5073eefa6fae0caf4fd2bcd89c873279f77a2f36
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 EXPORT_SYMBOL(sysctl_tcp_reordering);
85 int sysctl_tcp_dsack __read_mostly = 1;
86 int sysctl_tcp_app_win __read_mostly = 31;
87 int sysctl_tcp_adv_win_scale __read_mostly = 1;
88 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit = 100;
92
93 int sysctl_tcp_stdurg __read_mostly;
94 int sysctl_tcp_rfc1337 __read_mostly;
95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96 int sysctl_tcp_frto __read_mostly = 2;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102
103 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
104 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
105 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
106 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
107 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
108 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
109 #define FLAG_ECE 0x40 /* ECE in this ACK */
110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
115 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
116
117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125 /* Adapt the MSS value used to make delayed ack decision to the
126 * real world.
127 */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130 struct inet_connection_sock *icsk = inet_csk(sk);
131 const unsigned int lss = icsk->icsk_ack.last_seg_size;
132 unsigned int len;
133
134 icsk->icsk_ack.last_seg_size = 0;
135
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
138 */
139 len = skb_shinfo(skb)->gso_size ? : skb->len;
140 if (len >= icsk->icsk_ack.rcv_mss) {
141 icsk->icsk_ack.rcv_mss = len;
142 } else {
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
145 *
146 * "len" is invariant segment length, including TCP header.
147 */
148 len += skb->data - skb_transport_header(skb);
149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
154 */
155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
160 */
161 len -= tcp_sk(sk)->tcp_header_len;
162 icsk->icsk_ack.last_seg_size = len;
163 if (len == lss) {
164 icsk->icsk_ack.rcv_mss = len;
165 return;
166 }
167 }
168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171 }
172 }
173
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178
179 if (quickacks == 0)
180 quickacks = 2;
181 if (quickacks > icsk->icsk_ack.quick)
182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187 struct inet_connection_sock *icsk = inet_csk(sk);
188 tcp_incr_quickack(sk);
189 icsk->icsk_ack.pingpong = 0;
190 icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192
193 /* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
195 */
196
197 static inline bool tcp_in_quickack_mode(const struct sock *sk)
198 {
199 const struct inet_connection_sock *icsk = inet_csk(sk);
200
201 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
202 }
203
204 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 {
206 if (tp->ecn_flags & TCP_ECN_OK)
207 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208 }
209
210 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211 {
212 if (tcp_hdr(skb)->cwr)
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 {
218 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219 }
220
221 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222 {
223 if (!(tp->ecn_flags & TCP_ECN_OK))
224 return;
225
226 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
227 case INET_ECN_NOT_ECT:
228 /* Funny extension: if ECT is not set on a segment,
229 * and we already seen ECT on a previous segment,
230 * it is probably a retransmit.
231 */
232 if (tp->ecn_flags & TCP_ECN_SEEN)
233 tcp_enter_quickack_mode((struct sock *)tp);
234 break;
235 case INET_ECN_CE:
236 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
237 /* Better not delay acks, sender can have a very low cwnd */
238 tcp_enter_quickack_mode((struct sock *)tp);
239 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
240 }
241 /* fallinto */
242 default:
243 tp->ecn_flags |= TCP_ECN_SEEN;
244 }
245 }
246
247 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
248 {
249 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
250 tp->ecn_flags &= ~TCP_ECN_OK;
251 }
252
253 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
254 {
255 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
256 tp->ecn_flags &= ~TCP_ECN_OK;
257 }
258
259 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
260 {
261 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
262 return true;
263 return false;
264 }
265
266 /* Buffer size and advertised window tuning.
267 *
268 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
269 */
270
271 static void tcp_sndbuf_expand(struct sock *sk)
272 {
273 const struct tcp_sock *tp = tcp_sk(sk);
274 int sndmem, per_mss;
275 u32 nr_segs;
276
277 /* Worst case is non GSO/TSO : each frame consumes one skb
278 * and skb->head is kmalloced using power of two area of memory
279 */
280 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
281 MAX_TCP_HEADER +
282 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
283
284 per_mss = roundup_pow_of_two(per_mss) +
285 SKB_DATA_ALIGN(sizeof(struct sk_buff));
286
287 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
288 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
289
290 /* Fast Recovery (RFC 5681 3.2) :
291 * Cubic needs 1.7 factor, rounded to 2 to include
292 * extra cushion (application might react slowly to POLLOUT)
293 */
294 sndmem = 2 * nr_segs * per_mss;
295
296 if (sk->sk_sndbuf < sndmem)
297 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
298 }
299
300 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
301 *
302 * All tcp_full_space() is split to two parts: "network" buffer, allocated
303 * forward and advertised in receiver window (tp->rcv_wnd) and
304 * "application buffer", required to isolate scheduling/application
305 * latencies from network.
306 * window_clamp is maximal advertised window. It can be less than
307 * tcp_full_space(), in this case tcp_full_space() - window_clamp
308 * is reserved for "application" buffer. The less window_clamp is
309 * the smoother our behaviour from viewpoint of network, but the lower
310 * throughput and the higher sensitivity of the connection to losses. 8)
311 *
312 * rcv_ssthresh is more strict window_clamp used at "slow start"
313 * phase to predict further behaviour of this connection.
314 * It is used for two goals:
315 * - to enforce header prediction at sender, even when application
316 * requires some significant "application buffer". It is check #1.
317 * - to prevent pruning of receive queue because of misprediction
318 * of receiver window. Check #2.
319 *
320 * The scheme does not work when sender sends good segments opening
321 * window and then starts to feed us spaghetti. But it should work
322 * in common situations. Otherwise, we have to rely on queue collapsing.
323 */
324
325 /* Slow part of check#2. */
326 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
327 {
328 struct tcp_sock *tp = tcp_sk(sk);
329 /* Optimize this! */
330 int truesize = tcp_win_from_space(skb->truesize) >> 1;
331 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
332
333 while (tp->rcv_ssthresh <= window) {
334 if (truesize <= skb->len)
335 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
336
337 truesize >>= 1;
338 window >>= 1;
339 }
340 return 0;
341 }
342
343 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
344 {
345 struct tcp_sock *tp = tcp_sk(sk);
346
347 /* Check #1 */
348 if (tp->rcv_ssthresh < tp->window_clamp &&
349 (int)tp->rcv_ssthresh < tcp_space(sk) &&
350 !sk_under_memory_pressure(sk)) {
351 int incr;
352
353 /* Check #2. Increase window, if skb with such overhead
354 * will fit to rcvbuf in future.
355 */
356 if (tcp_win_from_space(skb->truesize) <= skb->len)
357 incr = 2 * tp->advmss;
358 else
359 incr = __tcp_grow_window(sk, skb);
360
361 if (incr) {
362 incr = max_t(int, incr, 2 * skb->len);
363 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
364 tp->window_clamp);
365 inet_csk(sk)->icsk_ack.quick |= 1;
366 }
367 }
368 }
369
370 /* 3. Tuning rcvbuf, when connection enters established state. */
371 static void tcp_fixup_rcvbuf(struct sock *sk)
372 {
373 u32 mss = tcp_sk(sk)->advmss;
374 int rcvmem;
375
376 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
377 tcp_default_init_rwnd(mss);
378
379 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
380 * Allow enough cushion so that sender is not limited by our window
381 */
382 if (sysctl_tcp_moderate_rcvbuf)
383 rcvmem <<= 2;
384
385 if (sk->sk_rcvbuf < rcvmem)
386 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
387 }
388
389 /* 4. Try to fixup all. It is made immediately after connection enters
390 * established state.
391 */
392 void tcp_init_buffer_space(struct sock *sk)
393 {
394 struct tcp_sock *tp = tcp_sk(sk);
395 int maxwin;
396
397 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
398 tcp_fixup_rcvbuf(sk);
399 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
400 tcp_sndbuf_expand(sk);
401
402 tp->rcvq_space.space = tp->rcv_wnd;
403 tp->rcvq_space.time = tcp_time_stamp;
404 tp->rcvq_space.seq = tp->copied_seq;
405
406 maxwin = tcp_full_space(sk);
407
408 if (tp->window_clamp >= maxwin) {
409 tp->window_clamp = maxwin;
410
411 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
412 tp->window_clamp = max(maxwin -
413 (maxwin >> sysctl_tcp_app_win),
414 4 * tp->advmss);
415 }
416
417 /* Force reservation of one segment. */
418 if (sysctl_tcp_app_win &&
419 tp->window_clamp > 2 * tp->advmss &&
420 tp->window_clamp + tp->advmss > maxwin)
421 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
422
423 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
424 tp->snd_cwnd_stamp = tcp_time_stamp;
425 }
426
427 /* 5. Recalculate window clamp after socket hit its memory bounds. */
428 static void tcp_clamp_window(struct sock *sk)
429 {
430 struct tcp_sock *tp = tcp_sk(sk);
431 struct inet_connection_sock *icsk = inet_csk(sk);
432
433 icsk->icsk_ack.quick = 0;
434
435 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
436 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
437 !sk_under_memory_pressure(sk) &&
438 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
439 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
440 sysctl_tcp_rmem[2]);
441 }
442 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
443 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
444 }
445
446 /* Initialize RCV_MSS value.
447 * RCV_MSS is an our guess about MSS used by the peer.
448 * We haven't any direct information about the MSS.
449 * It's better to underestimate the RCV_MSS rather than overestimate.
450 * Overestimations make us ACKing less frequently than needed.
451 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
452 */
453 void tcp_initialize_rcv_mss(struct sock *sk)
454 {
455 const struct tcp_sock *tp = tcp_sk(sk);
456 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
457
458 hint = min(hint, tp->rcv_wnd / 2);
459 hint = min(hint, TCP_MSS_DEFAULT);
460 hint = max(hint, TCP_MIN_MSS);
461
462 inet_csk(sk)->icsk_ack.rcv_mss = hint;
463 }
464 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
465
466 /* Receiver "autotuning" code.
467 *
468 * The algorithm for RTT estimation w/o timestamps is based on
469 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
470 * <http://public.lanl.gov/radiant/pubs.html#DRS>
471 *
472 * More detail on this code can be found at
473 * <http://staff.psc.edu/jheffner/>,
474 * though this reference is out of date. A new paper
475 * is pending.
476 */
477 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
478 {
479 u32 new_sample = tp->rcv_rtt_est.rtt;
480 long m = sample;
481
482 if (m == 0)
483 m = 1;
484
485 if (new_sample != 0) {
486 /* If we sample in larger samples in the non-timestamp
487 * case, we could grossly overestimate the RTT especially
488 * with chatty applications or bulk transfer apps which
489 * are stalled on filesystem I/O.
490 *
491 * Also, since we are only going for a minimum in the
492 * non-timestamp case, we do not smooth things out
493 * else with timestamps disabled convergence takes too
494 * long.
495 */
496 if (!win_dep) {
497 m -= (new_sample >> 3);
498 new_sample += m;
499 } else {
500 m <<= 3;
501 if (m < new_sample)
502 new_sample = m;
503 }
504 } else {
505 /* No previous measure. */
506 new_sample = m << 3;
507 }
508
509 if (tp->rcv_rtt_est.rtt != new_sample)
510 tp->rcv_rtt_est.rtt = new_sample;
511 }
512
513 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
514 {
515 if (tp->rcv_rtt_est.time == 0)
516 goto new_measure;
517 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
518 return;
519 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
520
521 new_measure:
522 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
523 tp->rcv_rtt_est.time = tcp_time_stamp;
524 }
525
526 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
527 const struct sk_buff *skb)
528 {
529 struct tcp_sock *tp = tcp_sk(sk);
530 if (tp->rx_opt.rcv_tsecr &&
531 (TCP_SKB_CB(skb)->end_seq -
532 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
533 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
534 }
535
536 /*
537 * This function should be called every time data is copied to user space.
538 * It calculates the appropriate TCP receive buffer space.
539 */
540 void tcp_rcv_space_adjust(struct sock *sk)
541 {
542 struct tcp_sock *tp = tcp_sk(sk);
543 int time;
544 int copied;
545
546 time = tcp_time_stamp - tp->rcvq_space.time;
547 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
548 return;
549
550 /* Number of bytes copied to user in last RTT */
551 copied = tp->copied_seq - tp->rcvq_space.seq;
552 if (copied <= tp->rcvq_space.space)
553 goto new_measure;
554
555 /* A bit of theory :
556 * copied = bytes received in previous RTT, our base window
557 * To cope with packet losses, we need a 2x factor
558 * To cope with slow start, and sender growing its cwin by 100 %
559 * every RTT, we need a 4x factor, because the ACK we are sending
560 * now is for the next RTT, not the current one :
561 * <prev RTT . ><current RTT .. ><next RTT .... >
562 */
563
564 if (sysctl_tcp_moderate_rcvbuf &&
565 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
566 int rcvwin, rcvmem, rcvbuf;
567
568 /* minimal window to cope with packet losses, assuming
569 * steady state. Add some cushion because of small variations.
570 */
571 rcvwin = (copied << 1) + 16 * tp->advmss;
572
573 /* If rate increased by 25%,
574 * assume slow start, rcvwin = 3 * copied
575 * If rate increased by 50%,
576 * assume sender can use 2x growth, rcvwin = 4 * copied
577 */
578 if (copied >=
579 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
580 if (copied >=
581 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
582 rcvwin <<= 1;
583 else
584 rcvwin += (rcvwin >> 1);
585 }
586
587 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
588 while (tcp_win_from_space(rcvmem) < tp->advmss)
589 rcvmem += 128;
590
591 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
592 if (rcvbuf > sk->sk_rcvbuf) {
593 sk->sk_rcvbuf = rcvbuf;
594
595 /* Make the window clamp follow along. */
596 tp->window_clamp = rcvwin;
597 }
598 }
599 tp->rcvq_space.space = copied;
600
601 new_measure:
602 tp->rcvq_space.seq = tp->copied_seq;
603 tp->rcvq_space.time = tcp_time_stamp;
604 }
605
606 /* There is something which you must keep in mind when you analyze the
607 * behavior of the tp->ato delayed ack timeout interval. When a
608 * connection starts up, we want to ack as quickly as possible. The
609 * problem is that "good" TCP's do slow start at the beginning of data
610 * transmission. The means that until we send the first few ACK's the
611 * sender will sit on his end and only queue most of his data, because
612 * he can only send snd_cwnd unacked packets at any given time. For
613 * each ACK we send, he increments snd_cwnd and transmits more of his
614 * queue. -DaveM
615 */
616 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
617 {
618 struct tcp_sock *tp = tcp_sk(sk);
619 struct inet_connection_sock *icsk = inet_csk(sk);
620 u32 now;
621
622 inet_csk_schedule_ack(sk);
623
624 tcp_measure_rcv_mss(sk, skb);
625
626 tcp_rcv_rtt_measure(tp);
627
628 now = tcp_time_stamp;
629
630 if (!icsk->icsk_ack.ato) {
631 /* The _first_ data packet received, initialize
632 * delayed ACK engine.
633 */
634 tcp_incr_quickack(sk);
635 icsk->icsk_ack.ato = TCP_ATO_MIN;
636 } else {
637 int m = now - icsk->icsk_ack.lrcvtime;
638
639 if (m <= TCP_ATO_MIN / 2) {
640 /* The fastest case is the first. */
641 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
642 } else if (m < icsk->icsk_ack.ato) {
643 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
644 if (icsk->icsk_ack.ato > icsk->icsk_rto)
645 icsk->icsk_ack.ato = icsk->icsk_rto;
646 } else if (m > icsk->icsk_rto) {
647 /* Too long gap. Apparently sender failed to
648 * restart window, so that we send ACKs quickly.
649 */
650 tcp_incr_quickack(sk);
651 sk_mem_reclaim(sk);
652 }
653 }
654 icsk->icsk_ack.lrcvtime = now;
655
656 TCP_ECN_check_ce(tp, skb);
657
658 if (skb->len >= 128)
659 tcp_grow_window(sk, skb);
660 }
661
662 /* Called to compute a smoothed rtt estimate. The data fed to this
663 * routine either comes from timestamps, or from segments that were
664 * known _not_ to have been retransmitted [see Karn/Partridge
665 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
666 * piece by Van Jacobson.
667 * NOTE: the next three routines used to be one big routine.
668 * To save cycles in the RFC 1323 implementation it was better to break
669 * it up into three procedures. -- erics
670 */
671 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
672 {
673 struct tcp_sock *tp = tcp_sk(sk);
674 long m = mrtt_us; /* RTT */
675 u32 srtt = tp->srtt_us;
676
677 /* The following amusing code comes from Jacobson's
678 * article in SIGCOMM '88. Note that rtt and mdev
679 * are scaled versions of rtt and mean deviation.
680 * This is designed to be as fast as possible
681 * m stands for "measurement".
682 *
683 * On a 1990 paper the rto value is changed to:
684 * RTO = rtt + 4 * mdev
685 *
686 * Funny. This algorithm seems to be very broken.
687 * These formulae increase RTO, when it should be decreased, increase
688 * too slowly, when it should be increased quickly, decrease too quickly
689 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
690 * does not matter how to _calculate_ it. Seems, it was trap
691 * that VJ failed to avoid. 8)
692 */
693 if (srtt != 0) {
694 m -= (srtt >> 3); /* m is now error in rtt est */
695 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
696 if (m < 0) {
697 m = -m; /* m is now abs(error) */
698 m -= (tp->mdev_us >> 2); /* similar update on mdev */
699 /* This is similar to one of Eifel findings.
700 * Eifel blocks mdev updates when rtt decreases.
701 * This solution is a bit different: we use finer gain
702 * for mdev in this case (alpha*beta).
703 * Like Eifel it also prevents growth of rto,
704 * but also it limits too fast rto decreases,
705 * happening in pure Eifel.
706 */
707 if (m > 0)
708 m >>= 3;
709 } else {
710 m -= (tp->mdev_us >> 2); /* similar update on mdev */
711 }
712 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
713 if (tp->mdev_us > tp->mdev_max_us) {
714 tp->mdev_max_us = tp->mdev_us;
715 if (tp->mdev_max_us > tp->rttvar_us)
716 tp->rttvar_us = tp->mdev_max_us;
717 }
718 if (after(tp->snd_una, tp->rtt_seq)) {
719 if (tp->mdev_max_us < tp->rttvar_us)
720 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
721 tp->rtt_seq = tp->snd_nxt;
722 tp->mdev_max_us = tcp_rto_min_us(sk);
723 }
724 } else {
725 /* no previous measure. */
726 srtt = m << 3; /* take the measured time to be rtt */
727 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
728 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
729 tp->mdev_max_us = tp->rttvar_us;
730 tp->rtt_seq = tp->snd_nxt;
731 }
732 tp->srtt_us = max(1U, srtt);
733 }
734
735 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
736 * Note: TCP stack does not yet implement pacing.
737 * FQ packet scheduler can be used to implement cheap but effective
738 * TCP pacing, to smooth the burst on large writes when packets
739 * in flight is significantly lower than cwnd (or rwin)
740 */
741 static void tcp_update_pacing_rate(struct sock *sk)
742 {
743 const struct tcp_sock *tp = tcp_sk(sk);
744 u64 rate;
745
746 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
747 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
748
749 rate *= max(tp->snd_cwnd, tp->packets_out);
750
751 if (likely(tp->srtt_us))
752 do_div(rate, tp->srtt_us);
753
754 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
755 * without any lock. We want to make sure compiler wont store
756 * intermediate values in this location.
757 */
758 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
759 sk->sk_max_pacing_rate);
760 }
761
762 /* Calculate rto without backoff. This is the second half of Van Jacobson's
763 * routine referred to above.
764 */
765 static void tcp_set_rto(struct sock *sk)
766 {
767 const struct tcp_sock *tp = tcp_sk(sk);
768 /* Old crap is replaced with new one. 8)
769 *
770 * More seriously:
771 * 1. If rtt variance happened to be less 50msec, it is hallucination.
772 * It cannot be less due to utterly erratic ACK generation made
773 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
774 * to do with delayed acks, because at cwnd>2 true delack timeout
775 * is invisible. Actually, Linux-2.4 also generates erratic
776 * ACKs in some circumstances.
777 */
778 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
779
780 /* 2. Fixups made earlier cannot be right.
781 * If we do not estimate RTO correctly without them,
782 * all the algo is pure shit and should be replaced
783 * with correct one. It is exactly, which we pretend to do.
784 */
785
786 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
787 * guarantees that rto is higher.
788 */
789 tcp_bound_rto(sk);
790 }
791
792 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
793 {
794 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
795
796 if (!cwnd)
797 cwnd = TCP_INIT_CWND;
798 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
799 }
800
801 /*
802 * Packet counting of FACK is based on in-order assumptions, therefore TCP
803 * disables it when reordering is detected
804 */
805 void tcp_disable_fack(struct tcp_sock *tp)
806 {
807 /* RFC3517 uses different metric in lost marker => reset on change */
808 if (tcp_is_fack(tp))
809 tp->lost_skb_hint = NULL;
810 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
811 }
812
813 /* Take a notice that peer is sending D-SACKs */
814 static void tcp_dsack_seen(struct tcp_sock *tp)
815 {
816 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
817 }
818
819 static void tcp_update_reordering(struct sock *sk, const int metric,
820 const int ts)
821 {
822 struct tcp_sock *tp = tcp_sk(sk);
823 if (metric > tp->reordering) {
824 int mib_idx;
825
826 tp->reordering = min(TCP_MAX_REORDERING, metric);
827
828 /* This exciting event is worth to be remembered. 8) */
829 if (ts)
830 mib_idx = LINUX_MIB_TCPTSREORDER;
831 else if (tcp_is_reno(tp))
832 mib_idx = LINUX_MIB_TCPRENOREORDER;
833 else if (tcp_is_fack(tp))
834 mib_idx = LINUX_MIB_TCPFACKREORDER;
835 else
836 mib_idx = LINUX_MIB_TCPSACKREORDER;
837
838 NET_INC_STATS_BH(sock_net(sk), mib_idx);
839 #if FASTRETRANS_DEBUG > 1
840 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
841 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
842 tp->reordering,
843 tp->fackets_out,
844 tp->sacked_out,
845 tp->undo_marker ? tp->undo_retrans : 0);
846 #endif
847 tcp_disable_fack(tp);
848 }
849
850 if (metric > 0)
851 tcp_disable_early_retrans(tp);
852 }
853
854 /* This must be called before lost_out is incremented */
855 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
856 {
857 if ((tp->retransmit_skb_hint == NULL) ||
858 before(TCP_SKB_CB(skb)->seq,
859 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
860 tp->retransmit_skb_hint = skb;
861
862 if (!tp->lost_out ||
863 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
864 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
865 }
866
867 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
868 {
869 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
870 tcp_verify_retransmit_hint(tp, skb);
871
872 tp->lost_out += tcp_skb_pcount(skb);
873 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
874 }
875 }
876
877 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
878 struct sk_buff *skb)
879 {
880 tcp_verify_retransmit_hint(tp, skb);
881
882 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
883 tp->lost_out += tcp_skb_pcount(skb);
884 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
885 }
886 }
887
888 /* This procedure tags the retransmission queue when SACKs arrive.
889 *
890 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
891 * Packets in queue with these bits set are counted in variables
892 * sacked_out, retrans_out and lost_out, correspondingly.
893 *
894 * Valid combinations are:
895 * Tag InFlight Description
896 * 0 1 - orig segment is in flight.
897 * S 0 - nothing flies, orig reached receiver.
898 * L 0 - nothing flies, orig lost by net.
899 * R 2 - both orig and retransmit are in flight.
900 * L|R 1 - orig is lost, retransmit is in flight.
901 * S|R 1 - orig reached receiver, retrans is still in flight.
902 * (L|S|R is logically valid, it could occur when L|R is sacked,
903 * but it is equivalent to plain S and code short-curcuits it to S.
904 * L|S is logically invalid, it would mean -1 packet in flight 8))
905 *
906 * These 6 states form finite state machine, controlled by the following events:
907 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
908 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
909 * 3. Loss detection event of two flavors:
910 * A. Scoreboard estimator decided the packet is lost.
911 * A'. Reno "three dupacks" marks head of queue lost.
912 * A''. Its FACK modification, head until snd.fack is lost.
913 * B. SACK arrives sacking SND.NXT at the moment, when the
914 * segment was retransmitted.
915 * 4. D-SACK added new rule: D-SACK changes any tag to S.
916 *
917 * It is pleasant to note, that state diagram turns out to be commutative,
918 * so that we are allowed not to be bothered by order of our actions,
919 * when multiple events arrive simultaneously. (see the function below).
920 *
921 * Reordering detection.
922 * --------------------
923 * Reordering metric is maximal distance, which a packet can be displaced
924 * in packet stream. With SACKs we can estimate it:
925 *
926 * 1. SACK fills old hole and the corresponding segment was not
927 * ever retransmitted -> reordering. Alas, we cannot use it
928 * when segment was retransmitted.
929 * 2. The last flaw is solved with D-SACK. D-SACK arrives
930 * for retransmitted and already SACKed segment -> reordering..
931 * Both of these heuristics are not used in Loss state, when we cannot
932 * account for retransmits accurately.
933 *
934 * SACK block validation.
935 * ----------------------
936 *
937 * SACK block range validation checks that the received SACK block fits to
938 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
939 * Note that SND.UNA is not included to the range though being valid because
940 * it means that the receiver is rather inconsistent with itself reporting
941 * SACK reneging when it should advance SND.UNA. Such SACK block this is
942 * perfectly valid, however, in light of RFC2018 which explicitly states
943 * that "SACK block MUST reflect the newest segment. Even if the newest
944 * segment is going to be discarded ...", not that it looks very clever
945 * in case of head skb. Due to potentional receiver driven attacks, we
946 * choose to avoid immediate execution of a walk in write queue due to
947 * reneging and defer head skb's loss recovery to standard loss recovery
948 * procedure that will eventually trigger (nothing forbids us doing this).
949 *
950 * Implements also blockage to start_seq wrap-around. Problem lies in the
951 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
952 * there's no guarantee that it will be before snd_nxt (n). The problem
953 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
954 * wrap (s_w):
955 *
956 * <- outs wnd -> <- wrapzone ->
957 * u e n u_w e_w s n_w
958 * | | | | | | |
959 * |<------------+------+----- TCP seqno space --------------+---------->|
960 * ...-- <2^31 ->| |<--------...
961 * ...---- >2^31 ------>| |<--------...
962 *
963 * Current code wouldn't be vulnerable but it's better still to discard such
964 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
965 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
966 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
967 * equal to the ideal case (infinite seqno space without wrap caused issues).
968 *
969 * With D-SACK the lower bound is extended to cover sequence space below
970 * SND.UNA down to undo_marker, which is the last point of interest. Yet
971 * again, D-SACK block must not to go across snd_una (for the same reason as
972 * for the normal SACK blocks, explained above). But there all simplicity
973 * ends, TCP might receive valid D-SACKs below that. As long as they reside
974 * fully below undo_marker they do not affect behavior in anyway and can
975 * therefore be safely ignored. In rare cases (which are more or less
976 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
977 * fragmentation and packet reordering past skb's retransmission. To consider
978 * them correctly, the acceptable range must be extended even more though
979 * the exact amount is rather hard to quantify. However, tp->max_window can
980 * be used as an exaggerated estimate.
981 */
982 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
983 u32 start_seq, u32 end_seq)
984 {
985 /* Too far in future, or reversed (interpretation is ambiguous) */
986 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
987 return false;
988
989 /* Nasty start_seq wrap-around check (see comments above) */
990 if (!before(start_seq, tp->snd_nxt))
991 return false;
992
993 /* In outstanding window? ...This is valid exit for D-SACKs too.
994 * start_seq == snd_una is non-sensical (see comments above)
995 */
996 if (after(start_seq, tp->snd_una))
997 return true;
998
999 if (!is_dsack || !tp->undo_marker)
1000 return false;
1001
1002 /* ...Then it's D-SACK, and must reside below snd_una completely */
1003 if (after(end_seq, tp->snd_una))
1004 return false;
1005
1006 if (!before(start_seq, tp->undo_marker))
1007 return true;
1008
1009 /* Too old */
1010 if (!after(end_seq, tp->undo_marker))
1011 return false;
1012
1013 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1014 * start_seq < undo_marker and end_seq >= undo_marker.
1015 */
1016 return !before(start_seq, end_seq - tp->max_window);
1017 }
1018
1019 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1020 * Event "B". Later note: FACK people cheated me again 8), we have to account
1021 * for reordering! Ugly, but should help.
1022 *
1023 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1024 * less than what is now known to be received by the other end (derived from
1025 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1026 * retransmitted skbs to avoid some costly processing per ACKs.
1027 */
1028 static void tcp_mark_lost_retrans(struct sock *sk)
1029 {
1030 const struct inet_connection_sock *icsk = inet_csk(sk);
1031 struct tcp_sock *tp = tcp_sk(sk);
1032 struct sk_buff *skb;
1033 int cnt = 0;
1034 u32 new_low_seq = tp->snd_nxt;
1035 u32 received_upto = tcp_highest_sack_seq(tp);
1036
1037 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1038 !after(received_upto, tp->lost_retrans_low) ||
1039 icsk->icsk_ca_state != TCP_CA_Recovery)
1040 return;
1041
1042 tcp_for_write_queue(skb, sk) {
1043 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1044
1045 if (skb == tcp_send_head(sk))
1046 break;
1047 if (cnt == tp->retrans_out)
1048 break;
1049 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1050 continue;
1051
1052 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1053 continue;
1054
1055 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1056 * constraint here (see above) but figuring out that at
1057 * least tp->reordering SACK blocks reside between ack_seq
1058 * and received_upto is not easy task to do cheaply with
1059 * the available datastructures.
1060 *
1061 * Whether FACK should check here for tp->reordering segs
1062 * in-between one could argue for either way (it would be
1063 * rather simple to implement as we could count fack_count
1064 * during the walk and do tp->fackets_out - fack_count).
1065 */
1066 if (after(received_upto, ack_seq)) {
1067 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1068 tp->retrans_out -= tcp_skb_pcount(skb);
1069
1070 tcp_skb_mark_lost_uncond_verify(tp, skb);
1071 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1072 } else {
1073 if (before(ack_seq, new_low_seq))
1074 new_low_seq = ack_seq;
1075 cnt += tcp_skb_pcount(skb);
1076 }
1077 }
1078
1079 if (tp->retrans_out)
1080 tp->lost_retrans_low = new_low_seq;
1081 }
1082
1083 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1084 struct tcp_sack_block_wire *sp, int num_sacks,
1085 u32 prior_snd_una)
1086 {
1087 struct tcp_sock *tp = tcp_sk(sk);
1088 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1089 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1090 bool dup_sack = false;
1091
1092 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1093 dup_sack = true;
1094 tcp_dsack_seen(tp);
1095 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1096 } else if (num_sacks > 1) {
1097 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1098 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1099
1100 if (!after(end_seq_0, end_seq_1) &&
1101 !before(start_seq_0, start_seq_1)) {
1102 dup_sack = true;
1103 tcp_dsack_seen(tp);
1104 NET_INC_STATS_BH(sock_net(sk),
1105 LINUX_MIB_TCPDSACKOFORECV);
1106 }
1107 }
1108
1109 /* D-SACK for already forgotten data... Do dumb counting. */
1110 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1111 !after(end_seq_0, prior_snd_una) &&
1112 after(end_seq_0, tp->undo_marker))
1113 tp->undo_retrans--;
1114
1115 return dup_sack;
1116 }
1117
1118 struct tcp_sacktag_state {
1119 int reord;
1120 int fack_count;
1121 long rtt_us; /* RTT measured by SACKing never-retransmitted data */
1122 int flag;
1123 };
1124
1125 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1126 * the incoming SACK may not exactly match but we can find smaller MSS
1127 * aligned portion of it that matches. Therefore we might need to fragment
1128 * which may fail and creates some hassle (caller must handle error case
1129 * returns).
1130 *
1131 * FIXME: this could be merged to shift decision code
1132 */
1133 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1134 u32 start_seq, u32 end_seq)
1135 {
1136 int err;
1137 bool in_sack;
1138 unsigned int pkt_len;
1139 unsigned int mss;
1140
1141 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1142 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1143
1144 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1145 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1146 mss = tcp_skb_mss(skb);
1147 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1148
1149 if (!in_sack) {
1150 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1151 if (pkt_len < mss)
1152 pkt_len = mss;
1153 } else {
1154 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1155 if (pkt_len < mss)
1156 return -EINVAL;
1157 }
1158
1159 /* Round if necessary so that SACKs cover only full MSSes
1160 * and/or the remaining small portion (if present)
1161 */
1162 if (pkt_len > mss) {
1163 unsigned int new_len = (pkt_len / mss) * mss;
1164 if (!in_sack && new_len < pkt_len) {
1165 new_len += mss;
1166 if (new_len >= skb->len)
1167 return 0;
1168 }
1169 pkt_len = new_len;
1170 }
1171 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1172 if (err < 0)
1173 return err;
1174 }
1175
1176 return in_sack;
1177 }
1178
1179 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1180 static u8 tcp_sacktag_one(struct sock *sk,
1181 struct tcp_sacktag_state *state, u8 sacked,
1182 u32 start_seq, u32 end_seq,
1183 int dup_sack, int pcount,
1184 const struct skb_mstamp *xmit_time)
1185 {
1186 struct tcp_sock *tp = tcp_sk(sk);
1187 int fack_count = state->fack_count;
1188
1189 /* Account D-SACK for retransmitted packet. */
1190 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1191 if (tp->undo_marker && tp->undo_retrans > 0 &&
1192 after(end_seq, tp->undo_marker))
1193 tp->undo_retrans--;
1194 if (sacked & TCPCB_SACKED_ACKED)
1195 state->reord = min(fack_count, state->reord);
1196 }
1197
1198 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1199 if (!after(end_seq, tp->snd_una))
1200 return sacked;
1201
1202 if (!(sacked & TCPCB_SACKED_ACKED)) {
1203 if (sacked & TCPCB_SACKED_RETRANS) {
1204 /* If the segment is not tagged as lost,
1205 * we do not clear RETRANS, believing
1206 * that retransmission is still in flight.
1207 */
1208 if (sacked & TCPCB_LOST) {
1209 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1210 tp->lost_out -= pcount;
1211 tp->retrans_out -= pcount;
1212 }
1213 } else {
1214 if (!(sacked & TCPCB_RETRANS)) {
1215 /* New sack for not retransmitted frame,
1216 * which was in hole. It is reordering.
1217 */
1218 if (before(start_seq,
1219 tcp_highest_sack_seq(tp)))
1220 state->reord = min(fack_count,
1221 state->reord);
1222 if (!after(end_seq, tp->high_seq))
1223 state->flag |= FLAG_ORIG_SACK_ACKED;
1224 /* Pick the earliest sequence sacked for RTT */
1225 if (state->rtt_us < 0) {
1226 struct skb_mstamp now;
1227
1228 skb_mstamp_get(&now);
1229 state->rtt_us = skb_mstamp_us_delta(&now,
1230 xmit_time);
1231 }
1232 }
1233
1234 if (sacked & TCPCB_LOST) {
1235 sacked &= ~TCPCB_LOST;
1236 tp->lost_out -= pcount;
1237 }
1238 }
1239
1240 sacked |= TCPCB_SACKED_ACKED;
1241 state->flag |= FLAG_DATA_SACKED;
1242 tp->sacked_out += pcount;
1243
1244 fack_count += pcount;
1245
1246 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1247 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1248 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1249 tp->lost_cnt_hint += pcount;
1250
1251 if (fack_count > tp->fackets_out)
1252 tp->fackets_out = fack_count;
1253 }
1254
1255 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1256 * frames and clear it. undo_retrans is decreased above, L|R frames
1257 * are accounted above as well.
1258 */
1259 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1260 sacked &= ~TCPCB_SACKED_RETRANS;
1261 tp->retrans_out -= pcount;
1262 }
1263
1264 return sacked;
1265 }
1266
1267 /* Shift newly-SACKed bytes from this skb to the immediately previous
1268 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1269 */
1270 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1271 struct tcp_sacktag_state *state,
1272 unsigned int pcount, int shifted, int mss,
1273 bool dup_sack)
1274 {
1275 struct tcp_sock *tp = tcp_sk(sk);
1276 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1277 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1278 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1279
1280 BUG_ON(!pcount);
1281
1282 /* Adjust counters and hints for the newly sacked sequence
1283 * range but discard the return value since prev is already
1284 * marked. We must tag the range first because the seq
1285 * advancement below implicitly advances
1286 * tcp_highest_sack_seq() when skb is highest_sack.
1287 */
1288 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1289 start_seq, end_seq, dup_sack, pcount,
1290 &skb->skb_mstamp);
1291
1292 if (skb == tp->lost_skb_hint)
1293 tp->lost_cnt_hint += pcount;
1294
1295 TCP_SKB_CB(prev)->end_seq += shifted;
1296 TCP_SKB_CB(skb)->seq += shifted;
1297
1298 tcp_skb_pcount_add(prev, pcount);
1299 BUG_ON(tcp_skb_pcount(skb) < pcount);
1300 tcp_skb_pcount_add(skb, -pcount);
1301
1302 /* When we're adding to gso_segs == 1, gso_size will be zero,
1303 * in theory this shouldn't be necessary but as long as DSACK
1304 * code can come after this skb later on it's better to keep
1305 * setting gso_size to something.
1306 */
1307 if (!skb_shinfo(prev)->gso_size) {
1308 skb_shinfo(prev)->gso_size = mss;
1309 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1310 }
1311
1312 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1313 if (tcp_skb_pcount(skb) <= 1) {
1314 skb_shinfo(skb)->gso_size = 0;
1315 skb_shinfo(skb)->gso_type = 0;
1316 }
1317
1318 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1319 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1320
1321 if (skb->len > 0) {
1322 BUG_ON(!tcp_skb_pcount(skb));
1323 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1324 return false;
1325 }
1326
1327 /* Whole SKB was eaten :-) */
1328
1329 if (skb == tp->retransmit_skb_hint)
1330 tp->retransmit_skb_hint = prev;
1331 if (skb == tp->lost_skb_hint) {
1332 tp->lost_skb_hint = prev;
1333 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1334 }
1335
1336 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1337 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1338 TCP_SKB_CB(prev)->end_seq++;
1339
1340 if (skb == tcp_highest_sack(sk))
1341 tcp_advance_highest_sack(sk, skb);
1342
1343 tcp_unlink_write_queue(skb, sk);
1344 sk_wmem_free_skb(sk, skb);
1345
1346 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1347
1348 return true;
1349 }
1350
1351 /* I wish gso_size would have a bit more sane initialization than
1352 * something-or-zero which complicates things
1353 */
1354 static int tcp_skb_seglen(const struct sk_buff *skb)
1355 {
1356 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1357 }
1358
1359 /* Shifting pages past head area doesn't work */
1360 static int skb_can_shift(const struct sk_buff *skb)
1361 {
1362 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1363 }
1364
1365 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1366 * skb.
1367 */
1368 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1369 struct tcp_sacktag_state *state,
1370 u32 start_seq, u32 end_seq,
1371 bool dup_sack)
1372 {
1373 struct tcp_sock *tp = tcp_sk(sk);
1374 struct sk_buff *prev;
1375 int mss;
1376 int pcount = 0;
1377 int len;
1378 int in_sack;
1379
1380 if (!sk_can_gso(sk))
1381 goto fallback;
1382
1383 /* Normally R but no L won't result in plain S */
1384 if (!dup_sack &&
1385 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1386 goto fallback;
1387 if (!skb_can_shift(skb))
1388 goto fallback;
1389 /* This frame is about to be dropped (was ACKed). */
1390 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1391 goto fallback;
1392
1393 /* Can only happen with delayed DSACK + discard craziness */
1394 if (unlikely(skb == tcp_write_queue_head(sk)))
1395 goto fallback;
1396 prev = tcp_write_queue_prev(sk, skb);
1397
1398 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1399 goto fallback;
1400
1401 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1402 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1403
1404 if (in_sack) {
1405 len = skb->len;
1406 pcount = tcp_skb_pcount(skb);
1407 mss = tcp_skb_seglen(skb);
1408
1409 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1410 * drop this restriction as unnecessary
1411 */
1412 if (mss != tcp_skb_seglen(prev))
1413 goto fallback;
1414 } else {
1415 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1416 goto noop;
1417 /* CHECKME: This is non-MSS split case only?, this will
1418 * cause skipped skbs due to advancing loop btw, original
1419 * has that feature too
1420 */
1421 if (tcp_skb_pcount(skb) <= 1)
1422 goto noop;
1423
1424 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1425 if (!in_sack) {
1426 /* TODO: head merge to next could be attempted here
1427 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1428 * though it might not be worth of the additional hassle
1429 *
1430 * ...we can probably just fallback to what was done
1431 * previously. We could try merging non-SACKed ones
1432 * as well but it probably isn't going to buy off
1433 * because later SACKs might again split them, and
1434 * it would make skb timestamp tracking considerably
1435 * harder problem.
1436 */
1437 goto fallback;
1438 }
1439
1440 len = end_seq - TCP_SKB_CB(skb)->seq;
1441 BUG_ON(len < 0);
1442 BUG_ON(len > skb->len);
1443
1444 /* MSS boundaries should be honoured or else pcount will
1445 * severely break even though it makes things bit trickier.
1446 * Optimize common case to avoid most of the divides
1447 */
1448 mss = tcp_skb_mss(skb);
1449
1450 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1451 * drop this restriction as unnecessary
1452 */
1453 if (mss != tcp_skb_seglen(prev))
1454 goto fallback;
1455
1456 if (len == mss) {
1457 pcount = 1;
1458 } else if (len < mss) {
1459 goto noop;
1460 } else {
1461 pcount = len / mss;
1462 len = pcount * mss;
1463 }
1464 }
1465
1466 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1467 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1468 goto fallback;
1469
1470 if (!skb_shift(prev, skb, len))
1471 goto fallback;
1472 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1473 goto out;
1474
1475 /* Hole filled allows collapsing with the next as well, this is very
1476 * useful when hole on every nth skb pattern happens
1477 */
1478 if (prev == tcp_write_queue_tail(sk))
1479 goto out;
1480 skb = tcp_write_queue_next(sk, prev);
1481
1482 if (!skb_can_shift(skb) ||
1483 (skb == tcp_send_head(sk)) ||
1484 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1485 (mss != tcp_skb_seglen(skb)))
1486 goto out;
1487
1488 len = skb->len;
1489 if (skb_shift(prev, skb, len)) {
1490 pcount += tcp_skb_pcount(skb);
1491 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1492 }
1493
1494 out:
1495 state->fack_count += pcount;
1496 return prev;
1497
1498 noop:
1499 return skb;
1500
1501 fallback:
1502 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1503 return NULL;
1504 }
1505
1506 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1507 struct tcp_sack_block *next_dup,
1508 struct tcp_sacktag_state *state,
1509 u32 start_seq, u32 end_seq,
1510 bool dup_sack_in)
1511 {
1512 struct tcp_sock *tp = tcp_sk(sk);
1513 struct sk_buff *tmp;
1514
1515 tcp_for_write_queue_from(skb, sk) {
1516 int in_sack = 0;
1517 bool dup_sack = dup_sack_in;
1518
1519 if (skb == tcp_send_head(sk))
1520 break;
1521
1522 /* queue is in-order => we can short-circuit the walk early */
1523 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1524 break;
1525
1526 if ((next_dup != NULL) &&
1527 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1528 in_sack = tcp_match_skb_to_sack(sk, skb,
1529 next_dup->start_seq,
1530 next_dup->end_seq);
1531 if (in_sack > 0)
1532 dup_sack = true;
1533 }
1534
1535 /* skb reference here is a bit tricky to get right, since
1536 * shifting can eat and free both this skb and the next,
1537 * so not even _safe variant of the loop is enough.
1538 */
1539 if (in_sack <= 0) {
1540 tmp = tcp_shift_skb_data(sk, skb, state,
1541 start_seq, end_seq, dup_sack);
1542 if (tmp != NULL) {
1543 if (tmp != skb) {
1544 skb = tmp;
1545 continue;
1546 }
1547
1548 in_sack = 0;
1549 } else {
1550 in_sack = tcp_match_skb_to_sack(sk, skb,
1551 start_seq,
1552 end_seq);
1553 }
1554 }
1555
1556 if (unlikely(in_sack < 0))
1557 break;
1558
1559 if (in_sack) {
1560 TCP_SKB_CB(skb)->sacked =
1561 tcp_sacktag_one(sk,
1562 state,
1563 TCP_SKB_CB(skb)->sacked,
1564 TCP_SKB_CB(skb)->seq,
1565 TCP_SKB_CB(skb)->end_seq,
1566 dup_sack,
1567 tcp_skb_pcount(skb),
1568 &skb->skb_mstamp);
1569
1570 if (!before(TCP_SKB_CB(skb)->seq,
1571 tcp_highest_sack_seq(tp)))
1572 tcp_advance_highest_sack(sk, skb);
1573 }
1574
1575 state->fack_count += tcp_skb_pcount(skb);
1576 }
1577 return skb;
1578 }
1579
1580 /* Avoid all extra work that is being done by sacktag while walking in
1581 * a normal way
1582 */
1583 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1584 struct tcp_sacktag_state *state,
1585 u32 skip_to_seq)
1586 {
1587 tcp_for_write_queue_from(skb, sk) {
1588 if (skb == tcp_send_head(sk))
1589 break;
1590
1591 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1592 break;
1593
1594 state->fack_count += tcp_skb_pcount(skb);
1595 }
1596 return skb;
1597 }
1598
1599 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1600 struct sock *sk,
1601 struct tcp_sack_block *next_dup,
1602 struct tcp_sacktag_state *state,
1603 u32 skip_to_seq)
1604 {
1605 if (next_dup == NULL)
1606 return skb;
1607
1608 if (before(next_dup->start_seq, skip_to_seq)) {
1609 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1610 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1611 next_dup->start_seq, next_dup->end_seq,
1612 1);
1613 }
1614
1615 return skb;
1616 }
1617
1618 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1619 {
1620 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1621 }
1622
1623 static int
1624 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1625 u32 prior_snd_una, long *sack_rtt_us)
1626 {
1627 struct tcp_sock *tp = tcp_sk(sk);
1628 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1629 TCP_SKB_CB(ack_skb)->sacked);
1630 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1631 struct tcp_sack_block sp[TCP_NUM_SACKS];
1632 struct tcp_sack_block *cache;
1633 struct tcp_sacktag_state state;
1634 struct sk_buff *skb;
1635 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1636 int used_sacks;
1637 bool found_dup_sack = false;
1638 int i, j;
1639 int first_sack_index;
1640
1641 state.flag = 0;
1642 state.reord = tp->packets_out;
1643 state.rtt_us = -1L;
1644
1645 if (!tp->sacked_out) {
1646 if (WARN_ON(tp->fackets_out))
1647 tp->fackets_out = 0;
1648 tcp_highest_sack_reset(sk);
1649 }
1650
1651 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1652 num_sacks, prior_snd_una);
1653 if (found_dup_sack)
1654 state.flag |= FLAG_DSACKING_ACK;
1655
1656 /* Eliminate too old ACKs, but take into
1657 * account more or less fresh ones, they can
1658 * contain valid SACK info.
1659 */
1660 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1661 return 0;
1662
1663 if (!tp->packets_out)
1664 goto out;
1665
1666 used_sacks = 0;
1667 first_sack_index = 0;
1668 for (i = 0; i < num_sacks; i++) {
1669 bool dup_sack = !i && found_dup_sack;
1670
1671 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1672 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1673
1674 if (!tcp_is_sackblock_valid(tp, dup_sack,
1675 sp[used_sacks].start_seq,
1676 sp[used_sacks].end_seq)) {
1677 int mib_idx;
1678
1679 if (dup_sack) {
1680 if (!tp->undo_marker)
1681 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1682 else
1683 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1684 } else {
1685 /* Don't count olds caused by ACK reordering */
1686 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1687 !after(sp[used_sacks].end_seq, tp->snd_una))
1688 continue;
1689 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1690 }
1691
1692 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1693 if (i == 0)
1694 first_sack_index = -1;
1695 continue;
1696 }
1697
1698 /* Ignore very old stuff early */
1699 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1700 continue;
1701
1702 used_sacks++;
1703 }
1704
1705 /* order SACK blocks to allow in order walk of the retrans queue */
1706 for (i = used_sacks - 1; i > 0; i--) {
1707 for (j = 0; j < i; j++) {
1708 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1709 swap(sp[j], sp[j + 1]);
1710
1711 /* Track where the first SACK block goes to */
1712 if (j == first_sack_index)
1713 first_sack_index = j + 1;
1714 }
1715 }
1716 }
1717
1718 skb = tcp_write_queue_head(sk);
1719 state.fack_count = 0;
1720 i = 0;
1721
1722 if (!tp->sacked_out) {
1723 /* It's already past, so skip checking against it */
1724 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1725 } else {
1726 cache = tp->recv_sack_cache;
1727 /* Skip empty blocks in at head of the cache */
1728 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1729 !cache->end_seq)
1730 cache++;
1731 }
1732
1733 while (i < used_sacks) {
1734 u32 start_seq = sp[i].start_seq;
1735 u32 end_seq = sp[i].end_seq;
1736 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1737 struct tcp_sack_block *next_dup = NULL;
1738
1739 if (found_dup_sack && ((i + 1) == first_sack_index))
1740 next_dup = &sp[i + 1];
1741
1742 /* Skip too early cached blocks */
1743 while (tcp_sack_cache_ok(tp, cache) &&
1744 !before(start_seq, cache->end_seq))
1745 cache++;
1746
1747 /* Can skip some work by looking recv_sack_cache? */
1748 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1749 after(end_seq, cache->start_seq)) {
1750
1751 /* Head todo? */
1752 if (before(start_seq, cache->start_seq)) {
1753 skb = tcp_sacktag_skip(skb, sk, &state,
1754 start_seq);
1755 skb = tcp_sacktag_walk(skb, sk, next_dup,
1756 &state,
1757 start_seq,
1758 cache->start_seq,
1759 dup_sack);
1760 }
1761
1762 /* Rest of the block already fully processed? */
1763 if (!after(end_seq, cache->end_seq))
1764 goto advance_sp;
1765
1766 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1767 &state,
1768 cache->end_seq);
1769
1770 /* ...tail remains todo... */
1771 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1772 /* ...but better entrypoint exists! */
1773 skb = tcp_highest_sack(sk);
1774 if (skb == NULL)
1775 break;
1776 state.fack_count = tp->fackets_out;
1777 cache++;
1778 goto walk;
1779 }
1780
1781 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1782 /* Check overlap against next cached too (past this one already) */
1783 cache++;
1784 continue;
1785 }
1786
1787 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1788 skb = tcp_highest_sack(sk);
1789 if (skb == NULL)
1790 break;
1791 state.fack_count = tp->fackets_out;
1792 }
1793 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1794
1795 walk:
1796 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1797 start_seq, end_seq, dup_sack);
1798
1799 advance_sp:
1800 i++;
1801 }
1802
1803 /* Clear the head of the cache sack blocks so we can skip it next time */
1804 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1805 tp->recv_sack_cache[i].start_seq = 0;
1806 tp->recv_sack_cache[i].end_seq = 0;
1807 }
1808 for (j = 0; j < used_sacks; j++)
1809 tp->recv_sack_cache[i++] = sp[j];
1810
1811 tcp_mark_lost_retrans(sk);
1812
1813 tcp_verify_left_out(tp);
1814
1815 if ((state.reord < tp->fackets_out) &&
1816 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1817 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1818
1819 out:
1820
1821 #if FASTRETRANS_DEBUG > 0
1822 WARN_ON((int)tp->sacked_out < 0);
1823 WARN_ON((int)tp->lost_out < 0);
1824 WARN_ON((int)tp->retrans_out < 0);
1825 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1826 #endif
1827 *sack_rtt_us = state.rtt_us;
1828 return state.flag;
1829 }
1830
1831 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1832 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1833 */
1834 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1835 {
1836 u32 holes;
1837
1838 holes = max(tp->lost_out, 1U);
1839 holes = min(holes, tp->packets_out);
1840
1841 if ((tp->sacked_out + holes) > tp->packets_out) {
1842 tp->sacked_out = tp->packets_out - holes;
1843 return true;
1844 }
1845 return false;
1846 }
1847
1848 /* If we receive more dupacks than we expected counting segments
1849 * in assumption of absent reordering, interpret this as reordering.
1850 * The only another reason could be bug in receiver TCP.
1851 */
1852 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1853 {
1854 struct tcp_sock *tp = tcp_sk(sk);
1855 if (tcp_limit_reno_sacked(tp))
1856 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1857 }
1858
1859 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1860
1861 static void tcp_add_reno_sack(struct sock *sk)
1862 {
1863 struct tcp_sock *tp = tcp_sk(sk);
1864 tp->sacked_out++;
1865 tcp_check_reno_reordering(sk, 0);
1866 tcp_verify_left_out(tp);
1867 }
1868
1869 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1870
1871 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1872 {
1873 struct tcp_sock *tp = tcp_sk(sk);
1874
1875 if (acked > 0) {
1876 /* One ACK acked hole. The rest eat duplicate ACKs. */
1877 if (acked - 1 >= tp->sacked_out)
1878 tp->sacked_out = 0;
1879 else
1880 tp->sacked_out -= acked - 1;
1881 }
1882 tcp_check_reno_reordering(sk, acked);
1883 tcp_verify_left_out(tp);
1884 }
1885
1886 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1887 {
1888 tp->sacked_out = 0;
1889 }
1890
1891 void tcp_clear_retrans(struct tcp_sock *tp)
1892 {
1893 tp->retrans_out = 0;
1894 tp->lost_out = 0;
1895 tp->undo_marker = 0;
1896 tp->undo_retrans = -1;
1897 tp->fackets_out = 0;
1898 tp->sacked_out = 0;
1899 }
1900
1901 static inline void tcp_init_undo(struct tcp_sock *tp)
1902 {
1903 tp->undo_marker = tp->snd_una;
1904 /* Retransmission still in flight may cause DSACKs later. */
1905 tp->undo_retrans = tp->retrans_out ? : -1;
1906 }
1907
1908 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1909 * and reset tags completely, otherwise preserve SACKs. If receiver
1910 * dropped its ofo queue, we will know this due to reneging detection.
1911 */
1912 void tcp_enter_loss(struct sock *sk)
1913 {
1914 const struct inet_connection_sock *icsk = inet_csk(sk);
1915 struct tcp_sock *tp = tcp_sk(sk);
1916 struct sk_buff *skb;
1917 bool new_recovery = false;
1918 bool is_reneg; /* is receiver reneging on SACKs? */
1919
1920 /* Reduce ssthresh if it has not yet been made inside this window. */
1921 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1922 !after(tp->high_seq, tp->snd_una) ||
1923 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1924 new_recovery = true;
1925 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1926 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1927 tcp_ca_event(sk, CA_EVENT_LOSS);
1928 tcp_init_undo(tp);
1929 }
1930 tp->snd_cwnd = 1;
1931 tp->snd_cwnd_cnt = 0;
1932 tp->snd_cwnd_stamp = tcp_time_stamp;
1933
1934 tp->retrans_out = 0;
1935 tp->lost_out = 0;
1936
1937 if (tcp_is_reno(tp))
1938 tcp_reset_reno_sack(tp);
1939
1940 skb = tcp_write_queue_head(sk);
1941 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1942 if (is_reneg) {
1943 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1944 tp->sacked_out = 0;
1945 tp->fackets_out = 0;
1946 }
1947 tcp_clear_all_retrans_hints(tp);
1948
1949 tcp_for_write_queue(skb, sk) {
1950 if (skb == tcp_send_head(sk))
1951 break;
1952
1953 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1954 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1955 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1956 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1957 tp->lost_out += tcp_skb_pcount(skb);
1958 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1959 }
1960 }
1961 tcp_verify_left_out(tp);
1962
1963 /* Timeout in disordered state after receiving substantial DUPACKs
1964 * suggests that the degree of reordering is over-estimated.
1965 */
1966 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1967 tp->sacked_out >= sysctl_tcp_reordering)
1968 tp->reordering = min_t(unsigned int, tp->reordering,
1969 sysctl_tcp_reordering);
1970 tcp_set_ca_state(sk, TCP_CA_Loss);
1971 tp->high_seq = tp->snd_nxt;
1972 TCP_ECN_queue_cwr(tp);
1973
1974 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1975 * loss recovery is underway except recurring timeout(s) on
1976 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1977 */
1978 tp->frto = sysctl_tcp_frto &&
1979 (new_recovery || icsk->icsk_retransmits) &&
1980 !inet_csk(sk)->icsk_mtup.probe_size;
1981 }
1982
1983 /* If ACK arrived pointing to a remembered SACK, it means that our
1984 * remembered SACKs do not reflect real state of receiver i.e.
1985 * receiver _host_ is heavily congested (or buggy).
1986 *
1987 * To avoid big spurious retransmission bursts due to transient SACK
1988 * scoreboard oddities that look like reneging, we give the receiver a
1989 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1990 * restore sanity to the SACK scoreboard. If the apparent reneging
1991 * persists until this RTO then we'll clear the SACK scoreboard.
1992 */
1993 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1994 {
1995 if (flag & FLAG_SACK_RENEGING) {
1996 struct tcp_sock *tp = tcp_sk(sk);
1997 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1998 msecs_to_jiffies(10));
1999
2000 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2001 delay, TCP_RTO_MAX);
2002 return true;
2003 }
2004 return false;
2005 }
2006
2007 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2008 {
2009 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2010 }
2011
2012 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2013 * counter when SACK is enabled (without SACK, sacked_out is used for
2014 * that purpose).
2015 *
2016 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2017 * segments up to the highest received SACK block so far and holes in
2018 * between them.
2019 *
2020 * With reordering, holes may still be in flight, so RFC3517 recovery
2021 * uses pure sacked_out (total number of SACKed segments) even though
2022 * it violates the RFC that uses duplicate ACKs, often these are equal
2023 * but when e.g. out-of-window ACKs or packet duplication occurs,
2024 * they differ. Since neither occurs due to loss, TCP should really
2025 * ignore them.
2026 */
2027 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2028 {
2029 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2030 }
2031
2032 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2033 {
2034 struct tcp_sock *tp = tcp_sk(sk);
2035 unsigned long delay;
2036
2037 /* Delay early retransmit and entering fast recovery for
2038 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2039 * available, or RTO is scheduled to fire first.
2040 */
2041 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2042 (flag & FLAG_ECE) || !tp->srtt_us)
2043 return false;
2044
2045 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2046 msecs_to_jiffies(2));
2047
2048 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2049 return false;
2050
2051 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2052 TCP_RTO_MAX);
2053 return true;
2054 }
2055
2056 /* Linux NewReno/SACK/FACK/ECN state machine.
2057 * --------------------------------------
2058 *
2059 * "Open" Normal state, no dubious events, fast path.
2060 * "Disorder" In all the respects it is "Open",
2061 * but requires a bit more attention. It is entered when
2062 * we see some SACKs or dupacks. It is split of "Open"
2063 * mainly to move some processing from fast path to slow one.
2064 * "CWR" CWND was reduced due to some Congestion Notification event.
2065 * It can be ECN, ICMP source quench, local device congestion.
2066 * "Recovery" CWND was reduced, we are fast-retransmitting.
2067 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2068 *
2069 * tcp_fastretrans_alert() is entered:
2070 * - each incoming ACK, if state is not "Open"
2071 * - when arrived ACK is unusual, namely:
2072 * * SACK
2073 * * Duplicate ACK.
2074 * * ECN ECE.
2075 *
2076 * Counting packets in flight is pretty simple.
2077 *
2078 * in_flight = packets_out - left_out + retrans_out
2079 *
2080 * packets_out is SND.NXT-SND.UNA counted in packets.
2081 *
2082 * retrans_out is number of retransmitted segments.
2083 *
2084 * left_out is number of segments left network, but not ACKed yet.
2085 *
2086 * left_out = sacked_out + lost_out
2087 *
2088 * sacked_out: Packets, which arrived to receiver out of order
2089 * and hence not ACKed. With SACKs this number is simply
2090 * amount of SACKed data. Even without SACKs
2091 * it is easy to give pretty reliable estimate of this number,
2092 * counting duplicate ACKs.
2093 *
2094 * lost_out: Packets lost by network. TCP has no explicit
2095 * "loss notification" feedback from network (for now).
2096 * It means that this number can be only _guessed_.
2097 * Actually, it is the heuristics to predict lossage that
2098 * distinguishes different algorithms.
2099 *
2100 * F.e. after RTO, when all the queue is considered as lost,
2101 * lost_out = packets_out and in_flight = retrans_out.
2102 *
2103 * Essentially, we have now two algorithms counting
2104 * lost packets.
2105 *
2106 * FACK: It is the simplest heuristics. As soon as we decided
2107 * that something is lost, we decide that _all_ not SACKed
2108 * packets until the most forward SACK are lost. I.e.
2109 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2110 * It is absolutely correct estimate, if network does not reorder
2111 * packets. And it loses any connection to reality when reordering
2112 * takes place. We use FACK by default until reordering
2113 * is suspected on the path to this destination.
2114 *
2115 * NewReno: when Recovery is entered, we assume that one segment
2116 * is lost (classic Reno). While we are in Recovery and
2117 * a partial ACK arrives, we assume that one more packet
2118 * is lost (NewReno). This heuristics are the same in NewReno
2119 * and SACK.
2120 *
2121 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2122 * deflation etc. CWND is real congestion window, never inflated, changes
2123 * only according to classic VJ rules.
2124 *
2125 * Really tricky (and requiring careful tuning) part of algorithm
2126 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2127 * The first determines the moment _when_ we should reduce CWND and,
2128 * hence, slow down forward transmission. In fact, it determines the moment
2129 * when we decide that hole is caused by loss, rather than by a reorder.
2130 *
2131 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2132 * holes, caused by lost packets.
2133 *
2134 * And the most logically complicated part of algorithm is undo
2135 * heuristics. We detect false retransmits due to both too early
2136 * fast retransmit (reordering) and underestimated RTO, analyzing
2137 * timestamps and D-SACKs. When we detect that some segments were
2138 * retransmitted by mistake and CWND reduction was wrong, we undo
2139 * window reduction and abort recovery phase. This logic is hidden
2140 * inside several functions named tcp_try_undo_<something>.
2141 */
2142
2143 /* This function decides, when we should leave Disordered state
2144 * and enter Recovery phase, reducing congestion window.
2145 *
2146 * Main question: may we further continue forward transmission
2147 * with the same cwnd?
2148 */
2149 static bool tcp_time_to_recover(struct sock *sk, int flag)
2150 {
2151 struct tcp_sock *tp = tcp_sk(sk);
2152 __u32 packets_out;
2153
2154 /* Trick#1: The loss is proven. */
2155 if (tp->lost_out)
2156 return true;
2157
2158 /* Not-A-Trick#2 : Classic rule... */
2159 if (tcp_dupack_heuristics(tp) > tp->reordering)
2160 return true;
2161
2162 /* Trick#4: It is still not OK... But will it be useful to delay
2163 * recovery more?
2164 */
2165 packets_out = tp->packets_out;
2166 if (packets_out <= tp->reordering &&
2167 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2168 !tcp_may_send_now(sk)) {
2169 /* We have nothing to send. This connection is limited
2170 * either by receiver window or by application.
2171 */
2172 return true;
2173 }
2174
2175 /* If a thin stream is detected, retransmit after first
2176 * received dupack. Employ only if SACK is supported in order
2177 * to avoid possible corner-case series of spurious retransmissions
2178 * Use only if there are no unsent data.
2179 */
2180 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2181 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2182 tcp_is_sack(tp) && !tcp_send_head(sk))
2183 return true;
2184
2185 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2186 * retransmissions due to small network reorderings, we implement
2187 * Mitigation A.3 in the RFC and delay the retransmission for a short
2188 * interval if appropriate.
2189 */
2190 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2191 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2192 !tcp_may_send_now(sk))
2193 return !tcp_pause_early_retransmit(sk, flag);
2194
2195 return false;
2196 }
2197
2198 /* Detect loss in event "A" above by marking head of queue up as lost.
2199 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2200 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2201 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2202 * the maximum SACKed segments to pass before reaching this limit.
2203 */
2204 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2205 {
2206 struct tcp_sock *tp = tcp_sk(sk);
2207 struct sk_buff *skb;
2208 int cnt, oldcnt;
2209 int err;
2210 unsigned int mss;
2211 /* Use SACK to deduce losses of new sequences sent during recovery */
2212 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2213
2214 WARN_ON(packets > tp->packets_out);
2215 if (tp->lost_skb_hint) {
2216 skb = tp->lost_skb_hint;
2217 cnt = tp->lost_cnt_hint;
2218 /* Head already handled? */
2219 if (mark_head && skb != tcp_write_queue_head(sk))
2220 return;
2221 } else {
2222 skb = tcp_write_queue_head(sk);
2223 cnt = 0;
2224 }
2225
2226 tcp_for_write_queue_from(skb, sk) {
2227 if (skb == tcp_send_head(sk))
2228 break;
2229 /* TODO: do this better */
2230 /* this is not the most efficient way to do this... */
2231 tp->lost_skb_hint = skb;
2232 tp->lost_cnt_hint = cnt;
2233
2234 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2235 break;
2236
2237 oldcnt = cnt;
2238 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2239 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2240 cnt += tcp_skb_pcount(skb);
2241
2242 if (cnt > packets) {
2243 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2244 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2245 (oldcnt >= packets))
2246 break;
2247
2248 mss = skb_shinfo(skb)->gso_size;
2249 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2250 mss, GFP_ATOMIC);
2251 if (err < 0)
2252 break;
2253 cnt = packets;
2254 }
2255
2256 tcp_skb_mark_lost(tp, skb);
2257
2258 if (mark_head)
2259 break;
2260 }
2261 tcp_verify_left_out(tp);
2262 }
2263
2264 /* Account newly detected lost packet(s) */
2265
2266 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2267 {
2268 struct tcp_sock *tp = tcp_sk(sk);
2269
2270 if (tcp_is_reno(tp)) {
2271 tcp_mark_head_lost(sk, 1, 1);
2272 } else if (tcp_is_fack(tp)) {
2273 int lost = tp->fackets_out - tp->reordering;
2274 if (lost <= 0)
2275 lost = 1;
2276 tcp_mark_head_lost(sk, lost, 0);
2277 } else {
2278 int sacked_upto = tp->sacked_out - tp->reordering;
2279 if (sacked_upto >= 0)
2280 tcp_mark_head_lost(sk, sacked_upto, 0);
2281 else if (fast_rexmit)
2282 tcp_mark_head_lost(sk, 1, 1);
2283 }
2284 }
2285
2286 /* CWND moderation, preventing bursts due to too big ACKs
2287 * in dubious situations.
2288 */
2289 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2290 {
2291 tp->snd_cwnd = min(tp->snd_cwnd,
2292 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2293 tp->snd_cwnd_stamp = tcp_time_stamp;
2294 }
2295
2296 /* Nothing was retransmitted or returned timestamp is less
2297 * than timestamp of the first retransmission.
2298 */
2299 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2300 {
2301 return !tp->retrans_stamp ||
2302 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2303 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2304 }
2305
2306 /* Undo procedures. */
2307
2308 #if FASTRETRANS_DEBUG > 1
2309 static void DBGUNDO(struct sock *sk, const char *msg)
2310 {
2311 struct tcp_sock *tp = tcp_sk(sk);
2312 struct inet_sock *inet = inet_sk(sk);
2313
2314 if (sk->sk_family == AF_INET) {
2315 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2316 msg,
2317 &inet->inet_daddr, ntohs(inet->inet_dport),
2318 tp->snd_cwnd, tcp_left_out(tp),
2319 tp->snd_ssthresh, tp->prior_ssthresh,
2320 tp->packets_out);
2321 }
2322 #if IS_ENABLED(CONFIG_IPV6)
2323 else if (sk->sk_family == AF_INET6) {
2324 struct ipv6_pinfo *np = inet6_sk(sk);
2325 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2326 msg,
2327 &np->daddr, ntohs(inet->inet_dport),
2328 tp->snd_cwnd, tcp_left_out(tp),
2329 tp->snd_ssthresh, tp->prior_ssthresh,
2330 tp->packets_out);
2331 }
2332 #endif
2333 }
2334 #else
2335 #define DBGUNDO(x...) do { } while (0)
2336 #endif
2337
2338 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2339 {
2340 struct tcp_sock *tp = tcp_sk(sk);
2341
2342 if (unmark_loss) {
2343 struct sk_buff *skb;
2344
2345 tcp_for_write_queue(skb, sk) {
2346 if (skb == tcp_send_head(sk))
2347 break;
2348 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2349 }
2350 tp->lost_out = 0;
2351 tcp_clear_all_retrans_hints(tp);
2352 }
2353
2354 if (tp->prior_ssthresh) {
2355 const struct inet_connection_sock *icsk = inet_csk(sk);
2356
2357 if (icsk->icsk_ca_ops->undo_cwnd)
2358 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2359 else
2360 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2361
2362 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2363 tp->snd_ssthresh = tp->prior_ssthresh;
2364 TCP_ECN_withdraw_cwr(tp);
2365 }
2366 } else {
2367 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2368 }
2369 tp->snd_cwnd_stamp = tcp_time_stamp;
2370 tp->undo_marker = 0;
2371 }
2372
2373 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2374 {
2375 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2376 }
2377
2378 /* People celebrate: "We love our President!" */
2379 static bool tcp_try_undo_recovery(struct sock *sk)
2380 {
2381 struct tcp_sock *tp = tcp_sk(sk);
2382
2383 if (tcp_may_undo(tp)) {
2384 int mib_idx;
2385
2386 /* Happy end! We did not retransmit anything
2387 * or our original transmission succeeded.
2388 */
2389 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2390 tcp_undo_cwnd_reduction(sk, false);
2391 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2392 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2393 else
2394 mib_idx = LINUX_MIB_TCPFULLUNDO;
2395
2396 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2397 }
2398 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2399 /* Hold old state until something *above* high_seq
2400 * is ACKed. For Reno it is MUST to prevent false
2401 * fast retransmits (RFC2582). SACK TCP is safe. */
2402 tcp_moderate_cwnd(tp);
2403 return true;
2404 }
2405 tcp_set_ca_state(sk, TCP_CA_Open);
2406 return false;
2407 }
2408
2409 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2410 static bool tcp_try_undo_dsack(struct sock *sk)
2411 {
2412 struct tcp_sock *tp = tcp_sk(sk);
2413
2414 if (tp->undo_marker && !tp->undo_retrans) {
2415 DBGUNDO(sk, "D-SACK");
2416 tcp_undo_cwnd_reduction(sk, false);
2417 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2418 return true;
2419 }
2420 return false;
2421 }
2422
2423 /* We can clear retrans_stamp when there are no retransmissions in the
2424 * window. It would seem that it is trivially available for us in
2425 * tp->retrans_out, however, that kind of assumptions doesn't consider
2426 * what will happen if errors occur when sending retransmission for the
2427 * second time. ...It could the that such segment has only
2428 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2429 * the head skb is enough except for some reneging corner cases that
2430 * are not worth the effort.
2431 *
2432 * Main reason for all this complexity is the fact that connection dying
2433 * time now depends on the validity of the retrans_stamp, in particular,
2434 * that successive retransmissions of a segment must not advance
2435 * retrans_stamp under any conditions.
2436 */
2437 static bool tcp_any_retrans_done(const struct sock *sk)
2438 {
2439 const struct tcp_sock *tp = tcp_sk(sk);
2440 struct sk_buff *skb;
2441
2442 if (tp->retrans_out)
2443 return true;
2444
2445 skb = tcp_write_queue_head(sk);
2446 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2447 return true;
2448
2449 return false;
2450 }
2451
2452 /* Undo during loss recovery after partial ACK or using F-RTO. */
2453 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2454 {
2455 struct tcp_sock *tp = tcp_sk(sk);
2456
2457 if (frto_undo || tcp_may_undo(tp)) {
2458 tcp_undo_cwnd_reduction(sk, true);
2459
2460 DBGUNDO(sk, "partial loss");
2461 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2462 if (frto_undo)
2463 NET_INC_STATS_BH(sock_net(sk),
2464 LINUX_MIB_TCPSPURIOUSRTOS);
2465 inet_csk(sk)->icsk_retransmits = 0;
2466 if (frto_undo || tcp_is_sack(tp))
2467 tcp_set_ca_state(sk, TCP_CA_Open);
2468 return true;
2469 }
2470 return false;
2471 }
2472
2473 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2474 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2475 * It computes the number of packets to send (sndcnt) based on packets newly
2476 * delivered:
2477 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2478 * cwnd reductions across a full RTT.
2479 * 2) If packets in flight is lower than ssthresh (such as due to excess
2480 * losses and/or application stalls), do not perform any further cwnd
2481 * reductions, but instead slow start up to ssthresh.
2482 */
2483 static void tcp_init_cwnd_reduction(struct sock *sk)
2484 {
2485 struct tcp_sock *tp = tcp_sk(sk);
2486
2487 tp->high_seq = tp->snd_nxt;
2488 tp->tlp_high_seq = 0;
2489 tp->snd_cwnd_cnt = 0;
2490 tp->prior_cwnd = tp->snd_cwnd;
2491 tp->prr_delivered = 0;
2492 tp->prr_out = 0;
2493 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2494 TCP_ECN_queue_cwr(tp);
2495 }
2496
2497 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2498 int fast_rexmit)
2499 {
2500 struct tcp_sock *tp = tcp_sk(sk);
2501 int sndcnt = 0;
2502 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2503 int newly_acked_sacked = prior_unsacked -
2504 (tp->packets_out - tp->sacked_out);
2505
2506 tp->prr_delivered += newly_acked_sacked;
2507 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2508 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2509 tp->prior_cwnd - 1;
2510 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2511 } else {
2512 sndcnt = min_t(int, delta,
2513 max_t(int, tp->prr_delivered - tp->prr_out,
2514 newly_acked_sacked) + 1);
2515 }
2516
2517 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2518 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2519 }
2520
2521 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2522 {
2523 struct tcp_sock *tp = tcp_sk(sk);
2524
2525 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2526 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2527 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2528 tp->snd_cwnd = tp->snd_ssthresh;
2529 tp->snd_cwnd_stamp = tcp_time_stamp;
2530 }
2531 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2532 }
2533
2534 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2535 void tcp_enter_cwr(struct sock *sk)
2536 {
2537 struct tcp_sock *tp = tcp_sk(sk);
2538
2539 tp->prior_ssthresh = 0;
2540 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2541 tp->undo_marker = 0;
2542 tcp_init_cwnd_reduction(sk);
2543 tcp_set_ca_state(sk, TCP_CA_CWR);
2544 }
2545 }
2546
2547 static void tcp_try_keep_open(struct sock *sk)
2548 {
2549 struct tcp_sock *tp = tcp_sk(sk);
2550 int state = TCP_CA_Open;
2551
2552 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2553 state = TCP_CA_Disorder;
2554
2555 if (inet_csk(sk)->icsk_ca_state != state) {
2556 tcp_set_ca_state(sk, state);
2557 tp->high_seq = tp->snd_nxt;
2558 }
2559 }
2560
2561 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2562 {
2563 struct tcp_sock *tp = tcp_sk(sk);
2564
2565 tcp_verify_left_out(tp);
2566
2567 if (!tcp_any_retrans_done(sk))
2568 tp->retrans_stamp = 0;
2569
2570 if (flag & FLAG_ECE)
2571 tcp_enter_cwr(sk);
2572
2573 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2574 tcp_try_keep_open(sk);
2575 } else {
2576 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2577 }
2578 }
2579
2580 static void tcp_mtup_probe_failed(struct sock *sk)
2581 {
2582 struct inet_connection_sock *icsk = inet_csk(sk);
2583
2584 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2585 icsk->icsk_mtup.probe_size = 0;
2586 }
2587
2588 static void tcp_mtup_probe_success(struct sock *sk)
2589 {
2590 struct tcp_sock *tp = tcp_sk(sk);
2591 struct inet_connection_sock *icsk = inet_csk(sk);
2592
2593 /* FIXME: breaks with very large cwnd */
2594 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2595 tp->snd_cwnd = tp->snd_cwnd *
2596 tcp_mss_to_mtu(sk, tp->mss_cache) /
2597 icsk->icsk_mtup.probe_size;
2598 tp->snd_cwnd_cnt = 0;
2599 tp->snd_cwnd_stamp = tcp_time_stamp;
2600 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2601
2602 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2603 icsk->icsk_mtup.probe_size = 0;
2604 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2605 }
2606
2607 /* Do a simple retransmit without using the backoff mechanisms in
2608 * tcp_timer. This is used for path mtu discovery.
2609 * The socket is already locked here.
2610 */
2611 void tcp_simple_retransmit(struct sock *sk)
2612 {
2613 const struct inet_connection_sock *icsk = inet_csk(sk);
2614 struct tcp_sock *tp = tcp_sk(sk);
2615 struct sk_buff *skb;
2616 unsigned int mss = tcp_current_mss(sk);
2617 u32 prior_lost = tp->lost_out;
2618
2619 tcp_for_write_queue(skb, sk) {
2620 if (skb == tcp_send_head(sk))
2621 break;
2622 if (tcp_skb_seglen(skb) > mss &&
2623 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2624 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2625 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2626 tp->retrans_out -= tcp_skb_pcount(skb);
2627 }
2628 tcp_skb_mark_lost_uncond_verify(tp, skb);
2629 }
2630 }
2631
2632 tcp_clear_retrans_hints_partial(tp);
2633
2634 if (prior_lost == tp->lost_out)
2635 return;
2636
2637 if (tcp_is_reno(tp))
2638 tcp_limit_reno_sacked(tp);
2639
2640 tcp_verify_left_out(tp);
2641
2642 /* Don't muck with the congestion window here.
2643 * Reason is that we do not increase amount of _data_
2644 * in network, but units changed and effective
2645 * cwnd/ssthresh really reduced now.
2646 */
2647 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2648 tp->high_seq = tp->snd_nxt;
2649 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2650 tp->prior_ssthresh = 0;
2651 tp->undo_marker = 0;
2652 tcp_set_ca_state(sk, TCP_CA_Loss);
2653 }
2654 tcp_xmit_retransmit_queue(sk);
2655 }
2656 EXPORT_SYMBOL(tcp_simple_retransmit);
2657
2658 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2659 {
2660 struct tcp_sock *tp = tcp_sk(sk);
2661 int mib_idx;
2662
2663 if (tcp_is_reno(tp))
2664 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2665 else
2666 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2667
2668 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2669
2670 tp->prior_ssthresh = 0;
2671 tcp_init_undo(tp);
2672
2673 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2674 if (!ece_ack)
2675 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2676 tcp_init_cwnd_reduction(sk);
2677 }
2678 tcp_set_ca_state(sk, TCP_CA_Recovery);
2679 }
2680
2681 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2682 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2683 */
2684 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2685 {
2686 struct tcp_sock *tp = tcp_sk(sk);
2687 bool recovered = !before(tp->snd_una, tp->high_seq);
2688
2689 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2690 /* Step 3.b. A timeout is spurious if not all data are
2691 * lost, i.e., never-retransmitted data are (s)acked.
2692 */
2693 if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2694 return;
2695
2696 if (after(tp->snd_nxt, tp->high_seq) &&
2697 (flag & FLAG_DATA_SACKED || is_dupack)) {
2698 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2699 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2700 tp->high_seq = tp->snd_nxt;
2701 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2702 TCP_NAGLE_OFF);
2703 if (after(tp->snd_nxt, tp->high_seq))
2704 return; /* Step 2.b */
2705 tp->frto = 0;
2706 }
2707 }
2708
2709 if (recovered) {
2710 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2711 tcp_try_undo_recovery(sk);
2712 return;
2713 }
2714 if (tcp_is_reno(tp)) {
2715 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2716 * delivered. Lower inflight to clock out (re)tranmissions.
2717 */
2718 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2719 tcp_add_reno_sack(sk);
2720 else if (flag & FLAG_SND_UNA_ADVANCED)
2721 tcp_reset_reno_sack(tp);
2722 }
2723 if (tcp_try_undo_loss(sk, false))
2724 return;
2725 tcp_xmit_retransmit_queue(sk);
2726 }
2727
2728 /* Undo during fast recovery after partial ACK. */
2729 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2730 const int prior_unsacked)
2731 {
2732 struct tcp_sock *tp = tcp_sk(sk);
2733
2734 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2735 /* Plain luck! Hole if filled with delayed
2736 * packet, rather than with a retransmit.
2737 */
2738 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2739
2740 /* We are getting evidence that the reordering degree is higher
2741 * than we realized. If there are no retransmits out then we
2742 * can undo. Otherwise we clock out new packets but do not
2743 * mark more packets lost or retransmit more.
2744 */
2745 if (tp->retrans_out) {
2746 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2747 return true;
2748 }
2749
2750 if (!tcp_any_retrans_done(sk))
2751 tp->retrans_stamp = 0;
2752
2753 DBGUNDO(sk, "partial recovery");
2754 tcp_undo_cwnd_reduction(sk, true);
2755 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2756 tcp_try_keep_open(sk);
2757 return true;
2758 }
2759 return false;
2760 }
2761
2762 /* Process an event, which can update packets-in-flight not trivially.
2763 * Main goal of this function is to calculate new estimate for left_out,
2764 * taking into account both packets sitting in receiver's buffer and
2765 * packets lost by network.
2766 *
2767 * Besides that it does CWND reduction, when packet loss is detected
2768 * and changes state of machine.
2769 *
2770 * It does _not_ decide what to send, it is made in function
2771 * tcp_xmit_retransmit_queue().
2772 */
2773 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2774 const int prior_unsacked,
2775 bool is_dupack, int flag)
2776 {
2777 struct inet_connection_sock *icsk = inet_csk(sk);
2778 struct tcp_sock *tp = tcp_sk(sk);
2779 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2780 (tcp_fackets_out(tp) > tp->reordering));
2781 int fast_rexmit = 0;
2782
2783 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2784 tp->sacked_out = 0;
2785 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2786 tp->fackets_out = 0;
2787
2788 /* Now state machine starts.
2789 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2790 if (flag & FLAG_ECE)
2791 tp->prior_ssthresh = 0;
2792
2793 /* B. In all the states check for reneging SACKs. */
2794 if (tcp_check_sack_reneging(sk, flag))
2795 return;
2796
2797 /* C. Check consistency of the current state. */
2798 tcp_verify_left_out(tp);
2799
2800 /* D. Check state exit conditions. State can be terminated
2801 * when high_seq is ACKed. */
2802 if (icsk->icsk_ca_state == TCP_CA_Open) {
2803 WARN_ON(tp->retrans_out != 0);
2804 tp->retrans_stamp = 0;
2805 } else if (!before(tp->snd_una, tp->high_seq)) {
2806 switch (icsk->icsk_ca_state) {
2807 case TCP_CA_CWR:
2808 /* CWR is to be held something *above* high_seq
2809 * is ACKed for CWR bit to reach receiver. */
2810 if (tp->snd_una != tp->high_seq) {
2811 tcp_end_cwnd_reduction(sk);
2812 tcp_set_ca_state(sk, TCP_CA_Open);
2813 }
2814 break;
2815
2816 case TCP_CA_Recovery:
2817 if (tcp_is_reno(tp))
2818 tcp_reset_reno_sack(tp);
2819 if (tcp_try_undo_recovery(sk))
2820 return;
2821 tcp_end_cwnd_reduction(sk);
2822 break;
2823 }
2824 }
2825
2826 /* E. Process state. */
2827 switch (icsk->icsk_ca_state) {
2828 case TCP_CA_Recovery:
2829 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2830 if (tcp_is_reno(tp) && is_dupack)
2831 tcp_add_reno_sack(sk);
2832 } else {
2833 if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2834 return;
2835 /* Partial ACK arrived. Force fast retransmit. */
2836 do_lost = tcp_is_reno(tp) ||
2837 tcp_fackets_out(tp) > tp->reordering;
2838 }
2839 if (tcp_try_undo_dsack(sk)) {
2840 tcp_try_keep_open(sk);
2841 return;
2842 }
2843 break;
2844 case TCP_CA_Loss:
2845 tcp_process_loss(sk, flag, is_dupack);
2846 if (icsk->icsk_ca_state != TCP_CA_Open)
2847 return;
2848 /* Fall through to processing in Open state. */
2849 default:
2850 if (tcp_is_reno(tp)) {
2851 if (flag & FLAG_SND_UNA_ADVANCED)
2852 tcp_reset_reno_sack(tp);
2853 if (is_dupack)
2854 tcp_add_reno_sack(sk);
2855 }
2856
2857 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2858 tcp_try_undo_dsack(sk);
2859
2860 if (!tcp_time_to_recover(sk, flag)) {
2861 tcp_try_to_open(sk, flag, prior_unsacked);
2862 return;
2863 }
2864
2865 /* MTU probe failure: don't reduce cwnd */
2866 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2867 icsk->icsk_mtup.probe_size &&
2868 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2869 tcp_mtup_probe_failed(sk);
2870 /* Restores the reduction we did in tcp_mtup_probe() */
2871 tp->snd_cwnd++;
2872 tcp_simple_retransmit(sk);
2873 return;
2874 }
2875
2876 /* Otherwise enter Recovery state */
2877 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2878 fast_rexmit = 1;
2879 }
2880
2881 if (do_lost)
2882 tcp_update_scoreboard(sk, fast_rexmit);
2883 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2884 tcp_xmit_retransmit_queue(sk);
2885 }
2886
2887 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2888 long seq_rtt_us, long sack_rtt_us)
2889 {
2890 const struct tcp_sock *tp = tcp_sk(sk);
2891
2892 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2893 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2894 * Karn's algorithm forbids taking RTT if some retransmitted data
2895 * is acked (RFC6298).
2896 */
2897 if (flag & FLAG_RETRANS_DATA_ACKED)
2898 seq_rtt_us = -1L;
2899
2900 if (seq_rtt_us < 0)
2901 seq_rtt_us = sack_rtt_us;
2902
2903 /* RTTM Rule: A TSecr value received in a segment is used to
2904 * update the averaged RTT measurement only if the segment
2905 * acknowledges some new data, i.e., only if it advances the
2906 * left edge of the send window.
2907 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2908 */
2909 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2910 flag & FLAG_ACKED)
2911 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2912
2913 if (seq_rtt_us < 0)
2914 return false;
2915
2916 tcp_rtt_estimator(sk, seq_rtt_us);
2917 tcp_set_rto(sk);
2918
2919 /* RFC6298: only reset backoff on valid RTT measurement. */
2920 inet_csk(sk)->icsk_backoff = 0;
2921 return true;
2922 }
2923
2924 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2925 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2926 {
2927 struct tcp_sock *tp = tcp_sk(sk);
2928 long seq_rtt_us = -1L;
2929
2930 if (synack_stamp && !tp->total_retrans)
2931 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2932
2933 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2934 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2935 */
2936 if (!tp->srtt_us)
2937 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2938 }
2939
2940 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2941 {
2942 const struct inet_connection_sock *icsk = inet_csk(sk);
2943
2944 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2945 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2946 }
2947
2948 /* Restart timer after forward progress on connection.
2949 * RFC2988 recommends to restart timer to now+rto.
2950 */
2951 void tcp_rearm_rto(struct sock *sk)
2952 {
2953 const struct inet_connection_sock *icsk = inet_csk(sk);
2954 struct tcp_sock *tp = tcp_sk(sk);
2955
2956 /* If the retrans timer is currently being used by Fast Open
2957 * for SYN-ACK retrans purpose, stay put.
2958 */
2959 if (tp->fastopen_rsk)
2960 return;
2961
2962 if (!tp->packets_out) {
2963 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2964 } else {
2965 u32 rto = inet_csk(sk)->icsk_rto;
2966 /* Offset the time elapsed after installing regular RTO */
2967 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2968 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2969 struct sk_buff *skb = tcp_write_queue_head(sk);
2970 const u32 rto_time_stamp =
2971 tcp_skb_timestamp(skb) + rto;
2972 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2973 /* delta may not be positive if the socket is locked
2974 * when the retrans timer fires and is rescheduled.
2975 */
2976 if (delta > 0)
2977 rto = delta;
2978 }
2979 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2980 TCP_RTO_MAX);
2981 }
2982 }
2983
2984 /* This function is called when the delayed ER timer fires. TCP enters
2985 * fast recovery and performs fast-retransmit.
2986 */
2987 void tcp_resume_early_retransmit(struct sock *sk)
2988 {
2989 struct tcp_sock *tp = tcp_sk(sk);
2990
2991 tcp_rearm_rto(sk);
2992
2993 /* Stop if ER is disabled after the delayed ER timer is scheduled */
2994 if (!tp->do_early_retrans)
2995 return;
2996
2997 tcp_enter_recovery(sk, false);
2998 tcp_update_scoreboard(sk, 1);
2999 tcp_xmit_retransmit_queue(sk);
3000 }
3001
3002 /* If we get here, the whole TSO packet has not been acked. */
3003 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3004 {
3005 struct tcp_sock *tp = tcp_sk(sk);
3006 u32 packets_acked;
3007
3008 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3009
3010 packets_acked = tcp_skb_pcount(skb);
3011 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3012 return 0;
3013 packets_acked -= tcp_skb_pcount(skb);
3014
3015 if (packets_acked) {
3016 BUG_ON(tcp_skb_pcount(skb) == 0);
3017 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3018 }
3019
3020 return packets_acked;
3021 }
3022
3023 /* Remove acknowledged frames from the retransmission queue. If our packet
3024 * is before the ack sequence we can discard it as it's confirmed to have
3025 * arrived at the other end.
3026 */
3027 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3028 u32 prior_snd_una, long sack_rtt_us)
3029 {
3030 const struct inet_connection_sock *icsk = inet_csk(sk);
3031 struct skb_mstamp first_ackt, last_ackt, now;
3032 struct tcp_sock *tp = tcp_sk(sk);
3033 u32 prior_sacked = tp->sacked_out;
3034 u32 reord = tp->packets_out;
3035 bool fully_acked = true;
3036 long ca_seq_rtt_us = -1L;
3037 long seq_rtt_us = -1L;
3038 struct sk_buff *skb;
3039 u32 pkts_acked = 0;
3040 bool rtt_update;
3041 int flag = 0;
3042
3043 first_ackt.v64 = 0;
3044
3045 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3046 struct skb_shared_info *shinfo = skb_shinfo(skb);
3047 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3048 u8 sacked = scb->sacked;
3049 u32 acked_pcount;
3050
3051 if (unlikely(shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3052 between(shinfo->tskey, prior_snd_una, tp->snd_una - 1))
3053 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3054
3055 /* Determine how many packets and what bytes were acked, tso and else */
3056 if (after(scb->end_seq, tp->snd_una)) {
3057 if (tcp_skb_pcount(skb) == 1 ||
3058 !after(tp->snd_una, scb->seq))
3059 break;
3060
3061 acked_pcount = tcp_tso_acked(sk, skb);
3062 if (!acked_pcount)
3063 break;
3064
3065 fully_acked = false;
3066 } else {
3067 acked_pcount = tcp_skb_pcount(skb);
3068 }
3069
3070 if (sacked & TCPCB_RETRANS) {
3071 if (sacked & TCPCB_SACKED_RETRANS)
3072 tp->retrans_out -= acked_pcount;
3073 flag |= FLAG_RETRANS_DATA_ACKED;
3074 } else {
3075 last_ackt = skb->skb_mstamp;
3076 WARN_ON_ONCE(last_ackt.v64 == 0);
3077 if (!first_ackt.v64)
3078 first_ackt = last_ackt;
3079
3080 if (!(sacked & TCPCB_SACKED_ACKED))
3081 reord = min(pkts_acked, reord);
3082 if (!after(scb->end_seq, tp->high_seq))
3083 flag |= FLAG_ORIG_SACK_ACKED;
3084 }
3085
3086 if (sacked & TCPCB_SACKED_ACKED)
3087 tp->sacked_out -= acked_pcount;
3088 if (sacked & TCPCB_LOST)
3089 tp->lost_out -= acked_pcount;
3090
3091 tp->packets_out -= acked_pcount;
3092 pkts_acked += acked_pcount;
3093
3094 /* Initial outgoing SYN's get put onto the write_queue
3095 * just like anything else we transmit. It is not
3096 * true data, and if we misinform our callers that
3097 * this ACK acks real data, we will erroneously exit
3098 * connection startup slow start one packet too
3099 * quickly. This is severely frowned upon behavior.
3100 */
3101 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3102 flag |= FLAG_DATA_ACKED;
3103 } else {
3104 flag |= FLAG_SYN_ACKED;
3105 tp->retrans_stamp = 0;
3106 }
3107
3108 if (!fully_acked)
3109 break;
3110
3111 tcp_unlink_write_queue(skb, sk);
3112 sk_wmem_free_skb(sk, skb);
3113 if (skb == tp->retransmit_skb_hint)
3114 tp->retransmit_skb_hint = NULL;
3115 if (skb == tp->lost_skb_hint)
3116 tp->lost_skb_hint = NULL;
3117 }
3118
3119 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3120 tp->snd_up = tp->snd_una;
3121
3122 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3123 flag |= FLAG_SACK_RENEGING;
3124
3125 skb_mstamp_get(&now);
3126 if (first_ackt.v64) {
3127 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3128 ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3129 }
3130
3131 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3132
3133 if (flag & FLAG_ACKED) {
3134 const struct tcp_congestion_ops *ca_ops
3135 = inet_csk(sk)->icsk_ca_ops;
3136
3137 tcp_rearm_rto(sk);
3138 if (unlikely(icsk->icsk_mtup.probe_size &&
3139 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3140 tcp_mtup_probe_success(sk);
3141 }
3142
3143 if (tcp_is_reno(tp)) {
3144 tcp_remove_reno_sacks(sk, pkts_acked);
3145 } else {
3146 int delta;
3147
3148 /* Non-retransmitted hole got filled? That's reordering */
3149 if (reord < prior_fackets)
3150 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3151
3152 delta = tcp_is_fack(tp) ? pkts_acked :
3153 prior_sacked - tp->sacked_out;
3154 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3155 }
3156
3157 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3158
3159 if (ca_ops->pkts_acked)
3160 ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
3161
3162 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3163 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3164 /* Do not re-arm RTO if the sack RTT is measured from data sent
3165 * after when the head was last (re)transmitted. Otherwise the
3166 * timeout may continue to extend in loss recovery.
3167 */
3168 tcp_rearm_rto(sk);
3169 }
3170
3171 #if FASTRETRANS_DEBUG > 0
3172 WARN_ON((int)tp->sacked_out < 0);
3173 WARN_ON((int)tp->lost_out < 0);
3174 WARN_ON((int)tp->retrans_out < 0);
3175 if (!tp->packets_out && tcp_is_sack(tp)) {
3176 icsk = inet_csk(sk);
3177 if (tp->lost_out) {
3178 pr_debug("Leak l=%u %d\n",
3179 tp->lost_out, icsk->icsk_ca_state);
3180 tp->lost_out = 0;
3181 }
3182 if (tp->sacked_out) {
3183 pr_debug("Leak s=%u %d\n",
3184 tp->sacked_out, icsk->icsk_ca_state);
3185 tp->sacked_out = 0;
3186 }
3187 if (tp->retrans_out) {
3188 pr_debug("Leak r=%u %d\n",
3189 tp->retrans_out, icsk->icsk_ca_state);
3190 tp->retrans_out = 0;
3191 }
3192 }
3193 #endif
3194 return flag;
3195 }
3196
3197 static void tcp_ack_probe(struct sock *sk)
3198 {
3199 const struct tcp_sock *tp = tcp_sk(sk);
3200 struct inet_connection_sock *icsk = inet_csk(sk);
3201
3202 /* Was it a usable window open? */
3203
3204 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3205 icsk->icsk_backoff = 0;
3206 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3207 /* Socket must be waked up by subsequent tcp_data_snd_check().
3208 * This function is not for random using!
3209 */
3210 } else {
3211 unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
3212
3213 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3214 when, TCP_RTO_MAX);
3215 }
3216 }
3217
3218 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3219 {
3220 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3221 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3222 }
3223
3224 /* Decide wheather to run the increase function of congestion control. */
3225 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3226 {
3227 if (tcp_in_cwnd_reduction(sk))
3228 return false;
3229
3230 /* If reordering is high then always grow cwnd whenever data is
3231 * delivered regardless of its ordering. Otherwise stay conservative
3232 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3233 * new SACK or ECE mark may first advance cwnd here and later reduce
3234 * cwnd in tcp_fastretrans_alert() based on more states.
3235 */
3236 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3237 return flag & FLAG_FORWARD_PROGRESS;
3238
3239 return flag & FLAG_DATA_ACKED;
3240 }
3241
3242 /* Check that window update is acceptable.
3243 * The function assumes that snd_una<=ack<=snd_next.
3244 */
3245 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3246 const u32 ack, const u32 ack_seq,
3247 const u32 nwin)
3248 {
3249 return after(ack, tp->snd_una) ||
3250 after(ack_seq, tp->snd_wl1) ||
3251 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3252 }
3253
3254 /* Update our send window.
3255 *
3256 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3257 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3258 */
3259 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3260 u32 ack_seq)
3261 {
3262 struct tcp_sock *tp = tcp_sk(sk);
3263 int flag = 0;
3264 u32 nwin = ntohs(tcp_hdr(skb)->window);
3265
3266 if (likely(!tcp_hdr(skb)->syn))
3267 nwin <<= tp->rx_opt.snd_wscale;
3268
3269 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3270 flag |= FLAG_WIN_UPDATE;
3271 tcp_update_wl(tp, ack_seq);
3272
3273 if (tp->snd_wnd != nwin) {
3274 tp->snd_wnd = nwin;
3275
3276 /* Note, it is the only place, where
3277 * fast path is recovered for sending TCP.
3278 */
3279 tp->pred_flags = 0;
3280 tcp_fast_path_check(sk);
3281
3282 if (nwin > tp->max_window) {
3283 tp->max_window = nwin;
3284 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3285 }
3286 }
3287 }
3288
3289 tp->snd_una = ack;
3290
3291 return flag;
3292 }
3293
3294 /* RFC 5961 7 [ACK Throttling] */
3295 static void tcp_send_challenge_ack(struct sock *sk)
3296 {
3297 /* unprotected vars, we dont care of overwrites */
3298 static u32 challenge_timestamp;
3299 static unsigned int challenge_count;
3300 u32 now = jiffies / HZ;
3301
3302 if (now != challenge_timestamp) {
3303 challenge_timestamp = now;
3304 challenge_count = 0;
3305 }
3306 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3307 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3308 tcp_send_ack(sk);
3309 }
3310 }
3311
3312 static void tcp_store_ts_recent(struct tcp_sock *tp)
3313 {
3314 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3315 tp->rx_opt.ts_recent_stamp = get_seconds();
3316 }
3317
3318 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3319 {
3320 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3321 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3322 * extra check below makes sure this can only happen
3323 * for pure ACK frames. -DaveM
3324 *
3325 * Not only, also it occurs for expired timestamps.
3326 */
3327
3328 if (tcp_paws_check(&tp->rx_opt, 0))
3329 tcp_store_ts_recent(tp);
3330 }
3331 }
3332
3333 /* This routine deals with acks during a TLP episode.
3334 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3335 */
3336 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3337 {
3338 struct tcp_sock *tp = tcp_sk(sk);
3339 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3340 !(flag & (FLAG_SND_UNA_ADVANCED |
3341 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3342
3343 /* Mark the end of TLP episode on receiving TLP dupack or when
3344 * ack is after tlp_high_seq.
3345 */
3346 if (is_tlp_dupack) {
3347 tp->tlp_high_seq = 0;
3348 return;
3349 }
3350
3351 if (after(ack, tp->tlp_high_seq)) {
3352 tp->tlp_high_seq = 0;
3353 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3354 if (!(flag & FLAG_DSACKING_ACK)) {
3355 tcp_init_cwnd_reduction(sk);
3356 tcp_set_ca_state(sk, TCP_CA_CWR);
3357 tcp_end_cwnd_reduction(sk);
3358 tcp_try_keep_open(sk);
3359 NET_INC_STATS_BH(sock_net(sk),
3360 LINUX_MIB_TCPLOSSPROBERECOVERY);
3361 }
3362 }
3363 }
3364
3365 /* This routine deals with incoming acks, but not outgoing ones. */
3366 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3367 {
3368 struct inet_connection_sock *icsk = inet_csk(sk);
3369 struct tcp_sock *tp = tcp_sk(sk);
3370 u32 prior_snd_una = tp->snd_una;
3371 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3372 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3373 bool is_dupack = false;
3374 u32 prior_fackets;
3375 int prior_packets = tp->packets_out;
3376 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3377 int acked = 0; /* Number of packets newly acked */
3378 long sack_rtt_us = -1L;
3379
3380 /* If the ack is older than previous acks
3381 * then we can probably ignore it.
3382 */
3383 if (before(ack, prior_snd_una)) {
3384 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3385 if (before(ack, prior_snd_una - tp->max_window)) {
3386 tcp_send_challenge_ack(sk);
3387 return -1;
3388 }
3389 goto old_ack;
3390 }
3391
3392 /* If the ack includes data we haven't sent yet, discard
3393 * this segment (RFC793 Section 3.9).
3394 */
3395 if (after(ack, tp->snd_nxt))
3396 goto invalid_ack;
3397
3398 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3399 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3400 tcp_rearm_rto(sk);
3401
3402 if (after(ack, prior_snd_una)) {
3403 flag |= FLAG_SND_UNA_ADVANCED;
3404 icsk->icsk_retransmits = 0;
3405 }
3406
3407 prior_fackets = tp->fackets_out;
3408
3409 /* ts_recent update must be made after we are sure that the packet
3410 * is in window.
3411 */
3412 if (flag & FLAG_UPDATE_TS_RECENT)
3413 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3414
3415 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3416 /* Window is constant, pure forward advance.
3417 * No more checks are required.
3418 * Note, we use the fact that SND.UNA>=SND.WL2.
3419 */
3420 tcp_update_wl(tp, ack_seq);
3421 tp->snd_una = ack;
3422 flag |= FLAG_WIN_UPDATE;
3423
3424 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3425
3426 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3427 } else {
3428 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3429 flag |= FLAG_DATA;
3430 else
3431 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3432
3433 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3434
3435 if (TCP_SKB_CB(skb)->sacked)
3436 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3437 &sack_rtt_us);
3438
3439 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3440 flag |= FLAG_ECE;
3441
3442 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3443 }
3444
3445 /* We passed data and got it acked, remove any soft error
3446 * log. Something worked...
3447 */
3448 sk->sk_err_soft = 0;
3449 icsk->icsk_probes_out = 0;
3450 tp->rcv_tstamp = tcp_time_stamp;
3451 if (!prior_packets)
3452 goto no_queue;
3453
3454 /* See if we can take anything off of the retransmit queue. */
3455 acked = tp->packets_out;
3456 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3457 sack_rtt_us);
3458 acked -= tp->packets_out;
3459
3460 /* Advance cwnd if state allows */
3461 if (tcp_may_raise_cwnd(sk, flag))
3462 tcp_cong_avoid(sk, ack, acked);
3463
3464 if (tcp_ack_is_dubious(sk, flag)) {
3465 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3466 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3467 is_dupack, flag);
3468 }
3469 if (tp->tlp_high_seq)
3470 tcp_process_tlp_ack(sk, ack, flag);
3471
3472 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3473 struct dst_entry *dst = __sk_dst_get(sk);
3474 if (dst)
3475 dst_confirm(dst);
3476 }
3477
3478 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3479 tcp_schedule_loss_probe(sk);
3480 tcp_update_pacing_rate(sk);
3481 return 1;
3482
3483 no_queue:
3484 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3485 if (flag & FLAG_DSACKING_ACK)
3486 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3487 is_dupack, flag);
3488 /* If this ack opens up a zero window, clear backoff. It was
3489 * being used to time the probes, and is probably far higher than
3490 * it needs to be for normal retransmission.
3491 */
3492 if (tcp_send_head(sk))
3493 tcp_ack_probe(sk);
3494
3495 if (tp->tlp_high_seq)
3496 tcp_process_tlp_ack(sk, ack, flag);
3497 return 1;
3498
3499 invalid_ack:
3500 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3501 return -1;
3502
3503 old_ack:
3504 /* If data was SACKed, tag it and see if we should send more data.
3505 * If data was DSACKed, see if we can undo a cwnd reduction.
3506 */
3507 if (TCP_SKB_CB(skb)->sacked) {
3508 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3509 &sack_rtt_us);
3510 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3511 is_dupack, flag);
3512 }
3513
3514 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3515 return 0;
3516 }
3517
3518 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3519 * But, this can also be called on packets in the established flow when
3520 * the fast version below fails.
3521 */
3522 void tcp_parse_options(const struct sk_buff *skb,
3523 struct tcp_options_received *opt_rx, int estab,
3524 struct tcp_fastopen_cookie *foc)
3525 {
3526 const unsigned char *ptr;
3527 const struct tcphdr *th = tcp_hdr(skb);
3528 int length = (th->doff * 4) - sizeof(struct tcphdr);
3529
3530 ptr = (const unsigned char *)(th + 1);
3531 opt_rx->saw_tstamp = 0;
3532
3533 while (length > 0) {
3534 int opcode = *ptr++;
3535 int opsize;
3536
3537 switch (opcode) {
3538 case TCPOPT_EOL:
3539 return;
3540 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3541 length--;
3542 continue;
3543 default:
3544 opsize = *ptr++;
3545 if (opsize < 2) /* "silly options" */
3546 return;
3547 if (opsize > length)
3548 return; /* don't parse partial options */
3549 switch (opcode) {
3550 case TCPOPT_MSS:
3551 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3552 u16 in_mss = get_unaligned_be16(ptr);
3553 if (in_mss) {
3554 if (opt_rx->user_mss &&
3555 opt_rx->user_mss < in_mss)
3556 in_mss = opt_rx->user_mss;
3557 opt_rx->mss_clamp = in_mss;
3558 }
3559 }
3560 break;
3561 case TCPOPT_WINDOW:
3562 if (opsize == TCPOLEN_WINDOW && th->syn &&
3563 !estab && sysctl_tcp_window_scaling) {
3564 __u8 snd_wscale = *(__u8 *)ptr;
3565 opt_rx->wscale_ok = 1;
3566 if (snd_wscale > 14) {
3567 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3568 __func__,
3569 snd_wscale);
3570 snd_wscale = 14;
3571 }
3572 opt_rx->snd_wscale = snd_wscale;
3573 }
3574 break;
3575 case TCPOPT_TIMESTAMP:
3576 if ((opsize == TCPOLEN_TIMESTAMP) &&
3577 ((estab && opt_rx->tstamp_ok) ||
3578 (!estab && sysctl_tcp_timestamps))) {
3579 opt_rx->saw_tstamp = 1;
3580 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3581 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3582 }
3583 break;
3584 case TCPOPT_SACK_PERM:
3585 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3586 !estab && sysctl_tcp_sack) {
3587 opt_rx->sack_ok = TCP_SACK_SEEN;
3588 tcp_sack_reset(opt_rx);
3589 }
3590 break;
3591
3592 case TCPOPT_SACK:
3593 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3594 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3595 opt_rx->sack_ok) {
3596 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3597 }
3598 break;
3599 #ifdef CONFIG_TCP_MD5SIG
3600 case TCPOPT_MD5SIG:
3601 /*
3602 * The MD5 Hash has already been
3603 * checked (see tcp_v{4,6}_do_rcv()).
3604 */
3605 break;
3606 #endif
3607 case TCPOPT_EXP:
3608 /* Fast Open option shares code 254 using a
3609 * 16 bits magic number. It's valid only in
3610 * SYN or SYN-ACK with an even size.
3611 */
3612 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3613 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3614 foc == NULL || !th->syn || (opsize & 1))
3615 break;
3616 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3617 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3618 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3619 memcpy(foc->val, ptr + 2, foc->len);
3620 else if (foc->len != 0)
3621 foc->len = -1;
3622 break;
3623
3624 }
3625 ptr += opsize-2;
3626 length -= opsize;
3627 }
3628 }
3629 }
3630 EXPORT_SYMBOL(tcp_parse_options);
3631
3632 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3633 {
3634 const __be32 *ptr = (const __be32 *)(th + 1);
3635
3636 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3637 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3638 tp->rx_opt.saw_tstamp = 1;
3639 ++ptr;
3640 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3641 ++ptr;
3642 if (*ptr)
3643 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3644 else
3645 tp->rx_opt.rcv_tsecr = 0;
3646 return true;
3647 }
3648 return false;
3649 }
3650
3651 /* Fast parse options. This hopes to only see timestamps.
3652 * If it is wrong it falls back on tcp_parse_options().
3653 */
3654 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3655 const struct tcphdr *th, struct tcp_sock *tp)
3656 {
3657 /* In the spirit of fast parsing, compare doff directly to constant
3658 * values. Because equality is used, short doff can be ignored here.
3659 */
3660 if (th->doff == (sizeof(*th) / 4)) {
3661 tp->rx_opt.saw_tstamp = 0;
3662 return false;
3663 } else if (tp->rx_opt.tstamp_ok &&
3664 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3665 if (tcp_parse_aligned_timestamp(tp, th))
3666 return true;
3667 }
3668
3669 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3670 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3671 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3672
3673 return true;
3674 }
3675
3676 #ifdef CONFIG_TCP_MD5SIG
3677 /*
3678 * Parse MD5 Signature option
3679 */
3680 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3681 {
3682 int length = (th->doff << 2) - sizeof(*th);
3683 const u8 *ptr = (const u8 *)(th + 1);
3684
3685 /* If the TCP option is too short, we can short cut */
3686 if (length < TCPOLEN_MD5SIG)
3687 return NULL;
3688
3689 while (length > 0) {
3690 int opcode = *ptr++;
3691 int opsize;
3692
3693 switch (opcode) {
3694 case TCPOPT_EOL:
3695 return NULL;
3696 case TCPOPT_NOP:
3697 length--;
3698 continue;
3699 default:
3700 opsize = *ptr++;
3701 if (opsize < 2 || opsize > length)
3702 return NULL;
3703 if (opcode == TCPOPT_MD5SIG)
3704 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3705 }
3706 ptr += opsize - 2;
3707 length -= opsize;
3708 }
3709 return NULL;
3710 }
3711 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3712 #endif
3713
3714 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3715 *
3716 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3717 * it can pass through stack. So, the following predicate verifies that
3718 * this segment is not used for anything but congestion avoidance or
3719 * fast retransmit. Moreover, we even are able to eliminate most of such
3720 * second order effects, if we apply some small "replay" window (~RTO)
3721 * to timestamp space.
3722 *
3723 * All these measures still do not guarantee that we reject wrapped ACKs
3724 * on networks with high bandwidth, when sequence space is recycled fastly,
3725 * but it guarantees that such events will be very rare and do not affect
3726 * connection seriously. This doesn't look nice, but alas, PAWS is really
3727 * buggy extension.
3728 *
3729 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3730 * states that events when retransmit arrives after original data are rare.
3731 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3732 * the biggest problem on large power networks even with minor reordering.
3733 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3734 * up to bandwidth of 18Gigabit/sec. 8) ]
3735 */
3736
3737 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3738 {
3739 const struct tcp_sock *tp = tcp_sk(sk);
3740 const struct tcphdr *th = tcp_hdr(skb);
3741 u32 seq = TCP_SKB_CB(skb)->seq;
3742 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3743
3744 return (/* 1. Pure ACK with correct sequence number. */
3745 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3746
3747 /* 2. ... and duplicate ACK. */
3748 ack == tp->snd_una &&
3749
3750 /* 3. ... and does not update window. */
3751 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3752
3753 /* 4. ... and sits in replay window. */
3754 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3755 }
3756
3757 static inline bool tcp_paws_discard(const struct sock *sk,
3758 const struct sk_buff *skb)
3759 {
3760 const struct tcp_sock *tp = tcp_sk(sk);
3761
3762 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3763 !tcp_disordered_ack(sk, skb);
3764 }
3765
3766 /* Check segment sequence number for validity.
3767 *
3768 * Segment controls are considered valid, if the segment
3769 * fits to the window after truncation to the window. Acceptability
3770 * of data (and SYN, FIN, of course) is checked separately.
3771 * See tcp_data_queue(), for example.
3772 *
3773 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3774 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3775 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3776 * (borrowed from freebsd)
3777 */
3778
3779 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3780 {
3781 return !before(end_seq, tp->rcv_wup) &&
3782 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3783 }
3784
3785 /* When we get a reset we do this. */
3786 void tcp_reset(struct sock *sk)
3787 {
3788 /* We want the right error as BSD sees it (and indeed as we do). */
3789 switch (sk->sk_state) {
3790 case TCP_SYN_SENT:
3791 sk->sk_err = ECONNREFUSED;
3792 break;
3793 case TCP_CLOSE_WAIT:
3794 sk->sk_err = EPIPE;
3795 break;
3796 case TCP_CLOSE:
3797 return;
3798 default:
3799 sk->sk_err = ECONNRESET;
3800 }
3801 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3802 smp_wmb();
3803
3804 if (!sock_flag(sk, SOCK_DEAD))
3805 sk->sk_error_report(sk);
3806
3807 tcp_done(sk);
3808 }
3809
3810 /*
3811 * Process the FIN bit. This now behaves as it is supposed to work
3812 * and the FIN takes effect when it is validly part of sequence
3813 * space. Not before when we get holes.
3814 *
3815 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3816 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3817 * TIME-WAIT)
3818 *
3819 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3820 * close and we go into CLOSING (and later onto TIME-WAIT)
3821 *
3822 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3823 */
3824 static void tcp_fin(struct sock *sk)
3825 {
3826 struct tcp_sock *tp = tcp_sk(sk);
3827 const struct dst_entry *dst;
3828
3829 inet_csk_schedule_ack(sk);
3830
3831 sk->sk_shutdown |= RCV_SHUTDOWN;
3832 sock_set_flag(sk, SOCK_DONE);
3833
3834 switch (sk->sk_state) {
3835 case TCP_SYN_RECV:
3836 case TCP_ESTABLISHED:
3837 /* Move to CLOSE_WAIT */
3838 tcp_set_state(sk, TCP_CLOSE_WAIT);
3839 dst = __sk_dst_get(sk);
3840 if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3841 inet_csk(sk)->icsk_ack.pingpong = 1;
3842 break;
3843
3844 case TCP_CLOSE_WAIT:
3845 case TCP_CLOSING:
3846 /* Received a retransmission of the FIN, do
3847 * nothing.
3848 */
3849 break;
3850 case TCP_LAST_ACK:
3851 /* RFC793: Remain in the LAST-ACK state. */
3852 break;
3853
3854 case TCP_FIN_WAIT1:
3855 /* This case occurs when a simultaneous close
3856 * happens, we must ack the received FIN and
3857 * enter the CLOSING state.
3858 */
3859 tcp_send_ack(sk);
3860 tcp_set_state(sk, TCP_CLOSING);
3861 break;
3862 case TCP_FIN_WAIT2:
3863 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3864 tcp_send_ack(sk);
3865 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3866 break;
3867 default:
3868 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3869 * cases we should never reach this piece of code.
3870 */
3871 pr_err("%s: Impossible, sk->sk_state=%d\n",
3872 __func__, sk->sk_state);
3873 break;
3874 }
3875
3876 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3877 * Probably, we should reset in this case. For now drop them.
3878 */
3879 __skb_queue_purge(&tp->out_of_order_queue);
3880 if (tcp_is_sack(tp))
3881 tcp_sack_reset(&tp->rx_opt);
3882 sk_mem_reclaim(sk);
3883
3884 if (!sock_flag(sk, SOCK_DEAD)) {
3885 sk->sk_state_change(sk);
3886
3887 /* Do not send POLL_HUP for half duplex close. */
3888 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3889 sk->sk_state == TCP_CLOSE)
3890 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3891 else
3892 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3893 }
3894 }
3895
3896 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3897 u32 end_seq)
3898 {
3899 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3900 if (before(seq, sp->start_seq))
3901 sp->start_seq = seq;
3902 if (after(end_seq, sp->end_seq))
3903 sp->end_seq = end_seq;
3904 return true;
3905 }
3906 return false;
3907 }
3908
3909 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3910 {
3911 struct tcp_sock *tp = tcp_sk(sk);
3912
3913 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3914 int mib_idx;
3915
3916 if (before(seq, tp->rcv_nxt))
3917 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3918 else
3919 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3920
3921 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3922
3923 tp->rx_opt.dsack = 1;
3924 tp->duplicate_sack[0].start_seq = seq;
3925 tp->duplicate_sack[0].end_seq = end_seq;
3926 }
3927 }
3928
3929 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3930 {
3931 struct tcp_sock *tp = tcp_sk(sk);
3932
3933 if (!tp->rx_opt.dsack)
3934 tcp_dsack_set(sk, seq, end_seq);
3935 else
3936 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3937 }
3938
3939 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3940 {
3941 struct tcp_sock *tp = tcp_sk(sk);
3942
3943 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3944 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3945 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3946 tcp_enter_quickack_mode(sk);
3947
3948 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3949 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3950
3951 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3952 end_seq = tp->rcv_nxt;
3953 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3954 }
3955 }
3956
3957 tcp_send_ack(sk);
3958 }
3959
3960 /* These routines update the SACK block as out-of-order packets arrive or
3961 * in-order packets close up the sequence space.
3962 */
3963 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3964 {
3965 int this_sack;
3966 struct tcp_sack_block *sp = &tp->selective_acks[0];
3967 struct tcp_sack_block *swalk = sp + 1;
3968
3969 /* See if the recent change to the first SACK eats into
3970 * or hits the sequence space of other SACK blocks, if so coalesce.
3971 */
3972 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3973 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3974 int i;
3975
3976 /* Zap SWALK, by moving every further SACK up by one slot.
3977 * Decrease num_sacks.
3978 */
3979 tp->rx_opt.num_sacks--;
3980 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3981 sp[i] = sp[i + 1];
3982 continue;
3983 }
3984 this_sack++, swalk++;
3985 }
3986 }
3987
3988 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3989 {
3990 struct tcp_sock *tp = tcp_sk(sk);
3991 struct tcp_sack_block *sp = &tp->selective_acks[0];
3992 int cur_sacks = tp->rx_opt.num_sacks;
3993 int this_sack;
3994
3995 if (!cur_sacks)
3996 goto new_sack;
3997
3998 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3999 if (tcp_sack_extend(sp, seq, end_seq)) {
4000 /* Rotate this_sack to the first one. */
4001 for (; this_sack > 0; this_sack--, sp--)
4002 swap(*sp, *(sp - 1));
4003 if (cur_sacks > 1)
4004 tcp_sack_maybe_coalesce(tp);
4005 return;
4006 }
4007 }
4008
4009 /* Could not find an adjacent existing SACK, build a new one,
4010 * put it at the front, and shift everyone else down. We
4011 * always know there is at least one SACK present already here.
4012 *
4013 * If the sack array is full, forget about the last one.
4014 */
4015 if (this_sack >= TCP_NUM_SACKS) {
4016 this_sack--;
4017 tp->rx_opt.num_sacks--;
4018 sp--;
4019 }
4020 for (; this_sack > 0; this_sack--, sp--)
4021 *sp = *(sp - 1);
4022
4023 new_sack:
4024 /* Build the new head SACK, and we're done. */
4025 sp->start_seq = seq;
4026 sp->end_seq = end_seq;
4027 tp->rx_opt.num_sacks++;
4028 }
4029
4030 /* RCV.NXT advances, some SACKs should be eaten. */
4031
4032 static void tcp_sack_remove(struct tcp_sock *tp)
4033 {
4034 struct tcp_sack_block *sp = &tp->selective_acks[0];
4035 int num_sacks = tp->rx_opt.num_sacks;
4036 int this_sack;
4037
4038 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4039 if (skb_queue_empty(&tp->out_of_order_queue)) {
4040 tp->rx_opt.num_sacks = 0;
4041 return;
4042 }
4043
4044 for (this_sack = 0; this_sack < num_sacks;) {
4045 /* Check if the start of the sack is covered by RCV.NXT. */
4046 if (!before(tp->rcv_nxt, sp->start_seq)) {
4047 int i;
4048
4049 /* RCV.NXT must cover all the block! */
4050 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4051
4052 /* Zap this SACK, by moving forward any other SACKS. */
4053 for (i = this_sack+1; i < num_sacks; i++)
4054 tp->selective_acks[i-1] = tp->selective_acks[i];
4055 num_sacks--;
4056 continue;
4057 }
4058 this_sack++;
4059 sp++;
4060 }
4061 tp->rx_opt.num_sacks = num_sacks;
4062 }
4063
4064 /**
4065 * tcp_try_coalesce - try to merge skb to prior one
4066 * @sk: socket
4067 * @to: prior buffer
4068 * @from: buffer to add in queue
4069 * @fragstolen: pointer to boolean
4070 *
4071 * Before queueing skb @from after @to, try to merge them
4072 * to reduce overall memory use and queue lengths, if cost is small.
4073 * Packets in ofo or receive queues can stay a long time.
4074 * Better try to coalesce them right now to avoid future collapses.
4075 * Returns true if caller should free @from instead of queueing it
4076 */
4077 static bool tcp_try_coalesce(struct sock *sk,
4078 struct sk_buff *to,
4079 struct sk_buff *from,
4080 bool *fragstolen)
4081 {
4082 int delta;
4083
4084 *fragstolen = false;
4085
4086 /* Its possible this segment overlaps with prior segment in queue */
4087 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4088 return false;
4089
4090 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4091 return false;
4092
4093 atomic_add(delta, &sk->sk_rmem_alloc);
4094 sk_mem_charge(sk, delta);
4095 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4096 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4097 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4098 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4099 return true;
4100 }
4101
4102 /* This one checks to see if we can put data from the
4103 * out_of_order queue into the receive_queue.
4104 */
4105 static void tcp_ofo_queue(struct sock *sk)
4106 {
4107 struct tcp_sock *tp = tcp_sk(sk);
4108 __u32 dsack_high = tp->rcv_nxt;
4109 struct sk_buff *skb, *tail;
4110 bool fragstolen, eaten;
4111
4112 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4113 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4114 break;
4115
4116 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4117 __u32 dsack = dsack_high;
4118 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4119 dsack_high = TCP_SKB_CB(skb)->end_seq;
4120 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4121 }
4122
4123 __skb_unlink(skb, &tp->out_of_order_queue);
4124 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4125 SOCK_DEBUG(sk, "ofo packet was already received\n");
4126 __kfree_skb(skb);
4127 continue;
4128 }
4129 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4130 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4131 TCP_SKB_CB(skb)->end_seq);
4132
4133 tail = skb_peek_tail(&sk->sk_receive_queue);
4134 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4135 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4136 if (!eaten)
4137 __skb_queue_tail(&sk->sk_receive_queue, skb);
4138 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4139 tcp_fin(sk);
4140 if (eaten)
4141 kfree_skb_partial(skb, fragstolen);
4142 }
4143 }
4144
4145 static bool tcp_prune_ofo_queue(struct sock *sk);
4146 static int tcp_prune_queue(struct sock *sk);
4147
4148 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4149 unsigned int size)
4150 {
4151 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4152 !sk_rmem_schedule(sk, skb, size)) {
4153
4154 if (tcp_prune_queue(sk) < 0)
4155 return -1;
4156
4157 if (!sk_rmem_schedule(sk, skb, size)) {
4158 if (!tcp_prune_ofo_queue(sk))
4159 return -1;
4160
4161 if (!sk_rmem_schedule(sk, skb, size))
4162 return -1;
4163 }
4164 }
4165 return 0;
4166 }
4167
4168 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4169 {
4170 struct tcp_sock *tp = tcp_sk(sk);
4171 struct sk_buff *skb1;
4172 u32 seq, end_seq;
4173
4174 TCP_ECN_check_ce(tp, skb);
4175
4176 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4177 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4178 __kfree_skb(skb);
4179 return;
4180 }
4181
4182 /* Disable header prediction. */
4183 tp->pred_flags = 0;
4184 inet_csk_schedule_ack(sk);
4185
4186 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4187 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4188 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4189
4190 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4191 if (!skb1) {
4192 /* Initial out of order segment, build 1 SACK. */
4193 if (tcp_is_sack(tp)) {
4194 tp->rx_opt.num_sacks = 1;
4195 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4196 tp->selective_acks[0].end_seq =
4197 TCP_SKB_CB(skb)->end_seq;
4198 }
4199 __skb_queue_head(&tp->out_of_order_queue, skb);
4200 goto end;
4201 }
4202
4203 seq = TCP_SKB_CB(skb)->seq;
4204 end_seq = TCP_SKB_CB(skb)->end_seq;
4205
4206 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4207 bool fragstolen;
4208
4209 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4210 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4211 } else {
4212 tcp_grow_window(sk, skb);
4213 kfree_skb_partial(skb, fragstolen);
4214 skb = NULL;
4215 }
4216
4217 if (!tp->rx_opt.num_sacks ||
4218 tp->selective_acks[0].end_seq != seq)
4219 goto add_sack;
4220
4221 /* Common case: data arrive in order after hole. */
4222 tp->selective_acks[0].end_seq = end_seq;
4223 goto end;
4224 }
4225
4226 /* Find place to insert this segment. */
4227 while (1) {
4228 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4229 break;
4230 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4231 skb1 = NULL;
4232 break;
4233 }
4234 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4235 }
4236
4237 /* Do skb overlap to previous one? */
4238 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4239 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4240 /* All the bits are present. Drop. */
4241 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4242 __kfree_skb(skb);
4243 skb = NULL;
4244 tcp_dsack_set(sk, seq, end_seq);
4245 goto add_sack;
4246 }
4247 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4248 /* Partial overlap. */
4249 tcp_dsack_set(sk, seq,
4250 TCP_SKB_CB(skb1)->end_seq);
4251 } else {
4252 if (skb_queue_is_first(&tp->out_of_order_queue,
4253 skb1))
4254 skb1 = NULL;
4255 else
4256 skb1 = skb_queue_prev(
4257 &tp->out_of_order_queue,
4258 skb1);
4259 }
4260 }
4261 if (!skb1)
4262 __skb_queue_head(&tp->out_of_order_queue, skb);
4263 else
4264 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4265
4266 /* And clean segments covered by new one as whole. */
4267 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4268 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4269
4270 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4271 break;
4272 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4273 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4274 end_seq);
4275 break;
4276 }
4277 __skb_unlink(skb1, &tp->out_of_order_queue);
4278 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4279 TCP_SKB_CB(skb1)->end_seq);
4280 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4281 __kfree_skb(skb1);
4282 }
4283
4284 add_sack:
4285 if (tcp_is_sack(tp))
4286 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4287 end:
4288 if (skb) {
4289 tcp_grow_window(sk, skb);
4290 skb_set_owner_r(skb, sk);
4291 }
4292 }
4293
4294 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4295 bool *fragstolen)
4296 {
4297 int eaten;
4298 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4299
4300 __skb_pull(skb, hdrlen);
4301 eaten = (tail &&
4302 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4303 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4304 if (!eaten) {
4305 __skb_queue_tail(&sk->sk_receive_queue, skb);
4306 skb_set_owner_r(skb, sk);
4307 }
4308 return eaten;
4309 }
4310
4311 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4312 {
4313 struct sk_buff *skb;
4314 bool fragstolen;
4315
4316 if (size == 0)
4317 return 0;
4318
4319 skb = alloc_skb(size, sk->sk_allocation);
4320 if (!skb)
4321 goto err;
4322
4323 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4324 goto err_free;
4325
4326 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4327 goto err_free;
4328
4329 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4330 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4331 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4332
4333 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4334 WARN_ON_ONCE(fragstolen); /* should not happen */
4335 __kfree_skb(skb);
4336 }
4337 return size;
4338
4339 err_free:
4340 kfree_skb(skb);
4341 err:
4342 return -ENOMEM;
4343 }
4344
4345 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4346 {
4347 struct tcp_sock *tp = tcp_sk(sk);
4348 int eaten = -1;
4349 bool fragstolen = false;
4350
4351 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4352 goto drop;
4353
4354 skb_dst_drop(skb);
4355 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4356
4357 TCP_ECN_accept_cwr(tp, skb);
4358
4359 tp->rx_opt.dsack = 0;
4360
4361 /* Queue data for delivery to the user.
4362 * Packets in sequence go to the receive queue.
4363 * Out of sequence packets to the out_of_order_queue.
4364 */
4365 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4366 if (tcp_receive_window(tp) == 0)
4367 goto out_of_window;
4368
4369 /* Ok. In sequence. In window. */
4370 if (tp->ucopy.task == current &&
4371 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4372 sock_owned_by_user(sk) && !tp->urg_data) {
4373 int chunk = min_t(unsigned int, skb->len,
4374 tp->ucopy.len);
4375
4376 __set_current_state(TASK_RUNNING);
4377
4378 local_bh_enable();
4379 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4380 tp->ucopy.len -= chunk;
4381 tp->copied_seq += chunk;
4382 eaten = (chunk == skb->len);
4383 tcp_rcv_space_adjust(sk);
4384 }
4385 local_bh_disable();
4386 }
4387
4388 if (eaten <= 0) {
4389 queue_and_out:
4390 if (eaten < 0 &&
4391 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4392 goto drop;
4393
4394 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4395 }
4396 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4397 if (skb->len)
4398 tcp_event_data_recv(sk, skb);
4399 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4400 tcp_fin(sk);
4401
4402 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4403 tcp_ofo_queue(sk);
4404
4405 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4406 * gap in queue is filled.
4407 */
4408 if (skb_queue_empty(&tp->out_of_order_queue))
4409 inet_csk(sk)->icsk_ack.pingpong = 0;
4410 }
4411
4412 if (tp->rx_opt.num_sacks)
4413 tcp_sack_remove(tp);
4414
4415 tcp_fast_path_check(sk);
4416
4417 if (eaten > 0)
4418 kfree_skb_partial(skb, fragstolen);
4419 if (!sock_flag(sk, SOCK_DEAD))
4420 sk->sk_data_ready(sk);
4421 return;
4422 }
4423
4424 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4425 /* A retransmit, 2nd most common case. Force an immediate ack. */
4426 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4427 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4428
4429 out_of_window:
4430 tcp_enter_quickack_mode(sk);
4431 inet_csk_schedule_ack(sk);
4432 drop:
4433 __kfree_skb(skb);
4434 return;
4435 }
4436
4437 /* Out of window. F.e. zero window probe. */
4438 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4439 goto out_of_window;
4440
4441 tcp_enter_quickack_mode(sk);
4442
4443 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4444 /* Partial packet, seq < rcv_next < end_seq */
4445 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4446 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4447 TCP_SKB_CB(skb)->end_seq);
4448
4449 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4450
4451 /* If window is closed, drop tail of packet. But after
4452 * remembering D-SACK for its head made in previous line.
4453 */
4454 if (!tcp_receive_window(tp))
4455 goto out_of_window;
4456 goto queue_and_out;
4457 }
4458
4459 tcp_data_queue_ofo(sk, skb);
4460 }
4461
4462 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4463 struct sk_buff_head *list)
4464 {
4465 struct sk_buff *next = NULL;
4466
4467 if (!skb_queue_is_last(list, skb))
4468 next = skb_queue_next(list, skb);
4469
4470 __skb_unlink(skb, list);
4471 __kfree_skb(skb);
4472 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4473
4474 return next;
4475 }
4476
4477 /* Collapse contiguous sequence of skbs head..tail with
4478 * sequence numbers start..end.
4479 *
4480 * If tail is NULL, this means until the end of the list.
4481 *
4482 * Segments with FIN/SYN are not collapsed (only because this
4483 * simplifies code)
4484 */
4485 static void
4486 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4487 struct sk_buff *head, struct sk_buff *tail,
4488 u32 start, u32 end)
4489 {
4490 struct sk_buff *skb, *n;
4491 bool end_of_skbs;
4492
4493 /* First, check that queue is collapsible and find
4494 * the point where collapsing can be useful. */
4495 skb = head;
4496 restart:
4497 end_of_skbs = true;
4498 skb_queue_walk_from_safe(list, skb, n) {
4499 if (skb == tail)
4500 break;
4501 /* No new bits? It is possible on ofo queue. */
4502 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4503 skb = tcp_collapse_one(sk, skb, list);
4504 if (!skb)
4505 break;
4506 goto restart;
4507 }
4508
4509 /* The first skb to collapse is:
4510 * - not SYN/FIN and
4511 * - bloated or contains data before "start" or
4512 * overlaps to the next one.
4513 */
4514 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4515 (tcp_win_from_space(skb->truesize) > skb->len ||
4516 before(TCP_SKB_CB(skb)->seq, start))) {
4517 end_of_skbs = false;
4518 break;
4519 }
4520
4521 if (!skb_queue_is_last(list, skb)) {
4522 struct sk_buff *next = skb_queue_next(list, skb);
4523 if (next != tail &&
4524 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4525 end_of_skbs = false;
4526 break;
4527 }
4528 }
4529
4530 /* Decided to skip this, advance start seq. */
4531 start = TCP_SKB_CB(skb)->end_seq;
4532 }
4533 if (end_of_skbs ||
4534 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4535 return;
4536
4537 while (before(start, end)) {
4538 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4539 struct sk_buff *nskb;
4540
4541 nskb = alloc_skb(copy, GFP_ATOMIC);
4542 if (!nskb)
4543 return;
4544
4545 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4546 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4547 __skb_queue_before(list, skb, nskb);
4548 skb_set_owner_r(nskb, sk);
4549
4550 /* Copy data, releasing collapsed skbs. */
4551 while (copy > 0) {
4552 int offset = start - TCP_SKB_CB(skb)->seq;
4553 int size = TCP_SKB_CB(skb)->end_seq - start;
4554
4555 BUG_ON(offset < 0);
4556 if (size > 0) {
4557 size = min(copy, size);
4558 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4559 BUG();
4560 TCP_SKB_CB(nskb)->end_seq += size;
4561 copy -= size;
4562 start += size;
4563 }
4564 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4565 skb = tcp_collapse_one(sk, skb, list);
4566 if (!skb ||
4567 skb == tail ||
4568 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4569 return;
4570 }
4571 }
4572 }
4573 }
4574
4575 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4576 * and tcp_collapse() them until all the queue is collapsed.
4577 */
4578 static void tcp_collapse_ofo_queue(struct sock *sk)
4579 {
4580 struct tcp_sock *tp = tcp_sk(sk);
4581 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4582 struct sk_buff *head;
4583 u32 start, end;
4584
4585 if (skb == NULL)
4586 return;
4587
4588 start = TCP_SKB_CB(skb)->seq;
4589 end = TCP_SKB_CB(skb)->end_seq;
4590 head = skb;
4591
4592 for (;;) {
4593 struct sk_buff *next = NULL;
4594
4595 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4596 next = skb_queue_next(&tp->out_of_order_queue, skb);
4597 skb = next;
4598
4599 /* Segment is terminated when we see gap or when
4600 * we are at the end of all the queue. */
4601 if (!skb ||
4602 after(TCP_SKB_CB(skb)->seq, end) ||
4603 before(TCP_SKB_CB(skb)->end_seq, start)) {
4604 tcp_collapse(sk, &tp->out_of_order_queue,
4605 head, skb, start, end);
4606 head = skb;
4607 if (!skb)
4608 break;
4609 /* Start new segment */
4610 start = TCP_SKB_CB(skb)->seq;
4611 end = TCP_SKB_CB(skb)->end_seq;
4612 } else {
4613 if (before(TCP_SKB_CB(skb)->seq, start))
4614 start = TCP_SKB_CB(skb)->seq;
4615 if (after(TCP_SKB_CB(skb)->end_seq, end))
4616 end = TCP_SKB_CB(skb)->end_seq;
4617 }
4618 }
4619 }
4620
4621 /*
4622 * Purge the out-of-order queue.
4623 * Return true if queue was pruned.
4624 */
4625 static bool tcp_prune_ofo_queue(struct sock *sk)
4626 {
4627 struct tcp_sock *tp = tcp_sk(sk);
4628 bool res = false;
4629
4630 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4631 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4632 __skb_queue_purge(&tp->out_of_order_queue);
4633
4634 /* Reset SACK state. A conforming SACK implementation will
4635 * do the same at a timeout based retransmit. When a connection
4636 * is in a sad state like this, we care only about integrity
4637 * of the connection not performance.
4638 */
4639 if (tp->rx_opt.sack_ok)
4640 tcp_sack_reset(&tp->rx_opt);
4641 sk_mem_reclaim(sk);
4642 res = true;
4643 }
4644 return res;
4645 }
4646
4647 /* Reduce allocated memory if we can, trying to get
4648 * the socket within its memory limits again.
4649 *
4650 * Return less than zero if we should start dropping frames
4651 * until the socket owning process reads some of the data
4652 * to stabilize the situation.
4653 */
4654 static int tcp_prune_queue(struct sock *sk)
4655 {
4656 struct tcp_sock *tp = tcp_sk(sk);
4657
4658 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4659
4660 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4661
4662 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4663 tcp_clamp_window(sk);
4664 else if (sk_under_memory_pressure(sk))
4665 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4666
4667 tcp_collapse_ofo_queue(sk);
4668 if (!skb_queue_empty(&sk->sk_receive_queue))
4669 tcp_collapse(sk, &sk->sk_receive_queue,
4670 skb_peek(&sk->sk_receive_queue),
4671 NULL,
4672 tp->copied_seq, tp->rcv_nxt);
4673 sk_mem_reclaim(sk);
4674
4675 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4676 return 0;
4677
4678 /* Collapsing did not help, destructive actions follow.
4679 * This must not ever occur. */
4680
4681 tcp_prune_ofo_queue(sk);
4682
4683 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4684 return 0;
4685
4686 /* If we are really being abused, tell the caller to silently
4687 * drop receive data on the floor. It will get retransmitted
4688 * and hopefully then we'll have sufficient space.
4689 */
4690 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4691
4692 /* Massive buffer overcommit. */
4693 tp->pred_flags = 0;
4694 return -1;
4695 }
4696
4697 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4698 {
4699 const struct tcp_sock *tp = tcp_sk(sk);
4700
4701 /* If the user specified a specific send buffer setting, do
4702 * not modify it.
4703 */
4704 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4705 return false;
4706
4707 /* If we are under global TCP memory pressure, do not expand. */
4708 if (sk_under_memory_pressure(sk))
4709 return false;
4710
4711 /* If we are under soft global TCP memory pressure, do not expand. */
4712 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4713 return false;
4714
4715 /* If we filled the congestion window, do not expand. */
4716 if (tp->packets_out >= tp->snd_cwnd)
4717 return false;
4718
4719 return true;
4720 }
4721
4722 /* When incoming ACK allowed to free some skb from write_queue,
4723 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4724 * on the exit from tcp input handler.
4725 *
4726 * PROBLEM: sndbuf expansion does not work well with largesend.
4727 */
4728 static void tcp_new_space(struct sock *sk)
4729 {
4730 struct tcp_sock *tp = tcp_sk(sk);
4731
4732 if (tcp_should_expand_sndbuf(sk)) {
4733 tcp_sndbuf_expand(sk);
4734 tp->snd_cwnd_stamp = tcp_time_stamp;
4735 }
4736
4737 sk->sk_write_space(sk);
4738 }
4739
4740 static void tcp_check_space(struct sock *sk)
4741 {
4742 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4743 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4744 if (sk->sk_socket &&
4745 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4746 tcp_new_space(sk);
4747 }
4748 }
4749
4750 static inline void tcp_data_snd_check(struct sock *sk)
4751 {
4752 tcp_push_pending_frames(sk);
4753 tcp_check_space(sk);
4754 }
4755
4756 /*
4757 * Check if sending an ack is needed.
4758 */
4759 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4760 {
4761 struct tcp_sock *tp = tcp_sk(sk);
4762
4763 /* More than one full frame received... */
4764 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4765 /* ... and right edge of window advances far enough.
4766 * (tcp_recvmsg() will send ACK otherwise). Or...
4767 */
4768 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4769 /* We ACK each frame or... */
4770 tcp_in_quickack_mode(sk) ||
4771 /* We have out of order data. */
4772 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4773 /* Then ack it now */
4774 tcp_send_ack(sk);
4775 } else {
4776 /* Else, send delayed ack. */
4777 tcp_send_delayed_ack(sk);
4778 }
4779 }
4780
4781 static inline void tcp_ack_snd_check(struct sock *sk)
4782 {
4783 if (!inet_csk_ack_scheduled(sk)) {
4784 /* We sent a data segment already. */
4785 return;
4786 }
4787 __tcp_ack_snd_check(sk, 1);
4788 }
4789
4790 /*
4791 * This routine is only called when we have urgent data
4792 * signaled. Its the 'slow' part of tcp_urg. It could be
4793 * moved inline now as tcp_urg is only called from one
4794 * place. We handle URGent data wrong. We have to - as
4795 * BSD still doesn't use the correction from RFC961.
4796 * For 1003.1g we should support a new option TCP_STDURG to permit
4797 * either form (or just set the sysctl tcp_stdurg).
4798 */
4799
4800 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4801 {
4802 struct tcp_sock *tp = tcp_sk(sk);
4803 u32 ptr = ntohs(th->urg_ptr);
4804
4805 if (ptr && !sysctl_tcp_stdurg)
4806 ptr--;
4807 ptr += ntohl(th->seq);
4808
4809 /* Ignore urgent data that we've already seen and read. */
4810 if (after(tp->copied_seq, ptr))
4811 return;
4812
4813 /* Do not replay urg ptr.
4814 *
4815 * NOTE: interesting situation not covered by specs.
4816 * Misbehaving sender may send urg ptr, pointing to segment,
4817 * which we already have in ofo queue. We are not able to fetch
4818 * such data and will stay in TCP_URG_NOTYET until will be eaten
4819 * by recvmsg(). Seems, we are not obliged to handle such wicked
4820 * situations. But it is worth to think about possibility of some
4821 * DoSes using some hypothetical application level deadlock.
4822 */
4823 if (before(ptr, tp->rcv_nxt))
4824 return;
4825
4826 /* Do we already have a newer (or duplicate) urgent pointer? */
4827 if (tp->urg_data && !after(ptr, tp->urg_seq))
4828 return;
4829
4830 /* Tell the world about our new urgent pointer. */
4831 sk_send_sigurg(sk);
4832
4833 /* We may be adding urgent data when the last byte read was
4834 * urgent. To do this requires some care. We cannot just ignore
4835 * tp->copied_seq since we would read the last urgent byte again
4836 * as data, nor can we alter copied_seq until this data arrives
4837 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4838 *
4839 * NOTE. Double Dutch. Rendering to plain English: author of comment
4840 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4841 * and expect that both A and B disappear from stream. This is _wrong_.
4842 * Though this happens in BSD with high probability, this is occasional.
4843 * Any application relying on this is buggy. Note also, that fix "works"
4844 * only in this artificial test. Insert some normal data between A and B and we will
4845 * decline of BSD again. Verdict: it is better to remove to trap
4846 * buggy users.
4847 */
4848 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4849 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4850 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4851 tp->copied_seq++;
4852 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4853 __skb_unlink(skb, &sk->sk_receive_queue);
4854 __kfree_skb(skb);
4855 }
4856 }
4857
4858 tp->urg_data = TCP_URG_NOTYET;
4859 tp->urg_seq = ptr;
4860
4861 /* Disable header prediction. */
4862 tp->pred_flags = 0;
4863 }
4864
4865 /* This is the 'fast' part of urgent handling. */
4866 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4867 {
4868 struct tcp_sock *tp = tcp_sk(sk);
4869
4870 /* Check if we get a new urgent pointer - normally not. */
4871 if (th->urg)
4872 tcp_check_urg(sk, th);
4873
4874 /* Do we wait for any urgent data? - normally not... */
4875 if (tp->urg_data == TCP_URG_NOTYET) {
4876 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4877 th->syn;
4878
4879 /* Is the urgent pointer pointing into this packet? */
4880 if (ptr < skb->len) {
4881 u8 tmp;
4882 if (skb_copy_bits(skb, ptr, &tmp, 1))
4883 BUG();
4884 tp->urg_data = TCP_URG_VALID | tmp;
4885 if (!sock_flag(sk, SOCK_DEAD))
4886 sk->sk_data_ready(sk);
4887 }
4888 }
4889 }
4890
4891 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4892 {
4893 struct tcp_sock *tp = tcp_sk(sk);
4894 int chunk = skb->len - hlen;
4895 int err;
4896
4897 local_bh_enable();
4898 if (skb_csum_unnecessary(skb))
4899 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4900 else
4901 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4902 tp->ucopy.iov);
4903
4904 if (!err) {
4905 tp->ucopy.len -= chunk;
4906 tp->copied_seq += chunk;
4907 tcp_rcv_space_adjust(sk);
4908 }
4909
4910 local_bh_disable();
4911 return err;
4912 }
4913
4914 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4915 struct sk_buff *skb)
4916 {
4917 __sum16 result;
4918
4919 if (sock_owned_by_user(sk)) {
4920 local_bh_enable();
4921 result = __tcp_checksum_complete(skb);
4922 local_bh_disable();
4923 } else {
4924 result = __tcp_checksum_complete(skb);
4925 }
4926 return result;
4927 }
4928
4929 static inline bool tcp_checksum_complete_user(struct sock *sk,
4930 struct sk_buff *skb)
4931 {
4932 return !skb_csum_unnecessary(skb) &&
4933 __tcp_checksum_complete_user(sk, skb);
4934 }
4935
4936 #ifdef CONFIG_NET_DMA
4937 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4938 int hlen)
4939 {
4940 struct tcp_sock *tp = tcp_sk(sk);
4941 int chunk = skb->len - hlen;
4942 int dma_cookie;
4943 bool copied_early = false;
4944
4945 if (tp->ucopy.wakeup)
4946 return false;
4947
4948 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4949 tp->ucopy.dma_chan = net_dma_find_channel();
4950
4951 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4952
4953 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4954 skb, hlen,
4955 tp->ucopy.iov, chunk,
4956 tp->ucopy.pinned_list);
4957
4958 if (dma_cookie < 0)
4959 goto out;
4960
4961 tp->ucopy.dma_cookie = dma_cookie;
4962 copied_early = true;
4963
4964 tp->ucopy.len -= chunk;
4965 tp->copied_seq += chunk;
4966 tcp_rcv_space_adjust(sk);
4967
4968 if ((tp->ucopy.len == 0) ||
4969 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4970 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4971 tp->ucopy.wakeup = 1;
4972 sk->sk_data_ready(sk);
4973 }
4974 } else if (chunk > 0) {
4975 tp->ucopy.wakeup = 1;
4976 sk->sk_data_ready(sk);
4977 }
4978 out:
4979 return copied_early;
4980 }
4981 #endif /* CONFIG_NET_DMA */
4982
4983 /* Does PAWS and seqno based validation of an incoming segment, flags will
4984 * play significant role here.
4985 */
4986 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4987 const struct tcphdr *th, int syn_inerr)
4988 {
4989 struct tcp_sock *tp = tcp_sk(sk);
4990
4991 /* RFC1323: H1. Apply PAWS check first. */
4992 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4993 tcp_paws_discard(sk, skb)) {
4994 if (!th->rst) {
4995 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4996 tcp_send_dupack(sk, skb);
4997 goto discard;
4998 }
4999 /* Reset is accepted even if it did not pass PAWS. */
5000 }
5001
5002 /* Step 1: check sequence number */
5003 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5004 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5005 * (RST) segments are validated by checking their SEQ-fields."
5006 * And page 69: "If an incoming segment is not acceptable,
5007 * an acknowledgment should be sent in reply (unless the RST
5008 * bit is set, if so drop the segment and return)".
5009 */
5010 if (!th->rst) {
5011 if (th->syn)
5012 goto syn_challenge;
5013 tcp_send_dupack(sk, skb);
5014 }
5015 goto discard;
5016 }
5017
5018 /* Step 2: check RST bit */
5019 if (th->rst) {
5020 /* RFC 5961 3.2 :
5021 * If sequence number exactly matches RCV.NXT, then
5022 * RESET the connection
5023 * else
5024 * Send a challenge ACK
5025 */
5026 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5027 tcp_reset(sk);
5028 else
5029 tcp_send_challenge_ack(sk);
5030 goto discard;
5031 }
5032
5033 /* step 3: check security and precedence [ignored] */
5034
5035 /* step 4: Check for a SYN
5036 * RFC 5691 4.2 : Send a challenge ack
5037 */
5038 if (th->syn) {
5039 syn_challenge:
5040 if (syn_inerr)
5041 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5042 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5043 tcp_send_challenge_ack(sk);
5044 goto discard;
5045 }
5046
5047 return true;
5048
5049 discard:
5050 __kfree_skb(skb);
5051 return false;
5052 }
5053
5054 /*
5055 * TCP receive function for the ESTABLISHED state.
5056 *
5057 * It is split into a fast path and a slow path. The fast path is
5058 * disabled when:
5059 * - A zero window was announced from us - zero window probing
5060 * is only handled properly in the slow path.
5061 * - Out of order segments arrived.
5062 * - Urgent data is expected.
5063 * - There is no buffer space left
5064 * - Unexpected TCP flags/window values/header lengths are received
5065 * (detected by checking the TCP header against pred_flags)
5066 * - Data is sent in both directions. Fast path only supports pure senders
5067 * or pure receivers (this means either the sequence number or the ack
5068 * value must stay constant)
5069 * - Unexpected TCP option.
5070 *
5071 * When these conditions are not satisfied it drops into a standard
5072 * receive procedure patterned after RFC793 to handle all cases.
5073 * The first three cases are guaranteed by proper pred_flags setting,
5074 * the rest is checked inline. Fast processing is turned on in
5075 * tcp_data_queue when everything is OK.
5076 */
5077 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5078 const struct tcphdr *th, unsigned int len)
5079 {
5080 struct tcp_sock *tp = tcp_sk(sk);
5081
5082 if (unlikely(sk->sk_rx_dst == NULL))
5083 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5084 /*
5085 * Header prediction.
5086 * The code loosely follows the one in the famous
5087 * "30 instruction TCP receive" Van Jacobson mail.
5088 *
5089 * Van's trick is to deposit buffers into socket queue
5090 * on a device interrupt, to call tcp_recv function
5091 * on the receive process context and checksum and copy
5092 * the buffer to user space. smart...
5093 *
5094 * Our current scheme is not silly either but we take the
5095 * extra cost of the net_bh soft interrupt processing...
5096 * We do checksum and copy also but from device to kernel.
5097 */
5098
5099 tp->rx_opt.saw_tstamp = 0;
5100
5101 /* pred_flags is 0xS?10 << 16 + snd_wnd
5102 * if header_prediction is to be made
5103 * 'S' will always be tp->tcp_header_len >> 2
5104 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5105 * turn it off (when there are holes in the receive
5106 * space for instance)
5107 * PSH flag is ignored.
5108 */
5109
5110 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5111 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5112 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5113 int tcp_header_len = tp->tcp_header_len;
5114
5115 /* Timestamp header prediction: tcp_header_len
5116 * is automatically equal to th->doff*4 due to pred_flags
5117 * match.
5118 */
5119
5120 /* Check timestamp */
5121 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5122 /* No? Slow path! */
5123 if (!tcp_parse_aligned_timestamp(tp, th))
5124 goto slow_path;
5125
5126 /* If PAWS failed, check it more carefully in slow path */
5127 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5128 goto slow_path;
5129
5130 /* DO NOT update ts_recent here, if checksum fails
5131 * and timestamp was corrupted part, it will result
5132 * in a hung connection since we will drop all
5133 * future packets due to the PAWS test.
5134 */
5135 }
5136
5137 if (len <= tcp_header_len) {
5138 /* Bulk data transfer: sender */
5139 if (len == tcp_header_len) {
5140 /* Predicted packet is in window by definition.
5141 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5142 * Hence, check seq<=rcv_wup reduces to:
5143 */
5144 if (tcp_header_len ==
5145 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5146 tp->rcv_nxt == tp->rcv_wup)
5147 tcp_store_ts_recent(tp);
5148
5149 /* We know that such packets are checksummed
5150 * on entry.
5151 */
5152 tcp_ack(sk, skb, 0);
5153 __kfree_skb(skb);
5154 tcp_data_snd_check(sk);
5155 return;
5156 } else { /* Header too small */
5157 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5158 goto discard;
5159 }
5160 } else {
5161 int eaten = 0;
5162 int copied_early = 0;
5163 bool fragstolen = false;
5164
5165 if (tp->copied_seq == tp->rcv_nxt &&
5166 len - tcp_header_len <= tp->ucopy.len) {
5167 #ifdef CONFIG_NET_DMA
5168 if (tp->ucopy.task == current &&
5169 sock_owned_by_user(sk) &&
5170 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5171 copied_early = 1;
5172 eaten = 1;
5173 }
5174 #endif
5175 if (tp->ucopy.task == current &&
5176 sock_owned_by_user(sk) && !copied_early) {
5177 __set_current_state(TASK_RUNNING);
5178
5179 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5180 eaten = 1;
5181 }
5182 if (eaten) {
5183 /* Predicted packet is in window by definition.
5184 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5185 * Hence, check seq<=rcv_wup reduces to:
5186 */
5187 if (tcp_header_len ==
5188 (sizeof(struct tcphdr) +
5189 TCPOLEN_TSTAMP_ALIGNED) &&
5190 tp->rcv_nxt == tp->rcv_wup)
5191 tcp_store_ts_recent(tp);
5192
5193 tcp_rcv_rtt_measure_ts(sk, skb);
5194
5195 __skb_pull(skb, tcp_header_len);
5196 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5197 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5198 }
5199 if (copied_early)
5200 tcp_cleanup_rbuf(sk, skb->len);
5201 }
5202 if (!eaten) {
5203 if (tcp_checksum_complete_user(sk, skb))
5204 goto csum_error;
5205
5206 if ((int)skb->truesize > sk->sk_forward_alloc)
5207 goto step5;
5208
5209 /* Predicted packet is in window by definition.
5210 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5211 * Hence, check seq<=rcv_wup reduces to:
5212 */
5213 if (tcp_header_len ==
5214 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5215 tp->rcv_nxt == tp->rcv_wup)
5216 tcp_store_ts_recent(tp);
5217
5218 tcp_rcv_rtt_measure_ts(sk, skb);
5219
5220 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5221
5222 /* Bulk data transfer: receiver */
5223 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5224 &fragstolen);
5225 }
5226
5227 tcp_event_data_recv(sk, skb);
5228
5229 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5230 /* Well, only one small jumplet in fast path... */
5231 tcp_ack(sk, skb, FLAG_DATA);
5232 tcp_data_snd_check(sk);
5233 if (!inet_csk_ack_scheduled(sk))
5234 goto no_ack;
5235 }
5236
5237 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5238 __tcp_ack_snd_check(sk, 0);
5239 no_ack:
5240 #ifdef CONFIG_NET_DMA
5241 if (copied_early)
5242 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5243 else
5244 #endif
5245 if (eaten)
5246 kfree_skb_partial(skb, fragstolen);
5247 sk->sk_data_ready(sk);
5248 return;
5249 }
5250 }
5251
5252 slow_path:
5253 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5254 goto csum_error;
5255
5256 if (!th->ack && !th->rst)
5257 goto discard;
5258
5259 /*
5260 * Standard slow path.
5261 */
5262
5263 if (!tcp_validate_incoming(sk, skb, th, 1))
5264 return;
5265
5266 step5:
5267 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5268 goto discard;
5269
5270 tcp_rcv_rtt_measure_ts(sk, skb);
5271
5272 /* Process urgent data. */
5273 tcp_urg(sk, skb, th);
5274
5275 /* step 7: process the segment text */
5276 tcp_data_queue(sk, skb);
5277
5278 tcp_data_snd_check(sk);
5279 tcp_ack_snd_check(sk);
5280 return;
5281
5282 csum_error:
5283 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5284 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5285
5286 discard:
5287 __kfree_skb(skb);
5288 }
5289 EXPORT_SYMBOL(tcp_rcv_established);
5290
5291 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5292 {
5293 struct tcp_sock *tp = tcp_sk(sk);
5294 struct inet_connection_sock *icsk = inet_csk(sk);
5295
5296 tcp_set_state(sk, TCP_ESTABLISHED);
5297
5298 if (skb != NULL) {
5299 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5300 security_inet_conn_established(sk, skb);
5301 }
5302
5303 /* Make sure socket is routed, for correct metrics. */
5304 icsk->icsk_af_ops->rebuild_header(sk);
5305
5306 tcp_init_metrics(sk);
5307
5308 tcp_init_congestion_control(sk);
5309
5310 /* Prevent spurious tcp_cwnd_restart() on first data
5311 * packet.
5312 */
5313 tp->lsndtime = tcp_time_stamp;
5314
5315 tcp_init_buffer_space(sk);
5316
5317 if (sock_flag(sk, SOCK_KEEPOPEN))
5318 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5319
5320 if (!tp->rx_opt.snd_wscale)
5321 __tcp_fast_path_on(tp, tp->snd_wnd);
5322 else
5323 tp->pred_flags = 0;
5324
5325 if (!sock_flag(sk, SOCK_DEAD)) {
5326 sk->sk_state_change(sk);
5327 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5328 }
5329 }
5330
5331 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5332 struct tcp_fastopen_cookie *cookie)
5333 {
5334 struct tcp_sock *tp = tcp_sk(sk);
5335 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5336 u16 mss = tp->rx_opt.mss_clamp;
5337 bool syn_drop;
5338
5339 if (mss == tp->rx_opt.user_mss) {
5340 struct tcp_options_received opt;
5341
5342 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5343 tcp_clear_options(&opt);
5344 opt.user_mss = opt.mss_clamp = 0;
5345 tcp_parse_options(synack, &opt, 0, NULL);
5346 mss = opt.mss_clamp;
5347 }
5348
5349 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5350 cookie->len = -1;
5351
5352 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5353 * the remote receives only the retransmitted (regular) SYNs: either
5354 * the original SYN-data or the corresponding SYN-ACK is lost.
5355 */
5356 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5357
5358 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5359
5360 if (data) { /* Retransmit unacked data in SYN */
5361 tcp_for_write_queue_from(data, sk) {
5362 if (data == tcp_send_head(sk) ||
5363 __tcp_retransmit_skb(sk, data))
5364 break;
5365 }
5366 tcp_rearm_rto(sk);
5367 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5368 return true;
5369 }
5370 tp->syn_data_acked = tp->syn_data;
5371 if (tp->syn_data_acked)
5372 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5373 return false;
5374 }
5375
5376 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5377 const struct tcphdr *th, unsigned int len)
5378 {
5379 struct inet_connection_sock *icsk = inet_csk(sk);
5380 struct tcp_sock *tp = tcp_sk(sk);
5381 struct tcp_fastopen_cookie foc = { .len = -1 };
5382 int saved_clamp = tp->rx_opt.mss_clamp;
5383
5384 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5385 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5386 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5387
5388 if (th->ack) {
5389 /* rfc793:
5390 * "If the state is SYN-SENT then
5391 * first check the ACK bit
5392 * If the ACK bit is set
5393 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5394 * a reset (unless the RST bit is set, if so drop
5395 * the segment and return)"
5396 */
5397 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5398 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5399 goto reset_and_undo;
5400
5401 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5402 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5403 tcp_time_stamp)) {
5404 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5405 goto reset_and_undo;
5406 }
5407
5408 /* Now ACK is acceptable.
5409 *
5410 * "If the RST bit is set
5411 * If the ACK was acceptable then signal the user "error:
5412 * connection reset", drop the segment, enter CLOSED state,
5413 * delete TCB, and return."
5414 */
5415
5416 if (th->rst) {
5417 tcp_reset(sk);
5418 goto discard;
5419 }
5420
5421 /* rfc793:
5422 * "fifth, if neither of the SYN or RST bits is set then
5423 * drop the segment and return."
5424 *
5425 * See note below!
5426 * --ANK(990513)
5427 */
5428 if (!th->syn)
5429 goto discard_and_undo;
5430
5431 /* rfc793:
5432 * "If the SYN bit is on ...
5433 * are acceptable then ...
5434 * (our SYN has been ACKed), change the connection
5435 * state to ESTABLISHED..."
5436 */
5437
5438 TCP_ECN_rcv_synack(tp, th);
5439
5440 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5441 tcp_ack(sk, skb, FLAG_SLOWPATH);
5442
5443 /* Ok.. it's good. Set up sequence numbers and
5444 * move to established.
5445 */
5446 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5447 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5448
5449 /* RFC1323: The window in SYN & SYN/ACK segments is
5450 * never scaled.
5451 */
5452 tp->snd_wnd = ntohs(th->window);
5453
5454 if (!tp->rx_opt.wscale_ok) {
5455 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5456 tp->window_clamp = min(tp->window_clamp, 65535U);
5457 }
5458
5459 if (tp->rx_opt.saw_tstamp) {
5460 tp->rx_opt.tstamp_ok = 1;
5461 tp->tcp_header_len =
5462 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5463 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5464 tcp_store_ts_recent(tp);
5465 } else {
5466 tp->tcp_header_len = sizeof(struct tcphdr);
5467 }
5468
5469 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5470 tcp_enable_fack(tp);
5471
5472 tcp_mtup_init(sk);
5473 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5474 tcp_initialize_rcv_mss(sk);
5475
5476 /* Remember, tcp_poll() does not lock socket!
5477 * Change state from SYN-SENT only after copied_seq
5478 * is initialized. */
5479 tp->copied_seq = tp->rcv_nxt;
5480
5481 smp_mb();
5482
5483 tcp_finish_connect(sk, skb);
5484
5485 if ((tp->syn_fastopen || tp->syn_data) &&
5486 tcp_rcv_fastopen_synack(sk, skb, &foc))
5487 return -1;
5488
5489 if (sk->sk_write_pending ||
5490 icsk->icsk_accept_queue.rskq_defer_accept ||
5491 icsk->icsk_ack.pingpong) {
5492 /* Save one ACK. Data will be ready after
5493 * several ticks, if write_pending is set.
5494 *
5495 * It may be deleted, but with this feature tcpdumps
5496 * look so _wonderfully_ clever, that I was not able
5497 * to stand against the temptation 8) --ANK
5498 */
5499 inet_csk_schedule_ack(sk);
5500 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5501 tcp_enter_quickack_mode(sk);
5502 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5503 TCP_DELACK_MAX, TCP_RTO_MAX);
5504
5505 discard:
5506 __kfree_skb(skb);
5507 return 0;
5508 } else {
5509 tcp_send_ack(sk);
5510 }
5511 return -1;
5512 }
5513
5514 /* No ACK in the segment */
5515
5516 if (th->rst) {
5517 /* rfc793:
5518 * "If the RST bit is set
5519 *
5520 * Otherwise (no ACK) drop the segment and return."
5521 */
5522
5523 goto discard_and_undo;
5524 }
5525
5526 /* PAWS check. */
5527 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5528 tcp_paws_reject(&tp->rx_opt, 0))
5529 goto discard_and_undo;
5530
5531 if (th->syn) {
5532 /* We see SYN without ACK. It is attempt of
5533 * simultaneous connect with crossed SYNs.
5534 * Particularly, it can be connect to self.
5535 */
5536 tcp_set_state(sk, TCP_SYN_RECV);
5537
5538 if (tp->rx_opt.saw_tstamp) {
5539 tp->rx_opt.tstamp_ok = 1;
5540 tcp_store_ts_recent(tp);
5541 tp->tcp_header_len =
5542 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5543 } else {
5544 tp->tcp_header_len = sizeof(struct tcphdr);
5545 }
5546
5547 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5548 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5549
5550 /* RFC1323: The window in SYN & SYN/ACK segments is
5551 * never scaled.
5552 */
5553 tp->snd_wnd = ntohs(th->window);
5554 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5555 tp->max_window = tp->snd_wnd;
5556
5557 TCP_ECN_rcv_syn(tp, th);
5558
5559 tcp_mtup_init(sk);
5560 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5561 tcp_initialize_rcv_mss(sk);
5562
5563 tcp_send_synack(sk);
5564 #if 0
5565 /* Note, we could accept data and URG from this segment.
5566 * There are no obstacles to make this (except that we must
5567 * either change tcp_recvmsg() to prevent it from returning data
5568 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5569 *
5570 * However, if we ignore data in ACKless segments sometimes,
5571 * we have no reasons to accept it sometimes.
5572 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5573 * is not flawless. So, discard packet for sanity.
5574 * Uncomment this return to process the data.
5575 */
5576 return -1;
5577 #else
5578 goto discard;
5579 #endif
5580 }
5581 /* "fifth, if neither of the SYN or RST bits is set then
5582 * drop the segment and return."
5583 */
5584
5585 discard_and_undo:
5586 tcp_clear_options(&tp->rx_opt);
5587 tp->rx_opt.mss_clamp = saved_clamp;
5588 goto discard;
5589
5590 reset_and_undo:
5591 tcp_clear_options(&tp->rx_opt);
5592 tp->rx_opt.mss_clamp = saved_clamp;
5593 return 1;
5594 }
5595
5596 /*
5597 * This function implements the receiving procedure of RFC 793 for
5598 * all states except ESTABLISHED and TIME_WAIT.
5599 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5600 * address independent.
5601 */
5602
5603 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5604 const struct tcphdr *th, unsigned int len)
5605 {
5606 struct tcp_sock *tp = tcp_sk(sk);
5607 struct inet_connection_sock *icsk = inet_csk(sk);
5608 struct request_sock *req;
5609 int queued = 0;
5610 bool acceptable;
5611 u32 synack_stamp;
5612
5613 tp->rx_opt.saw_tstamp = 0;
5614
5615 switch (sk->sk_state) {
5616 case TCP_CLOSE:
5617 goto discard;
5618
5619 case TCP_LISTEN:
5620 if (th->ack)
5621 return 1;
5622
5623 if (th->rst)
5624 goto discard;
5625
5626 if (th->syn) {
5627 if (th->fin)
5628 goto discard;
5629 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5630 return 1;
5631
5632 /* Now we have several options: In theory there is
5633 * nothing else in the frame. KA9Q has an option to
5634 * send data with the syn, BSD accepts data with the
5635 * syn up to the [to be] advertised window and
5636 * Solaris 2.1 gives you a protocol error. For now
5637 * we just ignore it, that fits the spec precisely
5638 * and avoids incompatibilities. It would be nice in
5639 * future to drop through and process the data.
5640 *
5641 * Now that TTCP is starting to be used we ought to
5642 * queue this data.
5643 * But, this leaves one open to an easy denial of
5644 * service attack, and SYN cookies can't defend
5645 * against this problem. So, we drop the data
5646 * in the interest of security over speed unless
5647 * it's still in use.
5648 */
5649 kfree_skb(skb);
5650 return 0;
5651 }
5652 goto discard;
5653
5654 case TCP_SYN_SENT:
5655 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5656 if (queued >= 0)
5657 return queued;
5658
5659 /* Do step6 onward by hand. */
5660 tcp_urg(sk, skb, th);
5661 __kfree_skb(skb);
5662 tcp_data_snd_check(sk);
5663 return 0;
5664 }
5665
5666 req = tp->fastopen_rsk;
5667 if (req != NULL) {
5668 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5669 sk->sk_state != TCP_FIN_WAIT1);
5670
5671 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5672 goto discard;
5673 }
5674
5675 if (!th->ack && !th->rst)
5676 goto discard;
5677
5678 if (!tcp_validate_incoming(sk, skb, th, 0))
5679 return 0;
5680
5681 /* step 5: check the ACK field */
5682 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5683 FLAG_UPDATE_TS_RECENT) > 0;
5684
5685 switch (sk->sk_state) {
5686 case TCP_SYN_RECV:
5687 if (!acceptable)
5688 return 1;
5689
5690 /* Once we leave TCP_SYN_RECV, we no longer need req
5691 * so release it.
5692 */
5693 if (req) {
5694 synack_stamp = tcp_rsk(req)->snt_synack;
5695 tp->total_retrans = req->num_retrans;
5696 reqsk_fastopen_remove(sk, req, false);
5697 } else {
5698 synack_stamp = tp->lsndtime;
5699 /* Make sure socket is routed, for correct metrics. */
5700 icsk->icsk_af_ops->rebuild_header(sk);
5701 tcp_init_congestion_control(sk);
5702
5703 tcp_mtup_init(sk);
5704 tp->copied_seq = tp->rcv_nxt;
5705 tcp_init_buffer_space(sk);
5706 }
5707 smp_mb();
5708 tcp_set_state(sk, TCP_ESTABLISHED);
5709 sk->sk_state_change(sk);
5710
5711 /* Note, that this wakeup is only for marginal crossed SYN case.
5712 * Passively open sockets are not waked up, because
5713 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5714 */
5715 if (sk->sk_socket)
5716 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5717
5718 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5719 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5720 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5721 tcp_synack_rtt_meas(sk, synack_stamp);
5722
5723 if (tp->rx_opt.tstamp_ok)
5724 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5725
5726 if (req) {
5727 /* Re-arm the timer because data may have been sent out.
5728 * This is similar to the regular data transmission case
5729 * when new data has just been ack'ed.
5730 *
5731 * (TFO) - we could try to be more aggressive and
5732 * retransmitting any data sooner based on when they
5733 * are sent out.
5734 */
5735 tcp_rearm_rto(sk);
5736 } else
5737 tcp_init_metrics(sk);
5738
5739 tcp_update_pacing_rate(sk);
5740
5741 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5742 tp->lsndtime = tcp_time_stamp;
5743
5744 tcp_initialize_rcv_mss(sk);
5745 tcp_fast_path_on(tp);
5746 break;
5747
5748 case TCP_FIN_WAIT1: {
5749 struct dst_entry *dst;
5750 int tmo;
5751
5752 /* If we enter the TCP_FIN_WAIT1 state and we are a
5753 * Fast Open socket and this is the first acceptable
5754 * ACK we have received, this would have acknowledged
5755 * our SYNACK so stop the SYNACK timer.
5756 */
5757 if (req != NULL) {
5758 /* Return RST if ack_seq is invalid.
5759 * Note that RFC793 only says to generate a
5760 * DUPACK for it but for TCP Fast Open it seems
5761 * better to treat this case like TCP_SYN_RECV
5762 * above.
5763 */
5764 if (!acceptable)
5765 return 1;
5766 /* We no longer need the request sock. */
5767 reqsk_fastopen_remove(sk, req, false);
5768 tcp_rearm_rto(sk);
5769 }
5770 if (tp->snd_una != tp->write_seq)
5771 break;
5772
5773 tcp_set_state(sk, TCP_FIN_WAIT2);
5774 sk->sk_shutdown |= SEND_SHUTDOWN;
5775
5776 dst = __sk_dst_get(sk);
5777 if (dst)
5778 dst_confirm(dst);
5779
5780 if (!sock_flag(sk, SOCK_DEAD)) {
5781 /* Wake up lingering close() */
5782 sk->sk_state_change(sk);
5783 break;
5784 }
5785
5786 if (tp->linger2 < 0 ||
5787 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5788 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5789 tcp_done(sk);
5790 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5791 return 1;
5792 }
5793
5794 tmo = tcp_fin_time(sk);
5795 if (tmo > TCP_TIMEWAIT_LEN) {
5796 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5797 } else if (th->fin || sock_owned_by_user(sk)) {
5798 /* Bad case. We could lose such FIN otherwise.
5799 * It is not a big problem, but it looks confusing
5800 * and not so rare event. We still can lose it now,
5801 * if it spins in bh_lock_sock(), but it is really
5802 * marginal case.
5803 */
5804 inet_csk_reset_keepalive_timer(sk, tmo);
5805 } else {
5806 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5807 goto discard;
5808 }
5809 break;
5810 }
5811
5812 case TCP_CLOSING:
5813 if (tp->snd_una == tp->write_seq) {
5814 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5815 goto discard;
5816 }
5817 break;
5818
5819 case TCP_LAST_ACK:
5820 if (tp->snd_una == tp->write_seq) {
5821 tcp_update_metrics(sk);
5822 tcp_done(sk);
5823 goto discard;
5824 }
5825 break;
5826 }
5827
5828 /* step 6: check the URG bit */
5829 tcp_urg(sk, skb, th);
5830
5831 /* step 7: process the segment text */
5832 switch (sk->sk_state) {
5833 case TCP_CLOSE_WAIT:
5834 case TCP_CLOSING:
5835 case TCP_LAST_ACK:
5836 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5837 break;
5838 case TCP_FIN_WAIT1:
5839 case TCP_FIN_WAIT2:
5840 /* RFC 793 says to queue data in these states,
5841 * RFC 1122 says we MUST send a reset.
5842 * BSD 4.4 also does reset.
5843 */
5844 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5845 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5846 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5847 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5848 tcp_reset(sk);
5849 return 1;
5850 }
5851 }
5852 /* Fall through */
5853 case TCP_ESTABLISHED:
5854 tcp_data_queue(sk, skb);
5855 queued = 1;
5856 break;
5857 }
5858
5859 /* tcp_data could move socket to TIME-WAIT */
5860 if (sk->sk_state != TCP_CLOSE) {
5861 tcp_data_snd_check(sk);
5862 tcp_ack_snd_check(sk);
5863 }
5864
5865 if (!queued) {
5866 discard:
5867 __kfree_skb(skb);
5868 }
5869 return 0;
5870 }
5871 EXPORT_SYMBOL(tcp_rcv_state_process);
5872
5873 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5874 {
5875 struct inet_request_sock *ireq = inet_rsk(req);
5876
5877 if (family == AF_INET)
5878 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
5879 &ireq->ir_rmt_addr, port);
5880 #if IS_ENABLED(CONFIG_IPV6)
5881 else if (family == AF_INET6)
5882 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI6/%u\n"),
5883 &ireq->ir_v6_rmt_addr, port);
5884 #endif
5885 }
5886
5887 int tcp_conn_request(struct request_sock_ops *rsk_ops,
5888 const struct tcp_request_sock_ops *af_ops,
5889 struct sock *sk, struct sk_buff *skb)
5890 {
5891 struct tcp_options_received tmp_opt;
5892 struct request_sock *req;
5893 struct tcp_sock *tp = tcp_sk(sk);
5894 struct dst_entry *dst = NULL;
5895 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
5896 bool want_cookie = false, fastopen;
5897 struct flowi fl;
5898 struct tcp_fastopen_cookie foc = { .len = -1 };
5899 int err;
5900
5901
5902 /* TW buckets are converted to open requests without
5903 * limitations, they conserve resources and peer is
5904 * evidently real one.
5905 */
5906 if ((sysctl_tcp_syncookies == 2 ||
5907 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
5908 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
5909 if (!want_cookie)
5910 goto drop;
5911 }
5912
5913
5914 /* Accept backlog is full. If we have already queued enough
5915 * of warm entries in syn queue, drop request. It is better than
5916 * clogging syn queue with openreqs with exponentially increasing
5917 * timeout.
5918 */
5919 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
5920 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
5921 goto drop;
5922 }
5923
5924 req = inet_reqsk_alloc(rsk_ops);
5925 if (!req)
5926 goto drop;
5927
5928 tcp_rsk(req)->af_specific = af_ops;
5929
5930 tcp_clear_options(&tmp_opt);
5931 tmp_opt.mss_clamp = af_ops->mss_clamp;
5932 tmp_opt.user_mss = tp->rx_opt.user_mss;
5933 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
5934
5935 if (want_cookie && !tmp_opt.saw_tstamp)
5936 tcp_clear_options(&tmp_opt);
5937
5938 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
5939 tcp_openreq_init(req, &tmp_opt, skb, sk);
5940
5941 af_ops->init_req(req, sk, skb);
5942
5943 if (security_inet_conn_request(sk, skb, req))
5944 goto drop_and_free;
5945
5946 if (!want_cookie || tmp_opt.tstamp_ok)
5947 TCP_ECN_create_request(req, skb, sock_net(sk));
5948
5949 if (want_cookie) {
5950 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
5951 req->cookie_ts = tmp_opt.tstamp_ok;
5952 } else if (!isn) {
5953 /* VJ's idea. We save last timestamp seen
5954 * from the destination in peer table, when entering
5955 * state TIME-WAIT, and check against it before
5956 * accepting new connection request.
5957 *
5958 * If "isn" is not zero, this request hit alive
5959 * timewait bucket, so that all the necessary checks
5960 * are made in the function processing timewait state.
5961 */
5962 if (tcp_death_row.sysctl_tw_recycle) {
5963 bool strict;
5964
5965 dst = af_ops->route_req(sk, &fl, req, &strict);
5966
5967 if (dst && strict &&
5968 !tcp_peer_is_proven(req, dst, true,
5969 tmp_opt.saw_tstamp)) {
5970 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
5971 goto drop_and_release;
5972 }
5973 }
5974 /* Kill the following clause, if you dislike this way. */
5975 else if (!sysctl_tcp_syncookies &&
5976 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
5977 (sysctl_max_syn_backlog >> 2)) &&
5978 !tcp_peer_is_proven(req, dst, false,
5979 tmp_opt.saw_tstamp)) {
5980 /* Without syncookies last quarter of
5981 * backlog is filled with destinations,
5982 * proven to be alive.
5983 * It means that we continue to communicate
5984 * to destinations, already remembered
5985 * to the moment of synflood.
5986 */
5987 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
5988 rsk_ops->family);
5989 goto drop_and_release;
5990 }
5991
5992 isn = af_ops->init_seq(skb);
5993 }
5994 if (!dst) {
5995 dst = af_ops->route_req(sk, &fl, req, NULL);
5996 if (!dst)
5997 goto drop_and_free;
5998 }
5999
6000 tcp_rsk(req)->snt_isn = isn;
6001 tcp_openreq_init_rwin(req, sk, dst);
6002 fastopen = !want_cookie &&
6003 tcp_try_fastopen(sk, skb, req, &foc, dst);
6004 err = af_ops->send_synack(sk, dst, &fl, req,
6005 skb_get_queue_mapping(skb), &foc);
6006 if (!fastopen) {
6007 if (err || want_cookie)
6008 goto drop_and_free;
6009
6010 tcp_rsk(req)->listener = NULL;
6011 af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6012 }
6013
6014 return 0;
6015
6016 drop_and_release:
6017 dst_release(dst);
6018 drop_and_free:
6019 reqsk_free(req);
6020 drop:
6021 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6022 return 0;
6023 }
6024 EXPORT_SYMBOL(tcp_conn_request);
This page took 0.161551 seconds and 5 git commands to generate.