- cxgb3 engine microcode load
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
107
108 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
109 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
110 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
111 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
112 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
113
114 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
115 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
116 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
117
118 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
119
120 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
121
122 /* Adapt the MSS value used to make delayed ack decision to the
123 * real world.
124 */
125 static void tcp_measure_rcv_mss(struct sock *sk,
126 const struct sk_buff *skb)
127 {
128 struct inet_connection_sock *icsk = inet_csk(sk);
129 const unsigned int lss = icsk->icsk_ack.last_seg_size;
130 unsigned int len;
131
132 icsk->icsk_ack.last_seg_size = 0;
133
134 /* skb->len may jitter because of SACKs, even if peer
135 * sends good full-sized frames.
136 */
137 len = skb_shinfo(skb)->gso_size ?: skb->len;
138 if (len >= icsk->icsk_ack.rcv_mss) {
139 icsk->icsk_ack.rcv_mss = len;
140 } else {
141 /* Otherwise, we make more careful check taking into account,
142 * that SACKs block is variable.
143 *
144 * "len" is invariant segment length, including TCP header.
145 */
146 len += skb->data - skb_transport_header(skb);
147 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
148 /* If PSH is not set, packet should be
149 * full sized, provided peer TCP is not badly broken.
150 * This observation (if it is correct 8)) allows
151 * to handle super-low mtu links fairly.
152 */
153 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
154 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
155 /* Subtract also invariant (if peer is RFC compliant),
156 * tcp header plus fixed timestamp option length.
157 * Resulting "len" is MSS free of SACK jitter.
158 */
159 len -= tcp_sk(sk)->tcp_header_len;
160 icsk->icsk_ack.last_seg_size = len;
161 if (len == lss) {
162 icsk->icsk_ack.rcv_mss = len;
163 return;
164 }
165 }
166 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
167 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
169 }
170 }
171
172 static void tcp_incr_quickack(struct sock *sk)
173 {
174 struct inet_connection_sock *icsk = inet_csk(sk);
175 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
176
177 if (quickacks==0)
178 quickacks=2;
179 if (quickacks > icsk->icsk_ack.quick)
180 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
181 }
182
183 void tcp_enter_quickack_mode(struct sock *sk)
184 {
185 struct inet_connection_sock *icsk = inet_csk(sk);
186 tcp_incr_quickack(sk);
187 icsk->icsk_ack.pingpong = 0;
188 icsk->icsk_ack.ato = TCP_ATO_MIN;
189 }
190
191 /* Send ACKs quickly, if "quick" count is not exhausted
192 * and the session is not interactive.
193 */
194
195 static inline int tcp_in_quickack_mode(const struct sock *sk)
196 {
197 const struct inet_connection_sock *icsk = inet_csk(sk);
198 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
199 }
200
201 /* Buffer size and advertised window tuning.
202 *
203 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
204 */
205
206 static void tcp_fixup_sndbuf(struct sock *sk)
207 {
208 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
209 sizeof(struct sk_buff);
210
211 if (sk->sk_sndbuf < 3 * sndmem)
212 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
213 }
214
215 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
216 *
217 * All tcp_full_space() is split to two parts: "network" buffer, allocated
218 * forward and advertised in receiver window (tp->rcv_wnd) and
219 * "application buffer", required to isolate scheduling/application
220 * latencies from network.
221 * window_clamp is maximal advertised window. It can be less than
222 * tcp_full_space(), in this case tcp_full_space() - window_clamp
223 * is reserved for "application" buffer. The less window_clamp is
224 * the smoother our behaviour from viewpoint of network, but the lower
225 * throughput and the higher sensitivity of the connection to losses. 8)
226 *
227 * rcv_ssthresh is more strict window_clamp used at "slow start"
228 * phase to predict further behaviour of this connection.
229 * It is used for two goals:
230 * - to enforce header prediction at sender, even when application
231 * requires some significant "application buffer". It is check #1.
232 * - to prevent pruning of receive queue because of misprediction
233 * of receiver window. Check #2.
234 *
235 * The scheme does not work when sender sends good segments opening
236 * window and then starts to feed us spaghetti. But it should work
237 * in common situations. Otherwise, we have to rely on queue collapsing.
238 */
239
240 /* Slow part of check#2. */
241 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
242 {
243 struct tcp_sock *tp = tcp_sk(sk);
244 /* Optimize this! */
245 int truesize = tcp_win_from_space(skb->truesize)/2;
246 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
247
248 while (tp->rcv_ssthresh <= window) {
249 if (truesize <= skb->len)
250 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
251
252 truesize >>= 1;
253 window >>= 1;
254 }
255 return 0;
256 }
257
258 static void tcp_grow_window(struct sock *sk,
259 struct sk_buff *skb)
260 {
261 struct tcp_sock *tp = tcp_sk(sk);
262
263 /* Check #1 */
264 if (tp->rcv_ssthresh < tp->window_clamp &&
265 (int)tp->rcv_ssthresh < tcp_space(sk) &&
266 !tcp_memory_pressure) {
267 int incr;
268
269 /* Check #2. Increase window, if skb with such overhead
270 * will fit to rcvbuf in future.
271 */
272 if (tcp_win_from_space(skb->truesize) <= skb->len)
273 incr = 2*tp->advmss;
274 else
275 incr = __tcp_grow_window(sk, skb);
276
277 if (incr) {
278 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
279 inet_csk(sk)->icsk_ack.quick |= 1;
280 }
281 }
282 }
283
284 /* 3. Tuning rcvbuf, when connection enters established state. */
285
286 static void tcp_fixup_rcvbuf(struct sock *sk)
287 {
288 struct tcp_sock *tp = tcp_sk(sk);
289 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
290
291 /* Try to select rcvbuf so that 4 mss-sized segments
292 * will fit to window and corresponding skbs will fit to our rcvbuf.
293 * (was 3; 4 is minimum to allow fast retransmit to work.)
294 */
295 while (tcp_win_from_space(rcvmem) < tp->advmss)
296 rcvmem += 128;
297 if (sk->sk_rcvbuf < 4 * rcvmem)
298 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
299 }
300
301 /* 4. Try to fixup all. It is made immediately after connection enters
302 * established state.
303 */
304 static void tcp_init_buffer_space(struct sock *sk)
305 {
306 struct tcp_sock *tp = tcp_sk(sk);
307 int maxwin;
308
309 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
310 tcp_fixup_rcvbuf(sk);
311 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
312 tcp_fixup_sndbuf(sk);
313
314 tp->rcvq_space.space = tp->rcv_wnd;
315
316 maxwin = tcp_full_space(sk);
317
318 if (tp->window_clamp >= maxwin) {
319 tp->window_clamp = maxwin;
320
321 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
322 tp->window_clamp = max(maxwin -
323 (maxwin >> sysctl_tcp_app_win),
324 4 * tp->advmss);
325 }
326
327 /* Force reservation of one segment. */
328 if (sysctl_tcp_app_win &&
329 tp->window_clamp > 2 * tp->advmss &&
330 tp->window_clamp + tp->advmss > maxwin)
331 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
332
333 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
334 tp->snd_cwnd_stamp = tcp_time_stamp;
335 }
336
337 /* 5. Recalculate window clamp after socket hit its memory bounds. */
338 static void tcp_clamp_window(struct sock *sk)
339 {
340 struct tcp_sock *tp = tcp_sk(sk);
341 struct inet_connection_sock *icsk = inet_csk(sk);
342
343 icsk->icsk_ack.quick = 0;
344
345 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
346 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
347 !tcp_memory_pressure &&
348 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
349 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
350 sysctl_tcp_rmem[2]);
351 }
352 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
353 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
354 }
355
356
357 /* Initialize RCV_MSS value.
358 * RCV_MSS is an our guess about MSS used by the peer.
359 * We haven't any direct information about the MSS.
360 * It's better to underestimate the RCV_MSS rather than overestimate.
361 * Overestimations make us ACKing less frequently than needed.
362 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
363 */
364 void tcp_initialize_rcv_mss(struct sock *sk)
365 {
366 struct tcp_sock *tp = tcp_sk(sk);
367 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
368
369 hint = min(hint, tp->rcv_wnd/2);
370 hint = min(hint, TCP_MIN_RCVMSS);
371 hint = max(hint, TCP_MIN_MSS);
372
373 inet_csk(sk)->icsk_ack.rcv_mss = hint;
374 }
375
376 /* Receiver "autotuning" code.
377 *
378 * The algorithm for RTT estimation w/o timestamps is based on
379 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
380 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
381 *
382 * More detail on this code can be found at
383 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
384 * though this reference is out of date. A new paper
385 * is pending.
386 */
387 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
388 {
389 u32 new_sample = tp->rcv_rtt_est.rtt;
390 long m = sample;
391
392 if (m == 0)
393 m = 1;
394
395 if (new_sample != 0) {
396 /* If we sample in larger samples in the non-timestamp
397 * case, we could grossly overestimate the RTT especially
398 * with chatty applications or bulk transfer apps which
399 * are stalled on filesystem I/O.
400 *
401 * Also, since we are only going for a minimum in the
402 * non-timestamp case, we do not smooth things out
403 * else with timestamps disabled convergence takes too
404 * long.
405 */
406 if (!win_dep) {
407 m -= (new_sample >> 3);
408 new_sample += m;
409 } else if (m < new_sample)
410 new_sample = m << 3;
411 } else {
412 /* No previous measure. */
413 new_sample = m << 3;
414 }
415
416 if (tp->rcv_rtt_est.rtt != new_sample)
417 tp->rcv_rtt_est.rtt = new_sample;
418 }
419
420 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
421 {
422 if (tp->rcv_rtt_est.time == 0)
423 goto new_measure;
424 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
425 return;
426 tcp_rcv_rtt_update(tp,
427 jiffies - tp->rcv_rtt_est.time,
428 1);
429
430 new_measure:
431 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
432 tp->rcv_rtt_est.time = tcp_time_stamp;
433 }
434
435 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
436 {
437 struct tcp_sock *tp = tcp_sk(sk);
438 if (tp->rx_opt.rcv_tsecr &&
439 (TCP_SKB_CB(skb)->end_seq -
440 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
441 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
442 }
443
444 /*
445 * This function should be called every time data is copied to user space.
446 * It calculates the appropriate TCP receive buffer space.
447 */
448 void tcp_rcv_space_adjust(struct sock *sk)
449 {
450 struct tcp_sock *tp = tcp_sk(sk);
451 int time;
452 int space;
453
454 if (tp->rcvq_space.time == 0)
455 goto new_measure;
456
457 time = tcp_time_stamp - tp->rcvq_space.time;
458 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
459 tp->rcv_rtt_est.rtt == 0)
460 return;
461
462 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
463
464 space = max(tp->rcvq_space.space, space);
465
466 if (tp->rcvq_space.space != space) {
467 int rcvmem;
468
469 tp->rcvq_space.space = space;
470
471 if (sysctl_tcp_moderate_rcvbuf &&
472 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
473 int new_clamp = space;
474
475 /* Receive space grows, normalize in order to
476 * take into account packet headers and sk_buff
477 * structure overhead.
478 */
479 space /= tp->advmss;
480 if (!space)
481 space = 1;
482 rcvmem = (tp->advmss + MAX_TCP_HEADER +
483 16 + sizeof(struct sk_buff));
484 while (tcp_win_from_space(rcvmem) < tp->advmss)
485 rcvmem += 128;
486 space *= rcvmem;
487 space = min(space, sysctl_tcp_rmem[2]);
488 if (space > sk->sk_rcvbuf) {
489 sk->sk_rcvbuf = space;
490
491 /* Make the window clamp follow along. */
492 tp->window_clamp = new_clamp;
493 }
494 }
495 }
496
497 new_measure:
498 tp->rcvq_space.seq = tp->copied_seq;
499 tp->rcvq_space.time = tcp_time_stamp;
500 }
501
502 /* There is something which you must keep in mind when you analyze the
503 * behavior of the tp->ato delayed ack timeout interval. When a
504 * connection starts up, we want to ack as quickly as possible. The
505 * problem is that "good" TCP's do slow start at the beginning of data
506 * transmission. The means that until we send the first few ACK's the
507 * sender will sit on his end and only queue most of his data, because
508 * he can only send snd_cwnd unacked packets at any given time. For
509 * each ACK we send, he increments snd_cwnd and transmits more of his
510 * queue. -DaveM
511 */
512 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
513 {
514 struct tcp_sock *tp = tcp_sk(sk);
515 struct inet_connection_sock *icsk = inet_csk(sk);
516 u32 now;
517
518 inet_csk_schedule_ack(sk);
519
520 tcp_measure_rcv_mss(sk, skb);
521
522 tcp_rcv_rtt_measure(tp);
523
524 now = tcp_time_stamp;
525
526 if (!icsk->icsk_ack.ato) {
527 /* The _first_ data packet received, initialize
528 * delayed ACK engine.
529 */
530 tcp_incr_quickack(sk);
531 icsk->icsk_ack.ato = TCP_ATO_MIN;
532 } else {
533 int m = now - icsk->icsk_ack.lrcvtime;
534
535 if (m <= TCP_ATO_MIN/2) {
536 /* The fastest case is the first. */
537 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
538 } else if (m < icsk->icsk_ack.ato) {
539 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
540 if (icsk->icsk_ack.ato > icsk->icsk_rto)
541 icsk->icsk_ack.ato = icsk->icsk_rto;
542 } else if (m > icsk->icsk_rto) {
543 /* Too long gap. Apparently sender failed to
544 * restart window, so that we send ACKs quickly.
545 */
546 tcp_incr_quickack(sk);
547 sk_stream_mem_reclaim(sk);
548 }
549 }
550 icsk->icsk_ack.lrcvtime = now;
551
552 TCP_ECN_check_ce(tp, skb);
553
554 if (skb->len >= 128)
555 tcp_grow_window(sk, skb);
556 }
557
558 /* Called to compute a smoothed rtt estimate. The data fed to this
559 * routine either comes from timestamps, or from segments that were
560 * known _not_ to have been retransmitted [see Karn/Partridge
561 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
562 * piece by Van Jacobson.
563 * NOTE: the next three routines used to be one big routine.
564 * To save cycles in the RFC 1323 implementation it was better to break
565 * it up into three procedures. -- erics
566 */
567 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
568 {
569 struct tcp_sock *tp = tcp_sk(sk);
570 long m = mrtt; /* RTT */
571
572 /* The following amusing code comes from Jacobson's
573 * article in SIGCOMM '88. Note that rtt and mdev
574 * are scaled versions of rtt and mean deviation.
575 * This is designed to be as fast as possible
576 * m stands for "measurement".
577 *
578 * On a 1990 paper the rto value is changed to:
579 * RTO = rtt + 4 * mdev
580 *
581 * Funny. This algorithm seems to be very broken.
582 * These formulae increase RTO, when it should be decreased, increase
583 * too slowly, when it should be increased quickly, decrease too quickly
584 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
585 * does not matter how to _calculate_ it. Seems, it was trap
586 * that VJ failed to avoid. 8)
587 */
588 if (m == 0)
589 m = 1;
590 if (tp->srtt != 0) {
591 m -= (tp->srtt >> 3); /* m is now error in rtt est */
592 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
593 if (m < 0) {
594 m = -m; /* m is now abs(error) */
595 m -= (tp->mdev >> 2); /* similar update on mdev */
596 /* This is similar to one of Eifel findings.
597 * Eifel blocks mdev updates when rtt decreases.
598 * This solution is a bit different: we use finer gain
599 * for mdev in this case (alpha*beta).
600 * Like Eifel it also prevents growth of rto,
601 * but also it limits too fast rto decreases,
602 * happening in pure Eifel.
603 */
604 if (m > 0)
605 m >>= 3;
606 } else {
607 m -= (tp->mdev >> 2); /* similar update on mdev */
608 }
609 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
610 if (tp->mdev > tp->mdev_max) {
611 tp->mdev_max = tp->mdev;
612 if (tp->mdev_max > tp->rttvar)
613 tp->rttvar = tp->mdev_max;
614 }
615 if (after(tp->snd_una, tp->rtt_seq)) {
616 if (tp->mdev_max < tp->rttvar)
617 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
618 tp->rtt_seq = tp->snd_nxt;
619 tp->mdev_max = TCP_RTO_MIN;
620 }
621 } else {
622 /* no previous measure. */
623 tp->srtt = m<<3; /* take the measured time to be rtt */
624 tp->mdev = m<<1; /* make sure rto = 3*rtt */
625 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
626 tp->rtt_seq = tp->snd_nxt;
627 }
628 }
629
630 /* Calculate rto without backoff. This is the second half of Van Jacobson's
631 * routine referred to above.
632 */
633 static inline void tcp_set_rto(struct sock *sk)
634 {
635 const struct tcp_sock *tp = tcp_sk(sk);
636 /* Old crap is replaced with new one. 8)
637 *
638 * More seriously:
639 * 1. If rtt variance happened to be less 50msec, it is hallucination.
640 * It cannot be less due to utterly erratic ACK generation made
641 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
642 * to do with delayed acks, because at cwnd>2 true delack timeout
643 * is invisible. Actually, Linux-2.4 also generates erratic
644 * ACKs in some circumstances.
645 */
646 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
647
648 /* 2. Fixups made earlier cannot be right.
649 * If we do not estimate RTO correctly without them,
650 * all the algo is pure shit and should be replaced
651 * with correct one. It is exactly, which we pretend to do.
652 */
653 }
654
655 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
656 * guarantees that rto is higher.
657 */
658 static inline void tcp_bound_rto(struct sock *sk)
659 {
660 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
661 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
662 }
663
664 /* Save metrics learned by this TCP session.
665 This function is called only, when TCP finishes successfully
666 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
667 */
668 void tcp_update_metrics(struct sock *sk)
669 {
670 struct tcp_sock *tp = tcp_sk(sk);
671 struct dst_entry *dst = __sk_dst_get(sk);
672
673 if (sysctl_tcp_nometrics_save)
674 return;
675
676 dst_confirm(dst);
677
678 if (dst && (dst->flags&DST_HOST)) {
679 const struct inet_connection_sock *icsk = inet_csk(sk);
680 int m;
681
682 if (icsk->icsk_backoff || !tp->srtt) {
683 /* This session failed to estimate rtt. Why?
684 * Probably, no packets returned in time.
685 * Reset our results.
686 */
687 if (!(dst_metric_locked(dst, RTAX_RTT)))
688 dst->metrics[RTAX_RTT-1] = 0;
689 return;
690 }
691
692 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
693
694 /* If newly calculated rtt larger than stored one,
695 * store new one. Otherwise, use EWMA. Remember,
696 * rtt overestimation is always better than underestimation.
697 */
698 if (!(dst_metric_locked(dst, RTAX_RTT))) {
699 if (m <= 0)
700 dst->metrics[RTAX_RTT-1] = tp->srtt;
701 else
702 dst->metrics[RTAX_RTT-1] -= (m>>3);
703 }
704
705 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
706 if (m < 0)
707 m = -m;
708
709 /* Scale deviation to rttvar fixed point */
710 m >>= 1;
711 if (m < tp->mdev)
712 m = tp->mdev;
713
714 if (m >= dst_metric(dst, RTAX_RTTVAR))
715 dst->metrics[RTAX_RTTVAR-1] = m;
716 else
717 dst->metrics[RTAX_RTTVAR-1] -=
718 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
719 }
720
721 if (tp->snd_ssthresh >= 0xFFFF) {
722 /* Slow start still did not finish. */
723 if (dst_metric(dst, RTAX_SSTHRESH) &&
724 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
725 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
726 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
727 if (!dst_metric_locked(dst, RTAX_CWND) &&
728 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
729 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
730 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
731 icsk->icsk_ca_state == TCP_CA_Open) {
732 /* Cong. avoidance phase, cwnd is reliable. */
733 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
734 dst->metrics[RTAX_SSTHRESH-1] =
735 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
736 if (!dst_metric_locked(dst, RTAX_CWND))
737 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
738 } else {
739 /* Else slow start did not finish, cwnd is non-sense,
740 ssthresh may be also invalid.
741 */
742 if (!dst_metric_locked(dst, RTAX_CWND))
743 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
744 if (dst->metrics[RTAX_SSTHRESH-1] &&
745 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
746 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
747 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
748 }
749
750 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
751 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
752 tp->reordering != sysctl_tcp_reordering)
753 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
754 }
755 }
756 }
757
758 /* Numbers are taken from RFC3390.
759 *
760 * John Heffner states:
761 *
762 * The RFC specifies a window of no more than 4380 bytes
763 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
764 * is a bit misleading because they use a clamp at 4380 bytes
765 * rather than use a multiplier in the relevant range.
766 */
767 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
768 {
769 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
770
771 if (!cwnd) {
772 if (tp->mss_cache > 1460)
773 cwnd = 2;
774 else
775 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
776 }
777 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
778 }
779
780 /* Set slow start threshold and cwnd not falling to slow start */
781 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
782 {
783 struct tcp_sock *tp = tcp_sk(sk);
784 const struct inet_connection_sock *icsk = inet_csk(sk);
785
786 tp->prior_ssthresh = 0;
787 tp->bytes_acked = 0;
788 if (icsk->icsk_ca_state < TCP_CA_CWR) {
789 tp->undo_marker = 0;
790 if (set_ssthresh)
791 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
792 tp->snd_cwnd = min(tp->snd_cwnd,
793 tcp_packets_in_flight(tp) + 1U);
794 tp->snd_cwnd_cnt = 0;
795 tp->high_seq = tp->snd_nxt;
796 tp->snd_cwnd_stamp = tcp_time_stamp;
797 TCP_ECN_queue_cwr(tp);
798
799 tcp_set_ca_state(sk, TCP_CA_CWR);
800 }
801 }
802
803 /* Initialize metrics on socket. */
804
805 static void tcp_init_metrics(struct sock *sk)
806 {
807 struct tcp_sock *tp = tcp_sk(sk);
808 struct dst_entry *dst = __sk_dst_get(sk);
809
810 if (dst == NULL)
811 goto reset;
812
813 dst_confirm(dst);
814
815 if (dst_metric_locked(dst, RTAX_CWND))
816 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
817 if (dst_metric(dst, RTAX_SSTHRESH)) {
818 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
819 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
820 tp->snd_ssthresh = tp->snd_cwnd_clamp;
821 }
822 if (dst_metric(dst, RTAX_REORDERING) &&
823 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
824 tp->rx_opt.sack_ok &= ~2;
825 tp->reordering = dst_metric(dst, RTAX_REORDERING);
826 }
827
828 if (dst_metric(dst, RTAX_RTT) == 0)
829 goto reset;
830
831 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
832 goto reset;
833
834 /* Initial rtt is determined from SYN,SYN-ACK.
835 * The segment is small and rtt may appear much
836 * less than real one. Use per-dst memory
837 * to make it more realistic.
838 *
839 * A bit of theory. RTT is time passed after "normal" sized packet
840 * is sent until it is ACKed. In normal circumstances sending small
841 * packets force peer to delay ACKs and calculation is correct too.
842 * The algorithm is adaptive and, provided we follow specs, it
843 * NEVER underestimate RTT. BUT! If peer tries to make some clever
844 * tricks sort of "quick acks" for time long enough to decrease RTT
845 * to low value, and then abruptly stops to do it and starts to delay
846 * ACKs, wait for troubles.
847 */
848 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
849 tp->srtt = dst_metric(dst, RTAX_RTT);
850 tp->rtt_seq = tp->snd_nxt;
851 }
852 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
853 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
854 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
855 }
856 tcp_set_rto(sk);
857 tcp_bound_rto(sk);
858 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
859 goto reset;
860 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
861 tp->snd_cwnd_stamp = tcp_time_stamp;
862 return;
863
864 reset:
865 /* Play conservative. If timestamps are not
866 * supported, TCP will fail to recalculate correct
867 * rtt, if initial rto is too small. FORGET ALL AND RESET!
868 */
869 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
870 tp->srtt = 0;
871 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
872 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
873 }
874 }
875
876 static void tcp_update_reordering(struct sock *sk, const int metric,
877 const int ts)
878 {
879 struct tcp_sock *tp = tcp_sk(sk);
880 if (metric > tp->reordering) {
881 tp->reordering = min(TCP_MAX_REORDERING, metric);
882
883 /* This exciting event is worth to be remembered. 8) */
884 if (ts)
885 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
886 else if (IsReno(tp))
887 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
888 else if (IsFack(tp))
889 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
890 else
891 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
892 #if FASTRETRANS_DEBUG > 1
893 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
894 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
895 tp->reordering,
896 tp->fackets_out,
897 tp->sacked_out,
898 tp->undo_marker ? tp->undo_retrans : 0);
899 #endif
900 /* Disable FACK yet. */
901 tp->rx_opt.sack_ok &= ~2;
902 }
903 }
904
905 /* This procedure tags the retransmission queue when SACKs arrive.
906 *
907 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
908 * Packets in queue with these bits set are counted in variables
909 * sacked_out, retrans_out and lost_out, correspondingly.
910 *
911 * Valid combinations are:
912 * Tag InFlight Description
913 * 0 1 - orig segment is in flight.
914 * S 0 - nothing flies, orig reached receiver.
915 * L 0 - nothing flies, orig lost by net.
916 * R 2 - both orig and retransmit are in flight.
917 * L|R 1 - orig is lost, retransmit is in flight.
918 * S|R 1 - orig reached receiver, retrans is still in flight.
919 * (L|S|R is logically valid, it could occur when L|R is sacked,
920 * but it is equivalent to plain S and code short-curcuits it to S.
921 * L|S is logically invalid, it would mean -1 packet in flight 8))
922 *
923 * These 6 states form finite state machine, controlled by the following events:
924 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
925 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
926 * 3. Loss detection event of one of three flavors:
927 * A. Scoreboard estimator decided the packet is lost.
928 * A'. Reno "three dupacks" marks head of queue lost.
929 * A''. Its FACK modfication, head until snd.fack is lost.
930 * B. SACK arrives sacking data transmitted after never retransmitted
931 * hole was sent out.
932 * C. SACK arrives sacking SND.NXT at the moment, when the
933 * segment was retransmitted.
934 * 4. D-SACK added new rule: D-SACK changes any tag to S.
935 *
936 * It is pleasant to note, that state diagram turns out to be commutative,
937 * so that we are allowed not to be bothered by order of our actions,
938 * when multiple events arrive simultaneously. (see the function below).
939 *
940 * Reordering detection.
941 * --------------------
942 * Reordering metric is maximal distance, which a packet can be displaced
943 * in packet stream. With SACKs we can estimate it:
944 *
945 * 1. SACK fills old hole and the corresponding segment was not
946 * ever retransmitted -> reordering. Alas, we cannot use it
947 * when segment was retransmitted.
948 * 2. The last flaw is solved with D-SACK. D-SACK arrives
949 * for retransmitted and already SACKed segment -> reordering..
950 * Both of these heuristics are not used in Loss state, when we cannot
951 * account for retransmits accurately.
952 */
953 static int
954 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
955 {
956 const struct inet_connection_sock *icsk = inet_csk(sk);
957 struct tcp_sock *tp = tcp_sk(sk);
958 unsigned char *ptr = (skb_transport_header(ack_skb) +
959 TCP_SKB_CB(ack_skb)->sacked);
960 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
961 struct sk_buff *cached_skb;
962 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
963 int reord = tp->packets_out;
964 int prior_fackets;
965 u32 lost_retrans = 0;
966 int flag = 0;
967 int found_dup_sack = 0;
968 int cached_fack_count;
969 int i;
970 int first_sack_index;
971
972 if (!tp->sacked_out)
973 tp->fackets_out = 0;
974 prior_fackets = tp->fackets_out;
975
976 /* Check for D-SACK. */
977 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
978 flag |= FLAG_DSACKING_ACK;
979 found_dup_sack = 1;
980 tp->rx_opt.sack_ok |= 4;
981 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
982 } else if (num_sacks > 1 &&
983 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
984 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
985 flag |= FLAG_DSACKING_ACK;
986 found_dup_sack = 1;
987 tp->rx_opt.sack_ok |= 4;
988 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
989 }
990
991 /* D-SACK for already forgotten data...
992 * Do dumb counting. */
993 if (found_dup_sack &&
994 !after(ntohl(sp[0].end_seq), prior_snd_una) &&
995 after(ntohl(sp[0].end_seq), tp->undo_marker))
996 tp->undo_retrans--;
997
998 /* Eliminate too old ACKs, but take into
999 * account more or less fresh ones, they can
1000 * contain valid SACK info.
1001 */
1002 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1003 return 0;
1004
1005 /* SACK fastpath:
1006 * if the only SACK change is the increase of the end_seq of
1007 * the first block then only apply that SACK block
1008 * and use retrans queue hinting otherwise slowpath */
1009 flag = 1;
1010 for (i = 0; i < num_sacks; i++) {
1011 __be32 start_seq = sp[i].start_seq;
1012 __be32 end_seq = sp[i].end_seq;
1013
1014 if (i == 0) {
1015 if (tp->recv_sack_cache[i].start_seq != start_seq)
1016 flag = 0;
1017 } else {
1018 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1019 (tp->recv_sack_cache[i].end_seq != end_seq))
1020 flag = 0;
1021 }
1022 tp->recv_sack_cache[i].start_seq = start_seq;
1023 tp->recv_sack_cache[i].end_seq = end_seq;
1024 }
1025 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1026 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1027 tp->recv_sack_cache[i].start_seq = 0;
1028 tp->recv_sack_cache[i].end_seq = 0;
1029 }
1030
1031 first_sack_index = 0;
1032 if (flag)
1033 num_sacks = 1;
1034 else {
1035 int j;
1036 tp->fastpath_skb_hint = NULL;
1037
1038 /* order SACK blocks to allow in order walk of the retrans queue */
1039 for (i = num_sacks-1; i > 0; i--) {
1040 for (j = 0; j < i; j++){
1041 if (after(ntohl(sp[j].start_seq),
1042 ntohl(sp[j+1].start_seq))){
1043 struct tcp_sack_block_wire tmp;
1044
1045 tmp = sp[j];
1046 sp[j] = sp[j+1];
1047 sp[j+1] = tmp;
1048
1049 /* Track where the first SACK block goes to */
1050 if (j == first_sack_index)
1051 first_sack_index = j+1;
1052 }
1053
1054 }
1055 }
1056 }
1057
1058 /* clear flag as used for different purpose in following code */
1059 flag = 0;
1060
1061 /* Use SACK fastpath hint if valid */
1062 cached_skb = tp->fastpath_skb_hint;
1063 cached_fack_count = tp->fastpath_cnt_hint;
1064 if (!cached_skb) {
1065 cached_skb = tcp_write_queue_head(sk);
1066 cached_fack_count = 0;
1067 }
1068
1069 for (i=0; i<num_sacks; i++, sp++) {
1070 struct sk_buff *skb;
1071 __u32 start_seq = ntohl(sp->start_seq);
1072 __u32 end_seq = ntohl(sp->end_seq);
1073 int fack_count;
1074 int dup_sack = (found_dup_sack && (i == first_sack_index));
1075
1076 skb = cached_skb;
1077 fack_count = cached_fack_count;
1078
1079 /* Event "B" in the comment above. */
1080 if (after(end_seq, tp->high_seq))
1081 flag |= FLAG_DATA_LOST;
1082
1083 tcp_for_write_queue_from(skb, sk) {
1084 int in_sack, pcount;
1085 u8 sacked;
1086
1087 if (skb == tcp_send_head(sk))
1088 break;
1089
1090 cached_skb = skb;
1091 cached_fack_count = fack_count;
1092 if (i == first_sack_index) {
1093 tp->fastpath_skb_hint = skb;
1094 tp->fastpath_cnt_hint = fack_count;
1095 }
1096
1097 /* The retransmission queue is always in order, so
1098 * we can short-circuit the walk early.
1099 */
1100 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1101 break;
1102
1103 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1104 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1105
1106 pcount = tcp_skb_pcount(skb);
1107
1108 if (pcount > 1 && !in_sack &&
1109 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1110 unsigned int pkt_len;
1111
1112 in_sack = !after(start_seq,
1113 TCP_SKB_CB(skb)->seq);
1114
1115 if (!in_sack)
1116 pkt_len = (start_seq -
1117 TCP_SKB_CB(skb)->seq);
1118 else
1119 pkt_len = (end_seq -
1120 TCP_SKB_CB(skb)->seq);
1121 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1122 break;
1123 pcount = tcp_skb_pcount(skb);
1124 }
1125
1126 fack_count += pcount;
1127
1128 sacked = TCP_SKB_CB(skb)->sacked;
1129
1130 /* Account D-SACK for retransmitted packet. */
1131 if ((dup_sack && in_sack) &&
1132 (sacked & TCPCB_RETRANS) &&
1133 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1134 tp->undo_retrans--;
1135
1136 /* The frame is ACKed. */
1137 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1138 if (sacked&TCPCB_RETRANS) {
1139 if ((dup_sack && in_sack) &&
1140 (sacked&TCPCB_SACKED_ACKED))
1141 reord = min(fack_count, reord);
1142 } else {
1143 /* If it was in a hole, we detected reordering. */
1144 if (fack_count < prior_fackets &&
1145 !(sacked&TCPCB_SACKED_ACKED))
1146 reord = min(fack_count, reord);
1147 }
1148
1149 /* Nothing to do; acked frame is about to be dropped. */
1150 continue;
1151 }
1152
1153 if ((sacked&TCPCB_SACKED_RETRANS) &&
1154 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1155 (!lost_retrans || after(end_seq, lost_retrans)))
1156 lost_retrans = end_seq;
1157
1158 if (!in_sack)
1159 continue;
1160
1161 if (!(sacked&TCPCB_SACKED_ACKED)) {
1162 if (sacked & TCPCB_SACKED_RETRANS) {
1163 /* If the segment is not tagged as lost,
1164 * we do not clear RETRANS, believing
1165 * that retransmission is still in flight.
1166 */
1167 if (sacked & TCPCB_LOST) {
1168 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1169 tp->lost_out -= tcp_skb_pcount(skb);
1170 tp->retrans_out -= tcp_skb_pcount(skb);
1171
1172 /* clear lost hint */
1173 tp->retransmit_skb_hint = NULL;
1174 }
1175 } else {
1176 /* New sack for not retransmitted frame,
1177 * which was in hole. It is reordering.
1178 */
1179 if (!(sacked & TCPCB_RETRANS) &&
1180 fack_count < prior_fackets)
1181 reord = min(fack_count, reord);
1182
1183 if (sacked & TCPCB_LOST) {
1184 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1185 tp->lost_out -= tcp_skb_pcount(skb);
1186
1187 /* clear lost hint */
1188 tp->retransmit_skb_hint = NULL;
1189 }
1190 /* SACK enhanced F-RTO detection.
1191 * Set flag if and only if non-rexmitted
1192 * segments below frto_highmark are
1193 * SACKed (RFC4138; Appendix B).
1194 * Clearing correct due to in-order walk
1195 */
1196 if (after(end_seq, tp->frto_highmark)) {
1197 flag &= ~FLAG_ONLY_ORIG_SACKED;
1198 } else {
1199 if (!(sacked & TCPCB_RETRANS))
1200 flag |= FLAG_ONLY_ORIG_SACKED;
1201 }
1202 }
1203
1204 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1205 flag |= FLAG_DATA_SACKED;
1206 tp->sacked_out += tcp_skb_pcount(skb);
1207
1208 if (fack_count > tp->fackets_out)
1209 tp->fackets_out = fack_count;
1210 } else {
1211 if (dup_sack && (sacked&TCPCB_RETRANS))
1212 reord = min(fack_count, reord);
1213 }
1214
1215 /* D-SACK. We can detect redundant retransmission
1216 * in S|R and plain R frames and clear it.
1217 * undo_retrans is decreased above, L|R frames
1218 * are accounted above as well.
1219 */
1220 if (dup_sack &&
1221 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1222 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1223 tp->retrans_out -= tcp_skb_pcount(skb);
1224 tp->retransmit_skb_hint = NULL;
1225 }
1226 }
1227 }
1228
1229 /* Check for lost retransmit. This superb idea is
1230 * borrowed from "ratehalving". Event "C".
1231 * Later note: FACK people cheated me again 8),
1232 * we have to account for reordering! Ugly,
1233 * but should help.
1234 */
1235 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1236 struct sk_buff *skb;
1237
1238 tcp_for_write_queue(skb, sk) {
1239 if (skb == tcp_send_head(sk))
1240 break;
1241 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1242 break;
1243 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1244 continue;
1245 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1246 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1247 (IsFack(tp) ||
1248 !before(lost_retrans,
1249 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1250 tp->mss_cache))) {
1251 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1252 tp->retrans_out -= tcp_skb_pcount(skb);
1253
1254 /* clear lost hint */
1255 tp->retransmit_skb_hint = NULL;
1256
1257 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1258 tp->lost_out += tcp_skb_pcount(skb);
1259 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1260 flag |= FLAG_DATA_SACKED;
1261 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1262 }
1263 }
1264 }
1265 }
1266
1267 tp->left_out = tp->sacked_out + tp->lost_out;
1268
1269 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1270 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1271 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1272
1273 #if FASTRETRANS_DEBUG > 0
1274 BUG_TRAP((int)tp->sacked_out >= 0);
1275 BUG_TRAP((int)tp->lost_out >= 0);
1276 BUG_TRAP((int)tp->retrans_out >= 0);
1277 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1278 #endif
1279 return flag;
1280 }
1281
1282 /* F-RTO can only be used if TCP has never retransmitted anything other than
1283 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1284 */
1285 int tcp_use_frto(struct sock *sk)
1286 {
1287 const struct tcp_sock *tp = tcp_sk(sk);
1288 struct sk_buff *skb;
1289
1290 if (!sysctl_tcp_frto)
1291 return 0;
1292
1293 if (IsSackFrto())
1294 return 1;
1295
1296 /* Avoid expensive walking of rexmit queue if possible */
1297 if (tp->retrans_out > 1)
1298 return 0;
1299
1300 skb = tcp_write_queue_head(sk);
1301 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1302 tcp_for_write_queue_from(skb, sk) {
1303 if (skb == tcp_send_head(sk))
1304 break;
1305 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1306 return 0;
1307 /* Short-circuit when first non-SACKed skb has been checked */
1308 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1309 break;
1310 }
1311 return 1;
1312 }
1313
1314 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1315 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1316 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1317 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1318 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1319 * bits are handled if the Loss state is really to be entered (in
1320 * tcp_enter_frto_loss).
1321 *
1322 * Do like tcp_enter_loss() would; when RTO expires the second time it
1323 * does:
1324 * "Reduce ssthresh if it has not yet been made inside this window."
1325 */
1326 void tcp_enter_frto(struct sock *sk)
1327 {
1328 const struct inet_connection_sock *icsk = inet_csk(sk);
1329 struct tcp_sock *tp = tcp_sk(sk);
1330 struct sk_buff *skb;
1331
1332 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1333 tp->snd_una == tp->high_seq ||
1334 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1335 !icsk->icsk_retransmits)) {
1336 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1337 /* Our state is too optimistic in ssthresh() call because cwnd
1338 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1339 * recovery has not yet completed. Pattern would be this: RTO,
1340 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1341 * up here twice).
1342 * RFC4138 should be more specific on what to do, even though
1343 * RTO is quite unlikely to occur after the first Cumulative ACK
1344 * due to back-off and complexity of triggering events ...
1345 */
1346 if (tp->frto_counter) {
1347 u32 stored_cwnd;
1348 stored_cwnd = tp->snd_cwnd;
1349 tp->snd_cwnd = 2;
1350 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1351 tp->snd_cwnd = stored_cwnd;
1352 } else {
1353 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1354 }
1355 /* ... in theory, cong.control module could do "any tricks" in
1356 * ssthresh(), which means that ca_state, lost bits and lost_out
1357 * counter would have to be faked before the call occurs. We
1358 * consider that too expensive, unlikely and hacky, so modules
1359 * using these in ssthresh() must deal these incompatibility
1360 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1361 */
1362 tcp_ca_event(sk, CA_EVENT_FRTO);
1363 }
1364
1365 tp->undo_marker = tp->snd_una;
1366 tp->undo_retrans = 0;
1367
1368 skb = tcp_write_queue_head(sk);
1369 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1370 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1371 tp->retrans_out -= tcp_skb_pcount(skb);
1372 }
1373 tcp_sync_left_out(tp);
1374
1375 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1376 * The last condition is necessary at least in tp->frto_counter case.
1377 */
1378 if (IsSackFrto() && (tp->frto_counter ||
1379 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1380 after(tp->high_seq, tp->snd_una)) {
1381 tp->frto_highmark = tp->high_seq;
1382 } else {
1383 tp->frto_highmark = tp->snd_nxt;
1384 }
1385 tcp_set_ca_state(sk, TCP_CA_Disorder);
1386 tp->high_seq = tp->snd_nxt;
1387 tp->frto_counter = 1;
1388 }
1389
1390 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1391 * which indicates that we should follow the traditional RTO recovery,
1392 * i.e. mark everything lost and do go-back-N retransmission.
1393 */
1394 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1395 {
1396 struct tcp_sock *tp = tcp_sk(sk);
1397 struct sk_buff *skb;
1398 int cnt = 0;
1399
1400 tp->sacked_out = 0;
1401 tp->lost_out = 0;
1402 tp->fackets_out = 0;
1403 tp->retrans_out = 0;
1404
1405 tcp_for_write_queue(skb, sk) {
1406 if (skb == tcp_send_head(sk))
1407 break;
1408 cnt += tcp_skb_pcount(skb);
1409 /*
1410 * Count the retransmission made on RTO correctly (only when
1411 * waiting for the first ACK and did not get it)...
1412 */
1413 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1414 /* For some reason this R-bit might get cleared? */
1415 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1416 tp->retrans_out += tcp_skb_pcount(skb);
1417 /* ...enter this if branch just for the first segment */
1418 flag |= FLAG_DATA_ACKED;
1419 } else {
1420 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1421 }
1422 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1423
1424 /* Do not mark those segments lost that were
1425 * forward transmitted after RTO
1426 */
1427 if (!after(TCP_SKB_CB(skb)->end_seq,
1428 tp->frto_highmark)) {
1429 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1430 tp->lost_out += tcp_skb_pcount(skb);
1431 }
1432 } else {
1433 tp->sacked_out += tcp_skb_pcount(skb);
1434 tp->fackets_out = cnt;
1435 }
1436 }
1437 tcp_sync_left_out(tp);
1438
1439 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1440 tp->snd_cwnd_cnt = 0;
1441 tp->snd_cwnd_stamp = tcp_time_stamp;
1442 tp->undo_marker = 0;
1443 tp->frto_counter = 0;
1444
1445 tp->reordering = min_t(unsigned int, tp->reordering,
1446 sysctl_tcp_reordering);
1447 tcp_set_ca_state(sk, TCP_CA_Loss);
1448 tp->high_seq = tp->frto_highmark;
1449 TCP_ECN_queue_cwr(tp);
1450
1451 clear_all_retrans_hints(tp);
1452 }
1453
1454 void tcp_clear_retrans(struct tcp_sock *tp)
1455 {
1456 tp->left_out = 0;
1457 tp->retrans_out = 0;
1458
1459 tp->fackets_out = 0;
1460 tp->sacked_out = 0;
1461 tp->lost_out = 0;
1462
1463 tp->undo_marker = 0;
1464 tp->undo_retrans = 0;
1465 }
1466
1467 /* Enter Loss state. If "how" is not zero, forget all SACK information
1468 * and reset tags completely, otherwise preserve SACKs. If receiver
1469 * dropped its ofo queue, we will know this due to reneging detection.
1470 */
1471 void tcp_enter_loss(struct sock *sk, int how)
1472 {
1473 const struct inet_connection_sock *icsk = inet_csk(sk);
1474 struct tcp_sock *tp = tcp_sk(sk);
1475 struct sk_buff *skb;
1476 int cnt = 0;
1477
1478 /* Reduce ssthresh if it has not yet been made inside this window. */
1479 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1480 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1481 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1482 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1483 tcp_ca_event(sk, CA_EVENT_LOSS);
1484 }
1485 tp->snd_cwnd = 1;
1486 tp->snd_cwnd_cnt = 0;
1487 tp->snd_cwnd_stamp = tcp_time_stamp;
1488
1489 tp->bytes_acked = 0;
1490 tcp_clear_retrans(tp);
1491
1492 /* Push undo marker, if it was plain RTO and nothing
1493 * was retransmitted. */
1494 if (!how)
1495 tp->undo_marker = tp->snd_una;
1496
1497 tcp_for_write_queue(skb, sk) {
1498 if (skb == tcp_send_head(sk))
1499 break;
1500 cnt += tcp_skb_pcount(skb);
1501 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1502 tp->undo_marker = 0;
1503 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1504 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1505 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1506 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1507 tp->lost_out += tcp_skb_pcount(skb);
1508 } else {
1509 tp->sacked_out += tcp_skb_pcount(skb);
1510 tp->fackets_out = cnt;
1511 }
1512 }
1513 tcp_sync_left_out(tp);
1514
1515 tp->reordering = min_t(unsigned int, tp->reordering,
1516 sysctl_tcp_reordering);
1517 tcp_set_ca_state(sk, TCP_CA_Loss);
1518 tp->high_seq = tp->snd_nxt;
1519 TCP_ECN_queue_cwr(tp);
1520 /* Abort FRTO algorithm if one is in progress */
1521 tp->frto_counter = 0;
1522
1523 clear_all_retrans_hints(tp);
1524 }
1525
1526 static int tcp_check_sack_reneging(struct sock *sk)
1527 {
1528 struct sk_buff *skb;
1529
1530 /* If ACK arrived pointing to a remembered SACK,
1531 * it means that our remembered SACKs do not reflect
1532 * real state of receiver i.e.
1533 * receiver _host_ is heavily congested (or buggy).
1534 * Do processing similar to RTO timeout.
1535 */
1536 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1537 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1538 struct inet_connection_sock *icsk = inet_csk(sk);
1539 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1540
1541 tcp_enter_loss(sk, 1);
1542 icsk->icsk_retransmits++;
1543 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1544 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1545 icsk->icsk_rto, TCP_RTO_MAX);
1546 return 1;
1547 }
1548 return 0;
1549 }
1550
1551 static inline int tcp_fackets_out(struct tcp_sock *tp)
1552 {
1553 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1554 }
1555
1556 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1557 {
1558 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1559 }
1560
1561 static inline int tcp_head_timedout(struct sock *sk)
1562 {
1563 struct tcp_sock *tp = tcp_sk(sk);
1564
1565 return tp->packets_out &&
1566 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1567 }
1568
1569 /* Linux NewReno/SACK/FACK/ECN state machine.
1570 * --------------------------------------
1571 *
1572 * "Open" Normal state, no dubious events, fast path.
1573 * "Disorder" In all the respects it is "Open",
1574 * but requires a bit more attention. It is entered when
1575 * we see some SACKs or dupacks. It is split of "Open"
1576 * mainly to move some processing from fast path to slow one.
1577 * "CWR" CWND was reduced due to some Congestion Notification event.
1578 * It can be ECN, ICMP source quench, local device congestion.
1579 * "Recovery" CWND was reduced, we are fast-retransmitting.
1580 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1581 *
1582 * tcp_fastretrans_alert() is entered:
1583 * - each incoming ACK, if state is not "Open"
1584 * - when arrived ACK is unusual, namely:
1585 * * SACK
1586 * * Duplicate ACK.
1587 * * ECN ECE.
1588 *
1589 * Counting packets in flight is pretty simple.
1590 *
1591 * in_flight = packets_out - left_out + retrans_out
1592 *
1593 * packets_out is SND.NXT-SND.UNA counted in packets.
1594 *
1595 * retrans_out is number of retransmitted segments.
1596 *
1597 * left_out is number of segments left network, but not ACKed yet.
1598 *
1599 * left_out = sacked_out + lost_out
1600 *
1601 * sacked_out: Packets, which arrived to receiver out of order
1602 * and hence not ACKed. With SACKs this number is simply
1603 * amount of SACKed data. Even without SACKs
1604 * it is easy to give pretty reliable estimate of this number,
1605 * counting duplicate ACKs.
1606 *
1607 * lost_out: Packets lost by network. TCP has no explicit
1608 * "loss notification" feedback from network (for now).
1609 * It means that this number can be only _guessed_.
1610 * Actually, it is the heuristics to predict lossage that
1611 * distinguishes different algorithms.
1612 *
1613 * F.e. after RTO, when all the queue is considered as lost,
1614 * lost_out = packets_out and in_flight = retrans_out.
1615 *
1616 * Essentially, we have now two algorithms counting
1617 * lost packets.
1618 *
1619 * FACK: It is the simplest heuristics. As soon as we decided
1620 * that something is lost, we decide that _all_ not SACKed
1621 * packets until the most forward SACK are lost. I.e.
1622 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1623 * It is absolutely correct estimate, if network does not reorder
1624 * packets. And it loses any connection to reality when reordering
1625 * takes place. We use FACK by default until reordering
1626 * is suspected on the path to this destination.
1627 *
1628 * NewReno: when Recovery is entered, we assume that one segment
1629 * is lost (classic Reno). While we are in Recovery and
1630 * a partial ACK arrives, we assume that one more packet
1631 * is lost (NewReno). This heuristics are the same in NewReno
1632 * and SACK.
1633 *
1634 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1635 * deflation etc. CWND is real congestion window, never inflated, changes
1636 * only according to classic VJ rules.
1637 *
1638 * Really tricky (and requiring careful tuning) part of algorithm
1639 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1640 * The first determines the moment _when_ we should reduce CWND and,
1641 * hence, slow down forward transmission. In fact, it determines the moment
1642 * when we decide that hole is caused by loss, rather than by a reorder.
1643 *
1644 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1645 * holes, caused by lost packets.
1646 *
1647 * And the most logically complicated part of algorithm is undo
1648 * heuristics. We detect false retransmits due to both too early
1649 * fast retransmit (reordering) and underestimated RTO, analyzing
1650 * timestamps and D-SACKs. When we detect that some segments were
1651 * retransmitted by mistake and CWND reduction was wrong, we undo
1652 * window reduction and abort recovery phase. This logic is hidden
1653 * inside several functions named tcp_try_undo_<something>.
1654 */
1655
1656 /* This function decides, when we should leave Disordered state
1657 * and enter Recovery phase, reducing congestion window.
1658 *
1659 * Main question: may we further continue forward transmission
1660 * with the same cwnd?
1661 */
1662 static int tcp_time_to_recover(struct sock *sk)
1663 {
1664 struct tcp_sock *tp = tcp_sk(sk);
1665 __u32 packets_out;
1666
1667 /* Do not perform any recovery during FRTO algorithm */
1668 if (tp->frto_counter)
1669 return 0;
1670
1671 /* Trick#1: The loss is proven. */
1672 if (tp->lost_out)
1673 return 1;
1674
1675 /* Not-A-Trick#2 : Classic rule... */
1676 if (tcp_fackets_out(tp) > tp->reordering)
1677 return 1;
1678
1679 /* Trick#3 : when we use RFC2988 timer restart, fast
1680 * retransmit can be triggered by timeout of queue head.
1681 */
1682 if (tcp_head_timedout(sk))
1683 return 1;
1684
1685 /* Trick#4: It is still not OK... But will it be useful to delay
1686 * recovery more?
1687 */
1688 packets_out = tp->packets_out;
1689 if (packets_out <= tp->reordering &&
1690 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1691 !tcp_may_send_now(sk)) {
1692 /* We have nothing to send. This connection is limited
1693 * either by receiver window or by application.
1694 */
1695 return 1;
1696 }
1697
1698 return 0;
1699 }
1700
1701 /* If we receive more dupacks than we expected counting segments
1702 * in assumption of absent reordering, interpret this as reordering.
1703 * The only another reason could be bug in receiver TCP.
1704 */
1705 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1706 {
1707 struct tcp_sock *tp = tcp_sk(sk);
1708 u32 holes;
1709
1710 holes = max(tp->lost_out, 1U);
1711 holes = min(holes, tp->packets_out);
1712
1713 if ((tp->sacked_out + holes) > tp->packets_out) {
1714 tp->sacked_out = tp->packets_out - holes;
1715 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1716 }
1717 }
1718
1719 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1720
1721 static void tcp_add_reno_sack(struct sock *sk)
1722 {
1723 struct tcp_sock *tp = tcp_sk(sk);
1724 tp->sacked_out++;
1725 tcp_check_reno_reordering(sk, 0);
1726 tcp_sync_left_out(tp);
1727 }
1728
1729 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1730
1731 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1732 {
1733 struct tcp_sock *tp = tcp_sk(sk);
1734
1735 if (acked > 0) {
1736 /* One ACK acked hole. The rest eat duplicate ACKs. */
1737 if (acked-1 >= tp->sacked_out)
1738 tp->sacked_out = 0;
1739 else
1740 tp->sacked_out -= acked-1;
1741 }
1742 tcp_check_reno_reordering(sk, acked);
1743 tcp_sync_left_out(tp);
1744 }
1745
1746 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1747 {
1748 tp->sacked_out = 0;
1749 tp->left_out = tp->lost_out;
1750 }
1751
1752 /* Mark head of queue up as lost. */
1753 static void tcp_mark_head_lost(struct sock *sk,
1754 int packets, u32 high_seq)
1755 {
1756 struct tcp_sock *tp = tcp_sk(sk);
1757 struct sk_buff *skb;
1758 int cnt;
1759
1760 BUG_TRAP(packets <= tp->packets_out);
1761 if (tp->lost_skb_hint) {
1762 skb = tp->lost_skb_hint;
1763 cnt = tp->lost_cnt_hint;
1764 } else {
1765 skb = tcp_write_queue_head(sk);
1766 cnt = 0;
1767 }
1768
1769 tcp_for_write_queue_from(skb, sk) {
1770 if (skb == tcp_send_head(sk))
1771 break;
1772 /* TODO: do this better */
1773 /* this is not the most efficient way to do this... */
1774 tp->lost_skb_hint = skb;
1775 tp->lost_cnt_hint = cnt;
1776 cnt += tcp_skb_pcount(skb);
1777 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1778 break;
1779 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1780 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1781 tp->lost_out += tcp_skb_pcount(skb);
1782
1783 /* clear xmit_retransmit_queue hints
1784 * if this is beyond hint */
1785 if (tp->retransmit_skb_hint != NULL &&
1786 before(TCP_SKB_CB(skb)->seq,
1787 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1788 tp->retransmit_skb_hint = NULL;
1789
1790 }
1791 }
1792 tcp_sync_left_out(tp);
1793 }
1794
1795 /* Account newly detected lost packet(s) */
1796
1797 static void tcp_update_scoreboard(struct sock *sk)
1798 {
1799 struct tcp_sock *tp = tcp_sk(sk);
1800
1801 if (IsFack(tp)) {
1802 int lost = tp->fackets_out - tp->reordering;
1803 if (lost <= 0)
1804 lost = 1;
1805 tcp_mark_head_lost(sk, lost, tp->high_seq);
1806 } else {
1807 tcp_mark_head_lost(sk, 1, tp->high_seq);
1808 }
1809
1810 /* New heuristics: it is possible only after we switched
1811 * to restart timer each time when something is ACKed.
1812 * Hence, we can detect timed out packets during fast
1813 * retransmit without falling to slow start.
1814 */
1815 if (!IsReno(tp) && tcp_head_timedout(sk)) {
1816 struct sk_buff *skb;
1817
1818 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1819 : tcp_write_queue_head(sk);
1820
1821 tcp_for_write_queue_from(skb, sk) {
1822 if (skb == tcp_send_head(sk))
1823 break;
1824 if (!tcp_skb_timedout(sk, skb))
1825 break;
1826
1827 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1828 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1829 tp->lost_out += tcp_skb_pcount(skb);
1830
1831 /* clear xmit_retrans hint */
1832 if (tp->retransmit_skb_hint &&
1833 before(TCP_SKB_CB(skb)->seq,
1834 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1835
1836 tp->retransmit_skb_hint = NULL;
1837 }
1838 }
1839
1840 tp->scoreboard_skb_hint = skb;
1841
1842 tcp_sync_left_out(tp);
1843 }
1844 }
1845
1846 /* CWND moderation, preventing bursts due to too big ACKs
1847 * in dubious situations.
1848 */
1849 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1850 {
1851 tp->snd_cwnd = min(tp->snd_cwnd,
1852 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1853 tp->snd_cwnd_stamp = tcp_time_stamp;
1854 }
1855
1856 /* Lower bound on congestion window is slow start threshold
1857 * unless congestion avoidance choice decides to overide it.
1858 */
1859 static inline u32 tcp_cwnd_min(const struct sock *sk)
1860 {
1861 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1862
1863 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1864 }
1865
1866 /* Decrease cwnd each second ack. */
1867 static void tcp_cwnd_down(struct sock *sk, int flag)
1868 {
1869 struct tcp_sock *tp = tcp_sk(sk);
1870 int decr = tp->snd_cwnd_cnt + 1;
1871
1872 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
1873 (IsReno(tp) && !(flag&FLAG_NOT_DUP))) {
1874 tp->snd_cwnd_cnt = decr&1;
1875 decr >>= 1;
1876
1877 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1878 tp->snd_cwnd -= decr;
1879
1880 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1881 tp->snd_cwnd_stamp = tcp_time_stamp;
1882 }
1883 }
1884
1885 /* Nothing was retransmitted or returned timestamp is less
1886 * than timestamp of the first retransmission.
1887 */
1888 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1889 {
1890 return !tp->retrans_stamp ||
1891 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1892 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1893 }
1894
1895 /* Undo procedures. */
1896
1897 #if FASTRETRANS_DEBUG > 1
1898 static void DBGUNDO(struct sock *sk, const char *msg)
1899 {
1900 struct tcp_sock *tp = tcp_sk(sk);
1901 struct inet_sock *inet = inet_sk(sk);
1902
1903 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1904 msg,
1905 NIPQUAD(inet->daddr), ntohs(inet->dport),
1906 tp->snd_cwnd, tp->left_out,
1907 tp->snd_ssthresh, tp->prior_ssthresh,
1908 tp->packets_out);
1909 }
1910 #else
1911 #define DBGUNDO(x...) do { } while (0)
1912 #endif
1913
1914 static void tcp_undo_cwr(struct sock *sk, const int undo)
1915 {
1916 struct tcp_sock *tp = tcp_sk(sk);
1917
1918 if (tp->prior_ssthresh) {
1919 const struct inet_connection_sock *icsk = inet_csk(sk);
1920
1921 if (icsk->icsk_ca_ops->undo_cwnd)
1922 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1923 else
1924 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1925
1926 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1927 tp->snd_ssthresh = tp->prior_ssthresh;
1928 TCP_ECN_withdraw_cwr(tp);
1929 }
1930 } else {
1931 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1932 }
1933 tcp_moderate_cwnd(tp);
1934 tp->snd_cwnd_stamp = tcp_time_stamp;
1935
1936 /* There is something screwy going on with the retrans hints after
1937 an undo */
1938 clear_all_retrans_hints(tp);
1939 }
1940
1941 static inline int tcp_may_undo(struct tcp_sock *tp)
1942 {
1943 return tp->undo_marker &&
1944 (!tp->undo_retrans || tcp_packet_delayed(tp));
1945 }
1946
1947 /* People celebrate: "We love our President!" */
1948 static int tcp_try_undo_recovery(struct sock *sk)
1949 {
1950 struct tcp_sock *tp = tcp_sk(sk);
1951
1952 if (tcp_may_undo(tp)) {
1953 /* Happy end! We did not retransmit anything
1954 * or our original transmission succeeded.
1955 */
1956 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1957 tcp_undo_cwr(sk, 1);
1958 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1959 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1960 else
1961 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1962 tp->undo_marker = 0;
1963 }
1964 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1965 /* Hold old state until something *above* high_seq
1966 * is ACKed. For Reno it is MUST to prevent false
1967 * fast retransmits (RFC2582). SACK TCP is safe. */
1968 tcp_moderate_cwnd(tp);
1969 return 1;
1970 }
1971 tcp_set_ca_state(sk, TCP_CA_Open);
1972 return 0;
1973 }
1974
1975 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1976 static void tcp_try_undo_dsack(struct sock *sk)
1977 {
1978 struct tcp_sock *tp = tcp_sk(sk);
1979
1980 if (tp->undo_marker && !tp->undo_retrans) {
1981 DBGUNDO(sk, "D-SACK");
1982 tcp_undo_cwr(sk, 1);
1983 tp->undo_marker = 0;
1984 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1985 }
1986 }
1987
1988 /* Undo during fast recovery after partial ACK. */
1989
1990 static int tcp_try_undo_partial(struct sock *sk, int acked)
1991 {
1992 struct tcp_sock *tp = tcp_sk(sk);
1993 /* Partial ACK arrived. Force Hoe's retransmit. */
1994 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1995
1996 if (tcp_may_undo(tp)) {
1997 /* Plain luck! Hole if filled with delayed
1998 * packet, rather than with a retransmit.
1999 */
2000 if (tp->retrans_out == 0)
2001 tp->retrans_stamp = 0;
2002
2003 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2004
2005 DBGUNDO(sk, "Hoe");
2006 tcp_undo_cwr(sk, 0);
2007 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2008
2009 /* So... Do not make Hoe's retransmit yet.
2010 * If the first packet was delayed, the rest
2011 * ones are most probably delayed as well.
2012 */
2013 failed = 0;
2014 }
2015 return failed;
2016 }
2017
2018 /* Undo during loss recovery after partial ACK. */
2019 static int tcp_try_undo_loss(struct sock *sk)
2020 {
2021 struct tcp_sock *tp = tcp_sk(sk);
2022
2023 if (tcp_may_undo(tp)) {
2024 struct sk_buff *skb;
2025 tcp_for_write_queue(skb, sk) {
2026 if (skb == tcp_send_head(sk))
2027 break;
2028 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2029 }
2030
2031 clear_all_retrans_hints(tp);
2032
2033 DBGUNDO(sk, "partial loss");
2034 tp->lost_out = 0;
2035 tp->left_out = tp->sacked_out;
2036 tcp_undo_cwr(sk, 1);
2037 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2038 inet_csk(sk)->icsk_retransmits = 0;
2039 tp->undo_marker = 0;
2040 if (!IsReno(tp))
2041 tcp_set_ca_state(sk, TCP_CA_Open);
2042 return 1;
2043 }
2044 return 0;
2045 }
2046
2047 static inline void tcp_complete_cwr(struct sock *sk)
2048 {
2049 struct tcp_sock *tp = tcp_sk(sk);
2050 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2051 tp->snd_cwnd_stamp = tcp_time_stamp;
2052 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2053 }
2054
2055 static void tcp_try_to_open(struct sock *sk, int flag)
2056 {
2057 struct tcp_sock *tp = tcp_sk(sk);
2058
2059 tcp_sync_left_out(tp);
2060
2061 if (tp->retrans_out == 0)
2062 tp->retrans_stamp = 0;
2063
2064 if (flag&FLAG_ECE)
2065 tcp_enter_cwr(sk, 1);
2066
2067 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2068 int state = TCP_CA_Open;
2069
2070 if (tp->left_out || tp->retrans_out || tp->undo_marker)
2071 state = TCP_CA_Disorder;
2072
2073 if (inet_csk(sk)->icsk_ca_state != state) {
2074 tcp_set_ca_state(sk, state);
2075 tp->high_seq = tp->snd_nxt;
2076 }
2077 tcp_moderate_cwnd(tp);
2078 } else {
2079 tcp_cwnd_down(sk, flag);
2080 }
2081 }
2082
2083 static void tcp_mtup_probe_failed(struct sock *sk)
2084 {
2085 struct inet_connection_sock *icsk = inet_csk(sk);
2086
2087 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2088 icsk->icsk_mtup.probe_size = 0;
2089 }
2090
2091 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2092 {
2093 struct tcp_sock *tp = tcp_sk(sk);
2094 struct inet_connection_sock *icsk = inet_csk(sk);
2095
2096 /* FIXME: breaks with very large cwnd */
2097 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2098 tp->snd_cwnd = tp->snd_cwnd *
2099 tcp_mss_to_mtu(sk, tp->mss_cache) /
2100 icsk->icsk_mtup.probe_size;
2101 tp->snd_cwnd_cnt = 0;
2102 tp->snd_cwnd_stamp = tcp_time_stamp;
2103 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2104
2105 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2106 icsk->icsk_mtup.probe_size = 0;
2107 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2108 }
2109
2110
2111 /* Process an event, which can update packets-in-flight not trivially.
2112 * Main goal of this function is to calculate new estimate for left_out,
2113 * taking into account both packets sitting in receiver's buffer and
2114 * packets lost by network.
2115 *
2116 * Besides that it does CWND reduction, when packet loss is detected
2117 * and changes state of machine.
2118 *
2119 * It does _not_ decide what to send, it is made in function
2120 * tcp_xmit_retransmit_queue().
2121 */
2122 static void
2123 tcp_fastretrans_alert(struct sock *sk, int prior_packets, int flag)
2124 {
2125 struct inet_connection_sock *icsk = inet_csk(sk);
2126 struct tcp_sock *tp = tcp_sk(sk);
2127 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2128 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2129 (tp->fackets_out > tp->reordering));
2130
2131 /* Some technical things:
2132 * 1. Reno does not count dupacks (sacked_out) automatically. */
2133 if (!tp->packets_out)
2134 tp->sacked_out = 0;
2135 /* 2. SACK counts snd_fack in packets inaccurately. */
2136 if (tp->sacked_out == 0)
2137 tp->fackets_out = 0;
2138
2139 /* Now state machine starts.
2140 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2141 if (flag&FLAG_ECE)
2142 tp->prior_ssthresh = 0;
2143
2144 /* B. In all the states check for reneging SACKs. */
2145 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2146 return;
2147
2148 /* C. Process data loss notification, provided it is valid. */
2149 if ((flag&FLAG_DATA_LOST) &&
2150 before(tp->snd_una, tp->high_seq) &&
2151 icsk->icsk_ca_state != TCP_CA_Open &&
2152 tp->fackets_out > tp->reordering) {
2153 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
2154 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2155 }
2156
2157 /* D. Synchronize left_out to current state. */
2158 tcp_sync_left_out(tp);
2159
2160 /* E. Check state exit conditions. State can be terminated
2161 * when high_seq is ACKed. */
2162 if (icsk->icsk_ca_state == TCP_CA_Open) {
2163 BUG_TRAP(tp->retrans_out == 0);
2164 tp->retrans_stamp = 0;
2165 } else if (!before(tp->snd_una, tp->high_seq)) {
2166 switch (icsk->icsk_ca_state) {
2167 case TCP_CA_Loss:
2168 icsk->icsk_retransmits = 0;
2169 if (tcp_try_undo_recovery(sk))
2170 return;
2171 break;
2172
2173 case TCP_CA_CWR:
2174 /* CWR is to be held something *above* high_seq
2175 * is ACKed for CWR bit to reach receiver. */
2176 if (tp->snd_una != tp->high_seq) {
2177 tcp_complete_cwr(sk);
2178 tcp_set_ca_state(sk, TCP_CA_Open);
2179 }
2180 break;
2181
2182 case TCP_CA_Disorder:
2183 tcp_try_undo_dsack(sk);
2184 if (!tp->undo_marker ||
2185 /* For SACK case do not Open to allow to undo
2186 * catching for all duplicate ACKs. */
2187 IsReno(tp) || tp->snd_una != tp->high_seq) {
2188 tp->undo_marker = 0;
2189 tcp_set_ca_state(sk, TCP_CA_Open);
2190 }
2191 break;
2192
2193 case TCP_CA_Recovery:
2194 if (IsReno(tp))
2195 tcp_reset_reno_sack(tp);
2196 if (tcp_try_undo_recovery(sk))
2197 return;
2198 tcp_complete_cwr(sk);
2199 break;
2200 }
2201 }
2202
2203 /* F. Process state. */
2204 switch (icsk->icsk_ca_state) {
2205 case TCP_CA_Recovery:
2206 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2207 if (IsReno(tp) && is_dupack)
2208 tcp_add_reno_sack(sk);
2209 } else {
2210 int acked = prior_packets - tp->packets_out;
2211 if (IsReno(tp))
2212 tcp_remove_reno_sacks(sk, acked);
2213 do_lost = tcp_try_undo_partial(sk, acked);
2214 }
2215 break;
2216 case TCP_CA_Loss:
2217 if (flag&FLAG_DATA_ACKED)
2218 icsk->icsk_retransmits = 0;
2219 if (!tcp_try_undo_loss(sk)) {
2220 tcp_moderate_cwnd(tp);
2221 tcp_xmit_retransmit_queue(sk);
2222 return;
2223 }
2224 if (icsk->icsk_ca_state != TCP_CA_Open)
2225 return;
2226 /* Loss is undone; fall through to processing in Open state. */
2227 default:
2228 if (IsReno(tp)) {
2229 if (flag & FLAG_SND_UNA_ADVANCED)
2230 tcp_reset_reno_sack(tp);
2231 if (is_dupack)
2232 tcp_add_reno_sack(sk);
2233 }
2234
2235 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2236 tcp_try_undo_dsack(sk);
2237
2238 if (!tcp_time_to_recover(sk)) {
2239 tcp_try_to_open(sk, flag);
2240 return;
2241 }
2242
2243 /* MTU probe failure: don't reduce cwnd */
2244 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2245 icsk->icsk_mtup.probe_size &&
2246 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2247 tcp_mtup_probe_failed(sk);
2248 /* Restores the reduction we did in tcp_mtup_probe() */
2249 tp->snd_cwnd++;
2250 tcp_simple_retransmit(sk);
2251 return;
2252 }
2253
2254 /* Otherwise enter Recovery state */
2255
2256 if (IsReno(tp))
2257 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2258 else
2259 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2260
2261 tp->high_seq = tp->snd_nxt;
2262 tp->prior_ssthresh = 0;
2263 tp->undo_marker = tp->snd_una;
2264 tp->undo_retrans = tp->retrans_out;
2265
2266 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2267 if (!(flag&FLAG_ECE))
2268 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2269 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2270 TCP_ECN_queue_cwr(tp);
2271 }
2272
2273 tp->bytes_acked = 0;
2274 tp->snd_cwnd_cnt = 0;
2275 tcp_set_ca_state(sk, TCP_CA_Recovery);
2276 }
2277
2278 if (do_lost || tcp_head_timedout(sk))
2279 tcp_update_scoreboard(sk);
2280 tcp_cwnd_down(sk, flag);
2281 tcp_xmit_retransmit_queue(sk);
2282 }
2283
2284 /* Read draft-ietf-tcplw-high-performance before mucking
2285 * with this code. (Supersedes RFC1323)
2286 */
2287 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2288 {
2289 /* RTTM Rule: A TSecr value received in a segment is used to
2290 * update the averaged RTT measurement only if the segment
2291 * acknowledges some new data, i.e., only if it advances the
2292 * left edge of the send window.
2293 *
2294 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2295 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2296 *
2297 * Changed: reset backoff as soon as we see the first valid sample.
2298 * If we do not, we get strongly overestimated rto. With timestamps
2299 * samples are accepted even from very old segments: f.e., when rtt=1
2300 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2301 * answer arrives rto becomes 120 seconds! If at least one of segments
2302 * in window is lost... Voila. --ANK (010210)
2303 */
2304 struct tcp_sock *tp = tcp_sk(sk);
2305 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2306 tcp_rtt_estimator(sk, seq_rtt);
2307 tcp_set_rto(sk);
2308 inet_csk(sk)->icsk_backoff = 0;
2309 tcp_bound_rto(sk);
2310 }
2311
2312 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2313 {
2314 /* We don't have a timestamp. Can only use
2315 * packets that are not retransmitted to determine
2316 * rtt estimates. Also, we must not reset the
2317 * backoff for rto until we get a non-retransmitted
2318 * packet. This allows us to deal with a situation
2319 * where the network delay has increased suddenly.
2320 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2321 */
2322
2323 if (flag & FLAG_RETRANS_DATA_ACKED)
2324 return;
2325
2326 tcp_rtt_estimator(sk, seq_rtt);
2327 tcp_set_rto(sk);
2328 inet_csk(sk)->icsk_backoff = 0;
2329 tcp_bound_rto(sk);
2330 }
2331
2332 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2333 const s32 seq_rtt)
2334 {
2335 const struct tcp_sock *tp = tcp_sk(sk);
2336 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2337 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2338 tcp_ack_saw_tstamp(sk, flag);
2339 else if (seq_rtt >= 0)
2340 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2341 }
2342
2343 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2344 u32 in_flight, int good)
2345 {
2346 const struct inet_connection_sock *icsk = inet_csk(sk);
2347 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2348 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2349 }
2350
2351 /* Restart timer after forward progress on connection.
2352 * RFC2988 recommends to restart timer to now+rto.
2353 */
2354
2355 static void tcp_ack_packets_out(struct sock *sk)
2356 {
2357 struct tcp_sock *tp = tcp_sk(sk);
2358
2359 if (!tp->packets_out) {
2360 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2361 } else {
2362 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2363 }
2364 }
2365
2366 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2367 __u32 now, __s32 *seq_rtt)
2368 {
2369 struct tcp_sock *tp = tcp_sk(sk);
2370 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2371 __u32 seq = tp->snd_una;
2372 __u32 packets_acked;
2373 int acked = 0;
2374
2375 /* If we get here, the whole TSO packet has not been
2376 * acked.
2377 */
2378 BUG_ON(!after(scb->end_seq, seq));
2379
2380 packets_acked = tcp_skb_pcount(skb);
2381 if (tcp_trim_head(sk, skb, seq - scb->seq))
2382 return 0;
2383 packets_acked -= tcp_skb_pcount(skb);
2384
2385 if (packets_acked) {
2386 __u8 sacked = scb->sacked;
2387
2388 acked |= FLAG_DATA_ACKED;
2389 if (sacked) {
2390 if (sacked & TCPCB_RETRANS) {
2391 if (sacked & TCPCB_SACKED_RETRANS)
2392 tp->retrans_out -= packets_acked;
2393 acked |= FLAG_RETRANS_DATA_ACKED;
2394 *seq_rtt = -1;
2395 } else if (*seq_rtt < 0)
2396 *seq_rtt = now - scb->when;
2397 if (sacked & TCPCB_SACKED_ACKED)
2398 tp->sacked_out -= packets_acked;
2399 if (sacked & TCPCB_LOST)
2400 tp->lost_out -= packets_acked;
2401 if (sacked & TCPCB_URG) {
2402 if (tp->urg_mode &&
2403 !before(seq, tp->snd_up))
2404 tp->urg_mode = 0;
2405 }
2406 } else if (*seq_rtt < 0)
2407 *seq_rtt = now - scb->when;
2408
2409 if (tp->fackets_out) {
2410 __u32 dval = min(tp->fackets_out, packets_acked);
2411 tp->fackets_out -= dval;
2412 }
2413 tp->packets_out -= packets_acked;
2414
2415 BUG_ON(tcp_skb_pcount(skb) == 0);
2416 BUG_ON(!before(scb->seq, scb->end_seq));
2417 }
2418
2419 return acked;
2420 }
2421
2422 /* Remove acknowledged frames from the retransmission queue. */
2423 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2424 {
2425 struct tcp_sock *tp = tcp_sk(sk);
2426 const struct inet_connection_sock *icsk = inet_csk(sk);
2427 struct sk_buff *skb;
2428 __u32 now = tcp_time_stamp;
2429 int acked = 0;
2430 int prior_packets = tp->packets_out;
2431 __s32 seq_rtt = -1;
2432 ktime_t last_ackt = net_invalid_timestamp();
2433
2434 while ((skb = tcp_write_queue_head(sk)) &&
2435 skb != tcp_send_head(sk)) {
2436 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2437 __u8 sacked = scb->sacked;
2438
2439 /* If our packet is before the ack sequence we can
2440 * discard it as it's confirmed to have arrived at
2441 * the other end.
2442 */
2443 if (after(scb->end_seq, tp->snd_una)) {
2444 if (tcp_skb_pcount(skb) > 1 &&
2445 after(tp->snd_una, scb->seq))
2446 acked |= tcp_tso_acked(sk, skb,
2447 now, &seq_rtt);
2448 break;
2449 }
2450
2451 /* Initial outgoing SYN's get put onto the write_queue
2452 * just like anything else we transmit. It is not
2453 * true data, and if we misinform our callers that
2454 * this ACK acks real data, we will erroneously exit
2455 * connection startup slow start one packet too
2456 * quickly. This is severely frowned upon behavior.
2457 */
2458 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2459 acked |= FLAG_DATA_ACKED;
2460 } else {
2461 acked |= FLAG_SYN_ACKED;
2462 tp->retrans_stamp = 0;
2463 }
2464
2465 /* MTU probing checks */
2466 if (icsk->icsk_mtup.probe_size) {
2467 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2468 tcp_mtup_probe_success(sk, skb);
2469 }
2470 }
2471
2472 if (sacked) {
2473 if (sacked & TCPCB_RETRANS) {
2474 if (sacked & TCPCB_SACKED_RETRANS)
2475 tp->retrans_out -= tcp_skb_pcount(skb);
2476 acked |= FLAG_RETRANS_DATA_ACKED;
2477 seq_rtt = -1;
2478 } else if (seq_rtt < 0) {
2479 seq_rtt = now - scb->when;
2480 last_ackt = skb->tstamp;
2481 }
2482 if (sacked & TCPCB_SACKED_ACKED)
2483 tp->sacked_out -= tcp_skb_pcount(skb);
2484 if (sacked & TCPCB_LOST)
2485 tp->lost_out -= tcp_skb_pcount(skb);
2486 if (sacked & TCPCB_URG) {
2487 if (tp->urg_mode &&
2488 !before(scb->end_seq, tp->snd_up))
2489 tp->urg_mode = 0;
2490 }
2491 } else if (seq_rtt < 0) {
2492 seq_rtt = now - scb->when;
2493 last_ackt = skb->tstamp;
2494 }
2495 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2496 tcp_packets_out_dec(tp, skb);
2497 tcp_unlink_write_queue(skb, sk);
2498 sk_stream_free_skb(sk, skb);
2499 clear_all_retrans_hints(tp);
2500 }
2501
2502 if (acked&FLAG_ACKED) {
2503 u32 pkts_acked = prior_packets - tp->packets_out;
2504 const struct tcp_congestion_ops *ca_ops
2505 = inet_csk(sk)->icsk_ca_ops;
2506
2507 tcp_ack_update_rtt(sk, acked, seq_rtt);
2508 tcp_ack_packets_out(sk);
2509
2510 if (ca_ops->pkts_acked) {
2511 s32 rtt_us = -1;
2512
2513 /* Is the ACK triggering packet unambiguous? */
2514 if (!(acked & FLAG_RETRANS_DATA_ACKED)) {
2515 /* High resolution needed and available? */
2516 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2517 !ktime_equal(last_ackt,
2518 net_invalid_timestamp()))
2519 rtt_us = ktime_us_delta(ktime_get_real(),
2520 last_ackt);
2521 else if (seq_rtt > 0)
2522 rtt_us = jiffies_to_usecs(seq_rtt);
2523 }
2524
2525 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2526 }
2527 }
2528
2529 #if FASTRETRANS_DEBUG > 0
2530 BUG_TRAP((int)tp->sacked_out >= 0);
2531 BUG_TRAP((int)tp->lost_out >= 0);
2532 BUG_TRAP((int)tp->retrans_out >= 0);
2533 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2534 const struct inet_connection_sock *icsk = inet_csk(sk);
2535 if (tp->lost_out) {
2536 printk(KERN_DEBUG "Leak l=%u %d\n",
2537 tp->lost_out, icsk->icsk_ca_state);
2538 tp->lost_out = 0;
2539 }
2540 if (tp->sacked_out) {
2541 printk(KERN_DEBUG "Leak s=%u %d\n",
2542 tp->sacked_out, icsk->icsk_ca_state);
2543 tp->sacked_out = 0;
2544 }
2545 if (tp->retrans_out) {
2546 printk(KERN_DEBUG "Leak r=%u %d\n",
2547 tp->retrans_out, icsk->icsk_ca_state);
2548 tp->retrans_out = 0;
2549 }
2550 }
2551 #endif
2552 *seq_rtt_p = seq_rtt;
2553 return acked;
2554 }
2555
2556 static void tcp_ack_probe(struct sock *sk)
2557 {
2558 const struct tcp_sock *tp = tcp_sk(sk);
2559 struct inet_connection_sock *icsk = inet_csk(sk);
2560
2561 /* Was it a usable window open? */
2562
2563 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2564 tp->snd_una + tp->snd_wnd)) {
2565 icsk->icsk_backoff = 0;
2566 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2567 /* Socket must be waked up by subsequent tcp_data_snd_check().
2568 * This function is not for random using!
2569 */
2570 } else {
2571 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2572 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2573 TCP_RTO_MAX);
2574 }
2575 }
2576
2577 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2578 {
2579 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2580 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2581 }
2582
2583 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2584 {
2585 const struct tcp_sock *tp = tcp_sk(sk);
2586 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2587 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2588 }
2589
2590 /* Check that window update is acceptable.
2591 * The function assumes that snd_una<=ack<=snd_next.
2592 */
2593 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2594 const u32 ack_seq, const u32 nwin)
2595 {
2596 return (after(ack, tp->snd_una) ||
2597 after(ack_seq, tp->snd_wl1) ||
2598 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2599 }
2600
2601 /* Update our send window.
2602 *
2603 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2604 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2605 */
2606 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2607 u32 ack_seq)
2608 {
2609 struct tcp_sock *tp = tcp_sk(sk);
2610 int flag = 0;
2611 u32 nwin = ntohs(tcp_hdr(skb)->window);
2612
2613 if (likely(!tcp_hdr(skb)->syn))
2614 nwin <<= tp->rx_opt.snd_wscale;
2615
2616 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2617 flag |= FLAG_WIN_UPDATE;
2618 tcp_update_wl(tp, ack, ack_seq);
2619
2620 if (tp->snd_wnd != nwin) {
2621 tp->snd_wnd = nwin;
2622
2623 /* Note, it is the only place, where
2624 * fast path is recovered for sending TCP.
2625 */
2626 tp->pred_flags = 0;
2627 tcp_fast_path_check(sk);
2628
2629 if (nwin > tp->max_window) {
2630 tp->max_window = nwin;
2631 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2632 }
2633 }
2634 }
2635
2636 tp->snd_una = ack;
2637
2638 return flag;
2639 }
2640
2641 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2642 * continue in congestion avoidance.
2643 */
2644 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2645 {
2646 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2647 tp->snd_cwnd_cnt = 0;
2648 TCP_ECN_queue_cwr(tp);
2649 tcp_moderate_cwnd(tp);
2650 }
2651
2652 /* A conservative spurious RTO response algorithm: reduce cwnd using
2653 * rate halving and continue in congestion avoidance.
2654 */
2655 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2656 {
2657 tcp_enter_cwr(sk, 0);
2658 }
2659
2660 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2661 {
2662 if (flag&FLAG_ECE)
2663 tcp_ratehalving_spur_to_response(sk);
2664 else
2665 tcp_undo_cwr(sk, 1);
2666 }
2667
2668 /* F-RTO spurious RTO detection algorithm (RFC4138)
2669 *
2670 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2671 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2672 * window (but not to or beyond highest sequence sent before RTO):
2673 * On First ACK, send two new segments out.
2674 * On Second ACK, RTO was likely spurious. Do spurious response (response
2675 * algorithm is not part of the F-RTO detection algorithm
2676 * given in RFC4138 but can be selected separately).
2677 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2678 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2679 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2680 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2681 *
2682 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2683 * original window even after we transmit two new data segments.
2684 *
2685 * SACK version:
2686 * on first step, wait until first cumulative ACK arrives, then move to
2687 * the second step. In second step, the next ACK decides.
2688 *
2689 * F-RTO is implemented (mainly) in four functions:
2690 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2691 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2692 * called when tcp_use_frto() showed green light
2693 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2694 * - tcp_enter_frto_loss() is called if there is not enough evidence
2695 * to prove that the RTO is indeed spurious. It transfers the control
2696 * from F-RTO to the conventional RTO recovery
2697 */
2698 static int tcp_process_frto(struct sock *sk, int flag)
2699 {
2700 struct tcp_sock *tp = tcp_sk(sk);
2701
2702 tcp_sync_left_out(tp);
2703
2704 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2705 if (flag&FLAG_DATA_ACKED)
2706 inet_csk(sk)->icsk_retransmits = 0;
2707
2708 if (!before(tp->snd_una, tp->frto_highmark)) {
2709 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2710 return 1;
2711 }
2712
2713 if (!IsSackFrto() || IsReno(tp)) {
2714 /* RFC4138 shortcoming in step 2; should also have case c):
2715 * ACK isn't duplicate nor advances window, e.g., opposite dir
2716 * data, winupdate
2717 */
2718 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
2719 return 1;
2720
2721 if (!(flag&FLAG_DATA_ACKED)) {
2722 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2723 flag);
2724 return 1;
2725 }
2726 } else {
2727 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2728 /* Prevent sending of new data. */
2729 tp->snd_cwnd = min(tp->snd_cwnd,
2730 tcp_packets_in_flight(tp));
2731 return 1;
2732 }
2733
2734 if ((tp->frto_counter >= 2) &&
2735 (!(flag&FLAG_FORWARD_PROGRESS) ||
2736 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2737 /* RFC4138 shortcoming (see comment above) */
2738 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2739 return 1;
2740
2741 tcp_enter_frto_loss(sk, 3, flag);
2742 return 1;
2743 }
2744 }
2745
2746 if (tp->frto_counter == 1) {
2747 /* Sending of the next skb must be allowed or no FRTO */
2748 if (!tcp_send_head(sk) ||
2749 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2750 tp->snd_una + tp->snd_wnd)) {
2751 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2752 flag);
2753 return 1;
2754 }
2755
2756 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2757 tp->frto_counter = 2;
2758 return 1;
2759 } else {
2760 switch (sysctl_tcp_frto_response) {
2761 case 2:
2762 tcp_undo_spur_to_response(sk, flag);
2763 break;
2764 case 1:
2765 tcp_conservative_spur_to_response(tp);
2766 break;
2767 default:
2768 tcp_ratehalving_spur_to_response(sk);
2769 break;
2770 }
2771 tp->frto_counter = 0;
2772 }
2773 return 0;
2774 }
2775
2776 /* This routine deals with incoming acks, but not outgoing ones. */
2777 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2778 {
2779 struct inet_connection_sock *icsk = inet_csk(sk);
2780 struct tcp_sock *tp = tcp_sk(sk);
2781 u32 prior_snd_una = tp->snd_una;
2782 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2783 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2784 u32 prior_in_flight;
2785 s32 seq_rtt;
2786 int prior_packets;
2787 int frto_cwnd = 0;
2788
2789 /* If the ack is newer than sent or older than previous acks
2790 * then we can probably ignore it.
2791 */
2792 if (after(ack, tp->snd_nxt))
2793 goto uninteresting_ack;
2794
2795 if (before(ack, prior_snd_una))
2796 goto old_ack;
2797
2798 if (after(ack, prior_snd_una))
2799 flag |= FLAG_SND_UNA_ADVANCED;
2800
2801 if (sysctl_tcp_abc) {
2802 if (icsk->icsk_ca_state < TCP_CA_CWR)
2803 tp->bytes_acked += ack - prior_snd_una;
2804 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2805 /* we assume just one segment left network */
2806 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2807 }
2808
2809 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2810 /* Window is constant, pure forward advance.
2811 * No more checks are required.
2812 * Note, we use the fact that SND.UNA>=SND.WL2.
2813 */
2814 tcp_update_wl(tp, ack, ack_seq);
2815 tp->snd_una = ack;
2816 flag |= FLAG_WIN_UPDATE;
2817
2818 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2819
2820 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2821 } else {
2822 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2823 flag |= FLAG_DATA;
2824 else
2825 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2826
2827 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
2828
2829 if (TCP_SKB_CB(skb)->sacked)
2830 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2831
2832 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
2833 flag |= FLAG_ECE;
2834
2835 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2836 }
2837
2838 /* We passed data and got it acked, remove any soft error
2839 * log. Something worked...
2840 */
2841 sk->sk_err_soft = 0;
2842 tp->rcv_tstamp = tcp_time_stamp;
2843 prior_packets = tp->packets_out;
2844 if (!prior_packets)
2845 goto no_queue;
2846
2847 prior_in_flight = tcp_packets_in_flight(tp);
2848
2849 /* See if we can take anything off of the retransmit queue. */
2850 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2851
2852 if (tp->frto_counter)
2853 frto_cwnd = tcp_process_frto(sk, flag);
2854
2855 if (tcp_ack_is_dubious(sk, flag)) {
2856 /* Advance CWND, if state allows this. */
2857 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2858 tcp_may_raise_cwnd(sk, flag))
2859 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
2860 tcp_fastretrans_alert(sk, prior_packets, flag);
2861 } else {
2862 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2863 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
2864 }
2865
2866 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2867 dst_confirm(sk->sk_dst_cache);
2868
2869 return 1;
2870
2871 no_queue:
2872 icsk->icsk_probes_out = 0;
2873
2874 /* If this ack opens up a zero window, clear backoff. It was
2875 * being used to time the probes, and is probably far higher than
2876 * it needs to be for normal retransmission.
2877 */
2878 if (tcp_send_head(sk))
2879 tcp_ack_probe(sk);
2880 return 1;
2881
2882 old_ack:
2883 if (TCP_SKB_CB(skb)->sacked)
2884 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2885
2886 uninteresting_ack:
2887 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2888 return 0;
2889 }
2890
2891
2892 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2893 * But, this can also be called on packets in the established flow when
2894 * the fast version below fails.
2895 */
2896 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2897 {
2898 unsigned char *ptr;
2899 struct tcphdr *th = tcp_hdr(skb);
2900 int length=(th->doff*4)-sizeof(struct tcphdr);
2901
2902 ptr = (unsigned char *)(th + 1);
2903 opt_rx->saw_tstamp = 0;
2904
2905 while (length > 0) {
2906 int opcode=*ptr++;
2907 int opsize;
2908
2909 switch (opcode) {
2910 case TCPOPT_EOL:
2911 return;
2912 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2913 length--;
2914 continue;
2915 default:
2916 opsize=*ptr++;
2917 if (opsize < 2) /* "silly options" */
2918 return;
2919 if (opsize > length)
2920 return; /* don't parse partial options */
2921 switch (opcode) {
2922 case TCPOPT_MSS:
2923 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
2924 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2925 if (in_mss) {
2926 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2927 in_mss = opt_rx->user_mss;
2928 opt_rx->mss_clamp = in_mss;
2929 }
2930 }
2931 break;
2932 case TCPOPT_WINDOW:
2933 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
2934 if (sysctl_tcp_window_scaling) {
2935 __u8 snd_wscale = *(__u8 *) ptr;
2936 opt_rx->wscale_ok = 1;
2937 if (snd_wscale > 14) {
2938 if (net_ratelimit())
2939 printk(KERN_INFO "tcp_parse_options: Illegal window "
2940 "scaling value %d >14 received.\n",
2941 snd_wscale);
2942 snd_wscale = 14;
2943 }
2944 opt_rx->snd_wscale = snd_wscale;
2945 }
2946 break;
2947 case TCPOPT_TIMESTAMP:
2948 if (opsize==TCPOLEN_TIMESTAMP) {
2949 if ((estab && opt_rx->tstamp_ok) ||
2950 (!estab && sysctl_tcp_timestamps)) {
2951 opt_rx->saw_tstamp = 1;
2952 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2953 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2954 }
2955 }
2956 break;
2957 case TCPOPT_SACK_PERM:
2958 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2959 if (sysctl_tcp_sack) {
2960 opt_rx->sack_ok = 1;
2961 tcp_sack_reset(opt_rx);
2962 }
2963 }
2964 break;
2965
2966 case TCPOPT_SACK:
2967 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2968 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2969 opt_rx->sack_ok) {
2970 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2971 }
2972 break;
2973 #ifdef CONFIG_TCP_MD5SIG
2974 case TCPOPT_MD5SIG:
2975 /*
2976 * The MD5 Hash has already been
2977 * checked (see tcp_v{4,6}_do_rcv()).
2978 */
2979 break;
2980 #endif
2981 }
2982
2983 ptr+=opsize-2;
2984 length-=opsize;
2985 }
2986 }
2987 }
2988
2989 /* Fast parse options. This hopes to only see timestamps.
2990 * If it is wrong it falls back on tcp_parse_options().
2991 */
2992 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2993 struct tcp_sock *tp)
2994 {
2995 if (th->doff == sizeof(struct tcphdr)>>2) {
2996 tp->rx_opt.saw_tstamp = 0;
2997 return 0;
2998 } else if (tp->rx_opt.tstamp_ok &&
2999 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3000 __be32 *ptr = (__be32 *)(th + 1);
3001 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3002 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3003 tp->rx_opt.saw_tstamp = 1;
3004 ++ptr;
3005 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3006 ++ptr;
3007 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3008 return 1;
3009 }
3010 }
3011 tcp_parse_options(skb, &tp->rx_opt, 1);
3012 return 1;
3013 }
3014
3015 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3016 {
3017 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3018 tp->rx_opt.ts_recent_stamp = get_seconds();
3019 }
3020
3021 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3022 {
3023 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3024 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3025 * extra check below makes sure this can only happen
3026 * for pure ACK frames. -DaveM
3027 *
3028 * Not only, also it occurs for expired timestamps.
3029 */
3030
3031 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3032 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3033 tcp_store_ts_recent(tp);
3034 }
3035 }
3036
3037 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3038 *
3039 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3040 * it can pass through stack. So, the following predicate verifies that
3041 * this segment is not used for anything but congestion avoidance or
3042 * fast retransmit. Moreover, we even are able to eliminate most of such
3043 * second order effects, if we apply some small "replay" window (~RTO)
3044 * to timestamp space.
3045 *
3046 * All these measures still do not guarantee that we reject wrapped ACKs
3047 * on networks with high bandwidth, when sequence space is recycled fastly,
3048 * but it guarantees that such events will be very rare and do not affect
3049 * connection seriously. This doesn't look nice, but alas, PAWS is really
3050 * buggy extension.
3051 *
3052 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3053 * states that events when retransmit arrives after original data are rare.
3054 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3055 * the biggest problem on large power networks even with minor reordering.
3056 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3057 * up to bandwidth of 18Gigabit/sec. 8) ]
3058 */
3059
3060 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3061 {
3062 struct tcp_sock *tp = tcp_sk(sk);
3063 struct tcphdr *th = tcp_hdr(skb);
3064 u32 seq = TCP_SKB_CB(skb)->seq;
3065 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3066
3067 return (/* 1. Pure ACK with correct sequence number. */
3068 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3069
3070 /* 2. ... and duplicate ACK. */
3071 ack == tp->snd_una &&
3072
3073 /* 3. ... and does not update window. */
3074 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3075
3076 /* 4. ... and sits in replay window. */
3077 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3078 }
3079
3080 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3081 {
3082 const struct tcp_sock *tp = tcp_sk(sk);
3083 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3084 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3085 !tcp_disordered_ack(sk, skb));
3086 }
3087
3088 /* Check segment sequence number for validity.
3089 *
3090 * Segment controls are considered valid, if the segment
3091 * fits to the window after truncation to the window. Acceptability
3092 * of data (and SYN, FIN, of course) is checked separately.
3093 * See tcp_data_queue(), for example.
3094 *
3095 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3096 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3097 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3098 * (borrowed from freebsd)
3099 */
3100
3101 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3102 {
3103 return !before(end_seq, tp->rcv_wup) &&
3104 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3105 }
3106
3107 /* When we get a reset we do this. */
3108 static void tcp_reset(struct sock *sk)
3109 {
3110 /* We want the right error as BSD sees it (and indeed as we do). */
3111 switch (sk->sk_state) {
3112 case TCP_SYN_SENT:
3113 sk->sk_err = ECONNREFUSED;
3114 break;
3115 case TCP_CLOSE_WAIT:
3116 sk->sk_err = EPIPE;
3117 break;
3118 case TCP_CLOSE:
3119 return;
3120 default:
3121 sk->sk_err = ECONNRESET;
3122 }
3123
3124 if (!sock_flag(sk, SOCK_DEAD))
3125 sk->sk_error_report(sk);
3126
3127 tcp_done(sk);
3128 }
3129
3130 /*
3131 * Process the FIN bit. This now behaves as it is supposed to work
3132 * and the FIN takes effect when it is validly part of sequence
3133 * space. Not before when we get holes.
3134 *
3135 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3136 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3137 * TIME-WAIT)
3138 *
3139 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3140 * close and we go into CLOSING (and later onto TIME-WAIT)
3141 *
3142 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3143 */
3144 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3145 {
3146 struct tcp_sock *tp = tcp_sk(sk);
3147
3148 inet_csk_schedule_ack(sk);
3149
3150 sk->sk_shutdown |= RCV_SHUTDOWN;
3151 sock_set_flag(sk, SOCK_DONE);
3152
3153 switch (sk->sk_state) {
3154 case TCP_SYN_RECV:
3155 case TCP_ESTABLISHED:
3156 /* Move to CLOSE_WAIT */
3157 tcp_set_state(sk, TCP_CLOSE_WAIT);
3158 inet_csk(sk)->icsk_ack.pingpong = 1;
3159 break;
3160
3161 case TCP_CLOSE_WAIT:
3162 case TCP_CLOSING:
3163 /* Received a retransmission of the FIN, do
3164 * nothing.
3165 */
3166 break;
3167 case TCP_LAST_ACK:
3168 /* RFC793: Remain in the LAST-ACK state. */
3169 break;
3170
3171 case TCP_FIN_WAIT1:
3172 /* This case occurs when a simultaneous close
3173 * happens, we must ack the received FIN and
3174 * enter the CLOSING state.
3175 */
3176 tcp_send_ack(sk);
3177 tcp_set_state(sk, TCP_CLOSING);
3178 break;
3179 case TCP_FIN_WAIT2:
3180 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3181 tcp_send_ack(sk);
3182 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3183 break;
3184 default:
3185 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3186 * cases we should never reach this piece of code.
3187 */
3188 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3189 __FUNCTION__, sk->sk_state);
3190 break;
3191 }
3192
3193 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3194 * Probably, we should reset in this case. For now drop them.
3195 */
3196 __skb_queue_purge(&tp->out_of_order_queue);
3197 if (tp->rx_opt.sack_ok)
3198 tcp_sack_reset(&tp->rx_opt);
3199 sk_stream_mem_reclaim(sk);
3200
3201 if (!sock_flag(sk, SOCK_DEAD)) {
3202 sk->sk_state_change(sk);
3203
3204 /* Do not send POLL_HUP for half duplex close. */
3205 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3206 sk->sk_state == TCP_CLOSE)
3207 sk_wake_async(sk, 1, POLL_HUP);
3208 else
3209 sk_wake_async(sk, 1, POLL_IN);
3210 }
3211 }
3212
3213 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3214 {
3215 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3216 if (before(seq, sp->start_seq))
3217 sp->start_seq = seq;
3218 if (after(end_seq, sp->end_seq))
3219 sp->end_seq = end_seq;
3220 return 1;
3221 }
3222 return 0;
3223 }
3224
3225 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3226 {
3227 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3228 if (before(seq, tp->rcv_nxt))
3229 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3230 else
3231 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3232
3233 tp->rx_opt.dsack = 1;
3234 tp->duplicate_sack[0].start_seq = seq;
3235 tp->duplicate_sack[0].end_seq = end_seq;
3236 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3237 }
3238 }
3239
3240 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3241 {
3242 if (!tp->rx_opt.dsack)
3243 tcp_dsack_set(tp, seq, end_seq);
3244 else
3245 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3246 }
3247
3248 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3249 {
3250 struct tcp_sock *tp = tcp_sk(sk);
3251
3252 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3253 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3254 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3255 tcp_enter_quickack_mode(sk);
3256
3257 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3258 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3259
3260 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3261 end_seq = tp->rcv_nxt;
3262 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3263 }
3264 }
3265
3266 tcp_send_ack(sk);
3267 }
3268
3269 /* These routines update the SACK block as out-of-order packets arrive or
3270 * in-order packets close up the sequence space.
3271 */
3272 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3273 {
3274 int this_sack;
3275 struct tcp_sack_block *sp = &tp->selective_acks[0];
3276 struct tcp_sack_block *swalk = sp+1;
3277
3278 /* See if the recent change to the first SACK eats into
3279 * or hits the sequence space of other SACK blocks, if so coalesce.
3280 */
3281 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3282 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3283 int i;
3284
3285 /* Zap SWALK, by moving every further SACK up by one slot.
3286 * Decrease num_sacks.
3287 */
3288 tp->rx_opt.num_sacks--;
3289 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3290 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3291 sp[i] = sp[i+1];
3292 continue;
3293 }
3294 this_sack++, swalk++;
3295 }
3296 }
3297
3298 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3299 {
3300 __u32 tmp;
3301
3302 tmp = sack1->start_seq;
3303 sack1->start_seq = sack2->start_seq;
3304 sack2->start_seq = tmp;
3305
3306 tmp = sack1->end_seq;
3307 sack1->end_seq = sack2->end_seq;
3308 sack2->end_seq = tmp;
3309 }
3310
3311 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3312 {
3313 struct tcp_sock *tp = tcp_sk(sk);
3314 struct tcp_sack_block *sp = &tp->selective_acks[0];
3315 int cur_sacks = tp->rx_opt.num_sacks;
3316 int this_sack;
3317
3318 if (!cur_sacks)
3319 goto new_sack;
3320
3321 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3322 if (tcp_sack_extend(sp, seq, end_seq)) {
3323 /* Rotate this_sack to the first one. */
3324 for (; this_sack>0; this_sack--, sp--)
3325 tcp_sack_swap(sp, sp-1);
3326 if (cur_sacks > 1)
3327 tcp_sack_maybe_coalesce(tp);
3328 return;
3329 }
3330 }
3331
3332 /* Could not find an adjacent existing SACK, build a new one,
3333 * put it at the front, and shift everyone else down. We
3334 * always know there is at least one SACK present already here.
3335 *
3336 * If the sack array is full, forget about the last one.
3337 */
3338 if (this_sack >= 4) {
3339 this_sack--;
3340 tp->rx_opt.num_sacks--;
3341 sp--;
3342 }
3343 for (; this_sack > 0; this_sack--, sp--)
3344 *sp = *(sp-1);
3345
3346 new_sack:
3347 /* Build the new head SACK, and we're done. */
3348 sp->start_seq = seq;
3349 sp->end_seq = end_seq;
3350 tp->rx_opt.num_sacks++;
3351 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3352 }
3353
3354 /* RCV.NXT advances, some SACKs should be eaten. */
3355
3356 static void tcp_sack_remove(struct tcp_sock *tp)
3357 {
3358 struct tcp_sack_block *sp = &tp->selective_acks[0];
3359 int num_sacks = tp->rx_opt.num_sacks;
3360 int this_sack;
3361
3362 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3363 if (skb_queue_empty(&tp->out_of_order_queue)) {
3364 tp->rx_opt.num_sacks = 0;
3365 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3366 return;
3367 }
3368
3369 for (this_sack = 0; this_sack < num_sacks; ) {
3370 /* Check if the start of the sack is covered by RCV.NXT. */
3371 if (!before(tp->rcv_nxt, sp->start_seq)) {
3372 int i;
3373
3374 /* RCV.NXT must cover all the block! */
3375 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3376
3377 /* Zap this SACK, by moving forward any other SACKS. */
3378 for (i=this_sack+1; i < num_sacks; i++)
3379 tp->selective_acks[i-1] = tp->selective_acks[i];
3380 num_sacks--;
3381 continue;
3382 }
3383 this_sack++;
3384 sp++;
3385 }
3386 if (num_sacks != tp->rx_opt.num_sacks) {
3387 tp->rx_opt.num_sacks = num_sacks;
3388 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3389 }
3390 }
3391
3392 /* This one checks to see if we can put data from the
3393 * out_of_order queue into the receive_queue.
3394 */
3395 static void tcp_ofo_queue(struct sock *sk)
3396 {
3397 struct tcp_sock *tp = tcp_sk(sk);
3398 __u32 dsack_high = tp->rcv_nxt;
3399 struct sk_buff *skb;
3400
3401 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3402 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3403 break;
3404
3405 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3406 __u32 dsack = dsack_high;
3407 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3408 dsack_high = TCP_SKB_CB(skb)->end_seq;
3409 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3410 }
3411
3412 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3413 SOCK_DEBUG(sk, "ofo packet was already received \n");
3414 __skb_unlink(skb, &tp->out_of_order_queue);
3415 __kfree_skb(skb);
3416 continue;
3417 }
3418 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3419 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3420 TCP_SKB_CB(skb)->end_seq);
3421
3422 __skb_unlink(skb, &tp->out_of_order_queue);
3423 __skb_queue_tail(&sk->sk_receive_queue, skb);
3424 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3425 if (tcp_hdr(skb)->fin)
3426 tcp_fin(skb, sk, tcp_hdr(skb));
3427 }
3428 }
3429
3430 static int tcp_prune_queue(struct sock *sk);
3431
3432 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3433 {
3434 struct tcphdr *th = tcp_hdr(skb);
3435 struct tcp_sock *tp = tcp_sk(sk);
3436 int eaten = -1;
3437
3438 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3439 goto drop;
3440
3441 __skb_pull(skb, th->doff*4);
3442
3443 TCP_ECN_accept_cwr(tp, skb);
3444
3445 if (tp->rx_opt.dsack) {
3446 tp->rx_opt.dsack = 0;
3447 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3448 4 - tp->rx_opt.tstamp_ok);
3449 }
3450
3451 /* Queue data for delivery to the user.
3452 * Packets in sequence go to the receive queue.
3453 * Out of sequence packets to the out_of_order_queue.
3454 */
3455 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3456 if (tcp_receive_window(tp) == 0)
3457 goto out_of_window;
3458
3459 /* Ok. In sequence. In window. */
3460 if (tp->ucopy.task == current &&
3461 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3462 sock_owned_by_user(sk) && !tp->urg_data) {
3463 int chunk = min_t(unsigned int, skb->len,
3464 tp->ucopy.len);
3465
3466 __set_current_state(TASK_RUNNING);
3467
3468 local_bh_enable();
3469 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3470 tp->ucopy.len -= chunk;
3471 tp->copied_seq += chunk;
3472 eaten = (chunk == skb->len && !th->fin);
3473 tcp_rcv_space_adjust(sk);
3474 }
3475 local_bh_disable();
3476 }
3477
3478 if (eaten <= 0) {
3479 queue_and_out:
3480 if (eaten < 0 &&
3481 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3482 !sk_stream_rmem_schedule(sk, skb))) {
3483 if (tcp_prune_queue(sk) < 0 ||
3484 !sk_stream_rmem_schedule(sk, skb))
3485 goto drop;
3486 }
3487 sk_stream_set_owner_r(skb, sk);
3488 __skb_queue_tail(&sk->sk_receive_queue, skb);
3489 }
3490 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3491 if (skb->len)
3492 tcp_event_data_recv(sk, skb);
3493 if (th->fin)
3494 tcp_fin(skb, sk, th);
3495
3496 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3497 tcp_ofo_queue(sk);
3498
3499 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3500 * gap in queue is filled.
3501 */
3502 if (skb_queue_empty(&tp->out_of_order_queue))
3503 inet_csk(sk)->icsk_ack.pingpong = 0;
3504 }
3505
3506 if (tp->rx_opt.num_sacks)
3507 tcp_sack_remove(tp);
3508
3509 tcp_fast_path_check(sk);
3510
3511 if (eaten > 0)
3512 __kfree_skb(skb);
3513 else if (!sock_flag(sk, SOCK_DEAD))
3514 sk->sk_data_ready(sk, 0);
3515 return;
3516 }
3517
3518 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3519 /* A retransmit, 2nd most common case. Force an immediate ack. */
3520 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3521 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3522
3523 out_of_window:
3524 tcp_enter_quickack_mode(sk);
3525 inet_csk_schedule_ack(sk);
3526 drop:
3527 __kfree_skb(skb);
3528 return;
3529 }
3530
3531 /* Out of window. F.e. zero window probe. */
3532 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3533 goto out_of_window;
3534
3535 tcp_enter_quickack_mode(sk);
3536
3537 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3538 /* Partial packet, seq < rcv_next < end_seq */
3539 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3540 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3541 TCP_SKB_CB(skb)->end_seq);
3542
3543 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3544
3545 /* If window is closed, drop tail of packet. But after
3546 * remembering D-SACK for its head made in previous line.
3547 */
3548 if (!tcp_receive_window(tp))
3549 goto out_of_window;
3550 goto queue_and_out;
3551 }
3552
3553 TCP_ECN_check_ce(tp, skb);
3554
3555 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3556 !sk_stream_rmem_schedule(sk, skb)) {
3557 if (tcp_prune_queue(sk) < 0 ||
3558 !sk_stream_rmem_schedule(sk, skb))
3559 goto drop;
3560 }
3561
3562 /* Disable header prediction. */
3563 tp->pred_flags = 0;
3564 inet_csk_schedule_ack(sk);
3565
3566 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3567 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3568
3569 sk_stream_set_owner_r(skb, sk);
3570
3571 if (!skb_peek(&tp->out_of_order_queue)) {
3572 /* Initial out of order segment, build 1 SACK. */
3573 if (tp->rx_opt.sack_ok) {
3574 tp->rx_opt.num_sacks = 1;
3575 tp->rx_opt.dsack = 0;
3576 tp->rx_opt.eff_sacks = 1;
3577 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3578 tp->selective_acks[0].end_seq =
3579 TCP_SKB_CB(skb)->end_seq;
3580 }
3581 __skb_queue_head(&tp->out_of_order_queue,skb);
3582 } else {
3583 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3584 u32 seq = TCP_SKB_CB(skb)->seq;
3585 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3586
3587 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3588 __skb_append(skb1, skb, &tp->out_of_order_queue);
3589
3590 if (!tp->rx_opt.num_sacks ||
3591 tp->selective_acks[0].end_seq != seq)
3592 goto add_sack;
3593
3594 /* Common case: data arrive in order after hole. */
3595 tp->selective_acks[0].end_seq = end_seq;
3596 return;
3597 }
3598
3599 /* Find place to insert this segment. */
3600 do {
3601 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3602 break;
3603 } while ((skb1 = skb1->prev) !=
3604 (struct sk_buff*)&tp->out_of_order_queue);
3605
3606 /* Do skb overlap to previous one? */
3607 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3608 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3609 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3610 /* All the bits are present. Drop. */
3611 __kfree_skb(skb);
3612 tcp_dsack_set(tp, seq, end_seq);
3613 goto add_sack;
3614 }
3615 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3616 /* Partial overlap. */
3617 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3618 } else {
3619 skb1 = skb1->prev;
3620 }
3621 }
3622 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3623
3624 /* And clean segments covered by new one as whole. */
3625 while ((skb1 = skb->next) !=
3626 (struct sk_buff*)&tp->out_of_order_queue &&
3627 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3628 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3629 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3630 break;
3631 }
3632 __skb_unlink(skb1, &tp->out_of_order_queue);
3633 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3634 __kfree_skb(skb1);
3635 }
3636
3637 add_sack:
3638 if (tp->rx_opt.sack_ok)
3639 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3640 }
3641 }
3642
3643 /* Collapse contiguous sequence of skbs head..tail with
3644 * sequence numbers start..end.
3645 * Segments with FIN/SYN are not collapsed (only because this
3646 * simplifies code)
3647 */
3648 static void
3649 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3650 struct sk_buff *head, struct sk_buff *tail,
3651 u32 start, u32 end)
3652 {
3653 struct sk_buff *skb;
3654
3655 /* First, check that queue is collapsible and find
3656 * the point where collapsing can be useful. */
3657 for (skb = head; skb != tail; ) {
3658 /* No new bits? It is possible on ofo queue. */
3659 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3660 struct sk_buff *next = skb->next;
3661 __skb_unlink(skb, list);
3662 __kfree_skb(skb);
3663 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3664 skb = next;
3665 continue;
3666 }
3667
3668 /* The first skb to collapse is:
3669 * - not SYN/FIN and
3670 * - bloated or contains data before "start" or
3671 * overlaps to the next one.
3672 */
3673 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3674 (tcp_win_from_space(skb->truesize) > skb->len ||
3675 before(TCP_SKB_CB(skb)->seq, start) ||
3676 (skb->next != tail &&
3677 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3678 break;
3679
3680 /* Decided to skip this, advance start seq. */
3681 start = TCP_SKB_CB(skb)->end_seq;
3682 skb = skb->next;
3683 }
3684 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3685 return;
3686
3687 while (before(start, end)) {
3688 struct sk_buff *nskb;
3689 int header = skb_headroom(skb);
3690 int copy = SKB_MAX_ORDER(header, 0);
3691
3692 /* Too big header? This can happen with IPv6. */
3693 if (copy < 0)
3694 return;
3695 if (end-start < copy)
3696 copy = end-start;
3697 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3698 if (!nskb)
3699 return;
3700
3701 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3702 skb_set_network_header(nskb, (skb_network_header(skb) -
3703 skb->head));
3704 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3705 skb->head));
3706 skb_reserve(nskb, header);
3707 memcpy(nskb->head, skb->head, header);
3708 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3709 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3710 __skb_insert(nskb, skb->prev, skb, list);
3711 sk_stream_set_owner_r(nskb, sk);
3712
3713 /* Copy data, releasing collapsed skbs. */
3714 while (copy > 0) {
3715 int offset = start - TCP_SKB_CB(skb)->seq;
3716 int size = TCP_SKB_CB(skb)->end_seq - start;
3717
3718 BUG_ON(offset < 0);
3719 if (size > 0) {
3720 size = min(copy, size);
3721 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3722 BUG();
3723 TCP_SKB_CB(nskb)->end_seq += size;
3724 copy -= size;
3725 start += size;
3726 }
3727 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3728 struct sk_buff *next = skb->next;
3729 __skb_unlink(skb, list);
3730 __kfree_skb(skb);
3731 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3732 skb = next;
3733 if (skb == tail ||
3734 tcp_hdr(skb)->syn ||
3735 tcp_hdr(skb)->fin)
3736 return;
3737 }
3738 }
3739 }
3740 }
3741
3742 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3743 * and tcp_collapse() them until all the queue is collapsed.
3744 */
3745 static void tcp_collapse_ofo_queue(struct sock *sk)
3746 {
3747 struct tcp_sock *tp = tcp_sk(sk);
3748 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3749 struct sk_buff *head;
3750 u32 start, end;
3751
3752 if (skb == NULL)
3753 return;
3754
3755 start = TCP_SKB_CB(skb)->seq;
3756 end = TCP_SKB_CB(skb)->end_seq;
3757 head = skb;
3758
3759 for (;;) {
3760 skb = skb->next;
3761
3762 /* Segment is terminated when we see gap or when
3763 * we are at the end of all the queue. */
3764 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3765 after(TCP_SKB_CB(skb)->seq, end) ||
3766 before(TCP_SKB_CB(skb)->end_seq, start)) {
3767 tcp_collapse(sk, &tp->out_of_order_queue,
3768 head, skb, start, end);
3769 head = skb;
3770 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3771 break;
3772 /* Start new segment */
3773 start = TCP_SKB_CB(skb)->seq;
3774 end = TCP_SKB_CB(skb)->end_seq;
3775 } else {
3776 if (before(TCP_SKB_CB(skb)->seq, start))
3777 start = TCP_SKB_CB(skb)->seq;
3778 if (after(TCP_SKB_CB(skb)->end_seq, end))
3779 end = TCP_SKB_CB(skb)->end_seq;
3780 }
3781 }
3782 }
3783
3784 /* Reduce allocated memory if we can, trying to get
3785 * the socket within its memory limits again.
3786 *
3787 * Return less than zero if we should start dropping frames
3788 * until the socket owning process reads some of the data
3789 * to stabilize the situation.
3790 */
3791 static int tcp_prune_queue(struct sock *sk)
3792 {
3793 struct tcp_sock *tp = tcp_sk(sk);
3794
3795 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3796
3797 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3798
3799 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3800 tcp_clamp_window(sk);
3801 else if (tcp_memory_pressure)
3802 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3803
3804 tcp_collapse_ofo_queue(sk);
3805 tcp_collapse(sk, &sk->sk_receive_queue,
3806 sk->sk_receive_queue.next,
3807 (struct sk_buff*)&sk->sk_receive_queue,
3808 tp->copied_seq, tp->rcv_nxt);
3809 sk_stream_mem_reclaim(sk);
3810
3811 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3812 return 0;
3813
3814 /* Collapsing did not help, destructive actions follow.
3815 * This must not ever occur. */
3816
3817 /* First, purge the out_of_order queue. */
3818 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3819 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3820 __skb_queue_purge(&tp->out_of_order_queue);
3821
3822 /* Reset SACK state. A conforming SACK implementation will
3823 * do the same at a timeout based retransmit. When a connection
3824 * is in a sad state like this, we care only about integrity
3825 * of the connection not performance.
3826 */
3827 if (tp->rx_opt.sack_ok)
3828 tcp_sack_reset(&tp->rx_opt);
3829 sk_stream_mem_reclaim(sk);
3830 }
3831
3832 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3833 return 0;
3834
3835 /* If we are really being abused, tell the caller to silently
3836 * drop receive data on the floor. It will get retransmitted
3837 * and hopefully then we'll have sufficient space.
3838 */
3839 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3840
3841 /* Massive buffer overcommit. */
3842 tp->pred_flags = 0;
3843 return -1;
3844 }
3845
3846
3847 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3848 * As additional protections, we do not touch cwnd in retransmission phases,
3849 * and if application hit its sndbuf limit recently.
3850 */
3851 void tcp_cwnd_application_limited(struct sock *sk)
3852 {
3853 struct tcp_sock *tp = tcp_sk(sk);
3854
3855 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3856 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3857 /* Limited by application or receiver window. */
3858 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3859 u32 win_used = max(tp->snd_cwnd_used, init_win);
3860 if (win_used < tp->snd_cwnd) {
3861 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3862 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3863 }
3864 tp->snd_cwnd_used = 0;
3865 }
3866 tp->snd_cwnd_stamp = tcp_time_stamp;
3867 }
3868
3869 static int tcp_should_expand_sndbuf(struct sock *sk)
3870 {
3871 struct tcp_sock *tp = tcp_sk(sk);
3872
3873 /* If the user specified a specific send buffer setting, do
3874 * not modify it.
3875 */
3876 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3877 return 0;
3878
3879 /* If we are under global TCP memory pressure, do not expand. */
3880 if (tcp_memory_pressure)
3881 return 0;
3882
3883 /* If we are under soft global TCP memory pressure, do not expand. */
3884 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3885 return 0;
3886
3887 /* If we filled the congestion window, do not expand. */
3888 if (tp->packets_out >= tp->snd_cwnd)
3889 return 0;
3890
3891 return 1;
3892 }
3893
3894 /* When incoming ACK allowed to free some skb from write_queue,
3895 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3896 * on the exit from tcp input handler.
3897 *
3898 * PROBLEM: sndbuf expansion does not work well with largesend.
3899 */
3900 static void tcp_new_space(struct sock *sk)
3901 {
3902 struct tcp_sock *tp = tcp_sk(sk);
3903
3904 if (tcp_should_expand_sndbuf(sk)) {
3905 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3906 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3907 demanded = max_t(unsigned int, tp->snd_cwnd,
3908 tp->reordering + 1);
3909 sndmem *= 2*demanded;
3910 if (sndmem > sk->sk_sndbuf)
3911 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3912 tp->snd_cwnd_stamp = tcp_time_stamp;
3913 }
3914
3915 sk->sk_write_space(sk);
3916 }
3917
3918 static void tcp_check_space(struct sock *sk)
3919 {
3920 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3921 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3922 if (sk->sk_socket &&
3923 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3924 tcp_new_space(sk);
3925 }
3926 }
3927
3928 static inline void tcp_data_snd_check(struct sock *sk)
3929 {
3930 tcp_push_pending_frames(sk);
3931 tcp_check_space(sk);
3932 }
3933
3934 /*
3935 * Check if sending an ack is needed.
3936 */
3937 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3938 {
3939 struct tcp_sock *tp = tcp_sk(sk);
3940
3941 /* More than one full frame received... */
3942 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3943 /* ... and right edge of window advances far enough.
3944 * (tcp_recvmsg() will send ACK otherwise). Or...
3945 */
3946 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3947 /* We ACK each frame or... */
3948 tcp_in_quickack_mode(sk) ||
3949 /* We have out of order data. */
3950 (ofo_possible &&
3951 skb_peek(&tp->out_of_order_queue))) {
3952 /* Then ack it now */
3953 tcp_send_ack(sk);
3954 } else {
3955 /* Else, send delayed ack. */
3956 tcp_send_delayed_ack(sk);
3957 }
3958 }
3959
3960 static inline void tcp_ack_snd_check(struct sock *sk)
3961 {
3962 if (!inet_csk_ack_scheduled(sk)) {
3963 /* We sent a data segment already. */
3964 return;
3965 }
3966 __tcp_ack_snd_check(sk, 1);
3967 }
3968
3969 /*
3970 * This routine is only called when we have urgent data
3971 * signaled. Its the 'slow' part of tcp_urg. It could be
3972 * moved inline now as tcp_urg is only called from one
3973 * place. We handle URGent data wrong. We have to - as
3974 * BSD still doesn't use the correction from RFC961.
3975 * For 1003.1g we should support a new option TCP_STDURG to permit
3976 * either form (or just set the sysctl tcp_stdurg).
3977 */
3978
3979 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3980 {
3981 struct tcp_sock *tp = tcp_sk(sk);
3982 u32 ptr = ntohs(th->urg_ptr);
3983
3984 if (ptr && !sysctl_tcp_stdurg)
3985 ptr--;
3986 ptr += ntohl(th->seq);
3987
3988 /* Ignore urgent data that we've already seen and read. */
3989 if (after(tp->copied_seq, ptr))
3990 return;
3991
3992 /* Do not replay urg ptr.
3993 *
3994 * NOTE: interesting situation not covered by specs.
3995 * Misbehaving sender may send urg ptr, pointing to segment,
3996 * which we already have in ofo queue. We are not able to fetch
3997 * such data and will stay in TCP_URG_NOTYET until will be eaten
3998 * by recvmsg(). Seems, we are not obliged to handle such wicked
3999 * situations. But it is worth to think about possibility of some
4000 * DoSes using some hypothetical application level deadlock.
4001 */
4002 if (before(ptr, tp->rcv_nxt))
4003 return;
4004
4005 /* Do we already have a newer (or duplicate) urgent pointer? */
4006 if (tp->urg_data && !after(ptr, tp->urg_seq))
4007 return;
4008
4009 /* Tell the world about our new urgent pointer. */
4010 sk_send_sigurg(sk);
4011
4012 /* We may be adding urgent data when the last byte read was
4013 * urgent. To do this requires some care. We cannot just ignore
4014 * tp->copied_seq since we would read the last urgent byte again
4015 * as data, nor can we alter copied_seq until this data arrives
4016 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4017 *
4018 * NOTE. Double Dutch. Rendering to plain English: author of comment
4019 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4020 * and expect that both A and B disappear from stream. This is _wrong_.
4021 * Though this happens in BSD with high probability, this is occasional.
4022 * Any application relying on this is buggy. Note also, that fix "works"
4023 * only in this artificial test. Insert some normal data between A and B and we will
4024 * decline of BSD again. Verdict: it is better to remove to trap
4025 * buggy users.
4026 */
4027 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4028 !sock_flag(sk, SOCK_URGINLINE) &&
4029 tp->copied_seq != tp->rcv_nxt) {
4030 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4031 tp->copied_seq++;
4032 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4033 __skb_unlink(skb, &sk->sk_receive_queue);
4034 __kfree_skb(skb);
4035 }
4036 }
4037
4038 tp->urg_data = TCP_URG_NOTYET;
4039 tp->urg_seq = ptr;
4040
4041 /* Disable header prediction. */
4042 tp->pred_flags = 0;
4043 }
4044
4045 /* This is the 'fast' part of urgent handling. */
4046 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4047 {
4048 struct tcp_sock *tp = tcp_sk(sk);
4049
4050 /* Check if we get a new urgent pointer - normally not. */
4051 if (th->urg)
4052 tcp_check_urg(sk,th);
4053
4054 /* Do we wait for any urgent data? - normally not... */
4055 if (tp->urg_data == TCP_URG_NOTYET) {
4056 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4057 th->syn;
4058
4059 /* Is the urgent pointer pointing into this packet? */
4060 if (ptr < skb->len) {
4061 u8 tmp;
4062 if (skb_copy_bits(skb, ptr, &tmp, 1))
4063 BUG();
4064 tp->urg_data = TCP_URG_VALID | tmp;
4065 if (!sock_flag(sk, SOCK_DEAD))
4066 sk->sk_data_ready(sk, 0);
4067 }
4068 }
4069 }
4070
4071 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4072 {
4073 struct tcp_sock *tp = tcp_sk(sk);
4074 int chunk = skb->len - hlen;
4075 int err;
4076
4077 local_bh_enable();
4078 if (skb_csum_unnecessary(skb))
4079 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4080 else
4081 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4082 tp->ucopy.iov);
4083
4084 if (!err) {
4085 tp->ucopy.len -= chunk;
4086 tp->copied_seq += chunk;
4087 tcp_rcv_space_adjust(sk);
4088 }
4089
4090 local_bh_disable();
4091 return err;
4092 }
4093
4094 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4095 {
4096 __sum16 result;
4097
4098 if (sock_owned_by_user(sk)) {
4099 local_bh_enable();
4100 result = __tcp_checksum_complete(skb);
4101 local_bh_disable();
4102 } else {
4103 result = __tcp_checksum_complete(skb);
4104 }
4105 return result;
4106 }
4107
4108 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4109 {
4110 return !skb_csum_unnecessary(skb) &&
4111 __tcp_checksum_complete_user(sk, skb);
4112 }
4113
4114 #ifdef CONFIG_NET_DMA
4115 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4116 {
4117 struct tcp_sock *tp = tcp_sk(sk);
4118 int chunk = skb->len - hlen;
4119 int dma_cookie;
4120 int copied_early = 0;
4121
4122 if (tp->ucopy.wakeup)
4123 return 0;
4124
4125 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4126 tp->ucopy.dma_chan = get_softnet_dma();
4127
4128 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4129
4130 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4131 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4132
4133 if (dma_cookie < 0)
4134 goto out;
4135
4136 tp->ucopy.dma_cookie = dma_cookie;
4137 copied_early = 1;
4138
4139 tp->ucopy.len -= chunk;
4140 tp->copied_seq += chunk;
4141 tcp_rcv_space_adjust(sk);
4142
4143 if ((tp->ucopy.len == 0) ||
4144 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4145 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4146 tp->ucopy.wakeup = 1;
4147 sk->sk_data_ready(sk, 0);
4148 }
4149 } else if (chunk > 0) {
4150 tp->ucopy.wakeup = 1;
4151 sk->sk_data_ready(sk, 0);
4152 }
4153 out:
4154 return copied_early;
4155 }
4156 #endif /* CONFIG_NET_DMA */
4157
4158 /*
4159 * TCP receive function for the ESTABLISHED state.
4160 *
4161 * It is split into a fast path and a slow path. The fast path is
4162 * disabled when:
4163 * - A zero window was announced from us - zero window probing
4164 * is only handled properly in the slow path.
4165 * - Out of order segments arrived.
4166 * - Urgent data is expected.
4167 * - There is no buffer space left
4168 * - Unexpected TCP flags/window values/header lengths are received
4169 * (detected by checking the TCP header against pred_flags)
4170 * - Data is sent in both directions. Fast path only supports pure senders
4171 * or pure receivers (this means either the sequence number or the ack
4172 * value must stay constant)
4173 * - Unexpected TCP option.
4174 *
4175 * When these conditions are not satisfied it drops into a standard
4176 * receive procedure patterned after RFC793 to handle all cases.
4177 * The first three cases are guaranteed by proper pred_flags setting,
4178 * the rest is checked inline. Fast processing is turned on in
4179 * tcp_data_queue when everything is OK.
4180 */
4181 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4182 struct tcphdr *th, unsigned len)
4183 {
4184 struct tcp_sock *tp = tcp_sk(sk);
4185
4186 /*
4187 * Header prediction.
4188 * The code loosely follows the one in the famous
4189 * "30 instruction TCP receive" Van Jacobson mail.
4190 *
4191 * Van's trick is to deposit buffers into socket queue
4192 * on a device interrupt, to call tcp_recv function
4193 * on the receive process context and checksum and copy
4194 * the buffer to user space. smart...
4195 *
4196 * Our current scheme is not silly either but we take the
4197 * extra cost of the net_bh soft interrupt processing...
4198 * We do checksum and copy also but from device to kernel.
4199 */
4200
4201 tp->rx_opt.saw_tstamp = 0;
4202
4203 /* pred_flags is 0xS?10 << 16 + snd_wnd
4204 * if header_prediction is to be made
4205 * 'S' will always be tp->tcp_header_len >> 2
4206 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4207 * turn it off (when there are holes in the receive
4208 * space for instance)
4209 * PSH flag is ignored.
4210 */
4211
4212 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4213 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4214 int tcp_header_len = tp->tcp_header_len;
4215
4216 /* Timestamp header prediction: tcp_header_len
4217 * is automatically equal to th->doff*4 due to pred_flags
4218 * match.
4219 */
4220
4221 /* Check timestamp */
4222 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4223 __be32 *ptr = (__be32 *)(th + 1);
4224
4225 /* No? Slow path! */
4226 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4227 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4228 goto slow_path;
4229
4230 tp->rx_opt.saw_tstamp = 1;
4231 ++ptr;
4232 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4233 ++ptr;
4234 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4235
4236 /* If PAWS failed, check it more carefully in slow path */
4237 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4238 goto slow_path;
4239
4240 /* DO NOT update ts_recent here, if checksum fails
4241 * and timestamp was corrupted part, it will result
4242 * in a hung connection since we will drop all
4243 * future packets due to the PAWS test.
4244 */
4245 }
4246
4247 if (len <= tcp_header_len) {
4248 /* Bulk data transfer: sender */
4249 if (len == tcp_header_len) {
4250 /* Predicted packet is in window by definition.
4251 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4252 * Hence, check seq<=rcv_wup reduces to:
4253 */
4254 if (tcp_header_len ==
4255 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4256 tp->rcv_nxt == tp->rcv_wup)
4257 tcp_store_ts_recent(tp);
4258
4259 /* We know that such packets are checksummed
4260 * on entry.
4261 */
4262 tcp_ack(sk, skb, 0);
4263 __kfree_skb(skb);
4264 tcp_data_snd_check(sk);
4265 return 0;
4266 } else { /* Header too small */
4267 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4268 goto discard;
4269 }
4270 } else {
4271 int eaten = 0;
4272 int copied_early = 0;
4273
4274 if (tp->copied_seq == tp->rcv_nxt &&
4275 len - tcp_header_len <= tp->ucopy.len) {
4276 #ifdef CONFIG_NET_DMA
4277 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4278 copied_early = 1;
4279 eaten = 1;
4280 }
4281 #endif
4282 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4283 __set_current_state(TASK_RUNNING);
4284
4285 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4286 eaten = 1;
4287 }
4288 if (eaten) {
4289 /* Predicted packet is in window by definition.
4290 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4291 * Hence, check seq<=rcv_wup reduces to:
4292 */
4293 if (tcp_header_len ==
4294 (sizeof(struct tcphdr) +
4295 TCPOLEN_TSTAMP_ALIGNED) &&
4296 tp->rcv_nxt == tp->rcv_wup)
4297 tcp_store_ts_recent(tp);
4298
4299 tcp_rcv_rtt_measure_ts(sk, skb);
4300
4301 __skb_pull(skb, tcp_header_len);
4302 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4303 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4304 }
4305 if (copied_early)
4306 tcp_cleanup_rbuf(sk, skb->len);
4307 }
4308 if (!eaten) {
4309 if (tcp_checksum_complete_user(sk, skb))
4310 goto csum_error;
4311
4312 /* Predicted packet is in window by definition.
4313 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4314 * Hence, check seq<=rcv_wup reduces to:
4315 */
4316 if (tcp_header_len ==
4317 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4318 tp->rcv_nxt == tp->rcv_wup)
4319 tcp_store_ts_recent(tp);
4320
4321 tcp_rcv_rtt_measure_ts(sk, skb);
4322
4323 if ((int)skb->truesize > sk->sk_forward_alloc)
4324 goto step5;
4325
4326 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4327
4328 /* Bulk data transfer: receiver */
4329 __skb_pull(skb,tcp_header_len);
4330 __skb_queue_tail(&sk->sk_receive_queue, skb);
4331 sk_stream_set_owner_r(skb, sk);
4332 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4333 }
4334
4335 tcp_event_data_recv(sk, skb);
4336
4337 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4338 /* Well, only one small jumplet in fast path... */
4339 tcp_ack(sk, skb, FLAG_DATA);
4340 tcp_data_snd_check(sk);
4341 if (!inet_csk_ack_scheduled(sk))
4342 goto no_ack;
4343 }
4344
4345 __tcp_ack_snd_check(sk, 0);
4346 no_ack:
4347 #ifdef CONFIG_NET_DMA
4348 if (copied_early)
4349 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4350 else
4351 #endif
4352 if (eaten)
4353 __kfree_skb(skb);
4354 else
4355 sk->sk_data_ready(sk, 0);
4356 return 0;
4357 }
4358 }
4359
4360 slow_path:
4361 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4362 goto csum_error;
4363
4364 /*
4365 * RFC1323: H1. Apply PAWS check first.
4366 */
4367 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4368 tcp_paws_discard(sk, skb)) {
4369 if (!th->rst) {
4370 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4371 tcp_send_dupack(sk, skb);
4372 goto discard;
4373 }
4374 /* Resets are accepted even if PAWS failed.
4375
4376 ts_recent update must be made after we are sure
4377 that the packet is in window.
4378 */
4379 }
4380
4381 /*
4382 * Standard slow path.
4383 */
4384
4385 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4386 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4387 * (RST) segments are validated by checking their SEQ-fields."
4388 * And page 69: "If an incoming segment is not acceptable,
4389 * an acknowledgment should be sent in reply (unless the RST bit
4390 * is set, if so drop the segment and return)".
4391 */
4392 if (!th->rst)
4393 tcp_send_dupack(sk, skb);
4394 goto discard;
4395 }
4396
4397 if (th->rst) {
4398 tcp_reset(sk);
4399 goto discard;
4400 }
4401
4402 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4403
4404 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4405 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4406 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4407 tcp_reset(sk);
4408 return 1;
4409 }
4410
4411 step5:
4412 if (th->ack)
4413 tcp_ack(sk, skb, FLAG_SLOWPATH);
4414
4415 tcp_rcv_rtt_measure_ts(sk, skb);
4416
4417 /* Process urgent data. */
4418 tcp_urg(sk, skb, th);
4419
4420 /* step 7: process the segment text */
4421 tcp_data_queue(sk, skb);
4422
4423 tcp_data_snd_check(sk);
4424 tcp_ack_snd_check(sk);
4425 return 0;
4426
4427 csum_error:
4428 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4429
4430 discard:
4431 __kfree_skb(skb);
4432 return 0;
4433 }
4434
4435 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4436 struct tcphdr *th, unsigned len)
4437 {
4438 struct tcp_sock *tp = tcp_sk(sk);
4439 struct inet_connection_sock *icsk = inet_csk(sk);
4440 int saved_clamp = tp->rx_opt.mss_clamp;
4441
4442 tcp_parse_options(skb, &tp->rx_opt, 0);
4443
4444 if (th->ack) {
4445 /* rfc793:
4446 * "If the state is SYN-SENT then
4447 * first check the ACK bit
4448 * If the ACK bit is set
4449 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4450 * a reset (unless the RST bit is set, if so drop
4451 * the segment and return)"
4452 *
4453 * We do not send data with SYN, so that RFC-correct
4454 * test reduces to:
4455 */
4456 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4457 goto reset_and_undo;
4458
4459 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4460 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4461 tcp_time_stamp)) {
4462 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4463 goto reset_and_undo;
4464 }
4465
4466 /* Now ACK is acceptable.
4467 *
4468 * "If the RST bit is set
4469 * If the ACK was acceptable then signal the user "error:
4470 * connection reset", drop the segment, enter CLOSED state,
4471 * delete TCB, and return."
4472 */
4473
4474 if (th->rst) {
4475 tcp_reset(sk);
4476 goto discard;
4477 }
4478
4479 /* rfc793:
4480 * "fifth, if neither of the SYN or RST bits is set then
4481 * drop the segment and return."
4482 *
4483 * See note below!
4484 * --ANK(990513)
4485 */
4486 if (!th->syn)
4487 goto discard_and_undo;
4488
4489 /* rfc793:
4490 * "If the SYN bit is on ...
4491 * are acceptable then ...
4492 * (our SYN has been ACKed), change the connection
4493 * state to ESTABLISHED..."
4494 */
4495
4496 TCP_ECN_rcv_synack(tp, th);
4497
4498 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4499 tcp_ack(sk, skb, FLAG_SLOWPATH);
4500
4501 /* Ok.. it's good. Set up sequence numbers and
4502 * move to established.
4503 */
4504 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4505 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4506
4507 /* RFC1323: The window in SYN & SYN/ACK segments is
4508 * never scaled.
4509 */
4510 tp->snd_wnd = ntohs(th->window);
4511 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4512
4513 if (!tp->rx_opt.wscale_ok) {
4514 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4515 tp->window_clamp = min(tp->window_clamp, 65535U);
4516 }
4517
4518 if (tp->rx_opt.saw_tstamp) {
4519 tp->rx_opt.tstamp_ok = 1;
4520 tp->tcp_header_len =
4521 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4522 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4523 tcp_store_ts_recent(tp);
4524 } else {
4525 tp->tcp_header_len = sizeof(struct tcphdr);
4526 }
4527
4528 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4529 tp->rx_opt.sack_ok |= 2;
4530
4531 tcp_mtup_init(sk);
4532 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4533 tcp_initialize_rcv_mss(sk);
4534
4535 /* Remember, tcp_poll() does not lock socket!
4536 * Change state from SYN-SENT only after copied_seq
4537 * is initialized. */
4538 tp->copied_seq = tp->rcv_nxt;
4539 smp_mb();
4540 tcp_set_state(sk, TCP_ESTABLISHED);
4541
4542 security_inet_conn_established(sk, skb);
4543
4544 /* Make sure socket is routed, for correct metrics. */
4545 icsk->icsk_af_ops->rebuild_header(sk);
4546
4547 tcp_init_metrics(sk);
4548
4549 tcp_init_congestion_control(sk);
4550
4551 /* Prevent spurious tcp_cwnd_restart() on first data
4552 * packet.
4553 */
4554 tp->lsndtime = tcp_time_stamp;
4555
4556 tcp_init_buffer_space(sk);
4557
4558 if (sock_flag(sk, SOCK_KEEPOPEN))
4559 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4560
4561 if (!tp->rx_opt.snd_wscale)
4562 __tcp_fast_path_on(tp, tp->snd_wnd);
4563 else
4564 tp->pred_flags = 0;
4565
4566 if (!sock_flag(sk, SOCK_DEAD)) {
4567 sk->sk_state_change(sk);
4568 sk_wake_async(sk, 0, POLL_OUT);
4569 }
4570
4571 if (sk->sk_write_pending ||
4572 icsk->icsk_accept_queue.rskq_defer_accept ||
4573 icsk->icsk_ack.pingpong) {
4574 /* Save one ACK. Data will be ready after
4575 * several ticks, if write_pending is set.
4576 *
4577 * It may be deleted, but with this feature tcpdumps
4578 * look so _wonderfully_ clever, that I was not able
4579 * to stand against the temptation 8) --ANK
4580 */
4581 inet_csk_schedule_ack(sk);
4582 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4583 icsk->icsk_ack.ato = TCP_ATO_MIN;
4584 tcp_incr_quickack(sk);
4585 tcp_enter_quickack_mode(sk);
4586 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4587 TCP_DELACK_MAX, TCP_RTO_MAX);
4588
4589 discard:
4590 __kfree_skb(skb);
4591 return 0;
4592 } else {
4593 tcp_send_ack(sk);
4594 }
4595 return -1;
4596 }
4597
4598 /* No ACK in the segment */
4599
4600 if (th->rst) {
4601 /* rfc793:
4602 * "If the RST bit is set
4603 *
4604 * Otherwise (no ACK) drop the segment and return."
4605 */
4606
4607 goto discard_and_undo;
4608 }
4609
4610 /* PAWS check. */
4611 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4612 goto discard_and_undo;
4613
4614 if (th->syn) {
4615 /* We see SYN without ACK. It is attempt of
4616 * simultaneous connect with crossed SYNs.
4617 * Particularly, it can be connect to self.
4618 */
4619 tcp_set_state(sk, TCP_SYN_RECV);
4620
4621 if (tp->rx_opt.saw_tstamp) {
4622 tp->rx_opt.tstamp_ok = 1;
4623 tcp_store_ts_recent(tp);
4624 tp->tcp_header_len =
4625 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4626 } else {
4627 tp->tcp_header_len = sizeof(struct tcphdr);
4628 }
4629
4630 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4631 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4632
4633 /* RFC1323: The window in SYN & SYN/ACK segments is
4634 * never scaled.
4635 */
4636 tp->snd_wnd = ntohs(th->window);
4637 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4638 tp->max_window = tp->snd_wnd;
4639
4640 TCP_ECN_rcv_syn(tp, th);
4641
4642 tcp_mtup_init(sk);
4643 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4644 tcp_initialize_rcv_mss(sk);
4645
4646
4647 tcp_send_synack(sk);
4648 #if 0
4649 /* Note, we could accept data and URG from this segment.
4650 * There are no obstacles to make this.
4651 *
4652 * However, if we ignore data in ACKless segments sometimes,
4653 * we have no reasons to accept it sometimes.
4654 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4655 * is not flawless. So, discard packet for sanity.
4656 * Uncomment this return to process the data.
4657 */
4658 return -1;
4659 #else
4660 goto discard;
4661 #endif
4662 }
4663 /* "fifth, if neither of the SYN or RST bits is set then
4664 * drop the segment and return."
4665 */
4666
4667 discard_and_undo:
4668 tcp_clear_options(&tp->rx_opt);
4669 tp->rx_opt.mss_clamp = saved_clamp;
4670 goto discard;
4671
4672 reset_and_undo:
4673 tcp_clear_options(&tp->rx_opt);
4674 tp->rx_opt.mss_clamp = saved_clamp;
4675 return 1;
4676 }
4677
4678
4679 /*
4680 * This function implements the receiving procedure of RFC 793 for
4681 * all states except ESTABLISHED and TIME_WAIT.
4682 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4683 * address independent.
4684 */
4685
4686 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4687 struct tcphdr *th, unsigned len)
4688 {
4689 struct tcp_sock *tp = tcp_sk(sk);
4690 struct inet_connection_sock *icsk = inet_csk(sk);
4691 int queued = 0;
4692
4693 tp->rx_opt.saw_tstamp = 0;
4694
4695 switch (sk->sk_state) {
4696 case TCP_CLOSE:
4697 goto discard;
4698
4699 case TCP_LISTEN:
4700 if (th->ack)
4701 return 1;
4702
4703 if (th->rst)
4704 goto discard;
4705
4706 if (th->syn) {
4707 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4708 return 1;
4709
4710 /* Now we have several options: In theory there is
4711 * nothing else in the frame. KA9Q has an option to
4712 * send data with the syn, BSD accepts data with the
4713 * syn up to the [to be] advertised window and
4714 * Solaris 2.1 gives you a protocol error. For now
4715 * we just ignore it, that fits the spec precisely
4716 * and avoids incompatibilities. It would be nice in
4717 * future to drop through and process the data.
4718 *
4719 * Now that TTCP is starting to be used we ought to
4720 * queue this data.
4721 * But, this leaves one open to an easy denial of
4722 * service attack, and SYN cookies can't defend
4723 * against this problem. So, we drop the data
4724 * in the interest of security over speed unless
4725 * it's still in use.
4726 */
4727 kfree_skb(skb);
4728 return 0;
4729 }
4730 goto discard;
4731
4732 case TCP_SYN_SENT:
4733 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4734 if (queued >= 0)
4735 return queued;
4736
4737 /* Do step6 onward by hand. */
4738 tcp_urg(sk, skb, th);
4739 __kfree_skb(skb);
4740 tcp_data_snd_check(sk);
4741 return 0;
4742 }
4743
4744 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4745 tcp_paws_discard(sk, skb)) {
4746 if (!th->rst) {
4747 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4748 tcp_send_dupack(sk, skb);
4749 goto discard;
4750 }
4751 /* Reset is accepted even if it did not pass PAWS. */
4752 }
4753
4754 /* step 1: check sequence number */
4755 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4756 if (!th->rst)
4757 tcp_send_dupack(sk, skb);
4758 goto discard;
4759 }
4760
4761 /* step 2: check RST bit */
4762 if (th->rst) {
4763 tcp_reset(sk);
4764 goto discard;
4765 }
4766
4767 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4768
4769 /* step 3: check security and precedence [ignored] */
4770
4771 /* step 4:
4772 *
4773 * Check for a SYN in window.
4774 */
4775 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4776 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4777 tcp_reset(sk);
4778 return 1;
4779 }
4780
4781 /* step 5: check the ACK field */
4782 if (th->ack) {
4783 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4784
4785 switch (sk->sk_state) {
4786 case TCP_SYN_RECV:
4787 if (acceptable) {
4788 tp->copied_seq = tp->rcv_nxt;
4789 smp_mb();
4790 tcp_set_state(sk, TCP_ESTABLISHED);
4791 sk->sk_state_change(sk);
4792
4793 /* Note, that this wakeup is only for marginal
4794 * crossed SYN case. Passively open sockets
4795 * are not waked up, because sk->sk_sleep ==
4796 * NULL and sk->sk_socket == NULL.
4797 */
4798 if (sk->sk_socket) {
4799 sk_wake_async(sk,0,POLL_OUT);
4800 }
4801
4802 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4803 tp->snd_wnd = ntohs(th->window) <<
4804 tp->rx_opt.snd_wscale;
4805 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4806 TCP_SKB_CB(skb)->seq);
4807
4808 /* tcp_ack considers this ACK as duplicate
4809 * and does not calculate rtt.
4810 * Fix it at least with timestamps.
4811 */
4812 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4813 !tp->srtt)
4814 tcp_ack_saw_tstamp(sk, 0);
4815
4816 if (tp->rx_opt.tstamp_ok)
4817 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4818
4819 /* Make sure socket is routed, for
4820 * correct metrics.
4821 */
4822 icsk->icsk_af_ops->rebuild_header(sk);
4823
4824 tcp_init_metrics(sk);
4825
4826 tcp_init_congestion_control(sk);
4827
4828 /* Prevent spurious tcp_cwnd_restart() on
4829 * first data packet.
4830 */
4831 tp->lsndtime = tcp_time_stamp;
4832
4833 tcp_mtup_init(sk);
4834 tcp_initialize_rcv_mss(sk);
4835 tcp_init_buffer_space(sk);
4836 tcp_fast_path_on(tp);
4837 } else {
4838 return 1;
4839 }
4840 break;
4841
4842 case TCP_FIN_WAIT1:
4843 if (tp->snd_una == tp->write_seq) {
4844 tcp_set_state(sk, TCP_FIN_WAIT2);
4845 sk->sk_shutdown |= SEND_SHUTDOWN;
4846 dst_confirm(sk->sk_dst_cache);
4847
4848 if (!sock_flag(sk, SOCK_DEAD))
4849 /* Wake up lingering close() */
4850 sk->sk_state_change(sk);
4851 else {
4852 int tmo;
4853
4854 if (tp->linger2 < 0 ||
4855 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4856 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4857 tcp_done(sk);
4858 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4859 return 1;
4860 }
4861
4862 tmo = tcp_fin_time(sk);
4863 if (tmo > TCP_TIMEWAIT_LEN) {
4864 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4865 } else if (th->fin || sock_owned_by_user(sk)) {
4866 /* Bad case. We could lose such FIN otherwise.
4867 * It is not a big problem, but it looks confusing
4868 * and not so rare event. We still can lose it now,
4869 * if it spins in bh_lock_sock(), but it is really
4870 * marginal case.
4871 */
4872 inet_csk_reset_keepalive_timer(sk, tmo);
4873 } else {
4874 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4875 goto discard;
4876 }
4877 }
4878 }
4879 break;
4880
4881 case TCP_CLOSING:
4882 if (tp->snd_una == tp->write_seq) {
4883 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4884 goto discard;
4885 }
4886 break;
4887
4888 case TCP_LAST_ACK:
4889 if (tp->snd_una == tp->write_seq) {
4890 tcp_update_metrics(sk);
4891 tcp_done(sk);
4892 goto discard;
4893 }
4894 break;
4895 }
4896 } else
4897 goto discard;
4898
4899 /* step 6: check the URG bit */
4900 tcp_urg(sk, skb, th);
4901
4902 /* step 7: process the segment text */
4903 switch (sk->sk_state) {
4904 case TCP_CLOSE_WAIT:
4905 case TCP_CLOSING:
4906 case TCP_LAST_ACK:
4907 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4908 break;
4909 case TCP_FIN_WAIT1:
4910 case TCP_FIN_WAIT2:
4911 /* RFC 793 says to queue data in these states,
4912 * RFC 1122 says we MUST send a reset.
4913 * BSD 4.4 also does reset.
4914 */
4915 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4916 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4917 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4918 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4919 tcp_reset(sk);
4920 return 1;
4921 }
4922 }
4923 /* Fall through */
4924 case TCP_ESTABLISHED:
4925 tcp_data_queue(sk, skb);
4926 queued = 1;
4927 break;
4928 }
4929
4930 /* tcp_data could move socket to TIME-WAIT */
4931 if (sk->sk_state != TCP_CLOSE) {
4932 tcp_data_snd_check(sk);
4933 tcp_ack_snd_check(sk);
4934 }
4935
4936 if (!queued) {
4937 discard:
4938 __kfree_skb(skb);
4939 }
4940 return 0;
4941 }
4942
4943 EXPORT_SYMBOL(sysctl_tcp_ecn);
4944 EXPORT_SYMBOL(sysctl_tcp_reordering);
4945 EXPORT_SYMBOL(tcp_parse_options);
4946 EXPORT_SYMBOL(tcp_rcv_established);
4947 EXPORT_SYMBOL(tcp_rcv_state_process);
4948 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.52266 seconds and 5 git commands to generate.