7bac1fac065fd32fdb80168a6e497600c2fa9271
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
109
110 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115
116 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
117
118 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
119 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
120
121 /* Adapt the MSS value used to make delayed ack decision to the
122 * real world.
123 */
124 static void tcp_measure_rcv_mss(struct sock *sk,
125 const struct sk_buff *skb)
126 {
127 struct inet_connection_sock *icsk = inet_csk(sk);
128 const unsigned int lss = icsk->icsk_ack.last_seg_size;
129 unsigned int len;
130
131 icsk->icsk_ack.last_seg_size = 0;
132
133 /* skb->len may jitter because of SACKs, even if peer
134 * sends good full-sized frames.
135 */
136 len = skb_shinfo(skb)->gso_size ?: skb->len;
137 if (len >= icsk->icsk_ack.rcv_mss) {
138 icsk->icsk_ack.rcv_mss = len;
139 } else {
140 /* Otherwise, we make more careful check taking into account,
141 * that SACKs block is variable.
142 *
143 * "len" is invariant segment length, including TCP header.
144 */
145 len += skb->data - skb_transport_header(skb);
146 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
147 /* If PSH is not set, packet should be
148 * full sized, provided peer TCP is not badly broken.
149 * This observation (if it is correct 8)) allows
150 * to handle super-low mtu links fairly.
151 */
152 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
153 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
154 /* Subtract also invariant (if peer is RFC compliant),
155 * tcp header plus fixed timestamp option length.
156 * Resulting "len" is MSS free of SACK jitter.
157 */
158 len -= tcp_sk(sk)->tcp_header_len;
159 icsk->icsk_ack.last_seg_size = len;
160 if (len == lss) {
161 icsk->icsk_ack.rcv_mss = len;
162 return;
163 }
164 }
165 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
167 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
168 }
169 }
170
171 static void tcp_incr_quickack(struct sock *sk)
172 {
173 struct inet_connection_sock *icsk = inet_csk(sk);
174 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
175
176 if (quickacks==0)
177 quickacks=2;
178 if (quickacks > icsk->icsk_ack.quick)
179 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
180 }
181
182 void tcp_enter_quickack_mode(struct sock *sk)
183 {
184 struct inet_connection_sock *icsk = inet_csk(sk);
185 tcp_incr_quickack(sk);
186 icsk->icsk_ack.pingpong = 0;
187 icsk->icsk_ack.ato = TCP_ATO_MIN;
188 }
189
190 /* Send ACKs quickly, if "quick" count is not exhausted
191 * and the session is not interactive.
192 */
193
194 static inline int tcp_in_quickack_mode(const struct sock *sk)
195 {
196 const struct inet_connection_sock *icsk = inet_csk(sk);
197 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
198 }
199
200 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
201 {
202 if (tp->ecn_flags&TCP_ECN_OK)
203 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
204 }
205
206 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
207 {
208 if (tcp_hdr(skb)->cwr)
209 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
210 }
211
212 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
213 {
214 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 }
216
217 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
218 {
219 if (tp->ecn_flags&TCP_ECN_OK) {
220 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
221 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
222 /* Funny extension: if ECT is not set on a segment,
223 * it is surely retransmit. It is not in ECN RFC,
224 * but Linux follows this rule. */
225 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
226 tcp_enter_quickack_mode((struct sock *)tp);
227 }
228 }
229
230 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
231 {
232 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
233 tp->ecn_flags &= ~TCP_ECN_OK;
234 }
235
236 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
237 {
238 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
239 tp->ecn_flags &= ~TCP_ECN_OK;
240 }
241
242 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
243 {
244 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
245 return 1;
246 return 0;
247 }
248
249 /* Buffer size and advertised window tuning.
250 *
251 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
252 */
253
254 static void tcp_fixup_sndbuf(struct sock *sk)
255 {
256 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
257 sizeof(struct sk_buff);
258
259 if (sk->sk_sndbuf < 3 * sndmem)
260 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
261 }
262
263 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
264 *
265 * All tcp_full_space() is split to two parts: "network" buffer, allocated
266 * forward and advertised in receiver window (tp->rcv_wnd) and
267 * "application buffer", required to isolate scheduling/application
268 * latencies from network.
269 * window_clamp is maximal advertised window. It can be less than
270 * tcp_full_space(), in this case tcp_full_space() - window_clamp
271 * is reserved for "application" buffer. The less window_clamp is
272 * the smoother our behaviour from viewpoint of network, but the lower
273 * throughput and the higher sensitivity of the connection to losses. 8)
274 *
275 * rcv_ssthresh is more strict window_clamp used at "slow start"
276 * phase to predict further behaviour of this connection.
277 * It is used for two goals:
278 * - to enforce header prediction at sender, even when application
279 * requires some significant "application buffer". It is check #1.
280 * - to prevent pruning of receive queue because of misprediction
281 * of receiver window. Check #2.
282 *
283 * The scheme does not work when sender sends good segments opening
284 * window and then starts to feed us spaghetti. But it should work
285 * in common situations. Otherwise, we have to rely on queue collapsing.
286 */
287
288 /* Slow part of check#2. */
289 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
290 {
291 struct tcp_sock *tp = tcp_sk(sk);
292 /* Optimize this! */
293 int truesize = tcp_win_from_space(skb->truesize) >> 1;
294 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
295
296 while (tp->rcv_ssthresh <= window) {
297 if (truesize <= skb->len)
298 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
299
300 truesize >>= 1;
301 window >>= 1;
302 }
303 return 0;
304 }
305
306 static void tcp_grow_window(struct sock *sk,
307 struct sk_buff *skb)
308 {
309 struct tcp_sock *tp = tcp_sk(sk);
310
311 /* Check #1 */
312 if (tp->rcv_ssthresh < tp->window_clamp &&
313 (int)tp->rcv_ssthresh < tcp_space(sk) &&
314 !tcp_memory_pressure) {
315 int incr;
316
317 /* Check #2. Increase window, if skb with such overhead
318 * will fit to rcvbuf in future.
319 */
320 if (tcp_win_from_space(skb->truesize) <= skb->len)
321 incr = 2*tp->advmss;
322 else
323 incr = __tcp_grow_window(sk, skb);
324
325 if (incr) {
326 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
327 inet_csk(sk)->icsk_ack.quick |= 1;
328 }
329 }
330 }
331
332 /* 3. Tuning rcvbuf, when connection enters established state. */
333
334 static void tcp_fixup_rcvbuf(struct sock *sk)
335 {
336 struct tcp_sock *tp = tcp_sk(sk);
337 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
338
339 /* Try to select rcvbuf so that 4 mss-sized segments
340 * will fit to window and corresponding skbs will fit to our rcvbuf.
341 * (was 3; 4 is minimum to allow fast retransmit to work.)
342 */
343 while (tcp_win_from_space(rcvmem) < tp->advmss)
344 rcvmem += 128;
345 if (sk->sk_rcvbuf < 4 * rcvmem)
346 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
347 }
348
349 /* 4. Try to fixup all. It is made immediately after connection enters
350 * established state.
351 */
352 static void tcp_init_buffer_space(struct sock *sk)
353 {
354 struct tcp_sock *tp = tcp_sk(sk);
355 int maxwin;
356
357 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
358 tcp_fixup_rcvbuf(sk);
359 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
360 tcp_fixup_sndbuf(sk);
361
362 tp->rcvq_space.space = tp->rcv_wnd;
363
364 maxwin = tcp_full_space(sk);
365
366 if (tp->window_clamp >= maxwin) {
367 tp->window_clamp = maxwin;
368
369 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
370 tp->window_clamp = max(maxwin -
371 (maxwin >> sysctl_tcp_app_win),
372 4 * tp->advmss);
373 }
374
375 /* Force reservation of one segment. */
376 if (sysctl_tcp_app_win &&
377 tp->window_clamp > 2 * tp->advmss &&
378 tp->window_clamp + tp->advmss > maxwin)
379 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
380
381 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
382 tp->snd_cwnd_stamp = tcp_time_stamp;
383 }
384
385 /* 5. Recalculate window clamp after socket hit its memory bounds. */
386 static void tcp_clamp_window(struct sock *sk)
387 {
388 struct tcp_sock *tp = tcp_sk(sk);
389 struct inet_connection_sock *icsk = inet_csk(sk);
390
391 icsk->icsk_ack.quick = 0;
392
393 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
394 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
395 !tcp_memory_pressure &&
396 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
397 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
398 sysctl_tcp_rmem[2]);
399 }
400 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
401 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
402 }
403
404
405 /* Initialize RCV_MSS value.
406 * RCV_MSS is an our guess about MSS used by the peer.
407 * We haven't any direct information about the MSS.
408 * It's better to underestimate the RCV_MSS rather than overestimate.
409 * Overestimations make us ACKing less frequently than needed.
410 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
411 */
412 void tcp_initialize_rcv_mss(struct sock *sk)
413 {
414 struct tcp_sock *tp = tcp_sk(sk);
415 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
416
417 hint = min(hint, tp->rcv_wnd/2);
418 hint = min(hint, TCP_MIN_RCVMSS);
419 hint = max(hint, TCP_MIN_MSS);
420
421 inet_csk(sk)->icsk_ack.rcv_mss = hint;
422 }
423
424 /* Receiver "autotuning" code.
425 *
426 * The algorithm for RTT estimation w/o timestamps is based on
427 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
428 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
429 *
430 * More detail on this code can be found at
431 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
432 * though this reference is out of date. A new paper
433 * is pending.
434 */
435 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
436 {
437 u32 new_sample = tp->rcv_rtt_est.rtt;
438 long m = sample;
439
440 if (m == 0)
441 m = 1;
442
443 if (new_sample != 0) {
444 /* If we sample in larger samples in the non-timestamp
445 * case, we could grossly overestimate the RTT especially
446 * with chatty applications or bulk transfer apps which
447 * are stalled on filesystem I/O.
448 *
449 * Also, since we are only going for a minimum in the
450 * non-timestamp case, we do not smooth things out
451 * else with timestamps disabled convergence takes too
452 * long.
453 */
454 if (!win_dep) {
455 m -= (new_sample >> 3);
456 new_sample += m;
457 } else if (m < new_sample)
458 new_sample = m << 3;
459 } else {
460 /* No previous measure. */
461 new_sample = m << 3;
462 }
463
464 if (tp->rcv_rtt_est.rtt != new_sample)
465 tp->rcv_rtt_est.rtt = new_sample;
466 }
467
468 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
469 {
470 if (tp->rcv_rtt_est.time == 0)
471 goto new_measure;
472 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
473 return;
474 tcp_rcv_rtt_update(tp,
475 jiffies - tp->rcv_rtt_est.time,
476 1);
477
478 new_measure:
479 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
480 tp->rcv_rtt_est.time = tcp_time_stamp;
481 }
482
483 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
484 {
485 struct tcp_sock *tp = tcp_sk(sk);
486 if (tp->rx_opt.rcv_tsecr &&
487 (TCP_SKB_CB(skb)->end_seq -
488 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
489 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
490 }
491
492 /*
493 * This function should be called every time data is copied to user space.
494 * It calculates the appropriate TCP receive buffer space.
495 */
496 void tcp_rcv_space_adjust(struct sock *sk)
497 {
498 struct tcp_sock *tp = tcp_sk(sk);
499 int time;
500 int space;
501
502 if (tp->rcvq_space.time == 0)
503 goto new_measure;
504
505 time = tcp_time_stamp - tp->rcvq_space.time;
506 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
507 tp->rcv_rtt_est.rtt == 0)
508 return;
509
510 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
511
512 space = max(tp->rcvq_space.space, space);
513
514 if (tp->rcvq_space.space != space) {
515 int rcvmem;
516
517 tp->rcvq_space.space = space;
518
519 if (sysctl_tcp_moderate_rcvbuf &&
520 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
521 int new_clamp = space;
522
523 /* Receive space grows, normalize in order to
524 * take into account packet headers and sk_buff
525 * structure overhead.
526 */
527 space /= tp->advmss;
528 if (!space)
529 space = 1;
530 rcvmem = (tp->advmss + MAX_TCP_HEADER +
531 16 + sizeof(struct sk_buff));
532 while (tcp_win_from_space(rcvmem) < tp->advmss)
533 rcvmem += 128;
534 space *= rcvmem;
535 space = min(space, sysctl_tcp_rmem[2]);
536 if (space > sk->sk_rcvbuf) {
537 sk->sk_rcvbuf = space;
538
539 /* Make the window clamp follow along. */
540 tp->window_clamp = new_clamp;
541 }
542 }
543 }
544
545 new_measure:
546 tp->rcvq_space.seq = tp->copied_seq;
547 tp->rcvq_space.time = tcp_time_stamp;
548 }
549
550 /* There is something which you must keep in mind when you analyze the
551 * behavior of the tp->ato delayed ack timeout interval. When a
552 * connection starts up, we want to ack as quickly as possible. The
553 * problem is that "good" TCP's do slow start at the beginning of data
554 * transmission. The means that until we send the first few ACK's the
555 * sender will sit on his end and only queue most of his data, because
556 * he can only send snd_cwnd unacked packets at any given time. For
557 * each ACK we send, he increments snd_cwnd and transmits more of his
558 * queue. -DaveM
559 */
560 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
561 {
562 struct tcp_sock *tp = tcp_sk(sk);
563 struct inet_connection_sock *icsk = inet_csk(sk);
564 u32 now;
565
566 inet_csk_schedule_ack(sk);
567
568 tcp_measure_rcv_mss(sk, skb);
569
570 tcp_rcv_rtt_measure(tp);
571
572 now = tcp_time_stamp;
573
574 if (!icsk->icsk_ack.ato) {
575 /* The _first_ data packet received, initialize
576 * delayed ACK engine.
577 */
578 tcp_incr_quickack(sk);
579 icsk->icsk_ack.ato = TCP_ATO_MIN;
580 } else {
581 int m = now - icsk->icsk_ack.lrcvtime;
582
583 if (m <= TCP_ATO_MIN/2) {
584 /* The fastest case is the first. */
585 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
586 } else if (m < icsk->icsk_ack.ato) {
587 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
588 if (icsk->icsk_ack.ato > icsk->icsk_rto)
589 icsk->icsk_ack.ato = icsk->icsk_rto;
590 } else if (m > icsk->icsk_rto) {
591 /* Too long gap. Apparently sender failed to
592 * restart window, so that we send ACKs quickly.
593 */
594 tcp_incr_quickack(sk);
595 sk_mem_reclaim(sk);
596 }
597 }
598 icsk->icsk_ack.lrcvtime = now;
599
600 TCP_ECN_check_ce(tp, skb);
601
602 if (skb->len >= 128)
603 tcp_grow_window(sk, skb);
604 }
605
606 static u32 tcp_rto_min(struct sock *sk)
607 {
608 struct dst_entry *dst = __sk_dst_get(sk);
609 u32 rto_min = TCP_RTO_MIN;
610
611 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
612 rto_min = dst->metrics[RTAX_RTO_MIN-1];
613 return rto_min;
614 }
615
616 /* Called to compute a smoothed rtt estimate. The data fed to this
617 * routine either comes from timestamps, or from segments that were
618 * known _not_ to have been retransmitted [see Karn/Partridge
619 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
620 * piece by Van Jacobson.
621 * NOTE: the next three routines used to be one big routine.
622 * To save cycles in the RFC 1323 implementation it was better to break
623 * it up into three procedures. -- erics
624 */
625 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
626 {
627 struct tcp_sock *tp = tcp_sk(sk);
628 long m = mrtt; /* RTT */
629
630 /* The following amusing code comes from Jacobson's
631 * article in SIGCOMM '88. Note that rtt and mdev
632 * are scaled versions of rtt and mean deviation.
633 * This is designed to be as fast as possible
634 * m stands for "measurement".
635 *
636 * On a 1990 paper the rto value is changed to:
637 * RTO = rtt + 4 * mdev
638 *
639 * Funny. This algorithm seems to be very broken.
640 * These formulae increase RTO, when it should be decreased, increase
641 * too slowly, when it should be increased quickly, decrease too quickly
642 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
643 * does not matter how to _calculate_ it. Seems, it was trap
644 * that VJ failed to avoid. 8)
645 */
646 if (m == 0)
647 m = 1;
648 if (tp->srtt != 0) {
649 m -= (tp->srtt >> 3); /* m is now error in rtt est */
650 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
651 if (m < 0) {
652 m = -m; /* m is now abs(error) */
653 m -= (tp->mdev >> 2); /* similar update on mdev */
654 /* This is similar to one of Eifel findings.
655 * Eifel blocks mdev updates when rtt decreases.
656 * This solution is a bit different: we use finer gain
657 * for mdev in this case (alpha*beta).
658 * Like Eifel it also prevents growth of rto,
659 * but also it limits too fast rto decreases,
660 * happening in pure Eifel.
661 */
662 if (m > 0)
663 m >>= 3;
664 } else {
665 m -= (tp->mdev >> 2); /* similar update on mdev */
666 }
667 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
668 if (tp->mdev > tp->mdev_max) {
669 tp->mdev_max = tp->mdev;
670 if (tp->mdev_max > tp->rttvar)
671 tp->rttvar = tp->mdev_max;
672 }
673 if (after(tp->snd_una, tp->rtt_seq)) {
674 if (tp->mdev_max < tp->rttvar)
675 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
676 tp->rtt_seq = tp->snd_nxt;
677 tp->mdev_max = tcp_rto_min(sk);
678 }
679 } else {
680 /* no previous measure. */
681 tp->srtt = m<<3; /* take the measured time to be rtt */
682 tp->mdev = m<<1; /* make sure rto = 3*rtt */
683 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
684 tp->rtt_seq = tp->snd_nxt;
685 }
686 }
687
688 /* Calculate rto without backoff. This is the second half of Van Jacobson's
689 * routine referred to above.
690 */
691 static inline void tcp_set_rto(struct sock *sk)
692 {
693 const struct tcp_sock *tp = tcp_sk(sk);
694 /* Old crap is replaced with new one. 8)
695 *
696 * More seriously:
697 * 1. If rtt variance happened to be less 50msec, it is hallucination.
698 * It cannot be less due to utterly erratic ACK generation made
699 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
700 * to do with delayed acks, because at cwnd>2 true delack timeout
701 * is invisible. Actually, Linux-2.4 also generates erratic
702 * ACKs in some circumstances.
703 */
704 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
705
706 /* 2. Fixups made earlier cannot be right.
707 * If we do not estimate RTO correctly without them,
708 * all the algo is pure shit and should be replaced
709 * with correct one. It is exactly, which we pretend to do.
710 */
711 }
712
713 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
714 * guarantees that rto is higher.
715 */
716 static inline void tcp_bound_rto(struct sock *sk)
717 {
718 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
719 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
720 }
721
722 /* Save metrics learned by this TCP session.
723 This function is called only, when TCP finishes successfully
724 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
725 */
726 void tcp_update_metrics(struct sock *sk)
727 {
728 struct tcp_sock *tp = tcp_sk(sk);
729 struct dst_entry *dst = __sk_dst_get(sk);
730
731 if (sysctl_tcp_nometrics_save)
732 return;
733
734 dst_confirm(dst);
735
736 if (dst && (dst->flags&DST_HOST)) {
737 const struct inet_connection_sock *icsk = inet_csk(sk);
738 int m;
739
740 if (icsk->icsk_backoff || !tp->srtt) {
741 /* This session failed to estimate rtt. Why?
742 * Probably, no packets returned in time.
743 * Reset our results.
744 */
745 if (!(dst_metric_locked(dst, RTAX_RTT)))
746 dst->metrics[RTAX_RTT-1] = 0;
747 return;
748 }
749
750 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
751
752 /* If newly calculated rtt larger than stored one,
753 * store new one. Otherwise, use EWMA. Remember,
754 * rtt overestimation is always better than underestimation.
755 */
756 if (!(dst_metric_locked(dst, RTAX_RTT))) {
757 if (m <= 0)
758 dst->metrics[RTAX_RTT-1] = tp->srtt;
759 else
760 dst->metrics[RTAX_RTT-1] -= (m>>3);
761 }
762
763 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
764 if (m < 0)
765 m = -m;
766
767 /* Scale deviation to rttvar fixed point */
768 m >>= 1;
769 if (m < tp->mdev)
770 m = tp->mdev;
771
772 if (m >= dst_metric(dst, RTAX_RTTVAR))
773 dst->metrics[RTAX_RTTVAR-1] = m;
774 else
775 dst->metrics[RTAX_RTTVAR-1] -=
776 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
777 }
778
779 if (tp->snd_ssthresh >= 0xFFFF) {
780 /* Slow start still did not finish. */
781 if (dst_metric(dst, RTAX_SSTHRESH) &&
782 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
783 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
784 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
785 if (!dst_metric_locked(dst, RTAX_CWND) &&
786 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
787 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
788 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
789 icsk->icsk_ca_state == TCP_CA_Open) {
790 /* Cong. avoidance phase, cwnd is reliable. */
791 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
792 dst->metrics[RTAX_SSTHRESH-1] =
793 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
794 if (!dst_metric_locked(dst, RTAX_CWND))
795 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
796 } else {
797 /* Else slow start did not finish, cwnd is non-sense,
798 ssthresh may be also invalid.
799 */
800 if (!dst_metric_locked(dst, RTAX_CWND))
801 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
802 if (dst->metrics[RTAX_SSTHRESH-1] &&
803 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
804 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
805 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
806 }
807
808 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
809 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
810 tp->reordering != sysctl_tcp_reordering)
811 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
812 }
813 }
814 }
815
816 /* Numbers are taken from RFC3390.
817 *
818 * John Heffner states:
819 *
820 * The RFC specifies a window of no more than 4380 bytes
821 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
822 * is a bit misleading because they use a clamp at 4380 bytes
823 * rather than use a multiplier in the relevant range.
824 */
825 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
826 {
827 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
828
829 if (!cwnd) {
830 if (tp->mss_cache > 1460)
831 cwnd = 2;
832 else
833 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
834 }
835 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
836 }
837
838 /* Set slow start threshold and cwnd not falling to slow start */
839 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
840 {
841 struct tcp_sock *tp = tcp_sk(sk);
842 const struct inet_connection_sock *icsk = inet_csk(sk);
843
844 tp->prior_ssthresh = 0;
845 tp->bytes_acked = 0;
846 if (icsk->icsk_ca_state < TCP_CA_CWR) {
847 tp->undo_marker = 0;
848 if (set_ssthresh)
849 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
850 tp->snd_cwnd = min(tp->snd_cwnd,
851 tcp_packets_in_flight(tp) + 1U);
852 tp->snd_cwnd_cnt = 0;
853 tp->high_seq = tp->snd_nxt;
854 tp->snd_cwnd_stamp = tcp_time_stamp;
855 TCP_ECN_queue_cwr(tp);
856
857 tcp_set_ca_state(sk, TCP_CA_CWR);
858 }
859 }
860
861 /*
862 * Packet counting of FACK is based on in-order assumptions, therefore TCP
863 * disables it when reordering is detected
864 */
865 static void tcp_disable_fack(struct tcp_sock *tp)
866 {
867 /* RFC3517 uses different metric in lost marker => reset on change */
868 if (tcp_is_fack(tp))
869 tp->lost_skb_hint = NULL;
870 tp->rx_opt.sack_ok &= ~2;
871 }
872
873 /* Take a notice that peer is sending D-SACKs */
874 static void tcp_dsack_seen(struct tcp_sock *tp)
875 {
876 tp->rx_opt.sack_ok |= 4;
877 }
878
879 /* Initialize metrics on socket. */
880
881 static void tcp_init_metrics(struct sock *sk)
882 {
883 struct tcp_sock *tp = tcp_sk(sk);
884 struct dst_entry *dst = __sk_dst_get(sk);
885
886 if (dst == NULL)
887 goto reset;
888
889 dst_confirm(dst);
890
891 if (dst_metric_locked(dst, RTAX_CWND))
892 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
893 if (dst_metric(dst, RTAX_SSTHRESH)) {
894 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
895 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
896 tp->snd_ssthresh = tp->snd_cwnd_clamp;
897 }
898 if (dst_metric(dst, RTAX_REORDERING) &&
899 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
900 tcp_disable_fack(tp);
901 tp->reordering = dst_metric(dst, RTAX_REORDERING);
902 }
903
904 if (dst_metric(dst, RTAX_RTT) == 0)
905 goto reset;
906
907 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
908 goto reset;
909
910 /* Initial rtt is determined from SYN,SYN-ACK.
911 * The segment is small and rtt may appear much
912 * less than real one. Use per-dst memory
913 * to make it more realistic.
914 *
915 * A bit of theory. RTT is time passed after "normal" sized packet
916 * is sent until it is ACKed. In normal circumstances sending small
917 * packets force peer to delay ACKs and calculation is correct too.
918 * The algorithm is adaptive and, provided we follow specs, it
919 * NEVER underestimate RTT. BUT! If peer tries to make some clever
920 * tricks sort of "quick acks" for time long enough to decrease RTT
921 * to low value, and then abruptly stops to do it and starts to delay
922 * ACKs, wait for troubles.
923 */
924 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
925 tp->srtt = dst_metric(dst, RTAX_RTT);
926 tp->rtt_seq = tp->snd_nxt;
927 }
928 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
929 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
930 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
931 }
932 tcp_set_rto(sk);
933 tcp_bound_rto(sk);
934 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
935 goto reset;
936 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
937 tp->snd_cwnd_stamp = tcp_time_stamp;
938 return;
939
940 reset:
941 /* Play conservative. If timestamps are not
942 * supported, TCP will fail to recalculate correct
943 * rtt, if initial rto is too small. FORGET ALL AND RESET!
944 */
945 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
946 tp->srtt = 0;
947 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
948 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
949 }
950 }
951
952 static void tcp_update_reordering(struct sock *sk, const int metric,
953 const int ts)
954 {
955 struct tcp_sock *tp = tcp_sk(sk);
956 if (metric > tp->reordering) {
957 tp->reordering = min(TCP_MAX_REORDERING, metric);
958
959 /* This exciting event is worth to be remembered. 8) */
960 if (ts)
961 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
962 else if (tcp_is_reno(tp))
963 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
964 else if (tcp_is_fack(tp))
965 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
966 else
967 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
968 #if FASTRETRANS_DEBUG > 1
969 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
970 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
971 tp->reordering,
972 tp->fackets_out,
973 tp->sacked_out,
974 tp->undo_marker ? tp->undo_retrans : 0);
975 #endif
976 tcp_disable_fack(tp);
977 }
978 }
979
980 /* This procedure tags the retransmission queue when SACKs arrive.
981 *
982 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
983 * Packets in queue with these bits set are counted in variables
984 * sacked_out, retrans_out and lost_out, correspondingly.
985 *
986 * Valid combinations are:
987 * Tag InFlight Description
988 * 0 1 - orig segment is in flight.
989 * S 0 - nothing flies, orig reached receiver.
990 * L 0 - nothing flies, orig lost by net.
991 * R 2 - both orig and retransmit are in flight.
992 * L|R 1 - orig is lost, retransmit is in flight.
993 * S|R 1 - orig reached receiver, retrans is still in flight.
994 * (L|S|R is logically valid, it could occur when L|R is sacked,
995 * but it is equivalent to plain S and code short-curcuits it to S.
996 * L|S is logically invalid, it would mean -1 packet in flight 8))
997 *
998 * These 6 states form finite state machine, controlled by the following events:
999 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1000 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1001 * 3. Loss detection event of one of three flavors:
1002 * A. Scoreboard estimator decided the packet is lost.
1003 * A'. Reno "three dupacks" marks head of queue lost.
1004 * A''. Its FACK modfication, head until snd.fack is lost.
1005 * B. SACK arrives sacking data transmitted after never retransmitted
1006 * hole was sent out.
1007 * C. SACK arrives sacking SND.NXT at the moment, when the
1008 * segment was retransmitted.
1009 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1010 *
1011 * It is pleasant to note, that state diagram turns out to be commutative,
1012 * so that we are allowed not to be bothered by order of our actions,
1013 * when multiple events arrive simultaneously. (see the function below).
1014 *
1015 * Reordering detection.
1016 * --------------------
1017 * Reordering metric is maximal distance, which a packet can be displaced
1018 * in packet stream. With SACKs we can estimate it:
1019 *
1020 * 1. SACK fills old hole and the corresponding segment was not
1021 * ever retransmitted -> reordering. Alas, we cannot use it
1022 * when segment was retransmitted.
1023 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1024 * for retransmitted and already SACKed segment -> reordering..
1025 * Both of these heuristics are not used in Loss state, when we cannot
1026 * account for retransmits accurately.
1027 *
1028 * SACK block validation.
1029 * ----------------------
1030 *
1031 * SACK block range validation checks that the received SACK block fits to
1032 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1033 * Note that SND.UNA is not included to the range though being valid because
1034 * it means that the receiver is rather inconsistent with itself reporting
1035 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1036 * perfectly valid, however, in light of RFC2018 which explicitly states
1037 * that "SACK block MUST reflect the newest segment. Even if the newest
1038 * segment is going to be discarded ...", not that it looks very clever
1039 * in case of head skb. Due to potentional receiver driven attacks, we
1040 * choose to avoid immediate execution of a walk in write queue due to
1041 * reneging and defer head skb's loss recovery to standard loss recovery
1042 * procedure that will eventually trigger (nothing forbids us doing this).
1043 *
1044 * Implements also blockage to start_seq wrap-around. Problem lies in the
1045 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1046 * there's no guarantee that it will be before snd_nxt (n). The problem
1047 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1048 * wrap (s_w):
1049 *
1050 * <- outs wnd -> <- wrapzone ->
1051 * u e n u_w e_w s n_w
1052 * | | | | | | |
1053 * |<------------+------+----- TCP seqno space --------------+---------->|
1054 * ...-- <2^31 ->| |<--------...
1055 * ...---- >2^31 ------>| |<--------...
1056 *
1057 * Current code wouldn't be vulnerable but it's better still to discard such
1058 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1059 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1060 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1061 * equal to the ideal case (infinite seqno space without wrap caused issues).
1062 *
1063 * With D-SACK the lower bound is extended to cover sequence space below
1064 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1065 * again, D-SACK block must not to go across snd_una (for the same reason as
1066 * for the normal SACK blocks, explained above). But there all simplicity
1067 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1068 * fully below undo_marker they do not affect behavior in anyway and can
1069 * therefore be safely ignored. In rare cases (which are more or less
1070 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1071 * fragmentation and packet reordering past skb's retransmission. To consider
1072 * them correctly, the acceptable range must be extended even more though
1073 * the exact amount is rather hard to quantify. However, tp->max_window can
1074 * be used as an exaggerated estimate.
1075 */
1076 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1077 u32 start_seq, u32 end_seq)
1078 {
1079 /* Too far in future, or reversed (interpretation is ambiguous) */
1080 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1081 return 0;
1082
1083 /* Nasty start_seq wrap-around check (see comments above) */
1084 if (!before(start_seq, tp->snd_nxt))
1085 return 0;
1086
1087 /* In outstanding window? ...This is valid exit for D-SACKs too.
1088 * start_seq == snd_una is non-sensical (see comments above)
1089 */
1090 if (after(start_seq, tp->snd_una))
1091 return 1;
1092
1093 if (!is_dsack || !tp->undo_marker)
1094 return 0;
1095
1096 /* ...Then it's D-SACK, and must reside below snd_una completely */
1097 if (!after(end_seq, tp->snd_una))
1098 return 0;
1099
1100 if (!before(start_seq, tp->undo_marker))
1101 return 1;
1102
1103 /* Too old */
1104 if (!after(end_seq, tp->undo_marker))
1105 return 0;
1106
1107 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1108 * start_seq < undo_marker and end_seq >= undo_marker.
1109 */
1110 return !before(start_seq, end_seq - tp->max_window);
1111 }
1112
1113 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1114 * Event "C". Later note: FACK people cheated me again 8), we have to account
1115 * for reordering! Ugly, but should help.
1116 *
1117 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1118 * less than what is now known to be received by the other end (derived from
1119 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1120 * retransmitted skbs to avoid some costly processing per ACKs.
1121 */
1122 static void tcp_mark_lost_retrans(struct sock *sk)
1123 {
1124 const struct inet_connection_sock *icsk = inet_csk(sk);
1125 struct tcp_sock *tp = tcp_sk(sk);
1126 struct sk_buff *skb;
1127 int cnt = 0;
1128 u32 new_low_seq = tp->snd_nxt;
1129 u32 received_upto = tcp_highest_sack_seq(tp);
1130
1131 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1132 !after(received_upto, tp->lost_retrans_low) ||
1133 icsk->icsk_ca_state != TCP_CA_Recovery)
1134 return;
1135
1136 tcp_for_write_queue(skb, sk) {
1137 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1138
1139 if (skb == tcp_send_head(sk))
1140 break;
1141 if (cnt == tp->retrans_out)
1142 break;
1143 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1144 continue;
1145
1146 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1147 continue;
1148
1149 if (after(received_upto, ack_seq) &&
1150 (tcp_is_fack(tp) ||
1151 !before(received_upto,
1152 ack_seq + tp->reordering * tp->mss_cache))) {
1153 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1154 tp->retrans_out -= tcp_skb_pcount(skb);
1155
1156 /* clear lost hint */
1157 tp->retransmit_skb_hint = NULL;
1158
1159 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1160 tp->lost_out += tcp_skb_pcount(skb);
1161 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1162 }
1163 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1164 } else {
1165 if (before(ack_seq, new_low_seq))
1166 new_low_seq = ack_seq;
1167 cnt += tcp_skb_pcount(skb);
1168 }
1169 }
1170
1171 if (tp->retrans_out)
1172 tp->lost_retrans_low = new_low_seq;
1173 }
1174
1175 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1176 struct tcp_sack_block_wire *sp, int num_sacks,
1177 u32 prior_snd_una)
1178 {
1179 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1180 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1181 int dup_sack = 0;
1182
1183 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1184 dup_sack = 1;
1185 tcp_dsack_seen(tp);
1186 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1187 } else if (num_sacks > 1) {
1188 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1189 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1190
1191 if (!after(end_seq_0, end_seq_1) &&
1192 !before(start_seq_0, start_seq_1)) {
1193 dup_sack = 1;
1194 tcp_dsack_seen(tp);
1195 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1196 }
1197 }
1198
1199 /* D-SACK for already forgotten data... Do dumb counting. */
1200 if (dup_sack &&
1201 !after(end_seq_0, prior_snd_una) &&
1202 after(end_seq_0, tp->undo_marker))
1203 tp->undo_retrans--;
1204
1205 return dup_sack;
1206 }
1207
1208 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1209 * the incoming SACK may not exactly match but we can find smaller MSS
1210 * aligned portion of it that matches. Therefore we might need to fragment
1211 * which may fail and creates some hassle (caller must handle error case
1212 * returns).
1213 */
1214 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1215 u32 start_seq, u32 end_seq)
1216 {
1217 int in_sack, err;
1218 unsigned int pkt_len;
1219
1220 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1221 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1222
1223 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1224 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1225
1226 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1227
1228 if (!in_sack)
1229 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1230 else
1231 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1232 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1233 if (err < 0)
1234 return err;
1235 }
1236
1237 return in_sack;
1238 }
1239
1240 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1241 int *reord, int dup_sack, int fack_count)
1242 {
1243 struct tcp_sock *tp = tcp_sk(sk);
1244 u8 sacked = TCP_SKB_CB(skb)->sacked;
1245 int flag = 0;
1246
1247 /* Account D-SACK for retransmitted packet. */
1248 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1249 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1250 tp->undo_retrans--;
1251 if (sacked & TCPCB_SACKED_ACKED)
1252 *reord = min(fack_count, *reord);
1253 }
1254
1255 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1256 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1257 return flag;
1258
1259 if (!(sacked & TCPCB_SACKED_ACKED)) {
1260 if (sacked & TCPCB_SACKED_RETRANS) {
1261 /* If the segment is not tagged as lost,
1262 * we do not clear RETRANS, believing
1263 * that retransmission is still in flight.
1264 */
1265 if (sacked & TCPCB_LOST) {
1266 TCP_SKB_CB(skb)->sacked &=
1267 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1268 tp->lost_out -= tcp_skb_pcount(skb);
1269 tp->retrans_out -= tcp_skb_pcount(skb);
1270
1271 /* clear lost hint */
1272 tp->retransmit_skb_hint = NULL;
1273 }
1274 } else {
1275 if (!(sacked & TCPCB_RETRANS)) {
1276 /* New sack for not retransmitted frame,
1277 * which was in hole. It is reordering.
1278 */
1279 if (before(TCP_SKB_CB(skb)->seq,
1280 tcp_highest_sack_seq(tp)))
1281 *reord = min(fack_count, *reord);
1282
1283 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1284 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1285 flag |= FLAG_ONLY_ORIG_SACKED;
1286 }
1287
1288 if (sacked & TCPCB_LOST) {
1289 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1290 tp->lost_out -= tcp_skb_pcount(skb);
1291
1292 /* clear lost hint */
1293 tp->retransmit_skb_hint = NULL;
1294 }
1295 }
1296
1297 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1298 flag |= FLAG_DATA_SACKED;
1299 tp->sacked_out += tcp_skb_pcount(skb);
1300
1301 fack_count += tcp_skb_pcount(skb);
1302
1303 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1304 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1305 before(TCP_SKB_CB(skb)->seq,
1306 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1307 tp->lost_cnt_hint += tcp_skb_pcount(skb);
1308
1309 if (fack_count > tp->fackets_out)
1310 tp->fackets_out = fack_count;
1311
1312 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1313 tcp_advance_highest_sack(sk, skb);
1314 }
1315
1316 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1317 * frames and clear it. undo_retrans is decreased above, L|R frames
1318 * are accounted above as well.
1319 */
1320 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1321 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1322 tp->retrans_out -= tcp_skb_pcount(skb);
1323 tp->retransmit_skb_hint = NULL;
1324 }
1325
1326 return flag;
1327 }
1328
1329 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1330 struct tcp_sack_block *next_dup,
1331 u32 start_seq, u32 end_seq,
1332 int dup_sack_in, int *fack_count,
1333 int *reord, int *flag)
1334 {
1335 tcp_for_write_queue_from(skb, sk) {
1336 int in_sack = 0;
1337 int dup_sack = dup_sack_in;
1338
1339 if (skb == tcp_send_head(sk))
1340 break;
1341
1342 /* queue is in-order => we can short-circuit the walk early */
1343 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1344 break;
1345
1346 if ((next_dup != NULL) &&
1347 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1348 in_sack = tcp_match_skb_to_sack(sk, skb,
1349 next_dup->start_seq,
1350 next_dup->end_seq);
1351 if (in_sack > 0)
1352 dup_sack = 1;
1353 }
1354
1355 if (in_sack <= 0)
1356 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1357 if (unlikely(in_sack < 0))
1358 break;
1359
1360 if (in_sack)
1361 *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack, *fack_count);
1362
1363 *fack_count += tcp_skb_pcount(skb);
1364 }
1365 return skb;
1366 }
1367
1368 /* Avoid all extra work that is being done by sacktag while walking in
1369 * a normal way
1370 */
1371 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1372 u32 skip_to_seq)
1373 {
1374 tcp_for_write_queue_from(skb, sk) {
1375 if (skb == tcp_send_head(sk))
1376 break;
1377
1378 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1379 break;
1380 }
1381 return skb;
1382 }
1383
1384 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1385 struct sock *sk,
1386 struct tcp_sack_block *next_dup,
1387 u32 skip_to_seq,
1388 int *fack_count, int *reord,
1389 int *flag)
1390 {
1391 if (next_dup == NULL)
1392 return skb;
1393
1394 if (before(next_dup->start_seq, skip_to_seq)) {
1395 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1396 tcp_sacktag_walk(skb, sk, NULL,
1397 next_dup->start_seq, next_dup->end_seq,
1398 1, fack_count, reord, flag);
1399 }
1400
1401 return skb;
1402 }
1403
1404 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1405 {
1406 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1407 }
1408
1409 static int
1410 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1411 {
1412 const struct inet_connection_sock *icsk = inet_csk(sk);
1413 struct tcp_sock *tp = tcp_sk(sk);
1414 unsigned char *ptr = (skb_transport_header(ack_skb) +
1415 TCP_SKB_CB(ack_skb)->sacked);
1416 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1417 struct tcp_sack_block sp[4];
1418 struct tcp_sack_block *cache;
1419 struct sk_buff *skb;
1420 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1421 int used_sacks;
1422 int reord = tp->packets_out;
1423 int flag = 0;
1424 int found_dup_sack = 0;
1425 int fack_count;
1426 int i, j;
1427 int first_sack_index;
1428
1429 if (!tp->sacked_out) {
1430 if (WARN_ON(tp->fackets_out))
1431 tp->fackets_out = 0;
1432 tcp_highest_sack_reset(sk);
1433 }
1434
1435 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1436 num_sacks, prior_snd_una);
1437 if (found_dup_sack)
1438 flag |= FLAG_DSACKING_ACK;
1439
1440 /* Eliminate too old ACKs, but take into
1441 * account more or less fresh ones, they can
1442 * contain valid SACK info.
1443 */
1444 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1445 return 0;
1446
1447 if (!tp->packets_out)
1448 goto out;
1449
1450 used_sacks = 0;
1451 first_sack_index = 0;
1452 for (i = 0; i < num_sacks; i++) {
1453 int dup_sack = !i && found_dup_sack;
1454
1455 sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
1456 sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
1457
1458 if (!tcp_is_sackblock_valid(tp, dup_sack,
1459 sp[used_sacks].start_seq,
1460 sp[used_sacks].end_seq)) {
1461 if (dup_sack) {
1462 if (!tp->undo_marker)
1463 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1464 else
1465 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1466 } else {
1467 /* Don't count olds caused by ACK reordering */
1468 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1469 !after(sp[used_sacks].end_seq, tp->snd_una))
1470 continue;
1471 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1472 }
1473 if (i == 0)
1474 first_sack_index = -1;
1475 continue;
1476 }
1477
1478 /* Ignore very old stuff early */
1479 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1480 continue;
1481
1482 used_sacks++;
1483 }
1484
1485 /* order SACK blocks to allow in order walk of the retrans queue */
1486 for (i = used_sacks - 1; i > 0; i--) {
1487 for (j = 0; j < i; j++){
1488 if (after(sp[j].start_seq, sp[j+1].start_seq)) {
1489 struct tcp_sack_block tmp;
1490
1491 tmp = sp[j];
1492 sp[j] = sp[j+1];
1493 sp[j+1] = tmp;
1494
1495 /* Track where the first SACK block goes to */
1496 if (j == first_sack_index)
1497 first_sack_index = j+1;
1498 }
1499 }
1500 }
1501
1502 skb = tcp_write_queue_head(sk);
1503 fack_count = 0;
1504 i = 0;
1505
1506 if (!tp->sacked_out) {
1507 /* It's already past, so skip checking against it */
1508 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1509 } else {
1510 cache = tp->recv_sack_cache;
1511 /* Skip empty blocks in at head of the cache */
1512 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1513 !cache->end_seq)
1514 cache++;
1515 }
1516
1517 while (i < used_sacks) {
1518 u32 start_seq = sp[i].start_seq;
1519 u32 end_seq = sp[i].end_seq;
1520 int dup_sack = (found_dup_sack && (i == first_sack_index));
1521 struct tcp_sack_block *next_dup = NULL;
1522
1523 if (found_dup_sack && ((i + 1) == first_sack_index))
1524 next_dup = &sp[i + 1];
1525
1526 /* Event "B" in the comment above. */
1527 if (after(end_seq, tp->high_seq))
1528 flag |= FLAG_DATA_LOST;
1529
1530 /* Skip too early cached blocks */
1531 while (tcp_sack_cache_ok(tp, cache) &&
1532 !before(start_seq, cache->end_seq))
1533 cache++;
1534
1535 /* Can skip some work by looking recv_sack_cache? */
1536 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1537 after(end_seq, cache->start_seq)) {
1538
1539 /* Head todo? */
1540 if (before(start_seq, cache->start_seq)) {
1541 skb = tcp_sacktag_skip(skb, sk, start_seq);
1542 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq,
1543 cache->start_seq, dup_sack,
1544 &fack_count, &reord, &flag);
1545 }
1546
1547 /* Rest of the block already fully processed? */
1548 if (!after(end_seq, cache->end_seq))
1549 goto advance_sp;
1550
1551 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, cache->end_seq,
1552 &fack_count, &reord, &flag);
1553
1554 /* ...tail remains todo... */
1555 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1556 /* ...but better entrypoint exists! */
1557 skb = tcp_highest_sack(sk);
1558 if (skb == NULL)
1559 break;
1560 fack_count = tp->fackets_out;
1561 cache++;
1562 goto walk;
1563 }
1564
1565 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1566 /* Check overlap against next cached too (past this one already) */
1567 cache++;
1568 continue;
1569 }
1570
1571 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1572 skb = tcp_highest_sack(sk);
1573 if (skb == NULL)
1574 break;
1575 fack_count = tp->fackets_out;
1576 }
1577 skb = tcp_sacktag_skip(skb, sk, start_seq);
1578
1579 walk:
1580 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1581 dup_sack, &fack_count, &reord, &flag);
1582
1583 advance_sp:
1584 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1585 * due to in-order walk
1586 */
1587 if (after(end_seq, tp->frto_highmark))
1588 flag &= ~FLAG_ONLY_ORIG_SACKED;
1589
1590 i++;
1591 }
1592
1593 /* Clear the head of the cache sack blocks so we can skip it next time */
1594 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1595 tp->recv_sack_cache[i].start_seq = 0;
1596 tp->recv_sack_cache[i].end_seq = 0;
1597 }
1598 for (j = 0; j < used_sacks; j++)
1599 tp->recv_sack_cache[i++] = sp[j];
1600
1601 tcp_mark_lost_retrans(sk);
1602
1603 tcp_verify_left_out(tp);
1604
1605 if ((reord < tp->fackets_out) &&
1606 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1607 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1608 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1609
1610 out:
1611
1612 #if FASTRETRANS_DEBUG > 0
1613 BUG_TRAP((int)tp->sacked_out >= 0);
1614 BUG_TRAP((int)tp->lost_out >= 0);
1615 BUG_TRAP((int)tp->retrans_out >= 0);
1616 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1617 #endif
1618 return flag;
1619 }
1620
1621 /* If we receive more dupacks than we expected counting segments
1622 * in assumption of absent reordering, interpret this as reordering.
1623 * The only another reason could be bug in receiver TCP.
1624 */
1625 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1626 {
1627 struct tcp_sock *tp = tcp_sk(sk);
1628 u32 holes;
1629
1630 holes = max(tp->lost_out, 1U);
1631 holes = min(holes, tp->packets_out);
1632
1633 if ((tp->sacked_out + holes) > tp->packets_out) {
1634 tp->sacked_out = tp->packets_out - holes;
1635 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1636 }
1637 }
1638
1639 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1640
1641 static void tcp_add_reno_sack(struct sock *sk)
1642 {
1643 struct tcp_sock *tp = tcp_sk(sk);
1644 tp->sacked_out++;
1645 tcp_check_reno_reordering(sk, 0);
1646 tcp_verify_left_out(tp);
1647 }
1648
1649 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1650
1651 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1652 {
1653 struct tcp_sock *tp = tcp_sk(sk);
1654
1655 if (acked > 0) {
1656 /* One ACK acked hole. The rest eat duplicate ACKs. */
1657 if (acked-1 >= tp->sacked_out)
1658 tp->sacked_out = 0;
1659 else
1660 tp->sacked_out -= acked-1;
1661 }
1662 tcp_check_reno_reordering(sk, acked);
1663 tcp_verify_left_out(tp);
1664 }
1665
1666 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1667 {
1668 tp->sacked_out = 0;
1669 }
1670
1671 /* F-RTO can only be used if TCP has never retransmitted anything other than
1672 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1673 */
1674 int tcp_use_frto(struct sock *sk)
1675 {
1676 const struct tcp_sock *tp = tcp_sk(sk);
1677 struct sk_buff *skb;
1678
1679 if (!sysctl_tcp_frto)
1680 return 0;
1681
1682 if (IsSackFrto())
1683 return 1;
1684
1685 /* Avoid expensive walking of rexmit queue if possible */
1686 if (tp->retrans_out > 1)
1687 return 0;
1688
1689 skb = tcp_write_queue_head(sk);
1690 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1691 tcp_for_write_queue_from(skb, sk) {
1692 if (skb == tcp_send_head(sk))
1693 break;
1694 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1695 return 0;
1696 /* Short-circuit when first non-SACKed skb has been checked */
1697 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1698 break;
1699 }
1700 return 1;
1701 }
1702
1703 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1704 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1705 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1706 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1707 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1708 * bits are handled if the Loss state is really to be entered (in
1709 * tcp_enter_frto_loss).
1710 *
1711 * Do like tcp_enter_loss() would; when RTO expires the second time it
1712 * does:
1713 * "Reduce ssthresh if it has not yet been made inside this window."
1714 */
1715 void tcp_enter_frto(struct sock *sk)
1716 {
1717 const struct inet_connection_sock *icsk = inet_csk(sk);
1718 struct tcp_sock *tp = tcp_sk(sk);
1719 struct sk_buff *skb;
1720
1721 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1722 tp->snd_una == tp->high_seq ||
1723 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1724 !icsk->icsk_retransmits)) {
1725 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1726 /* Our state is too optimistic in ssthresh() call because cwnd
1727 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1728 * recovery has not yet completed. Pattern would be this: RTO,
1729 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1730 * up here twice).
1731 * RFC4138 should be more specific on what to do, even though
1732 * RTO is quite unlikely to occur after the first Cumulative ACK
1733 * due to back-off and complexity of triggering events ...
1734 */
1735 if (tp->frto_counter) {
1736 u32 stored_cwnd;
1737 stored_cwnd = tp->snd_cwnd;
1738 tp->snd_cwnd = 2;
1739 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1740 tp->snd_cwnd = stored_cwnd;
1741 } else {
1742 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1743 }
1744 /* ... in theory, cong.control module could do "any tricks" in
1745 * ssthresh(), which means that ca_state, lost bits and lost_out
1746 * counter would have to be faked before the call occurs. We
1747 * consider that too expensive, unlikely and hacky, so modules
1748 * using these in ssthresh() must deal these incompatibility
1749 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1750 */
1751 tcp_ca_event(sk, CA_EVENT_FRTO);
1752 }
1753
1754 tp->undo_marker = tp->snd_una;
1755 tp->undo_retrans = 0;
1756
1757 skb = tcp_write_queue_head(sk);
1758 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1759 tp->undo_marker = 0;
1760 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1761 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1762 tp->retrans_out -= tcp_skb_pcount(skb);
1763 }
1764 tcp_verify_left_out(tp);
1765
1766 /* Too bad if TCP was application limited */
1767 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1768
1769 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1770 * The last condition is necessary at least in tp->frto_counter case.
1771 */
1772 if (IsSackFrto() && (tp->frto_counter ||
1773 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1774 after(tp->high_seq, tp->snd_una)) {
1775 tp->frto_highmark = tp->high_seq;
1776 } else {
1777 tp->frto_highmark = tp->snd_nxt;
1778 }
1779 tcp_set_ca_state(sk, TCP_CA_Disorder);
1780 tp->high_seq = tp->snd_nxt;
1781 tp->frto_counter = 1;
1782 }
1783
1784 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1785 * which indicates that we should follow the traditional RTO recovery,
1786 * i.e. mark everything lost and do go-back-N retransmission.
1787 */
1788 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1789 {
1790 struct tcp_sock *tp = tcp_sk(sk);
1791 struct sk_buff *skb;
1792
1793 tp->lost_out = 0;
1794 tp->retrans_out = 0;
1795 if (tcp_is_reno(tp))
1796 tcp_reset_reno_sack(tp);
1797
1798 tcp_for_write_queue(skb, sk) {
1799 if (skb == tcp_send_head(sk))
1800 break;
1801
1802 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1803 /*
1804 * Count the retransmission made on RTO correctly (only when
1805 * waiting for the first ACK and did not get it)...
1806 */
1807 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1808 /* For some reason this R-bit might get cleared? */
1809 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1810 tp->retrans_out += tcp_skb_pcount(skb);
1811 /* ...enter this if branch just for the first segment */
1812 flag |= FLAG_DATA_ACKED;
1813 } else {
1814 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1815 tp->undo_marker = 0;
1816 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1817 }
1818
1819 /* Don't lost mark skbs that were fwd transmitted after RTO */
1820 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1821 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1822 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1823 tp->lost_out += tcp_skb_pcount(skb);
1824 }
1825 }
1826 tcp_verify_left_out(tp);
1827
1828 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1829 tp->snd_cwnd_cnt = 0;
1830 tp->snd_cwnd_stamp = tcp_time_stamp;
1831 tp->frto_counter = 0;
1832 tp->bytes_acked = 0;
1833
1834 tp->reordering = min_t(unsigned int, tp->reordering,
1835 sysctl_tcp_reordering);
1836 tcp_set_ca_state(sk, TCP_CA_Loss);
1837 tp->high_seq = tp->frto_highmark;
1838 TCP_ECN_queue_cwr(tp);
1839
1840 tcp_clear_retrans_hints_partial(tp);
1841 }
1842
1843 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1844 {
1845 tp->retrans_out = 0;
1846 tp->lost_out = 0;
1847
1848 tp->undo_marker = 0;
1849 tp->undo_retrans = 0;
1850 }
1851
1852 void tcp_clear_retrans(struct tcp_sock *tp)
1853 {
1854 tcp_clear_retrans_partial(tp);
1855
1856 tp->fackets_out = 0;
1857 tp->sacked_out = 0;
1858 }
1859
1860 /* Enter Loss state. If "how" is not zero, forget all SACK information
1861 * and reset tags completely, otherwise preserve SACKs. If receiver
1862 * dropped its ofo queue, we will know this due to reneging detection.
1863 */
1864 void tcp_enter_loss(struct sock *sk, int how)
1865 {
1866 const struct inet_connection_sock *icsk = inet_csk(sk);
1867 struct tcp_sock *tp = tcp_sk(sk);
1868 struct sk_buff *skb;
1869
1870 /* Reduce ssthresh if it has not yet been made inside this window. */
1871 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1872 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1873 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1874 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1875 tcp_ca_event(sk, CA_EVENT_LOSS);
1876 }
1877 tp->snd_cwnd = 1;
1878 tp->snd_cwnd_cnt = 0;
1879 tp->snd_cwnd_stamp = tcp_time_stamp;
1880
1881 tp->bytes_acked = 0;
1882 tcp_clear_retrans_partial(tp);
1883
1884 if (tcp_is_reno(tp))
1885 tcp_reset_reno_sack(tp);
1886
1887 if (!how) {
1888 /* Push undo marker, if it was plain RTO and nothing
1889 * was retransmitted. */
1890 tp->undo_marker = tp->snd_una;
1891 tcp_clear_retrans_hints_partial(tp);
1892 } else {
1893 tp->sacked_out = 0;
1894 tp->fackets_out = 0;
1895 tcp_clear_all_retrans_hints(tp);
1896 }
1897
1898 tcp_for_write_queue(skb, sk) {
1899 if (skb == tcp_send_head(sk))
1900 break;
1901
1902 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1903 tp->undo_marker = 0;
1904 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1905 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1906 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1907 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1908 tp->lost_out += tcp_skb_pcount(skb);
1909 }
1910 }
1911 tcp_verify_left_out(tp);
1912
1913 tp->reordering = min_t(unsigned int, tp->reordering,
1914 sysctl_tcp_reordering);
1915 tcp_set_ca_state(sk, TCP_CA_Loss);
1916 tp->high_seq = tp->snd_nxt;
1917 TCP_ECN_queue_cwr(tp);
1918 /* Abort F-RTO algorithm if one is in progress */
1919 tp->frto_counter = 0;
1920 }
1921
1922 /* If ACK arrived pointing to a remembered SACK, it means that our
1923 * remembered SACKs do not reflect real state of receiver i.e.
1924 * receiver _host_ is heavily congested (or buggy).
1925 *
1926 * Do processing similar to RTO timeout.
1927 */
1928 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1929 {
1930 if (flag & FLAG_SACK_RENEGING) {
1931 struct inet_connection_sock *icsk = inet_csk(sk);
1932 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1933
1934 tcp_enter_loss(sk, 1);
1935 icsk->icsk_retransmits++;
1936 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1937 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1938 icsk->icsk_rto, TCP_RTO_MAX);
1939 return 1;
1940 }
1941 return 0;
1942 }
1943
1944 static inline int tcp_fackets_out(struct tcp_sock *tp)
1945 {
1946 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1947 }
1948
1949 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1950 * counter when SACK is enabled (without SACK, sacked_out is used for
1951 * that purpose).
1952 *
1953 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1954 * segments up to the highest received SACK block so far and holes in
1955 * between them.
1956 *
1957 * With reordering, holes may still be in flight, so RFC3517 recovery
1958 * uses pure sacked_out (total number of SACKed segments) even though
1959 * it violates the RFC that uses duplicate ACKs, often these are equal
1960 * but when e.g. out-of-window ACKs or packet duplication occurs,
1961 * they differ. Since neither occurs due to loss, TCP should really
1962 * ignore them.
1963 */
1964 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1965 {
1966 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1967 }
1968
1969 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1970 {
1971 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1972 }
1973
1974 static inline int tcp_head_timedout(struct sock *sk)
1975 {
1976 struct tcp_sock *tp = tcp_sk(sk);
1977
1978 return tp->packets_out &&
1979 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1980 }
1981
1982 /* Linux NewReno/SACK/FACK/ECN state machine.
1983 * --------------------------------------
1984 *
1985 * "Open" Normal state, no dubious events, fast path.
1986 * "Disorder" In all the respects it is "Open",
1987 * but requires a bit more attention. It is entered when
1988 * we see some SACKs or dupacks. It is split of "Open"
1989 * mainly to move some processing from fast path to slow one.
1990 * "CWR" CWND was reduced due to some Congestion Notification event.
1991 * It can be ECN, ICMP source quench, local device congestion.
1992 * "Recovery" CWND was reduced, we are fast-retransmitting.
1993 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1994 *
1995 * tcp_fastretrans_alert() is entered:
1996 * - each incoming ACK, if state is not "Open"
1997 * - when arrived ACK is unusual, namely:
1998 * * SACK
1999 * * Duplicate ACK.
2000 * * ECN ECE.
2001 *
2002 * Counting packets in flight is pretty simple.
2003 *
2004 * in_flight = packets_out - left_out + retrans_out
2005 *
2006 * packets_out is SND.NXT-SND.UNA counted in packets.
2007 *
2008 * retrans_out is number of retransmitted segments.
2009 *
2010 * left_out is number of segments left network, but not ACKed yet.
2011 *
2012 * left_out = sacked_out + lost_out
2013 *
2014 * sacked_out: Packets, which arrived to receiver out of order
2015 * and hence not ACKed. With SACKs this number is simply
2016 * amount of SACKed data. Even without SACKs
2017 * it is easy to give pretty reliable estimate of this number,
2018 * counting duplicate ACKs.
2019 *
2020 * lost_out: Packets lost by network. TCP has no explicit
2021 * "loss notification" feedback from network (for now).
2022 * It means that this number can be only _guessed_.
2023 * Actually, it is the heuristics to predict lossage that
2024 * distinguishes different algorithms.
2025 *
2026 * F.e. after RTO, when all the queue is considered as lost,
2027 * lost_out = packets_out and in_flight = retrans_out.
2028 *
2029 * Essentially, we have now two algorithms counting
2030 * lost packets.
2031 *
2032 * FACK: It is the simplest heuristics. As soon as we decided
2033 * that something is lost, we decide that _all_ not SACKed
2034 * packets until the most forward SACK are lost. I.e.
2035 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2036 * It is absolutely correct estimate, if network does not reorder
2037 * packets. And it loses any connection to reality when reordering
2038 * takes place. We use FACK by default until reordering
2039 * is suspected on the path to this destination.
2040 *
2041 * NewReno: when Recovery is entered, we assume that one segment
2042 * is lost (classic Reno). While we are in Recovery and
2043 * a partial ACK arrives, we assume that one more packet
2044 * is lost (NewReno). This heuristics are the same in NewReno
2045 * and SACK.
2046 *
2047 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2048 * deflation etc. CWND is real congestion window, never inflated, changes
2049 * only according to classic VJ rules.
2050 *
2051 * Really tricky (and requiring careful tuning) part of algorithm
2052 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2053 * The first determines the moment _when_ we should reduce CWND and,
2054 * hence, slow down forward transmission. In fact, it determines the moment
2055 * when we decide that hole is caused by loss, rather than by a reorder.
2056 *
2057 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2058 * holes, caused by lost packets.
2059 *
2060 * And the most logically complicated part of algorithm is undo
2061 * heuristics. We detect false retransmits due to both too early
2062 * fast retransmit (reordering) and underestimated RTO, analyzing
2063 * timestamps and D-SACKs. When we detect that some segments were
2064 * retransmitted by mistake and CWND reduction was wrong, we undo
2065 * window reduction and abort recovery phase. This logic is hidden
2066 * inside several functions named tcp_try_undo_<something>.
2067 */
2068
2069 /* This function decides, when we should leave Disordered state
2070 * and enter Recovery phase, reducing congestion window.
2071 *
2072 * Main question: may we further continue forward transmission
2073 * with the same cwnd?
2074 */
2075 static int tcp_time_to_recover(struct sock *sk)
2076 {
2077 struct tcp_sock *tp = tcp_sk(sk);
2078 __u32 packets_out;
2079
2080 /* Do not perform any recovery during F-RTO algorithm */
2081 if (tp->frto_counter)
2082 return 0;
2083
2084 /* Trick#1: The loss is proven. */
2085 if (tp->lost_out)
2086 return 1;
2087
2088 /* Not-A-Trick#2 : Classic rule... */
2089 if (tcp_dupack_heurestics(tp) > tp->reordering)
2090 return 1;
2091
2092 /* Trick#3 : when we use RFC2988 timer restart, fast
2093 * retransmit can be triggered by timeout of queue head.
2094 */
2095 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2096 return 1;
2097
2098 /* Trick#4: It is still not OK... But will it be useful to delay
2099 * recovery more?
2100 */
2101 packets_out = tp->packets_out;
2102 if (packets_out <= tp->reordering &&
2103 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2104 !tcp_may_send_now(sk)) {
2105 /* We have nothing to send. This connection is limited
2106 * either by receiver window or by application.
2107 */
2108 return 1;
2109 }
2110
2111 return 0;
2112 }
2113
2114 /* RFC: This is from the original, I doubt that this is necessary at all:
2115 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2116 * retransmitted past LOST markings in the first place? I'm not fully sure
2117 * about undo and end of connection cases, which can cause R without L?
2118 */
2119 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2120 struct sk_buff *skb)
2121 {
2122 if ((tp->retransmit_skb_hint != NULL) &&
2123 before(TCP_SKB_CB(skb)->seq,
2124 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2125 tp->retransmit_skb_hint = NULL;
2126 }
2127
2128 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2129 * is against sacked "cnt", otherwise it's against facked "cnt"
2130 */
2131 static void tcp_mark_head_lost(struct sock *sk, int packets, int fast_rexmit)
2132 {
2133 struct tcp_sock *tp = tcp_sk(sk);
2134 struct sk_buff *skb;
2135 int cnt;
2136
2137 BUG_TRAP(packets <= tp->packets_out);
2138 if (tp->lost_skb_hint) {
2139 skb = tp->lost_skb_hint;
2140 cnt = tp->lost_cnt_hint;
2141 } else {
2142 skb = tcp_write_queue_head(sk);
2143 cnt = 0;
2144 }
2145
2146 tcp_for_write_queue_from(skb, sk) {
2147 if (skb == tcp_send_head(sk))
2148 break;
2149 /* TODO: do this better */
2150 /* this is not the most efficient way to do this... */
2151 tp->lost_skb_hint = skb;
2152 tp->lost_cnt_hint = cnt;
2153
2154 if (tcp_is_fack(tp) ||
2155 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2156 cnt += tcp_skb_pcount(skb);
2157
2158 if (((!fast_rexmit || (tp->lost_out > 0)) && (cnt > packets)) ||
2159 after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2160 break;
2161 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2162 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2163 tp->lost_out += tcp_skb_pcount(skb);
2164 tcp_verify_retransmit_hint(tp, skb);
2165 }
2166 }
2167 tcp_verify_left_out(tp);
2168 }
2169
2170 /* Account newly detected lost packet(s) */
2171
2172 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2173 {
2174 struct tcp_sock *tp = tcp_sk(sk);
2175
2176 if (tcp_is_reno(tp)) {
2177 tcp_mark_head_lost(sk, 1, fast_rexmit);
2178 } else if (tcp_is_fack(tp)) {
2179 int lost = tp->fackets_out - tp->reordering;
2180 if (lost <= 0)
2181 lost = 1;
2182 tcp_mark_head_lost(sk, lost, fast_rexmit);
2183 } else {
2184 int sacked_upto = tp->sacked_out - tp->reordering;
2185 if (sacked_upto < 0)
2186 sacked_upto = 0;
2187 tcp_mark_head_lost(sk, sacked_upto, fast_rexmit);
2188 }
2189
2190 /* New heuristics: it is possible only after we switched
2191 * to restart timer each time when something is ACKed.
2192 * Hence, we can detect timed out packets during fast
2193 * retransmit without falling to slow start.
2194 */
2195 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2196 struct sk_buff *skb;
2197
2198 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2199 : tcp_write_queue_head(sk);
2200
2201 tcp_for_write_queue_from(skb, sk) {
2202 if (skb == tcp_send_head(sk))
2203 break;
2204 if (!tcp_skb_timedout(sk, skb))
2205 break;
2206
2207 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2208 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2209 tp->lost_out += tcp_skb_pcount(skb);
2210 tcp_verify_retransmit_hint(tp, skb);
2211 }
2212 }
2213
2214 tp->scoreboard_skb_hint = skb;
2215
2216 tcp_verify_left_out(tp);
2217 }
2218 }
2219
2220 /* CWND moderation, preventing bursts due to too big ACKs
2221 * in dubious situations.
2222 */
2223 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2224 {
2225 tp->snd_cwnd = min(tp->snd_cwnd,
2226 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2227 tp->snd_cwnd_stamp = tcp_time_stamp;
2228 }
2229
2230 /* Lower bound on congestion window is slow start threshold
2231 * unless congestion avoidance choice decides to overide it.
2232 */
2233 static inline u32 tcp_cwnd_min(const struct sock *sk)
2234 {
2235 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2236
2237 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2238 }
2239
2240 /* Decrease cwnd each second ack. */
2241 static void tcp_cwnd_down(struct sock *sk, int flag)
2242 {
2243 struct tcp_sock *tp = tcp_sk(sk);
2244 int decr = tp->snd_cwnd_cnt + 1;
2245
2246 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2247 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2248 tp->snd_cwnd_cnt = decr&1;
2249 decr >>= 1;
2250
2251 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2252 tp->snd_cwnd -= decr;
2253
2254 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2255 tp->snd_cwnd_stamp = tcp_time_stamp;
2256 }
2257 }
2258
2259 /* Nothing was retransmitted or returned timestamp is less
2260 * than timestamp of the first retransmission.
2261 */
2262 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2263 {
2264 return !tp->retrans_stamp ||
2265 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2266 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2267 }
2268
2269 /* Undo procedures. */
2270
2271 #if FASTRETRANS_DEBUG > 1
2272 static void DBGUNDO(struct sock *sk, const char *msg)
2273 {
2274 struct tcp_sock *tp = tcp_sk(sk);
2275 struct inet_sock *inet = inet_sk(sk);
2276
2277 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2278 msg,
2279 NIPQUAD(inet->daddr), ntohs(inet->dport),
2280 tp->snd_cwnd, tcp_left_out(tp),
2281 tp->snd_ssthresh, tp->prior_ssthresh,
2282 tp->packets_out);
2283 }
2284 #else
2285 #define DBGUNDO(x...) do { } while (0)
2286 #endif
2287
2288 static void tcp_undo_cwr(struct sock *sk, const int undo)
2289 {
2290 struct tcp_sock *tp = tcp_sk(sk);
2291
2292 if (tp->prior_ssthresh) {
2293 const struct inet_connection_sock *icsk = inet_csk(sk);
2294
2295 if (icsk->icsk_ca_ops->undo_cwnd)
2296 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2297 else
2298 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2299
2300 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2301 tp->snd_ssthresh = tp->prior_ssthresh;
2302 TCP_ECN_withdraw_cwr(tp);
2303 }
2304 } else {
2305 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2306 }
2307 tcp_moderate_cwnd(tp);
2308 tp->snd_cwnd_stamp = tcp_time_stamp;
2309
2310 /* There is something screwy going on with the retrans hints after
2311 an undo */
2312 tcp_clear_all_retrans_hints(tp);
2313 }
2314
2315 static inline int tcp_may_undo(struct tcp_sock *tp)
2316 {
2317 return tp->undo_marker &&
2318 (!tp->undo_retrans || tcp_packet_delayed(tp));
2319 }
2320
2321 /* People celebrate: "We love our President!" */
2322 static int tcp_try_undo_recovery(struct sock *sk)
2323 {
2324 struct tcp_sock *tp = tcp_sk(sk);
2325
2326 if (tcp_may_undo(tp)) {
2327 /* Happy end! We did not retransmit anything
2328 * or our original transmission succeeded.
2329 */
2330 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2331 tcp_undo_cwr(sk, 1);
2332 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2333 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2334 else
2335 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2336 tp->undo_marker = 0;
2337 }
2338 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2339 /* Hold old state until something *above* high_seq
2340 * is ACKed. For Reno it is MUST to prevent false
2341 * fast retransmits (RFC2582). SACK TCP is safe. */
2342 tcp_moderate_cwnd(tp);
2343 return 1;
2344 }
2345 tcp_set_ca_state(sk, TCP_CA_Open);
2346 return 0;
2347 }
2348
2349 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2350 static void tcp_try_undo_dsack(struct sock *sk)
2351 {
2352 struct tcp_sock *tp = tcp_sk(sk);
2353
2354 if (tp->undo_marker && !tp->undo_retrans) {
2355 DBGUNDO(sk, "D-SACK");
2356 tcp_undo_cwr(sk, 1);
2357 tp->undo_marker = 0;
2358 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2359 }
2360 }
2361
2362 /* Undo during fast recovery after partial ACK. */
2363
2364 static int tcp_try_undo_partial(struct sock *sk, int acked)
2365 {
2366 struct tcp_sock *tp = tcp_sk(sk);
2367 /* Partial ACK arrived. Force Hoe's retransmit. */
2368 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2369
2370 if (tcp_may_undo(tp)) {
2371 /* Plain luck! Hole if filled with delayed
2372 * packet, rather than with a retransmit.
2373 */
2374 if (tp->retrans_out == 0)
2375 tp->retrans_stamp = 0;
2376
2377 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2378
2379 DBGUNDO(sk, "Hoe");
2380 tcp_undo_cwr(sk, 0);
2381 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2382
2383 /* So... Do not make Hoe's retransmit yet.
2384 * If the first packet was delayed, the rest
2385 * ones are most probably delayed as well.
2386 */
2387 failed = 0;
2388 }
2389 return failed;
2390 }
2391
2392 /* Undo during loss recovery after partial ACK. */
2393 static int tcp_try_undo_loss(struct sock *sk)
2394 {
2395 struct tcp_sock *tp = tcp_sk(sk);
2396
2397 if (tcp_may_undo(tp)) {
2398 struct sk_buff *skb;
2399 tcp_for_write_queue(skb, sk) {
2400 if (skb == tcp_send_head(sk))
2401 break;
2402 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2403 }
2404
2405 tcp_clear_all_retrans_hints(tp);
2406
2407 DBGUNDO(sk, "partial loss");
2408 tp->lost_out = 0;
2409 tcp_undo_cwr(sk, 1);
2410 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2411 inet_csk(sk)->icsk_retransmits = 0;
2412 tp->undo_marker = 0;
2413 if (tcp_is_sack(tp))
2414 tcp_set_ca_state(sk, TCP_CA_Open);
2415 return 1;
2416 }
2417 return 0;
2418 }
2419
2420 static inline void tcp_complete_cwr(struct sock *sk)
2421 {
2422 struct tcp_sock *tp = tcp_sk(sk);
2423 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2424 tp->snd_cwnd_stamp = tcp_time_stamp;
2425 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2426 }
2427
2428 static void tcp_try_to_open(struct sock *sk, int flag)
2429 {
2430 struct tcp_sock *tp = tcp_sk(sk);
2431
2432 tcp_verify_left_out(tp);
2433
2434 if (tp->retrans_out == 0)
2435 tp->retrans_stamp = 0;
2436
2437 if (flag&FLAG_ECE)
2438 tcp_enter_cwr(sk, 1);
2439
2440 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2441 int state = TCP_CA_Open;
2442
2443 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2444 state = TCP_CA_Disorder;
2445
2446 if (inet_csk(sk)->icsk_ca_state != state) {
2447 tcp_set_ca_state(sk, state);
2448 tp->high_seq = tp->snd_nxt;
2449 }
2450 tcp_moderate_cwnd(tp);
2451 } else {
2452 tcp_cwnd_down(sk, flag);
2453 }
2454 }
2455
2456 static void tcp_mtup_probe_failed(struct sock *sk)
2457 {
2458 struct inet_connection_sock *icsk = inet_csk(sk);
2459
2460 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2461 icsk->icsk_mtup.probe_size = 0;
2462 }
2463
2464 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2465 {
2466 struct tcp_sock *tp = tcp_sk(sk);
2467 struct inet_connection_sock *icsk = inet_csk(sk);
2468
2469 /* FIXME: breaks with very large cwnd */
2470 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2471 tp->snd_cwnd = tp->snd_cwnd *
2472 tcp_mss_to_mtu(sk, tp->mss_cache) /
2473 icsk->icsk_mtup.probe_size;
2474 tp->snd_cwnd_cnt = 0;
2475 tp->snd_cwnd_stamp = tcp_time_stamp;
2476 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2477
2478 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2479 icsk->icsk_mtup.probe_size = 0;
2480 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2481 }
2482
2483
2484 /* Process an event, which can update packets-in-flight not trivially.
2485 * Main goal of this function is to calculate new estimate for left_out,
2486 * taking into account both packets sitting in receiver's buffer and
2487 * packets lost by network.
2488 *
2489 * Besides that it does CWND reduction, when packet loss is detected
2490 * and changes state of machine.
2491 *
2492 * It does _not_ decide what to send, it is made in function
2493 * tcp_xmit_retransmit_queue().
2494 */
2495 static void
2496 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2497 {
2498 struct inet_connection_sock *icsk = inet_csk(sk);
2499 struct tcp_sock *tp = tcp_sk(sk);
2500 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2501 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2502 (tcp_fackets_out(tp) > tp->reordering));
2503 int fast_rexmit = 0;
2504
2505 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2506 tp->sacked_out = 0;
2507 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2508 tp->fackets_out = 0;
2509
2510 /* Now state machine starts.
2511 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2512 if (flag&FLAG_ECE)
2513 tp->prior_ssthresh = 0;
2514
2515 /* B. In all the states check for reneging SACKs. */
2516 if (tcp_check_sack_reneging(sk, flag))
2517 return;
2518
2519 /* C. Process data loss notification, provided it is valid. */
2520 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2521 before(tp->snd_una, tp->high_seq) &&
2522 icsk->icsk_ca_state != TCP_CA_Open &&
2523 tp->fackets_out > tp->reordering) {
2524 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, 0);
2525 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2526 }
2527
2528 /* D. Check consistency of the current state. */
2529 tcp_verify_left_out(tp);
2530
2531 /* E. Check state exit conditions. State can be terminated
2532 * when high_seq is ACKed. */
2533 if (icsk->icsk_ca_state == TCP_CA_Open) {
2534 BUG_TRAP(tp->retrans_out == 0);
2535 tp->retrans_stamp = 0;
2536 } else if (!before(tp->snd_una, tp->high_seq)) {
2537 switch (icsk->icsk_ca_state) {
2538 case TCP_CA_Loss:
2539 icsk->icsk_retransmits = 0;
2540 if (tcp_try_undo_recovery(sk))
2541 return;
2542 break;
2543
2544 case TCP_CA_CWR:
2545 /* CWR is to be held something *above* high_seq
2546 * is ACKed for CWR bit to reach receiver. */
2547 if (tp->snd_una != tp->high_seq) {
2548 tcp_complete_cwr(sk);
2549 tcp_set_ca_state(sk, TCP_CA_Open);
2550 }
2551 break;
2552
2553 case TCP_CA_Disorder:
2554 tcp_try_undo_dsack(sk);
2555 if (!tp->undo_marker ||
2556 /* For SACK case do not Open to allow to undo
2557 * catching for all duplicate ACKs. */
2558 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2559 tp->undo_marker = 0;
2560 tcp_set_ca_state(sk, TCP_CA_Open);
2561 }
2562 break;
2563
2564 case TCP_CA_Recovery:
2565 if (tcp_is_reno(tp))
2566 tcp_reset_reno_sack(tp);
2567 if (tcp_try_undo_recovery(sk))
2568 return;
2569 tcp_complete_cwr(sk);
2570 break;
2571 }
2572 }
2573
2574 /* F. Process state. */
2575 switch (icsk->icsk_ca_state) {
2576 case TCP_CA_Recovery:
2577 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2578 if (tcp_is_reno(tp) && is_dupack)
2579 tcp_add_reno_sack(sk);
2580 } else
2581 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2582 break;
2583 case TCP_CA_Loss:
2584 if (flag&FLAG_DATA_ACKED)
2585 icsk->icsk_retransmits = 0;
2586 if (!tcp_try_undo_loss(sk)) {
2587 tcp_moderate_cwnd(tp);
2588 tcp_xmit_retransmit_queue(sk);
2589 return;
2590 }
2591 if (icsk->icsk_ca_state != TCP_CA_Open)
2592 return;
2593 /* Loss is undone; fall through to processing in Open state. */
2594 default:
2595 if (tcp_is_reno(tp)) {
2596 if (flag & FLAG_SND_UNA_ADVANCED)
2597 tcp_reset_reno_sack(tp);
2598 if (is_dupack)
2599 tcp_add_reno_sack(sk);
2600 }
2601
2602 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2603 tcp_try_undo_dsack(sk);
2604
2605 if (!tcp_time_to_recover(sk)) {
2606 tcp_try_to_open(sk, flag);
2607 return;
2608 }
2609
2610 /* MTU probe failure: don't reduce cwnd */
2611 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2612 icsk->icsk_mtup.probe_size &&
2613 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2614 tcp_mtup_probe_failed(sk);
2615 /* Restores the reduction we did in tcp_mtup_probe() */
2616 tp->snd_cwnd++;
2617 tcp_simple_retransmit(sk);
2618 return;
2619 }
2620
2621 /* Otherwise enter Recovery state */
2622
2623 if (tcp_is_reno(tp))
2624 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2625 else
2626 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2627
2628 tp->high_seq = tp->snd_nxt;
2629 tp->prior_ssthresh = 0;
2630 tp->undo_marker = tp->snd_una;
2631 tp->undo_retrans = tp->retrans_out;
2632
2633 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2634 if (!(flag&FLAG_ECE))
2635 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2636 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2637 TCP_ECN_queue_cwr(tp);
2638 }
2639
2640 tp->bytes_acked = 0;
2641 tp->snd_cwnd_cnt = 0;
2642 tcp_set_ca_state(sk, TCP_CA_Recovery);
2643 fast_rexmit = 1;
2644 }
2645
2646 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2647 tcp_update_scoreboard(sk, fast_rexmit);
2648 tcp_cwnd_down(sk, flag);
2649 tcp_xmit_retransmit_queue(sk);
2650 }
2651
2652 /* Read draft-ietf-tcplw-high-performance before mucking
2653 * with this code. (Supersedes RFC1323)
2654 */
2655 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2656 {
2657 /* RTTM Rule: A TSecr value received in a segment is used to
2658 * update the averaged RTT measurement only if the segment
2659 * acknowledges some new data, i.e., only if it advances the
2660 * left edge of the send window.
2661 *
2662 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2663 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2664 *
2665 * Changed: reset backoff as soon as we see the first valid sample.
2666 * If we do not, we get strongly overestimated rto. With timestamps
2667 * samples are accepted even from very old segments: f.e., when rtt=1
2668 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2669 * answer arrives rto becomes 120 seconds! If at least one of segments
2670 * in window is lost... Voila. --ANK (010210)
2671 */
2672 struct tcp_sock *tp = tcp_sk(sk);
2673 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2674 tcp_rtt_estimator(sk, seq_rtt);
2675 tcp_set_rto(sk);
2676 inet_csk(sk)->icsk_backoff = 0;
2677 tcp_bound_rto(sk);
2678 }
2679
2680 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2681 {
2682 /* We don't have a timestamp. Can only use
2683 * packets that are not retransmitted to determine
2684 * rtt estimates. Also, we must not reset the
2685 * backoff for rto until we get a non-retransmitted
2686 * packet. This allows us to deal with a situation
2687 * where the network delay has increased suddenly.
2688 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2689 */
2690
2691 if (flag & FLAG_RETRANS_DATA_ACKED)
2692 return;
2693
2694 tcp_rtt_estimator(sk, seq_rtt);
2695 tcp_set_rto(sk);
2696 inet_csk(sk)->icsk_backoff = 0;
2697 tcp_bound_rto(sk);
2698 }
2699
2700 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2701 const s32 seq_rtt)
2702 {
2703 const struct tcp_sock *tp = tcp_sk(sk);
2704 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2705 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2706 tcp_ack_saw_tstamp(sk, flag);
2707 else if (seq_rtt >= 0)
2708 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2709 }
2710
2711 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2712 {
2713 const struct inet_connection_sock *icsk = inet_csk(sk);
2714 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2715 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2716 }
2717
2718 /* Restart timer after forward progress on connection.
2719 * RFC2988 recommends to restart timer to now+rto.
2720 */
2721 static void tcp_rearm_rto(struct sock *sk)
2722 {
2723 struct tcp_sock *tp = tcp_sk(sk);
2724
2725 if (!tp->packets_out) {
2726 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2727 } else {
2728 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2729 }
2730 }
2731
2732 /* If we get here, the whole TSO packet has not been acked. */
2733 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2734 {
2735 struct tcp_sock *tp = tcp_sk(sk);
2736 u32 packets_acked;
2737
2738 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2739
2740 packets_acked = tcp_skb_pcount(skb);
2741 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2742 return 0;
2743 packets_acked -= tcp_skb_pcount(skb);
2744
2745 if (packets_acked) {
2746 BUG_ON(tcp_skb_pcount(skb) == 0);
2747 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2748 }
2749
2750 return packets_acked;
2751 }
2752
2753 /* Remove acknowledged frames from the retransmission queue. If our packet
2754 * is before the ack sequence we can discard it as it's confirmed to have
2755 * arrived at the other end.
2756 */
2757 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2758 {
2759 struct tcp_sock *tp = tcp_sk(sk);
2760 const struct inet_connection_sock *icsk = inet_csk(sk);
2761 struct sk_buff *skb;
2762 u32 now = tcp_time_stamp;
2763 int fully_acked = 1;
2764 int flag = 0;
2765 u32 pkts_acked = 0;
2766 u32 reord = tp->packets_out;
2767 s32 seq_rtt = -1;
2768 s32 ca_seq_rtt = -1;
2769 ktime_t last_ackt = net_invalid_timestamp();
2770
2771 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2772 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2773 u32 end_seq;
2774 u32 acked_pcount;
2775 u8 sacked = scb->sacked;
2776
2777 /* Determine how many packets and what bytes were acked, tso and else */
2778 if (after(scb->end_seq, tp->snd_una)) {
2779 if (tcp_skb_pcount(skb) == 1 ||
2780 !after(tp->snd_una, scb->seq))
2781 break;
2782
2783 acked_pcount = tcp_tso_acked(sk, skb);
2784 if (!acked_pcount)
2785 break;
2786
2787 fully_acked = 0;
2788 end_seq = tp->snd_una;
2789 } else {
2790 acked_pcount = tcp_skb_pcount(skb);
2791 end_seq = scb->end_seq;
2792 }
2793
2794 /* MTU probing checks */
2795 if (fully_acked && icsk->icsk_mtup.probe_size &&
2796 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2797 tcp_mtup_probe_success(sk, skb);
2798 }
2799
2800 if (sacked & TCPCB_RETRANS) {
2801 if (sacked & TCPCB_SACKED_RETRANS)
2802 tp->retrans_out -= acked_pcount;
2803 flag |= FLAG_RETRANS_DATA_ACKED;
2804 ca_seq_rtt = -1;
2805 seq_rtt = -1;
2806 if ((flag & FLAG_DATA_ACKED) ||
2807 (acked_pcount > 1))
2808 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2809 } else {
2810 ca_seq_rtt = now - scb->when;
2811 last_ackt = skb->tstamp;
2812 if (seq_rtt < 0) {
2813 seq_rtt = ca_seq_rtt;
2814 }
2815 if (!(sacked & TCPCB_SACKED_ACKED))
2816 reord = min(pkts_acked, reord);
2817 }
2818
2819 if (sacked & TCPCB_SACKED_ACKED)
2820 tp->sacked_out -= acked_pcount;
2821 if (sacked & TCPCB_LOST)
2822 tp->lost_out -= acked_pcount;
2823
2824 if (unlikely((sacked & TCPCB_URG) && tp->urg_mode &&
2825 !before(end_seq, tp->snd_up)))
2826 tp->urg_mode = 0;
2827
2828 tp->packets_out -= acked_pcount;
2829 pkts_acked += acked_pcount;
2830
2831 /* Initial outgoing SYN's get put onto the write_queue
2832 * just like anything else we transmit. It is not
2833 * true data, and if we misinform our callers that
2834 * this ACK acks real data, we will erroneously exit
2835 * connection startup slow start one packet too
2836 * quickly. This is severely frowned upon behavior.
2837 */
2838 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2839 flag |= FLAG_DATA_ACKED;
2840 } else {
2841 flag |= FLAG_SYN_ACKED;
2842 tp->retrans_stamp = 0;
2843 }
2844
2845 if (!fully_acked)
2846 break;
2847
2848 tcp_unlink_write_queue(skb, sk);
2849 sk_wmem_free_skb(sk, skb);
2850 tcp_clear_all_retrans_hints(tp);
2851 }
2852
2853 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2854 flag |= FLAG_SACK_RENEGING;
2855
2856 if (flag & FLAG_ACKED) {
2857 const struct tcp_congestion_ops *ca_ops
2858 = inet_csk(sk)->icsk_ca_ops;
2859
2860 tcp_ack_update_rtt(sk, flag, seq_rtt);
2861 tcp_rearm_rto(sk);
2862
2863 if (tcp_is_reno(tp)) {
2864 tcp_remove_reno_sacks(sk, pkts_acked);
2865 } else {
2866 /* Non-retransmitted hole got filled? That's reordering */
2867 if (reord < prior_fackets)
2868 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2869 }
2870
2871 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2872
2873 if (ca_ops->pkts_acked) {
2874 s32 rtt_us = -1;
2875
2876 /* Is the ACK triggering packet unambiguous? */
2877 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2878 /* High resolution needed and available? */
2879 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2880 !ktime_equal(last_ackt,
2881 net_invalid_timestamp()))
2882 rtt_us = ktime_us_delta(ktime_get_real(),
2883 last_ackt);
2884 else if (ca_seq_rtt > 0)
2885 rtt_us = jiffies_to_usecs(ca_seq_rtt);
2886 }
2887
2888 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2889 }
2890 }
2891
2892 #if FASTRETRANS_DEBUG > 0
2893 BUG_TRAP((int)tp->sacked_out >= 0);
2894 BUG_TRAP((int)tp->lost_out >= 0);
2895 BUG_TRAP((int)tp->retrans_out >= 0);
2896 if (!tp->packets_out && tcp_is_sack(tp)) {
2897 icsk = inet_csk(sk);
2898 if (tp->lost_out) {
2899 printk(KERN_DEBUG "Leak l=%u %d\n",
2900 tp->lost_out, icsk->icsk_ca_state);
2901 tp->lost_out = 0;
2902 }
2903 if (tp->sacked_out) {
2904 printk(KERN_DEBUG "Leak s=%u %d\n",
2905 tp->sacked_out, icsk->icsk_ca_state);
2906 tp->sacked_out = 0;
2907 }
2908 if (tp->retrans_out) {
2909 printk(KERN_DEBUG "Leak r=%u %d\n",
2910 tp->retrans_out, icsk->icsk_ca_state);
2911 tp->retrans_out = 0;
2912 }
2913 }
2914 #endif
2915 return flag;
2916 }
2917
2918 static void tcp_ack_probe(struct sock *sk)
2919 {
2920 const struct tcp_sock *tp = tcp_sk(sk);
2921 struct inet_connection_sock *icsk = inet_csk(sk);
2922
2923 /* Was it a usable window open? */
2924
2925 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
2926 icsk->icsk_backoff = 0;
2927 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2928 /* Socket must be waked up by subsequent tcp_data_snd_check().
2929 * This function is not for random using!
2930 */
2931 } else {
2932 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2933 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2934 TCP_RTO_MAX);
2935 }
2936 }
2937
2938 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2939 {
2940 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2941 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2942 }
2943
2944 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2945 {
2946 const struct tcp_sock *tp = tcp_sk(sk);
2947 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2948 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2949 }
2950
2951 /* Check that window update is acceptable.
2952 * The function assumes that snd_una<=ack<=snd_next.
2953 */
2954 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2955 const u32 ack_seq, const u32 nwin)
2956 {
2957 return (after(ack, tp->snd_una) ||
2958 after(ack_seq, tp->snd_wl1) ||
2959 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2960 }
2961
2962 /* Update our send window.
2963 *
2964 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2965 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2966 */
2967 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2968 u32 ack_seq)
2969 {
2970 struct tcp_sock *tp = tcp_sk(sk);
2971 int flag = 0;
2972 u32 nwin = ntohs(tcp_hdr(skb)->window);
2973
2974 if (likely(!tcp_hdr(skb)->syn))
2975 nwin <<= tp->rx_opt.snd_wscale;
2976
2977 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2978 flag |= FLAG_WIN_UPDATE;
2979 tcp_update_wl(tp, ack, ack_seq);
2980
2981 if (tp->snd_wnd != nwin) {
2982 tp->snd_wnd = nwin;
2983
2984 /* Note, it is the only place, where
2985 * fast path is recovered for sending TCP.
2986 */
2987 tp->pred_flags = 0;
2988 tcp_fast_path_check(sk);
2989
2990 if (nwin > tp->max_window) {
2991 tp->max_window = nwin;
2992 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2993 }
2994 }
2995 }
2996
2997 tp->snd_una = ack;
2998
2999 return flag;
3000 }
3001
3002 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3003 * continue in congestion avoidance.
3004 */
3005 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3006 {
3007 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3008 tp->snd_cwnd_cnt = 0;
3009 tp->bytes_acked = 0;
3010 TCP_ECN_queue_cwr(tp);
3011 tcp_moderate_cwnd(tp);
3012 }
3013
3014 /* A conservative spurious RTO response algorithm: reduce cwnd using
3015 * rate halving and continue in congestion avoidance.
3016 */
3017 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3018 {
3019 tcp_enter_cwr(sk, 0);
3020 }
3021
3022 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3023 {
3024 if (flag&FLAG_ECE)
3025 tcp_ratehalving_spur_to_response(sk);
3026 else
3027 tcp_undo_cwr(sk, 1);
3028 }
3029
3030 /* F-RTO spurious RTO detection algorithm (RFC4138)
3031 *
3032 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3033 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3034 * window (but not to or beyond highest sequence sent before RTO):
3035 * On First ACK, send two new segments out.
3036 * On Second ACK, RTO was likely spurious. Do spurious response (response
3037 * algorithm is not part of the F-RTO detection algorithm
3038 * given in RFC4138 but can be selected separately).
3039 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3040 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3041 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3042 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3043 *
3044 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3045 * original window even after we transmit two new data segments.
3046 *
3047 * SACK version:
3048 * on first step, wait until first cumulative ACK arrives, then move to
3049 * the second step. In second step, the next ACK decides.
3050 *
3051 * F-RTO is implemented (mainly) in four functions:
3052 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3053 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3054 * called when tcp_use_frto() showed green light
3055 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3056 * - tcp_enter_frto_loss() is called if there is not enough evidence
3057 * to prove that the RTO is indeed spurious. It transfers the control
3058 * from F-RTO to the conventional RTO recovery
3059 */
3060 static int tcp_process_frto(struct sock *sk, int flag)
3061 {
3062 struct tcp_sock *tp = tcp_sk(sk);
3063
3064 tcp_verify_left_out(tp);
3065
3066 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3067 if (flag&FLAG_DATA_ACKED)
3068 inet_csk(sk)->icsk_retransmits = 0;
3069
3070 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3071 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3072 tp->undo_marker = 0;
3073
3074 if (!before(tp->snd_una, tp->frto_highmark)) {
3075 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3076 return 1;
3077 }
3078
3079 if (!IsSackFrto() || tcp_is_reno(tp)) {
3080 /* RFC4138 shortcoming in step 2; should also have case c):
3081 * ACK isn't duplicate nor advances window, e.g., opposite dir
3082 * data, winupdate
3083 */
3084 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
3085 return 1;
3086
3087 if (!(flag&FLAG_DATA_ACKED)) {
3088 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3089 flag);
3090 return 1;
3091 }
3092 } else {
3093 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3094 /* Prevent sending of new data. */
3095 tp->snd_cwnd = min(tp->snd_cwnd,
3096 tcp_packets_in_flight(tp));
3097 return 1;
3098 }
3099
3100 if ((tp->frto_counter >= 2) &&
3101 (!(flag&FLAG_FORWARD_PROGRESS) ||
3102 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
3103 /* RFC4138 shortcoming (see comment above) */
3104 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
3105 return 1;
3106
3107 tcp_enter_frto_loss(sk, 3, flag);
3108 return 1;
3109 }
3110 }
3111
3112 if (tp->frto_counter == 1) {
3113 /* tcp_may_send_now needs to see updated state */
3114 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3115 tp->frto_counter = 2;
3116
3117 if (!tcp_may_send_now(sk))
3118 tcp_enter_frto_loss(sk, 2, flag);
3119
3120 return 1;
3121 } else {
3122 switch (sysctl_tcp_frto_response) {
3123 case 2:
3124 tcp_undo_spur_to_response(sk, flag);
3125 break;
3126 case 1:
3127 tcp_conservative_spur_to_response(tp);
3128 break;
3129 default:
3130 tcp_ratehalving_spur_to_response(sk);
3131 break;
3132 }
3133 tp->frto_counter = 0;
3134 tp->undo_marker = 0;
3135 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3136 }
3137 return 0;
3138 }
3139
3140 /* This routine deals with incoming acks, but not outgoing ones. */
3141 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3142 {
3143 struct inet_connection_sock *icsk = inet_csk(sk);
3144 struct tcp_sock *tp = tcp_sk(sk);
3145 u32 prior_snd_una = tp->snd_una;
3146 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3147 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3148 u32 prior_in_flight;
3149 u32 prior_fackets;
3150 int prior_packets;
3151 int frto_cwnd = 0;
3152
3153 /* If the ack is newer than sent or older than previous acks
3154 * then we can probably ignore it.
3155 */
3156 if (after(ack, tp->snd_nxt))
3157 goto uninteresting_ack;
3158
3159 if (before(ack, prior_snd_una))
3160 goto old_ack;
3161
3162 if (after(ack, prior_snd_una))
3163 flag |= FLAG_SND_UNA_ADVANCED;
3164
3165 if (sysctl_tcp_abc) {
3166 if (icsk->icsk_ca_state < TCP_CA_CWR)
3167 tp->bytes_acked += ack - prior_snd_una;
3168 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3169 /* we assume just one segment left network */
3170 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3171 }
3172
3173 prior_fackets = tp->fackets_out;
3174 prior_in_flight = tcp_packets_in_flight(tp);
3175
3176 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3177 /* Window is constant, pure forward advance.
3178 * No more checks are required.
3179 * Note, we use the fact that SND.UNA>=SND.WL2.
3180 */
3181 tcp_update_wl(tp, ack, ack_seq);
3182 tp->snd_una = ack;
3183 flag |= FLAG_WIN_UPDATE;
3184
3185 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3186
3187 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3188 } else {
3189 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3190 flag |= FLAG_DATA;
3191 else
3192 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3193
3194 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3195
3196 if (TCP_SKB_CB(skb)->sacked)
3197 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3198
3199 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3200 flag |= FLAG_ECE;
3201
3202 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3203 }
3204
3205 /* We passed data and got it acked, remove any soft error
3206 * log. Something worked...
3207 */
3208 sk->sk_err_soft = 0;
3209 tp->rcv_tstamp = tcp_time_stamp;
3210 prior_packets = tp->packets_out;
3211 if (!prior_packets)
3212 goto no_queue;
3213
3214 /* See if we can take anything off of the retransmit queue. */
3215 flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3216
3217 if (tp->frto_counter)
3218 frto_cwnd = tcp_process_frto(sk, flag);
3219 /* Guarantee sacktag reordering detection against wrap-arounds */
3220 if (before(tp->frto_highmark, tp->snd_una))
3221 tp->frto_highmark = 0;
3222
3223 if (tcp_ack_is_dubious(sk, flag)) {
3224 /* Advance CWND, if state allows this. */
3225 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3226 tcp_may_raise_cwnd(sk, flag))
3227 tcp_cong_avoid(sk, ack, prior_in_flight);
3228 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3229 } else {
3230 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3231 tcp_cong_avoid(sk, ack, prior_in_flight);
3232 }
3233
3234 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3235 dst_confirm(sk->sk_dst_cache);
3236
3237 return 1;
3238
3239 no_queue:
3240 icsk->icsk_probes_out = 0;
3241
3242 /* If this ack opens up a zero window, clear backoff. It was
3243 * being used to time the probes, and is probably far higher than
3244 * it needs to be for normal retransmission.
3245 */
3246 if (tcp_send_head(sk))
3247 tcp_ack_probe(sk);
3248 return 1;
3249
3250 old_ack:
3251 if (TCP_SKB_CB(skb)->sacked)
3252 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3253
3254 uninteresting_ack:
3255 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3256 return 0;
3257 }
3258
3259
3260 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3261 * But, this can also be called on packets in the established flow when
3262 * the fast version below fails.
3263 */
3264 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3265 {
3266 unsigned char *ptr;
3267 struct tcphdr *th = tcp_hdr(skb);
3268 int length=(th->doff*4)-sizeof(struct tcphdr);
3269
3270 ptr = (unsigned char *)(th + 1);
3271 opt_rx->saw_tstamp = 0;
3272
3273 while (length > 0) {
3274 int opcode=*ptr++;
3275 int opsize;
3276
3277 switch (opcode) {
3278 case TCPOPT_EOL:
3279 return;
3280 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3281 length--;
3282 continue;
3283 default:
3284 opsize=*ptr++;
3285 if (opsize < 2) /* "silly options" */
3286 return;
3287 if (opsize > length)
3288 return; /* don't parse partial options */
3289 switch (opcode) {
3290 case TCPOPT_MSS:
3291 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3292 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3293 if (in_mss) {
3294 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3295 in_mss = opt_rx->user_mss;
3296 opt_rx->mss_clamp = in_mss;
3297 }
3298 }
3299 break;
3300 case TCPOPT_WINDOW:
3301 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3302 if (sysctl_tcp_window_scaling) {
3303 __u8 snd_wscale = *(__u8 *) ptr;
3304 opt_rx->wscale_ok = 1;
3305 if (snd_wscale > 14) {
3306 if (net_ratelimit())
3307 printk(KERN_INFO "tcp_parse_options: Illegal window "
3308 "scaling value %d >14 received.\n",
3309 snd_wscale);
3310 snd_wscale = 14;
3311 }
3312 opt_rx->snd_wscale = snd_wscale;
3313 }
3314 break;
3315 case TCPOPT_TIMESTAMP:
3316 if (opsize==TCPOLEN_TIMESTAMP) {
3317 if ((estab && opt_rx->tstamp_ok) ||
3318 (!estab && sysctl_tcp_timestamps)) {
3319 opt_rx->saw_tstamp = 1;
3320 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3321 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3322 }
3323 }
3324 break;
3325 case TCPOPT_SACK_PERM:
3326 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3327 if (sysctl_tcp_sack) {
3328 opt_rx->sack_ok = 1;
3329 tcp_sack_reset(opt_rx);
3330 }
3331 }
3332 break;
3333
3334 case TCPOPT_SACK:
3335 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3336 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3337 opt_rx->sack_ok) {
3338 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3339 }
3340 break;
3341 #ifdef CONFIG_TCP_MD5SIG
3342 case TCPOPT_MD5SIG:
3343 /*
3344 * The MD5 Hash has already been
3345 * checked (see tcp_v{4,6}_do_rcv()).
3346 */
3347 break;
3348 #endif
3349 }
3350
3351 ptr+=opsize-2;
3352 length-=opsize;
3353 }
3354 }
3355 }
3356
3357 /* Fast parse options. This hopes to only see timestamps.
3358 * If it is wrong it falls back on tcp_parse_options().
3359 */
3360 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3361 struct tcp_sock *tp)
3362 {
3363 if (th->doff == sizeof(struct tcphdr)>>2) {
3364 tp->rx_opt.saw_tstamp = 0;
3365 return 0;
3366 } else if (tp->rx_opt.tstamp_ok &&
3367 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3368 __be32 *ptr = (__be32 *)(th + 1);
3369 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3370 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3371 tp->rx_opt.saw_tstamp = 1;
3372 ++ptr;
3373 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3374 ++ptr;
3375 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3376 return 1;
3377 }
3378 }
3379 tcp_parse_options(skb, &tp->rx_opt, 1);
3380 return 1;
3381 }
3382
3383 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3384 {
3385 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3386 tp->rx_opt.ts_recent_stamp = get_seconds();
3387 }
3388
3389 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3390 {
3391 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3392 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3393 * extra check below makes sure this can only happen
3394 * for pure ACK frames. -DaveM
3395 *
3396 * Not only, also it occurs for expired timestamps.
3397 */
3398
3399 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3400 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3401 tcp_store_ts_recent(tp);
3402 }
3403 }
3404
3405 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3406 *
3407 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3408 * it can pass through stack. So, the following predicate verifies that
3409 * this segment is not used for anything but congestion avoidance or
3410 * fast retransmit. Moreover, we even are able to eliminate most of such
3411 * second order effects, if we apply some small "replay" window (~RTO)
3412 * to timestamp space.
3413 *
3414 * All these measures still do not guarantee that we reject wrapped ACKs
3415 * on networks with high bandwidth, when sequence space is recycled fastly,
3416 * but it guarantees that such events will be very rare and do not affect
3417 * connection seriously. This doesn't look nice, but alas, PAWS is really
3418 * buggy extension.
3419 *
3420 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3421 * states that events when retransmit arrives after original data are rare.
3422 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3423 * the biggest problem on large power networks even with minor reordering.
3424 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3425 * up to bandwidth of 18Gigabit/sec. 8) ]
3426 */
3427
3428 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3429 {
3430 struct tcp_sock *tp = tcp_sk(sk);
3431 struct tcphdr *th = tcp_hdr(skb);
3432 u32 seq = TCP_SKB_CB(skb)->seq;
3433 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3434
3435 return (/* 1. Pure ACK with correct sequence number. */
3436 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3437
3438 /* 2. ... and duplicate ACK. */
3439 ack == tp->snd_una &&
3440
3441 /* 3. ... and does not update window. */
3442 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3443
3444 /* 4. ... and sits in replay window. */
3445 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3446 }
3447
3448 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3449 {
3450 const struct tcp_sock *tp = tcp_sk(sk);
3451 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3452 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3453 !tcp_disordered_ack(sk, skb));
3454 }
3455
3456 /* Check segment sequence number for validity.
3457 *
3458 * Segment controls are considered valid, if the segment
3459 * fits to the window after truncation to the window. Acceptability
3460 * of data (and SYN, FIN, of course) is checked separately.
3461 * See tcp_data_queue(), for example.
3462 *
3463 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3464 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3465 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3466 * (borrowed from freebsd)
3467 */
3468
3469 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3470 {
3471 return !before(end_seq, tp->rcv_wup) &&
3472 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3473 }
3474
3475 /* When we get a reset we do this. */
3476 static void tcp_reset(struct sock *sk)
3477 {
3478 /* We want the right error as BSD sees it (and indeed as we do). */
3479 switch (sk->sk_state) {
3480 case TCP_SYN_SENT:
3481 sk->sk_err = ECONNREFUSED;
3482 break;
3483 case TCP_CLOSE_WAIT:
3484 sk->sk_err = EPIPE;
3485 break;
3486 case TCP_CLOSE:
3487 return;
3488 default:
3489 sk->sk_err = ECONNRESET;
3490 }
3491
3492 if (!sock_flag(sk, SOCK_DEAD))
3493 sk->sk_error_report(sk);
3494
3495 tcp_done(sk);
3496 }
3497
3498 /*
3499 * Process the FIN bit. This now behaves as it is supposed to work
3500 * and the FIN takes effect when it is validly part of sequence
3501 * space. Not before when we get holes.
3502 *
3503 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3504 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3505 * TIME-WAIT)
3506 *
3507 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3508 * close and we go into CLOSING (and later onto TIME-WAIT)
3509 *
3510 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3511 */
3512 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3513 {
3514 struct tcp_sock *tp = tcp_sk(sk);
3515
3516 inet_csk_schedule_ack(sk);
3517
3518 sk->sk_shutdown |= RCV_SHUTDOWN;
3519 sock_set_flag(sk, SOCK_DONE);
3520
3521 switch (sk->sk_state) {
3522 case TCP_SYN_RECV:
3523 case TCP_ESTABLISHED:
3524 /* Move to CLOSE_WAIT */
3525 tcp_set_state(sk, TCP_CLOSE_WAIT);
3526 inet_csk(sk)->icsk_ack.pingpong = 1;
3527 break;
3528
3529 case TCP_CLOSE_WAIT:
3530 case TCP_CLOSING:
3531 /* Received a retransmission of the FIN, do
3532 * nothing.
3533 */
3534 break;
3535 case TCP_LAST_ACK:
3536 /* RFC793: Remain in the LAST-ACK state. */
3537 break;
3538
3539 case TCP_FIN_WAIT1:
3540 /* This case occurs when a simultaneous close
3541 * happens, we must ack the received FIN and
3542 * enter the CLOSING state.
3543 */
3544 tcp_send_ack(sk);
3545 tcp_set_state(sk, TCP_CLOSING);
3546 break;
3547 case TCP_FIN_WAIT2:
3548 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3549 tcp_send_ack(sk);
3550 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3551 break;
3552 default:
3553 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3554 * cases we should never reach this piece of code.
3555 */
3556 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3557 __FUNCTION__, sk->sk_state);
3558 break;
3559 }
3560
3561 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3562 * Probably, we should reset in this case. For now drop them.
3563 */
3564 __skb_queue_purge(&tp->out_of_order_queue);
3565 if (tcp_is_sack(tp))
3566 tcp_sack_reset(&tp->rx_opt);
3567 sk_mem_reclaim(sk);
3568
3569 if (!sock_flag(sk, SOCK_DEAD)) {
3570 sk->sk_state_change(sk);
3571
3572 /* Do not send POLL_HUP for half duplex close. */
3573 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3574 sk->sk_state == TCP_CLOSE)
3575 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3576 else
3577 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3578 }
3579 }
3580
3581 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3582 {
3583 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3584 if (before(seq, sp->start_seq))
3585 sp->start_seq = seq;
3586 if (after(end_seq, sp->end_seq))
3587 sp->end_seq = end_seq;
3588 return 1;
3589 }
3590 return 0;
3591 }
3592
3593 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3594 {
3595 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3596 if (before(seq, tp->rcv_nxt))
3597 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3598 else
3599 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3600
3601 tp->rx_opt.dsack = 1;
3602 tp->duplicate_sack[0].start_seq = seq;
3603 tp->duplicate_sack[0].end_seq = end_seq;
3604 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3605 }
3606 }
3607
3608 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3609 {
3610 if (!tp->rx_opt.dsack)
3611 tcp_dsack_set(tp, seq, end_seq);
3612 else
3613 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3614 }
3615
3616 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3617 {
3618 struct tcp_sock *tp = tcp_sk(sk);
3619
3620 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3621 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3622 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3623 tcp_enter_quickack_mode(sk);
3624
3625 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3626 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3627
3628 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3629 end_seq = tp->rcv_nxt;
3630 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3631 }
3632 }
3633
3634 tcp_send_ack(sk);
3635 }
3636
3637 /* These routines update the SACK block as out-of-order packets arrive or
3638 * in-order packets close up the sequence space.
3639 */
3640 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3641 {
3642 int this_sack;
3643 struct tcp_sack_block *sp = &tp->selective_acks[0];
3644 struct tcp_sack_block *swalk = sp+1;
3645
3646 /* See if the recent change to the first SACK eats into
3647 * or hits the sequence space of other SACK blocks, if so coalesce.
3648 */
3649 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3650 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3651 int i;
3652
3653 /* Zap SWALK, by moving every further SACK up by one slot.
3654 * Decrease num_sacks.
3655 */
3656 tp->rx_opt.num_sacks--;
3657 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3658 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3659 sp[i] = sp[i+1];
3660 continue;
3661 }
3662 this_sack++, swalk++;
3663 }
3664 }
3665
3666 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3667 {
3668 __u32 tmp;
3669
3670 tmp = sack1->start_seq;
3671 sack1->start_seq = sack2->start_seq;
3672 sack2->start_seq = tmp;
3673
3674 tmp = sack1->end_seq;
3675 sack1->end_seq = sack2->end_seq;
3676 sack2->end_seq = tmp;
3677 }
3678
3679 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3680 {
3681 struct tcp_sock *tp = tcp_sk(sk);
3682 struct tcp_sack_block *sp = &tp->selective_acks[0];
3683 int cur_sacks = tp->rx_opt.num_sacks;
3684 int this_sack;
3685
3686 if (!cur_sacks)
3687 goto new_sack;
3688
3689 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3690 if (tcp_sack_extend(sp, seq, end_seq)) {
3691 /* Rotate this_sack to the first one. */
3692 for (; this_sack>0; this_sack--, sp--)
3693 tcp_sack_swap(sp, sp-1);
3694 if (cur_sacks > 1)
3695 tcp_sack_maybe_coalesce(tp);
3696 return;
3697 }
3698 }
3699
3700 /* Could not find an adjacent existing SACK, build a new one,
3701 * put it at the front, and shift everyone else down. We
3702 * always know there is at least one SACK present already here.
3703 *
3704 * If the sack array is full, forget about the last one.
3705 */
3706 if (this_sack >= 4) {
3707 this_sack--;
3708 tp->rx_opt.num_sacks--;
3709 sp--;
3710 }
3711 for (; this_sack > 0; this_sack--, sp--)
3712 *sp = *(sp-1);
3713
3714 new_sack:
3715 /* Build the new head SACK, and we're done. */
3716 sp->start_seq = seq;
3717 sp->end_seq = end_seq;
3718 tp->rx_opt.num_sacks++;
3719 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3720 }
3721
3722 /* RCV.NXT advances, some SACKs should be eaten. */
3723
3724 static void tcp_sack_remove(struct tcp_sock *tp)
3725 {
3726 struct tcp_sack_block *sp = &tp->selective_acks[0];
3727 int num_sacks = tp->rx_opt.num_sacks;
3728 int this_sack;
3729
3730 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3731 if (skb_queue_empty(&tp->out_of_order_queue)) {
3732 tp->rx_opt.num_sacks = 0;
3733 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3734 return;
3735 }
3736
3737 for (this_sack = 0; this_sack < num_sacks; ) {
3738 /* Check if the start of the sack is covered by RCV.NXT. */
3739 if (!before(tp->rcv_nxt, sp->start_seq)) {
3740 int i;
3741
3742 /* RCV.NXT must cover all the block! */
3743 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3744
3745 /* Zap this SACK, by moving forward any other SACKS. */
3746 for (i=this_sack+1; i < num_sacks; i++)
3747 tp->selective_acks[i-1] = tp->selective_acks[i];
3748 num_sacks--;
3749 continue;
3750 }
3751 this_sack++;
3752 sp++;
3753 }
3754 if (num_sacks != tp->rx_opt.num_sacks) {
3755 tp->rx_opt.num_sacks = num_sacks;
3756 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3757 }
3758 }
3759
3760 /* This one checks to see if we can put data from the
3761 * out_of_order queue into the receive_queue.
3762 */
3763 static void tcp_ofo_queue(struct sock *sk)
3764 {
3765 struct tcp_sock *tp = tcp_sk(sk);
3766 __u32 dsack_high = tp->rcv_nxt;
3767 struct sk_buff *skb;
3768
3769 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3770 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3771 break;
3772
3773 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3774 __u32 dsack = dsack_high;
3775 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3776 dsack_high = TCP_SKB_CB(skb)->end_seq;
3777 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3778 }
3779
3780 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3781 SOCK_DEBUG(sk, "ofo packet was already received \n");
3782 __skb_unlink(skb, &tp->out_of_order_queue);
3783 __kfree_skb(skb);
3784 continue;
3785 }
3786 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3787 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3788 TCP_SKB_CB(skb)->end_seq);
3789
3790 __skb_unlink(skb, &tp->out_of_order_queue);
3791 __skb_queue_tail(&sk->sk_receive_queue, skb);
3792 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3793 if (tcp_hdr(skb)->fin)
3794 tcp_fin(skb, sk, tcp_hdr(skb));
3795 }
3796 }
3797
3798 static int tcp_prune_queue(struct sock *sk);
3799
3800 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3801 {
3802 struct tcphdr *th = tcp_hdr(skb);
3803 struct tcp_sock *tp = tcp_sk(sk);
3804 int eaten = -1;
3805
3806 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3807 goto drop;
3808
3809 __skb_pull(skb, th->doff*4);
3810
3811 TCP_ECN_accept_cwr(tp, skb);
3812
3813 if (tp->rx_opt.dsack) {
3814 tp->rx_opt.dsack = 0;
3815 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3816 4 - tp->rx_opt.tstamp_ok);
3817 }
3818
3819 /* Queue data for delivery to the user.
3820 * Packets in sequence go to the receive queue.
3821 * Out of sequence packets to the out_of_order_queue.
3822 */
3823 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3824 if (tcp_receive_window(tp) == 0)
3825 goto out_of_window;
3826
3827 /* Ok. In sequence. In window. */
3828 if (tp->ucopy.task == current &&
3829 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3830 sock_owned_by_user(sk) && !tp->urg_data) {
3831 int chunk = min_t(unsigned int, skb->len,
3832 tp->ucopy.len);
3833
3834 __set_current_state(TASK_RUNNING);
3835
3836 local_bh_enable();
3837 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3838 tp->ucopy.len -= chunk;
3839 tp->copied_seq += chunk;
3840 eaten = (chunk == skb->len && !th->fin);
3841 tcp_rcv_space_adjust(sk);
3842 }
3843 local_bh_disable();
3844 }
3845
3846 if (eaten <= 0) {
3847 queue_and_out:
3848 if (eaten < 0 &&
3849 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3850 !sk_rmem_schedule(sk, skb->truesize))) {
3851 if (tcp_prune_queue(sk) < 0 ||
3852 !sk_rmem_schedule(sk, skb->truesize))
3853 goto drop;
3854 }
3855 skb_set_owner_r(skb, sk);
3856 __skb_queue_tail(&sk->sk_receive_queue, skb);
3857 }
3858 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3859 if (skb->len)
3860 tcp_event_data_recv(sk, skb);
3861 if (th->fin)
3862 tcp_fin(skb, sk, th);
3863
3864 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3865 tcp_ofo_queue(sk);
3866
3867 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3868 * gap in queue is filled.
3869 */
3870 if (skb_queue_empty(&tp->out_of_order_queue))
3871 inet_csk(sk)->icsk_ack.pingpong = 0;
3872 }
3873
3874 if (tp->rx_opt.num_sacks)
3875 tcp_sack_remove(tp);
3876
3877 tcp_fast_path_check(sk);
3878
3879 if (eaten > 0)
3880 __kfree_skb(skb);
3881 else if (!sock_flag(sk, SOCK_DEAD))
3882 sk->sk_data_ready(sk, 0);
3883 return;
3884 }
3885
3886 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3887 /* A retransmit, 2nd most common case. Force an immediate ack. */
3888 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3889 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3890
3891 out_of_window:
3892 tcp_enter_quickack_mode(sk);
3893 inet_csk_schedule_ack(sk);
3894 drop:
3895 __kfree_skb(skb);
3896 return;
3897 }
3898
3899 /* Out of window. F.e. zero window probe. */
3900 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3901 goto out_of_window;
3902
3903 tcp_enter_quickack_mode(sk);
3904
3905 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3906 /* Partial packet, seq < rcv_next < end_seq */
3907 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3908 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3909 TCP_SKB_CB(skb)->end_seq);
3910
3911 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3912
3913 /* If window is closed, drop tail of packet. But after
3914 * remembering D-SACK for its head made in previous line.
3915 */
3916 if (!tcp_receive_window(tp))
3917 goto out_of_window;
3918 goto queue_and_out;
3919 }
3920
3921 TCP_ECN_check_ce(tp, skb);
3922
3923 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3924 !sk_rmem_schedule(sk, skb->truesize)) {
3925 if (tcp_prune_queue(sk) < 0 ||
3926 !sk_rmem_schedule(sk, skb->truesize))
3927 goto drop;
3928 }
3929
3930 /* Disable header prediction. */
3931 tp->pred_flags = 0;
3932 inet_csk_schedule_ack(sk);
3933
3934 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3935 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3936
3937 skb_set_owner_r(skb, sk);
3938
3939 if (!skb_peek(&tp->out_of_order_queue)) {
3940 /* Initial out of order segment, build 1 SACK. */
3941 if (tcp_is_sack(tp)) {
3942 tp->rx_opt.num_sacks = 1;
3943 tp->rx_opt.dsack = 0;
3944 tp->rx_opt.eff_sacks = 1;
3945 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3946 tp->selective_acks[0].end_seq =
3947 TCP_SKB_CB(skb)->end_seq;
3948 }
3949 __skb_queue_head(&tp->out_of_order_queue,skb);
3950 } else {
3951 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3952 u32 seq = TCP_SKB_CB(skb)->seq;
3953 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3954
3955 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3956 __skb_append(skb1, skb, &tp->out_of_order_queue);
3957
3958 if (!tp->rx_opt.num_sacks ||
3959 tp->selective_acks[0].end_seq != seq)
3960 goto add_sack;
3961
3962 /* Common case: data arrive in order after hole. */
3963 tp->selective_acks[0].end_seq = end_seq;
3964 return;
3965 }
3966
3967 /* Find place to insert this segment. */
3968 do {
3969 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3970 break;
3971 } while ((skb1 = skb1->prev) !=
3972 (struct sk_buff*)&tp->out_of_order_queue);
3973
3974 /* Do skb overlap to previous one? */
3975 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3976 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3977 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3978 /* All the bits are present. Drop. */
3979 __kfree_skb(skb);
3980 tcp_dsack_set(tp, seq, end_seq);
3981 goto add_sack;
3982 }
3983 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3984 /* Partial overlap. */
3985 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3986 } else {
3987 skb1 = skb1->prev;
3988 }
3989 }
3990 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3991
3992 /* And clean segments covered by new one as whole. */
3993 while ((skb1 = skb->next) !=
3994 (struct sk_buff*)&tp->out_of_order_queue &&
3995 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3996 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3997 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3998 break;
3999 }
4000 __skb_unlink(skb1, &tp->out_of_order_queue);
4001 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
4002 __kfree_skb(skb1);
4003 }
4004
4005 add_sack:
4006 if (tcp_is_sack(tp))
4007 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4008 }
4009 }
4010
4011 /* Collapse contiguous sequence of skbs head..tail with
4012 * sequence numbers start..end.
4013 * Segments with FIN/SYN are not collapsed (only because this
4014 * simplifies code)
4015 */
4016 static void
4017 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4018 struct sk_buff *head, struct sk_buff *tail,
4019 u32 start, u32 end)
4020 {
4021 struct sk_buff *skb;
4022
4023 /* First, check that queue is collapsible and find
4024 * the point where collapsing can be useful. */
4025 for (skb = head; skb != tail; ) {
4026 /* No new bits? It is possible on ofo queue. */
4027 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4028 struct sk_buff *next = skb->next;
4029 __skb_unlink(skb, list);
4030 __kfree_skb(skb);
4031 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4032 skb = next;
4033 continue;
4034 }
4035
4036 /* The first skb to collapse is:
4037 * - not SYN/FIN and
4038 * - bloated or contains data before "start" or
4039 * overlaps to the next one.
4040 */
4041 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4042 (tcp_win_from_space(skb->truesize) > skb->len ||
4043 before(TCP_SKB_CB(skb)->seq, start) ||
4044 (skb->next != tail &&
4045 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4046 break;
4047
4048 /* Decided to skip this, advance start seq. */
4049 start = TCP_SKB_CB(skb)->end_seq;
4050 skb = skb->next;
4051 }
4052 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4053 return;
4054
4055 while (before(start, end)) {
4056 struct sk_buff *nskb;
4057 unsigned int header = skb_headroom(skb);
4058 int copy = SKB_MAX_ORDER(header, 0);
4059
4060 /* Too big header? This can happen with IPv6. */
4061 if (copy < 0)
4062 return;
4063 if (end-start < copy)
4064 copy = end-start;
4065 nskb = alloc_skb(copy+header, GFP_ATOMIC);
4066 if (!nskb)
4067 return;
4068
4069 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4070 skb_set_network_header(nskb, (skb_network_header(skb) -
4071 skb->head));
4072 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4073 skb->head));
4074 skb_reserve(nskb, header);
4075 memcpy(nskb->head, skb->head, header);
4076 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4077 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4078 __skb_insert(nskb, skb->prev, skb, list);
4079 skb_set_owner_r(nskb, sk);
4080
4081 /* Copy data, releasing collapsed skbs. */
4082 while (copy > 0) {
4083 int offset = start - TCP_SKB_CB(skb)->seq;
4084 int size = TCP_SKB_CB(skb)->end_seq - start;
4085
4086 BUG_ON(offset < 0);
4087 if (size > 0) {
4088 size = min(copy, size);
4089 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4090 BUG();
4091 TCP_SKB_CB(nskb)->end_seq += size;
4092 copy -= size;
4093 start += size;
4094 }
4095 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4096 struct sk_buff *next = skb->next;
4097 __skb_unlink(skb, list);
4098 __kfree_skb(skb);
4099 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4100 skb = next;
4101 if (skb == tail ||
4102 tcp_hdr(skb)->syn ||
4103 tcp_hdr(skb)->fin)
4104 return;
4105 }
4106 }
4107 }
4108 }
4109
4110 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4111 * and tcp_collapse() them until all the queue is collapsed.
4112 */
4113 static void tcp_collapse_ofo_queue(struct sock *sk)
4114 {
4115 struct tcp_sock *tp = tcp_sk(sk);
4116 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4117 struct sk_buff *head;
4118 u32 start, end;
4119
4120 if (skb == NULL)
4121 return;
4122
4123 start = TCP_SKB_CB(skb)->seq;
4124 end = TCP_SKB_CB(skb)->end_seq;
4125 head = skb;
4126
4127 for (;;) {
4128 skb = skb->next;
4129
4130 /* Segment is terminated when we see gap or when
4131 * we are at the end of all the queue. */
4132 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4133 after(TCP_SKB_CB(skb)->seq, end) ||
4134 before(TCP_SKB_CB(skb)->end_seq, start)) {
4135 tcp_collapse(sk, &tp->out_of_order_queue,
4136 head, skb, start, end);
4137 head = skb;
4138 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4139 break;
4140 /* Start new segment */
4141 start = TCP_SKB_CB(skb)->seq;
4142 end = TCP_SKB_CB(skb)->end_seq;
4143 } else {
4144 if (before(TCP_SKB_CB(skb)->seq, start))
4145 start = TCP_SKB_CB(skb)->seq;
4146 if (after(TCP_SKB_CB(skb)->end_seq, end))
4147 end = TCP_SKB_CB(skb)->end_seq;
4148 }
4149 }
4150 }
4151
4152 /* Reduce allocated memory if we can, trying to get
4153 * the socket within its memory limits again.
4154 *
4155 * Return less than zero if we should start dropping frames
4156 * until the socket owning process reads some of the data
4157 * to stabilize the situation.
4158 */
4159 static int tcp_prune_queue(struct sock *sk)
4160 {
4161 struct tcp_sock *tp = tcp_sk(sk);
4162
4163 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4164
4165 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4166
4167 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4168 tcp_clamp_window(sk);
4169 else if (tcp_memory_pressure)
4170 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4171
4172 tcp_collapse_ofo_queue(sk);
4173 tcp_collapse(sk, &sk->sk_receive_queue,
4174 sk->sk_receive_queue.next,
4175 (struct sk_buff*)&sk->sk_receive_queue,
4176 tp->copied_seq, tp->rcv_nxt);
4177 sk_mem_reclaim(sk);
4178
4179 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4180 return 0;
4181
4182 /* Collapsing did not help, destructive actions follow.
4183 * This must not ever occur. */
4184
4185 /* First, purge the out_of_order queue. */
4186 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4187 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4188 __skb_queue_purge(&tp->out_of_order_queue);
4189
4190 /* Reset SACK state. A conforming SACK implementation will
4191 * do the same at a timeout based retransmit. When a connection
4192 * is in a sad state like this, we care only about integrity
4193 * of the connection not performance.
4194 */
4195 if (tcp_is_sack(tp))
4196 tcp_sack_reset(&tp->rx_opt);
4197 sk_mem_reclaim(sk);
4198 }
4199
4200 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4201 return 0;
4202
4203 /* If we are really being abused, tell the caller to silently
4204 * drop receive data on the floor. It will get retransmitted
4205 * and hopefully then we'll have sufficient space.
4206 */
4207 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4208
4209 /* Massive buffer overcommit. */
4210 tp->pred_flags = 0;
4211 return -1;
4212 }
4213
4214
4215 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4216 * As additional protections, we do not touch cwnd in retransmission phases,
4217 * and if application hit its sndbuf limit recently.
4218 */
4219 void tcp_cwnd_application_limited(struct sock *sk)
4220 {
4221 struct tcp_sock *tp = tcp_sk(sk);
4222
4223 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4224 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4225 /* Limited by application or receiver window. */
4226 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4227 u32 win_used = max(tp->snd_cwnd_used, init_win);
4228 if (win_used < tp->snd_cwnd) {
4229 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4230 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4231 }
4232 tp->snd_cwnd_used = 0;
4233 }
4234 tp->snd_cwnd_stamp = tcp_time_stamp;
4235 }
4236
4237 static int tcp_should_expand_sndbuf(struct sock *sk)
4238 {
4239 struct tcp_sock *tp = tcp_sk(sk);
4240
4241 /* If the user specified a specific send buffer setting, do
4242 * not modify it.
4243 */
4244 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4245 return 0;
4246
4247 /* If we are under global TCP memory pressure, do not expand. */
4248 if (tcp_memory_pressure)
4249 return 0;
4250
4251 /* If we are under soft global TCP memory pressure, do not expand. */
4252 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4253 return 0;
4254
4255 /* If we filled the congestion window, do not expand. */
4256 if (tp->packets_out >= tp->snd_cwnd)
4257 return 0;
4258
4259 return 1;
4260 }
4261
4262 /* When incoming ACK allowed to free some skb from write_queue,
4263 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4264 * on the exit from tcp input handler.
4265 *
4266 * PROBLEM: sndbuf expansion does not work well with largesend.
4267 */
4268 static void tcp_new_space(struct sock *sk)
4269 {
4270 struct tcp_sock *tp = tcp_sk(sk);
4271
4272 if (tcp_should_expand_sndbuf(sk)) {
4273 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4274 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4275 demanded = max_t(unsigned int, tp->snd_cwnd,
4276 tp->reordering + 1);
4277 sndmem *= 2*demanded;
4278 if (sndmem > sk->sk_sndbuf)
4279 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4280 tp->snd_cwnd_stamp = tcp_time_stamp;
4281 }
4282
4283 sk->sk_write_space(sk);
4284 }
4285
4286 static void tcp_check_space(struct sock *sk)
4287 {
4288 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4289 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4290 if (sk->sk_socket &&
4291 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4292 tcp_new_space(sk);
4293 }
4294 }
4295
4296 static inline void tcp_data_snd_check(struct sock *sk)
4297 {
4298 tcp_push_pending_frames(sk);
4299 tcp_check_space(sk);
4300 }
4301
4302 /*
4303 * Check if sending an ack is needed.
4304 */
4305 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4306 {
4307 struct tcp_sock *tp = tcp_sk(sk);
4308
4309 /* More than one full frame received... */
4310 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4311 /* ... and right edge of window advances far enough.
4312 * (tcp_recvmsg() will send ACK otherwise). Or...
4313 */
4314 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4315 /* We ACK each frame or... */
4316 tcp_in_quickack_mode(sk) ||
4317 /* We have out of order data. */
4318 (ofo_possible &&
4319 skb_peek(&tp->out_of_order_queue))) {
4320 /* Then ack it now */
4321 tcp_send_ack(sk);
4322 } else {
4323 /* Else, send delayed ack. */
4324 tcp_send_delayed_ack(sk);
4325 }
4326 }
4327
4328 static inline void tcp_ack_snd_check(struct sock *sk)
4329 {
4330 if (!inet_csk_ack_scheduled(sk)) {
4331 /* We sent a data segment already. */
4332 return;
4333 }
4334 __tcp_ack_snd_check(sk, 1);
4335 }
4336
4337 /*
4338 * This routine is only called when we have urgent data
4339 * signaled. Its the 'slow' part of tcp_urg. It could be
4340 * moved inline now as tcp_urg is only called from one
4341 * place. We handle URGent data wrong. We have to - as
4342 * BSD still doesn't use the correction from RFC961.
4343 * For 1003.1g we should support a new option TCP_STDURG to permit
4344 * either form (or just set the sysctl tcp_stdurg).
4345 */
4346
4347 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4348 {
4349 struct tcp_sock *tp = tcp_sk(sk);
4350 u32 ptr = ntohs(th->urg_ptr);
4351
4352 if (ptr && !sysctl_tcp_stdurg)
4353 ptr--;
4354 ptr += ntohl(th->seq);
4355
4356 /* Ignore urgent data that we've already seen and read. */
4357 if (after(tp->copied_seq, ptr))
4358 return;
4359
4360 /* Do not replay urg ptr.
4361 *
4362 * NOTE: interesting situation not covered by specs.
4363 * Misbehaving sender may send urg ptr, pointing to segment,
4364 * which we already have in ofo queue. We are not able to fetch
4365 * such data and will stay in TCP_URG_NOTYET until will be eaten
4366 * by recvmsg(). Seems, we are not obliged to handle such wicked
4367 * situations. But it is worth to think about possibility of some
4368 * DoSes using some hypothetical application level deadlock.
4369 */
4370 if (before(ptr, tp->rcv_nxt))
4371 return;
4372
4373 /* Do we already have a newer (or duplicate) urgent pointer? */
4374 if (tp->urg_data && !after(ptr, tp->urg_seq))
4375 return;
4376
4377 /* Tell the world about our new urgent pointer. */
4378 sk_send_sigurg(sk);
4379
4380 /* We may be adding urgent data when the last byte read was
4381 * urgent. To do this requires some care. We cannot just ignore
4382 * tp->copied_seq since we would read the last urgent byte again
4383 * as data, nor can we alter copied_seq until this data arrives
4384 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4385 *
4386 * NOTE. Double Dutch. Rendering to plain English: author of comment
4387 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4388 * and expect that both A and B disappear from stream. This is _wrong_.
4389 * Though this happens in BSD with high probability, this is occasional.
4390 * Any application relying on this is buggy. Note also, that fix "works"
4391 * only in this artificial test. Insert some normal data between A and B and we will
4392 * decline of BSD again. Verdict: it is better to remove to trap
4393 * buggy users.
4394 */
4395 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4396 !sock_flag(sk, SOCK_URGINLINE) &&
4397 tp->copied_seq != tp->rcv_nxt) {
4398 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4399 tp->copied_seq++;
4400 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4401 __skb_unlink(skb, &sk->sk_receive_queue);
4402 __kfree_skb(skb);
4403 }
4404 }
4405
4406 tp->urg_data = TCP_URG_NOTYET;
4407 tp->urg_seq = ptr;
4408
4409 /* Disable header prediction. */
4410 tp->pred_flags = 0;
4411 }
4412
4413 /* This is the 'fast' part of urgent handling. */
4414 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4415 {
4416 struct tcp_sock *tp = tcp_sk(sk);
4417
4418 /* Check if we get a new urgent pointer - normally not. */
4419 if (th->urg)
4420 tcp_check_urg(sk,th);
4421
4422 /* Do we wait for any urgent data? - normally not... */
4423 if (tp->urg_data == TCP_URG_NOTYET) {
4424 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4425 th->syn;
4426
4427 /* Is the urgent pointer pointing into this packet? */
4428 if (ptr < skb->len) {
4429 u8 tmp;
4430 if (skb_copy_bits(skb, ptr, &tmp, 1))
4431 BUG();
4432 tp->urg_data = TCP_URG_VALID | tmp;
4433 if (!sock_flag(sk, SOCK_DEAD))
4434 sk->sk_data_ready(sk, 0);
4435 }
4436 }
4437 }
4438
4439 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4440 {
4441 struct tcp_sock *tp = tcp_sk(sk);
4442 int chunk = skb->len - hlen;
4443 int err;
4444
4445 local_bh_enable();
4446 if (skb_csum_unnecessary(skb))
4447 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4448 else
4449 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4450 tp->ucopy.iov);
4451
4452 if (!err) {
4453 tp->ucopy.len -= chunk;
4454 tp->copied_seq += chunk;
4455 tcp_rcv_space_adjust(sk);
4456 }
4457
4458 local_bh_disable();
4459 return err;
4460 }
4461
4462 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4463 {
4464 __sum16 result;
4465
4466 if (sock_owned_by_user(sk)) {
4467 local_bh_enable();
4468 result = __tcp_checksum_complete(skb);
4469 local_bh_disable();
4470 } else {
4471 result = __tcp_checksum_complete(skb);
4472 }
4473 return result;
4474 }
4475
4476 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4477 {
4478 return !skb_csum_unnecessary(skb) &&
4479 __tcp_checksum_complete_user(sk, skb);
4480 }
4481
4482 #ifdef CONFIG_NET_DMA
4483 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4484 {
4485 struct tcp_sock *tp = tcp_sk(sk);
4486 int chunk = skb->len - hlen;
4487 int dma_cookie;
4488 int copied_early = 0;
4489
4490 if (tp->ucopy.wakeup)
4491 return 0;
4492
4493 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4494 tp->ucopy.dma_chan = get_softnet_dma();
4495
4496 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4497
4498 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4499 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4500
4501 if (dma_cookie < 0)
4502 goto out;
4503
4504 tp->ucopy.dma_cookie = dma_cookie;
4505 copied_early = 1;
4506
4507 tp->ucopy.len -= chunk;
4508 tp->copied_seq += chunk;
4509 tcp_rcv_space_adjust(sk);
4510
4511 if ((tp->ucopy.len == 0) ||
4512 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4513 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4514 tp->ucopy.wakeup = 1;
4515 sk->sk_data_ready(sk, 0);
4516 }
4517 } else if (chunk > 0) {
4518 tp->ucopy.wakeup = 1;
4519 sk->sk_data_ready(sk, 0);
4520 }
4521 out:
4522 return copied_early;
4523 }
4524 #endif /* CONFIG_NET_DMA */
4525
4526 /*
4527 * TCP receive function for the ESTABLISHED state.
4528 *
4529 * It is split into a fast path and a slow path. The fast path is
4530 * disabled when:
4531 * - A zero window was announced from us - zero window probing
4532 * is only handled properly in the slow path.
4533 * - Out of order segments arrived.
4534 * - Urgent data is expected.
4535 * - There is no buffer space left
4536 * - Unexpected TCP flags/window values/header lengths are received
4537 * (detected by checking the TCP header against pred_flags)
4538 * - Data is sent in both directions. Fast path only supports pure senders
4539 * or pure receivers (this means either the sequence number or the ack
4540 * value must stay constant)
4541 * - Unexpected TCP option.
4542 *
4543 * When these conditions are not satisfied it drops into a standard
4544 * receive procedure patterned after RFC793 to handle all cases.
4545 * The first three cases are guaranteed by proper pred_flags setting,
4546 * the rest is checked inline. Fast processing is turned on in
4547 * tcp_data_queue when everything is OK.
4548 */
4549 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4550 struct tcphdr *th, unsigned len)
4551 {
4552 struct tcp_sock *tp = tcp_sk(sk);
4553
4554 /*
4555 * Header prediction.
4556 * The code loosely follows the one in the famous
4557 * "30 instruction TCP receive" Van Jacobson mail.
4558 *
4559 * Van's trick is to deposit buffers into socket queue
4560 * on a device interrupt, to call tcp_recv function
4561 * on the receive process context and checksum and copy
4562 * the buffer to user space. smart...
4563 *
4564 * Our current scheme is not silly either but we take the
4565 * extra cost of the net_bh soft interrupt processing...
4566 * We do checksum and copy also but from device to kernel.
4567 */
4568
4569 tp->rx_opt.saw_tstamp = 0;
4570
4571 /* pred_flags is 0xS?10 << 16 + snd_wnd
4572 * if header_prediction is to be made
4573 * 'S' will always be tp->tcp_header_len >> 2
4574 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4575 * turn it off (when there are holes in the receive
4576 * space for instance)
4577 * PSH flag is ignored.
4578 */
4579
4580 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4581 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4582 int tcp_header_len = tp->tcp_header_len;
4583
4584 /* Timestamp header prediction: tcp_header_len
4585 * is automatically equal to th->doff*4 due to pred_flags
4586 * match.
4587 */
4588
4589 /* Check timestamp */
4590 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4591 __be32 *ptr = (__be32 *)(th + 1);
4592
4593 /* No? Slow path! */
4594 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4595 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4596 goto slow_path;
4597
4598 tp->rx_opt.saw_tstamp = 1;
4599 ++ptr;
4600 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4601 ++ptr;
4602 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4603
4604 /* If PAWS failed, check it more carefully in slow path */
4605 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4606 goto slow_path;
4607
4608 /* DO NOT update ts_recent here, if checksum fails
4609 * and timestamp was corrupted part, it will result
4610 * in a hung connection since we will drop all
4611 * future packets due to the PAWS test.
4612 */
4613 }
4614
4615 if (len <= tcp_header_len) {
4616 /* Bulk data transfer: sender */
4617 if (len == tcp_header_len) {
4618 /* Predicted packet is in window by definition.
4619 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4620 * Hence, check seq<=rcv_wup reduces to:
4621 */
4622 if (tcp_header_len ==
4623 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4624 tp->rcv_nxt == tp->rcv_wup)
4625 tcp_store_ts_recent(tp);
4626
4627 /* We know that such packets are checksummed
4628 * on entry.
4629 */
4630 tcp_ack(sk, skb, 0);
4631 __kfree_skb(skb);
4632 tcp_data_snd_check(sk);
4633 return 0;
4634 } else { /* Header too small */
4635 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4636 goto discard;
4637 }
4638 } else {
4639 int eaten = 0;
4640 int copied_early = 0;
4641
4642 if (tp->copied_seq == tp->rcv_nxt &&
4643 len - tcp_header_len <= tp->ucopy.len) {
4644 #ifdef CONFIG_NET_DMA
4645 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4646 copied_early = 1;
4647 eaten = 1;
4648 }
4649 #endif
4650 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4651 __set_current_state(TASK_RUNNING);
4652
4653 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4654 eaten = 1;
4655 }
4656 if (eaten) {
4657 /* Predicted packet is in window by definition.
4658 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4659 * Hence, check seq<=rcv_wup reduces to:
4660 */
4661 if (tcp_header_len ==
4662 (sizeof(struct tcphdr) +
4663 TCPOLEN_TSTAMP_ALIGNED) &&
4664 tp->rcv_nxt == tp->rcv_wup)
4665 tcp_store_ts_recent(tp);
4666
4667 tcp_rcv_rtt_measure_ts(sk, skb);
4668
4669 __skb_pull(skb, tcp_header_len);
4670 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4671 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4672 }
4673 if (copied_early)
4674 tcp_cleanup_rbuf(sk, skb->len);
4675 }
4676 if (!eaten) {
4677 if (tcp_checksum_complete_user(sk, skb))
4678 goto csum_error;
4679
4680 /* Predicted packet is in window by definition.
4681 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4682 * Hence, check seq<=rcv_wup reduces to:
4683 */
4684 if (tcp_header_len ==
4685 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4686 tp->rcv_nxt == tp->rcv_wup)
4687 tcp_store_ts_recent(tp);
4688
4689 tcp_rcv_rtt_measure_ts(sk, skb);
4690
4691 if ((int)skb->truesize > sk->sk_forward_alloc)
4692 goto step5;
4693
4694 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4695
4696 /* Bulk data transfer: receiver */
4697 __skb_pull(skb,tcp_header_len);
4698 __skb_queue_tail(&sk->sk_receive_queue, skb);
4699 skb_set_owner_r(skb, sk);
4700 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4701 }
4702
4703 tcp_event_data_recv(sk, skb);
4704
4705 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4706 /* Well, only one small jumplet in fast path... */
4707 tcp_ack(sk, skb, FLAG_DATA);
4708 tcp_data_snd_check(sk);
4709 if (!inet_csk_ack_scheduled(sk))
4710 goto no_ack;
4711 }
4712
4713 __tcp_ack_snd_check(sk, 0);
4714 no_ack:
4715 #ifdef CONFIG_NET_DMA
4716 if (copied_early)
4717 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4718 else
4719 #endif
4720 if (eaten)
4721 __kfree_skb(skb);
4722 else
4723 sk->sk_data_ready(sk, 0);
4724 return 0;
4725 }
4726 }
4727
4728 slow_path:
4729 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4730 goto csum_error;
4731
4732 /*
4733 * RFC1323: H1. Apply PAWS check first.
4734 */
4735 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4736 tcp_paws_discard(sk, skb)) {
4737 if (!th->rst) {
4738 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4739 tcp_send_dupack(sk, skb);
4740 goto discard;
4741 }
4742 /* Resets are accepted even if PAWS failed.
4743
4744 ts_recent update must be made after we are sure
4745 that the packet is in window.
4746 */
4747 }
4748
4749 /*
4750 * Standard slow path.
4751 */
4752
4753 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4754 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4755 * (RST) segments are validated by checking their SEQ-fields."
4756 * And page 69: "If an incoming segment is not acceptable,
4757 * an acknowledgment should be sent in reply (unless the RST bit
4758 * is set, if so drop the segment and return)".
4759 */
4760 if (!th->rst)
4761 tcp_send_dupack(sk, skb);
4762 goto discard;
4763 }
4764
4765 if (th->rst) {
4766 tcp_reset(sk);
4767 goto discard;
4768 }
4769
4770 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4771
4772 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4773 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4774 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4775 tcp_reset(sk);
4776 return 1;
4777 }
4778
4779 step5:
4780 if (th->ack)
4781 tcp_ack(sk, skb, FLAG_SLOWPATH);
4782
4783 tcp_rcv_rtt_measure_ts(sk, skb);
4784
4785 /* Process urgent data. */
4786 tcp_urg(sk, skb, th);
4787
4788 /* step 7: process the segment text */
4789 tcp_data_queue(sk, skb);
4790
4791 tcp_data_snd_check(sk);
4792 tcp_ack_snd_check(sk);
4793 return 0;
4794
4795 csum_error:
4796 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4797
4798 discard:
4799 __kfree_skb(skb);
4800 return 0;
4801 }
4802
4803 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4804 struct tcphdr *th, unsigned len)
4805 {
4806 struct tcp_sock *tp = tcp_sk(sk);
4807 struct inet_connection_sock *icsk = inet_csk(sk);
4808 int saved_clamp = tp->rx_opt.mss_clamp;
4809
4810 tcp_parse_options(skb, &tp->rx_opt, 0);
4811
4812 if (th->ack) {
4813 /* rfc793:
4814 * "If the state is SYN-SENT then
4815 * first check the ACK bit
4816 * If the ACK bit is set
4817 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4818 * a reset (unless the RST bit is set, if so drop
4819 * the segment and return)"
4820 *
4821 * We do not send data with SYN, so that RFC-correct
4822 * test reduces to:
4823 */
4824 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4825 goto reset_and_undo;
4826
4827 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4828 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4829 tcp_time_stamp)) {
4830 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4831 goto reset_and_undo;
4832 }
4833
4834 /* Now ACK is acceptable.
4835 *
4836 * "If the RST bit is set
4837 * If the ACK was acceptable then signal the user "error:
4838 * connection reset", drop the segment, enter CLOSED state,
4839 * delete TCB, and return."
4840 */
4841
4842 if (th->rst) {
4843 tcp_reset(sk);
4844 goto discard;
4845 }
4846
4847 /* rfc793:
4848 * "fifth, if neither of the SYN or RST bits is set then
4849 * drop the segment and return."
4850 *
4851 * See note below!
4852 * --ANK(990513)
4853 */
4854 if (!th->syn)
4855 goto discard_and_undo;
4856
4857 /* rfc793:
4858 * "If the SYN bit is on ...
4859 * are acceptable then ...
4860 * (our SYN has been ACKed), change the connection
4861 * state to ESTABLISHED..."
4862 */
4863
4864 TCP_ECN_rcv_synack(tp, th);
4865
4866 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4867 tcp_ack(sk, skb, FLAG_SLOWPATH);
4868
4869 /* Ok.. it's good. Set up sequence numbers and
4870 * move to established.
4871 */
4872 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4873 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4874
4875 /* RFC1323: The window in SYN & SYN/ACK segments is
4876 * never scaled.
4877 */
4878 tp->snd_wnd = ntohs(th->window);
4879 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4880
4881 if (!tp->rx_opt.wscale_ok) {
4882 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4883 tp->window_clamp = min(tp->window_clamp, 65535U);
4884 }
4885
4886 if (tp->rx_opt.saw_tstamp) {
4887 tp->rx_opt.tstamp_ok = 1;
4888 tp->tcp_header_len =
4889 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4890 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4891 tcp_store_ts_recent(tp);
4892 } else {
4893 tp->tcp_header_len = sizeof(struct tcphdr);
4894 }
4895
4896 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4897 tcp_enable_fack(tp);
4898
4899 tcp_mtup_init(sk);
4900 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4901 tcp_initialize_rcv_mss(sk);
4902
4903 /* Remember, tcp_poll() does not lock socket!
4904 * Change state from SYN-SENT only after copied_seq
4905 * is initialized. */
4906 tp->copied_seq = tp->rcv_nxt;
4907 smp_mb();
4908 tcp_set_state(sk, TCP_ESTABLISHED);
4909
4910 security_inet_conn_established(sk, skb);
4911
4912 /* Make sure socket is routed, for correct metrics. */
4913 icsk->icsk_af_ops->rebuild_header(sk);
4914
4915 tcp_init_metrics(sk);
4916
4917 tcp_init_congestion_control(sk);
4918
4919 /* Prevent spurious tcp_cwnd_restart() on first data
4920 * packet.
4921 */
4922 tp->lsndtime = tcp_time_stamp;
4923
4924 tcp_init_buffer_space(sk);
4925
4926 if (sock_flag(sk, SOCK_KEEPOPEN))
4927 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4928
4929 if (!tp->rx_opt.snd_wscale)
4930 __tcp_fast_path_on(tp, tp->snd_wnd);
4931 else
4932 tp->pred_flags = 0;
4933
4934 if (!sock_flag(sk, SOCK_DEAD)) {
4935 sk->sk_state_change(sk);
4936 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
4937 }
4938
4939 if (sk->sk_write_pending ||
4940 icsk->icsk_accept_queue.rskq_defer_accept ||
4941 icsk->icsk_ack.pingpong) {
4942 /* Save one ACK. Data will be ready after
4943 * several ticks, if write_pending is set.
4944 *
4945 * It may be deleted, but with this feature tcpdumps
4946 * look so _wonderfully_ clever, that I was not able
4947 * to stand against the temptation 8) --ANK
4948 */
4949 inet_csk_schedule_ack(sk);
4950 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4951 icsk->icsk_ack.ato = TCP_ATO_MIN;
4952 tcp_incr_quickack(sk);
4953 tcp_enter_quickack_mode(sk);
4954 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4955 TCP_DELACK_MAX, TCP_RTO_MAX);
4956
4957 discard:
4958 __kfree_skb(skb);
4959 return 0;
4960 } else {
4961 tcp_send_ack(sk);
4962 }
4963 return -1;
4964 }
4965
4966 /* No ACK in the segment */
4967
4968 if (th->rst) {
4969 /* rfc793:
4970 * "If the RST bit is set
4971 *
4972 * Otherwise (no ACK) drop the segment and return."
4973 */
4974
4975 goto discard_and_undo;
4976 }
4977
4978 /* PAWS check. */
4979 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4980 goto discard_and_undo;
4981
4982 if (th->syn) {
4983 /* We see SYN without ACK. It is attempt of
4984 * simultaneous connect with crossed SYNs.
4985 * Particularly, it can be connect to self.
4986 */
4987 tcp_set_state(sk, TCP_SYN_RECV);
4988
4989 if (tp->rx_opt.saw_tstamp) {
4990 tp->rx_opt.tstamp_ok = 1;
4991 tcp_store_ts_recent(tp);
4992 tp->tcp_header_len =
4993 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4994 } else {
4995 tp->tcp_header_len = sizeof(struct tcphdr);
4996 }
4997
4998 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4999 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5000
5001 /* RFC1323: The window in SYN & SYN/ACK segments is
5002 * never scaled.
5003 */
5004 tp->snd_wnd = ntohs(th->window);
5005 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5006 tp->max_window = tp->snd_wnd;
5007
5008 TCP_ECN_rcv_syn(tp, th);
5009
5010 tcp_mtup_init(sk);
5011 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5012 tcp_initialize_rcv_mss(sk);
5013
5014
5015 tcp_send_synack(sk);
5016 #if 0
5017 /* Note, we could accept data and URG from this segment.
5018 * There are no obstacles to make this.
5019 *
5020 * However, if we ignore data in ACKless segments sometimes,
5021 * we have no reasons to accept it sometimes.
5022 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5023 * is not flawless. So, discard packet for sanity.
5024 * Uncomment this return to process the data.
5025 */
5026 return -1;
5027 #else
5028 goto discard;
5029 #endif
5030 }
5031 /* "fifth, if neither of the SYN or RST bits is set then
5032 * drop the segment and return."
5033 */
5034
5035 discard_and_undo:
5036 tcp_clear_options(&tp->rx_opt);
5037 tp->rx_opt.mss_clamp = saved_clamp;
5038 goto discard;
5039
5040 reset_and_undo:
5041 tcp_clear_options(&tp->rx_opt);
5042 tp->rx_opt.mss_clamp = saved_clamp;
5043 return 1;
5044 }
5045
5046
5047 /*
5048 * This function implements the receiving procedure of RFC 793 for
5049 * all states except ESTABLISHED and TIME_WAIT.
5050 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5051 * address independent.
5052 */
5053
5054 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5055 struct tcphdr *th, unsigned len)
5056 {
5057 struct tcp_sock *tp = tcp_sk(sk);
5058 struct inet_connection_sock *icsk = inet_csk(sk);
5059 int queued = 0;
5060
5061 tp->rx_opt.saw_tstamp = 0;
5062
5063 switch (sk->sk_state) {
5064 case TCP_CLOSE:
5065 goto discard;
5066
5067 case TCP_LISTEN:
5068 if (th->ack)
5069 return 1;
5070
5071 if (th->rst)
5072 goto discard;
5073
5074 if (th->syn) {
5075 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5076 return 1;
5077
5078 /* Now we have several options: In theory there is
5079 * nothing else in the frame. KA9Q has an option to
5080 * send data with the syn, BSD accepts data with the
5081 * syn up to the [to be] advertised window and
5082 * Solaris 2.1 gives you a protocol error. For now
5083 * we just ignore it, that fits the spec precisely
5084 * and avoids incompatibilities. It would be nice in
5085 * future to drop through and process the data.
5086 *
5087 * Now that TTCP is starting to be used we ought to
5088 * queue this data.
5089 * But, this leaves one open to an easy denial of
5090 * service attack, and SYN cookies can't defend
5091 * against this problem. So, we drop the data
5092 * in the interest of security over speed unless
5093 * it's still in use.
5094 */
5095 kfree_skb(skb);
5096 return 0;
5097 }
5098 goto discard;
5099
5100 case TCP_SYN_SENT:
5101 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5102 if (queued >= 0)
5103 return queued;
5104
5105 /* Do step6 onward by hand. */
5106 tcp_urg(sk, skb, th);
5107 __kfree_skb(skb);
5108 tcp_data_snd_check(sk);
5109 return 0;
5110 }
5111
5112 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5113 tcp_paws_discard(sk, skb)) {
5114 if (!th->rst) {
5115 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5116 tcp_send_dupack(sk, skb);
5117 goto discard;
5118 }
5119 /* Reset is accepted even if it did not pass PAWS. */
5120 }
5121
5122 /* step 1: check sequence number */
5123 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5124 if (!th->rst)
5125 tcp_send_dupack(sk, skb);
5126 goto discard;
5127 }
5128
5129 /* step 2: check RST bit */
5130 if (th->rst) {
5131 tcp_reset(sk);
5132 goto discard;
5133 }
5134
5135 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5136
5137 /* step 3: check security and precedence [ignored] */
5138
5139 /* step 4:
5140 *
5141 * Check for a SYN in window.
5142 */
5143 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5144 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5145 tcp_reset(sk);
5146 return 1;
5147 }
5148
5149 /* step 5: check the ACK field */
5150 if (th->ack) {
5151 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5152
5153 switch (sk->sk_state) {
5154 case TCP_SYN_RECV:
5155 if (acceptable) {
5156 tp->copied_seq = tp->rcv_nxt;
5157 smp_mb();
5158 tcp_set_state(sk, TCP_ESTABLISHED);
5159 sk->sk_state_change(sk);
5160
5161 /* Note, that this wakeup is only for marginal
5162 * crossed SYN case. Passively open sockets
5163 * are not waked up, because sk->sk_sleep ==
5164 * NULL and sk->sk_socket == NULL.
5165 */
5166 if (sk->sk_socket)
5167 sk_wake_async(sk,
5168 SOCK_WAKE_IO, POLL_OUT);
5169
5170 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5171 tp->snd_wnd = ntohs(th->window) <<
5172 tp->rx_opt.snd_wscale;
5173 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5174 TCP_SKB_CB(skb)->seq);
5175
5176 /* tcp_ack considers this ACK as duplicate
5177 * and does not calculate rtt.
5178 * Fix it at least with timestamps.
5179 */
5180 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5181 !tp->srtt)
5182 tcp_ack_saw_tstamp(sk, 0);
5183
5184 if (tp->rx_opt.tstamp_ok)
5185 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5186
5187 /* Make sure socket is routed, for
5188 * correct metrics.
5189 */
5190 icsk->icsk_af_ops->rebuild_header(sk);
5191
5192 tcp_init_metrics(sk);
5193
5194 tcp_init_congestion_control(sk);
5195
5196 /* Prevent spurious tcp_cwnd_restart() on
5197 * first data packet.
5198 */
5199 tp->lsndtime = tcp_time_stamp;
5200
5201 tcp_mtup_init(sk);
5202 tcp_initialize_rcv_mss(sk);
5203 tcp_init_buffer_space(sk);
5204 tcp_fast_path_on(tp);
5205 } else {
5206 return 1;
5207 }
5208 break;
5209
5210 case TCP_FIN_WAIT1:
5211 if (tp->snd_una == tp->write_seq) {
5212 tcp_set_state(sk, TCP_FIN_WAIT2);
5213 sk->sk_shutdown |= SEND_SHUTDOWN;
5214 dst_confirm(sk->sk_dst_cache);
5215
5216 if (!sock_flag(sk, SOCK_DEAD))
5217 /* Wake up lingering close() */
5218 sk->sk_state_change(sk);
5219 else {
5220 int tmo;
5221
5222 if (tp->linger2 < 0 ||
5223 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5224 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5225 tcp_done(sk);
5226 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5227 return 1;
5228 }
5229
5230 tmo = tcp_fin_time(sk);
5231 if (tmo > TCP_TIMEWAIT_LEN) {
5232 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5233 } else if (th->fin || sock_owned_by_user(sk)) {
5234 /* Bad case. We could lose such FIN otherwise.
5235 * It is not a big problem, but it looks confusing
5236 * and not so rare event. We still can lose it now,
5237 * if it spins in bh_lock_sock(), but it is really
5238 * marginal case.
5239 */
5240 inet_csk_reset_keepalive_timer(sk, tmo);
5241 } else {
5242 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5243 goto discard;
5244 }
5245 }
5246 }
5247 break;
5248
5249 case TCP_CLOSING:
5250 if (tp->snd_una == tp->write_seq) {
5251 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5252 goto discard;
5253 }
5254 break;
5255
5256 case TCP_LAST_ACK:
5257 if (tp->snd_una == tp->write_seq) {
5258 tcp_update_metrics(sk);
5259 tcp_done(sk);
5260 goto discard;
5261 }
5262 break;
5263 }
5264 } else
5265 goto discard;
5266
5267 /* step 6: check the URG bit */
5268 tcp_urg(sk, skb, th);
5269
5270 /* step 7: process the segment text */
5271 switch (sk->sk_state) {
5272 case TCP_CLOSE_WAIT:
5273 case TCP_CLOSING:
5274 case TCP_LAST_ACK:
5275 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5276 break;
5277 case TCP_FIN_WAIT1:
5278 case TCP_FIN_WAIT2:
5279 /* RFC 793 says to queue data in these states,
5280 * RFC 1122 says we MUST send a reset.
5281 * BSD 4.4 also does reset.
5282 */
5283 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5284 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5285 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5286 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5287 tcp_reset(sk);
5288 return 1;
5289 }
5290 }
5291 /* Fall through */
5292 case TCP_ESTABLISHED:
5293 tcp_data_queue(sk, skb);
5294 queued = 1;
5295 break;
5296 }
5297
5298 /* tcp_data could move socket to TIME-WAIT */
5299 if (sk->sk_state != TCP_CLOSE) {
5300 tcp_data_snd_check(sk);
5301 tcp_ack_snd_check(sk);
5302 }
5303
5304 if (!queued) {
5305 discard:
5306 __kfree_skb(skb);
5307 }
5308 return 0;
5309 }
5310
5311 EXPORT_SYMBOL(sysctl_tcp_ecn);
5312 EXPORT_SYMBOL(sysctl_tcp_reordering);
5313 EXPORT_SYMBOL(tcp_parse_options);
5314 EXPORT_SYMBOL(tcp_rcv_established);
5315 EXPORT_SYMBOL(tcp_rcv_state_process);
5316 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.137828 seconds and 4 git commands to generate.