[TCP]: Discard fuzzy SACK blocks
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
107
108 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
109 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
110 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
111 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
112 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
113
114 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
115
116 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
117 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
118
119 /* Adapt the MSS value used to make delayed ack decision to the
120 * real world.
121 */
122 static void tcp_measure_rcv_mss(struct sock *sk,
123 const struct sk_buff *skb)
124 {
125 struct inet_connection_sock *icsk = inet_csk(sk);
126 const unsigned int lss = icsk->icsk_ack.last_seg_size;
127 unsigned int len;
128
129 icsk->icsk_ack.last_seg_size = 0;
130
131 /* skb->len may jitter because of SACKs, even if peer
132 * sends good full-sized frames.
133 */
134 len = skb_shinfo(skb)->gso_size ?: skb->len;
135 if (len >= icsk->icsk_ack.rcv_mss) {
136 icsk->icsk_ack.rcv_mss = len;
137 } else {
138 /* Otherwise, we make more careful check taking into account,
139 * that SACKs block is variable.
140 *
141 * "len" is invariant segment length, including TCP header.
142 */
143 len += skb->data - skb_transport_header(skb);
144 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145 /* If PSH is not set, packet should be
146 * full sized, provided peer TCP is not badly broken.
147 * This observation (if it is correct 8)) allows
148 * to handle super-low mtu links fairly.
149 */
150 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
151 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
152 /* Subtract also invariant (if peer is RFC compliant),
153 * tcp header plus fixed timestamp option length.
154 * Resulting "len" is MSS free of SACK jitter.
155 */
156 len -= tcp_sk(sk)->tcp_header_len;
157 icsk->icsk_ack.last_seg_size = len;
158 if (len == lss) {
159 icsk->icsk_ack.rcv_mss = len;
160 return;
161 }
162 }
163 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
166 }
167 }
168
169 static void tcp_incr_quickack(struct sock *sk)
170 {
171 struct inet_connection_sock *icsk = inet_csk(sk);
172 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
173
174 if (quickacks==0)
175 quickacks=2;
176 if (quickacks > icsk->icsk_ack.quick)
177 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178 }
179
180 void tcp_enter_quickack_mode(struct sock *sk)
181 {
182 struct inet_connection_sock *icsk = inet_csk(sk);
183 tcp_incr_quickack(sk);
184 icsk->icsk_ack.pingpong = 0;
185 icsk->icsk_ack.ato = TCP_ATO_MIN;
186 }
187
188 /* Send ACKs quickly, if "quick" count is not exhausted
189 * and the session is not interactive.
190 */
191
192 static inline int tcp_in_quickack_mode(const struct sock *sk)
193 {
194 const struct inet_connection_sock *icsk = inet_csk(sk);
195 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196 }
197
198 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
199 {
200 if (tp->ecn_flags&TCP_ECN_OK)
201 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
202 }
203
204 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
205 {
206 if (tcp_hdr(skb)->cwr)
207 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
208 }
209
210 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
211 {
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
216 {
217 if (tp->ecn_flags&TCP_ECN_OK) {
218 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
219 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
220 /* Funny extension: if ECT is not set on a segment,
221 * it is surely retransmit. It is not in ECN RFC,
222 * but Linux follows this rule. */
223 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
224 tcp_enter_quickack_mode((struct sock *)tp);
225 }
226 }
227
228 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
229 {
230 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
231 tp->ecn_flags &= ~TCP_ECN_OK;
232 }
233
234 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
235 {
236 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
237 tp->ecn_flags &= ~TCP_ECN_OK;
238 }
239
240 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
241 {
242 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
243 return 1;
244 return 0;
245 }
246
247 /* Buffer size and advertised window tuning.
248 *
249 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
250 */
251
252 static void tcp_fixup_sndbuf(struct sock *sk)
253 {
254 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
255 sizeof(struct sk_buff);
256
257 if (sk->sk_sndbuf < 3 * sndmem)
258 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
259 }
260
261 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
262 *
263 * All tcp_full_space() is split to two parts: "network" buffer, allocated
264 * forward and advertised in receiver window (tp->rcv_wnd) and
265 * "application buffer", required to isolate scheduling/application
266 * latencies from network.
267 * window_clamp is maximal advertised window. It can be less than
268 * tcp_full_space(), in this case tcp_full_space() - window_clamp
269 * is reserved for "application" buffer. The less window_clamp is
270 * the smoother our behaviour from viewpoint of network, but the lower
271 * throughput and the higher sensitivity of the connection to losses. 8)
272 *
273 * rcv_ssthresh is more strict window_clamp used at "slow start"
274 * phase to predict further behaviour of this connection.
275 * It is used for two goals:
276 * - to enforce header prediction at sender, even when application
277 * requires some significant "application buffer". It is check #1.
278 * - to prevent pruning of receive queue because of misprediction
279 * of receiver window. Check #2.
280 *
281 * The scheme does not work when sender sends good segments opening
282 * window and then starts to feed us spaghetti. But it should work
283 * in common situations. Otherwise, we have to rely on queue collapsing.
284 */
285
286 /* Slow part of check#2. */
287 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
288 {
289 struct tcp_sock *tp = tcp_sk(sk);
290 /* Optimize this! */
291 int truesize = tcp_win_from_space(skb->truesize)/2;
292 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
293
294 while (tp->rcv_ssthresh <= window) {
295 if (truesize <= skb->len)
296 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
297
298 truesize >>= 1;
299 window >>= 1;
300 }
301 return 0;
302 }
303
304 static void tcp_grow_window(struct sock *sk,
305 struct sk_buff *skb)
306 {
307 struct tcp_sock *tp = tcp_sk(sk);
308
309 /* Check #1 */
310 if (tp->rcv_ssthresh < tp->window_clamp &&
311 (int)tp->rcv_ssthresh < tcp_space(sk) &&
312 !tcp_memory_pressure) {
313 int incr;
314
315 /* Check #2. Increase window, if skb with such overhead
316 * will fit to rcvbuf in future.
317 */
318 if (tcp_win_from_space(skb->truesize) <= skb->len)
319 incr = 2*tp->advmss;
320 else
321 incr = __tcp_grow_window(sk, skb);
322
323 if (incr) {
324 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
325 inet_csk(sk)->icsk_ack.quick |= 1;
326 }
327 }
328 }
329
330 /* 3. Tuning rcvbuf, when connection enters established state. */
331
332 static void tcp_fixup_rcvbuf(struct sock *sk)
333 {
334 struct tcp_sock *tp = tcp_sk(sk);
335 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
336
337 /* Try to select rcvbuf so that 4 mss-sized segments
338 * will fit to window and corresponding skbs will fit to our rcvbuf.
339 * (was 3; 4 is minimum to allow fast retransmit to work.)
340 */
341 while (tcp_win_from_space(rcvmem) < tp->advmss)
342 rcvmem += 128;
343 if (sk->sk_rcvbuf < 4 * rcvmem)
344 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
345 }
346
347 /* 4. Try to fixup all. It is made immediately after connection enters
348 * established state.
349 */
350 static void tcp_init_buffer_space(struct sock *sk)
351 {
352 struct tcp_sock *tp = tcp_sk(sk);
353 int maxwin;
354
355 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
356 tcp_fixup_rcvbuf(sk);
357 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
358 tcp_fixup_sndbuf(sk);
359
360 tp->rcvq_space.space = tp->rcv_wnd;
361
362 maxwin = tcp_full_space(sk);
363
364 if (tp->window_clamp >= maxwin) {
365 tp->window_clamp = maxwin;
366
367 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
368 tp->window_clamp = max(maxwin -
369 (maxwin >> sysctl_tcp_app_win),
370 4 * tp->advmss);
371 }
372
373 /* Force reservation of one segment. */
374 if (sysctl_tcp_app_win &&
375 tp->window_clamp > 2 * tp->advmss &&
376 tp->window_clamp + tp->advmss > maxwin)
377 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
378
379 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
380 tp->snd_cwnd_stamp = tcp_time_stamp;
381 }
382
383 /* 5. Recalculate window clamp after socket hit its memory bounds. */
384 static void tcp_clamp_window(struct sock *sk)
385 {
386 struct tcp_sock *tp = tcp_sk(sk);
387 struct inet_connection_sock *icsk = inet_csk(sk);
388
389 icsk->icsk_ack.quick = 0;
390
391 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
392 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
393 !tcp_memory_pressure &&
394 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
395 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
396 sysctl_tcp_rmem[2]);
397 }
398 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
399 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
400 }
401
402
403 /* Initialize RCV_MSS value.
404 * RCV_MSS is an our guess about MSS used by the peer.
405 * We haven't any direct information about the MSS.
406 * It's better to underestimate the RCV_MSS rather than overestimate.
407 * Overestimations make us ACKing less frequently than needed.
408 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
409 */
410 void tcp_initialize_rcv_mss(struct sock *sk)
411 {
412 struct tcp_sock *tp = tcp_sk(sk);
413 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
414
415 hint = min(hint, tp->rcv_wnd/2);
416 hint = min(hint, TCP_MIN_RCVMSS);
417 hint = max(hint, TCP_MIN_MSS);
418
419 inet_csk(sk)->icsk_ack.rcv_mss = hint;
420 }
421
422 /* Receiver "autotuning" code.
423 *
424 * The algorithm for RTT estimation w/o timestamps is based on
425 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
426 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
427 *
428 * More detail on this code can be found at
429 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
430 * though this reference is out of date. A new paper
431 * is pending.
432 */
433 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
434 {
435 u32 new_sample = tp->rcv_rtt_est.rtt;
436 long m = sample;
437
438 if (m == 0)
439 m = 1;
440
441 if (new_sample != 0) {
442 /* If we sample in larger samples in the non-timestamp
443 * case, we could grossly overestimate the RTT especially
444 * with chatty applications or bulk transfer apps which
445 * are stalled on filesystem I/O.
446 *
447 * Also, since we are only going for a minimum in the
448 * non-timestamp case, we do not smooth things out
449 * else with timestamps disabled convergence takes too
450 * long.
451 */
452 if (!win_dep) {
453 m -= (new_sample >> 3);
454 new_sample += m;
455 } else if (m < new_sample)
456 new_sample = m << 3;
457 } else {
458 /* No previous measure. */
459 new_sample = m << 3;
460 }
461
462 if (tp->rcv_rtt_est.rtt != new_sample)
463 tp->rcv_rtt_est.rtt = new_sample;
464 }
465
466 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
467 {
468 if (tp->rcv_rtt_est.time == 0)
469 goto new_measure;
470 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
471 return;
472 tcp_rcv_rtt_update(tp,
473 jiffies - tp->rcv_rtt_est.time,
474 1);
475
476 new_measure:
477 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
478 tp->rcv_rtt_est.time = tcp_time_stamp;
479 }
480
481 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
482 {
483 struct tcp_sock *tp = tcp_sk(sk);
484 if (tp->rx_opt.rcv_tsecr &&
485 (TCP_SKB_CB(skb)->end_seq -
486 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
487 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
488 }
489
490 /*
491 * This function should be called every time data is copied to user space.
492 * It calculates the appropriate TCP receive buffer space.
493 */
494 void tcp_rcv_space_adjust(struct sock *sk)
495 {
496 struct tcp_sock *tp = tcp_sk(sk);
497 int time;
498 int space;
499
500 if (tp->rcvq_space.time == 0)
501 goto new_measure;
502
503 time = tcp_time_stamp - tp->rcvq_space.time;
504 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
505 tp->rcv_rtt_est.rtt == 0)
506 return;
507
508 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
509
510 space = max(tp->rcvq_space.space, space);
511
512 if (tp->rcvq_space.space != space) {
513 int rcvmem;
514
515 tp->rcvq_space.space = space;
516
517 if (sysctl_tcp_moderate_rcvbuf &&
518 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
519 int new_clamp = space;
520
521 /* Receive space grows, normalize in order to
522 * take into account packet headers and sk_buff
523 * structure overhead.
524 */
525 space /= tp->advmss;
526 if (!space)
527 space = 1;
528 rcvmem = (tp->advmss + MAX_TCP_HEADER +
529 16 + sizeof(struct sk_buff));
530 while (tcp_win_from_space(rcvmem) < tp->advmss)
531 rcvmem += 128;
532 space *= rcvmem;
533 space = min(space, sysctl_tcp_rmem[2]);
534 if (space > sk->sk_rcvbuf) {
535 sk->sk_rcvbuf = space;
536
537 /* Make the window clamp follow along. */
538 tp->window_clamp = new_clamp;
539 }
540 }
541 }
542
543 new_measure:
544 tp->rcvq_space.seq = tp->copied_seq;
545 tp->rcvq_space.time = tcp_time_stamp;
546 }
547
548 /* There is something which you must keep in mind when you analyze the
549 * behavior of the tp->ato delayed ack timeout interval. When a
550 * connection starts up, we want to ack as quickly as possible. The
551 * problem is that "good" TCP's do slow start at the beginning of data
552 * transmission. The means that until we send the first few ACK's the
553 * sender will sit on his end and only queue most of his data, because
554 * he can only send snd_cwnd unacked packets at any given time. For
555 * each ACK we send, he increments snd_cwnd and transmits more of his
556 * queue. -DaveM
557 */
558 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
559 {
560 struct tcp_sock *tp = tcp_sk(sk);
561 struct inet_connection_sock *icsk = inet_csk(sk);
562 u32 now;
563
564 inet_csk_schedule_ack(sk);
565
566 tcp_measure_rcv_mss(sk, skb);
567
568 tcp_rcv_rtt_measure(tp);
569
570 now = tcp_time_stamp;
571
572 if (!icsk->icsk_ack.ato) {
573 /* The _first_ data packet received, initialize
574 * delayed ACK engine.
575 */
576 tcp_incr_quickack(sk);
577 icsk->icsk_ack.ato = TCP_ATO_MIN;
578 } else {
579 int m = now - icsk->icsk_ack.lrcvtime;
580
581 if (m <= TCP_ATO_MIN/2) {
582 /* The fastest case is the first. */
583 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
584 } else if (m < icsk->icsk_ack.ato) {
585 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
586 if (icsk->icsk_ack.ato > icsk->icsk_rto)
587 icsk->icsk_ack.ato = icsk->icsk_rto;
588 } else if (m > icsk->icsk_rto) {
589 /* Too long gap. Apparently sender failed to
590 * restart window, so that we send ACKs quickly.
591 */
592 tcp_incr_quickack(sk);
593 sk_stream_mem_reclaim(sk);
594 }
595 }
596 icsk->icsk_ack.lrcvtime = now;
597
598 TCP_ECN_check_ce(tp, skb);
599
600 if (skb->len >= 128)
601 tcp_grow_window(sk, skb);
602 }
603
604 static u32 tcp_rto_min(struct sock *sk)
605 {
606 struct dst_entry *dst = __sk_dst_get(sk);
607 u32 rto_min = TCP_RTO_MIN;
608
609 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
610 rto_min = dst->metrics[RTAX_RTO_MIN-1];
611 return rto_min;
612 }
613
614 /* Called to compute a smoothed rtt estimate. The data fed to this
615 * routine either comes from timestamps, or from segments that were
616 * known _not_ to have been retransmitted [see Karn/Partridge
617 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
618 * piece by Van Jacobson.
619 * NOTE: the next three routines used to be one big routine.
620 * To save cycles in the RFC 1323 implementation it was better to break
621 * it up into three procedures. -- erics
622 */
623 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
624 {
625 struct tcp_sock *tp = tcp_sk(sk);
626 long m = mrtt; /* RTT */
627
628 /* The following amusing code comes from Jacobson's
629 * article in SIGCOMM '88. Note that rtt and mdev
630 * are scaled versions of rtt and mean deviation.
631 * This is designed to be as fast as possible
632 * m stands for "measurement".
633 *
634 * On a 1990 paper the rto value is changed to:
635 * RTO = rtt + 4 * mdev
636 *
637 * Funny. This algorithm seems to be very broken.
638 * These formulae increase RTO, when it should be decreased, increase
639 * too slowly, when it should be increased quickly, decrease too quickly
640 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
641 * does not matter how to _calculate_ it. Seems, it was trap
642 * that VJ failed to avoid. 8)
643 */
644 if (m == 0)
645 m = 1;
646 if (tp->srtt != 0) {
647 m -= (tp->srtt >> 3); /* m is now error in rtt est */
648 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
649 if (m < 0) {
650 m = -m; /* m is now abs(error) */
651 m -= (tp->mdev >> 2); /* similar update on mdev */
652 /* This is similar to one of Eifel findings.
653 * Eifel blocks mdev updates when rtt decreases.
654 * This solution is a bit different: we use finer gain
655 * for mdev in this case (alpha*beta).
656 * Like Eifel it also prevents growth of rto,
657 * but also it limits too fast rto decreases,
658 * happening in pure Eifel.
659 */
660 if (m > 0)
661 m >>= 3;
662 } else {
663 m -= (tp->mdev >> 2); /* similar update on mdev */
664 }
665 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
666 if (tp->mdev > tp->mdev_max) {
667 tp->mdev_max = tp->mdev;
668 if (tp->mdev_max > tp->rttvar)
669 tp->rttvar = tp->mdev_max;
670 }
671 if (after(tp->snd_una, tp->rtt_seq)) {
672 if (tp->mdev_max < tp->rttvar)
673 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
674 tp->rtt_seq = tp->snd_nxt;
675 tp->mdev_max = tcp_rto_min(sk);
676 }
677 } else {
678 /* no previous measure. */
679 tp->srtt = m<<3; /* take the measured time to be rtt */
680 tp->mdev = m<<1; /* make sure rto = 3*rtt */
681 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
682 tp->rtt_seq = tp->snd_nxt;
683 }
684 }
685
686 /* Calculate rto without backoff. This is the second half of Van Jacobson's
687 * routine referred to above.
688 */
689 static inline void tcp_set_rto(struct sock *sk)
690 {
691 const struct tcp_sock *tp = tcp_sk(sk);
692 /* Old crap is replaced with new one. 8)
693 *
694 * More seriously:
695 * 1. If rtt variance happened to be less 50msec, it is hallucination.
696 * It cannot be less due to utterly erratic ACK generation made
697 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
698 * to do with delayed acks, because at cwnd>2 true delack timeout
699 * is invisible. Actually, Linux-2.4 also generates erratic
700 * ACKs in some circumstances.
701 */
702 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
703
704 /* 2. Fixups made earlier cannot be right.
705 * If we do not estimate RTO correctly without them,
706 * all the algo is pure shit and should be replaced
707 * with correct one. It is exactly, which we pretend to do.
708 */
709 }
710
711 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
712 * guarantees that rto is higher.
713 */
714 static inline void tcp_bound_rto(struct sock *sk)
715 {
716 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
717 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
718 }
719
720 /* Save metrics learned by this TCP session.
721 This function is called only, when TCP finishes successfully
722 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
723 */
724 void tcp_update_metrics(struct sock *sk)
725 {
726 struct tcp_sock *tp = tcp_sk(sk);
727 struct dst_entry *dst = __sk_dst_get(sk);
728
729 if (sysctl_tcp_nometrics_save)
730 return;
731
732 dst_confirm(dst);
733
734 if (dst && (dst->flags&DST_HOST)) {
735 const struct inet_connection_sock *icsk = inet_csk(sk);
736 int m;
737
738 if (icsk->icsk_backoff || !tp->srtt) {
739 /* This session failed to estimate rtt. Why?
740 * Probably, no packets returned in time.
741 * Reset our results.
742 */
743 if (!(dst_metric_locked(dst, RTAX_RTT)))
744 dst->metrics[RTAX_RTT-1] = 0;
745 return;
746 }
747
748 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
749
750 /* If newly calculated rtt larger than stored one,
751 * store new one. Otherwise, use EWMA. Remember,
752 * rtt overestimation is always better than underestimation.
753 */
754 if (!(dst_metric_locked(dst, RTAX_RTT))) {
755 if (m <= 0)
756 dst->metrics[RTAX_RTT-1] = tp->srtt;
757 else
758 dst->metrics[RTAX_RTT-1] -= (m>>3);
759 }
760
761 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
762 if (m < 0)
763 m = -m;
764
765 /* Scale deviation to rttvar fixed point */
766 m >>= 1;
767 if (m < tp->mdev)
768 m = tp->mdev;
769
770 if (m >= dst_metric(dst, RTAX_RTTVAR))
771 dst->metrics[RTAX_RTTVAR-1] = m;
772 else
773 dst->metrics[RTAX_RTTVAR-1] -=
774 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
775 }
776
777 if (tp->snd_ssthresh >= 0xFFFF) {
778 /* Slow start still did not finish. */
779 if (dst_metric(dst, RTAX_SSTHRESH) &&
780 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783 if (!dst_metric_locked(dst, RTAX_CWND) &&
784 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
786 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787 icsk->icsk_ca_state == TCP_CA_Open) {
788 /* Cong. avoidance phase, cwnd is reliable. */
789 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790 dst->metrics[RTAX_SSTHRESH-1] =
791 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792 if (!dst_metric_locked(dst, RTAX_CWND))
793 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
794 } else {
795 /* Else slow start did not finish, cwnd is non-sense,
796 ssthresh may be also invalid.
797 */
798 if (!dst_metric_locked(dst, RTAX_CWND))
799 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
800 if (dst->metrics[RTAX_SSTHRESH-1] &&
801 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
803 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
804 }
805
806 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
808 tp->reordering != sysctl_tcp_reordering)
809 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
810 }
811 }
812 }
813
814 /* Numbers are taken from RFC3390.
815 *
816 * John Heffner states:
817 *
818 * The RFC specifies a window of no more than 4380 bytes
819 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
820 * is a bit misleading because they use a clamp at 4380 bytes
821 * rather than use a multiplier in the relevant range.
822 */
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
824 {
825 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826
827 if (!cwnd) {
828 if (tp->mss_cache > 1460)
829 cwnd = 2;
830 else
831 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
832 }
833 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834 }
835
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838 {
839 struct tcp_sock *tp = tcp_sk(sk);
840 const struct inet_connection_sock *icsk = inet_csk(sk);
841
842 tp->prior_ssthresh = 0;
843 tp->bytes_acked = 0;
844 if (icsk->icsk_ca_state < TCP_CA_CWR) {
845 tp->undo_marker = 0;
846 if (set_ssthresh)
847 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848 tp->snd_cwnd = min(tp->snd_cwnd,
849 tcp_packets_in_flight(tp) + 1U);
850 tp->snd_cwnd_cnt = 0;
851 tp->high_seq = tp->snd_nxt;
852 tp->snd_cwnd_stamp = tcp_time_stamp;
853 TCP_ECN_queue_cwr(tp);
854
855 tcp_set_ca_state(sk, TCP_CA_CWR);
856 }
857 }
858
859 /*
860 * Packet counting of FACK is based on in-order assumptions, therefore TCP
861 * disables it when reordering is detected
862 */
863 static void tcp_disable_fack(struct tcp_sock *tp)
864 {
865 tp->rx_opt.sack_ok &= ~2;
866 }
867
868 /* Take a notice that peer is sending DSACKs */
869 static void tcp_dsack_seen(struct tcp_sock *tp)
870 {
871 tp->rx_opt.sack_ok |= 4;
872 }
873
874 /* Initialize metrics on socket. */
875
876 static void tcp_init_metrics(struct sock *sk)
877 {
878 struct tcp_sock *tp = tcp_sk(sk);
879 struct dst_entry *dst = __sk_dst_get(sk);
880
881 if (dst == NULL)
882 goto reset;
883
884 dst_confirm(dst);
885
886 if (dst_metric_locked(dst, RTAX_CWND))
887 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
888 if (dst_metric(dst, RTAX_SSTHRESH)) {
889 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
890 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
891 tp->snd_ssthresh = tp->snd_cwnd_clamp;
892 }
893 if (dst_metric(dst, RTAX_REORDERING) &&
894 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
895 tcp_disable_fack(tp);
896 tp->reordering = dst_metric(dst, RTAX_REORDERING);
897 }
898
899 if (dst_metric(dst, RTAX_RTT) == 0)
900 goto reset;
901
902 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
903 goto reset;
904
905 /* Initial rtt is determined from SYN,SYN-ACK.
906 * The segment is small and rtt may appear much
907 * less than real one. Use per-dst memory
908 * to make it more realistic.
909 *
910 * A bit of theory. RTT is time passed after "normal" sized packet
911 * is sent until it is ACKed. In normal circumstances sending small
912 * packets force peer to delay ACKs and calculation is correct too.
913 * The algorithm is adaptive and, provided we follow specs, it
914 * NEVER underestimate RTT. BUT! If peer tries to make some clever
915 * tricks sort of "quick acks" for time long enough to decrease RTT
916 * to low value, and then abruptly stops to do it and starts to delay
917 * ACKs, wait for troubles.
918 */
919 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
920 tp->srtt = dst_metric(dst, RTAX_RTT);
921 tp->rtt_seq = tp->snd_nxt;
922 }
923 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
924 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
925 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
926 }
927 tcp_set_rto(sk);
928 tcp_bound_rto(sk);
929 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
930 goto reset;
931 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
932 tp->snd_cwnd_stamp = tcp_time_stamp;
933 return;
934
935 reset:
936 /* Play conservative. If timestamps are not
937 * supported, TCP will fail to recalculate correct
938 * rtt, if initial rto is too small. FORGET ALL AND RESET!
939 */
940 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
941 tp->srtt = 0;
942 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
943 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
944 }
945 }
946
947 static void tcp_update_reordering(struct sock *sk, const int metric,
948 const int ts)
949 {
950 struct tcp_sock *tp = tcp_sk(sk);
951 if (metric > tp->reordering) {
952 tp->reordering = min(TCP_MAX_REORDERING, metric);
953
954 /* This exciting event is worth to be remembered. 8) */
955 if (ts)
956 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
957 else if (tcp_is_reno(tp))
958 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
959 else if (tcp_is_fack(tp))
960 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
961 else
962 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
963 #if FASTRETRANS_DEBUG > 1
964 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
965 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
966 tp->reordering,
967 tp->fackets_out,
968 tp->sacked_out,
969 tp->undo_marker ? tp->undo_retrans : 0);
970 #endif
971 tcp_disable_fack(tp);
972 }
973 }
974
975 /* This procedure tags the retransmission queue when SACKs arrive.
976 *
977 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
978 * Packets in queue with these bits set are counted in variables
979 * sacked_out, retrans_out and lost_out, correspondingly.
980 *
981 * Valid combinations are:
982 * Tag InFlight Description
983 * 0 1 - orig segment is in flight.
984 * S 0 - nothing flies, orig reached receiver.
985 * L 0 - nothing flies, orig lost by net.
986 * R 2 - both orig and retransmit are in flight.
987 * L|R 1 - orig is lost, retransmit is in flight.
988 * S|R 1 - orig reached receiver, retrans is still in flight.
989 * (L|S|R is logically valid, it could occur when L|R is sacked,
990 * but it is equivalent to plain S and code short-curcuits it to S.
991 * L|S is logically invalid, it would mean -1 packet in flight 8))
992 *
993 * These 6 states form finite state machine, controlled by the following events:
994 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
995 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
996 * 3. Loss detection event of one of three flavors:
997 * A. Scoreboard estimator decided the packet is lost.
998 * A'. Reno "three dupacks" marks head of queue lost.
999 * A''. Its FACK modfication, head until snd.fack is lost.
1000 * B. SACK arrives sacking data transmitted after never retransmitted
1001 * hole was sent out.
1002 * C. SACK arrives sacking SND.NXT at the moment, when the
1003 * segment was retransmitted.
1004 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1005 *
1006 * It is pleasant to note, that state diagram turns out to be commutative,
1007 * so that we are allowed not to be bothered by order of our actions,
1008 * when multiple events arrive simultaneously. (see the function below).
1009 *
1010 * Reordering detection.
1011 * --------------------
1012 * Reordering metric is maximal distance, which a packet can be displaced
1013 * in packet stream. With SACKs we can estimate it:
1014 *
1015 * 1. SACK fills old hole and the corresponding segment was not
1016 * ever retransmitted -> reordering. Alas, we cannot use it
1017 * when segment was retransmitted.
1018 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1019 * for retransmitted and already SACKed segment -> reordering..
1020 * Both of these heuristics are not used in Loss state, when we cannot
1021 * account for retransmits accurately.
1022 *
1023 * SACK block validation.
1024 * ----------------------
1025 *
1026 * SACK block range validation checks that the received SACK block fits to
1027 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1028 * Note that SND.UNA is not included to the range though being valid because
1029 * it means that the receiver is rather inconsistent with itself (reports
1030 * SACK reneging when it should advance SND.UNA).
1031 *
1032 * Implements also blockage to start_seq wrap-around. Problem lies in the
1033 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1034 * there's no guarantee that it will be before snd_nxt (n). The problem
1035 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1036 * wrap (s_w):
1037 *
1038 * <- outs wnd -> <- wrapzone ->
1039 * u e n u_w e_w s n_w
1040 * | | | | | | |
1041 * |<------------+------+----- TCP seqno space --------------+---------->|
1042 * ...-- <2^31 ->| |<--------...
1043 * ...---- >2^31 ------>| |<--------...
1044 *
1045 * Current code wouldn't be vulnerable but it's better still to discard such
1046 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1047 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1048 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1049 * equal to the ideal case (infinite seqno space without wrap caused issues).
1050 *
1051 * With D-SACK the lower bound is extended to cover sequence space below
1052 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1053 * again, DSACK block must not to go across snd_una (for the same reason as
1054 * for the normal SACK blocks, explained above). But there all simplicity
1055 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1056 * fully below undo_marker they do not affect behavior in anyway and can
1057 * therefore be safely ignored. In rare cases (which are more or less
1058 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1059 * fragmentation and packet reordering past skb's retransmission. To consider
1060 * them correctly, the acceptable range must be extended even more though
1061 * the exact amount is rather hard to quantify. However, tp->max_window can
1062 * be used as an exaggerated estimate.
1063 */
1064 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1065 u32 start_seq, u32 end_seq)
1066 {
1067 /* Too far in future, or reversed (interpretation is ambiguous) */
1068 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1069 return 0;
1070
1071 /* Nasty start_seq wrap-around check (see comments above) */
1072 if (!before(start_seq, tp->snd_nxt))
1073 return 0;
1074
1075 /* In outstanding window? ...This is valid exit for DSACKs too.
1076 * start_seq == snd_una is non-sensical (see comments above)
1077 */
1078 if (after(start_seq, tp->snd_una))
1079 return 1;
1080
1081 if (!is_dsack || !tp->undo_marker)
1082 return 0;
1083
1084 /* ...Then it's D-SACK, and must reside below snd_una completely */
1085 if (!after(end_seq, tp->snd_una))
1086 return 0;
1087
1088 if (!before(start_seq, tp->undo_marker))
1089 return 1;
1090
1091 /* Too old */
1092 if (!after(end_seq, tp->undo_marker))
1093 return 0;
1094
1095 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1096 * start_seq < undo_marker and end_seq >= undo_marker.
1097 */
1098 return !before(start_seq, end_seq - tp->max_window);
1099 }
1100
1101
1102 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1103 struct tcp_sack_block_wire *sp, int num_sacks,
1104 u32 prior_snd_una)
1105 {
1106 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1107 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1108 int dup_sack = 0;
1109
1110 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1111 dup_sack = 1;
1112 tcp_dsack_seen(tp);
1113 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1114 } else if (num_sacks > 1) {
1115 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1116 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1117
1118 if (!after(end_seq_0, end_seq_1) &&
1119 !before(start_seq_0, start_seq_1)) {
1120 dup_sack = 1;
1121 tcp_dsack_seen(tp);
1122 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1123 }
1124 }
1125
1126 /* D-SACK for already forgotten data... Do dumb counting. */
1127 if (dup_sack &&
1128 !after(end_seq_0, prior_snd_una) &&
1129 after(end_seq_0, tp->undo_marker))
1130 tp->undo_retrans--;
1131
1132 return dup_sack;
1133 }
1134
1135 static int
1136 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1137 {
1138 const struct inet_connection_sock *icsk = inet_csk(sk);
1139 struct tcp_sock *tp = tcp_sk(sk);
1140 unsigned char *ptr = (skb_transport_header(ack_skb) +
1141 TCP_SKB_CB(ack_skb)->sacked);
1142 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
1143 struct sk_buff *cached_skb;
1144 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1145 int reord = tp->packets_out;
1146 int prior_fackets;
1147 u32 lost_retrans = 0;
1148 int flag = 0;
1149 int found_dup_sack = 0;
1150 int cached_fack_count;
1151 int i;
1152 int first_sack_index;
1153
1154 if (!tp->sacked_out) {
1155 tp->fackets_out = 0;
1156 tp->highest_sack = tp->snd_una;
1157 }
1158 prior_fackets = tp->fackets_out;
1159
1160 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1161 num_sacks, prior_snd_una);
1162 if (found_dup_sack)
1163 flag |= FLAG_DSACKING_ACK;
1164
1165 /* Eliminate too old ACKs, but take into
1166 * account more or less fresh ones, they can
1167 * contain valid SACK info.
1168 */
1169 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1170 return 0;
1171
1172 /* SACK fastpath:
1173 * if the only SACK change is the increase of the end_seq of
1174 * the first block then only apply that SACK block
1175 * and use retrans queue hinting otherwise slowpath */
1176 flag = 1;
1177 for (i = 0; i < num_sacks; i++) {
1178 __be32 start_seq = sp[i].start_seq;
1179 __be32 end_seq = sp[i].end_seq;
1180
1181 if (i == 0) {
1182 if (tp->recv_sack_cache[i].start_seq != start_seq)
1183 flag = 0;
1184 } else {
1185 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1186 (tp->recv_sack_cache[i].end_seq != end_seq))
1187 flag = 0;
1188 }
1189 tp->recv_sack_cache[i].start_seq = start_seq;
1190 tp->recv_sack_cache[i].end_seq = end_seq;
1191 }
1192 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1193 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1194 tp->recv_sack_cache[i].start_seq = 0;
1195 tp->recv_sack_cache[i].end_seq = 0;
1196 }
1197
1198 first_sack_index = 0;
1199 if (flag)
1200 num_sacks = 1;
1201 else {
1202 int j;
1203 tp->fastpath_skb_hint = NULL;
1204
1205 /* order SACK blocks to allow in order walk of the retrans queue */
1206 for (i = num_sacks-1; i > 0; i--) {
1207 for (j = 0; j < i; j++){
1208 if (after(ntohl(sp[j].start_seq),
1209 ntohl(sp[j+1].start_seq))){
1210 struct tcp_sack_block_wire tmp;
1211
1212 tmp = sp[j];
1213 sp[j] = sp[j+1];
1214 sp[j+1] = tmp;
1215
1216 /* Track where the first SACK block goes to */
1217 if (j == first_sack_index)
1218 first_sack_index = j+1;
1219 }
1220
1221 }
1222 }
1223 }
1224
1225 /* clear flag as used for different purpose in following code */
1226 flag = 0;
1227
1228 /* Use SACK fastpath hint if valid */
1229 cached_skb = tp->fastpath_skb_hint;
1230 cached_fack_count = tp->fastpath_cnt_hint;
1231 if (!cached_skb) {
1232 cached_skb = tcp_write_queue_head(sk);
1233 cached_fack_count = 0;
1234 }
1235
1236 for (i=0; i<num_sacks; i++, sp++) {
1237 struct sk_buff *skb;
1238 __u32 start_seq = ntohl(sp->start_seq);
1239 __u32 end_seq = ntohl(sp->end_seq);
1240 int fack_count;
1241 int dup_sack = (found_dup_sack && (i == first_sack_index));
1242
1243 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq))
1244 continue;
1245
1246 skb = cached_skb;
1247 fack_count = cached_fack_count;
1248
1249 /* Event "B" in the comment above. */
1250 if (after(end_seq, tp->high_seq))
1251 flag |= FLAG_DATA_LOST;
1252
1253 tcp_for_write_queue_from(skb, sk) {
1254 int in_sack, pcount;
1255 u8 sacked;
1256
1257 if (skb == tcp_send_head(sk))
1258 break;
1259
1260 cached_skb = skb;
1261 cached_fack_count = fack_count;
1262 if (i == first_sack_index) {
1263 tp->fastpath_skb_hint = skb;
1264 tp->fastpath_cnt_hint = fack_count;
1265 }
1266
1267 /* The retransmission queue is always in order, so
1268 * we can short-circuit the walk early.
1269 */
1270 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1271 break;
1272
1273 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1274 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1275
1276 pcount = tcp_skb_pcount(skb);
1277
1278 if (pcount > 1 && !in_sack &&
1279 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1280 unsigned int pkt_len;
1281
1282 in_sack = !after(start_seq,
1283 TCP_SKB_CB(skb)->seq);
1284
1285 if (!in_sack)
1286 pkt_len = (start_seq -
1287 TCP_SKB_CB(skb)->seq);
1288 else
1289 pkt_len = (end_seq -
1290 TCP_SKB_CB(skb)->seq);
1291 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1292 break;
1293 pcount = tcp_skb_pcount(skb);
1294 }
1295
1296 fack_count += pcount;
1297
1298 sacked = TCP_SKB_CB(skb)->sacked;
1299
1300 /* Account D-SACK for retransmitted packet. */
1301 if ((dup_sack && in_sack) &&
1302 (sacked & TCPCB_RETRANS) &&
1303 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1304 tp->undo_retrans--;
1305
1306 /* The frame is ACKed. */
1307 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1308 if (sacked&TCPCB_RETRANS) {
1309 if ((dup_sack && in_sack) &&
1310 (sacked&TCPCB_SACKED_ACKED))
1311 reord = min(fack_count, reord);
1312 } else {
1313 /* If it was in a hole, we detected reordering. */
1314 if (fack_count < prior_fackets &&
1315 !(sacked&TCPCB_SACKED_ACKED))
1316 reord = min(fack_count, reord);
1317 }
1318
1319 /* Nothing to do; acked frame is about to be dropped. */
1320 continue;
1321 }
1322
1323 if ((sacked&TCPCB_SACKED_RETRANS) &&
1324 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1325 (!lost_retrans || after(end_seq, lost_retrans)))
1326 lost_retrans = end_seq;
1327
1328 if (!in_sack)
1329 continue;
1330
1331 if (!(sacked&TCPCB_SACKED_ACKED)) {
1332 if (sacked & TCPCB_SACKED_RETRANS) {
1333 /* If the segment is not tagged as lost,
1334 * we do not clear RETRANS, believing
1335 * that retransmission is still in flight.
1336 */
1337 if (sacked & TCPCB_LOST) {
1338 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1339 tp->lost_out -= tcp_skb_pcount(skb);
1340 tp->retrans_out -= tcp_skb_pcount(skb);
1341
1342 /* clear lost hint */
1343 tp->retransmit_skb_hint = NULL;
1344 }
1345 } else {
1346 /* New sack for not retransmitted frame,
1347 * which was in hole. It is reordering.
1348 */
1349 if (!(sacked & TCPCB_RETRANS) &&
1350 fack_count < prior_fackets)
1351 reord = min(fack_count, reord);
1352
1353 if (sacked & TCPCB_LOST) {
1354 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1355 tp->lost_out -= tcp_skb_pcount(skb);
1356
1357 /* clear lost hint */
1358 tp->retransmit_skb_hint = NULL;
1359 }
1360 /* SACK enhanced F-RTO detection.
1361 * Set flag if and only if non-rexmitted
1362 * segments below frto_highmark are
1363 * SACKed (RFC4138; Appendix B).
1364 * Clearing correct due to in-order walk
1365 */
1366 if (after(end_seq, tp->frto_highmark)) {
1367 flag &= ~FLAG_ONLY_ORIG_SACKED;
1368 } else {
1369 if (!(sacked & TCPCB_RETRANS))
1370 flag |= FLAG_ONLY_ORIG_SACKED;
1371 }
1372 }
1373
1374 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1375 flag |= FLAG_DATA_SACKED;
1376 tp->sacked_out += tcp_skb_pcount(skb);
1377
1378 if (fack_count > tp->fackets_out)
1379 tp->fackets_out = fack_count;
1380
1381 if (after(TCP_SKB_CB(skb)->seq,
1382 tp->highest_sack))
1383 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1384 } else {
1385 if (dup_sack && (sacked&TCPCB_RETRANS))
1386 reord = min(fack_count, reord);
1387 }
1388
1389 /* D-SACK. We can detect redundant retransmission
1390 * in S|R and plain R frames and clear it.
1391 * undo_retrans is decreased above, L|R frames
1392 * are accounted above as well.
1393 */
1394 if (dup_sack &&
1395 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1396 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1397 tp->retrans_out -= tcp_skb_pcount(skb);
1398 tp->retransmit_skb_hint = NULL;
1399 }
1400 }
1401 }
1402
1403 /* Check for lost retransmit. This superb idea is
1404 * borrowed from "ratehalving". Event "C".
1405 * Later note: FACK people cheated me again 8),
1406 * we have to account for reordering! Ugly,
1407 * but should help.
1408 */
1409 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1410 struct sk_buff *skb;
1411
1412 tcp_for_write_queue(skb, sk) {
1413 if (skb == tcp_send_head(sk))
1414 break;
1415 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1416 break;
1417 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1418 continue;
1419 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1420 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1421 (tcp_is_fack(tp) ||
1422 !before(lost_retrans,
1423 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1424 tp->mss_cache))) {
1425 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1426 tp->retrans_out -= tcp_skb_pcount(skb);
1427
1428 /* clear lost hint */
1429 tp->retransmit_skb_hint = NULL;
1430
1431 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1432 tp->lost_out += tcp_skb_pcount(skb);
1433 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1434 flag |= FLAG_DATA_SACKED;
1435 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1436 }
1437 }
1438 }
1439 }
1440
1441 tcp_verify_left_out(tp);
1442
1443 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1444 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1445 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1446
1447 #if FASTRETRANS_DEBUG > 0
1448 BUG_TRAP((int)tp->sacked_out >= 0);
1449 BUG_TRAP((int)tp->lost_out >= 0);
1450 BUG_TRAP((int)tp->retrans_out >= 0);
1451 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1452 #endif
1453 return flag;
1454 }
1455
1456 /* F-RTO can only be used if TCP has never retransmitted anything other than
1457 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1458 */
1459 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1460 {
1461 struct tcp_sock *tp = tcp_sk(sk);
1462 u32 holes;
1463
1464 holes = max(tp->lost_out, 1U);
1465 holes = min(holes, tp->packets_out);
1466
1467 if ((tp->sacked_out + holes) > tp->packets_out) {
1468 tp->sacked_out = tp->packets_out - holes;
1469 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1470 }
1471 }
1472
1473 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1474
1475 static void tcp_add_reno_sack(struct sock *sk)
1476 {
1477 struct tcp_sock *tp = tcp_sk(sk);
1478 tp->sacked_out++;
1479 tcp_check_reno_reordering(sk, 0);
1480 tcp_verify_left_out(tp);
1481 }
1482
1483 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1484
1485 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1486 {
1487 struct tcp_sock *tp = tcp_sk(sk);
1488
1489 if (acked > 0) {
1490 /* One ACK acked hole. The rest eat duplicate ACKs. */
1491 if (acked-1 >= tp->sacked_out)
1492 tp->sacked_out = 0;
1493 else
1494 tp->sacked_out -= acked-1;
1495 }
1496 tcp_check_reno_reordering(sk, acked);
1497 tcp_verify_left_out(tp);
1498 }
1499
1500 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1501 {
1502 tp->sacked_out = 0;
1503 }
1504
1505 int tcp_use_frto(struct sock *sk)
1506 {
1507 const struct tcp_sock *tp = tcp_sk(sk);
1508 struct sk_buff *skb;
1509
1510 if (!sysctl_tcp_frto)
1511 return 0;
1512
1513 if (IsSackFrto())
1514 return 1;
1515
1516 /* Avoid expensive walking of rexmit queue if possible */
1517 if (tp->retrans_out > 1)
1518 return 0;
1519
1520 skb = tcp_write_queue_head(sk);
1521 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1522 tcp_for_write_queue_from(skb, sk) {
1523 if (skb == tcp_send_head(sk))
1524 break;
1525 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1526 return 0;
1527 /* Short-circuit when first non-SACKed skb has been checked */
1528 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1529 break;
1530 }
1531 return 1;
1532 }
1533
1534 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1535 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1536 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1537 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1538 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1539 * bits are handled if the Loss state is really to be entered (in
1540 * tcp_enter_frto_loss).
1541 *
1542 * Do like tcp_enter_loss() would; when RTO expires the second time it
1543 * does:
1544 * "Reduce ssthresh if it has not yet been made inside this window."
1545 */
1546 void tcp_enter_frto(struct sock *sk)
1547 {
1548 const struct inet_connection_sock *icsk = inet_csk(sk);
1549 struct tcp_sock *tp = tcp_sk(sk);
1550 struct sk_buff *skb;
1551
1552 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1553 tp->snd_una == tp->high_seq ||
1554 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1555 !icsk->icsk_retransmits)) {
1556 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1557 /* Our state is too optimistic in ssthresh() call because cwnd
1558 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1559 * recovery has not yet completed. Pattern would be this: RTO,
1560 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1561 * up here twice).
1562 * RFC4138 should be more specific on what to do, even though
1563 * RTO is quite unlikely to occur after the first Cumulative ACK
1564 * due to back-off and complexity of triggering events ...
1565 */
1566 if (tp->frto_counter) {
1567 u32 stored_cwnd;
1568 stored_cwnd = tp->snd_cwnd;
1569 tp->snd_cwnd = 2;
1570 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1571 tp->snd_cwnd = stored_cwnd;
1572 } else {
1573 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1574 }
1575 /* ... in theory, cong.control module could do "any tricks" in
1576 * ssthresh(), which means that ca_state, lost bits and lost_out
1577 * counter would have to be faked before the call occurs. We
1578 * consider that too expensive, unlikely and hacky, so modules
1579 * using these in ssthresh() must deal these incompatibility
1580 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1581 */
1582 tcp_ca_event(sk, CA_EVENT_FRTO);
1583 }
1584
1585 tp->undo_marker = tp->snd_una;
1586 tp->undo_retrans = 0;
1587
1588 skb = tcp_write_queue_head(sk);
1589 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1590 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1591 tp->retrans_out -= tcp_skb_pcount(skb);
1592 }
1593 tcp_verify_left_out(tp);
1594
1595 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1596 * The last condition is necessary at least in tp->frto_counter case.
1597 */
1598 if (IsSackFrto() && (tp->frto_counter ||
1599 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1600 after(tp->high_seq, tp->snd_una)) {
1601 tp->frto_highmark = tp->high_seq;
1602 } else {
1603 tp->frto_highmark = tp->snd_nxt;
1604 }
1605 tcp_set_ca_state(sk, TCP_CA_Disorder);
1606 tp->high_seq = tp->snd_nxt;
1607 tp->frto_counter = 1;
1608 }
1609
1610 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1611 * which indicates that we should follow the traditional RTO recovery,
1612 * i.e. mark everything lost and do go-back-N retransmission.
1613 */
1614 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1615 {
1616 struct tcp_sock *tp = tcp_sk(sk);
1617 struct sk_buff *skb;
1618
1619 tp->lost_out = 0;
1620 tp->retrans_out = 0;
1621 if (tcp_is_reno(tp))
1622 tcp_reset_reno_sack(tp);
1623
1624 tcp_for_write_queue(skb, sk) {
1625 if (skb == tcp_send_head(sk))
1626 break;
1627 /*
1628 * Count the retransmission made on RTO correctly (only when
1629 * waiting for the first ACK and did not get it)...
1630 */
1631 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1632 /* For some reason this R-bit might get cleared? */
1633 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1634 tp->retrans_out += tcp_skb_pcount(skb);
1635 /* ...enter this if branch just for the first segment */
1636 flag |= FLAG_DATA_ACKED;
1637 } else {
1638 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1639 }
1640
1641 /* Don't lost mark skbs that were fwd transmitted after RTO */
1642 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1643 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1644 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1645 tp->lost_out += tcp_skb_pcount(skb);
1646 }
1647 }
1648 tcp_verify_left_out(tp);
1649
1650 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1651 tp->snd_cwnd_cnt = 0;
1652 tp->snd_cwnd_stamp = tcp_time_stamp;
1653 tp->undo_marker = 0;
1654 tp->frto_counter = 0;
1655
1656 tp->reordering = min_t(unsigned int, tp->reordering,
1657 sysctl_tcp_reordering);
1658 tcp_set_ca_state(sk, TCP_CA_Loss);
1659 tp->high_seq = tp->frto_highmark;
1660 TCP_ECN_queue_cwr(tp);
1661
1662 clear_all_retrans_hints(tp);
1663 }
1664
1665 void tcp_clear_retrans(struct tcp_sock *tp)
1666 {
1667 tp->retrans_out = 0;
1668
1669 tp->fackets_out = 0;
1670 tp->sacked_out = 0;
1671 tp->lost_out = 0;
1672
1673 tp->undo_marker = 0;
1674 tp->undo_retrans = 0;
1675 }
1676
1677 /* Enter Loss state. If "how" is not zero, forget all SACK information
1678 * and reset tags completely, otherwise preserve SACKs. If receiver
1679 * dropped its ofo queue, we will know this due to reneging detection.
1680 */
1681 void tcp_enter_loss(struct sock *sk, int how)
1682 {
1683 const struct inet_connection_sock *icsk = inet_csk(sk);
1684 struct tcp_sock *tp = tcp_sk(sk);
1685 struct sk_buff *skb;
1686 int cnt = 0;
1687
1688 /* Reduce ssthresh if it has not yet been made inside this window. */
1689 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1690 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1691 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1692 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1693 tcp_ca_event(sk, CA_EVENT_LOSS);
1694 }
1695 tp->snd_cwnd = 1;
1696 tp->snd_cwnd_cnt = 0;
1697 tp->snd_cwnd_stamp = tcp_time_stamp;
1698
1699 tp->bytes_acked = 0;
1700 tcp_clear_retrans(tp);
1701
1702 /* Push undo marker, if it was plain RTO and nothing
1703 * was retransmitted. */
1704 if (!how)
1705 tp->undo_marker = tp->snd_una;
1706
1707 tcp_for_write_queue(skb, sk) {
1708 if (skb == tcp_send_head(sk))
1709 break;
1710 cnt += tcp_skb_pcount(skb);
1711 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1712 tp->undo_marker = 0;
1713 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1714 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1715 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1716 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1717 tp->lost_out += tcp_skb_pcount(skb);
1718 } else {
1719 tp->sacked_out += tcp_skb_pcount(skb);
1720 tp->fackets_out = cnt;
1721 }
1722 }
1723 tcp_verify_left_out(tp);
1724
1725 tp->reordering = min_t(unsigned int, tp->reordering,
1726 sysctl_tcp_reordering);
1727 tcp_set_ca_state(sk, TCP_CA_Loss);
1728 tp->high_seq = tp->snd_nxt;
1729 TCP_ECN_queue_cwr(tp);
1730 /* Abort FRTO algorithm if one is in progress */
1731 tp->frto_counter = 0;
1732
1733 clear_all_retrans_hints(tp);
1734 }
1735
1736 static int tcp_check_sack_reneging(struct sock *sk)
1737 {
1738 struct sk_buff *skb;
1739
1740 /* If ACK arrived pointing to a remembered SACK,
1741 * it means that our remembered SACKs do not reflect
1742 * real state of receiver i.e.
1743 * receiver _host_ is heavily congested (or buggy).
1744 * Do processing similar to RTO timeout.
1745 */
1746 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1747 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1748 struct inet_connection_sock *icsk = inet_csk(sk);
1749 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1750
1751 tcp_enter_loss(sk, 1);
1752 icsk->icsk_retransmits++;
1753 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1754 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1755 icsk->icsk_rto, TCP_RTO_MAX);
1756 return 1;
1757 }
1758 return 0;
1759 }
1760
1761 static inline int tcp_fackets_out(struct tcp_sock *tp)
1762 {
1763 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1764 }
1765
1766 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1767 {
1768 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1769 }
1770
1771 static inline int tcp_head_timedout(struct sock *sk)
1772 {
1773 struct tcp_sock *tp = tcp_sk(sk);
1774
1775 return tp->packets_out &&
1776 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1777 }
1778
1779 /* Linux NewReno/SACK/FACK/ECN state machine.
1780 * --------------------------------------
1781 *
1782 * "Open" Normal state, no dubious events, fast path.
1783 * "Disorder" In all the respects it is "Open",
1784 * but requires a bit more attention. It is entered when
1785 * we see some SACKs or dupacks. It is split of "Open"
1786 * mainly to move some processing from fast path to slow one.
1787 * "CWR" CWND was reduced due to some Congestion Notification event.
1788 * It can be ECN, ICMP source quench, local device congestion.
1789 * "Recovery" CWND was reduced, we are fast-retransmitting.
1790 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1791 *
1792 * tcp_fastretrans_alert() is entered:
1793 * - each incoming ACK, if state is not "Open"
1794 * - when arrived ACK is unusual, namely:
1795 * * SACK
1796 * * Duplicate ACK.
1797 * * ECN ECE.
1798 *
1799 * Counting packets in flight is pretty simple.
1800 *
1801 * in_flight = packets_out - left_out + retrans_out
1802 *
1803 * packets_out is SND.NXT-SND.UNA counted in packets.
1804 *
1805 * retrans_out is number of retransmitted segments.
1806 *
1807 * left_out is number of segments left network, but not ACKed yet.
1808 *
1809 * left_out = sacked_out + lost_out
1810 *
1811 * sacked_out: Packets, which arrived to receiver out of order
1812 * and hence not ACKed. With SACKs this number is simply
1813 * amount of SACKed data. Even without SACKs
1814 * it is easy to give pretty reliable estimate of this number,
1815 * counting duplicate ACKs.
1816 *
1817 * lost_out: Packets lost by network. TCP has no explicit
1818 * "loss notification" feedback from network (for now).
1819 * It means that this number can be only _guessed_.
1820 * Actually, it is the heuristics to predict lossage that
1821 * distinguishes different algorithms.
1822 *
1823 * F.e. after RTO, when all the queue is considered as lost,
1824 * lost_out = packets_out and in_flight = retrans_out.
1825 *
1826 * Essentially, we have now two algorithms counting
1827 * lost packets.
1828 *
1829 * FACK: It is the simplest heuristics. As soon as we decided
1830 * that something is lost, we decide that _all_ not SACKed
1831 * packets until the most forward SACK are lost. I.e.
1832 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1833 * It is absolutely correct estimate, if network does not reorder
1834 * packets. And it loses any connection to reality when reordering
1835 * takes place. We use FACK by default until reordering
1836 * is suspected on the path to this destination.
1837 *
1838 * NewReno: when Recovery is entered, we assume that one segment
1839 * is lost (classic Reno). While we are in Recovery and
1840 * a partial ACK arrives, we assume that one more packet
1841 * is lost (NewReno). This heuristics are the same in NewReno
1842 * and SACK.
1843 *
1844 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1845 * deflation etc. CWND is real congestion window, never inflated, changes
1846 * only according to classic VJ rules.
1847 *
1848 * Really tricky (and requiring careful tuning) part of algorithm
1849 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1850 * The first determines the moment _when_ we should reduce CWND and,
1851 * hence, slow down forward transmission. In fact, it determines the moment
1852 * when we decide that hole is caused by loss, rather than by a reorder.
1853 *
1854 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1855 * holes, caused by lost packets.
1856 *
1857 * And the most logically complicated part of algorithm is undo
1858 * heuristics. We detect false retransmits due to both too early
1859 * fast retransmit (reordering) and underestimated RTO, analyzing
1860 * timestamps and D-SACKs. When we detect that some segments were
1861 * retransmitted by mistake and CWND reduction was wrong, we undo
1862 * window reduction and abort recovery phase. This logic is hidden
1863 * inside several functions named tcp_try_undo_<something>.
1864 */
1865
1866 /* This function decides, when we should leave Disordered state
1867 * and enter Recovery phase, reducing congestion window.
1868 *
1869 * Main question: may we further continue forward transmission
1870 * with the same cwnd?
1871 */
1872 static int tcp_time_to_recover(struct sock *sk)
1873 {
1874 struct tcp_sock *tp = tcp_sk(sk);
1875 __u32 packets_out;
1876
1877 /* Do not perform any recovery during FRTO algorithm */
1878 if (tp->frto_counter)
1879 return 0;
1880
1881 /* Trick#1: The loss is proven. */
1882 if (tp->lost_out)
1883 return 1;
1884
1885 /* Not-A-Trick#2 : Classic rule... */
1886 if (tcp_fackets_out(tp) > tp->reordering)
1887 return 1;
1888
1889 /* Trick#3 : when we use RFC2988 timer restart, fast
1890 * retransmit can be triggered by timeout of queue head.
1891 */
1892 if (tcp_head_timedout(sk))
1893 return 1;
1894
1895 /* Trick#4: It is still not OK... But will it be useful to delay
1896 * recovery more?
1897 */
1898 packets_out = tp->packets_out;
1899 if (packets_out <= tp->reordering &&
1900 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1901 !tcp_may_send_now(sk)) {
1902 /* We have nothing to send. This connection is limited
1903 * either by receiver window or by application.
1904 */
1905 return 1;
1906 }
1907
1908 return 0;
1909 }
1910
1911 /* RFC: This is from the original, I doubt that this is necessary at all:
1912 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
1913 * retransmitted past LOST markings in the first place? I'm not fully sure
1914 * about undo and end of connection cases, which can cause R without L?
1915 */
1916 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
1917 struct sk_buff *skb)
1918 {
1919 if ((tp->retransmit_skb_hint != NULL) &&
1920 before(TCP_SKB_CB(skb)->seq,
1921 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1922 tp->retransmit_skb_hint = NULL;
1923 }
1924
1925 /* Mark head of queue up as lost. */
1926 static void tcp_mark_head_lost(struct sock *sk,
1927 int packets, u32 high_seq)
1928 {
1929 struct tcp_sock *tp = tcp_sk(sk);
1930 struct sk_buff *skb;
1931 int cnt;
1932
1933 BUG_TRAP(packets <= tp->packets_out);
1934 if (tp->lost_skb_hint) {
1935 skb = tp->lost_skb_hint;
1936 cnt = tp->lost_cnt_hint;
1937 } else {
1938 skb = tcp_write_queue_head(sk);
1939 cnt = 0;
1940 }
1941
1942 tcp_for_write_queue_from(skb, sk) {
1943 if (skb == tcp_send_head(sk))
1944 break;
1945 /* TODO: do this better */
1946 /* this is not the most efficient way to do this... */
1947 tp->lost_skb_hint = skb;
1948 tp->lost_cnt_hint = cnt;
1949 cnt += tcp_skb_pcount(skb);
1950 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1951 break;
1952 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1953 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1954 tp->lost_out += tcp_skb_pcount(skb);
1955 tcp_verify_retransmit_hint(tp, skb);
1956 }
1957 }
1958 tcp_verify_left_out(tp);
1959 }
1960
1961 /* Account newly detected lost packet(s) */
1962
1963 static void tcp_update_scoreboard(struct sock *sk)
1964 {
1965 struct tcp_sock *tp = tcp_sk(sk);
1966
1967 if (tcp_is_fack(tp)) {
1968 int lost = tp->fackets_out - tp->reordering;
1969 if (lost <= 0)
1970 lost = 1;
1971 tcp_mark_head_lost(sk, lost, tp->high_seq);
1972 } else {
1973 tcp_mark_head_lost(sk, 1, tp->high_seq);
1974 }
1975
1976 /* New heuristics: it is possible only after we switched
1977 * to restart timer each time when something is ACKed.
1978 * Hence, we can detect timed out packets during fast
1979 * retransmit without falling to slow start.
1980 */
1981 if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
1982 struct sk_buff *skb;
1983
1984 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1985 : tcp_write_queue_head(sk);
1986
1987 tcp_for_write_queue_from(skb, sk) {
1988 if (skb == tcp_send_head(sk))
1989 break;
1990 if (!tcp_skb_timedout(sk, skb))
1991 break;
1992
1993 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1994 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1995 tp->lost_out += tcp_skb_pcount(skb);
1996 tcp_verify_retransmit_hint(tp, skb);
1997 }
1998 }
1999
2000 tp->scoreboard_skb_hint = skb;
2001
2002 tcp_verify_left_out(tp);
2003 }
2004 }
2005
2006 /* CWND moderation, preventing bursts due to too big ACKs
2007 * in dubious situations.
2008 */
2009 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2010 {
2011 tp->snd_cwnd = min(tp->snd_cwnd,
2012 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2013 tp->snd_cwnd_stamp = tcp_time_stamp;
2014 }
2015
2016 /* Lower bound on congestion window is slow start threshold
2017 * unless congestion avoidance choice decides to overide it.
2018 */
2019 static inline u32 tcp_cwnd_min(const struct sock *sk)
2020 {
2021 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2022
2023 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2024 }
2025
2026 /* Decrease cwnd each second ack. */
2027 static void tcp_cwnd_down(struct sock *sk, int flag)
2028 {
2029 struct tcp_sock *tp = tcp_sk(sk);
2030 int decr = tp->snd_cwnd_cnt + 1;
2031
2032 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2033 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2034 tp->snd_cwnd_cnt = decr&1;
2035 decr >>= 1;
2036
2037 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2038 tp->snd_cwnd -= decr;
2039
2040 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2041 tp->snd_cwnd_stamp = tcp_time_stamp;
2042 }
2043 }
2044
2045 /* Nothing was retransmitted or returned timestamp is less
2046 * than timestamp of the first retransmission.
2047 */
2048 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2049 {
2050 return !tp->retrans_stamp ||
2051 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2052 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2053 }
2054
2055 /* Undo procedures. */
2056
2057 #if FASTRETRANS_DEBUG > 1
2058 static void DBGUNDO(struct sock *sk, const char *msg)
2059 {
2060 struct tcp_sock *tp = tcp_sk(sk);
2061 struct inet_sock *inet = inet_sk(sk);
2062
2063 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2064 msg,
2065 NIPQUAD(inet->daddr), ntohs(inet->dport),
2066 tp->snd_cwnd, tcp_left_out(tp),
2067 tp->snd_ssthresh, tp->prior_ssthresh,
2068 tp->packets_out);
2069 }
2070 #else
2071 #define DBGUNDO(x...) do { } while (0)
2072 #endif
2073
2074 static void tcp_undo_cwr(struct sock *sk, const int undo)
2075 {
2076 struct tcp_sock *tp = tcp_sk(sk);
2077
2078 if (tp->prior_ssthresh) {
2079 const struct inet_connection_sock *icsk = inet_csk(sk);
2080
2081 if (icsk->icsk_ca_ops->undo_cwnd)
2082 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2083 else
2084 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2085
2086 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2087 tp->snd_ssthresh = tp->prior_ssthresh;
2088 TCP_ECN_withdraw_cwr(tp);
2089 }
2090 } else {
2091 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2092 }
2093 tcp_moderate_cwnd(tp);
2094 tp->snd_cwnd_stamp = tcp_time_stamp;
2095
2096 /* There is something screwy going on with the retrans hints after
2097 an undo */
2098 clear_all_retrans_hints(tp);
2099 }
2100
2101 static inline int tcp_may_undo(struct tcp_sock *tp)
2102 {
2103 return tp->undo_marker &&
2104 (!tp->undo_retrans || tcp_packet_delayed(tp));
2105 }
2106
2107 /* People celebrate: "We love our President!" */
2108 static int tcp_try_undo_recovery(struct sock *sk)
2109 {
2110 struct tcp_sock *tp = tcp_sk(sk);
2111
2112 if (tcp_may_undo(tp)) {
2113 /* Happy end! We did not retransmit anything
2114 * or our original transmission succeeded.
2115 */
2116 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2117 tcp_undo_cwr(sk, 1);
2118 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2119 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2120 else
2121 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2122 tp->undo_marker = 0;
2123 }
2124 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2125 /* Hold old state until something *above* high_seq
2126 * is ACKed. For Reno it is MUST to prevent false
2127 * fast retransmits (RFC2582). SACK TCP is safe. */
2128 tcp_moderate_cwnd(tp);
2129 return 1;
2130 }
2131 tcp_set_ca_state(sk, TCP_CA_Open);
2132 return 0;
2133 }
2134
2135 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2136 static void tcp_try_undo_dsack(struct sock *sk)
2137 {
2138 struct tcp_sock *tp = tcp_sk(sk);
2139
2140 if (tp->undo_marker && !tp->undo_retrans) {
2141 DBGUNDO(sk, "D-SACK");
2142 tcp_undo_cwr(sk, 1);
2143 tp->undo_marker = 0;
2144 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2145 }
2146 }
2147
2148 /* Undo during fast recovery after partial ACK. */
2149
2150 static int tcp_try_undo_partial(struct sock *sk, int acked)
2151 {
2152 struct tcp_sock *tp = tcp_sk(sk);
2153 /* Partial ACK arrived. Force Hoe's retransmit. */
2154 int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
2155
2156 if (tcp_may_undo(tp)) {
2157 /* Plain luck! Hole if filled with delayed
2158 * packet, rather than with a retransmit.
2159 */
2160 if (tp->retrans_out == 0)
2161 tp->retrans_stamp = 0;
2162
2163 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2164
2165 DBGUNDO(sk, "Hoe");
2166 tcp_undo_cwr(sk, 0);
2167 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2168
2169 /* So... Do not make Hoe's retransmit yet.
2170 * If the first packet was delayed, the rest
2171 * ones are most probably delayed as well.
2172 */
2173 failed = 0;
2174 }
2175 return failed;
2176 }
2177
2178 /* Undo during loss recovery after partial ACK. */
2179 static int tcp_try_undo_loss(struct sock *sk)
2180 {
2181 struct tcp_sock *tp = tcp_sk(sk);
2182
2183 if (tcp_may_undo(tp)) {
2184 struct sk_buff *skb;
2185 tcp_for_write_queue(skb, sk) {
2186 if (skb == tcp_send_head(sk))
2187 break;
2188 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2189 }
2190
2191 clear_all_retrans_hints(tp);
2192
2193 DBGUNDO(sk, "partial loss");
2194 tp->lost_out = 0;
2195 tcp_undo_cwr(sk, 1);
2196 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2197 inet_csk(sk)->icsk_retransmits = 0;
2198 tp->undo_marker = 0;
2199 if (tcp_is_sack(tp))
2200 tcp_set_ca_state(sk, TCP_CA_Open);
2201 return 1;
2202 }
2203 return 0;
2204 }
2205
2206 static inline void tcp_complete_cwr(struct sock *sk)
2207 {
2208 struct tcp_sock *tp = tcp_sk(sk);
2209 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2210 tp->snd_cwnd_stamp = tcp_time_stamp;
2211 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2212 }
2213
2214 static void tcp_try_to_open(struct sock *sk, int flag)
2215 {
2216 struct tcp_sock *tp = tcp_sk(sk);
2217
2218 tcp_verify_left_out(tp);
2219
2220 if (tp->retrans_out == 0)
2221 tp->retrans_stamp = 0;
2222
2223 if (flag&FLAG_ECE)
2224 tcp_enter_cwr(sk, 1);
2225
2226 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2227 int state = TCP_CA_Open;
2228
2229 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2230 state = TCP_CA_Disorder;
2231
2232 if (inet_csk(sk)->icsk_ca_state != state) {
2233 tcp_set_ca_state(sk, state);
2234 tp->high_seq = tp->snd_nxt;
2235 }
2236 tcp_moderate_cwnd(tp);
2237 } else {
2238 tcp_cwnd_down(sk, flag);
2239 }
2240 }
2241
2242 static void tcp_mtup_probe_failed(struct sock *sk)
2243 {
2244 struct inet_connection_sock *icsk = inet_csk(sk);
2245
2246 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2247 icsk->icsk_mtup.probe_size = 0;
2248 }
2249
2250 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2251 {
2252 struct tcp_sock *tp = tcp_sk(sk);
2253 struct inet_connection_sock *icsk = inet_csk(sk);
2254
2255 /* FIXME: breaks with very large cwnd */
2256 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2257 tp->snd_cwnd = tp->snd_cwnd *
2258 tcp_mss_to_mtu(sk, tp->mss_cache) /
2259 icsk->icsk_mtup.probe_size;
2260 tp->snd_cwnd_cnt = 0;
2261 tp->snd_cwnd_stamp = tcp_time_stamp;
2262 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2263
2264 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2265 icsk->icsk_mtup.probe_size = 0;
2266 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2267 }
2268
2269
2270 /* Process an event, which can update packets-in-flight not trivially.
2271 * Main goal of this function is to calculate new estimate for left_out,
2272 * taking into account both packets sitting in receiver's buffer and
2273 * packets lost by network.
2274 *
2275 * Besides that it does CWND reduction, when packet loss is detected
2276 * and changes state of machine.
2277 *
2278 * It does _not_ decide what to send, it is made in function
2279 * tcp_xmit_retransmit_queue().
2280 */
2281 static void
2282 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2283 {
2284 struct inet_connection_sock *icsk = inet_csk(sk);
2285 struct tcp_sock *tp = tcp_sk(sk);
2286 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2287 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2288 (tp->fackets_out > tp->reordering));
2289
2290 /* Some technical things:
2291 * 1. Reno does not count dupacks (sacked_out) automatically. */
2292 if (!tp->packets_out)
2293 tp->sacked_out = 0;
2294 /* 2. SACK counts snd_fack in packets inaccurately. */
2295 if (tp->sacked_out == 0)
2296 tp->fackets_out = 0;
2297
2298 /* Now state machine starts.
2299 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2300 if (flag&FLAG_ECE)
2301 tp->prior_ssthresh = 0;
2302
2303 /* B. In all the states check for reneging SACKs. */
2304 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2305 return;
2306
2307 /* C. Process data loss notification, provided it is valid. */
2308 if ((flag&FLAG_DATA_LOST) &&
2309 before(tp->snd_una, tp->high_seq) &&
2310 icsk->icsk_ca_state != TCP_CA_Open &&
2311 tp->fackets_out > tp->reordering) {
2312 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
2313 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2314 }
2315
2316 /* D. Check consistency of the current state. */
2317 tcp_verify_left_out(tp);
2318
2319 /* E. Check state exit conditions. State can be terminated
2320 * when high_seq is ACKed. */
2321 if (icsk->icsk_ca_state == TCP_CA_Open) {
2322 BUG_TRAP(tp->retrans_out == 0);
2323 tp->retrans_stamp = 0;
2324 } else if (!before(tp->snd_una, tp->high_seq)) {
2325 switch (icsk->icsk_ca_state) {
2326 case TCP_CA_Loss:
2327 icsk->icsk_retransmits = 0;
2328 if (tcp_try_undo_recovery(sk))
2329 return;
2330 break;
2331
2332 case TCP_CA_CWR:
2333 /* CWR is to be held something *above* high_seq
2334 * is ACKed for CWR bit to reach receiver. */
2335 if (tp->snd_una != tp->high_seq) {
2336 tcp_complete_cwr(sk);
2337 tcp_set_ca_state(sk, TCP_CA_Open);
2338 }
2339 break;
2340
2341 case TCP_CA_Disorder:
2342 tcp_try_undo_dsack(sk);
2343 if (!tp->undo_marker ||
2344 /* For SACK case do not Open to allow to undo
2345 * catching for all duplicate ACKs. */
2346 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2347 tp->undo_marker = 0;
2348 tcp_set_ca_state(sk, TCP_CA_Open);
2349 }
2350 break;
2351
2352 case TCP_CA_Recovery:
2353 if (tcp_is_reno(tp))
2354 tcp_reset_reno_sack(tp);
2355 if (tcp_try_undo_recovery(sk))
2356 return;
2357 tcp_complete_cwr(sk);
2358 break;
2359 }
2360 }
2361
2362 /* F. Process state. */
2363 switch (icsk->icsk_ca_state) {
2364 case TCP_CA_Recovery:
2365 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2366 if (tcp_is_reno(tp) && is_dupack)
2367 tcp_add_reno_sack(sk);
2368 } else
2369 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2370 break;
2371 case TCP_CA_Loss:
2372 if (flag&FLAG_DATA_ACKED)
2373 icsk->icsk_retransmits = 0;
2374 if (!tcp_try_undo_loss(sk)) {
2375 tcp_moderate_cwnd(tp);
2376 tcp_xmit_retransmit_queue(sk);
2377 return;
2378 }
2379 if (icsk->icsk_ca_state != TCP_CA_Open)
2380 return;
2381 /* Loss is undone; fall through to processing in Open state. */
2382 default:
2383 if (tcp_is_reno(tp)) {
2384 if (flag & FLAG_SND_UNA_ADVANCED)
2385 tcp_reset_reno_sack(tp);
2386 if (is_dupack)
2387 tcp_add_reno_sack(sk);
2388 }
2389
2390 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2391 tcp_try_undo_dsack(sk);
2392
2393 if (!tcp_time_to_recover(sk)) {
2394 tcp_try_to_open(sk, flag);
2395 return;
2396 }
2397
2398 /* MTU probe failure: don't reduce cwnd */
2399 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2400 icsk->icsk_mtup.probe_size &&
2401 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2402 tcp_mtup_probe_failed(sk);
2403 /* Restores the reduction we did in tcp_mtup_probe() */
2404 tp->snd_cwnd++;
2405 tcp_simple_retransmit(sk);
2406 return;
2407 }
2408
2409 /* Otherwise enter Recovery state */
2410
2411 if (tcp_is_reno(tp))
2412 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2413 else
2414 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2415
2416 tp->high_seq = tp->snd_nxt;
2417 tp->prior_ssthresh = 0;
2418 tp->undo_marker = tp->snd_una;
2419 tp->undo_retrans = tp->retrans_out;
2420
2421 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2422 if (!(flag&FLAG_ECE))
2423 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2424 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2425 TCP_ECN_queue_cwr(tp);
2426 }
2427
2428 tp->bytes_acked = 0;
2429 tp->snd_cwnd_cnt = 0;
2430 tcp_set_ca_state(sk, TCP_CA_Recovery);
2431 }
2432
2433 if (do_lost || tcp_head_timedout(sk))
2434 tcp_update_scoreboard(sk);
2435 tcp_cwnd_down(sk, flag);
2436 tcp_xmit_retransmit_queue(sk);
2437 }
2438
2439 /* Read draft-ietf-tcplw-high-performance before mucking
2440 * with this code. (Supersedes RFC1323)
2441 */
2442 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2443 {
2444 /* RTTM Rule: A TSecr value received in a segment is used to
2445 * update the averaged RTT measurement only if the segment
2446 * acknowledges some new data, i.e., only if it advances the
2447 * left edge of the send window.
2448 *
2449 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2450 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2451 *
2452 * Changed: reset backoff as soon as we see the first valid sample.
2453 * If we do not, we get strongly overestimated rto. With timestamps
2454 * samples are accepted even from very old segments: f.e., when rtt=1
2455 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2456 * answer arrives rto becomes 120 seconds! If at least one of segments
2457 * in window is lost... Voila. --ANK (010210)
2458 */
2459 struct tcp_sock *tp = tcp_sk(sk);
2460 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2461 tcp_rtt_estimator(sk, seq_rtt);
2462 tcp_set_rto(sk);
2463 inet_csk(sk)->icsk_backoff = 0;
2464 tcp_bound_rto(sk);
2465 }
2466
2467 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2468 {
2469 /* We don't have a timestamp. Can only use
2470 * packets that are not retransmitted to determine
2471 * rtt estimates. Also, we must not reset the
2472 * backoff for rto until we get a non-retransmitted
2473 * packet. This allows us to deal with a situation
2474 * where the network delay has increased suddenly.
2475 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2476 */
2477
2478 if (flag & FLAG_RETRANS_DATA_ACKED)
2479 return;
2480
2481 tcp_rtt_estimator(sk, seq_rtt);
2482 tcp_set_rto(sk);
2483 inet_csk(sk)->icsk_backoff = 0;
2484 tcp_bound_rto(sk);
2485 }
2486
2487 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2488 const s32 seq_rtt)
2489 {
2490 const struct tcp_sock *tp = tcp_sk(sk);
2491 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2492 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2493 tcp_ack_saw_tstamp(sk, flag);
2494 else if (seq_rtt >= 0)
2495 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2496 }
2497
2498 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2499 u32 in_flight, int good)
2500 {
2501 const struct inet_connection_sock *icsk = inet_csk(sk);
2502 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2503 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2504 }
2505
2506 /* Restart timer after forward progress on connection.
2507 * RFC2988 recommends to restart timer to now+rto.
2508 */
2509 static void tcp_rearm_rto(struct sock *sk)
2510 {
2511 struct tcp_sock *tp = tcp_sk(sk);
2512
2513 if (!tp->packets_out) {
2514 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2515 } else {
2516 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2517 }
2518 }
2519
2520 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2521 __u32 now, __s32 *seq_rtt)
2522 {
2523 struct tcp_sock *tp = tcp_sk(sk);
2524 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2525 __u32 seq = tp->snd_una;
2526 __u32 packets_acked;
2527 int acked = 0;
2528
2529 /* If we get here, the whole TSO packet has not been
2530 * acked.
2531 */
2532 BUG_ON(!after(scb->end_seq, seq));
2533
2534 packets_acked = tcp_skb_pcount(skb);
2535 if (tcp_trim_head(sk, skb, seq - scb->seq))
2536 return 0;
2537 packets_acked -= tcp_skb_pcount(skb);
2538
2539 if (packets_acked) {
2540 __u8 sacked = scb->sacked;
2541
2542 acked |= FLAG_DATA_ACKED;
2543 if (sacked) {
2544 if (sacked & TCPCB_RETRANS) {
2545 if (sacked & TCPCB_SACKED_RETRANS)
2546 tp->retrans_out -= packets_acked;
2547 acked |= FLAG_RETRANS_DATA_ACKED;
2548 *seq_rtt = -1;
2549 } else if (*seq_rtt < 0)
2550 *seq_rtt = now - scb->when;
2551 if (sacked & TCPCB_SACKED_ACKED)
2552 tp->sacked_out -= packets_acked;
2553 if (sacked & TCPCB_LOST)
2554 tp->lost_out -= packets_acked;
2555 if (sacked & TCPCB_URG) {
2556 if (tp->urg_mode &&
2557 !before(seq, tp->snd_up))
2558 tp->urg_mode = 0;
2559 }
2560 } else if (*seq_rtt < 0)
2561 *seq_rtt = now - scb->when;
2562
2563 if (tp->fackets_out) {
2564 __u32 dval = min(tp->fackets_out, packets_acked);
2565 tp->fackets_out -= dval;
2566 }
2567 /* hint's skb might be NULL but we don't need to care */
2568 tp->fastpath_cnt_hint -= min_t(u32, packets_acked,
2569 tp->fastpath_cnt_hint);
2570 tp->packets_out -= packets_acked;
2571
2572 BUG_ON(tcp_skb_pcount(skb) == 0);
2573 BUG_ON(!before(scb->seq, scb->end_seq));
2574 }
2575
2576 return acked;
2577 }
2578
2579 /* Remove acknowledged frames from the retransmission queue. */
2580 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2581 {
2582 struct tcp_sock *tp = tcp_sk(sk);
2583 const struct inet_connection_sock *icsk = inet_csk(sk);
2584 struct sk_buff *skb;
2585 __u32 now = tcp_time_stamp;
2586 int acked = 0;
2587 int prior_packets = tp->packets_out;
2588 __s32 seq_rtt = -1;
2589 ktime_t last_ackt = net_invalid_timestamp();
2590
2591 while ((skb = tcp_write_queue_head(sk)) &&
2592 skb != tcp_send_head(sk)) {
2593 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2594 __u8 sacked = scb->sacked;
2595
2596 /* If our packet is before the ack sequence we can
2597 * discard it as it's confirmed to have arrived at
2598 * the other end.
2599 */
2600 if (after(scb->end_seq, tp->snd_una)) {
2601 if (tcp_skb_pcount(skb) > 1 &&
2602 after(tp->snd_una, scb->seq))
2603 acked |= tcp_tso_acked(sk, skb,
2604 now, &seq_rtt);
2605 break;
2606 }
2607
2608 /* Initial outgoing SYN's get put onto the write_queue
2609 * just like anything else we transmit. It is not
2610 * true data, and if we misinform our callers that
2611 * this ACK acks real data, we will erroneously exit
2612 * connection startup slow start one packet too
2613 * quickly. This is severely frowned upon behavior.
2614 */
2615 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2616 acked |= FLAG_DATA_ACKED;
2617 } else {
2618 acked |= FLAG_SYN_ACKED;
2619 tp->retrans_stamp = 0;
2620 }
2621
2622 /* MTU probing checks */
2623 if (icsk->icsk_mtup.probe_size) {
2624 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2625 tcp_mtup_probe_success(sk, skb);
2626 }
2627 }
2628
2629 if (sacked) {
2630 if (sacked & TCPCB_RETRANS) {
2631 if (sacked & TCPCB_SACKED_RETRANS)
2632 tp->retrans_out -= tcp_skb_pcount(skb);
2633 acked |= FLAG_RETRANS_DATA_ACKED;
2634 seq_rtt = -1;
2635 } else if (seq_rtt < 0) {
2636 seq_rtt = now - scb->when;
2637 last_ackt = skb->tstamp;
2638 }
2639 if (sacked & TCPCB_SACKED_ACKED)
2640 tp->sacked_out -= tcp_skb_pcount(skb);
2641 if (sacked & TCPCB_LOST)
2642 tp->lost_out -= tcp_skb_pcount(skb);
2643 if (sacked & TCPCB_URG) {
2644 if (tp->urg_mode &&
2645 !before(scb->end_seq, tp->snd_up))
2646 tp->urg_mode = 0;
2647 }
2648 } else if (seq_rtt < 0) {
2649 seq_rtt = now - scb->when;
2650 last_ackt = skb->tstamp;
2651 }
2652 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2653 tp->packets_out -= tcp_skb_pcount(skb);
2654 tcp_unlink_write_queue(skb, sk);
2655 sk_stream_free_skb(sk, skb);
2656 clear_all_retrans_hints(tp);
2657 }
2658
2659 if (acked&FLAG_ACKED) {
2660 u32 pkts_acked = prior_packets - tp->packets_out;
2661 const struct tcp_congestion_ops *ca_ops
2662 = inet_csk(sk)->icsk_ca_ops;
2663
2664 tcp_ack_update_rtt(sk, acked, seq_rtt);
2665 tcp_rearm_rto(sk);
2666
2667 if (tcp_is_reno(tp))
2668 tcp_remove_reno_sacks(sk, pkts_acked);
2669
2670 if (ca_ops->pkts_acked) {
2671 s32 rtt_us = -1;
2672
2673 /* Is the ACK triggering packet unambiguous? */
2674 if (!(acked & FLAG_RETRANS_DATA_ACKED)) {
2675 /* High resolution needed and available? */
2676 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2677 !ktime_equal(last_ackt,
2678 net_invalid_timestamp()))
2679 rtt_us = ktime_us_delta(ktime_get_real(),
2680 last_ackt);
2681 else if (seq_rtt > 0)
2682 rtt_us = jiffies_to_usecs(seq_rtt);
2683 }
2684
2685 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2686 }
2687 }
2688
2689 #if FASTRETRANS_DEBUG > 0
2690 BUG_TRAP((int)tp->sacked_out >= 0);
2691 BUG_TRAP((int)tp->lost_out >= 0);
2692 BUG_TRAP((int)tp->retrans_out >= 0);
2693 if (!tp->packets_out && tcp_is_sack(tp)) {
2694 const struct inet_connection_sock *icsk = inet_csk(sk);
2695 if (tp->lost_out) {
2696 printk(KERN_DEBUG "Leak l=%u %d\n",
2697 tp->lost_out, icsk->icsk_ca_state);
2698 tp->lost_out = 0;
2699 }
2700 if (tp->sacked_out) {
2701 printk(KERN_DEBUG "Leak s=%u %d\n",
2702 tp->sacked_out, icsk->icsk_ca_state);
2703 tp->sacked_out = 0;
2704 }
2705 if (tp->retrans_out) {
2706 printk(KERN_DEBUG "Leak r=%u %d\n",
2707 tp->retrans_out, icsk->icsk_ca_state);
2708 tp->retrans_out = 0;
2709 }
2710 }
2711 #endif
2712 *seq_rtt_p = seq_rtt;
2713 return acked;
2714 }
2715
2716 static void tcp_ack_probe(struct sock *sk)
2717 {
2718 const struct tcp_sock *tp = tcp_sk(sk);
2719 struct inet_connection_sock *icsk = inet_csk(sk);
2720
2721 /* Was it a usable window open? */
2722
2723 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2724 tp->snd_una + tp->snd_wnd)) {
2725 icsk->icsk_backoff = 0;
2726 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2727 /* Socket must be waked up by subsequent tcp_data_snd_check().
2728 * This function is not for random using!
2729 */
2730 } else {
2731 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2732 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2733 TCP_RTO_MAX);
2734 }
2735 }
2736
2737 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2738 {
2739 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2740 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2741 }
2742
2743 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2744 {
2745 const struct tcp_sock *tp = tcp_sk(sk);
2746 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2747 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2748 }
2749
2750 /* Check that window update is acceptable.
2751 * The function assumes that snd_una<=ack<=snd_next.
2752 */
2753 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2754 const u32 ack_seq, const u32 nwin)
2755 {
2756 return (after(ack, tp->snd_una) ||
2757 after(ack_seq, tp->snd_wl1) ||
2758 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2759 }
2760
2761 /* Update our send window.
2762 *
2763 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2764 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2765 */
2766 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2767 u32 ack_seq)
2768 {
2769 struct tcp_sock *tp = tcp_sk(sk);
2770 int flag = 0;
2771 u32 nwin = ntohs(tcp_hdr(skb)->window);
2772
2773 if (likely(!tcp_hdr(skb)->syn))
2774 nwin <<= tp->rx_opt.snd_wscale;
2775
2776 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2777 flag |= FLAG_WIN_UPDATE;
2778 tcp_update_wl(tp, ack, ack_seq);
2779
2780 if (tp->snd_wnd != nwin) {
2781 tp->snd_wnd = nwin;
2782
2783 /* Note, it is the only place, where
2784 * fast path is recovered for sending TCP.
2785 */
2786 tp->pred_flags = 0;
2787 tcp_fast_path_check(sk);
2788
2789 if (nwin > tp->max_window) {
2790 tp->max_window = nwin;
2791 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2792 }
2793 }
2794 }
2795
2796 tp->snd_una = ack;
2797
2798 return flag;
2799 }
2800
2801 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2802 * continue in congestion avoidance.
2803 */
2804 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2805 {
2806 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2807 tp->snd_cwnd_cnt = 0;
2808 TCP_ECN_queue_cwr(tp);
2809 tcp_moderate_cwnd(tp);
2810 }
2811
2812 /* A conservative spurious RTO response algorithm: reduce cwnd using
2813 * rate halving and continue in congestion avoidance.
2814 */
2815 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2816 {
2817 tcp_enter_cwr(sk, 0);
2818 }
2819
2820 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2821 {
2822 if (flag&FLAG_ECE)
2823 tcp_ratehalving_spur_to_response(sk);
2824 else
2825 tcp_undo_cwr(sk, 1);
2826 }
2827
2828 /* F-RTO spurious RTO detection algorithm (RFC4138)
2829 *
2830 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2831 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2832 * window (but not to or beyond highest sequence sent before RTO):
2833 * On First ACK, send two new segments out.
2834 * On Second ACK, RTO was likely spurious. Do spurious response (response
2835 * algorithm is not part of the F-RTO detection algorithm
2836 * given in RFC4138 but can be selected separately).
2837 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2838 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2839 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2840 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2841 *
2842 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2843 * original window even after we transmit two new data segments.
2844 *
2845 * SACK version:
2846 * on first step, wait until first cumulative ACK arrives, then move to
2847 * the second step. In second step, the next ACK decides.
2848 *
2849 * F-RTO is implemented (mainly) in four functions:
2850 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2851 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2852 * called when tcp_use_frto() showed green light
2853 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2854 * - tcp_enter_frto_loss() is called if there is not enough evidence
2855 * to prove that the RTO is indeed spurious. It transfers the control
2856 * from F-RTO to the conventional RTO recovery
2857 */
2858 static int tcp_process_frto(struct sock *sk, int flag)
2859 {
2860 struct tcp_sock *tp = tcp_sk(sk);
2861
2862 tcp_verify_left_out(tp);
2863
2864 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2865 if (flag&FLAG_DATA_ACKED)
2866 inet_csk(sk)->icsk_retransmits = 0;
2867
2868 if (!before(tp->snd_una, tp->frto_highmark)) {
2869 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2870 return 1;
2871 }
2872
2873 if (!IsSackFrto() || tcp_is_reno(tp)) {
2874 /* RFC4138 shortcoming in step 2; should also have case c):
2875 * ACK isn't duplicate nor advances window, e.g., opposite dir
2876 * data, winupdate
2877 */
2878 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
2879 return 1;
2880
2881 if (!(flag&FLAG_DATA_ACKED)) {
2882 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2883 flag);
2884 return 1;
2885 }
2886 } else {
2887 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2888 /* Prevent sending of new data. */
2889 tp->snd_cwnd = min(tp->snd_cwnd,
2890 tcp_packets_in_flight(tp));
2891 return 1;
2892 }
2893
2894 if ((tp->frto_counter >= 2) &&
2895 (!(flag&FLAG_FORWARD_PROGRESS) ||
2896 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2897 /* RFC4138 shortcoming (see comment above) */
2898 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2899 return 1;
2900
2901 tcp_enter_frto_loss(sk, 3, flag);
2902 return 1;
2903 }
2904 }
2905
2906 if (tp->frto_counter == 1) {
2907 /* Sending of the next skb must be allowed or no FRTO */
2908 if (!tcp_send_head(sk) ||
2909 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2910 tp->snd_una + tp->snd_wnd)) {
2911 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2912 flag);
2913 return 1;
2914 }
2915
2916 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2917 tp->frto_counter = 2;
2918 return 1;
2919 } else {
2920 switch (sysctl_tcp_frto_response) {
2921 case 2:
2922 tcp_undo_spur_to_response(sk, flag);
2923 break;
2924 case 1:
2925 tcp_conservative_spur_to_response(tp);
2926 break;
2927 default:
2928 tcp_ratehalving_spur_to_response(sk);
2929 break;
2930 }
2931 tp->frto_counter = 0;
2932 }
2933 return 0;
2934 }
2935
2936 /* This routine deals with incoming acks, but not outgoing ones. */
2937 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2938 {
2939 struct inet_connection_sock *icsk = inet_csk(sk);
2940 struct tcp_sock *tp = tcp_sk(sk);
2941 u32 prior_snd_una = tp->snd_una;
2942 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2943 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2944 u32 prior_in_flight;
2945 s32 seq_rtt;
2946 int prior_packets;
2947 int frto_cwnd = 0;
2948
2949 /* If the ack is newer than sent or older than previous acks
2950 * then we can probably ignore it.
2951 */
2952 if (after(ack, tp->snd_nxt))
2953 goto uninteresting_ack;
2954
2955 if (before(ack, prior_snd_una))
2956 goto old_ack;
2957
2958 if (after(ack, prior_snd_una))
2959 flag |= FLAG_SND_UNA_ADVANCED;
2960
2961 if (sysctl_tcp_abc) {
2962 if (icsk->icsk_ca_state < TCP_CA_CWR)
2963 tp->bytes_acked += ack - prior_snd_una;
2964 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2965 /* we assume just one segment left network */
2966 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2967 }
2968
2969 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2970 /* Window is constant, pure forward advance.
2971 * No more checks are required.
2972 * Note, we use the fact that SND.UNA>=SND.WL2.
2973 */
2974 tcp_update_wl(tp, ack, ack_seq);
2975 tp->snd_una = ack;
2976 flag |= FLAG_WIN_UPDATE;
2977
2978 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2979
2980 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2981 } else {
2982 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2983 flag |= FLAG_DATA;
2984 else
2985 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2986
2987 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
2988
2989 if (TCP_SKB_CB(skb)->sacked)
2990 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2991
2992 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
2993 flag |= FLAG_ECE;
2994
2995 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2996 }
2997
2998 /* We passed data and got it acked, remove any soft error
2999 * log. Something worked...
3000 */
3001 sk->sk_err_soft = 0;
3002 tp->rcv_tstamp = tcp_time_stamp;
3003 prior_packets = tp->packets_out;
3004 if (!prior_packets)
3005 goto no_queue;
3006
3007 prior_in_flight = tcp_packets_in_flight(tp);
3008
3009 /* See if we can take anything off of the retransmit queue. */
3010 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
3011
3012 if (tp->frto_counter)
3013 frto_cwnd = tcp_process_frto(sk, flag);
3014
3015 if (tcp_ack_is_dubious(sk, flag)) {
3016 /* Advance CWND, if state allows this. */
3017 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3018 tcp_may_raise_cwnd(sk, flag))
3019 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3020 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3021 } else {
3022 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3023 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3024 }
3025
3026 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3027 dst_confirm(sk->sk_dst_cache);
3028
3029 return 1;
3030
3031 no_queue:
3032 icsk->icsk_probes_out = 0;
3033
3034 /* If this ack opens up a zero window, clear backoff. It was
3035 * being used to time the probes, and is probably far higher than
3036 * it needs to be for normal retransmission.
3037 */
3038 if (tcp_send_head(sk))
3039 tcp_ack_probe(sk);
3040 return 1;
3041
3042 old_ack:
3043 if (TCP_SKB_CB(skb)->sacked)
3044 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3045
3046 uninteresting_ack:
3047 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3048 return 0;
3049 }
3050
3051
3052 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3053 * But, this can also be called on packets in the established flow when
3054 * the fast version below fails.
3055 */
3056 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3057 {
3058 unsigned char *ptr;
3059 struct tcphdr *th = tcp_hdr(skb);
3060 int length=(th->doff*4)-sizeof(struct tcphdr);
3061
3062 ptr = (unsigned char *)(th + 1);
3063 opt_rx->saw_tstamp = 0;
3064
3065 while (length > 0) {
3066 int opcode=*ptr++;
3067 int opsize;
3068
3069 switch (opcode) {
3070 case TCPOPT_EOL:
3071 return;
3072 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3073 length--;
3074 continue;
3075 default:
3076 opsize=*ptr++;
3077 if (opsize < 2) /* "silly options" */
3078 return;
3079 if (opsize > length)
3080 return; /* don't parse partial options */
3081 switch (opcode) {
3082 case TCPOPT_MSS:
3083 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3084 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3085 if (in_mss) {
3086 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3087 in_mss = opt_rx->user_mss;
3088 opt_rx->mss_clamp = in_mss;
3089 }
3090 }
3091 break;
3092 case TCPOPT_WINDOW:
3093 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3094 if (sysctl_tcp_window_scaling) {
3095 __u8 snd_wscale = *(__u8 *) ptr;
3096 opt_rx->wscale_ok = 1;
3097 if (snd_wscale > 14) {
3098 if (net_ratelimit())
3099 printk(KERN_INFO "tcp_parse_options: Illegal window "
3100 "scaling value %d >14 received.\n",
3101 snd_wscale);
3102 snd_wscale = 14;
3103 }
3104 opt_rx->snd_wscale = snd_wscale;
3105 }
3106 break;
3107 case TCPOPT_TIMESTAMP:
3108 if (opsize==TCPOLEN_TIMESTAMP) {
3109 if ((estab && opt_rx->tstamp_ok) ||
3110 (!estab && sysctl_tcp_timestamps)) {
3111 opt_rx->saw_tstamp = 1;
3112 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3113 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3114 }
3115 }
3116 break;
3117 case TCPOPT_SACK_PERM:
3118 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3119 if (sysctl_tcp_sack) {
3120 opt_rx->sack_ok = 1;
3121 tcp_sack_reset(opt_rx);
3122 }
3123 }
3124 break;
3125
3126 case TCPOPT_SACK:
3127 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3128 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3129 opt_rx->sack_ok) {
3130 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3131 }
3132 break;
3133 #ifdef CONFIG_TCP_MD5SIG
3134 case TCPOPT_MD5SIG:
3135 /*
3136 * The MD5 Hash has already been
3137 * checked (see tcp_v{4,6}_do_rcv()).
3138 */
3139 break;
3140 #endif
3141 }
3142
3143 ptr+=opsize-2;
3144 length-=opsize;
3145 }
3146 }
3147 }
3148
3149 /* Fast parse options. This hopes to only see timestamps.
3150 * If it is wrong it falls back on tcp_parse_options().
3151 */
3152 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3153 struct tcp_sock *tp)
3154 {
3155 if (th->doff == sizeof(struct tcphdr)>>2) {
3156 tp->rx_opt.saw_tstamp = 0;
3157 return 0;
3158 } else if (tp->rx_opt.tstamp_ok &&
3159 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3160 __be32 *ptr = (__be32 *)(th + 1);
3161 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3162 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3163 tp->rx_opt.saw_tstamp = 1;
3164 ++ptr;
3165 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3166 ++ptr;
3167 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3168 return 1;
3169 }
3170 }
3171 tcp_parse_options(skb, &tp->rx_opt, 1);
3172 return 1;
3173 }
3174
3175 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3176 {
3177 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3178 tp->rx_opt.ts_recent_stamp = get_seconds();
3179 }
3180
3181 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3182 {
3183 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3184 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3185 * extra check below makes sure this can only happen
3186 * for pure ACK frames. -DaveM
3187 *
3188 * Not only, also it occurs for expired timestamps.
3189 */
3190
3191 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3192 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3193 tcp_store_ts_recent(tp);
3194 }
3195 }
3196
3197 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3198 *
3199 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3200 * it can pass through stack. So, the following predicate verifies that
3201 * this segment is not used for anything but congestion avoidance or
3202 * fast retransmit. Moreover, we even are able to eliminate most of such
3203 * second order effects, if we apply some small "replay" window (~RTO)
3204 * to timestamp space.
3205 *
3206 * All these measures still do not guarantee that we reject wrapped ACKs
3207 * on networks with high bandwidth, when sequence space is recycled fastly,
3208 * but it guarantees that such events will be very rare and do not affect
3209 * connection seriously. This doesn't look nice, but alas, PAWS is really
3210 * buggy extension.
3211 *
3212 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3213 * states that events when retransmit arrives after original data are rare.
3214 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3215 * the biggest problem on large power networks even with minor reordering.
3216 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3217 * up to bandwidth of 18Gigabit/sec. 8) ]
3218 */
3219
3220 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3221 {
3222 struct tcp_sock *tp = tcp_sk(sk);
3223 struct tcphdr *th = tcp_hdr(skb);
3224 u32 seq = TCP_SKB_CB(skb)->seq;
3225 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3226
3227 return (/* 1. Pure ACK with correct sequence number. */
3228 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3229
3230 /* 2. ... and duplicate ACK. */
3231 ack == tp->snd_una &&
3232
3233 /* 3. ... and does not update window. */
3234 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3235
3236 /* 4. ... and sits in replay window. */
3237 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3238 }
3239
3240 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3241 {
3242 const struct tcp_sock *tp = tcp_sk(sk);
3243 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3244 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3245 !tcp_disordered_ack(sk, skb));
3246 }
3247
3248 /* Check segment sequence number for validity.
3249 *
3250 * Segment controls are considered valid, if the segment
3251 * fits to the window after truncation to the window. Acceptability
3252 * of data (and SYN, FIN, of course) is checked separately.
3253 * See tcp_data_queue(), for example.
3254 *
3255 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3256 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3257 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3258 * (borrowed from freebsd)
3259 */
3260
3261 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3262 {
3263 return !before(end_seq, tp->rcv_wup) &&
3264 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3265 }
3266
3267 /* When we get a reset we do this. */
3268 static void tcp_reset(struct sock *sk)
3269 {
3270 /* We want the right error as BSD sees it (and indeed as we do). */
3271 switch (sk->sk_state) {
3272 case TCP_SYN_SENT:
3273 sk->sk_err = ECONNREFUSED;
3274 break;
3275 case TCP_CLOSE_WAIT:
3276 sk->sk_err = EPIPE;
3277 break;
3278 case TCP_CLOSE:
3279 return;
3280 default:
3281 sk->sk_err = ECONNRESET;
3282 }
3283
3284 if (!sock_flag(sk, SOCK_DEAD))
3285 sk->sk_error_report(sk);
3286
3287 tcp_done(sk);
3288 }
3289
3290 /*
3291 * Process the FIN bit. This now behaves as it is supposed to work
3292 * and the FIN takes effect when it is validly part of sequence
3293 * space. Not before when we get holes.
3294 *
3295 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3296 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3297 * TIME-WAIT)
3298 *
3299 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3300 * close and we go into CLOSING (and later onto TIME-WAIT)
3301 *
3302 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3303 */
3304 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3305 {
3306 struct tcp_sock *tp = tcp_sk(sk);
3307
3308 inet_csk_schedule_ack(sk);
3309
3310 sk->sk_shutdown |= RCV_SHUTDOWN;
3311 sock_set_flag(sk, SOCK_DONE);
3312
3313 switch (sk->sk_state) {
3314 case TCP_SYN_RECV:
3315 case TCP_ESTABLISHED:
3316 /* Move to CLOSE_WAIT */
3317 tcp_set_state(sk, TCP_CLOSE_WAIT);
3318 inet_csk(sk)->icsk_ack.pingpong = 1;
3319 break;
3320
3321 case TCP_CLOSE_WAIT:
3322 case TCP_CLOSING:
3323 /* Received a retransmission of the FIN, do
3324 * nothing.
3325 */
3326 break;
3327 case TCP_LAST_ACK:
3328 /* RFC793: Remain in the LAST-ACK state. */
3329 break;
3330
3331 case TCP_FIN_WAIT1:
3332 /* This case occurs when a simultaneous close
3333 * happens, we must ack the received FIN and
3334 * enter the CLOSING state.
3335 */
3336 tcp_send_ack(sk);
3337 tcp_set_state(sk, TCP_CLOSING);
3338 break;
3339 case TCP_FIN_WAIT2:
3340 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3341 tcp_send_ack(sk);
3342 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3343 break;
3344 default:
3345 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3346 * cases we should never reach this piece of code.
3347 */
3348 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3349 __FUNCTION__, sk->sk_state);
3350 break;
3351 }
3352
3353 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3354 * Probably, we should reset in this case. For now drop them.
3355 */
3356 __skb_queue_purge(&tp->out_of_order_queue);
3357 if (tcp_is_sack(tp))
3358 tcp_sack_reset(&tp->rx_opt);
3359 sk_stream_mem_reclaim(sk);
3360
3361 if (!sock_flag(sk, SOCK_DEAD)) {
3362 sk->sk_state_change(sk);
3363
3364 /* Do not send POLL_HUP for half duplex close. */
3365 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3366 sk->sk_state == TCP_CLOSE)
3367 sk_wake_async(sk, 1, POLL_HUP);
3368 else
3369 sk_wake_async(sk, 1, POLL_IN);
3370 }
3371 }
3372
3373 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3374 {
3375 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3376 if (before(seq, sp->start_seq))
3377 sp->start_seq = seq;
3378 if (after(end_seq, sp->end_seq))
3379 sp->end_seq = end_seq;
3380 return 1;
3381 }
3382 return 0;
3383 }
3384
3385 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3386 {
3387 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3388 if (before(seq, tp->rcv_nxt))
3389 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3390 else
3391 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3392
3393 tp->rx_opt.dsack = 1;
3394 tp->duplicate_sack[0].start_seq = seq;
3395 tp->duplicate_sack[0].end_seq = end_seq;
3396 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3397 }
3398 }
3399
3400 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3401 {
3402 if (!tp->rx_opt.dsack)
3403 tcp_dsack_set(tp, seq, end_seq);
3404 else
3405 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3406 }
3407
3408 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3409 {
3410 struct tcp_sock *tp = tcp_sk(sk);
3411
3412 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3413 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3414 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3415 tcp_enter_quickack_mode(sk);
3416
3417 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3418 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3419
3420 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3421 end_seq = tp->rcv_nxt;
3422 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3423 }
3424 }
3425
3426 tcp_send_ack(sk);
3427 }
3428
3429 /* These routines update the SACK block as out-of-order packets arrive or
3430 * in-order packets close up the sequence space.
3431 */
3432 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3433 {
3434 int this_sack;
3435 struct tcp_sack_block *sp = &tp->selective_acks[0];
3436 struct tcp_sack_block *swalk = sp+1;
3437
3438 /* See if the recent change to the first SACK eats into
3439 * or hits the sequence space of other SACK blocks, if so coalesce.
3440 */
3441 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3442 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3443 int i;
3444
3445 /* Zap SWALK, by moving every further SACK up by one slot.
3446 * Decrease num_sacks.
3447 */
3448 tp->rx_opt.num_sacks--;
3449 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3450 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3451 sp[i] = sp[i+1];
3452 continue;
3453 }
3454 this_sack++, swalk++;
3455 }
3456 }
3457
3458 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3459 {
3460 __u32 tmp;
3461
3462 tmp = sack1->start_seq;
3463 sack1->start_seq = sack2->start_seq;
3464 sack2->start_seq = tmp;
3465
3466 tmp = sack1->end_seq;
3467 sack1->end_seq = sack2->end_seq;
3468 sack2->end_seq = tmp;
3469 }
3470
3471 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3472 {
3473 struct tcp_sock *tp = tcp_sk(sk);
3474 struct tcp_sack_block *sp = &tp->selective_acks[0];
3475 int cur_sacks = tp->rx_opt.num_sacks;
3476 int this_sack;
3477
3478 if (!cur_sacks)
3479 goto new_sack;
3480
3481 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3482 if (tcp_sack_extend(sp, seq, end_seq)) {
3483 /* Rotate this_sack to the first one. */
3484 for (; this_sack>0; this_sack--, sp--)
3485 tcp_sack_swap(sp, sp-1);
3486 if (cur_sacks > 1)
3487 tcp_sack_maybe_coalesce(tp);
3488 return;
3489 }
3490 }
3491
3492 /* Could not find an adjacent existing SACK, build a new one,
3493 * put it at the front, and shift everyone else down. We
3494 * always know there is at least one SACK present already here.
3495 *
3496 * If the sack array is full, forget about the last one.
3497 */
3498 if (this_sack >= 4) {
3499 this_sack--;
3500 tp->rx_opt.num_sacks--;
3501 sp--;
3502 }
3503 for (; this_sack > 0; this_sack--, sp--)
3504 *sp = *(sp-1);
3505
3506 new_sack:
3507 /* Build the new head SACK, and we're done. */
3508 sp->start_seq = seq;
3509 sp->end_seq = end_seq;
3510 tp->rx_opt.num_sacks++;
3511 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3512 }
3513
3514 /* RCV.NXT advances, some SACKs should be eaten. */
3515
3516 static void tcp_sack_remove(struct tcp_sock *tp)
3517 {
3518 struct tcp_sack_block *sp = &tp->selective_acks[0];
3519 int num_sacks = tp->rx_opt.num_sacks;
3520 int this_sack;
3521
3522 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3523 if (skb_queue_empty(&tp->out_of_order_queue)) {
3524 tp->rx_opt.num_sacks = 0;
3525 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3526 return;
3527 }
3528
3529 for (this_sack = 0; this_sack < num_sacks; ) {
3530 /* Check if the start of the sack is covered by RCV.NXT. */
3531 if (!before(tp->rcv_nxt, sp->start_seq)) {
3532 int i;
3533
3534 /* RCV.NXT must cover all the block! */
3535 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3536
3537 /* Zap this SACK, by moving forward any other SACKS. */
3538 for (i=this_sack+1; i < num_sacks; i++)
3539 tp->selective_acks[i-1] = tp->selective_acks[i];
3540 num_sacks--;
3541 continue;
3542 }
3543 this_sack++;
3544 sp++;
3545 }
3546 if (num_sacks != tp->rx_opt.num_sacks) {
3547 tp->rx_opt.num_sacks = num_sacks;
3548 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3549 }
3550 }
3551
3552 /* This one checks to see if we can put data from the
3553 * out_of_order queue into the receive_queue.
3554 */
3555 static void tcp_ofo_queue(struct sock *sk)
3556 {
3557 struct tcp_sock *tp = tcp_sk(sk);
3558 __u32 dsack_high = tp->rcv_nxt;
3559 struct sk_buff *skb;
3560
3561 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3562 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3563 break;
3564
3565 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3566 __u32 dsack = dsack_high;
3567 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3568 dsack_high = TCP_SKB_CB(skb)->end_seq;
3569 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3570 }
3571
3572 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3573 SOCK_DEBUG(sk, "ofo packet was already received \n");
3574 __skb_unlink(skb, &tp->out_of_order_queue);
3575 __kfree_skb(skb);
3576 continue;
3577 }
3578 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3579 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3580 TCP_SKB_CB(skb)->end_seq);
3581
3582 __skb_unlink(skb, &tp->out_of_order_queue);
3583 __skb_queue_tail(&sk->sk_receive_queue, skb);
3584 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3585 if (tcp_hdr(skb)->fin)
3586 tcp_fin(skb, sk, tcp_hdr(skb));
3587 }
3588 }
3589
3590 static int tcp_prune_queue(struct sock *sk);
3591
3592 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3593 {
3594 struct tcphdr *th = tcp_hdr(skb);
3595 struct tcp_sock *tp = tcp_sk(sk);
3596 int eaten = -1;
3597
3598 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3599 goto drop;
3600
3601 __skb_pull(skb, th->doff*4);
3602
3603 TCP_ECN_accept_cwr(tp, skb);
3604
3605 if (tp->rx_opt.dsack) {
3606 tp->rx_opt.dsack = 0;
3607 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3608 4 - tp->rx_opt.tstamp_ok);
3609 }
3610
3611 /* Queue data for delivery to the user.
3612 * Packets in sequence go to the receive queue.
3613 * Out of sequence packets to the out_of_order_queue.
3614 */
3615 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3616 if (tcp_receive_window(tp) == 0)
3617 goto out_of_window;
3618
3619 /* Ok. In sequence. In window. */
3620 if (tp->ucopy.task == current &&
3621 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3622 sock_owned_by_user(sk) && !tp->urg_data) {
3623 int chunk = min_t(unsigned int, skb->len,
3624 tp->ucopy.len);
3625
3626 __set_current_state(TASK_RUNNING);
3627
3628 local_bh_enable();
3629 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3630 tp->ucopy.len -= chunk;
3631 tp->copied_seq += chunk;
3632 eaten = (chunk == skb->len && !th->fin);
3633 tcp_rcv_space_adjust(sk);
3634 }
3635 local_bh_disable();
3636 }
3637
3638 if (eaten <= 0) {
3639 queue_and_out:
3640 if (eaten < 0 &&
3641 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3642 !sk_stream_rmem_schedule(sk, skb))) {
3643 if (tcp_prune_queue(sk) < 0 ||
3644 !sk_stream_rmem_schedule(sk, skb))
3645 goto drop;
3646 }
3647 sk_stream_set_owner_r(skb, sk);
3648 __skb_queue_tail(&sk->sk_receive_queue, skb);
3649 }
3650 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3651 if (skb->len)
3652 tcp_event_data_recv(sk, skb);
3653 if (th->fin)
3654 tcp_fin(skb, sk, th);
3655
3656 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3657 tcp_ofo_queue(sk);
3658
3659 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3660 * gap in queue is filled.
3661 */
3662 if (skb_queue_empty(&tp->out_of_order_queue))
3663 inet_csk(sk)->icsk_ack.pingpong = 0;
3664 }
3665
3666 if (tp->rx_opt.num_sacks)
3667 tcp_sack_remove(tp);
3668
3669 tcp_fast_path_check(sk);
3670
3671 if (eaten > 0)
3672 __kfree_skb(skb);
3673 else if (!sock_flag(sk, SOCK_DEAD))
3674 sk->sk_data_ready(sk, 0);
3675 return;
3676 }
3677
3678 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3679 /* A retransmit, 2nd most common case. Force an immediate ack. */
3680 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3681 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3682
3683 out_of_window:
3684 tcp_enter_quickack_mode(sk);
3685 inet_csk_schedule_ack(sk);
3686 drop:
3687 __kfree_skb(skb);
3688 return;
3689 }
3690
3691 /* Out of window. F.e. zero window probe. */
3692 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3693 goto out_of_window;
3694
3695 tcp_enter_quickack_mode(sk);
3696
3697 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3698 /* Partial packet, seq < rcv_next < end_seq */
3699 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3700 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3701 TCP_SKB_CB(skb)->end_seq);
3702
3703 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3704
3705 /* If window is closed, drop tail of packet. But after
3706 * remembering D-SACK for its head made in previous line.
3707 */
3708 if (!tcp_receive_window(tp))
3709 goto out_of_window;
3710 goto queue_and_out;
3711 }
3712
3713 TCP_ECN_check_ce(tp, skb);
3714
3715 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3716 !sk_stream_rmem_schedule(sk, skb)) {
3717 if (tcp_prune_queue(sk) < 0 ||
3718 !sk_stream_rmem_schedule(sk, skb))
3719 goto drop;
3720 }
3721
3722 /* Disable header prediction. */
3723 tp->pred_flags = 0;
3724 inet_csk_schedule_ack(sk);
3725
3726 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3727 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3728
3729 sk_stream_set_owner_r(skb, sk);
3730
3731 if (!skb_peek(&tp->out_of_order_queue)) {
3732 /* Initial out of order segment, build 1 SACK. */
3733 if (tcp_is_sack(tp)) {
3734 tp->rx_opt.num_sacks = 1;
3735 tp->rx_opt.dsack = 0;
3736 tp->rx_opt.eff_sacks = 1;
3737 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3738 tp->selective_acks[0].end_seq =
3739 TCP_SKB_CB(skb)->end_seq;
3740 }
3741 __skb_queue_head(&tp->out_of_order_queue,skb);
3742 } else {
3743 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3744 u32 seq = TCP_SKB_CB(skb)->seq;
3745 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3746
3747 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3748 __skb_append(skb1, skb, &tp->out_of_order_queue);
3749
3750 if (!tp->rx_opt.num_sacks ||
3751 tp->selective_acks[0].end_seq != seq)
3752 goto add_sack;
3753
3754 /* Common case: data arrive in order after hole. */
3755 tp->selective_acks[0].end_seq = end_seq;
3756 return;
3757 }
3758
3759 /* Find place to insert this segment. */
3760 do {
3761 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3762 break;
3763 } while ((skb1 = skb1->prev) !=
3764 (struct sk_buff*)&tp->out_of_order_queue);
3765
3766 /* Do skb overlap to previous one? */
3767 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3768 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3769 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3770 /* All the bits are present. Drop. */
3771 __kfree_skb(skb);
3772 tcp_dsack_set(tp, seq, end_seq);
3773 goto add_sack;
3774 }
3775 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3776 /* Partial overlap. */
3777 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3778 } else {
3779 skb1 = skb1->prev;
3780 }
3781 }
3782 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3783
3784 /* And clean segments covered by new one as whole. */
3785 while ((skb1 = skb->next) !=
3786 (struct sk_buff*)&tp->out_of_order_queue &&
3787 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3788 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3789 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3790 break;
3791 }
3792 __skb_unlink(skb1, &tp->out_of_order_queue);
3793 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3794 __kfree_skb(skb1);
3795 }
3796
3797 add_sack:
3798 if (tcp_is_sack(tp))
3799 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3800 }
3801 }
3802
3803 /* Collapse contiguous sequence of skbs head..tail with
3804 * sequence numbers start..end.
3805 * Segments with FIN/SYN are not collapsed (only because this
3806 * simplifies code)
3807 */
3808 static void
3809 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3810 struct sk_buff *head, struct sk_buff *tail,
3811 u32 start, u32 end)
3812 {
3813 struct sk_buff *skb;
3814
3815 /* First, check that queue is collapsible and find
3816 * the point where collapsing can be useful. */
3817 for (skb = head; skb != tail; ) {
3818 /* No new bits? It is possible on ofo queue. */
3819 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3820 struct sk_buff *next = skb->next;
3821 __skb_unlink(skb, list);
3822 __kfree_skb(skb);
3823 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3824 skb = next;
3825 continue;
3826 }
3827
3828 /* The first skb to collapse is:
3829 * - not SYN/FIN and
3830 * - bloated or contains data before "start" or
3831 * overlaps to the next one.
3832 */
3833 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3834 (tcp_win_from_space(skb->truesize) > skb->len ||
3835 before(TCP_SKB_CB(skb)->seq, start) ||
3836 (skb->next != tail &&
3837 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3838 break;
3839
3840 /* Decided to skip this, advance start seq. */
3841 start = TCP_SKB_CB(skb)->end_seq;
3842 skb = skb->next;
3843 }
3844 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3845 return;
3846
3847 while (before(start, end)) {
3848 struct sk_buff *nskb;
3849 int header = skb_headroom(skb);
3850 int copy = SKB_MAX_ORDER(header, 0);
3851
3852 /* Too big header? This can happen with IPv6. */
3853 if (copy < 0)
3854 return;
3855 if (end-start < copy)
3856 copy = end-start;
3857 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3858 if (!nskb)
3859 return;
3860
3861 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3862 skb_set_network_header(nskb, (skb_network_header(skb) -
3863 skb->head));
3864 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3865 skb->head));
3866 skb_reserve(nskb, header);
3867 memcpy(nskb->head, skb->head, header);
3868 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3869 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3870 __skb_insert(nskb, skb->prev, skb, list);
3871 sk_stream_set_owner_r(nskb, sk);
3872
3873 /* Copy data, releasing collapsed skbs. */
3874 while (copy > 0) {
3875 int offset = start - TCP_SKB_CB(skb)->seq;
3876 int size = TCP_SKB_CB(skb)->end_seq - start;
3877
3878 BUG_ON(offset < 0);
3879 if (size > 0) {
3880 size = min(copy, size);
3881 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3882 BUG();
3883 TCP_SKB_CB(nskb)->end_seq += size;
3884 copy -= size;
3885 start += size;
3886 }
3887 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3888 struct sk_buff *next = skb->next;
3889 __skb_unlink(skb, list);
3890 __kfree_skb(skb);
3891 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3892 skb = next;
3893 if (skb == tail ||
3894 tcp_hdr(skb)->syn ||
3895 tcp_hdr(skb)->fin)
3896 return;
3897 }
3898 }
3899 }
3900 }
3901
3902 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3903 * and tcp_collapse() them until all the queue is collapsed.
3904 */
3905 static void tcp_collapse_ofo_queue(struct sock *sk)
3906 {
3907 struct tcp_sock *tp = tcp_sk(sk);
3908 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3909 struct sk_buff *head;
3910 u32 start, end;
3911
3912 if (skb == NULL)
3913 return;
3914
3915 start = TCP_SKB_CB(skb)->seq;
3916 end = TCP_SKB_CB(skb)->end_seq;
3917 head = skb;
3918
3919 for (;;) {
3920 skb = skb->next;
3921
3922 /* Segment is terminated when we see gap or when
3923 * we are at the end of all the queue. */
3924 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3925 after(TCP_SKB_CB(skb)->seq, end) ||
3926 before(TCP_SKB_CB(skb)->end_seq, start)) {
3927 tcp_collapse(sk, &tp->out_of_order_queue,
3928 head, skb, start, end);
3929 head = skb;
3930 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3931 break;
3932 /* Start new segment */
3933 start = TCP_SKB_CB(skb)->seq;
3934 end = TCP_SKB_CB(skb)->end_seq;
3935 } else {
3936 if (before(TCP_SKB_CB(skb)->seq, start))
3937 start = TCP_SKB_CB(skb)->seq;
3938 if (after(TCP_SKB_CB(skb)->end_seq, end))
3939 end = TCP_SKB_CB(skb)->end_seq;
3940 }
3941 }
3942 }
3943
3944 /* Reduce allocated memory if we can, trying to get
3945 * the socket within its memory limits again.
3946 *
3947 * Return less than zero if we should start dropping frames
3948 * until the socket owning process reads some of the data
3949 * to stabilize the situation.
3950 */
3951 static int tcp_prune_queue(struct sock *sk)
3952 {
3953 struct tcp_sock *tp = tcp_sk(sk);
3954
3955 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3956
3957 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3958
3959 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3960 tcp_clamp_window(sk);
3961 else if (tcp_memory_pressure)
3962 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3963
3964 tcp_collapse_ofo_queue(sk);
3965 tcp_collapse(sk, &sk->sk_receive_queue,
3966 sk->sk_receive_queue.next,
3967 (struct sk_buff*)&sk->sk_receive_queue,
3968 tp->copied_seq, tp->rcv_nxt);
3969 sk_stream_mem_reclaim(sk);
3970
3971 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3972 return 0;
3973
3974 /* Collapsing did not help, destructive actions follow.
3975 * This must not ever occur. */
3976
3977 /* First, purge the out_of_order queue. */
3978 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3979 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3980 __skb_queue_purge(&tp->out_of_order_queue);
3981
3982 /* Reset SACK state. A conforming SACK implementation will
3983 * do the same at a timeout based retransmit. When a connection
3984 * is in a sad state like this, we care only about integrity
3985 * of the connection not performance.
3986 */
3987 if (tcp_is_sack(tp))
3988 tcp_sack_reset(&tp->rx_opt);
3989 sk_stream_mem_reclaim(sk);
3990 }
3991
3992 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3993 return 0;
3994
3995 /* If we are really being abused, tell the caller to silently
3996 * drop receive data on the floor. It will get retransmitted
3997 * and hopefully then we'll have sufficient space.
3998 */
3999 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4000
4001 /* Massive buffer overcommit. */
4002 tp->pred_flags = 0;
4003 return -1;
4004 }
4005
4006
4007 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4008 * As additional protections, we do not touch cwnd in retransmission phases,
4009 * and if application hit its sndbuf limit recently.
4010 */
4011 void tcp_cwnd_application_limited(struct sock *sk)
4012 {
4013 struct tcp_sock *tp = tcp_sk(sk);
4014
4015 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4016 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4017 /* Limited by application or receiver window. */
4018 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4019 u32 win_used = max(tp->snd_cwnd_used, init_win);
4020 if (win_used < tp->snd_cwnd) {
4021 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4022 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4023 }
4024 tp->snd_cwnd_used = 0;
4025 }
4026 tp->snd_cwnd_stamp = tcp_time_stamp;
4027 }
4028
4029 static int tcp_should_expand_sndbuf(struct sock *sk)
4030 {
4031 struct tcp_sock *tp = tcp_sk(sk);
4032
4033 /* If the user specified a specific send buffer setting, do
4034 * not modify it.
4035 */
4036 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4037 return 0;
4038
4039 /* If we are under global TCP memory pressure, do not expand. */
4040 if (tcp_memory_pressure)
4041 return 0;
4042
4043 /* If we are under soft global TCP memory pressure, do not expand. */
4044 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4045 return 0;
4046
4047 /* If we filled the congestion window, do not expand. */
4048 if (tp->packets_out >= tp->snd_cwnd)
4049 return 0;
4050
4051 return 1;
4052 }
4053
4054 /* When incoming ACK allowed to free some skb from write_queue,
4055 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4056 * on the exit from tcp input handler.
4057 *
4058 * PROBLEM: sndbuf expansion does not work well with largesend.
4059 */
4060 static void tcp_new_space(struct sock *sk)
4061 {
4062 struct tcp_sock *tp = tcp_sk(sk);
4063
4064 if (tcp_should_expand_sndbuf(sk)) {
4065 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4066 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4067 demanded = max_t(unsigned int, tp->snd_cwnd,
4068 tp->reordering + 1);
4069 sndmem *= 2*demanded;
4070 if (sndmem > sk->sk_sndbuf)
4071 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4072 tp->snd_cwnd_stamp = tcp_time_stamp;
4073 }
4074
4075 sk->sk_write_space(sk);
4076 }
4077
4078 static void tcp_check_space(struct sock *sk)
4079 {
4080 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4081 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4082 if (sk->sk_socket &&
4083 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4084 tcp_new_space(sk);
4085 }
4086 }
4087
4088 static inline void tcp_data_snd_check(struct sock *sk)
4089 {
4090 tcp_push_pending_frames(sk);
4091 tcp_check_space(sk);
4092 }
4093
4094 /*
4095 * Check if sending an ack is needed.
4096 */
4097 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4098 {
4099 struct tcp_sock *tp = tcp_sk(sk);
4100
4101 /* More than one full frame received... */
4102 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4103 /* ... and right edge of window advances far enough.
4104 * (tcp_recvmsg() will send ACK otherwise). Or...
4105 */
4106 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4107 /* We ACK each frame or... */
4108 tcp_in_quickack_mode(sk) ||
4109 /* We have out of order data. */
4110 (ofo_possible &&
4111 skb_peek(&tp->out_of_order_queue))) {
4112 /* Then ack it now */
4113 tcp_send_ack(sk);
4114 } else {
4115 /* Else, send delayed ack. */
4116 tcp_send_delayed_ack(sk);
4117 }
4118 }
4119
4120 static inline void tcp_ack_snd_check(struct sock *sk)
4121 {
4122 if (!inet_csk_ack_scheduled(sk)) {
4123 /* We sent a data segment already. */
4124 return;
4125 }
4126 __tcp_ack_snd_check(sk, 1);
4127 }
4128
4129 /*
4130 * This routine is only called when we have urgent data
4131 * signaled. Its the 'slow' part of tcp_urg. It could be
4132 * moved inline now as tcp_urg is only called from one
4133 * place. We handle URGent data wrong. We have to - as
4134 * BSD still doesn't use the correction from RFC961.
4135 * For 1003.1g we should support a new option TCP_STDURG to permit
4136 * either form (or just set the sysctl tcp_stdurg).
4137 */
4138
4139 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4140 {
4141 struct tcp_sock *tp = tcp_sk(sk);
4142 u32 ptr = ntohs(th->urg_ptr);
4143
4144 if (ptr && !sysctl_tcp_stdurg)
4145 ptr--;
4146 ptr += ntohl(th->seq);
4147
4148 /* Ignore urgent data that we've already seen and read. */
4149 if (after(tp->copied_seq, ptr))
4150 return;
4151
4152 /* Do not replay urg ptr.
4153 *
4154 * NOTE: interesting situation not covered by specs.
4155 * Misbehaving sender may send urg ptr, pointing to segment,
4156 * which we already have in ofo queue. We are not able to fetch
4157 * such data and will stay in TCP_URG_NOTYET until will be eaten
4158 * by recvmsg(). Seems, we are not obliged to handle such wicked
4159 * situations. But it is worth to think about possibility of some
4160 * DoSes using some hypothetical application level deadlock.
4161 */
4162 if (before(ptr, tp->rcv_nxt))
4163 return;
4164
4165 /* Do we already have a newer (or duplicate) urgent pointer? */
4166 if (tp->urg_data && !after(ptr, tp->urg_seq))
4167 return;
4168
4169 /* Tell the world about our new urgent pointer. */
4170 sk_send_sigurg(sk);
4171
4172 /* We may be adding urgent data when the last byte read was
4173 * urgent. To do this requires some care. We cannot just ignore
4174 * tp->copied_seq since we would read the last urgent byte again
4175 * as data, nor can we alter copied_seq until this data arrives
4176 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4177 *
4178 * NOTE. Double Dutch. Rendering to plain English: author of comment
4179 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4180 * and expect that both A and B disappear from stream. This is _wrong_.
4181 * Though this happens in BSD with high probability, this is occasional.
4182 * Any application relying on this is buggy. Note also, that fix "works"
4183 * only in this artificial test. Insert some normal data between A and B and we will
4184 * decline of BSD again. Verdict: it is better to remove to trap
4185 * buggy users.
4186 */
4187 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4188 !sock_flag(sk, SOCK_URGINLINE) &&
4189 tp->copied_seq != tp->rcv_nxt) {
4190 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4191 tp->copied_seq++;
4192 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4193 __skb_unlink(skb, &sk->sk_receive_queue);
4194 __kfree_skb(skb);
4195 }
4196 }
4197
4198 tp->urg_data = TCP_URG_NOTYET;
4199 tp->urg_seq = ptr;
4200
4201 /* Disable header prediction. */
4202 tp->pred_flags = 0;
4203 }
4204
4205 /* This is the 'fast' part of urgent handling. */
4206 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4207 {
4208 struct tcp_sock *tp = tcp_sk(sk);
4209
4210 /* Check if we get a new urgent pointer - normally not. */
4211 if (th->urg)
4212 tcp_check_urg(sk,th);
4213
4214 /* Do we wait for any urgent data? - normally not... */
4215 if (tp->urg_data == TCP_URG_NOTYET) {
4216 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4217 th->syn;
4218
4219 /* Is the urgent pointer pointing into this packet? */
4220 if (ptr < skb->len) {
4221 u8 tmp;
4222 if (skb_copy_bits(skb, ptr, &tmp, 1))
4223 BUG();
4224 tp->urg_data = TCP_URG_VALID | tmp;
4225 if (!sock_flag(sk, SOCK_DEAD))
4226 sk->sk_data_ready(sk, 0);
4227 }
4228 }
4229 }
4230
4231 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4232 {
4233 struct tcp_sock *tp = tcp_sk(sk);
4234 int chunk = skb->len - hlen;
4235 int err;
4236
4237 local_bh_enable();
4238 if (skb_csum_unnecessary(skb))
4239 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4240 else
4241 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4242 tp->ucopy.iov);
4243
4244 if (!err) {
4245 tp->ucopy.len -= chunk;
4246 tp->copied_seq += chunk;
4247 tcp_rcv_space_adjust(sk);
4248 }
4249
4250 local_bh_disable();
4251 return err;
4252 }
4253
4254 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4255 {
4256 __sum16 result;
4257
4258 if (sock_owned_by_user(sk)) {
4259 local_bh_enable();
4260 result = __tcp_checksum_complete(skb);
4261 local_bh_disable();
4262 } else {
4263 result = __tcp_checksum_complete(skb);
4264 }
4265 return result;
4266 }
4267
4268 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4269 {
4270 return !skb_csum_unnecessary(skb) &&
4271 __tcp_checksum_complete_user(sk, skb);
4272 }
4273
4274 #ifdef CONFIG_NET_DMA
4275 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4276 {
4277 struct tcp_sock *tp = tcp_sk(sk);
4278 int chunk = skb->len - hlen;
4279 int dma_cookie;
4280 int copied_early = 0;
4281
4282 if (tp->ucopy.wakeup)
4283 return 0;
4284
4285 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4286 tp->ucopy.dma_chan = get_softnet_dma();
4287
4288 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4289
4290 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4291 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4292
4293 if (dma_cookie < 0)
4294 goto out;
4295
4296 tp->ucopy.dma_cookie = dma_cookie;
4297 copied_early = 1;
4298
4299 tp->ucopy.len -= chunk;
4300 tp->copied_seq += chunk;
4301 tcp_rcv_space_adjust(sk);
4302
4303 if ((tp->ucopy.len == 0) ||
4304 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4305 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4306 tp->ucopy.wakeup = 1;
4307 sk->sk_data_ready(sk, 0);
4308 }
4309 } else if (chunk > 0) {
4310 tp->ucopy.wakeup = 1;
4311 sk->sk_data_ready(sk, 0);
4312 }
4313 out:
4314 return copied_early;
4315 }
4316 #endif /* CONFIG_NET_DMA */
4317
4318 /*
4319 * TCP receive function for the ESTABLISHED state.
4320 *
4321 * It is split into a fast path and a slow path. The fast path is
4322 * disabled when:
4323 * - A zero window was announced from us - zero window probing
4324 * is only handled properly in the slow path.
4325 * - Out of order segments arrived.
4326 * - Urgent data is expected.
4327 * - There is no buffer space left
4328 * - Unexpected TCP flags/window values/header lengths are received
4329 * (detected by checking the TCP header against pred_flags)
4330 * - Data is sent in both directions. Fast path only supports pure senders
4331 * or pure receivers (this means either the sequence number or the ack
4332 * value must stay constant)
4333 * - Unexpected TCP option.
4334 *
4335 * When these conditions are not satisfied it drops into a standard
4336 * receive procedure patterned after RFC793 to handle all cases.
4337 * The first three cases are guaranteed by proper pred_flags setting,
4338 * the rest is checked inline. Fast processing is turned on in
4339 * tcp_data_queue when everything is OK.
4340 */
4341 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4342 struct tcphdr *th, unsigned len)
4343 {
4344 struct tcp_sock *tp = tcp_sk(sk);
4345
4346 /*
4347 * Header prediction.
4348 * The code loosely follows the one in the famous
4349 * "30 instruction TCP receive" Van Jacobson mail.
4350 *
4351 * Van's trick is to deposit buffers into socket queue
4352 * on a device interrupt, to call tcp_recv function
4353 * on the receive process context and checksum and copy
4354 * the buffer to user space. smart...
4355 *
4356 * Our current scheme is not silly either but we take the
4357 * extra cost of the net_bh soft interrupt processing...
4358 * We do checksum and copy also but from device to kernel.
4359 */
4360
4361 tp->rx_opt.saw_tstamp = 0;
4362
4363 /* pred_flags is 0xS?10 << 16 + snd_wnd
4364 * if header_prediction is to be made
4365 * 'S' will always be tp->tcp_header_len >> 2
4366 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4367 * turn it off (when there are holes in the receive
4368 * space for instance)
4369 * PSH flag is ignored.
4370 */
4371
4372 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4373 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4374 int tcp_header_len = tp->tcp_header_len;
4375
4376 /* Timestamp header prediction: tcp_header_len
4377 * is automatically equal to th->doff*4 due to pred_flags
4378 * match.
4379 */
4380
4381 /* Check timestamp */
4382 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4383 __be32 *ptr = (__be32 *)(th + 1);
4384
4385 /* No? Slow path! */
4386 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4387 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4388 goto slow_path;
4389
4390 tp->rx_opt.saw_tstamp = 1;
4391 ++ptr;
4392 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4393 ++ptr;
4394 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4395
4396 /* If PAWS failed, check it more carefully in slow path */
4397 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4398 goto slow_path;
4399
4400 /* DO NOT update ts_recent here, if checksum fails
4401 * and timestamp was corrupted part, it will result
4402 * in a hung connection since we will drop all
4403 * future packets due to the PAWS test.
4404 */
4405 }
4406
4407 if (len <= tcp_header_len) {
4408 /* Bulk data transfer: sender */
4409 if (len == tcp_header_len) {
4410 /* Predicted packet is in window by definition.
4411 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4412 * Hence, check seq<=rcv_wup reduces to:
4413 */
4414 if (tcp_header_len ==
4415 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4416 tp->rcv_nxt == tp->rcv_wup)
4417 tcp_store_ts_recent(tp);
4418
4419 /* We know that such packets are checksummed
4420 * on entry.
4421 */
4422 tcp_ack(sk, skb, 0);
4423 __kfree_skb(skb);
4424 tcp_data_snd_check(sk);
4425 return 0;
4426 } else { /* Header too small */
4427 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4428 goto discard;
4429 }
4430 } else {
4431 int eaten = 0;
4432 int copied_early = 0;
4433
4434 if (tp->copied_seq == tp->rcv_nxt &&
4435 len - tcp_header_len <= tp->ucopy.len) {
4436 #ifdef CONFIG_NET_DMA
4437 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4438 copied_early = 1;
4439 eaten = 1;
4440 }
4441 #endif
4442 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4443 __set_current_state(TASK_RUNNING);
4444
4445 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4446 eaten = 1;
4447 }
4448 if (eaten) {
4449 /* Predicted packet is in window by definition.
4450 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4451 * Hence, check seq<=rcv_wup reduces to:
4452 */
4453 if (tcp_header_len ==
4454 (sizeof(struct tcphdr) +
4455 TCPOLEN_TSTAMP_ALIGNED) &&
4456 tp->rcv_nxt == tp->rcv_wup)
4457 tcp_store_ts_recent(tp);
4458
4459 tcp_rcv_rtt_measure_ts(sk, skb);
4460
4461 __skb_pull(skb, tcp_header_len);
4462 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4463 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4464 }
4465 if (copied_early)
4466 tcp_cleanup_rbuf(sk, skb->len);
4467 }
4468 if (!eaten) {
4469 if (tcp_checksum_complete_user(sk, skb))
4470 goto csum_error;
4471
4472 /* Predicted packet is in window by definition.
4473 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4474 * Hence, check seq<=rcv_wup reduces to:
4475 */
4476 if (tcp_header_len ==
4477 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4478 tp->rcv_nxt == tp->rcv_wup)
4479 tcp_store_ts_recent(tp);
4480
4481 tcp_rcv_rtt_measure_ts(sk, skb);
4482
4483 if ((int)skb->truesize > sk->sk_forward_alloc)
4484 goto step5;
4485
4486 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4487
4488 /* Bulk data transfer: receiver */
4489 __skb_pull(skb,tcp_header_len);
4490 __skb_queue_tail(&sk->sk_receive_queue, skb);
4491 sk_stream_set_owner_r(skb, sk);
4492 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4493 }
4494
4495 tcp_event_data_recv(sk, skb);
4496
4497 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4498 /* Well, only one small jumplet in fast path... */
4499 tcp_ack(sk, skb, FLAG_DATA);
4500 tcp_data_snd_check(sk);
4501 if (!inet_csk_ack_scheduled(sk))
4502 goto no_ack;
4503 }
4504
4505 __tcp_ack_snd_check(sk, 0);
4506 no_ack:
4507 #ifdef CONFIG_NET_DMA
4508 if (copied_early)
4509 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4510 else
4511 #endif
4512 if (eaten)
4513 __kfree_skb(skb);
4514 else
4515 sk->sk_data_ready(sk, 0);
4516 return 0;
4517 }
4518 }
4519
4520 slow_path:
4521 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4522 goto csum_error;
4523
4524 /*
4525 * RFC1323: H1. Apply PAWS check first.
4526 */
4527 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4528 tcp_paws_discard(sk, skb)) {
4529 if (!th->rst) {
4530 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4531 tcp_send_dupack(sk, skb);
4532 goto discard;
4533 }
4534 /* Resets are accepted even if PAWS failed.
4535
4536 ts_recent update must be made after we are sure
4537 that the packet is in window.
4538 */
4539 }
4540
4541 /*
4542 * Standard slow path.
4543 */
4544
4545 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4546 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4547 * (RST) segments are validated by checking their SEQ-fields."
4548 * And page 69: "If an incoming segment is not acceptable,
4549 * an acknowledgment should be sent in reply (unless the RST bit
4550 * is set, if so drop the segment and return)".
4551 */
4552 if (!th->rst)
4553 tcp_send_dupack(sk, skb);
4554 goto discard;
4555 }
4556
4557 if (th->rst) {
4558 tcp_reset(sk);
4559 goto discard;
4560 }
4561
4562 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4563
4564 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4565 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4566 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4567 tcp_reset(sk);
4568 return 1;
4569 }
4570
4571 step5:
4572 if (th->ack)
4573 tcp_ack(sk, skb, FLAG_SLOWPATH);
4574
4575 tcp_rcv_rtt_measure_ts(sk, skb);
4576
4577 /* Process urgent data. */
4578 tcp_urg(sk, skb, th);
4579
4580 /* step 7: process the segment text */
4581 tcp_data_queue(sk, skb);
4582
4583 tcp_data_snd_check(sk);
4584 tcp_ack_snd_check(sk);
4585 return 0;
4586
4587 csum_error:
4588 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4589
4590 discard:
4591 __kfree_skb(skb);
4592 return 0;
4593 }
4594
4595 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4596 struct tcphdr *th, unsigned len)
4597 {
4598 struct tcp_sock *tp = tcp_sk(sk);
4599 struct inet_connection_sock *icsk = inet_csk(sk);
4600 int saved_clamp = tp->rx_opt.mss_clamp;
4601
4602 tcp_parse_options(skb, &tp->rx_opt, 0);
4603
4604 if (th->ack) {
4605 /* rfc793:
4606 * "If the state is SYN-SENT then
4607 * first check the ACK bit
4608 * If the ACK bit is set
4609 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4610 * a reset (unless the RST bit is set, if so drop
4611 * the segment and return)"
4612 *
4613 * We do not send data with SYN, so that RFC-correct
4614 * test reduces to:
4615 */
4616 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4617 goto reset_and_undo;
4618
4619 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4620 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4621 tcp_time_stamp)) {
4622 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4623 goto reset_and_undo;
4624 }
4625
4626 /* Now ACK is acceptable.
4627 *
4628 * "If the RST bit is set
4629 * If the ACK was acceptable then signal the user "error:
4630 * connection reset", drop the segment, enter CLOSED state,
4631 * delete TCB, and return."
4632 */
4633
4634 if (th->rst) {
4635 tcp_reset(sk);
4636 goto discard;
4637 }
4638
4639 /* rfc793:
4640 * "fifth, if neither of the SYN or RST bits is set then
4641 * drop the segment and return."
4642 *
4643 * See note below!
4644 * --ANK(990513)
4645 */
4646 if (!th->syn)
4647 goto discard_and_undo;
4648
4649 /* rfc793:
4650 * "If the SYN bit is on ...
4651 * are acceptable then ...
4652 * (our SYN has been ACKed), change the connection
4653 * state to ESTABLISHED..."
4654 */
4655
4656 TCP_ECN_rcv_synack(tp, th);
4657
4658 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4659 tcp_ack(sk, skb, FLAG_SLOWPATH);
4660
4661 /* Ok.. it's good. Set up sequence numbers and
4662 * move to established.
4663 */
4664 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4665 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4666
4667 /* RFC1323: The window in SYN & SYN/ACK segments is
4668 * never scaled.
4669 */
4670 tp->snd_wnd = ntohs(th->window);
4671 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4672
4673 if (!tp->rx_opt.wscale_ok) {
4674 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4675 tp->window_clamp = min(tp->window_clamp, 65535U);
4676 }
4677
4678 if (tp->rx_opt.saw_tstamp) {
4679 tp->rx_opt.tstamp_ok = 1;
4680 tp->tcp_header_len =
4681 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4682 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4683 tcp_store_ts_recent(tp);
4684 } else {
4685 tp->tcp_header_len = sizeof(struct tcphdr);
4686 }
4687
4688 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4689 tcp_enable_fack(tp);
4690
4691 tcp_mtup_init(sk);
4692 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4693 tcp_initialize_rcv_mss(sk);
4694
4695 /* Remember, tcp_poll() does not lock socket!
4696 * Change state from SYN-SENT only after copied_seq
4697 * is initialized. */
4698 tp->copied_seq = tp->rcv_nxt;
4699 smp_mb();
4700 tcp_set_state(sk, TCP_ESTABLISHED);
4701
4702 security_inet_conn_established(sk, skb);
4703
4704 /* Make sure socket is routed, for correct metrics. */
4705 icsk->icsk_af_ops->rebuild_header(sk);
4706
4707 tcp_init_metrics(sk);
4708
4709 tcp_init_congestion_control(sk);
4710
4711 /* Prevent spurious tcp_cwnd_restart() on first data
4712 * packet.
4713 */
4714 tp->lsndtime = tcp_time_stamp;
4715
4716 tcp_init_buffer_space(sk);
4717
4718 if (sock_flag(sk, SOCK_KEEPOPEN))
4719 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4720
4721 if (!tp->rx_opt.snd_wscale)
4722 __tcp_fast_path_on(tp, tp->snd_wnd);
4723 else
4724 tp->pred_flags = 0;
4725
4726 if (!sock_flag(sk, SOCK_DEAD)) {
4727 sk->sk_state_change(sk);
4728 sk_wake_async(sk, 0, POLL_OUT);
4729 }
4730
4731 if (sk->sk_write_pending ||
4732 icsk->icsk_accept_queue.rskq_defer_accept ||
4733 icsk->icsk_ack.pingpong) {
4734 /* Save one ACK. Data will be ready after
4735 * several ticks, if write_pending is set.
4736 *
4737 * It may be deleted, but with this feature tcpdumps
4738 * look so _wonderfully_ clever, that I was not able
4739 * to stand against the temptation 8) --ANK
4740 */
4741 inet_csk_schedule_ack(sk);
4742 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4743 icsk->icsk_ack.ato = TCP_ATO_MIN;
4744 tcp_incr_quickack(sk);
4745 tcp_enter_quickack_mode(sk);
4746 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4747 TCP_DELACK_MAX, TCP_RTO_MAX);
4748
4749 discard:
4750 __kfree_skb(skb);
4751 return 0;
4752 } else {
4753 tcp_send_ack(sk);
4754 }
4755 return -1;
4756 }
4757
4758 /* No ACK in the segment */
4759
4760 if (th->rst) {
4761 /* rfc793:
4762 * "If the RST bit is set
4763 *
4764 * Otherwise (no ACK) drop the segment and return."
4765 */
4766
4767 goto discard_and_undo;
4768 }
4769
4770 /* PAWS check. */
4771 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4772 goto discard_and_undo;
4773
4774 if (th->syn) {
4775 /* We see SYN without ACK. It is attempt of
4776 * simultaneous connect with crossed SYNs.
4777 * Particularly, it can be connect to self.
4778 */
4779 tcp_set_state(sk, TCP_SYN_RECV);
4780
4781 if (tp->rx_opt.saw_tstamp) {
4782 tp->rx_opt.tstamp_ok = 1;
4783 tcp_store_ts_recent(tp);
4784 tp->tcp_header_len =
4785 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4786 } else {
4787 tp->tcp_header_len = sizeof(struct tcphdr);
4788 }
4789
4790 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4791 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4792
4793 /* RFC1323: The window in SYN & SYN/ACK segments is
4794 * never scaled.
4795 */
4796 tp->snd_wnd = ntohs(th->window);
4797 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4798 tp->max_window = tp->snd_wnd;
4799
4800 TCP_ECN_rcv_syn(tp, th);
4801
4802 tcp_mtup_init(sk);
4803 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4804 tcp_initialize_rcv_mss(sk);
4805
4806
4807 tcp_send_synack(sk);
4808 #if 0
4809 /* Note, we could accept data and URG from this segment.
4810 * There are no obstacles to make this.
4811 *
4812 * However, if we ignore data in ACKless segments sometimes,
4813 * we have no reasons to accept it sometimes.
4814 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4815 * is not flawless. So, discard packet for sanity.
4816 * Uncomment this return to process the data.
4817 */
4818 return -1;
4819 #else
4820 goto discard;
4821 #endif
4822 }
4823 /* "fifth, if neither of the SYN or RST bits is set then
4824 * drop the segment and return."
4825 */
4826
4827 discard_and_undo:
4828 tcp_clear_options(&tp->rx_opt);
4829 tp->rx_opt.mss_clamp = saved_clamp;
4830 goto discard;
4831
4832 reset_and_undo:
4833 tcp_clear_options(&tp->rx_opt);
4834 tp->rx_opt.mss_clamp = saved_clamp;
4835 return 1;
4836 }
4837
4838
4839 /*
4840 * This function implements the receiving procedure of RFC 793 for
4841 * all states except ESTABLISHED and TIME_WAIT.
4842 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4843 * address independent.
4844 */
4845
4846 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4847 struct tcphdr *th, unsigned len)
4848 {
4849 struct tcp_sock *tp = tcp_sk(sk);
4850 struct inet_connection_sock *icsk = inet_csk(sk);
4851 int queued = 0;
4852
4853 tp->rx_opt.saw_tstamp = 0;
4854
4855 switch (sk->sk_state) {
4856 case TCP_CLOSE:
4857 goto discard;
4858
4859 case TCP_LISTEN:
4860 if (th->ack)
4861 return 1;
4862
4863 if (th->rst)
4864 goto discard;
4865
4866 if (th->syn) {
4867 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4868 return 1;
4869
4870 /* Now we have several options: In theory there is
4871 * nothing else in the frame. KA9Q has an option to
4872 * send data with the syn, BSD accepts data with the
4873 * syn up to the [to be] advertised window and
4874 * Solaris 2.1 gives you a protocol error. For now
4875 * we just ignore it, that fits the spec precisely
4876 * and avoids incompatibilities. It would be nice in
4877 * future to drop through and process the data.
4878 *
4879 * Now that TTCP is starting to be used we ought to
4880 * queue this data.
4881 * But, this leaves one open to an easy denial of
4882 * service attack, and SYN cookies can't defend
4883 * against this problem. So, we drop the data
4884 * in the interest of security over speed unless
4885 * it's still in use.
4886 */
4887 kfree_skb(skb);
4888 return 0;
4889 }
4890 goto discard;
4891
4892 case TCP_SYN_SENT:
4893 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4894 if (queued >= 0)
4895 return queued;
4896
4897 /* Do step6 onward by hand. */
4898 tcp_urg(sk, skb, th);
4899 __kfree_skb(skb);
4900 tcp_data_snd_check(sk);
4901 return 0;
4902 }
4903
4904 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4905 tcp_paws_discard(sk, skb)) {
4906 if (!th->rst) {
4907 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4908 tcp_send_dupack(sk, skb);
4909 goto discard;
4910 }
4911 /* Reset is accepted even if it did not pass PAWS. */
4912 }
4913
4914 /* step 1: check sequence number */
4915 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4916 if (!th->rst)
4917 tcp_send_dupack(sk, skb);
4918 goto discard;
4919 }
4920
4921 /* step 2: check RST bit */
4922 if (th->rst) {
4923 tcp_reset(sk);
4924 goto discard;
4925 }
4926
4927 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4928
4929 /* step 3: check security and precedence [ignored] */
4930
4931 /* step 4:
4932 *
4933 * Check for a SYN in window.
4934 */
4935 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4936 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4937 tcp_reset(sk);
4938 return 1;
4939 }
4940
4941 /* step 5: check the ACK field */
4942 if (th->ack) {
4943 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4944
4945 switch (sk->sk_state) {
4946 case TCP_SYN_RECV:
4947 if (acceptable) {
4948 tp->copied_seq = tp->rcv_nxt;
4949 smp_mb();
4950 tcp_set_state(sk, TCP_ESTABLISHED);
4951 sk->sk_state_change(sk);
4952
4953 /* Note, that this wakeup is only for marginal
4954 * crossed SYN case. Passively open sockets
4955 * are not waked up, because sk->sk_sleep ==
4956 * NULL and sk->sk_socket == NULL.
4957 */
4958 if (sk->sk_socket) {
4959 sk_wake_async(sk,0,POLL_OUT);
4960 }
4961
4962 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4963 tp->snd_wnd = ntohs(th->window) <<
4964 tp->rx_opt.snd_wscale;
4965 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4966 TCP_SKB_CB(skb)->seq);
4967
4968 /* tcp_ack considers this ACK as duplicate
4969 * and does not calculate rtt.
4970 * Fix it at least with timestamps.
4971 */
4972 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4973 !tp->srtt)
4974 tcp_ack_saw_tstamp(sk, 0);
4975
4976 if (tp->rx_opt.tstamp_ok)
4977 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4978
4979 /* Make sure socket is routed, for
4980 * correct metrics.
4981 */
4982 icsk->icsk_af_ops->rebuild_header(sk);
4983
4984 tcp_init_metrics(sk);
4985
4986 tcp_init_congestion_control(sk);
4987
4988 /* Prevent spurious tcp_cwnd_restart() on
4989 * first data packet.
4990 */
4991 tp->lsndtime = tcp_time_stamp;
4992
4993 tcp_mtup_init(sk);
4994 tcp_initialize_rcv_mss(sk);
4995 tcp_init_buffer_space(sk);
4996 tcp_fast_path_on(tp);
4997 } else {
4998 return 1;
4999 }
5000 break;
5001
5002 case TCP_FIN_WAIT1:
5003 if (tp->snd_una == tp->write_seq) {
5004 tcp_set_state(sk, TCP_FIN_WAIT2);
5005 sk->sk_shutdown |= SEND_SHUTDOWN;
5006 dst_confirm(sk->sk_dst_cache);
5007
5008 if (!sock_flag(sk, SOCK_DEAD))
5009 /* Wake up lingering close() */
5010 sk->sk_state_change(sk);
5011 else {
5012 int tmo;
5013
5014 if (tp->linger2 < 0 ||
5015 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5016 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5017 tcp_done(sk);
5018 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5019 return 1;
5020 }
5021
5022 tmo = tcp_fin_time(sk);
5023 if (tmo > TCP_TIMEWAIT_LEN) {
5024 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5025 } else if (th->fin || sock_owned_by_user(sk)) {
5026 /* Bad case. We could lose such FIN otherwise.
5027 * It is not a big problem, but it looks confusing
5028 * and not so rare event. We still can lose it now,
5029 * if it spins in bh_lock_sock(), but it is really
5030 * marginal case.
5031 */
5032 inet_csk_reset_keepalive_timer(sk, tmo);
5033 } else {
5034 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5035 goto discard;
5036 }
5037 }
5038 }
5039 break;
5040
5041 case TCP_CLOSING:
5042 if (tp->snd_una == tp->write_seq) {
5043 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5044 goto discard;
5045 }
5046 break;
5047
5048 case TCP_LAST_ACK:
5049 if (tp->snd_una == tp->write_seq) {
5050 tcp_update_metrics(sk);
5051 tcp_done(sk);
5052 goto discard;
5053 }
5054 break;
5055 }
5056 } else
5057 goto discard;
5058
5059 /* step 6: check the URG bit */
5060 tcp_urg(sk, skb, th);
5061
5062 /* step 7: process the segment text */
5063 switch (sk->sk_state) {
5064 case TCP_CLOSE_WAIT:
5065 case TCP_CLOSING:
5066 case TCP_LAST_ACK:
5067 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5068 break;
5069 case TCP_FIN_WAIT1:
5070 case TCP_FIN_WAIT2:
5071 /* RFC 793 says to queue data in these states,
5072 * RFC 1122 says we MUST send a reset.
5073 * BSD 4.4 also does reset.
5074 */
5075 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5076 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5077 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5078 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5079 tcp_reset(sk);
5080 return 1;
5081 }
5082 }
5083 /* Fall through */
5084 case TCP_ESTABLISHED:
5085 tcp_data_queue(sk, skb);
5086 queued = 1;
5087 break;
5088 }
5089
5090 /* tcp_data could move socket to TIME-WAIT */
5091 if (sk->sk_state != TCP_CLOSE) {
5092 tcp_data_snd_check(sk);
5093 tcp_ack_snd_check(sk);
5094 }
5095
5096 if (!queued) {
5097 discard:
5098 __kfree_skb(skb);
5099 }
5100 return 0;
5101 }
5102
5103 EXPORT_SYMBOL(sysctl_tcp_ecn);
5104 EXPORT_SYMBOL(sysctl_tcp_reordering);
5105 EXPORT_SYMBOL(tcp_parse_options);
5106 EXPORT_SYMBOL(tcp_rcv_established);
5107 EXPORT_SYMBOL(tcp_rcv_state_process);
5108 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.161768 seconds and 5 git commands to generate.