.
3782 * If it is wrong it falls back on tcp_parse_options().
3783 */
3784 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3785 const struct tcphdr *th, struct tcp_sock *tp)
3786 {
3787 /* In the spirit of fast parsing, compare doff directly to constant
3788 * values. Because equality is used, short doff can be ignored here.
3789 */
3790 if (th->doff == (sizeof(*th) / 4)) {
3791 tp->rx_opt.saw_tstamp = 0;
3792 return false;
3793 } else if (tp->rx_opt.tstamp_ok &&
3794 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3795 if (tcp_parse_aligned_timestamp(tp, th))
3796 return true;
3797 }
3798
3799 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3800 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3801 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3802
3803 return true;
3804 }
3805
3806 #ifdef CONFIG_TCP_MD5SIG
3807 /*
3808 * Parse MD5 Signature option
3809 */
3810 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3811 {
3812 int length = (th->doff << 2) - sizeof(*th);
3813 const u8 *ptr = (const u8 *)(th + 1);
3814
3815 /* If the TCP option is too short, we can short cut */
3816 if (length < TCPOLEN_MD5SIG)
3817 return NULL;
3818
3819 while (length > 0) {
3820 int opcode = *ptr++;
3821 int opsize;
3822
3823 switch (opcode) {
3824 case TCPOPT_EOL:
3825 return NULL;
3826 case TCPOPT_NOP:
3827 length--;
3828 continue;
3829 default:
3830 opsize = *ptr++;
3831 if (opsize < 2 || opsize > length)
3832 return NULL;
3833 if (opcode == TCPOPT_MD5SIG)
3834 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3835 }
3836 ptr += opsize - 2;
3837 length -= opsize;
3838 }
3839 return NULL;
3840 }
3841 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3842 #endif
3843
3844 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3845 *
3846 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3847 * it can pass through stack. So, the following predicate verifies that
3848 * this segment is not used for anything but congestion avoidance or
3849 * fast retransmit. Moreover, we even are able to eliminate most of such
3850 * second order effects, if we apply some small "replay" window (~RTO)
3851 * to timestamp space.
3852 *
3853 * All these measures still do not guarantee that we reject wrapped ACKs
3854 * on networks with high bandwidth, when sequence space is recycled fastly,
3855 * but it guarantees that such events will be very rare and do not affect
3856 * connection seriously. This doesn't look nice, but alas, PAWS is really
3857 * buggy extension.
3858 *
3859 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3860 * states that events when retransmit arrives after original data are rare.
3861 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3862 * the biggest problem on large power networks even with minor reordering.
3863 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3864 * up to bandwidth of 18Gigabit/sec. 8) ]
3865 */
3866
3867 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3868 {
3869 const struct tcp_sock *tp = tcp_sk(sk);
3870 const struct tcphdr *th = tcp_hdr(skb);
3871 u32 seq = TCP_SKB_CB(skb)->seq;
3872 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3873
3874 return (/* 1. Pure ACK with correct sequence number. */
3875 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3876
3877 /* 2. ... and duplicate ACK. */
3878 ack == tp->snd_una &&
3879
3880 /* 3. ... and does not update window. */
3881 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3882
3883 /* 4. ... and sits in replay window. */
3884 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3885 }
3886
3887 static inline bool tcp_paws_discard(const struct sock *sk,
3888 const struct sk_buff *skb)
3889 {
3890 const struct tcp_sock *tp = tcp_sk(sk);
3891
3892 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3893 !tcp_disordered_ack(sk, skb);
3894 }
3895
3896 /* Check segment sequence number for validity.
3897 *
3898 * Segment controls are considered valid, if the segment
3899 * fits to the window after truncation to the window. Acceptability
3900 * of data (and SYN, FIN, of course) is checked separately.
3901 * See tcp_data_queue(), for example.
3902 *
3903 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3904 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3905 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3906 * (borrowed from freebsd)
3907 */
3908
3909 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3910 {
3911 return !before(end_seq, tp->rcv_wup) &&
3912 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3913 }
3914
3915 /* When we get a reset we do this. */
3916 void tcp_reset(struct sock *sk)
3917 {
3918 /* We want the right error as BSD sees it (and indeed as we do). */
3919 switch (sk->sk_state) {
3920 case TCP_SYN_SENT:
3921 sk->sk_err = ECONNREFUSED;
3922 break;
3923 case TCP_CLOSE_WAIT:
3924 sk->sk_err = EPIPE;
3925 break;
3926 case TCP_CLOSE:
3927 return;
3928 default:
3929 sk->sk_err = ECONNRESET;
3930 }
3931 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3932 smp_wmb();
3933
3934 if (!sock_flag(sk, SOCK_DEAD))
3935 sk->sk_error_report(sk);
3936
3937 tcp_done(sk);
3938 }
3939
3940 /*
3941 * Process the FIN bit. This now behaves as it is supposed to work
3942 * and the FIN takes effect when it is validly part of sequence
3943 * space. Not before when we get holes.
3944 *
3945 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3946 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3947 * TIME-WAIT)
3948 *
3949 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3950 * close and we go into CLOSING (and later onto TIME-WAIT)
3951 *
3952 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3953 */
3954 static void tcp_fin(struct sock *sk)
3955 {
3956 struct tcp_sock *tp = tcp_sk(sk);
3957
3958 inet_csk_schedule_ack(sk);
3959
3960 sk->sk_shutdown |= RCV_SHUTDOWN;
3961 sock_set_flag(sk, SOCK_DONE);
3962
3963 switch (sk->sk_state) {
3964 case TCP_SYN_RECV:
3965 case TCP_ESTABLISHED:
3966 /* Move to CLOSE_WAIT */
3967 tcp_set_state(sk, TCP_CLOSE_WAIT);
3968 inet_csk(sk)->icsk_ack.pingpong = 1;
3969 break;
3970
3971 case TCP_CLOSE_WAIT:
3972 case TCP_CLOSING:
3973 /* Received a retransmission of the FIN, do
3974 * nothing.
3975 */
3976 break;
3977 case TCP_LAST_ACK:
3978 /* RFC793: Remain in the LAST-ACK state. */
3979 break;
3980
3981 case TCP_FIN_WAIT1:
3982 /* This case occurs when a simultaneous close
3983 * happens, we must ack the received FIN and
3984 * enter the CLOSING state.
3985 */
3986 tcp_send_ack(sk);
3987 tcp_set_state(sk, TCP_CLOSING);
3988 break;
3989 case TCP_FIN_WAIT2:
3990 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3991 tcp_send_ack(sk);
3992 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3993 break;
3994 default:
3995 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3996 * cases we should never reach this piece of code.
3997 */
3998 pr_err("%s: Impossible, sk->sk_state=%d\n",
3999 __func__, sk->sk_state);
4000 break;
4001 }
4002
4003 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4004 * Probably, we should reset in this case. For now drop them.
4005 */
4006 __skb_queue_purge(&tp->out_of_order_queue);
4007 if (tcp_is_sack(tp))
4008 tcp_sack_reset(&tp->rx_opt);
4009 sk_mem_reclaim(sk);
4010
4011 if (!sock_flag(sk, SOCK_DEAD)) {
4012 sk->sk_state_change(sk);
4013
4014 /* Do not send POLL_HUP for half duplex close. */
4015 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4016 sk->sk_state == TCP_CLOSE)
4017 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4018 else
4019 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4020 }
4021 }
4022
4023 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4024 u32 end_seq)
4025 {
4026 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4027 if (before(seq, sp->start_seq))
4028 sp->start_seq = seq;
4029 if (after(end_seq, sp->end_seq))
4030 sp->end_seq = end_seq;
4031 return true;
4032 }
4033 return false;
4034 }
4035
4036 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4037 {
4038 struct tcp_sock *tp = tcp_sk(sk);
4039
4040 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4041 int mib_idx;
4042
4043 if (before(seq, tp->rcv_nxt))
4044 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4045 else
4046 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4047
4048 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4049
4050 tp->rx_opt.dsack = 1;
4051 tp->duplicate_sack[0].start_seq = seq;
4052 tp->duplicate_sack[0].end_seq = end_seq;
4053 }
4054 }
4055
4056 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4057 {
4058 struct tcp_sock *tp = tcp_sk(sk);
4059
4060 if (!tp->rx_opt.dsack)
4061 tcp_dsack_set(sk, seq, end_seq);
4062 else
4063 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4064 }
4065
4066 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4067 {
4068 struct tcp_sock *tp = tcp_sk(sk);
4069
4070 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4071 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4072 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4073 tcp_enter_quickack_mode(sk);
4074
4075 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4076 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4077
4078 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4079 end_seq = tp->rcv_nxt;
4080 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4081 }
4082 }
4083
4084 tcp_send_ack(sk);
4085 }
4086
4087 /* These routines update the SACK block as out-of-order packets arrive or
4088 * in-order packets close up the sequence space.
4089 */
4090 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4091 {
4092 int this_sack;
4093 struct tcp_sack_block *sp = &tp->selective_acks[0];
4094 struct tcp_sack_block *swalk = sp + 1;
4095
4096 /* See if the recent change to the first SACK eats into
4097 * or hits the sequence space of other SACK blocks, if so coalesce.
4098 */
4099 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4100 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4101 int i;
4102
4103 /* Zap SWALK, by moving every further SACK up by one slot.
4104 * Decrease num_sacks.
4105 */
4106 tp->rx_opt.num_sacks--;
4107 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4108 sp[i] = sp[i + 1];
4109 continue;
4110 }
4111 this_sack++, swalk++;
4112 }
4113 }
4114
4115 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4116 {
4117 struct tcp_sock *tp = tcp_sk(sk);
4118 struct tcp_sack_block *sp = &tp->selective_acks[0];
4119 int cur_sacks = tp->rx_opt.num_sacks;
4120 int this_sack;
4121
4122 if (!cur_sacks)
4123 goto new_sack;
4124
4125 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4126 if (tcp_sack_extend(sp, seq, end_seq)) {
4127 /* Rotate this_sack to the first one. */
4128 for (; this_sack > 0; this_sack--, sp--)
4129 swap(*sp, *(sp - 1));
4130 if (cur_sacks > 1)
4131 tcp_sack_maybe_coalesce(tp);
4132 return;
4133 }
4134 }
4135
4136 /* Could not find an adjacent existing SACK, build a new one,
4137 * put it at the front, and shift everyone else down. We
4138 * always know there is at least one SACK present already here.
4139 *
4140 * If the sack array is full, forget about the last one.
4141 */
4142 if (this_sack >= TCP_NUM_SACKS) {
4143 this_sack--;
4144 tp->rx_opt.num_sacks--;
4145 sp--;
4146 }
4147 for (; this_sack > 0; this_sack--, sp--)
4148 *sp = *(sp - 1);
4149
4150 new_sack:
4151 /* Build the new head SACK, and we're done. */
4152 sp->start_seq = seq;
4153 sp->end_seq = end_seq;
4154 tp->rx_opt.num_sacks++;
4155 }
4156
4157 /* RCV.NXT advances, some SACKs should be eaten. */
4158
4159 static void tcp_sack_remove(struct tcp_sock *tp)
4160 {
4161 struct tcp_sack_block *sp = &tp->selective_acks[0];
4162 int num_sacks = tp->rx_opt.num_sacks;
4163 int this_sack;
4164
4165 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4166 if (skb_queue_empty(&tp->out_of_order_queue)) {
4167 tp->rx_opt.num_sacks = 0;
4168 return;
4169 }
4170
4171 for (this_sack = 0; this_sack < num_sacks;) {
4172 /* Check if the start of the sack is covered by RCV.NXT. */
4173 if (!before(tp->rcv_nxt, sp->start_seq)) {
4174 int i;
4175
4176 /* RCV.NXT must cover all the block! */
4177 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4178
4179 /* Zap this SACK, by moving forward any other SACKS. */
4180 for (i = this_sack+1; i < num_sacks; i++)
4181 tp->selective_acks[i-1] = tp->selective_acks[i];
4182 num_sacks--;
4183 continue;
4184 }
4185 this_sack++;
4186 sp++;
4187 }
4188 tp->rx_opt.num_sacks = num_sacks;
4189 }
4190
4191 /**
4192 * tcp_try_coalesce - try to merge skb to prior one
4193 * @sk: socket
4194 * @to: prior buffer
4195 * @from: buffer to add in queue
4196 * @fragstolen: pointer to boolean
4197 *
4198 * Before queueing skb @from after @to, try to merge them
4199 * to reduce overall memory use and queue lengths, if cost is small.
4200 * Packets in ofo or receive queues can stay a long time.
4201 * Better try to coalesce them right now to avoid future collapses.
4202 * Returns true if caller should free @from instead of queueing it
4203 */
4204 static bool tcp_try_coalesce(struct sock *sk,
4205 struct sk_buff *to,
4206 struct sk_buff *from,
4207 bool *fragstolen)
4208 {
4209 int delta;
4210
4211 *fragstolen = false;
4212
4213 /* Its possible this segment overlaps with prior segment in queue */
4214 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4215 return false;
4216
4217 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4218 return false;
4219
4220 atomic_add(delta, &sk->sk_rmem_alloc);
4221 sk_mem_charge(sk, delta);
4222 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4223 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4224 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4225 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4226 return true;
4227 }
4228
4229 /* This one checks to see if we can put data from the
4230 * out_of_order queue into the receive_queue.
4231 */
4232 static void tcp_ofo_queue(struct sock *sk)
4233 {
4234 struct tcp_sock *tp = tcp_sk(sk);
4235 __u32 dsack_high = tp->rcv_nxt;
4236 struct sk_buff *skb, *tail;
4237 bool fragstolen, eaten;
4238
4239 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4240 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4241 break;
4242
4243 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4244 __u32 dsack = dsack_high;
4245 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4246 dsack_high = TCP_SKB_CB(skb)->end_seq;
4247 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4248 }
4249
4250 __skb_unlink(skb, &tp->out_of_order_queue);
4251 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4252 SOCK_DEBUG(sk, "ofo packet was already received\n");
4253 __kfree_skb(skb);
4254 continue;
4255 }
4256 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4257 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4258 TCP_SKB_CB(skb)->end_seq);
4259
4260 tail = skb_peek_tail(&sk->sk_receive_queue);
4261 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4262 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4263 if (!eaten)
4264 __skb_queue_tail(&sk->sk_receive_queue, skb);
4265 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4266 tcp_fin(sk);
4267 if (eaten)
4268 kfree_skb_partial(skb, fragstolen);
4269 }
4270 }
4271
4272 static bool tcp_prune_ofo_queue(struct sock *sk);
4273 static int tcp_prune_queue(struct sock *sk);
4274
4275 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4276 unsigned int size)
4277 {
4278 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4279 !sk_rmem_schedule(sk, skb, size)) {
4280
4281 if (tcp_prune_queue(sk) < 0)
4282 return -1;
4283
4284 if (!sk_rmem_schedule(sk, skb, size)) {
4285 if (!tcp_prune_ofo_queue(sk))
4286 return -1;
4287
4288 if (!sk_rmem_schedule(sk, skb, size))
4289 return -1;
4290 }
4291 }
4292 return 0;
4293 }
4294
4295 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4296 {
4297 struct tcp_sock *tp = tcp_sk(sk);
4298 struct sk_buff *skb1;
4299 u32 seq, end_seq;
4300
4301 tcp_ecn_check_ce(tp, skb);
4302
4303 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4304 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4305 __kfree_skb(skb);
4306 return;
4307 }
4308
4309 /* Disable header prediction. */
4310 tp->pred_flags = 0;
4311 inet_csk_schedule_ack(sk);
4312
4313 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4314 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4315 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4316
4317 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4318 if (!skb1) {
4319 /* Initial out of order segment, build 1 SACK. */
4320 if (tcp_is_sack(tp)) {
4321 tp->rx_opt.num_sacks = 1;
4322 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4323 tp->selective_acks[0].end_seq =
4324 TCP_SKB_CB(skb)->end_seq;
4325 }
4326 __skb_queue_head(&tp->out_of_order_queue, skb);
4327 goto end;
4328 }
4329
4330 seq = TCP_SKB_CB(skb)->seq;
4331 end_seq = TCP_SKB_CB(skb)->end_seq;
4332
4333 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4334 bool fragstolen;
4335
4336 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4337 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4338 } else {
4339 tcp_grow_window(sk, skb);
4340 kfree_skb_partial(skb, fragstolen);
4341 skb = NULL;
4342 }
4343
4344 if (!tp->rx_opt.num_sacks ||
4345 tp->selective_acks[0].end_seq != seq)
4346 goto add_sack;
4347
4348 /* Common case: data arrive in order after hole. */
4349 tp->selective_acks[0].end_seq = end_seq;
4350 goto end;
4351 }
4352
4353 /* Find place to insert this segment. */
4354 while (1) {
4355 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4356 break;
4357 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4358 skb1 = NULL;
4359 break;
4360 }
4361 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4362 }
4363
4364 /* Do skb overlap to previous one? */
4365 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4366 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4367 /* All the bits are present. Drop. */
4368 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4369 __kfree_skb(skb);
4370 skb = NULL;
4371 tcp_dsack_set(sk, seq, end_seq);
4372 goto add_sack;
4373 }
4374 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4375 /* Partial overlap. */
4376 tcp_dsack_set(sk, seq,
4377 TCP_SKB_CB(skb1)->end_seq);
4378 } else {
4379 if (skb_queue_is_first(&tp->out_of_order_queue,
4380 skb1))
4381 skb1 = NULL;
4382 else
4383 skb1 = skb_queue_prev(
4384 &tp->out_of_order_queue,
4385 skb1);
4386 }
4387 }
4388 if (!skb1)
4389 __skb_queue_head(&tp->out_of_order_queue, skb);
4390 else
4391 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4392
4393 /* And clean segments covered by new one as whole. */
4394 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4395 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4396
4397 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4398 break;
4399 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4400 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4401 end_seq);
4402 break;
4403 }
4404 __skb_unlink(skb1, &tp->out_of_order_queue);
4405 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4406 TCP_SKB_CB(skb1)->end_seq);
4407 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4408 __kfree_skb(skb1);
4409 }
4410
4411 add_sack:
4412 if (tcp_is_sack(tp))
4413 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4414 end:
4415 if (skb) {
4416 tcp_grow_window(sk, skb);
4417 skb_set_owner_r(skb, sk);
4418 }
4419 }
4420
4421 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4422 bool *fragstolen)
4423 {
4424 int eaten;
4425 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4426
4427 __skb_pull(skb, hdrlen);
4428 eaten = (tail &&
4429 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4430 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4431 if (!eaten) {
4432 __skb_queue_tail(&sk->sk_receive_queue, skb);
4433 skb_set_owner_r(skb, sk);
4434 }
4435 return eaten;
4436 }
4437
4438 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4439 {
4440 struct sk_buff *skb;
4441 bool fragstolen;
4442
4443 if (size == 0)
4444 return 0;
4445
4446 skb = alloc_skb(size, sk->sk_allocation);
4447 if (!skb)
4448 goto err;
4449
4450 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4451 goto err_free;
4452
4453 if (memcpy_from_msg(skb_put(skb, size), msg, size))
4454 goto err_free;
4455
4456 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4457 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4458 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4459
4460 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4461 WARN_ON_ONCE(fragstolen); /* should not happen */
4462 __kfree_skb(skb);
4463 }
4464 return size;
4465
4466 err_free:
4467 kfree_skb(skb);
4468 err:
4469 return -ENOMEM;
4470 }
4471
4472 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4473 {
4474 struct tcp_sock *tp = tcp_sk(sk);
4475 int eaten = -1;
4476 bool fragstolen = false;
4477
4478 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4479 goto drop;
4480
4481 skb_dst_drop(skb);
4482 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4483
4484 tcp_ecn_accept_cwr(tp, skb);
4485
4486 tp->rx_opt.dsack = 0;
4487
4488 /* Queue data for delivery to the user.
4489 * Packets in sequence go to the receive queue.
4490 * Out of sequence packets to the out_of_order_queue.
4491 */
4492 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4493 if (tcp_receive_window(tp) == 0)
4494 goto out_of_window;
4495
4496 /* Ok. In sequence. In window. */
4497 if (tp->ucopy.task == current &&
4498 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4499 sock_owned_by_user(sk) && !tp->urg_data) {
4500 int chunk = min_t(unsigned int, skb->len,
4501 tp->ucopy.len);
4502
4503 __set_current_state(TASK_RUNNING);
4504
4505 local_bh_enable();
4506 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4507 tp->ucopy.len -= chunk;
4508 tp->copied_seq += chunk;
4509 eaten = (chunk == skb->len);
4510 tcp_rcv_space_adjust(sk);
4511 }
4512 local_bh_disable();
4513 }
4514
4515 if (eaten <= 0) {
4516 queue_and_out:
4517 if (eaten < 0) {
4518 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4519 sk_forced_mem_schedule(sk, skb->truesize);
4520 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4521 goto drop;
4522 }
4523 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4524 }
4525 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4526 if (skb->len)
4527 tcp_event_data_recv(sk, skb);
4528 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4529 tcp_fin(sk);
4530
4531 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4532 tcp_ofo_queue(sk);
4533
4534 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4535 * gap in queue is filled.
4536 */
4537 if (skb_queue_empty(&tp->out_of_order_queue))
4538 inet_csk(sk)->icsk_ack.pingpong = 0;
4539 }
4540
4541 if (tp->rx_opt.num_sacks)
4542 tcp_sack_remove(tp);
4543
4544 tcp_fast_path_check(sk);
4545
4546 if (eaten > 0)
4547 kfree_skb_partial(skb, fragstolen);
4548 if (!sock_flag(sk, SOCK_DEAD))
4549 sk->sk_data_ready(sk);
4550 return;
4551 }
4552
4553 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4554 /* A retransmit, 2nd most common case. Force an immediate ack. */
4555 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4556 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4557
4558 out_of_window:
4559 tcp_enter_quickack_mode(sk);
4560 inet_csk_schedule_ack(sk);
4561 drop:
4562 __kfree_skb(skb);
4563 return;
4564 }
4565
4566 /* Out of window. F.e. zero window probe. */
4567 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4568 goto out_of_window;
4569
4570 tcp_enter_quickack_mode(sk);
4571
4572 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4573 /* Partial packet, seq < rcv_next < end_seq */
4574 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4575 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4576 TCP_SKB_CB(skb)->end_seq);
4577
4578 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4579
4580 /* If window is closed, drop tail of packet. But after
4581 * remembering D-SACK for its head made in previous line.
4582 */
4583 if (!tcp_receive_window(tp))
4584 goto out_of_window;
4585 goto queue_and_out;
4586 }
4587
4588 tcp_data_queue_ofo(sk, skb);
4589 }
4590
4591 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4592 struct sk_buff_head *list)
4593 {
4594 struct sk_buff *next = NULL;
4595
4596 if (!skb_queue_is_last(list, skb))
4597 next = skb_queue_next(list, skb);
4598
4599 __skb_unlink(skb, list);
4600 __kfree_skb(skb);
4601 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4602
4603 return next;
4604 }
4605
4606 /* Collapse contiguous sequence of skbs head..tail with
4607 * sequence numbers start..end.
4608 *
4609 * If tail is NULL, this means until the end of the list.
4610 *
4611 * Segments with FIN/SYN are not collapsed (only because this
4612 * simplifies code)
4613 */
4614 static void
4615 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4616 struct sk_buff *head, struct sk_buff *tail,
4617 u32 start, u32 end)
4618 {
4619 struct sk_buff *skb, *n;
4620 bool end_of_skbs;
4621
4622 /* First, check that queue is collapsible and find
4623 * the point where collapsing can be useful. */
4624 skb = head;
4625 restart:
4626 end_of_skbs = true;
4627 skb_queue_walk_from_safe(list, skb, n) {
4628 if (skb == tail)
4629 break;
4630 /* No new bits? It is possible on ofo queue. */
4631 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4632 skb = tcp_collapse_one(sk, skb, list);
4633 if (!skb)
4634 break;
4635 goto restart;
4636 }
4637
4638 /* The first skb to collapse is:
4639 * - not SYN/FIN and
4640 * - bloated or contains data before "start" or
4641 * overlaps to the next one.
4642 */
4643 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4644 (tcp_win_from_space(skb->truesize) > skb->len ||
4645 before(TCP_SKB_CB(skb)->seq, start))) {
4646 end_of_skbs = false;
4647 break;
4648 }
4649
4650 if (!skb_queue_is_last(list, skb)) {
4651 struct sk_buff *next = skb_queue_next(list, skb);
4652 if (next != tail &&
4653 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4654 end_of_skbs = false;
4655 break;
4656 }
4657 }
4658
4659 /* Decided to skip this, advance start seq. */
4660 start = TCP_SKB_CB(skb)->end_seq;
4661 }
4662 if (end_of_skbs ||
4663 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4664 return;
4665
4666 while (before(start, end)) {
4667 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4668 struct sk_buff *nskb;
4669
4670 nskb = alloc_skb(copy, GFP_ATOMIC);
4671 if (!nskb)
4672 return;
4673
4674 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4675 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4676 __skb_queue_before(list, skb, nskb);
4677 skb_set_owner_r(nskb, sk);
4678
4679 /* Copy data, releasing collapsed skbs. */
4680 while (copy > 0) {
4681 int offset = start - TCP_SKB_CB(skb)->seq;
4682 int size = TCP_SKB_CB(skb)->end_seq - start;
4683
4684 BUG_ON(offset < 0);
4685 if (size > 0) {
4686 size = min(copy, size);
4687 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4688 BUG();
4689 TCP_SKB_CB(nskb)->end_seq += size;
4690 copy -= size;
4691 start += size;
4692 }
4693 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4694 skb = tcp_collapse_one(sk, skb, list);
4695 if (!skb ||
4696 skb == tail ||
4697 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4698 return;
4699 }
4700 }
4701 }
4702 }
4703
4704 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4705 * and tcp_collapse() them until all the queue is collapsed.
4706 */
4707 static void tcp_collapse_ofo_queue(struct sock *sk)
4708 {
4709 struct tcp_sock *tp = tcp_sk(sk);
4710 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4711 struct sk_buff *head;
4712 u32 start, end;
4713
4714 if (!skb)
4715 return;
4716
4717 start = TCP_SKB_CB(skb)->seq;
4718 end = TCP_SKB_CB(skb)->end_seq;
4719 head = skb;
4720
4721 for (;;) {
4722 struct sk_buff *next = NULL;
4723
4724 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4725 next = skb_queue_next(&tp->out_of_order_queue, skb);
4726 skb = next;
4727
4728 /* Segment is terminated when we see gap or when
4729 * we are at the end of all the queue. */
4730 if (!skb ||
4731 after(TCP_SKB_CB(skb)->seq, end) ||
4732 before(TCP_SKB_CB(skb)->end_seq, start)) {
4733 tcp_collapse(sk, &tp->out_of_order_queue,
4734 head, skb, start, end);
4735 head = skb;
4736 if (!skb)
4737 break;
4738 /* Start new segment */
4739 start = TCP_SKB_CB(skb)->seq;
4740 end = TCP_SKB_CB(skb)->end_seq;
4741 } else {
4742 if (before(TCP_SKB_CB(skb)->seq, start))
4743 start = TCP_SKB_CB(skb)->seq;
4744 if (after(TCP_SKB_CB(skb)->end_seq, end))
4745 end = TCP_SKB_CB(skb)->end_seq;
4746 }
4747 }
4748 }
4749
4750 /*
4751 * Purge the out-of-order queue.
4752 * Return true if queue was pruned.
4753 */
4754 static bool tcp_prune_ofo_queue(struct sock *sk)
4755 {
4756 struct tcp_sock *tp = tcp_sk(sk);
4757 bool res = false;
4758
4759 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4760 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4761 __skb_queue_purge(&tp->out_of_order_queue);
4762
4763 /* Reset SACK state. A conforming SACK implementation will
4764 * do the same at a timeout based retransmit. When a connection
4765 * is in a sad state like this, we care only about integrity
4766 * of the connection not performance.
4767 */
4768 if (tp->rx_opt.sack_ok)
4769 tcp_sack_reset(&tp->rx_opt);
4770 sk_mem_reclaim(sk);
4771 res = true;
4772 }
4773 return res;
4774 }
4775
4776 /* Reduce allocated memory if we can, trying to get
4777 * the socket within its memory limits again.
4778 *
4779 * Return less than zero if we should start dropping frames
4780 * until the socket owning process reads some of the data
4781 * to stabilize the situation.
4782 */
4783 static int tcp_prune_queue(struct sock *sk)
4784 {
4785 struct tcp_sock *tp = tcp_sk(sk);
4786
4787 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4788
4789 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4790
4791 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4792 tcp_clamp_window(sk);
4793 else if (tcp_under_memory_pressure(sk))
4794 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4795
4796 tcp_collapse_ofo_queue(sk);
4797 if (!skb_queue_empty(&sk->sk_receive_queue))
4798 tcp_collapse(sk, &sk->sk_receive_queue,
4799 skb_peek(&sk->sk_receive_queue),
4800 NULL,
4801 tp->copied_seq, tp->rcv_nxt);
4802 sk_mem_reclaim(sk);
4803
4804 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4805 return 0;
4806
4807 /* Collapsing did not help, destructive actions follow.
4808 * This must not ever occur. */
4809
4810 tcp_prune_ofo_queue(sk);
4811
4812 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4813 return 0;
4814
4815 /* If we are really being abused, tell the caller to silently
4816 * drop receive data on the floor. It will get retransmitted
4817 * and hopefully then we'll have sufficient space.
4818 */
4819 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4820
4821 /* Massive buffer overcommit. */
4822 tp->pred_flags = 0;
4823 return -1;
4824 }
4825
4826 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4827 {
4828 const struct tcp_sock *tp = tcp_sk(sk);
4829
4830 /* If the user specified a specific send buffer setting, do
4831 * not modify it.
4832 */
4833 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4834 return false;
4835
4836 /* If we are under global TCP memory pressure, do not expand. */
4837 if (tcp_under_memory_pressure(sk))
4838 return false;
4839
4840 /* If we are under soft global TCP memory pressure, do not expand. */
4841 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4842 return false;
4843
4844 /* If we filled the congestion window, do not expand. */
4845 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4846 return false;
4847
4848 return true;
4849 }
4850
4851 /* When incoming ACK allowed to free some skb from write_queue,
4852 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4853 * on the exit from tcp input handler.
4854 *
4855 * PROBLEM: sndbuf expansion does not work well with largesend.
4856 */
4857 static void tcp_new_space(struct sock *sk)
4858 {
4859 struct tcp_sock *tp = tcp_sk(sk);
4860
4861 if (tcp_should_expand_sndbuf(sk)) {
4862 tcp_sndbuf_expand(sk);
4863 tp->snd_cwnd_stamp = tcp_time_stamp;
4864 }
4865
4866 sk->sk_write_space(sk);
4867 }
4868
4869 static void tcp_check_space(struct sock *sk)
4870 {
4871 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4872 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4873 /* pairs with tcp_poll() */
4874 smp_mb__after_atomic();
4875 if (sk->sk_socket &&
4876 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4877 tcp_new_space(sk);
4878 }
4879 }
4880
4881 static inline void tcp_data_snd_check(struct sock *sk)
4882 {
4883 tcp_push_pending_frames(sk);
4884 tcp_check_space(sk);
4885 }
4886
4887 /*
4888 * Check if sending an ack is needed.
4889 */
4890 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4891 {
4892 struct tcp_sock *tp = tcp_sk(sk);
4893
4894 /* More than one full frame received... */
4895 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4896 /* ... and right edge of window advances far enough.
4897 * (tcp_recvmsg() will send ACK otherwise). Or...
4898 */
4899 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4900 /* We ACK each frame or... */
4901 tcp_in_quickack_mode(sk) ||
4902 /* We have out of order data. */
4903 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4904 /* Then ack it now */
4905 tcp_send_ack(sk);
4906 } else {
4907 /* Else, send delayed ack. */
4908 tcp_send_delayed_ack(sk);
4909 }
4910 }
4911
4912 static inline void tcp_ack_snd_check(struct sock *sk)
4913 {
4914 if (!inet_csk_ack_scheduled(sk)) {
4915 /* We sent a data segment already. */
4916 return;
4917 }
4918 __tcp_ack_snd_check(sk, 1);
4919 }
4920
4921 /*
4922 * This routine is only called when we have urgent data
4923 * signaled. Its the 'slow' part of tcp_urg. It could be
4924 * moved inline now as tcp_urg is only called from one
4925 * place. We handle URGent data wrong. We have to - as
4926 * BSD still doesn't use the correction from RFC961.
4927 * For 1003.1g we should support a new option TCP_STDURG to permit
4928 * either form (or just set the sysctl tcp_stdurg).
4929 */
4930
4931 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4932 {
4933 struct tcp_sock *tp = tcp_sk(sk);
4934 u32 ptr = ntohs(th->urg_ptr);
4935
4936 if (ptr && !sysctl_tcp_stdurg)
4937 ptr--;
4938 ptr += ntohl(th->seq);
4939
4940 /* Ignore urgent data that we've already seen and read. */
4941 if (after(tp->copied_seq, ptr))
4942 return;
4943
4944 /* Do not replay urg ptr.
4945 *
4946 * NOTE: interesting situation not covered by specs.
4947 * Misbehaving sender may send urg ptr, pointing to segment,
4948 * which we already have in ofo queue. We are not able to fetch
4949 * such data and will stay in TCP_URG_NOTYET until will be eaten
4950 * by recvmsg(). Seems, we are not obliged to handle such wicked
4951 * situations. But it is worth to think about possibility of some
4952 * DoSes using some hypothetical application level deadlock.
4953 */
4954 if (before(ptr, tp->rcv_nxt))
4955 return;
4956
4957 /* Do we already have a newer (or duplicate) urgent pointer? */
4958 if (tp->urg_data && !after(ptr, tp->urg_seq))
4959 return;
4960
4961 /* Tell the world about our new urgent pointer. */
4962 sk_send_sigurg(sk);
4963
4964 /* We may be adding urgent data when the last byte read was
4965 * urgent. To do this requires some care. We cannot just ignore
4966 * tp->copied_seq since we would read the last urgent byte again
4967 * as data, nor can we alter copied_seq until this data arrives
4968 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4969 *
4970 * NOTE. Double Dutch. Rendering to plain English: author of comment
4971 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4972 * and expect that both A and B disappear from stream. This is _wrong_.
4973 * Though this happens in BSD with high probability, this is occasional.
4974 * Any application relying on this is buggy. Note also, that fix "works"
4975 * only in this artificial test. Insert some normal data between A and B and we will
4976 * decline of BSD again. Verdict: it is better to remove to trap
4977 * buggy users.
4978 */
4979 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4980 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4981 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4982 tp->copied_seq++;
4983 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4984 __skb_unlink(skb, &sk->sk_receive_queue);
4985 __kfree_skb(skb);
4986 }
4987 }
4988
4989 tp->urg_data = TCP_URG_NOTYET;
4990 tp->urg_seq = ptr;
4991
4992 /* Disable header prediction. */
4993 tp->pred_flags = 0;
4994 }
4995
4996 /* This is the 'fast' part of urgent handling. */
4997 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4998 {
4999 struct tcp_sock *tp = tcp_sk(sk);
5000
5001 /* Check if we get a new urgent pointer - normally not. */
5002 if (th->urg)
5003 tcp_check_urg(sk, th);
5004
5005 /* Do we wait for any urgent data? - normally not... */
5006 if (tp->urg_data == TCP_URG_NOTYET) {
5007 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5008 th->syn;
5009
5010 /* Is the urgent pointer pointing into this packet? */
5011 if (ptr < skb->len) {
5012 u8 tmp;
5013 if (skb_copy_bits(skb, ptr, &tmp, 1))
5014 BUG();
5015 tp->urg_data = TCP_URG_VALID | tmp;
5016 if (!sock_flag(sk, SOCK_DEAD))
5017 sk->sk_data_ready(sk);
5018 }
5019 }
5020 }
5021
5022 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5023 {
5024 struct tcp_sock *tp = tcp_sk(sk);
5025 int chunk = skb->len - hlen;
5026 int err;
5027
5028 local_bh_enable();
5029 if (skb_csum_unnecessary(skb))
5030 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5031 else
5032 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5033
5034 if (!err) {
5035 tp->ucopy.len -= chunk;
5036 tp->copied_seq += chunk;
5037 tcp_rcv_space_adjust(sk);
5038 }
5039
5040 local_bh_disable();
5041 return err;
5042 }
5043
5044 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5045 struct sk_buff *skb)
5046 {
5047 __sum16 result;
5048
5049 if (sock_owned_by_user(sk)) {
5050 local_bh_enable();
5051 result = __tcp_checksum_complete(skb);
5052 local_bh_disable();
5053 } else {
5054 result = __tcp_checksum_complete(skb);
5055 }
5056 return result;
5057 }
5058
5059 static inline bool tcp_checksum_complete_user(struct sock *sk,
5060 struct sk_buff *skb)
5061 {
5062 return !skb_csum_unnecessary(skb) &&
5063 __tcp_checksum_complete_user(sk, skb);
5064 }
5065
5066 /* Does PAWS and seqno based validation of an incoming segment, flags will
5067 * play significant role here.
5068 */
5069 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5070 const struct tcphdr *th, int syn_inerr)
5071 {
5072 struct tcp_sock *tp = tcp_sk(sk);
5073
5074 /* RFC1323: H1. Apply PAWS check first. */
5075 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5076 tcp_paws_discard(sk, skb)) {
5077 if (!th->rst) {
5078 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5079 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5080 LINUX_MIB_TCPACKSKIPPEDPAWS,
5081 &tp->last_oow_ack_time))
5082 tcp_send_dupack(sk, skb);
5083 goto discard;
5084 }
5085 /* Reset is accepted even if it did not pass PAWS. */
5086 }
5087
5088 /* Step 1: check sequence number */
5089 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5090 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5091 * (RST) segments are validated by checking their SEQ-fields."
5092 * And page 69: "If an incoming segment is not acceptable,
5093 * an acknowledgment should be sent in reply (unless the RST
5094 * bit is set, if so drop the segment and return)".
5095 */
5096 if (!th->rst) {
5097 if (th->syn)
5098 goto syn_challenge;
5099 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5100 LINUX_MIB_TCPACKSKIPPEDSEQ,
5101 &tp->last_oow_ack_time))
5102 tcp_send_dupack(sk, skb);
5103 }
5104 goto discard;
5105 }
5106
5107 /* Step 2: check RST bit */
5108 if (th->rst) {
5109 /* RFC 5961 3.2 :
5110 * If sequence number exactly matches RCV.NXT, then
5111 * RESET the connection
5112 * else
5113 * Send a challenge ACK
5114 */
5115 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5116 tcp_reset(sk);
5117 else
5118 tcp_send_challenge_ack(sk, skb);
5119 goto discard;
5120 }
5121
5122 /* step 3: check security and precedence [ignored] */
5123
5124 /* step 4: Check for a SYN
5125 * RFC 5961 4.2 : Send a challenge ack
5126 */
5127 if (th->syn) {
5128 syn_challenge:
5129 if (syn_inerr)
5130 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5131 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5132 tcp_send_challenge_ack(sk, skb);
5133 goto discard;
5134 }
5135
5136 return true;
5137
5138 discard:
5139 __kfree_skb(skb);
5140 return false;
5141 }
5142
5143 /*
5144 * TCP receive function for the ESTABLISHED state.
5145 *
5146 * It is split into a fast path and a slow path. The fast path is
5147 * disabled when:
5148 * - A zero window was announced from us - zero window probing
5149 * is only handled properly in the slow path.
5150 * - Out of order segments arrived.
5151 * - Urgent data is expected.
5152 * - There is no buffer space left
5153 * - Unexpected TCP flags/window values/header lengths are received
5154 * (detected by checking the TCP header against pred_flags)
5155 * - Data is sent in both directions. Fast path only supports pure senders
5156 * or pure receivers (this means either the sequence number or the ack
5157 * value must stay constant)
5158 * - Unexpected TCP option.
5159 *
5160 * When these conditions are not satisfied it drops into a standard
5161 * receive procedure patterned after RFC793 to handle all cases.
5162 * The first three cases are guaranteed by proper pred_flags setting,
5163 * the rest is checked inline. Fast processing is turned on in
5164 * tcp_data_queue when everything is OK.
5165 */
5166 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5167 const struct tcphdr *th, unsigned int len)
5168 {
5169 struct tcp_sock *tp = tcp_sk(sk);
5170
5171 if (unlikely(!sk->sk_rx_dst))
5172 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5173 /*
5174 * Header prediction.
5175 * The code loosely follows the one in the famous
5176 * "30 instruction TCP receive" Van Jacobson mail.
5177 *
5178 * Van's trick is to deposit buffers into socket queue
5179 * on a device interrupt, to call tcp_recv function
5180 * on the receive process context and checksum and copy
5181 * the buffer to user space. smart...
5182 *
5183 * Our current scheme is not silly either but we take the
5184 * extra cost of the net_bh soft interrupt processing...
5185 * We do checksum and copy also but from device to kernel.
5186 */
5187
5188 tp->rx_opt.saw_tstamp = 0;
5189
5190 /* pred_flags is 0xS?10 << 16 + snd_wnd
5191 * if header_prediction is to be made
5192 * 'S' will always be tp->tcp_header_len >> 2
5193 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5194 * turn it off (when there are holes in the receive
5195 * space for instance)
5196 * PSH flag is ignored.
5197 */
5198
5199 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5200 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5201 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5202 int tcp_header_len = tp->tcp_header_len;
5203
5204 /* Timestamp header prediction: tcp_header_len
5205 * is automatically equal to th->doff*4 due to pred_flags
5206 * match.
5207 */
5208
5209 /* Check timestamp */
5210 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5211 /* No? Slow path! */
5212 if (!tcp_parse_aligned_timestamp(tp, th))
5213 goto slow_path;
5214
5215 /* If PAWS failed, check it more carefully in slow path */
5216 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5217 goto slow_path;
5218
5219 /* DO NOT update ts_recent here, if checksum fails
5220 * and timestamp was corrupted part, it will result
5221 * in a hung connection since we will drop all
5222 * future packets due to the PAWS test.
5223 */
5224 }
5225
5226 if (len <= tcp_header_len) {
5227 /* Bulk data transfer: sender */
5228 if (len == tcp_header_len) {
5229 /* Predicted packet is in window by definition.
5230 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5231 * Hence, check seq<=rcv_wup reduces to:
5232 */
5233 if (tcp_header_len ==
5234 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5235 tp->rcv_nxt == tp->rcv_wup)
5236 tcp_store_ts_recent(tp);
5237
5238 /* We know that such packets are checksummed
5239 * on entry.
5240 */
5241 tcp_ack(sk, skb, 0);
5242 __kfree_skb(skb);
5243 tcp_data_snd_check(sk);
5244 return;
5245 } else { /* Header too small */
5246 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5247 goto discard;
5248 }
5249 } else {
5250 int eaten = 0;
5251 bool fragstolen = false;
5252
5253 if (tp->ucopy.task == current &&
5254 tp->copied_seq == tp->rcv_nxt &&
5255 len - tcp_header_len <= tp->ucopy.len &&
5256 sock_owned_by_user(sk)) {
5257 __set_current_state(TASK_RUNNING);
5258
5259 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5260 /* Predicted packet is in window by definition.
5261 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5262 * Hence, check seq<=rcv_wup reduces to:
5263 */
5264 if (tcp_header_len ==
5265 (sizeof(struct tcphdr) +
5266 TCPOLEN_TSTAMP_ALIGNED) &&
5267 tp->rcv_nxt == tp->rcv_wup)
5268 tcp_store_ts_recent(tp);
5269
5270 tcp_rcv_rtt_measure_ts(sk, skb);
5271
5272 __skb_pull(skb, tcp_header_len);
5273 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5275 eaten = 1;
5276 }
5277 }
5278 if (!eaten) {
5279 if (tcp_checksum_complete_user(sk, skb))
5280 goto csum_error;
5281
5282 if ((int)skb->truesize > sk->sk_forward_alloc)
5283 goto step5;
5284
5285 /* Predicted packet is in window by definition.
5286 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5287 * Hence, check seq<=rcv_wup reduces to:
5288 */
5289 if (tcp_header_len ==
5290 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5291 tp->rcv_nxt == tp->rcv_wup)
5292 tcp_store_ts_recent(tp);
5293
5294 tcp_rcv_rtt_measure_ts(sk, skb);
5295
5296 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5297
5298 /* Bulk data transfer: receiver */
5299 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5300 &fragstolen);
5301 }
5302
5303 tcp_event_data_recv(sk, skb);
5304
5305 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5306 /* Well, only one small jumplet in fast path... */
5307 tcp_ack(sk, skb, FLAG_DATA);
5308 tcp_data_snd_check(sk);
5309 if (!inet_csk_ack_scheduled(sk))
5310 goto no_ack;
5311 }
5312
5313 __tcp_ack_snd_check(sk, 0);
5314 no_ack:
5315 if (eaten)
5316 kfree_skb_partial(skb, fragstolen);
5317 sk->sk_data_ready(sk);
5318 return;
5319 }
5320 }
5321
5322 slow_path:
5323 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5324 goto csum_error;
5325
5326 if (!th->ack && !th->rst && !th->syn)
5327 goto discard;
5328
5329 /*
5330 * Standard slow path.
5331 */
5332
5333 if (!tcp_validate_incoming(sk, skb, th, 1))
5334 return;
5335
5336 step5:
5337 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5338 goto discard;
5339
5340 tcp_rcv_rtt_measure_ts(sk, skb);
5341
5342 /* Process urgent data. */
5343 tcp_urg(sk, skb, th);
5344
5345 /* step 7: process the segment text */
5346 tcp_data_queue(sk, skb);
5347
5348 tcp_data_snd_check(sk);
5349 tcp_ack_snd_check(sk);
5350 return;
5351
5352 csum_error:
5353 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5354 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5355
5356 discard:
5357 __kfree_skb(skb);
5358 }
5359 EXPORT_SYMBOL(tcp_rcv_established);
5360
5361 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5362 {
5363 struct tcp_sock *tp = tcp_sk(sk);
5364 struct inet_connection_sock *icsk = inet_csk(sk);
5365
5366 tcp_set_state(sk, TCP_ESTABLISHED);
5367
5368 if (skb) {
5369 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5370 security_inet_conn_established(sk, skb);
5371 }
5372
5373 /* Make sure socket is routed, for correct metrics. */
5374 icsk->icsk_af_ops->rebuild_header(sk);
5375
5376 tcp_init_metrics(sk);
5377
5378 tcp_init_congestion_control(sk);
5379
5380 /* Prevent spurious tcp_cwnd_restart() on first data
5381 * packet.
5382 */
5383 tp->lsndtime = tcp_time_stamp;
5384
5385 tcp_init_buffer_space(sk);
5386
5387 if (sock_flag(sk, SOCK_KEEPOPEN))
5388 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5389
5390 if (!tp->rx_opt.snd_wscale)
5391 __tcp_fast_path_on(tp, tp->snd_wnd);
5392 else
5393 tp->pred_flags = 0;
5394
5395 if (!sock_flag(sk, SOCK_DEAD)) {
5396 sk->sk_state_change(sk);
5397 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5398 }
5399 }
5400
5401 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5402 struct tcp_fastopen_cookie *cookie)
5403 {
5404 struct tcp_sock *tp = tcp_sk(sk);
5405 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5406 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5407 bool syn_drop = false;
5408
5409 if (mss == tp->rx_opt.user_mss) {
5410 struct tcp_options_received opt;
5411
5412 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5413 tcp_clear_options(&opt);
5414 opt.user_mss = opt.mss_clamp = 0;
5415 tcp_parse_options(synack, &opt, 0, NULL);
5416 mss = opt.mss_clamp;
5417 }
5418
5419 if (!tp->syn_fastopen) {
5420 /* Ignore an unsolicited cookie */
5421 cookie->len = -1;
5422 } else if (tp->total_retrans) {
5423 /* SYN timed out and the SYN-ACK neither has a cookie nor
5424 * acknowledges data. Presumably the remote received only
5425 * the retransmitted (regular) SYNs: either the original
5426 * SYN-data or the corresponding SYN-ACK was dropped.
5427 */
5428 syn_drop = (cookie->len < 0 && data);
5429 } else if (cookie->len < 0 && !tp->syn_data) {
5430 /* We requested a cookie but didn't get it. If we did not use
5431 * the (old) exp opt format then try so next time (try_exp=1).
5432 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5433 */
5434 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5435 }
5436
5437 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5438
5439 if (data) { /* Retransmit unacked data in SYN */
5440 tcp_for_write_queue_from(data, sk) {
5441 if (data == tcp_send_head(sk) ||
5442 __tcp_retransmit_skb(sk, data))
5443 break;
5444 }
5445 tcp_rearm_rto(sk);
5446 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5447 return true;
5448 }
5449 tp->syn_data_acked = tp->syn_data;
5450 if (tp->syn_data_acked)
5451 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5452 return false;
5453 }
5454
5455 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5456 const struct tcphdr *th, unsigned int len)
5457 {
5458 struct inet_connection_sock *icsk = inet_csk(sk);
5459 struct tcp_sock *tp = tcp_sk(sk);
5460 struct tcp_fastopen_cookie foc = { .len = -1 };
5461 int saved_clamp = tp->rx_opt.mss_clamp;
5462
5463 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5464 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5465 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5466
5467 if (th->ack) {
5468 /* rfc793:
5469 * "If the state is SYN-SENT then
5470 * first check the ACK bit
5471 * If the ACK bit is set
5472 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5473 * a reset (unless the RST bit is set, if so drop
5474 * the segment and return)"
5475 */
5476 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5477 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5478 goto reset_and_undo;
5479
5480 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5481 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5482 tcp_time_stamp)) {
5483 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5484 goto reset_and_undo;
5485 }
5486
5487 /* Now ACK is acceptable.
5488 *
5489 * "If the RST bit is set
5490 * If the ACK was acceptable then signal the user "error:
5491 * connection reset", drop the segment, enter CLOSED state,
5492 * delete TCB, and return."
5493 */
5494
5495 if (th->rst) {
5496 tcp_reset(sk);
5497 goto discard;
5498 }
5499
5500 /* rfc793:
5501 * "fifth, if neither of the SYN or RST bits is set then
5502 * drop the segment and return."
5503 *
5504 * See note below!
5505 * --ANK(990513)
5506 */
5507 if (!th->syn)
5508 goto discard_and_undo;
5509
5510 /* rfc793:
5511 * "If the SYN bit is on ...
5512 * are acceptable then ...
5513 * (our SYN has been ACKed), change the connection
5514 * state to ESTABLISHED..."
5515 */
5516
5517 tcp_ecn_rcv_synack(tp, th);
5518
5519 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5520 tcp_ack(sk, skb, FLAG_SLOWPATH);
5521
5522 /* Ok.. it's good. Set up sequence numbers and
5523 * move to established.
5524 */
5525 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5526 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5527
5528 /* RFC1323: The window in SYN & SYN/ACK segments is
5529 * never scaled.
5530 */
5531 tp->snd_wnd = ntohs(th->window);
5532
5533 if (!tp->rx_opt.wscale_ok) {
5534 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5535 tp->window_clamp = min(tp->window_clamp, 65535U);
5536 }
5537
5538 if (tp->rx_opt.saw_tstamp) {
5539 tp->rx_opt.tstamp_ok = 1;
5540 tp->tcp_header_len =
5541 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5542 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5543 tcp_store_ts_recent(tp);
5544 } else {
5545 tp->tcp_header_len = sizeof(struct tcphdr);
5546 }
5547
5548 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5549 tcp_enable_fack(tp);
5550
5551 tcp_mtup_init(sk);
5552 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5553 tcp_initialize_rcv_mss(sk);
5554
5555 /* Remember, tcp_poll() does not lock socket!
5556 * Change state from SYN-SENT only after copied_seq
5557 * is initialized. */
5558 tp->copied_seq = tp->rcv_nxt;
5559
5560 smp_mb();
5561
5562 tcp_finish_connect(sk, skb);
5563
5564 if ((tp->syn_fastopen || tp->syn_data) &&
5565 tcp_rcv_fastopen_synack(sk, skb, &foc))
5566 return -1;
5567
5568 if (sk->sk_write_pending ||
5569 icsk->icsk_accept_queue.rskq_defer_accept ||
5570 icsk->icsk_ack.pingpong) {
5571 /* Save one ACK. Data will be ready after
5572 * several ticks, if write_pending is set.
5573 *
5574 * It may be deleted, but with this feature tcpdumps
5575 * look so _wonderfully_ clever, that I was not able
5576 * to stand against the temptation 8) --ANK
5577 */
5578 inet_csk_schedule_ack(sk);
5579 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5580 tcp_enter_quickack_mode(sk);
5581 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5582 TCP_DELACK_MAX, TCP_RTO_MAX);
5583
5584 discard:
5585 __kfree_skb(skb);
5586 return 0;
5587 } else {
5588 tcp_send_ack(sk);
5589 }
5590 return -1;
5591 }
5592
5593 /* No ACK in the segment */
5594
5595 if (th->rst) {
5596 /* rfc793:
5597 * "If the RST bit is set
5598 *
5599 * Otherwise (no ACK) drop the segment and return."
5600 */
5601
5602 goto discard_and_undo;
5603 }
5604
5605 /* PAWS check. */
5606 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5607 tcp_paws_reject(&tp->rx_opt, 0))
5608 goto discard_and_undo;
5609
5610 if (th->syn) {
5611 /* We see SYN without ACK. It is attempt of
5612 * simultaneous connect with crossed SYNs.
5613 * Particularly, it can be connect to self.
5614 */
5615 tcp_set_state(sk, TCP_SYN_RECV);
5616
5617 if (tp->rx_opt.saw_tstamp) {
5618 tp->rx_opt.tstamp_ok = 1;
5619 tcp_store_ts_recent(tp);
5620 tp->tcp_header_len =
5621 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5622 } else {
5623 tp->tcp_header_len = sizeof(struct tcphdr);
5624 }
5625
5626 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5627 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5628
5629 /* RFC1323: The window in SYN & SYN/ACK segments is
5630 * never scaled.
5631 */
5632 tp->snd_wnd = ntohs(th->window);
5633 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5634 tp->max_window = tp->snd_wnd;
5635
5636 tcp_ecn_rcv_syn(tp, th);
5637
5638 tcp_mtup_init(sk);
5639 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5640 tcp_initialize_rcv_mss(sk);
5641
5642 tcp_send_synack(sk);
5643 #if 0
5644 /* Note, we could accept data and URG from this segment.
5645 * There are no obstacles to make this (except that we must
5646 * either change tcp_recvmsg() to prevent it from returning data
5647 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5648 *
5649 * However, if we ignore data in ACKless segments sometimes,
5650 * we have no reasons to accept it sometimes.
5651 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5652 * is not flawless. So, discard packet for sanity.
5653 * Uncomment this return to process the data.
5654 */
5655 return -1;
5656 #else
5657 goto discard;
5658 #endif
5659 }
5660 /* "fifth, if neither of the SYN or RST bits is set then
5661 * drop the segment and return."
5662 */
5663
5664 discard_and_undo:
5665 tcp_clear_options(&tp->rx_opt);
5666 tp->rx_opt.mss_clamp = saved_clamp;
5667 goto discard;
5668
5669 reset_and_undo:
5670 tcp_clear_options(&tp->rx_opt);
5671 tp->rx_opt.mss_clamp = saved_clamp;
5672 return 1;
5673 }
5674
5675 /*
5676 * This function implements the receiving procedure of RFC 793 for
5677 * all states except ESTABLISHED and TIME_WAIT.
5678 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5679 * address independent.
5680 */
5681
5682 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5683 const struct tcphdr *th, unsigned int len)
5684 {
5685 struct tcp_sock *tp = tcp_sk(sk);
5686 struct inet_connection_sock *icsk = inet_csk(sk);
5687 struct request_sock *req;
5688 int queued = 0;
5689 bool acceptable;
5690 u32 synack_stamp;
5691
5692 tp->rx_opt.saw_tstamp = 0;
5693
5694 switch (sk->sk_state) {
5695 case TCP_CLOSE:
5696 goto discard;
5697
5698 case TCP_LISTEN:
5699 if (th->ack)
5700 return 1;
5701
5702 if (th->rst)
5703 goto discard;
5704
5705 if (th->syn) {
5706 if (th->fin)
5707 goto discard;
5708 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5709 return 1;
5710
5711 /* Now we have several options: In theory there is
5712 * nothing else in the frame. KA9Q has an option to
5713 * send data with the syn, BSD accepts data with the
5714 * syn up to the [to be] advertised window and
5715 * Solaris 2.1 gives you a protocol error. For now
5716 * we just ignore it, that fits the spec precisely
5717 * and avoids incompatibilities. It would be nice in
5718 * future to drop through and process the data.
5719 *
5720 * Now that TTCP is starting to be used we ought to
5721 * queue this data.
5722 * But, this leaves one open to an easy denial of
5723 * service attack, and SYN cookies can't defend
5724 * against this problem. So, we drop the data
5725 * in the interest of security over speed unless
5726 * it's still in use.
5727 */
5728 kfree_skb(skb);
5729 return 0;
5730 }
5731 goto discard;
5732
5733 case TCP_SYN_SENT:
5734 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5735 if (queued >= 0)
5736 return queued;
5737
5738 /* Do step6 onward by hand. */
5739 tcp_urg(sk, skb, th);
5740 __kfree_skb(skb);
5741 tcp_data_snd_check(sk);
5742 return 0;
5743 }
5744
5745 req = tp->fastopen_rsk;
5746 if (req) {
5747 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5748 sk->sk_state != TCP_FIN_WAIT1);
5749
5750 if (!tcp_check_req(sk, skb, req, true))
5751 goto discard;
5752 }
5753
5754 if (!th->ack && !th->rst && !th->syn)
5755 goto discard;
5756
5757 if (!tcp_validate_incoming(sk, skb, th, 0))
5758 return 0;
5759
5760 /* step 5: check the ACK field */
5761 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5762 FLAG_UPDATE_TS_RECENT) > 0;
5763
5764 switch (sk->sk_state) {
5765 case TCP_SYN_RECV:
5766 if (!acceptable)
5767 return 1;
5768
5769 /* Once we leave TCP_SYN_RECV, we no longer need req
5770 * so release it.
5771 */
5772 if (req) {
5773 synack_stamp = tcp_rsk(req)->snt_synack;
5774 tp->total_retrans = req->num_retrans;
5775 reqsk_fastopen_remove(sk, req, false);
5776 } else {
5777 synack_stamp = tp->lsndtime;
5778 /* Make sure socket is routed, for correct metrics. */
5779 icsk->icsk_af_ops->rebuild_header(sk);
5780 tcp_init_congestion_control(sk);
5781
5782 tcp_mtup_init(sk);
5783 tp->copied_seq = tp->rcv_nxt;
5784 tcp_init_buffer_space(sk);
5785 }
5786 smp_mb();
5787 tcp_set_state(sk, TCP_ESTABLISHED);
5788 sk->sk_state_change(sk);
5789
5790 /* Note, that this wakeup is only for marginal crossed SYN case.
5791 * Passively open sockets are not waked up, because
5792 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5793 */
5794 if (sk->sk_socket)
5795 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5796
5797 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5798 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5799 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5800 tcp_synack_rtt_meas(sk, synack_stamp);
5801
5802 if (tp->rx_opt.tstamp_ok)
5803 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5804
5805 if (req) {
5806 /* Re-arm the timer because data may have been sent out.
5807 * This is similar to the regular data transmission case
5808 * when new data has just been ack'ed.
5809 *
5810 * (TFO) - we could try to be more aggressive and
5811 * retransmitting any data sooner based on when they
5812 * are sent out.
5813 */
5814 tcp_rearm_rto(sk);
5815 } else
5816 tcp_init_metrics(sk);
5817
5818 tcp_update_pacing_rate(sk);
5819
5820 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5821 tp->lsndtime = tcp_time_stamp;
5822
5823 tcp_initialize_rcv_mss(sk);
5824 tcp_fast_path_on(tp);
5825 break;
5826
5827 case TCP_FIN_WAIT1: {
5828 struct dst_entry *dst;
5829 int tmo;
5830
5831 /* If we enter the TCP_FIN_WAIT1 state and we are a
5832 * Fast Open socket and this is the first acceptable
5833 * ACK we have received, this would have acknowledged
5834 * our SYNACK so stop the SYNACK timer.
5835 */
5836 if (req) {
5837 /* Return RST if ack_seq is invalid.
5838 * Note that RFC793 only says to generate a
5839 * DUPACK for it but for TCP Fast Open it seems
5840 * better to treat this case like TCP_SYN_RECV
5841 * above.
5842 */
5843 if (!acceptable)
5844 return 1;
5845 /* We no longer need the request sock. */
5846 reqsk_fastopen_remove(sk, req, false);
5847 tcp_rearm_rto(sk);
5848 }
5849 if (tp->snd_una != tp->write_seq)
5850 break;
5851
5852 tcp_set_state(sk, TCP_FIN_WAIT2);
5853 sk->sk_shutdown |= SEND_SHUTDOWN;
5854
5855 dst = __sk_dst_get(sk);
5856 if (dst)
5857 dst_confirm(dst);
5858
5859 if (!sock_flag(sk, SOCK_DEAD)) {
5860 /* Wake up lingering close() */
5861 sk->sk_state_change(sk);
5862 break;
5863 }
5864
5865 if (tp->linger2 < 0 ||
5866 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5867 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5868 tcp_done(sk);
5869 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5870 return 1;
5871 }
5872
5873 tmo = tcp_fin_time(sk);
5874 if (tmo > TCP_TIMEWAIT_LEN) {
5875 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5876 } else if (th->fin || sock_owned_by_user(sk)) {
5877 /* Bad case. We could lose such FIN otherwise.
5878 * It is not a big problem, but it looks confusing
5879 * and not so rare event. We still can lose it now,
5880 * if it spins in bh_lock_sock(), but it is really
5881 * marginal case.
5882 */
5883 inet_csk_reset_keepalive_timer(sk, tmo);
5884 } else {
5885 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5886 goto discard;
5887 }
5888 break;
5889 }
5890
5891 case TCP_CLOSING:
5892 if (tp->snd_una == tp->write_seq) {
5893 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5894 goto discard;
5895 }
5896 break;
5897
5898 case TCP_LAST_ACK:
5899 if (tp->snd_una == tp->write_seq) {
5900 tcp_update_metrics(sk);
5901 tcp_done(sk);
5902 goto discard;
5903 }
5904 break;
5905 }
5906
5907 /* step 6: check the URG bit */
5908 tcp_urg(sk, skb, th);
5909
5910 /* step 7: process the segment text */
5911 switch (sk->sk_state) {
5912 case TCP_CLOSE_WAIT:
5913 case TCP_CLOSING:
5914 case TCP_LAST_ACK:
5915 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5916 break;
5917 case TCP_FIN_WAIT1:
5918 case TCP_FIN_WAIT2:
5919 /* RFC 793 says to queue data in these states,
5920 * RFC 1122 says we MUST send a reset.
5921 * BSD 4.4 also does reset.
5922 */
5923 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5924 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5925 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5926 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5927 tcp_reset(sk);
5928 return 1;
5929 }
5930 }
5931 /* Fall through */
5932 case TCP_ESTABLISHED:
5933 tcp_data_queue(sk, skb);
5934 queued = 1;
5935 break;
5936 }
5937
5938 /* tcp_data could move socket to TIME-WAIT */
5939 if (sk->sk_state != TCP_CLOSE) {
5940 tcp_data_snd_check(sk);
5941 tcp_ack_snd_check(sk);
5942 }
5943
5944 if (!queued) {
5945 discard:
5946 __kfree_skb(skb);
5947 }
5948 return 0;
5949 }
5950 EXPORT_SYMBOL(tcp_rcv_state_process);
5951
5952 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5953 {
5954 struct inet_request_sock *ireq = inet_rsk(req);
5955
5956 if (family == AF_INET)
5957 net_dbg_ratelimited("drop open request from %pI4/%u\n",
5958 &ireq->ir_rmt_addr, port);
5959 #if IS_ENABLED(CONFIG_IPV6)
5960 else if (family == AF_INET6)
5961 net_dbg_ratelimited("drop open request from %pI6/%u\n",
5962 &ireq->ir_v6_rmt_addr, port);
5963 #endif
5964 }
5965
5966 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
5967 *
5968 * If we receive a SYN packet with these bits set, it means a
5969 * network is playing bad games with TOS bits. In order to
5970 * avoid possible false congestion notifications, we disable
5971 * TCP ECN negotiation.
5972 *
5973 * Exception: tcp_ca wants ECN. This is required for DCTCP
5974 * congestion control: Linux DCTCP asserts ECT on all packets,
5975 * including SYN, which is most optimal solution; however,
5976 * others, such as FreeBSD do not.
5977 */
5978 static void tcp_ecn_create_request(struct request_sock *req,
5979 const struct sk_buff *skb,
5980 const struct sock *listen_sk,
5981 const struct dst_entry *dst)
5982 {
5983 const struct tcphdr *th = tcp_hdr(skb);
5984 const struct net *net = sock_net(listen_sk);
5985 bool th_ecn = th->ece && th->cwr;
5986 bool ect, ecn_ok;
5987
5988 if (!th_ecn)
5989 return;
5990
5991 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
5992 ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN);
5993
5994 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk))
5995 inet_rsk(req)->ecn_ok = 1;
5996 }
5997
5998 static void tcp_openreq_init(struct request_sock *req,
5999 const struct tcp_options_received *rx_opt,
6000 struct sk_buff *skb, const struct sock *sk)
6001 {
6002 struct inet_request_sock *ireq = inet_rsk(req);
6003
6004 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6005 req->cookie_ts = 0;
6006 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6007 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6008 tcp_rsk(req)->snt_synack = tcp_time_stamp;
6009 tcp_rsk(req)->last_oow_ack_time = 0;
6010 req->mss = rx_opt->mss_clamp;
6011 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6012 ireq->tstamp_ok = rx_opt->tstamp_ok;
6013 ireq->sack_ok = rx_opt->sack_ok;
6014 ireq->snd_wscale = rx_opt->snd_wscale;
6015 ireq->wscale_ok = rx_opt->wscale_ok;
6016 ireq->acked = 0;
6017 ireq->ecn_ok = 0;
6018 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6019 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6020 ireq->ir_mark = inet_request_mark(sk, skb);
6021 }
6022
6023 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6024 struct sock *sk_listener)
6025 {
6026 struct request_sock *req = reqsk_alloc(ops, sk_listener);
6027
6028 if (req) {
6029 struct inet_request_sock *ireq = inet_rsk(req);
6030
6031 kmemcheck_annotate_bitfield(ireq, flags);
6032 ireq->opt = NULL;
6033 atomic64_set(&ireq->ir_cookie, 0);
6034 ireq->ireq_state = TCP_NEW_SYN_RECV;
6035 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6036 ireq->ireq_family = sk_listener->sk_family;
6037 }
6038
6039 return req;
6040 }
6041 EXPORT_SYMBOL(inet_reqsk_alloc);
6042
6043 /*
6044 * Return true if a syncookie should be sent
6045 */
6046 static bool tcp_syn_flood_action(struct sock *sk,
6047 const struct sk_buff *skb,
6048 const char *proto)
6049 {
6050 const char *msg = "Dropping request";
6051 bool want_cookie = false;
6052 struct listen_sock *lopt;
6053
6054 #ifdef CONFIG_SYN_COOKIES
6055 if (sysctl_tcp_syncookies) {
6056 msg = "Sending cookies";
6057 want_cookie = true;
6058 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6059 } else
6060 #endif
6061 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6062
6063 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
6064 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
6065 lopt->synflood_warned = 1;
6066 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6067 proto, ntohs(tcp_hdr(skb)->dest), msg);
6068 }
6069 return want_cookie;
6070 }
6071
6072 static void tcp_reqsk_record_syn(const struct sock *sk,
6073 struct request_sock *req,
6074 const struct sk_buff *skb)
6075 {
6076 if (tcp_sk(sk)->save_syn) {
6077 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6078 u32 *copy;
6079
6080 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6081 if (copy) {
6082 copy[0] = len;
6083 memcpy(&copy[1], skb_network_header(skb), len);
6084 req->saved_syn = copy;
6085 }
6086 }
6087 }
6088
6089 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6090 const struct tcp_request_sock_ops *af_ops,
6091 struct sock *sk, struct sk_buff *skb)
6092 {
6093 struct tcp_options_received tmp_opt;
6094 struct request_sock *req;
6095 struct tcp_sock *tp = tcp_sk(sk);
6096 struct dst_entry *dst = NULL;
6097 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6098 bool want_cookie = false, fastopen;
6099 struct flowi fl;
6100 struct tcp_fastopen_cookie foc = { .len = -1 };
6101 int err;
6102
6103
6104 /* TW buckets are converted to open requests without
6105 * limitations, they conserve resources and peer is
6106 * evidently real one.
6107 */
6108 if ((sysctl_tcp_syncookies == 2 ||
6109 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6110 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6111 if (!want_cookie)
6112 goto drop;
6113 }
6114
6115
6116 /* Accept backlog is full. If we have already queued enough
6117 * of warm entries in syn queue, drop request. It is better than
6118 * clogging syn queue with openreqs with exponentially increasing
6119 * timeout.
6120 */
6121 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6122 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6123 goto drop;
6124 }
6125
6126 req = inet_reqsk_alloc(rsk_ops, sk);
6127 if (!req)
6128 goto drop;
6129
6130 tcp_rsk(req)->af_specific = af_ops;
6131
6132 tcp_clear_options(&tmp_opt);
6133 tmp_opt.mss_clamp = af_ops->mss_clamp;
6134 tmp_opt.user_mss = tp->rx_opt.user_mss;
6135 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6136
6137 if (want_cookie && !tmp_opt.saw_tstamp)
6138 tcp_clear_options(&tmp_opt);
6139
6140 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6141 tcp_openreq_init(req, &tmp_opt, skb, sk);
6142
6143 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6144 inet_rsk(req)->ir_iif = sk->sk_bound_dev_if;
6145
6146 af_ops->init_req(req, sk, skb);
6147
6148 if (security_inet_conn_request(sk, skb, req))
6149 goto drop_and_free;
6150
6151 if (!want_cookie && !isn) {
6152 /* VJ's idea. We save last timestamp seen
6153 * from the destination in peer table, when entering
6154 * state TIME-WAIT, and check against it before
6155 * accepting new connection request.
6156 *
6157 * If "isn" is not zero, this request hit alive
6158 * timewait bucket, so that all the necessary checks
6159 * are made in the function processing timewait state.
6160 */
6161 if (tcp_death_row.sysctl_tw_recycle) {
6162 bool strict;
6163
6164 dst = af_ops->route_req(sk, &fl, req, &strict);
6165
6166 if (dst && strict &&
6167 !tcp_peer_is_proven(req, dst, true,
6168 tmp_opt.saw_tstamp)) {
6169 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6170 goto drop_and_release;
6171 }
6172 }
6173 /* Kill the following clause, if you dislike this way. */
6174 else if (!sysctl_tcp_syncookies &&
6175 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6176 (sysctl_max_syn_backlog >> 2)) &&
6177 !tcp_peer_is_proven(req, dst, false,
6178 tmp_opt.saw_tstamp)) {
6179 /* Without syncookies last quarter of
6180 * backlog is filled with destinations,
6181 * proven to be alive.
6182 * It means that we continue to communicate
6183 * to destinations, already remembered
6184 * to the moment of synflood.
6185 */
6186 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6187 rsk_ops->family);
6188 goto drop_and_release;
6189 }
6190
6191 isn = af_ops->init_seq(skb);
6192 }
6193 if (!dst) {
6194 dst = af_ops->route_req(sk, &fl, req, NULL);
6195 if (!dst)
6196 goto drop_and_free;
6197 }
6198
6199 tcp_ecn_create_request(req, skb, sk, dst);
6200
6201 if (want_cookie) {
6202 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6203 req->cookie_ts = tmp_opt.tstamp_ok;
6204 if (!tmp_opt.tstamp_ok)
6205 inet_rsk(req)->ecn_ok = 0;
6206 }
6207
6208 tcp_rsk(req)->snt_isn = isn;
6209 tcp_openreq_init_rwin(req, sk, dst);
6210 fastopen = !want_cookie &&
6211 tcp_try_fastopen(sk, skb, req, &foc, dst);
6212 err = af_ops->send_synack(sk, dst, &fl, req,
6213 skb_get_queue_mapping(skb), &foc);
6214 if (!fastopen) {
6215 if (err || want_cookie)
6216 goto drop_and_free;
6217
6218 tcp_rsk(req)->tfo_listener = false;
6219 af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6220 }
6221 tcp_reqsk_record_syn(sk, req, skb);
6222
6223 return 0;
6224
6225 drop_and_release:
6226 dst_release(dst);
6227 drop_and_free:
6228 reqsk_free(req);
6229 drop:
6230 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6231 return 0;
6232 }
6233 EXPORT_SYMBOL(tcp_conn_request);
This page took 0.225571 seconds and 4 git commands to generate.