CNS3xxx: Fix debug UART.
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 EXPORT_SYMBOL(sysctl_tcp_reordering);
85 int sysctl_tcp_dsack __read_mostly = 1;
86 int sysctl_tcp_app_win __read_mostly = 31;
87 int sysctl_tcp_adv_win_scale __read_mostly = 1;
88 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit = 100;
92
93 int sysctl_tcp_stdurg __read_mostly;
94 int sysctl_tcp_rfc1337 __read_mostly;
95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96 int sysctl_tcp_frto __read_mostly = 2;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102
103 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
104 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
105 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
106 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
107 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
108 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
109 #define FLAG_ECE 0x40 /* ECE in this ACK */
110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
115 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
116
117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125 /* Adapt the MSS value used to make delayed ack decision to the
126 * real world.
127 */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130 struct inet_connection_sock *icsk = inet_csk(sk);
131 const unsigned int lss = icsk->icsk_ack.last_seg_size;
132 unsigned int len;
133
134 icsk->icsk_ack.last_seg_size = 0;
135
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
138 */
139 len = skb_shinfo(skb)->gso_size ? : skb->len;
140 if (len >= icsk->icsk_ack.rcv_mss) {
141 icsk->icsk_ack.rcv_mss = len;
142 } else {
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
145 *
146 * "len" is invariant segment length, including TCP header.
147 */
148 len += skb->data - skb_transport_header(skb);
149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
154 */
155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
160 */
161 len -= tcp_sk(sk)->tcp_header_len;
162 icsk->icsk_ack.last_seg_size = len;
163 if (len == lss) {
164 icsk->icsk_ack.rcv_mss = len;
165 return;
166 }
167 }
168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171 }
172 }
173
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178
179 if (quickacks == 0)
180 quickacks = 2;
181 if (quickacks > icsk->icsk_ack.quick)
182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187 struct inet_connection_sock *icsk = inet_csk(sk);
188 tcp_incr_quickack(sk);
189 icsk->icsk_ack.pingpong = 0;
190 icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192
193 /* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
195 */
196
197 static inline bool tcp_in_quickack_mode(const struct sock *sk)
198 {
199 const struct inet_connection_sock *icsk = inet_csk(sk);
200
201 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
202 }
203
204 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 {
206 if (tp->ecn_flags & TCP_ECN_OK)
207 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208 }
209
210 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211 {
212 if (tcp_hdr(skb)->cwr)
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 {
218 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219 }
220
221 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222 {
223 if (!(tp->ecn_flags & TCP_ECN_OK))
224 return;
225
226 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
227 case INET_ECN_NOT_ECT:
228 /* Funny extension: if ECT is not set on a segment,
229 * and we already seen ECT on a previous segment,
230 * it is probably a retransmit.
231 */
232 if (tp->ecn_flags & TCP_ECN_SEEN)
233 tcp_enter_quickack_mode((struct sock *)tp);
234 break;
235 case INET_ECN_CE:
236 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
237 /* Better not delay acks, sender can have a very low cwnd */
238 tcp_enter_quickack_mode((struct sock *)tp);
239 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
240 }
241 /* fallinto */
242 default:
243 tp->ecn_flags |= TCP_ECN_SEEN;
244 }
245 }
246
247 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
248 {
249 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
250 tp->ecn_flags &= ~TCP_ECN_OK;
251 }
252
253 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
254 {
255 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
256 tp->ecn_flags &= ~TCP_ECN_OK;
257 }
258
259 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
260 {
261 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
262 return true;
263 return false;
264 }
265
266 /* Buffer size and advertised window tuning.
267 *
268 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
269 */
270
271 static void tcp_sndbuf_expand(struct sock *sk)
272 {
273 const struct tcp_sock *tp = tcp_sk(sk);
274 int sndmem, per_mss;
275 u32 nr_segs;
276
277 /* Worst case is non GSO/TSO : each frame consumes one skb
278 * and skb->head is kmalloced using power of two area of memory
279 */
280 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
281 MAX_TCP_HEADER +
282 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
283
284 per_mss = roundup_pow_of_two(per_mss) +
285 SKB_DATA_ALIGN(sizeof(struct sk_buff));
286
287 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
288 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
289
290 /* Fast Recovery (RFC 5681 3.2) :
291 * Cubic needs 1.7 factor, rounded to 2 to include
292 * extra cushion (application might react slowly to POLLOUT)
293 */
294 sndmem = 2 * nr_segs * per_mss;
295
296 if (sk->sk_sndbuf < sndmem)
297 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
298 }
299
300 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
301 *
302 * All tcp_full_space() is split to two parts: "network" buffer, allocated
303 * forward and advertised in receiver window (tp->rcv_wnd) and
304 * "application buffer", required to isolate scheduling/application
305 * latencies from network.
306 * window_clamp is maximal advertised window. It can be less than
307 * tcp_full_space(), in this case tcp_full_space() - window_clamp
308 * is reserved for "application" buffer. The less window_clamp is
309 * the smoother our behaviour from viewpoint of network, but the lower
310 * throughput and the higher sensitivity of the connection to losses. 8)
311 *
312 * rcv_ssthresh is more strict window_clamp used at "slow start"
313 * phase to predict further behaviour of this connection.
314 * It is used for two goals:
315 * - to enforce header prediction at sender, even when application
316 * requires some significant "application buffer". It is check #1.
317 * - to prevent pruning of receive queue because of misprediction
318 * of receiver window. Check #2.
319 *
320 * The scheme does not work when sender sends good segments opening
321 * window and then starts to feed us spaghetti. But it should work
322 * in common situations. Otherwise, we have to rely on queue collapsing.
323 */
324
325 /* Slow part of check#2. */
326 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
327 {
328 struct tcp_sock *tp = tcp_sk(sk);
329 /* Optimize this! */
330 int truesize = tcp_win_from_space(skb->truesize) >> 1;
331 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
332
333 while (tp->rcv_ssthresh <= window) {
334 if (truesize <= skb->len)
335 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
336
337 truesize >>= 1;
338 window >>= 1;
339 }
340 return 0;
341 }
342
343 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
344 {
345 struct tcp_sock *tp = tcp_sk(sk);
346
347 /* Check #1 */
348 if (tp->rcv_ssthresh < tp->window_clamp &&
349 (int)tp->rcv_ssthresh < tcp_space(sk) &&
350 !sk_under_memory_pressure(sk)) {
351 int incr;
352
353 /* Check #2. Increase window, if skb with such overhead
354 * will fit to rcvbuf in future.
355 */
356 if (tcp_win_from_space(skb->truesize) <= skb->len)
357 incr = 2 * tp->advmss;
358 else
359 incr = __tcp_grow_window(sk, skb);
360
361 if (incr) {
362 incr = max_t(int, incr, 2 * skb->len);
363 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
364 tp->window_clamp);
365 inet_csk(sk)->icsk_ack.quick |= 1;
366 }
367 }
368 }
369
370 /* 3. Tuning rcvbuf, when connection enters established state. */
371 static void tcp_fixup_rcvbuf(struct sock *sk)
372 {
373 u32 mss = tcp_sk(sk)->advmss;
374 int rcvmem;
375
376 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
377 tcp_default_init_rwnd(mss);
378
379 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
380 * Allow enough cushion so that sender is not limited by our window
381 */
382 if (sysctl_tcp_moderate_rcvbuf)
383 rcvmem <<= 2;
384
385 if (sk->sk_rcvbuf < rcvmem)
386 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
387 }
388
389 /* 4. Try to fixup all. It is made immediately after connection enters
390 * established state.
391 */
392 void tcp_init_buffer_space(struct sock *sk)
393 {
394 struct tcp_sock *tp = tcp_sk(sk);
395 int maxwin;
396
397 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
398 tcp_fixup_rcvbuf(sk);
399 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
400 tcp_sndbuf_expand(sk);
401
402 tp->rcvq_space.space = tp->rcv_wnd;
403 tp->rcvq_space.time = tcp_time_stamp;
404 tp->rcvq_space.seq = tp->copied_seq;
405
406 maxwin = tcp_full_space(sk);
407
408 if (tp->window_clamp >= maxwin) {
409 tp->window_clamp = maxwin;
410
411 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
412 tp->window_clamp = max(maxwin -
413 (maxwin >> sysctl_tcp_app_win),
414 4 * tp->advmss);
415 }
416
417 /* Force reservation of one segment. */
418 if (sysctl_tcp_app_win &&
419 tp->window_clamp > 2 * tp->advmss &&
420 tp->window_clamp + tp->advmss > maxwin)
421 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
422
423 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
424 tp->snd_cwnd_stamp = tcp_time_stamp;
425 }
426
427 /* 5. Recalculate window clamp after socket hit its memory bounds. */
428 static void tcp_clamp_window(struct sock *sk)
429 {
430 struct tcp_sock *tp = tcp_sk(sk);
431 struct inet_connection_sock *icsk = inet_csk(sk);
432
433 icsk->icsk_ack.quick = 0;
434
435 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
436 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
437 !sk_under_memory_pressure(sk) &&
438 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
439 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
440 sysctl_tcp_rmem[2]);
441 }
442 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
443 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
444 }
445
446 /* Initialize RCV_MSS value.
447 * RCV_MSS is an our guess about MSS used by the peer.
448 * We haven't any direct information about the MSS.
449 * It's better to underestimate the RCV_MSS rather than overestimate.
450 * Overestimations make us ACKing less frequently than needed.
451 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
452 */
453 void tcp_initialize_rcv_mss(struct sock *sk)
454 {
455 const struct tcp_sock *tp = tcp_sk(sk);
456 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
457
458 hint = min(hint, tp->rcv_wnd / 2);
459 hint = min(hint, TCP_MSS_DEFAULT);
460 hint = max(hint, TCP_MIN_MSS);
461
462 inet_csk(sk)->icsk_ack.rcv_mss = hint;
463 }
464 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
465
466 /* Receiver "autotuning" code.
467 *
468 * The algorithm for RTT estimation w/o timestamps is based on
469 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
470 * <http://public.lanl.gov/radiant/pubs.html#DRS>
471 *
472 * More detail on this code can be found at
473 * <http://staff.psc.edu/jheffner/>,
474 * though this reference is out of date. A new paper
475 * is pending.
476 */
477 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
478 {
479 u32 new_sample = tp->rcv_rtt_est.rtt;
480 long m = sample;
481
482 if (m == 0)
483 m = 1;
484
485 if (new_sample != 0) {
486 /* If we sample in larger samples in the non-timestamp
487 * case, we could grossly overestimate the RTT especially
488 * with chatty applications or bulk transfer apps which
489 * are stalled on filesystem I/O.
490 *
491 * Also, since we are only going for a minimum in the
492 * non-timestamp case, we do not smooth things out
493 * else with timestamps disabled convergence takes too
494 * long.
495 */
496 if (!win_dep) {
497 m -= (new_sample >> 3);
498 new_sample += m;
499 } else {
500 m <<= 3;
501 if (m < new_sample)
502 new_sample = m;
503 }
504 } else {
505 /* No previous measure. */
506 new_sample = m << 3;
507 }
508
509 if (tp->rcv_rtt_est.rtt != new_sample)
510 tp->rcv_rtt_est.rtt = new_sample;
511 }
512
513 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
514 {
515 if (tp->rcv_rtt_est.time == 0)
516 goto new_measure;
517 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
518 return;
519 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
520
521 new_measure:
522 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
523 tp->rcv_rtt_est.time = tcp_time_stamp;
524 }
525
526 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
527 const struct sk_buff *skb)
528 {
529 struct tcp_sock *tp = tcp_sk(sk);
530 if (tp->rx_opt.rcv_tsecr &&
531 (TCP_SKB_CB(skb)->end_seq -
532 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
533 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
534 }
535
536 /*
537 * This function should be called every time data is copied to user space.
538 * It calculates the appropriate TCP receive buffer space.
539 */
540 void tcp_rcv_space_adjust(struct sock *sk)
541 {
542 struct tcp_sock *tp = tcp_sk(sk);
543 int time;
544 int copied;
545
546 time = tcp_time_stamp - tp->rcvq_space.time;
547 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
548 return;
549
550 /* Number of bytes copied to user in last RTT */
551 copied = tp->copied_seq - tp->rcvq_space.seq;
552 if (copied <= tp->rcvq_space.space)
553 goto new_measure;
554
555 /* A bit of theory :
556 * copied = bytes received in previous RTT, our base window
557 * To cope with packet losses, we need a 2x factor
558 * To cope with slow start, and sender growing its cwin by 100 %
559 * every RTT, we need a 4x factor, because the ACK we are sending
560 * now is for the next RTT, not the current one :
561 * <prev RTT . ><current RTT .. ><next RTT .... >
562 */
563
564 if (sysctl_tcp_moderate_rcvbuf &&
565 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
566 int rcvwin, rcvmem, rcvbuf;
567
568 /* minimal window to cope with packet losses, assuming
569 * steady state. Add some cushion because of small variations.
570 */
571 rcvwin = (copied << 1) + 16 * tp->advmss;
572
573 /* If rate increased by 25%,
574 * assume slow start, rcvwin = 3 * copied
575 * If rate increased by 50%,
576 * assume sender can use 2x growth, rcvwin = 4 * copied
577 */
578 if (copied >=
579 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
580 if (copied >=
581 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
582 rcvwin <<= 1;
583 else
584 rcvwin += (rcvwin >> 1);
585 }
586
587 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
588 while (tcp_win_from_space(rcvmem) < tp->advmss)
589 rcvmem += 128;
590
591 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
592 if (rcvbuf > sk->sk_rcvbuf) {
593 sk->sk_rcvbuf = rcvbuf;
594
595 /* Make the window clamp follow along. */
596 tp->window_clamp = rcvwin;
597 }
598 }
599 tp->rcvq_space.space = copied;
600
601 new_measure:
602 tp->rcvq_space.seq = tp->copied_seq;
603 tp->rcvq_space.time = tcp_time_stamp;
604 }
605
606 /* There is something which you must keep in mind when you analyze the
607 * behavior of the tp->ato delayed ack timeout interval. When a
608 * connection starts up, we want to ack as quickly as possible. The
609 * problem is that "good" TCP's do slow start at the beginning of data
610 * transmission. The means that until we send the first few ACK's the
611 * sender will sit on his end and only queue most of his data, because
612 * he can only send snd_cwnd unacked packets at any given time. For
613 * each ACK we send, he increments snd_cwnd and transmits more of his
614 * queue. -DaveM
615 */
616 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
617 {
618 struct tcp_sock *tp = tcp_sk(sk);
619 struct inet_connection_sock *icsk = inet_csk(sk);
620 u32 now;
621
622 inet_csk_schedule_ack(sk);
623
624 tcp_measure_rcv_mss(sk, skb);
625
626 tcp_rcv_rtt_measure(tp);
627
628 now = tcp_time_stamp;
629
630 if (!icsk->icsk_ack.ato) {
631 /* The _first_ data packet received, initialize
632 * delayed ACK engine.
633 */
634 tcp_incr_quickack(sk);
635 icsk->icsk_ack.ato = TCP_ATO_MIN;
636 } else {
637 int m = now - icsk->icsk_ack.lrcvtime;
638
639 if (m <= TCP_ATO_MIN / 2) {
640 /* The fastest case is the first. */
641 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
642 } else if (m < icsk->icsk_ack.ato) {
643 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
644 if (icsk->icsk_ack.ato > icsk->icsk_rto)
645 icsk->icsk_ack.ato = icsk->icsk_rto;
646 } else if (m > icsk->icsk_rto) {
647 /* Too long gap. Apparently sender failed to
648 * restart window, so that we send ACKs quickly.
649 */
650 tcp_incr_quickack(sk);
651 sk_mem_reclaim(sk);
652 }
653 }
654 icsk->icsk_ack.lrcvtime = now;
655
656 TCP_ECN_check_ce(tp, skb);
657
658 if (skb->len >= 128)
659 tcp_grow_window(sk, skb);
660 }
661
662 /* Called to compute a smoothed rtt estimate. The data fed to this
663 * routine either comes from timestamps, or from segments that were
664 * known _not_ to have been retransmitted [see Karn/Partridge
665 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
666 * piece by Van Jacobson.
667 * NOTE: the next three routines used to be one big routine.
668 * To save cycles in the RFC 1323 implementation it was better to break
669 * it up into three procedures. -- erics
670 */
671 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
672 {
673 struct tcp_sock *tp = tcp_sk(sk);
674 long m = mrtt_us; /* RTT */
675 u32 srtt = tp->srtt_us;
676
677 /* The following amusing code comes from Jacobson's
678 * article in SIGCOMM '88. Note that rtt and mdev
679 * are scaled versions of rtt and mean deviation.
680 * This is designed to be as fast as possible
681 * m stands for "measurement".
682 *
683 * On a 1990 paper the rto value is changed to:
684 * RTO = rtt + 4 * mdev
685 *
686 * Funny. This algorithm seems to be very broken.
687 * These formulae increase RTO, when it should be decreased, increase
688 * too slowly, when it should be increased quickly, decrease too quickly
689 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
690 * does not matter how to _calculate_ it. Seems, it was trap
691 * that VJ failed to avoid. 8)
692 */
693 if (srtt != 0) {
694 m -= (srtt >> 3); /* m is now error in rtt est */
695 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
696 if (m < 0) {
697 m = -m; /* m is now abs(error) */
698 m -= (tp->mdev_us >> 2); /* similar update on mdev */
699 /* This is similar to one of Eifel findings.
700 * Eifel blocks mdev updates when rtt decreases.
701 * This solution is a bit different: we use finer gain
702 * for mdev in this case (alpha*beta).
703 * Like Eifel it also prevents growth of rto,
704 * but also it limits too fast rto decreases,
705 * happening in pure Eifel.
706 */
707 if (m > 0)
708 m >>= 3;
709 } else {
710 m -= (tp->mdev_us >> 2); /* similar update on mdev */
711 }
712 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
713 if (tp->mdev_us > tp->mdev_max_us) {
714 tp->mdev_max_us = tp->mdev_us;
715 if (tp->mdev_max_us > tp->rttvar_us)
716 tp->rttvar_us = tp->mdev_max_us;
717 }
718 if (after(tp->snd_una, tp->rtt_seq)) {
719 if (tp->mdev_max_us < tp->rttvar_us)
720 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
721 tp->rtt_seq = tp->snd_nxt;
722 tp->mdev_max_us = tcp_rto_min_us(sk);
723 }
724 } else {
725 /* no previous measure. */
726 srtt = m << 3; /* take the measured time to be rtt */
727 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
728 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
729 tp->mdev_max_us = tp->rttvar_us;
730 tp->rtt_seq = tp->snd_nxt;
731 }
732 tp->srtt_us = max(1U, srtt);
733 }
734
735 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
736 * Note: TCP stack does not yet implement pacing.
737 * FQ packet scheduler can be used to implement cheap but effective
738 * TCP pacing, to smooth the burst on large writes when packets
739 * in flight is significantly lower than cwnd (or rwin)
740 */
741 static void tcp_update_pacing_rate(struct sock *sk)
742 {
743 const struct tcp_sock *tp = tcp_sk(sk);
744 u64 rate;
745
746 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
747 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
748
749 rate *= max(tp->snd_cwnd, tp->packets_out);
750
751 if (likely(tp->srtt_us))
752 do_div(rate, tp->srtt_us);
753
754 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
755 * without any lock. We want to make sure compiler wont store
756 * intermediate values in this location.
757 */
758 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
759 sk->sk_max_pacing_rate);
760 }
761
762 /* Calculate rto without backoff. This is the second half of Van Jacobson's
763 * routine referred to above.
764 */
765 static void tcp_set_rto(struct sock *sk)
766 {
767 const struct tcp_sock *tp = tcp_sk(sk);
768 /* Old crap is replaced with new one. 8)
769 *
770 * More seriously:
771 * 1. If rtt variance happened to be less 50msec, it is hallucination.
772 * It cannot be less due to utterly erratic ACK generation made
773 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
774 * to do with delayed acks, because at cwnd>2 true delack timeout
775 * is invisible. Actually, Linux-2.4 also generates erratic
776 * ACKs in some circumstances.
777 */
778 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
779
780 /* 2. Fixups made earlier cannot be right.
781 * If we do not estimate RTO correctly without them,
782 * all the algo is pure shit and should be replaced
783 * with correct one. It is exactly, which we pretend to do.
784 */
785
786 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
787 * guarantees that rto is higher.
788 */
789 tcp_bound_rto(sk);
790 }
791
792 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
793 {
794 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
795
796 if (!cwnd)
797 cwnd = TCP_INIT_CWND;
798 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
799 }
800
801 /*
802 * Packet counting of FACK is based on in-order assumptions, therefore TCP
803 * disables it when reordering is detected
804 */
805 void tcp_disable_fack(struct tcp_sock *tp)
806 {
807 /* RFC3517 uses different metric in lost marker => reset on change */
808 if (tcp_is_fack(tp))
809 tp->lost_skb_hint = NULL;
810 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
811 }
812
813 /* Take a notice that peer is sending D-SACKs */
814 static void tcp_dsack_seen(struct tcp_sock *tp)
815 {
816 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
817 }
818
819 static void tcp_update_reordering(struct sock *sk, const int metric,
820 const int ts)
821 {
822 struct tcp_sock *tp = tcp_sk(sk);
823 if (metric > tp->reordering) {
824 int mib_idx;
825
826 tp->reordering = min(TCP_MAX_REORDERING, metric);
827
828 /* This exciting event is worth to be remembered. 8) */
829 if (ts)
830 mib_idx = LINUX_MIB_TCPTSREORDER;
831 else if (tcp_is_reno(tp))
832 mib_idx = LINUX_MIB_TCPRENOREORDER;
833 else if (tcp_is_fack(tp))
834 mib_idx = LINUX_MIB_TCPFACKREORDER;
835 else
836 mib_idx = LINUX_MIB_TCPSACKREORDER;
837
838 NET_INC_STATS_BH(sock_net(sk), mib_idx);
839 #if FASTRETRANS_DEBUG > 1
840 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
841 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
842 tp->reordering,
843 tp->fackets_out,
844 tp->sacked_out,
845 tp->undo_marker ? tp->undo_retrans : 0);
846 #endif
847 tcp_disable_fack(tp);
848 }
849
850 if (metric > 0)
851 tcp_disable_early_retrans(tp);
852 }
853
854 /* This must be called before lost_out is incremented */
855 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
856 {
857 if ((tp->retransmit_skb_hint == NULL) ||
858 before(TCP_SKB_CB(skb)->seq,
859 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
860 tp->retransmit_skb_hint = skb;
861
862 if (!tp->lost_out ||
863 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
864 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
865 }
866
867 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
868 {
869 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
870 tcp_verify_retransmit_hint(tp, skb);
871
872 tp->lost_out += tcp_skb_pcount(skb);
873 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
874 }
875 }
876
877 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
878 struct sk_buff *skb)
879 {
880 tcp_verify_retransmit_hint(tp, skb);
881
882 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
883 tp->lost_out += tcp_skb_pcount(skb);
884 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
885 }
886 }
887
888 /* This procedure tags the retransmission queue when SACKs arrive.
889 *
890 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
891 * Packets in queue with these bits set are counted in variables
892 * sacked_out, retrans_out and lost_out, correspondingly.
893 *
894 * Valid combinations are:
895 * Tag InFlight Description
896 * 0 1 - orig segment is in flight.
897 * S 0 - nothing flies, orig reached receiver.
898 * L 0 - nothing flies, orig lost by net.
899 * R 2 - both orig and retransmit are in flight.
900 * L|R 1 - orig is lost, retransmit is in flight.
901 * S|R 1 - orig reached receiver, retrans is still in flight.
902 * (L|S|R is logically valid, it could occur when L|R is sacked,
903 * but it is equivalent to plain S and code short-curcuits it to S.
904 * L|S is logically invalid, it would mean -1 packet in flight 8))
905 *
906 * These 6 states form finite state machine, controlled by the following events:
907 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
908 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
909 * 3. Loss detection event of two flavors:
910 * A. Scoreboard estimator decided the packet is lost.
911 * A'. Reno "three dupacks" marks head of queue lost.
912 * A''. Its FACK modification, head until snd.fack is lost.
913 * B. SACK arrives sacking SND.NXT at the moment, when the
914 * segment was retransmitted.
915 * 4. D-SACK added new rule: D-SACK changes any tag to S.
916 *
917 * It is pleasant to note, that state diagram turns out to be commutative,
918 * so that we are allowed not to be bothered by order of our actions,
919 * when multiple events arrive simultaneously. (see the function below).
920 *
921 * Reordering detection.
922 * --------------------
923 * Reordering metric is maximal distance, which a packet can be displaced
924 * in packet stream. With SACKs we can estimate it:
925 *
926 * 1. SACK fills old hole and the corresponding segment was not
927 * ever retransmitted -> reordering. Alas, we cannot use it
928 * when segment was retransmitted.
929 * 2. The last flaw is solved with D-SACK. D-SACK arrives
930 * for retransmitted and already SACKed segment -> reordering..
931 * Both of these heuristics are not used in Loss state, when we cannot
932 * account for retransmits accurately.
933 *
934 * SACK block validation.
935 * ----------------------
936 *
937 * SACK block range validation checks that the received SACK block fits to
938 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
939 * Note that SND.UNA is not included to the range though being valid because
940 * it means that the receiver is rather inconsistent with itself reporting
941 * SACK reneging when it should advance SND.UNA. Such SACK block this is
942 * perfectly valid, however, in light of RFC2018 which explicitly states
943 * that "SACK block MUST reflect the newest segment. Even if the newest
944 * segment is going to be discarded ...", not that it looks very clever
945 * in case of head skb. Due to potentional receiver driven attacks, we
946 * choose to avoid immediate execution of a walk in write queue due to
947 * reneging and defer head skb's loss recovery to standard loss recovery
948 * procedure that will eventually trigger (nothing forbids us doing this).
949 *
950 * Implements also blockage to start_seq wrap-around. Problem lies in the
951 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
952 * there's no guarantee that it will be before snd_nxt (n). The problem
953 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
954 * wrap (s_w):
955 *
956 * <- outs wnd -> <- wrapzone ->
957 * u e n u_w e_w s n_w
958 * | | | | | | |
959 * |<------------+------+----- TCP seqno space --------------+---------->|
960 * ...-- <2^31 ->| |<--------...
961 * ...---- >2^31 ------>| |<--------...
962 *
963 * Current code wouldn't be vulnerable but it's better still to discard such
964 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
965 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
966 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
967 * equal to the ideal case (infinite seqno space without wrap caused issues).
968 *
969 * With D-SACK the lower bound is extended to cover sequence space below
970 * SND.UNA down to undo_marker, which is the last point of interest. Yet
971 * again, D-SACK block must not to go across snd_una (for the same reason as
972 * for the normal SACK blocks, explained above). But there all simplicity
973 * ends, TCP might receive valid D-SACKs below that. As long as they reside
974 * fully below undo_marker they do not affect behavior in anyway and can
975 * therefore be safely ignored. In rare cases (which are more or less
976 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
977 * fragmentation and packet reordering past skb's retransmission. To consider
978 * them correctly, the acceptable range must be extended even more though
979 * the exact amount is rather hard to quantify. However, tp->max_window can
980 * be used as an exaggerated estimate.
981 */
982 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
983 u32 start_seq, u32 end_seq)
984 {
985 /* Too far in future, or reversed (interpretation is ambiguous) */
986 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
987 return false;
988
989 /* Nasty start_seq wrap-around check (see comments above) */
990 if (!before(start_seq, tp->snd_nxt))
991 return false;
992
993 /* In outstanding window? ...This is valid exit for D-SACKs too.
994 * start_seq == snd_una is non-sensical (see comments above)
995 */
996 if (after(start_seq, tp->snd_una))
997 return true;
998
999 if (!is_dsack || !tp->undo_marker)
1000 return false;
1001
1002 /* ...Then it's D-SACK, and must reside below snd_una completely */
1003 if (after(end_seq, tp->snd_una))
1004 return false;
1005
1006 if (!before(start_seq, tp->undo_marker))
1007 return true;
1008
1009 /* Too old */
1010 if (!after(end_seq, tp->undo_marker))
1011 return false;
1012
1013 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1014 * start_seq < undo_marker and end_seq >= undo_marker.
1015 */
1016 return !before(start_seq, end_seq - tp->max_window);
1017 }
1018
1019 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1020 * Event "B". Later note: FACK people cheated me again 8), we have to account
1021 * for reordering! Ugly, but should help.
1022 *
1023 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1024 * less than what is now known to be received by the other end (derived from
1025 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1026 * retransmitted skbs to avoid some costly processing per ACKs.
1027 */
1028 static void tcp_mark_lost_retrans(struct sock *sk)
1029 {
1030 const struct inet_connection_sock *icsk = inet_csk(sk);
1031 struct tcp_sock *tp = tcp_sk(sk);
1032 struct sk_buff *skb;
1033 int cnt = 0;
1034 u32 new_low_seq = tp->snd_nxt;
1035 u32 received_upto = tcp_highest_sack_seq(tp);
1036
1037 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1038 !after(received_upto, tp->lost_retrans_low) ||
1039 icsk->icsk_ca_state != TCP_CA_Recovery)
1040 return;
1041
1042 tcp_for_write_queue(skb, sk) {
1043 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1044
1045 if (skb == tcp_send_head(sk))
1046 break;
1047 if (cnt == tp->retrans_out)
1048 break;
1049 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1050 continue;
1051
1052 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1053 continue;
1054
1055 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1056 * constraint here (see above) but figuring out that at
1057 * least tp->reordering SACK blocks reside between ack_seq
1058 * and received_upto is not easy task to do cheaply with
1059 * the available datastructures.
1060 *
1061 * Whether FACK should check here for tp->reordering segs
1062 * in-between one could argue for either way (it would be
1063 * rather simple to implement as we could count fack_count
1064 * during the walk and do tp->fackets_out - fack_count).
1065 */
1066 if (after(received_upto, ack_seq)) {
1067 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1068 tp->retrans_out -= tcp_skb_pcount(skb);
1069
1070 tcp_skb_mark_lost_uncond_verify(tp, skb);
1071 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1072 } else {
1073 if (before(ack_seq, new_low_seq))
1074 new_low_seq = ack_seq;
1075 cnt += tcp_skb_pcount(skb);
1076 }
1077 }
1078
1079 if (tp->retrans_out)
1080 tp->lost_retrans_low = new_low_seq;
1081 }
1082
1083 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1084 struct tcp_sack_block_wire *sp, int num_sacks,
1085 u32 prior_snd_una)
1086 {
1087 struct tcp_sock *tp = tcp_sk(sk);
1088 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1089 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1090 bool dup_sack = false;
1091
1092 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1093 dup_sack = true;
1094 tcp_dsack_seen(tp);
1095 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1096 } else if (num_sacks > 1) {
1097 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1098 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1099
1100 if (!after(end_seq_0, end_seq_1) &&
1101 !before(start_seq_0, start_seq_1)) {
1102 dup_sack = true;
1103 tcp_dsack_seen(tp);
1104 NET_INC_STATS_BH(sock_net(sk),
1105 LINUX_MIB_TCPDSACKOFORECV);
1106 }
1107 }
1108
1109 /* D-SACK for already forgotten data... Do dumb counting. */
1110 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1111 !after(end_seq_0, prior_snd_una) &&
1112 after(end_seq_0, tp->undo_marker))
1113 tp->undo_retrans--;
1114
1115 return dup_sack;
1116 }
1117
1118 struct tcp_sacktag_state {
1119 int reord;
1120 int fack_count;
1121 long rtt_us; /* RTT measured by SACKing never-retransmitted data */
1122 int flag;
1123 };
1124
1125 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1126 * the incoming SACK may not exactly match but we can find smaller MSS
1127 * aligned portion of it that matches. Therefore we might need to fragment
1128 * which may fail and creates some hassle (caller must handle error case
1129 * returns).
1130 *
1131 * FIXME: this could be merged to shift decision code
1132 */
1133 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1134 u32 start_seq, u32 end_seq)
1135 {
1136 int err;
1137 bool in_sack;
1138 unsigned int pkt_len;
1139 unsigned int mss;
1140
1141 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1142 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1143
1144 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1145 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1146 mss = tcp_skb_mss(skb);
1147 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1148
1149 if (!in_sack) {
1150 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1151 if (pkt_len < mss)
1152 pkt_len = mss;
1153 } else {
1154 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1155 if (pkt_len < mss)
1156 return -EINVAL;
1157 }
1158
1159 /* Round if necessary so that SACKs cover only full MSSes
1160 * and/or the remaining small portion (if present)
1161 */
1162 if (pkt_len > mss) {
1163 unsigned int new_len = (pkt_len / mss) * mss;
1164 if (!in_sack && new_len < pkt_len) {
1165 new_len += mss;
1166 if (new_len >= skb->len)
1167 return 0;
1168 }
1169 pkt_len = new_len;
1170 }
1171 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1172 if (err < 0)
1173 return err;
1174 }
1175
1176 return in_sack;
1177 }
1178
1179 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1180 static u8 tcp_sacktag_one(struct sock *sk,
1181 struct tcp_sacktag_state *state, u8 sacked,
1182 u32 start_seq, u32 end_seq,
1183 int dup_sack, int pcount,
1184 const struct skb_mstamp *xmit_time)
1185 {
1186 struct tcp_sock *tp = tcp_sk(sk);
1187 int fack_count = state->fack_count;
1188
1189 /* Account D-SACK for retransmitted packet. */
1190 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1191 if (tp->undo_marker && tp->undo_retrans > 0 &&
1192 after(end_seq, tp->undo_marker))
1193 tp->undo_retrans--;
1194 if (sacked & TCPCB_SACKED_ACKED)
1195 state->reord = min(fack_count, state->reord);
1196 }
1197
1198 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1199 if (!after(end_seq, tp->snd_una))
1200 return sacked;
1201
1202 if (!(sacked & TCPCB_SACKED_ACKED)) {
1203 if (sacked & TCPCB_SACKED_RETRANS) {
1204 /* If the segment is not tagged as lost,
1205 * we do not clear RETRANS, believing
1206 * that retransmission is still in flight.
1207 */
1208 if (sacked & TCPCB_LOST) {
1209 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1210 tp->lost_out -= pcount;
1211 tp->retrans_out -= pcount;
1212 }
1213 } else {
1214 if (!(sacked & TCPCB_RETRANS)) {
1215 /* New sack for not retransmitted frame,
1216 * which was in hole. It is reordering.
1217 */
1218 if (before(start_seq,
1219 tcp_highest_sack_seq(tp)))
1220 state->reord = min(fack_count,
1221 state->reord);
1222 if (!after(end_seq, tp->high_seq))
1223 state->flag |= FLAG_ORIG_SACK_ACKED;
1224 /* Pick the earliest sequence sacked for RTT */
1225 if (state->rtt_us < 0) {
1226 struct skb_mstamp now;
1227
1228 skb_mstamp_get(&now);
1229 state->rtt_us = skb_mstamp_us_delta(&now,
1230 xmit_time);
1231 }
1232 }
1233
1234 if (sacked & TCPCB_LOST) {
1235 sacked &= ~TCPCB_LOST;
1236 tp->lost_out -= pcount;
1237 }
1238 }
1239
1240 sacked |= TCPCB_SACKED_ACKED;
1241 state->flag |= FLAG_DATA_SACKED;
1242 tp->sacked_out += pcount;
1243
1244 fack_count += pcount;
1245
1246 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1247 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1248 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1249 tp->lost_cnt_hint += pcount;
1250
1251 if (fack_count > tp->fackets_out)
1252 tp->fackets_out = fack_count;
1253 }
1254
1255 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1256 * frames and clear it. undo_retrans is decreased above, L|R frames
1257 * are accounted above as well.
1258 */
1259 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1260 sacked &= ~TCPCB_SACKED_RETRANS;
1261 tp->retrans_out -= pcount;
1262 }
1263
1264 return sacked;
1265 }
1266
1267 /* Shift newly-SACKed bytes from this skb to the immediately previous
1268 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1269 */
1270 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1271 struct tcp_sacktag_state *state,
1272 unsigned int pcount, int shifted, int mss,
1273 bool dup_sack)
1274 {
1275 struct tcp_sock *tp = tcp_sk(sk);
1276 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1277 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1278 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1279
1280 BUG_ON(!pcount);
1281
1282 /* Adjust counters and hints for the newly sacked sequence
1283 * range but discard the return value since prev is already
1284 * marked. We must tag the range first because the seq
1285 * advancement below implicitly advances
1286 * tcp_highest_sack_seq() when skb is highest_sack.
1287 */
1288 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1289 start_seq, end_seq, dup_sack, pcount,
1290 &skb->skb_mstamp);
1291
1292 if (skb == tp->lost_skb_hint)
1293 tp->lost_cnt_hint += pcount;
1294
1295 TCP_SKB_CB(prev)->end_seq += shifted;
1296 TCP_SKB_CB(skb)->seq += shifted;
1297
1298 skb_shinfo(prev)->gso_segs += pcount;
1299 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1300 skb_shinfo(skb)->gso_segs -= pcount;
1301
1302 /* When we're adding to gso_segs == 1, gso_size will be zero,
1303 * in theory this shouldn't be necessary but as long as DSACK
1304 * code can come after this skb later on it's better to keep
1305 * setting gso_size to something.
1306 */
1307 if (!skb_shinfo(prev)->gso_size) {
1308 skb_shinfo(prev)->gso_size = mss;
1309 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1310 }
1311
1312 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1313 if (skb_shinfo(skb)->gso_segs <= 1) {
1314 skb_shinfo(skb)->gso_size = 0;
1315 skb_shinfo(skb)->gso_type = 0;
1316 }
1317
1318 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1319 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1320
1321 if (skb->len > 0) {
1322 BUG_ON(!tcp_skb_pcount(skb));
1323 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1324 return false;
1325 }
1326
1327 /* Whole SKB was eaten :-) */
1328
1329 if (skb == tp->retransmit_skb_hint)
1330 tp->retransmit_skb_hint = prev;
1331 if (skb == tp->lost_skb_hint) {
1332 tp->lost_skb_hint = prev;
1333 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1334 }
1335
1336 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1337 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1338 TCP_SKB_CB(prev)->end_seq++;
1339
1340 if (skb == tcp_highest_sack(sk))
1341 tcp_advance_highest_sack(sk, skb);
1342
1343 tcp_unlink_write_queue(skb, sk);
1344 sk_wmem_free_skb(sk, skb);
1345
1346 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1347
1348 return true;
1349 }
1350
1351 /* I wish gso_size would have a bit more sane initialization than
1352 * something-or-zero which complicates things
1353 */
1354 static int tcp_skb_seglen(const struct sk_buff *skb)
1355 {
1356 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1357 }
1358
1359 /* Shifting pages past head area doesn't work */
1360 static int skb_can_shift(const struct sk_buff *skb)
1361 {
1362 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1363 }
1364
1365 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1366 * skb.
1367 */
1368 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1369 struct tcp_sacktag_state *state,
1370 u32 start_seq, u32 end_seq,
1371 bool dup_sack)
1372 {
1373 struct tcp_sock *tp = tcp_sk(sk);
1374 struct sk_buff *prev;
1375 int mss;
1376 int pcount = 0;
1377 int len;
1378 int in_sack;
1379
1380 if (!sk_can_gso(sk))
1381 goto fallback;
1382
1383 /* Normally R but no L won't result in plain S */
1384 if (!dup_sack &&
1385 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1386 goto fallback;
1387 if (!skb_can_shift(skb))
1388 goto fallback;
1389 /* This frame is about to be dropped (was ACKed). */
1390 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1391 goto fallback;
1392
1393 /* Can only happen with delayed DSACK + discard craziness */
1394 if (unlikely(skb == tcp_write_queue_head(sk)))
1395 goto fallback;
1396 prev = tcp_write_queue_prev(sk, skb);
1397
1398 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1399 goto fallback;
1400
1401 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1402 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1403
1404 if (in_sack) {
1405 len = skb->len;
1406 pcount = tcp_skb_pcount(skb);
1407 mss = tcp_skb_seglen(skb);
1408
1409 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1410 * drop this restriction as unnecessary
1411 */
1412 if (mss != tcp_skb_seglen(prev))
1413 goto fallback;
1414 } else {
1415 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1416 goto noop;
1417 /* CHECKME: This is non-MSS split case only?, this will
1418 * cause skipped skbs due to advancing loop btw, original
1419 * has that feature too
1420 */
1421 if (tcp_skb_pcount(skb) <= 1)
1422 goto noop;
1423
1424 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1425 if (!in_sack) {
1426 /* TODO: head merge to next could be attempted here
1427 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1428 * though it might not be worth of the additional hassle
1429 *
1430 * ...we can probably just fallback to what was done
1431 * previously. We could try merging non-SACKed ones
1432 * as well but it probably isn't going to buy off
1433 * because later SACKs might again split them, and
1434 * it would make skb timestamp tracking considerably
1435 * harder problem.
1436 */
1437 goto fallback;
1438 }
1439
1440 len = end_seq - TCP_SKB_CB(skb)->seq;
1441 BUG_ON(len < 0);
1442 BUG_ON(len > skb->len);
1443
1444 /* MSS boundaries should be honoured or else pcount will
1445 * severely break even though it makes things bit trickier.
1446 * Optimize common case to avoid most of the divides
1447 */
1448 mss = tcp_skb_mss(skb);
1449
1450 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1451 * drop this restriction as unnecessary
1452 */
1453 if (mss != tcp_skb_seglen(prev))
1454 goto fallback;
1455
1456 if (len == mss) {
1457 pcount = 1;
1458 } else if (len < mss) {
1459 goto noop;
1460 } else {
1461 pcount = len / mss;
1462 len = pcount * mss;
1463 }
1464 }
1465
1466 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1467 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1468 goto fallback;
1469
1470 if (!skb_shift(prev, skb, len))
1471 goto fallback;
1472 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1473 goto out;
1474
1475 /* Hole filled allows collapsing with the next as well, this is very
1476 * useful when hole on every nth skb pattern happens
1477 */
1478 if (prev == tcp_write_queue_tail(sk))
1479 goto out;
1480 skb = tcp_write_queue_next(sk, prev);
1481
1482 if (!skb_can_shift(skb) ||
1483 (skb == tcp_send_head(sk)) ||
1484 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1485 (mss != tcp_skb_seglen(skb)))
1486 goto out;
1487
1488 len = skb->len;
1489 if (skb_shift(prev, skb, len)) {
1490 pcount += tcp_skb_pcount(skb);
1491 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1492 }
1493
1494 out:
1495 state->fack_count += pcount;
1496 return prev;
1497
1498 noop:
1499 return skb;
1500
1501 fallback:
1502 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1503 return NULL;
1504 }
1505
1506 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1507 struct tcp_sack_block *next_dup,
1508 struct tcp_sacktag_state *state,
1509 u32 start_seq, u32 end_seq,
1510 bool dup_sack_in)
1511 {
1512 struct tcp_sock *tp = tcp_sk(sk);
1513 struct sk_buff *tmp;
1514
1515 tcp_for_write_queue_from(skb, sk) {
1516 int in_sack = 0;
1517 bool dup_sack = dup_sack_in;
1518
1519 if (skb == tcp_send_head(sk))
1520 break;
1521
1522 /* queue is in-order => we can short-circuit the walk early */
1523 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1524 break;
1525
1526 if ((next_dup != NULL) &&
1527 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1528 in_sack = tcp_match_skb_to_sack(sk, skb,
1529 next_dup->start_seq,
1530 next_dup->end_seq);
1531 if (in_sack > 0)
1532 dup_sack = true;
1533 }
1534
1535 /* skb reference here is a bit tricky to get right, since
1536 * shifting can eat and free both this skb and the next,
1537 * so not even _safe variant of the loop is enough.
1538 */
1539 if (in_sack <= 0) {
1540 tmp = tcp_shift_skb_data(sk, skb, state,
1541 start_seq, end_seq, dup_sack);
1542 if (tmp != NULL) {
1543 if (tmp != skb) {
1544 skb = tmp;
1545 continue;
1546 }
1547
1548 in_sack = 0;
1549 } else {
1550 in_sack = tcp_match_skb_to_sack(sk, skb,
1551 start_seq,
1552 end_seq);
1553 }
1554 }
1555
1556 if (unlikely(in_sack < 0))
1557 break;
1558
1559 if (in_sack) {
1560 TCP_SKB_CB(skb)->sacked =
1561 tcp_sacktag_one(sk,
1562 state,
1563 TCP_SKB_CB(skb)->sacked,
1564 TCP_SKB_CB(skb)->seq,
1565 TCP_SKB_CB(skb)->end_seq,
1566 dup_sack,
1567 tcp_skb_pcount(skb),
1568 &skb->skb_mstamp);
1569
1570 if (!before(TCP_SKB_CB(skb)->seq,
1571 tcp_highest_sack_seq(tp)))
1572 tcp_advance_highest_sack(sk, skb);
1573 }
1574
1575 state->fack_count += tcp_skb_pcount(skb);
1576 }
1577 return skb;
1578 }
1579
1580 /* Avoid all extra work that is being done by sacktag while walking in
1581 * a normal way
1582 */
1583 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1584 struct tcp_sacktag_state *state,
1585 u32 skip_to_seq)
1586 {
1587 tcp_for_write_queue_from(skb, sk) {
1588 if (skb == tcp_send_head(sk))
1589 break;
1590
1591 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1592 break;
1593
1594 state->fack_count += tcp_skb_pcount(skb);
1595 }
1596 return skb;
1597 }
1598
1599 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1600 struct sock *sk,
1601 struct tcp_sack_block *next_dup,
1602 struct tcp_sacktag_state *state,
1603 u32 skip_to_seq)
1604 {
1605 if (next_dup == NULL)
1606 return skb;
1607
1608 if (before(next_dup->start_seq, skip_to_seq)) {
1609 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1610 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1611 next_dup->start_seq, next_dup->end_seq,
1612 1);
1613 }
1614
1615 return skb;
1616 }
1617
1618 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1619 {
1620 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1621 }
1622
1623 static int
1624 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1625 u32 prior_snd_una, long *sack_rtt_us)
1626 {
1627 struct tcp_sock *tp = tcp_sk(sk);
1628 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1629 TCP_SKB_CB(ack_skb)->sacked);
1630 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1631 struct tcp_sack_block sp[TCP_NUM_SACKS];
1632 struct tcp_sack_block *cache;
1633 struct tcp_sacktag_state state;
1634 struct sk_buff *skb;
1635 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1636 int used_sacks;
1637 bool found_dup_sack = false;
1638 int i, j;
1639 int first_sack_index;
1640
1641 state.flag = 0;
1642 state.reord = tp->packets_out;
1643 state.rtt_us = -1L;
1644
1645 if (!tp->sacked_out) {
1646 if (WARN_ON(tp->fackets_out))
1647 tp->fackets_out = 0;
1648 tcp_highest_sack_reset(sk);
1649 }
1650
1651 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1652 num_sacks, prior_snd_una);
1653 if (found_dup_sack)
1654 state.flag |= FLAG_DSACKING_ACK;
1655
1656 /* Eliminate too old ACKs, but take into
1657 * account more or less fresh ones, they can
1658 * contain valid SACK info.
1659 */
1660 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1661 return 0;
1662
1663 if (!tp->packets_out)
1664 goto out;
1665
1666 used_sacks = 0;
1667 first_sack_index = 0;
1668 for (i = 0; i < num_sacks; i++) {
1669 bool dup_sack = !i && found_dup_sack;
1670
1671 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1672 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1673
1674 if (!tcp_is_sackblock_valid(tp, dup_sack,
1675 sp[used_sacks].start_seq,
1676 sp[used_sacks].end_seq)) {
1677 int mib_idx;
1678
1679 if (dup_sack) {
1680 if (!tp->undo_marker)
1681 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1682 else
1683 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1684 } else {
1685 /* Don't count olds caused by ACK reordering */
1686 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1687 !after(sp[used_sacks].end_seq, tp->snd_una))
1688 continue;
1689 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1690 }
1691
1692 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1693 if (i == 0)
1694 first_sack_index = -1;
1695 continue;
1696 }
1697
1698 /* Ignore very old stuff early */
1699 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1700 continue;
1701
1702 used_sacks++;
1703 }
1704
1705 /* order SACK blocks to allow in order walk of the retrans queue */
1706 for (i = used_sacks - 1; i > 0; i--) {
1707 for (j = 0; j < i; j++) {
1708 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1709 swap(sp[j], sp[j + 1]);
1710
1711 /* Track where the first SACK block goes to */
1712 if (j == first_sack_index)
1713 first_sack_index = j + 1;
1714 }
1715 }
1716 }
1717
1718 skb = tcp_write_queue_head(sk);
1719 state.fack_count = 0;
1720 i = 0;
1721
1722 if (!tp->sacked_out) {
1723 /* It's already past, so skip checking against it */
1724 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1725 } else {
1726 cache = tp->recv_sack_cache;
1727 /* Skip empty blocks in at head of the cache */
1728 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1729 !cache->end_seq)
1730 cache++;
1731 }
1732
1733 while (i < used_sacks) {
1734 u32 start_seq = sp[i].start_seq;
1735 u32 end_seq = sp[i].end_seq;
1736 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1737 struct tcp_sack_block *next_dup = NULL;
1738
1739 if (found_dup_sack && ((i + 1) == first_sack_index))
1740 next_dup = &sp[i + 1];
1741
1742 /* Skip too early cached blocks */
1743 while (tcp_sack_cache_ok(tp, cache) &&
1744 !before(start_seq, cache->end_seq))
1745 cache++;
1746
1747 /* Can skip some work by looking recv_sack_cache? */
1748 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1749 after(end_seq, cache->start_seq)) {
1750
1751 /* Head todo? */
1752 if (before(start_seq, cache->start_seq)) {
1753 skb = tcp_sacktag_skip(skb, sk, &state,
1754 start_seq);
1755 skb = tcp_sacktag_walk(skb, sk, next_dup,
1756 &state,
1757 start_seq,
1758 cache->start_seq,
1759 dup_sack);
1760 }
1761
1762 /* Rest of the block already fully processed? */
1763 if (!after(end_seq, cache->end_seq))
1764 goto advance_sp;
1765
1766 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1767 &state,
1768 cache->end_seq);
1769
1770 /* ...tail remains todo... */
1771 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1772 /* ...but better entrypoint exists! */
1773 skb = tcp_highest_sack(sk);
1774 if (skb == NULL)
1775 break;
1776 state.fack_count = tp->fackets_out;
1777 cache++;
1778 goto walk;
1779 }
1780
1781 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1782 /* Check overlap against next cached too (past this one already) */
1783 cache++;
1784 continue;
1785 }
1786
1787 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1788 skb = tcp_highest_sack(sk);
1789 if (skb == NULL)
1790 break;
1791 state.fack_count = tp->fackets_out;
1792 }
1793 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1794
1795 walk:
1796 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1797 start_seq, end_seq, dup_sack);
1798
1799 advance_sp:
1800 i++;
1801 }
1802
1803 /* Clear the head of the cache sack blocks so we can skip it next time */
1804 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1805 tp->recv_sack_cache[i].start_seq = 0;
1806 tp->recv_sack_cache[i].end_seq = 0;
1807 }
1808 for (j = 0; j < used_sacks; j++)
1809 tp->recv_sack_cache[i++] = sp[j];
1810
1811 tcp_mark_lost_retrans(sk);
1812
1813 tcp_verify_left_out(tp);
1814
1815 if ((state.reord < tp->fackets_out) &&
1816 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1817 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1818
1819 out:
1820
1821 #if FASTRETRANS_DEBUG > 0
1822 WARN_ON((int)tp->sacked_out < 0);
1823 WARN_ON((int)tp->lost_out < 0);
1824 WARN_ON((int)tp->retrans_out < 0);
1825 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1826 #endif
1827 *sack_rtt_us = state.rtt_us;
1828 return state.flag;
1829 }
1830
1831 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1832 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1833 */
1834 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1835 {
1836 u32 holes;
1837
1838 holes = max(tp->lost_out, 1U);
1839 holes = min(holes, tp->packets_out);
1840
1841 if ((tp->sacked_out + holes) > tp->packets_out) {
1842 tp->sacked_out = tp->packets_out - holes;
1843 return true;
1844 }
1845 return false;
1846 }
1847
1848 /* If we receive more dupacks than we expected counting segments
1849 * in assumption of absent reordering, interpret this as reordering.
1850 * The only another reason could be bug in receiver TCP.
1851 */
1852 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1853 {
1854 struct tcp_sock *tp = tcp_sk(sk);
1855 if (tcp_limit_reno_sacked(tp))
1856 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1857 }
1858
1859 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1860
1861 static void tcp_add_reno_sack(struct sock *sk)
1862 {
1863 struct tcp_sock *tp = tcp_sk(sk);
1864 tp->sacked_out++;
1865 tcp_check_reno_reordering(sk, 0);
1866 tcp_verify_left_out(tp);
1867 }
1868
1869 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1870
1871 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1872 {
1873 struct tcp_sock *tp = tcp_sk(sk);
1874
1875 if (acked > 0) {
1876 /* One ACK acked hole. The rest eat duplicate ACKs. */
1877 if (acked - 1 >= tp->sacked_out)
1878 tp->sacked_out = 0;
1879 else
1880 tp->sacked_out -= acked - 1;
1881 }
1882 tcp_check_reno_reordering(sk, acked);
1883 tcp_verify_left_out(tp);
1884 }
1885
1886 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1887 {
1888 tp->sacked_out = 0;
1889 }
1890
1891 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1892 {
1893 tp->retrans_out = 0;
1894 tp->lost_out = 0;
1895
1896 tp->undo_marker = 0;
1897 tp->undo_retrans = -1;
1898 }
1899
1900 void tcp_clear_retrans(struct tcp_sock *tp)
1901 {
1902 tcp_clear_retrans_partial(tp);
1903
1904 tp->fackets_out = 0;
1905 tp->sacked_out = 0;
1906 }
1907
1908 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1909 * and reset tags completely, otherwise preserve SACKs. If receiver
1910 * dropped its ofo queue, we will know this due to reneging detection.
1911 */
1912 void tcp_enter_loss(struct sock *sk)
1913 {
1914 const struct inet_connection_sock *icsk = inet_csk(sk);
1915 struct tcp_sock *tp = tcp_sk(sk);
1916 struct sk_buff *skb;
1917 bool new_recovery = false;
1918 bool is_reneg; /* is receiver reneging on SACKs? */
1919
1920 /* Reduce ssthresh if it has not yet been made inside this window. */
1921 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1922 !after(tp->high_seq, tp->snd_una) ||
1923 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1924 new_recovery = true;
1925 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1926 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1927 tcp_ca_event(sk, CA_EVENT_LOSS);
1928 }
1929 tp->snd_cwnd = 1;
1930 tp->snd_cwnd_cnt = 0;
1931 tp->snd_cwnd_stamp = tcp_time_stamp;
1932
1933 tcp_clear_retrans_partial(tp);
1934
1935 if (tcp_is_reno(tp))
1936 tcp_reset_reno_sack(tp);
1937
1938 tp->undo_marker = tp->snd_una;
1939
1940 skb = tcp_write_queue_head(sk);
1941 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1942 if (is_reneg) {
1943 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1944 tp->sacked_out = 0;
1945 tp->fackets_out = 0;
1946 }
1947 tcp_clear_all_retrans_hints(tp);
1948
1949 tcp_for_write_queue(skb, sk) {
1950 if (skb == tcp_send_head(sk))
1951 break;
1952
1953 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1954 tp->undo_marker = 0;
1955
1956 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1957 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1958 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1959 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1960 tp->lost_out += tcp_skb_pcount(skb);
1961 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1962 }
1963 }
1964 tcp_verify_left_out(tp);
1965
1966 /* Timeout in disordered state after receiving substantial DUPACKs
1967 * suggests that the degree of reordering is over-estimated.
1968 */
1969 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1970 tp->sacked_out >= sysctl_tcp_reordering)
1971 tp->reordering = min_t(unsigned int, tp->reordering,
1972 sysctl_tcp_reordering);
1973 tcp_set_ca_state(sk, TCP_CA_Loss);
1974 tp->high_seq = tp->snd_nxt;
1975 TCP_ECN_queue_cwr(tp);
1976
1977 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1978 * loss recovery is underway except recurring timeout(s) on
1979 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1980 */
1981 tp->frto = sysctl_tcp_frto &&
1982 (new_recovery || icsk->icsk_retransmits) &&
1983 !inet_csk(sk)->icsk_mtup.probe_size;
1984 }
1985
1986 /* If ACK arrived pointing to a remembered SACK, it means that our
1987 * remembered SACKs do not reflect real state of receiver i.e.
1988 * receiver _host_ is heavily congested (or buggy).
1989 *
1990 * To avoid big spurious retransmission bursts due to transient SACK
1991 * scoreboard oddities that look like reneging, we give the receiver a
1992 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1993 * restore sanity to the SACK scoreboard. If the apparent reneging
1994 * persists until this RTO then we'll clear the SACK scoreboard.
1995 */
1996 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1997 {
1998 if (flag & FLAG_SACK_RENEGING) {
1999 struct tcp_sock *tp = tcp_sk(sk);
2000 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2001 msecs_to_jiffies(10));
2002
2003 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2004 delay, TCP_RTO_MAX);
2005 return true;
2006 }
2007 return false;
2008 }
2009
2010 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2011 {
2012 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2013 }
2014
2015 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2016 * counter when SACK is enabled (without SACK, sacked_out is used for
2017 * that purpose).
2018 *
2019 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2020 * segments up to the highest received SACK block so far and holes in
2021 * between them.
2022 *
2023 * With reordering, holes may still be in flight, so RFC3517 recovery
2024 * uses pure sacked_out (total number of SACKed segments) even though
2025 * it violates the RFC that uses duplicate ACKs, often these are equal
2026 * but when e.g. out-of-window ACKs or packet duplication occurs,
2027 * they differ. Since neither occurs due to loss, TCP should really
2028 * ignore them.
2029 */
2030 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2031 {
2032 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2033 }
2034
2035 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2036 {
2037 struct tcp_sock *tp = tcp_sk(sk);
2038 unsigned long delay;
2039
2040 /* Delay early retransmit and entering fast recovery for
2041 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2042 * available, or RTO is scheduled to fire first.
2043 */
2044 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2045 (flag & FLAG_ECE) || !tp->srtt_us)
2046 return false;
2047
2048 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2049 msecs_to_jiffies(2));
2050
2051 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2052 return false;
2053
2054 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2055 TCP_RTO_MAX);
2056 return true;
2057 }
2058
2059 /* Linux NewReno/SACK/FACK/ECN state machine.
2060 * --------------------------------------
2061 *
2062 * "Open" Normal state, no dubious events, fast path.
2063 * "Disorder" In all the respects it is "Open",
2064 * but requires a bit more attention. It is entered when
2065 * we see some SACKs or dupacks. It is split of "Open"
2066 * mainly to move some processing from fast path to slow one.
2067 * "CWR" CWND was reduced due to some Congestion Notification event.
2068 * It can be ECN, ICMP source quench, local device congestion.
2069 * "Recovery" CWND was reduced, we are fast-retransmitting.
2070 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2071 *
2072 * tcp_fastretrans_alert() is entered:
2073 * - each incoming ACK, if state is not "Open"
2074 * - when arrived ACK is unusual, namely:
2075 * * SACK
2076 * * Duplicate ACK.
2077 * * ECN ECE.
2078 *
2079 * Counting packets in flight is pretty simple.
2080 *
2081 * in_flight = packets_out - left_out + retrans_out
2082 *
2083 * packets_out is SND.NXT-SND.UNA counted in packets.
2084 *
2085 * retrans_out is number of retransmitted segments.
2086 *
2087 * left_out is number of segments left network, but not ACKed yet.
2088 *
2089 * left_out = sacked_out + lost_out
2090 *
2091 * sacked_out: Packets, which arrived to receiver out of order
2092 * and hence not ACKed. With SACKs this number is simply
2093 * amount of SACKed data. Even without SACKs
2094 * it is easy to give pretty reliable estimate of this number,
2095 * counting duplicate ACKs.
2096 *
2097 * lost_out: Packets lost by network. TCP has no explicit
2098 * "loss notification" feedback from network (for now).
2099 * It means that this number can be only _guessed_.
2100 * Actually, it is the heuristics to predict lossage that
2101 * distinguishes different algorithms.
2102 *
2103 * F.e. after RTO, when all the queue is considered as lost,
2104 * lost_out = packets_out and in_flight = retrans_out.
2105 *
2106 * Essentially, we have now two algorithms counting
2107 * lost packets.
2108 *
2109 * FACK: It is the simplest heuristics. As soon as we decided
2110 * that something is lost, we decide that _all_ not SACKed
2111 * packets until the most forward SACK are lost. I.e.
2112 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2113 * It is absolutely correct estimate, if network does not reorder
2114 * packets. And it loses any connection to reality when reordering
2115 * takes place. We use FACK by default until reordering
2116 * is suspected on the path to this destination.
2117 *
2118 * NewReno: when Recovery is entered, we assume that one segment
2119 * is lost (classic Reno). While we are in Recovery and
2120 * a partial ACK arrives, we assume that one more packet
2121 * is lost (NewReno). This heuristics are the same in NewReno
2122 * and SACK.
2123 *
2124 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2125 * deflation etc. CWND is real congestion window, never inflated, changes
2126 * only according to classic VJ rules.
2127 *
2128 * Really tricky (and requiring careful tuning) part of algorithm
2129 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2130 * The first determines the moment _when_ we should reduce CWND and,
2131 * hence, slow down forward transmission. In fact, it determines the moment
2132 * when we decide that hole is caused by loss, rather than by a reorder.
2133 *
2134 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2135 * holes, caused by lost packets.
2136 *
2137 * And the most logically complicated part of algorithm is undo
2138 * heuristics. We detect false retransmits due to both too early
2139 * fast retransmit (reordering) and underestimated RTO, analyzing
2140 * timestamps and D-SACKs. When we detect that some segments were
2141 * retransmitted by mistake and CWND reduction was wrong, we undo
2142 * window reduction and abort recovery phase. This logic is hidden
2143 * inside several functions named tcp_try_undo_<something>.
2144 */
2145
2146 /* This function decides, when we should leave Disordered state
2147 * and enter Recovery phase, reducing congestion window.
2148 *
2149 * Main question: may we further continue forward transmission
2150 * with the same cwnd?
2151 */
2152 static bool tcp_time_to_recover(struct sock *sk, int flag)
2153 {
2154 struct tcp_sock *tp = tcp_sk(sk);
2155 __u32 packets_out;
2156
2157 /* Trick#1: The loss is proven. */
2158 if (tp->lost_out)
2159 return true;
2160
2161 /* Not-A-Trick#2 : Classic rule... */
2162 if (tcp_dupack_heuristics(tp) > tp->reordering)
2163 return true;
2164
2165 /* Trick#4: It is still not OK... But will it be useful to delay
2166 * recovery more?
2167 */
2168 packets_out = tp->packets_out;
2169 if (packets_out <= tp->reordering &&
2170 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2171 !tcp_may_send_now(sk)) {
2172 /* We have nothing to send. This connection is limited
2173 * either by receiver window or by application.
2174 */
2175 return true;
2176 }
2177
2178 /* If a thin stream is detected, retransmit after first
2179 * received dupack. Employ only if SACK is supported in order
2180 * to avoid possible corner-case series of spurious retransmissions
2181 * Use only if there are no unsent data.
2182 */
2183 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2184 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2185 tcp_is_sack(tp) && !tcp_send_head(sk))
2186 return true;
2187
2188 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2189 * retransmissions due to small network reorderings, we implement
2190 * Mitigation A.3 in the RFC and delay the retransmission for a short
2191 * interval if appropriate.
2192 */
2193 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2194 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2195 !tcp_may_send_now(sk))
2196 return !tcp_pause_early_retransmit(sk, flag);
2197
2198 return false;
2199 }
2200
2201 /* Detect loss in event "A" above by marking head of queue up as lost.
2202 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2203 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2204 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2205 * the maximum SACKed segments to pass before reaching this limit.
2206 */
2207 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2208 {
2209 struct tcp_sock *tp = tcp_sk(sk);
2210 struct sk_buff *skb;
2211 int cnt, oldcnt;
2212 int err;
2213 unsigned int mss;
2214 /* Use SACK to deduce losses of new sequences sent during recovery */
2215 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2216
2217 WARN_ON(packets > tp->packets_out);
2218 if (tp->lost_skb_hint) {
2219 skb = tp->lost_skb_hint;
2220 cnt = tp->lost_cnt_hint;
2221 /* Head already handled? */
2222 if (mark_head && skb != tcp_write_queue_head(sk))
2223 return;
2224 } else {
2225 skb = tcp_write_queue_head(sk);
2226 cnt = 0;
2227 }
2228
2229 tcp_for_write_queue_from(skb, sk) {
2230 if (skb == tcp_send_head(sk))
2231 break;
2232 /* TODO: do this better */
2233 /* this is not the most efficient way to do this... */
2234 tp->lost_skb_hint = skb;
2235 tp->lost_cnt_hint = cnt;
2236
2237 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2238 break;
2239
2240 oldcnt = cnt;
2241 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2242 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2243 cnt += tcp_skb_pcount(skb);
2244
2245 if (cnt > packets) {
2246 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2247 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2248 (oldcnt >= packets))
2249 break;
2250
2251 mss = skb_shinfo(skb)->gso_size;
2252 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2253 mss, GFP_ATOMIC);
2254 if (err < 0)
2255 break;
2256 cnt = packets;
2257 }
2258
2259 tcp_skb_mark_lost(tp, skb);
2260
2261 if (mark_head)
2262 break;
2263 }
2264 tcp_verify_left_out(tp);
2265 }
2266
2267 /* Account newly detected lost packet(s) */
2268
2269 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2270 {
2271 struct tcp_sock *tp = tcp_sk(sk);
2272
2273 if (tcp_is_reno(tp)) {
2274 tcp_mark_head_lost(sk, 1, 1);
2275 } else if (tcp_is_fack(tp)) {
2276 int lost = tp->fackets_out - tp->reordering;
2277 if (lost <= 0)
2278 lost = 1;
2279 tcp_mark_head_lost(sk, lost, 0);
2280 } else {
2281 int sacked_upto = tp->sacked_out - tp->reordering;
2282 if (sacked_upto >= 0)
2283 tcp_mark_head_lost(sk, sacked_upto, 0);
2284 else if (fast_rexmit)
2285 tcp_mark_head_lost(sk, 1, 1);
2286 }
2287 }
2288
2289 /* CWND moderation, preventing bursts due to too big ACKs
2290 * in dubious situations.
2291 */
2292 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2293 {
2294 tp->snd_cwnd = min(tp->snd_cwnd,
2295 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2296 tp->snd_cwnd_stamp = tcp_time_stamp;
2297 }
2298
2299 /* Nothing was retransmitted or returned timestamp is less
2300 * than timestamp of the first retransmission.
2301 */
2302 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2303 {
2304 return !tp->retrans_stamp ||
2305 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2306 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2307 }
2308
2309 /* Undo procedures. */
2310
2311 #if FASTRETRANS_DEBUG > 1
2312 static void DBGUNDO(struct sock *sk, const char *msg)
2313 {
2314 struct tcp_sock *tp = tcp_sk(sk);
2315 struct inet_sock *inet = inet_sk(sk);
2316
2317 if (sk->sk_family == AF_INET) {
2318 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2319 msg,
2320 &inet->inet_daddr, ntohs(inet->inet_dport),
2321 tp->snd_cwnd, tcp_left_out(tp),
2322 tp->snd_ssthresh, tp->prior_ssthresh,
2323 tp->packets_out);
2324 }
2325 #if IS_ENABLED(CONFIG_IPV6)
2326 else if (sk->sk_family == AF_INET6) {
2327 struct ipv6_pinfo *np = inet6_sk(sk);
2328 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2329 msg,
2330 &np->daddr, ntohs(inet->inet_dport),
2331 tp->snd_cwnd, tcp_left_out(tp),
2332 tp->snd_ssthresh, tp->prior_ssthresh,
2333 tp->packets_out);
2334 }
2335 #endif
2336 }
2337 #else
2338 #define DBGUNDO(x...) do { } while (0)
2339 #endif
2340
2341 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2342 {
2343 struct tcp_sock *tp = tcp_sk(sk);
2344
2345 if (unmark_loss) {
2346 struct sk_buff *skb;
2347
2348 tcp_for_write_queue(skb, sk) {
2349 if (skb == tcp_send_head(sk))
2350 break;
2351 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2352 }
2353 tp->lost_out = 0;
2354 tcp_clear_all_retrans_hints(tp);
2355 }
2356
2357 if (tp->prior_ssthresh) {
2358 const struct inet_connection_sock *icsk = inet_csk(sk);
2359
2360 if (icsk->icsk_ca_ops->undo_cwnd)
2361 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2362 else
2363 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2364
2365 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2366 tp->snd_ssthresh = tp->prior_ssthresh;
2367 TCP_ECN_withdraw_cwr(tp);
2368 }
2369 } else {
2370 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2371 }
2372 tp->snd_cwnd_stamp = tcp_time_stamp;
2373 tp->undo_marker = 0;
2374 }
2375
2376 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2377 {
2378 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2379 }
2380
2381 /* People celebrate: "We love our President!" */
2382 static bool tcp_try_undo_recovery(struct sock *sk)
2383 {
2384 struct tcp_sock *tp = tcp_sk(sk);
2385
2386 if (tcp_may_undo(tp)) {
2387 int mib_idx;
2388
2389 /* Happy end! We did not retransmit anything
2390 * or our original transmission succeeded.
2391 */
2392 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2393 tcp_undo_cwnd_reduction(sk, false);
2394 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2395 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2396 else
2397 mib_idx = LINUX_MIB_TCPFULLUNDO;
2398
2399 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2400 }
2401 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2402 /* Hold old state until something *above* high_seq
2403 * is ACKed. For Reno it is MUST to prevent false
2404 * fast retransmits (RFC2582). SACK TCP is safe. */
2405 tcp_moderate_cwnd(tp);
2406 return true;
2407 }
2408 tcp_set_ca_state(sk, TCP_CA_Open);
2409 return false;
2410 }
2411
2412 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2413 static bool tcp_try_undo_dsack(struct sock *sk)
2414 {
2415 struct tcp_sock *tp = tcp_sk(sk);
2416
2417 if (tp->undo_marker && !tp->undo_retrans) {
2418 DBGUNDO(sk, "D-SACK");
2419 tcp_undo_cwnd_reduction(sk, false);
2420 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2421 return true;
2422 }
2423 return false;
2424 }
2425
2426 /* We can clear retrans_stamp when there are no retransmissions in the
2427 * window. It would seem that it is trivially available for us in
2428 * tp->retrans_out, however, that kind of assumptions doesn't consider
2429 * what will happen if errors occur when sending retransmission for the
2430 * second time. ...It could the that such segment has only
2431 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2432 * the head skb is enough except for some reneging corner cases that
2433 * are not worth the effort.
2434 *
2435 * Main reason for all this complexity is the fact that connection dying
2436 * time now depends on the validity of the retrans_stamp, in particular,
2437 * that successive retransmissions of a segment must not advance
2438 * retrans_stamp under any conditions.
2439 */
2440 static bool tcp_any_retrans_done(const struct sock *sk)
2441 {
2442 const struct tcp_sock *tp = tcp_sk(sk);
2443 struct sk_buff *skb;
2444
2445 if (tp->retrans_out)
2446 return true;
2447
2448 skb = tcp_write_queue_head(sk);
2449 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2450 return true;
2451
2452 return false;
2453 }
2454
2455 /* Undo during loss recovery after partial ACK or using F-RTO. */
2456 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2457 {
2458 struct tcp_sock *tp = tcp_sk(sk);
2459
2460 if (frto_undo || tcp_may_undo(tp)) {
2461 tcp_undo_cwnd_reduction(sk, true);
2462
2463 DBGUNDO(sk, "partial loss");
2464 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2465 if (frto_undo)
2466 NET_INC_STATS_BH(sock_net(sk),
2467 LINUX_MIB_TCPSPURIOUSRTOS);
2468 inet_csk(sk)->icsk_retransmits = 0;
2469 if (frto_undo || tcp_is_sack(tp))
2470 tcp_set_ca_state(sk, TCP_CA_Open);
2471 return true;
2472 }
2473 return false;
2474 }
2475
2476 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2477 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2478 * It computes the number of packets to send (sndcnt) based on packets newly
2479 * delivered:
2480 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2481 * cwnd reductions across a full RTT.
2482 * 2) If packets in flight is lower than ssthresh (such as due to excess
2483 * losses and/or application stalls), do not perform any further cwnd
2484 * reductions, but instead slow start up to ssthresh.
2485 */
2486 static void tcp_init_cwnd_reduction(struct sock *sk)
2487 {
2488 struct tcp_sock *tp = tcp_sk(sk);
2489
2490 tp->high_seq = tp->snd_nxt;
2491 tp->tlp_high_seq = 0;
2492 tp->snd_cwnd_cnt = 0;
2493 tp->prior_cwnd = tp->snd_cwnd;
2494 tp->prr_delivered = 0;
2495 tp->prr_out = 0;
2496 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2497 TCP_ECN_queue_cwr(tp);
2498 }
2499
2500 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2501 int fast_rexmit)
2502 {
2503 struct tcp_sock *tp = tcp_sk(sk);
2504 int sndcnt = 0;
2505 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2506 int newly_acked_sacked = prior_unsacked -
2507 (tp->packets_out - tp->sacked_out);
2508
2509 tp->prr_delivered += newly_acked_sacked;
2510 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2511 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2512 tp->prior_cwnd - 1;
2513 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2514 } else {
2515 sndcnt = min_t(int, delta,
2516 max_t(int, tp->prr_delivered - tp->prr_out,
2517 newly_acked_sacked) + 1);
2518 }
2519
2520 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2521 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2522 }
2523
2524 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2525 {
2526 struct tcp_sock *tp = tcp_sk(sk);
2527
2528 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2529 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2530 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2531 tp->snd_cwnd = tp->snd_ssthresh;
2532 tp->snd_cwnd_stamp = tcp_time_stamp;
2533 }
2534 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2535 }
2536
2537 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2538 void tcp_enter_cwr(struct sock *sk)
2539 {
2540 struct tcp_sock *tp = tcp_sk(sk);
2541
2542 tp->prior_ssthresh = 0;
2543 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2544 tp->undo_marker = 0;
2545 tcp_init_cwnd_reduction(sk);
2546 tcp_set_ca_state(sk, TCP_CA_CWR);
2547 }
2548 }
2549
2550 static void tcp_try_keep_open(struct sock *sk)
2551 {
2552 struct tcp_sock *tp = tcp_sk(sk);
2553 int state = TCP_CA_Open;
2554
2555 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2556 state = TCP_CA_Disorder;
2557
2558 if (inet_csk(sk)->icsk_ca_state != state) {
2559 tcp_set_ca_state(sk, state);
2560 tp->high_seq = tp->snd_nxt;
2561 }
2562 }
2563
2564 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2565 {
2566 struct tcp_sock *tp = tcp_sk(sk);
2567
2568 tcp_verify_left_out(tp);
2569
2570 if (!tcp_any_retrans_done(sk))
2571 tp->retrans_stamp = 0;
2572
2573 if (flag & FLAG_ECE)
2574 tcp_enter_cwr(sk);
2575
2576 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2577 tcp_try_keep_open(sk);
2578 } else {
2579 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2580 }
2581 }
2582
2583 static void tcp_mtup_probe_failed(struct sock *sk)
2584 {
2585 struct inet_connection_sock *icsk = inet_csk(sk);
2586
2587 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2588 icsk->icsk_mtup.probe_size = 0;
2589 }
2590
2591 static void tcp_mtup_probe_success(struct sock *sk)
2592 {
2593 struct tcp_sock *tp = tcp_sk(sk);
2594 struct inet_connection_sock *icsk = inet_csk(sk);
2595
2596 /* FIXME: breaks with very large cwnd */
2597 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2598 tp->snd_cwnd = tp->snd_cwnd *
2599 tcp_mss_to_mtu(sk, tp->mss_cache) /
2600 icsk->icsk_mtup.probe_size;
2601 tp->snd_cwnd_cnt = 0;
2602 tp->snd_cwnd_stamp = tcp_time_stamp;
2603 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2604
2605 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2606 icsk->icsk_mtup.probe_size = 0;
2607 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2608 }
2609
2610 /* Do a simple retransmit without using the backoff mechanisms in
2611 * tcp_timer. This is used for path mtu discovery.
2612 * The socket is already locked here.
2613 */
2614 void tcp_simple_retransmit(struct sock *sk)
2615 {
2616 const struct inet_connection_sock *icsk = inet_csk(sk);
2617 struct tcp_sock *tp = tcp_sk(sk);
2618 struct sk_buff *skb;
2619 unsigned int mss = tcp_current_mss(sk);
2620 u32 prior_lost = tp->lost_out;
2621
2622 tcp_for_write_queue(skb, sk) {
2623 if (skb == tcp_send_head(sk))
2624 break;
2625 if (tcp_skb_seglen(skb) > mss &&
2626 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2627 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2628 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2629 tp->retrans_out -= tcp_skb_pcount(skb);
2630 }
2631 tcp_skb_mark_lost_uncond_verify(tp, skb);
2632 }
2633 }
2634
2635 tcp_clear_retrans_hints_partial(tp);
2636
2637 if (prior_lost == tp->lost_out)
2638 return;
2639
2640 if (tcp_is_reno(tp))
2641 tcp_limit_reno_sacked(tp);
2642
2643 tcp_verify_left_out(tp);
2644
2645 /* Don't muck with the congestion window here.
2646 * Reason is that we do not increase amount of _data_
2647 * in network, but units changed and effective
2648 * cwnd/ssthresh really reduced now.
2649 */
2650 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2651 tp->high_seq = tp->snd_nxt;
2652 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2653 tp->prior_ssthresh = 0;
2654 tp->undo_marker = 0;
2655 tcp_set_ca_state(sk, TCP_CA_Loss);
2656 }
2657 tcp_xmit_retransmit_queue(sk);
2658 }
2659 EXPORT_SYMBOL(tcp_simple_retransmit);
2660
2661 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2662 {
2663 struct tcp_sock *tp = tcp_sk(sk);
2664 int mib_idx;
2665
2666 if (tcp_is_reno(tp))
2667 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2668 else
2669 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2670
2671 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2672
2673 tp->prior_ssthresh = 0;
2674 tp->undo_marker = tp->snd_una;
2675 tp->undo_retrans = tp->retrans_out ? : -1;
2676
2677 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2678 if (!ece_ack)
2679 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2680 tcp_init_cwnd_reduction(sk);
2681 }
2682 tcp_set_ca_state(sk, TCP_CA_Recovery);
2683 }
2684
2685 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2686 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2687 */
2688 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2689 {
2690 struct tcp_sock *tp = tcp_sk(sk);
2691 bool recovered = !before(tp->snd_una, tp->high_seq);
2692
2693 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2694 /* Step 3.b. A timeout is spurious if not all data are
2695 * lost, i.e., never-retransmitted data are (s)acked.
2696 */
2697 if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2698 return;
2699
2700 if (after(tp->snd_nxt, tp->high_seq) &&
2701 (flag & FLAG_DATA_SACKED || is_dupack)) {
2702 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2703 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2704 tp->high_seq = tp->snd_nxt;
2705 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2706 TCP_NAGLE_OFF);
2707 if (after(tp->snd_nxt, tp->high_seq))
2708 return; /* Step 2.b */
2709 tp->frto = 0;
2710 }
2711 }
2712
2713 if (recovered) {
2714 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2715 tcp_try_undo_recovery(sk);
2716 return;
2717 }
2718 if (tcp_is_reno(tp)) {
2719 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2720 * delivered. Lower inflight to clock out (re)tranmissions.
2721 */
2722 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2723 tcp_add_reno_sack(sk);
2724 else if (flag & FLAG_SND_UNA_ADVANCED)
2725 tcp_reset_reno_sack(tp);
2726 }
2727 if (tcp_try_undo_loss(sk, false))
2728 return;
2729 tcp_xmit_retransmit_queue(sk);
2730 }
2731
2732 /* Undo during fast recovery after partial ACK. */
2733 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2734 const int prior_unsacked)
2735 {
2736 struct tcp_sock *tp = tcp_sk(sk);
2737
2738 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2739 /* Plain luck! Hole if filled with delayed
2740 * packet, rather than with a retransmit.
2741 */
2742 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2743
2744 /* We are getting evidence that the reordering degree is higher
2745 * than we realized. If there are no retransmits out then we
2746 * can undo. Otherwise we clock out new packets but do not
2747 * mark more packets lost or retransmit more.
2748 */
2749 if (tp->retrans_out) {
2750 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2751 return true;
2752 }
2753
2754 if (!tcp_any_retrans_done(sk))
2755 tp->retrans_stamp = 0;
2756
2757 DBGUNDO(sk, "partial recovery");
2758 tcp_undo_cwnd_reduction(sk, true);
2759 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2760 tcp_try_keep_open(sk);
2761 return true;
2762 }
2763 return false;
2764 }
2765
2766 /* Process an event, which can update packets-in-flight not trivially.
2767 * Main goal of this function is to calculate new estimate for left_out,
2768 * taking into account both packets sitting in receiver's buffer and
2769 * packets lost by network.
2770 *
2771 * Besides that it does CWND reduction, when packet loss is detected
2772 * and changes state of machine.
2773 *
2774 * It does _not_ decide what to send, it is made in function
2775 * tcp_xmit_retransmit_queue().
2776 */
2777 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2778 const int prior_unsacked,
2779 bool is_dupack, int flag)
2780 {
2781 struct inet_connection_sock *icsk = inet_csk(sk);
2782 struct tcp_sock *tp = tcp_sk(sk);
2783 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2784 (tcp_fackets_out(tp) > tp->reordering));
2785 int fast_rexmit = 0;
2786
2787 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2788 tp->sacked_out = 0;
2789 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2790 tp->fackets_out = 0;
2791
2792 /* Now state machine starts.
2793 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2794 if (flag & FLAG_ECE)
2795 tp->prior_ssthresh = 0;
2796
2797 /* B. In all the states check for reneging SACKs. */
2798 if (tcp_check_sack_reneging(sk, flag))
2799 return;
2800
2801 /* C. Check consistency of the current state. */
2802 tcp_verify_left_out(tp);
2803
2804 /* D. Check state exit conditions. State can be terminated
2805 * when high_seq is ACKed. */
2806 if (icsk->icsk_ca_state == TCP_CA_Open) {
2807 WARN_ON(tp->retrans_out != 0);
2808 tp->retrans_stamp = 0;
2809 } else if (!before(tp->snd_una, tp->high_seq)) {
2810 switch (icsk->icsk_ca_state) {
2811 case TCP_CA_CWR:
2812 /* CWR is to be held something *above* high_seq
2813 * is ACKed for CWR bit to reach receiver. */
2814 if (tp->snd_una != tp->high_seq) {
2815 tcp_end_cwnd_reduction(sk);
2816 tcp_set_ca_state(sk, TCP_CA_Open);
2817 }
2818 break;
2819
2820 case TCP_CA_Recovery:
2821 if (tcp_is_reno(tp))
2822 tcp_reset_reno_sack(tp);
2823 if (tcp_try_undo_recovery(sk))
2824 return;
2825 tcp_end_cwnd_reduction(sk);
2826 break;
2827 }
2828 }
2829
2830 /* E. Process state. */
2831 switch (icsk->icsk_ca_state) {
2832 case TCP_CA_Recovery:
2833 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2834 if (tcp_is_reno(tp) && is_dupack)
2835 tcp_add_reno_sack(sk);
2836 } else {
2837 if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2838 return;
2839 /* Partial ACK arrived. Force fast retransmit. */
2840 do_lost = tcp_is_reno(tp) ||
2841 tcp_fackets_out(tp) > tp->reordering;
2842 }
2843 if (tcp_try_undo_dsack(sk)) {
2844 tcp_try_keep_open(sk);
2845 return;
2846 }
2847 break;
2848 case TCP_CA_Loss:
2849 tcp_process_loss(sk, flag, is_dupack);
2850 if (icsk->icsk_ca_state != TCP_CA_Open)
2851 return;
2852 /* Fall through to processing in Open state. */
2853 default:
2854 if (tcp_is_reno(tp)) {
2855 if (flag & FLAG_SND_UNA_ADVANCED)
2856 tcp_reset_reno_sack(tp);
2857 if (is_dupack)
2858 tcp_add_reno_sack(sk);
2859 }
2860
2861 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2862 tcp_try_undo_dsack(sk);
2863
2864 if (!tcp_time_to_recover(sk, flag)) {
2865 tcp_try_to_open(sk, flag, prior_unsacked);
2866 return;
2867 }
2868
2869 /* MTU probe failure: don't reduce cwnd */
2870 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2871 icsk->icsk_mtup.probe_size &&
2872 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2873 tcp_mtup_probe_failed(sk);
2874 /* Restores the reduction we did in tcp_mtup_probe() */
2875 tp->snd_cwnd++;
2876 tcp_simple_retransmit(sk);
2877 return;
2878 }
2879
2880 /* Otherwise enter Recovery state */
2881 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2882 fast_rexmit = 1;
2883 }
2884
2885 if (do_lost)
2886 tcp_update_scoreboard(sk, fast_rexmit);
2887 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2888 tcp_xmit_retransmit_queue(sk);
2889 }
2890
2891 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2892 long seq_rtt_us, long sack_rtt_us)
2893 {
2894 const struct tcp_sock *tp = tcp_sk(sk);
2895
2896 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2897 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2898 * Karn's algorithm forbids taking RTT if some retransmitted data
2899 * is acked (RFC6298).
2900 */
2901 if (flag & FLAG_RETRANS_DATA_ACKED)
2902 seq_rtt_us = -1L;
2903
2904 if (seq_rtt_us < 0)
2905 seq_rtt_us = sack_rtt_us;
2906
2907 /* RTTM Rule: A TSecr value received in a segment is used to
2908 * update the averaged RTT measurement only if the segment
2909 * acknowledges some new data, i.e., only if it advances the
2910 * left edge of the send window.
2911 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2912 */
2913 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2914 flag & FLAG_ACKED)
2915 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2916
2917 if (seq_rtt_us < 0)
2918 return false;
2919
2920 tcp_rtt_estimator(sk, seq_rtt_us);
2921 tcp_set_rto(sk);
2922
2923 /* RFC6298: only reset backoff on valid RTT measurement. */
2924 inet_csk(sk)->icsk_backoff = 0;
2925 return true;
2926 }
2927
2928 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2929 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2930 {
2931 struct tcp_sock *tp = tcp_sk(sk);
2932 long seq_rtt_us = -1L;
2933
2934 if (synack_stamp && !tp->total_retrans)
2935 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2936
2937 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2938 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2939 */
2940 if (!tp->srtt_us)
2941 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2942 }
2943
2944 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2945 {
2946 const struct inet_connection_sock *icsk = inet_csk(sk);
2947
2948 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2949 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2950 }
2951
2952 /* Restart timer after forward progress on connection.
2953 * RFC2988 recommends to restart timer to now+rto.
2954 */
2955 void tcp_rearm_rto(struct sock *sk)
2956 {
2957 const struct inet_connection_sock *icsk = inet_csk(sk);
2958 struct tcp_sock *tp = tcp_sk(sk);
2959
2960 /* If the retrans timer is currently being used by Fast Open
2961 * for SYN-ACK retrans purpose, stay put.
2962 */
2963 if (tp->fastopen_rsk)
2964 return;
2965
2966 if (!tp->packets_out) {
2967 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2968 } else {
2969 u32 rto = inet_csk(sk)->icsk_rto;
2970 /* Offset the time elapsed after installing regular RTO */
2971 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2972 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2973 struct sk_buff *skb = tcp_write_queue_head(sk);
2974 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2975 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2976 /* delta may not be positive if the socket is locked
2977 * when the retrans timer fires and is rescheduled.
2978 */
2979 if (delta > 0)
2980 rto = delta;
2981 }
2982 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2983 TCP_RTO_MAX);
2984 }
2985 }
2986
2987 /* This function is called when the delayed ER timer fires. TCP enters
2988 * fast recovery and performs fast-retransmit.
2989 */
2990 void tcp_resume_early_retransmit(struct sock *sk)
2991 {
2992 struct tcp_sock *tp = tcp_sk(sk);
2993
2994 tcp_rearm_rto(sk);
2995
2996 /* Stop if ER is disabled after the delayed ER timer is scheduled */
2997 if (!tp->do_early_retrans)
2998 return;
2999
3000 tcp_enter_recovery(sk, false);
3001 tcp_update_scoreboard(sk, 1);
3002 tcp_xmit_retransmit_queue(sk);
3003 }
3004
3005 /* If we get here, the whole TSO packet has not been acked. */
3006 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3007 {
3008 struct tcp_sock *tp = tcp_sk(sk);
3009 u32 packets_acked;
3010
3011 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3012
3013 packets_acked = tcp_skb_pcount(skb);
3014 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3015 return 0;
3016 packets_acked -= tcp_skb_pcount(skb);
3017
3018 if (packets_acked) {
3019 BUG_ON(tcp_skb_pcount(skb) == 0);
3020 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3021 }
3022
3023 return packets_acked;
3024 }
3025
3026 /* Remove acknowledged frames from the retransmission queue. If our packet
3027 * is before the ack sequence we can discard it as it's confirmed to have
3028 * arrived at the other end.
3029 */
3030 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3031 u32 prior_snd_una, long sack_rtt_us)
3032 {
3033 const struct inet_connection_sock *icsk = inet_csk(sk);
3034 struct skb_mstamp first_ackt, last_ackt, now;
3035 struct tcp_sock *tp = tcp_sk(sk);
3036 u32 prior_sacked = tp->sacked_out;
3037 u32 reord = tp->packets_out;
3038 bool fully_acked = true;
3039 long ca_seq_rtt_us = -1L;
3040 long seq_rtt_us = -1L;
3041 struct sk_buff *skb;
3042 u32 pkts_acked = 0;
3043 bool rtt_update;
3044 int flag = 0;
3045
3046 first_ackt.v64 = 0;
3047
3048 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3049 struct skb_shared_info *shinfo = skb_shinfo(skb);
3050 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3051 u8 sacked = scb->sacked;
3052 u32 acked_pcount;
3053
3054 if (unlikely(shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3055 between(shinfo->tskey, prior_snd_una, tp->snd_una - 1))
3056 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3057
3058 /* Determine how many packets and what bytes were acked, tso and else */
3059 if (after(scb->end_seq, tp->snd_una)) {
3060 if (tcp_skb_pcount(skb) == 1 ||
3061 !after(tp->snd_una, scb->seq))
3062 break;
3063
3064 acked_pcount = tcp_tso_acked(sk, skb);
3065 if (!acked_pcount)
3066 break;
3067
3068 fully_acked = false;
3069 } else {
3070 acked_pcount = tcp_skb_pcount(skb);
3071 }
3072
3073 if (sacked & TCPCB_RETRANS) {
3074 if (sacked & TCPCB_SACKED_RETRANS)
3075 tp->retrans_out -= acked_pcount;
3076 flag |= FLAG_RETRANS_DATA_ACKED;
3077 } else {
3078 last_ackt = skb->skb_mstamp;
3079 WARN_ON_ONCE(last_ackt.v64 == 0);
3080 if (!first_ackt.v64)
3081 first_ackt = last_ackt;
3082
3083 if (!(sacked & TCPCB_SACKED_ACKED))
3084 reord = min(pkts_acked, reord);
3085 if (!after(scb->end_seq, tp->high_seq))
3086 flag |= FLAG_ORIG_SACK_ACKED;
3087 }
3088
3089 if (sacked & TCPCB_SACKED_ACKED)
3090 tp->sacked_out -= acked_pcount;
3091 if (sacked & TCPCB_LOST)
3092 tp->lost_out -= acked_pcount;
3093
3094 tp->packets_out -= acked_pcount;
3095 pkts_acked += acked_pcount;
3096
3097 /* Initial outgoing SYN's get put onto the write_queue
3098 * just like anything else we transmit. It is not
3099 * true data, and if we misinform our callers that
3100 * this ACK acks real data, we will erroneously exit
3101 * connection startup slow start one packet too
3102 * quickly. This is severely frowned upon behavior.
3103 */
3104 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3105 flag |= FLAG_DATA_ACKED;
3106 } else {
3107 flag |= FLAG_SYN_ACKED;
3108 tp->retrans_stamp = 0;
3109 }
3110
3111 if (!fully_acked)
3112 break;
3113
3114 tcp_unlink_write_queue(skb, sk);
3115 sk_wmem_free_skb(sk, skb);
3116 if (skb == tp->retransmit_skb_hint)
3117 tp->retransmit_skb_hint = NULL;
3118 if (skb == tp->lost_skb_hint)
3119 tp->lost_skb_hint = NULL;
3120 }
3121
3122 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3123 tp->snd_up = tp->snd_una;
3124
3125 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3126 flag |= FLAG_SACK_RENEGING;
3127
3128 skb_mstamp_get(&now);
3129 if (first_ackt.v64) {
3130 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3131 ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3132 }
3133
3134 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3135
3136 if (flag & FLAG_ACKED) {
3137 const struct tcp_congestion_ops *ca_ops
3138 = inet_csk(sk)->icsk_ca_ops;
3139
3140 tcp_rearm_rto(sk);
3141 if (unlikely(icsk->icsk_mtup.probe_size &&
3142 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3143 tcp_mtup_probe_success(sk);
3144 }
3145
3146 if (tcp_is_reno(tp)) {
3147 tcp_remove_reno_sacks(sk, pkts_acked);
3148 } else {
3149 int delta;
3150
3151 /* Non-retransmitted hole got filled? That's reordering */
3152 if (reord < prior_fackets)
3153 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3154
3155 delta = tcp_is_fack(tp) ? pkts_acked :
3156 prior_sacked - tp->sacked_out;
3157 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3158 }
3159
3160 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3161
3162 if (ca_ops->pkts_acked)
3163 ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
3164
3165 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3166 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3167 /* Do not re-arm RTO if the sack RTT is measured from data sent
3168 * after when the head was last (re)transmitted. Otherwise the
3169 * timeout may continue to extend in loss recovery.
3170 */
3171 tcp_rearm_rto(sk);
3172 }
3173
3174 #if FASTRETRANS_DEBUG > 0
3175 WARN_ON((int)tp->sacked_out < 0);
3176 WARN_ON((int)tp->lost_out < 0);
3177 WARN_ON((int)tp->retrans_out < 0);
3178 if (!tp->packets_out && tcp_is_sack(tp)) {
3179 icsk = inet_csk(sk);
3180 if (tp->lost_out) {
3181 pr_debug("Leak l=%u %d\n",
3182 tp->lost_out, icsk->icsk_ca_state);
3183 tp->lost_out = 0;
3184 }
3185 if (tp->sacked_out) {
3186 pr_debug("Leak s=%u %d\n",
3187 tp->sacked_out, icsk->icsk_ca_state);
3188 tp->sacked_out = 0;
3189 }
3190 if (tp->retrans_out) {
3191 pr_debug("Leak r=%u %d\n",
3192 tp->retrans_out, icsk->icsk_ca_state);
3193 tp->retrans_out = 0;
3194 }
3195 }
3196 #endif
3197 return flag;
3198 }
3199
3200 static void tcp_ack_probe(struct sock *sk)
3201 {
3202 const struct tcp_sock *tp = tcp_sk(sk);
3203 struct inet_connection_sock *icsk = inet_csk(sk);
3204
3205 /* Was it a usable window open? */
3206
3207 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3208 icsk->icsk_backoff = 0;
3209 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3210 /* Socket must be waked up by subsequent tcp_data_snd_check().
3211 * This function is not for random using!
3212 */
3213 } else {
3214 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3215 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3216 TCP_RTO_MAX);
3217 }
3218 }
3219
3220 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3221 {
3222 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3223 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3224 }
3225
3226 /* Decide wheather to run the increase function of congestion control. */
3227 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3228 {
3229 if (tcp_in_cwnd_reduction(sk))
3230 return false;
3231
3232 /* If reordering is high then always grow cwnd whenever data is
3233 * delivered regardless of its ordering. Otherwise stay conservative
3234 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3235 * new SACK or ECE mark may first advance cwnd here and later reduce
3236 * cwnd in tcp_fastretrans_alert() based on more states.
3237 */
3238 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3239 return flag & FLAG_FORWARD_PROGRESS;
3240
3241 return flag & FLAG_DATA_ACKED;
3242 }
3243
3244 /* Check that window update is acceptable.
3245 * The function assumes that snd_una<=ack<=snd_next.
3246 */
3247 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3248 const u32 ack, const u32 ack_seq,
3249 const u32 nwin)
3250 {
3251 return after(ack, tp->snd_una) ||
3252 after(ack_seq, tp->snd_wl1) ||
3253 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3254 }
3255
3256 /* Update our send window.
3257 *
3258 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3259 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3260 */
3261 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3262 u32 ack_seq)
3263 {
3264 struct tcp_sock *tp = tcp_sk(sk);
3265 int flag = 0;
3266 u32 nwin = ntohs(tcp_hdr(skb)->window);
3267
3268 if (likely(!tcp_hdr(skb)->syn))
3269 nwin <<= tp->rx_opt.snd_wscale;
3270
3271 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3272 flag |= FLAG_WIN_UPDATE;
3273 tcp_update_wl(tp, ack_seq);
3274
3275 if (tp->snd_wnd != nwin) {
3276 tp->snd_wnd = nwin;
3277
3278 /* Note, it is the only place, where
3279 * fast path is recovered for sending TCP.
3280 */
3281 tp->pred_flags = 0;
3282 tcp_fast_path_check(sk);
3283
3284 if (nwin > tp->max_window) {
3285 tp->max_window = nwin;
3286 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3287 }
3288 }
3289 }
3290
3291 tp->snd_una = ack;
3292
3293 return flag;
3294 }
3295
3296 /* RFC 5961 7 [ACK Throttling] */
3297 static void tcp_send_challenge_ack(struct sock *sk)
3298 {
3299 /* unprotected vars, we dont care of overwrites */
3300 static u32 challenge_timestamp;
3301 static unsigned int challenge_count;
3302 u32 now = jiffies / HZ;
3303
3304 if (now != challenge_timestamp) {
3305 challenge_timestamp = now;
3306 challenge_count = 0;
3307 }
3308 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3309 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3310 tcp_send_ack(sk);
3311 }
3312 }
3313
3314 static void tcp_store_ts_recent(struct tcp_sock *tp)
3315 {
3316 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3317 tp->rx_opt.ts_recent_stamp = get_seconds();
3318 }
3319
3320 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3321 {
3322 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3323 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3324 * extra check below makes sure this can only happen
3325 * for pure ACK frames. -DaveM
3326 *
3327 * Not only, also it occurs for expired timestamps.
3328 */
3329
3330 if (tcp_paws_check(&tp->rx_opt, 0))
3331 tcp_store_ts_recent(tp);
3332 }
3333 }
3334
3335 /* This routine deals with acks during a TLP episode.
3336 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3337 */
3338 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3339 {
3340 struct tcp_sock *tp = tcp_sk(sk);
3341 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3342 !(flag & (FLAG_SND_UNA_ADVANCED |
3343 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3344
3345 /* Mark the end of TLP episode on receiving TLP dupack or when
3346 * ack is after tlp_high_seq.
3347 */
3348 if (is_tlp_dupack) {
3349 tp->tlp_high_seq = 0;
3350 return;
3351 }
3352
3353 if (after(ack, tp->tlp_high_seq)) {
3354 tp->tlp_high_seq = 0;
3355 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3356 if (!(flag & FLAG_DSACKING_ACK)) {
3357 tcp_init_cwnd_reduction(sk);
3358 tcp_set_ca_state(sk, TCP_CA_CWR);
3359 tcp_end_cwnd_reduction(sk);
3360 tcp_try_keep_open(sk);
3361 NET_INC_STATS_BH(sock_net(sk),
3362 LINUX_MIB_TCPLOSSPROBERECOVERY);
3363 }
3364 }
3365 }
3366
3367 /* This routine deals with incoming acks, but not outgoing ones. */
3368 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3369 {
3370 struct inet_connection_sock *icsk = inet_csk(sk);
3371 struct tcp_sock *tp = tcp_sk(sk);
3372 u32 prior_snd_una = tp->snd_una;
3373 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3374 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3375 bool is_dupack = false;
3376 u32 prior_fackets;
3377 int prior_packets = tp->packets_out;
3378 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3379 int acked = 0; /* Number of packets newly acked */
3380 long sack_rtt_us = -1L;
3381
3382 /* If the ack is older than previous acks
3383 * then we can probably ignore it.
3384 */
3385 if (before(ack, prior_snd_una)) {
3386 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3387 if (before(ack, prior_snd_una - tp->max_window)) {
3388 tcp_send_challenge_ack(sk);
3389 return -1;
3390 }
3391 goto old_ack;
3392 }
3393
3394 /* If the ack includes data we haven't sent yet, discard
3395 * this segment (RFC793 Section 3.9).
3396 */
3397 if (after(ack, tp->snd_nxt))
3398 goto invalid_ack;
3399
3400 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3401 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3402 tcp_rearm_rto(sk);
3403
3404 if (after(ack, prior_snd_una)) {
3405 flag |= FLAG_SND_UNA_ADVANCED;
3406 icsk->icsk_retransmits = 0;
3407 }
3408
3409 prior_fackets = tp->fackets_out;
3410
3411 /* ts_recent update must be made after we are sure that the packet
3412 * is in window.
3413 */
3414 if (flag & FLAG_UPDATE_TS_RECENT)
3415 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3416
3417 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3418 /* Window is constant, pure forward advance.
3419 * No more checks are required.
3420 * Note, we use the fact that SND.UNA>=SND.WL2.
3421 */
3422 tcp_update_wl(tp, ack_seq);
3423 tp->snd_una = ack;
3424 flag |= FLAG_WIN_UPDATE;
3425
3426 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3427
3428 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3429 } else {
3430 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3431 flag |= FLAG_DATA;
3432 else
3433 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3434
3435 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3436
3437 if (TCP_SKB_CB(skb)->sacked)
3438 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3439 &sack_rtt_us);
3440
3441 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3442 flag |= FLAG_ECE;
3443
3444 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3445 }
3446
3447 /* We passed data and got it acked, remove any soft error
3448 * log. Something worked...
3449 */
3450 sk->sk_err_soft = 0;
3451 icsk->icsk_probes_out = 0;
3452 tp->rcv_tstamp = tcp_time_stamp;
3453 if (!prior_packets)
3454 goto no_queue;
3455
3456 /* See if we can take anything off of the retransmit queue. */
3457 acked = tp->packets_out;
3458 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3459 sack_rtt_us);
3460 acked -= tp->packets_out;
3461
3462 /* Advance cwnd if state allows */
3463 if (tcp_may_raise_cwnd(sk, flag))
3464 tcp_cong_avoid(sk, ack, acked);
3465
3466 if (tcp_ack_is_dubious(sk, flag)) {
3467 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3468 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3469 is_dupack, flag);
3470 }
3471 if (tp->tlp_high_seq)
3472 tcp_process_tlp_ack(sk, ack, flag);
3473
3474 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3475 struct dst_entry *dst = __sk_dst_get(sk);
3476 if (dst)
3477 dst_confirm(dst);
3478 }
3479
3480 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3481 tcp_schedule_loss_probe(sk);
3482 tcp_update_pacing_rate(sk);
3483 return 1;
3484
3485 no_queue:
3486 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3487 if (flag & FLAG_DSACKING_ACK)
3488 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3489 is_dupack, flag);
3490 /* If this ack opens up a zero window, clear backoff. It was
3491 * being used to time the probes, and is probably far higher than
3492 * it needs to be for normal retransmission.
3493 */
3494 if (tcp_send_head(sk))
3495 tcp_ack_probe(sk);
3496
3497 if (tp->tlp_high_seq)
3498 tcp_process_tlp_ack(sk, ack, flag);
3499 return 1;
3500
3501 invalid_ack:
3502 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3503 return -1;
3504
3505 old_ack:
3506 /* If data was SACKed, tag it and see if we should send more data.
3507 * If data was DSACKed, see if we can undo a cwnd reduction.
3508 */
3509 if (TCP_SKB_CB(skb)->sacked) {
3510 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3511 &sack_rtt_us);
3512 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3513 is_dupack, flag);
3514 }
3515
3516 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3517 return 0;
3518 }
3519
3520 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3521 * But, this can also be called on packets in the established flow when
3522 * the fast version below fails.
3523 */
3524 void tcp_parse_options(const struct sk_buff *skb,
3525 struct tcp_options_received *opt_rx, int estab,
3526 struct tcp_fastopen_cookie *foc)
3527 {
3528 const unsigned char *ptr;
3529 const struct tcphdr *th = tcp_hdr(skb);
3530 int length = (th->doff * 4) - sizeof(struct tcphdr);
3531
3532 ptr = (const unsigned char *)(th + 1);
3533 opt_rx->saw_tstamp = 0;
3534
3535 while (length > 0) {
3536 int opcode = *ptr++;
3537 int opsize;
3538
3539 switch (opcode) {
3540 case TCPOPT_EOL:
3541 return;
3542 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3543 length--;
3544 continue;
3545 default:
3546 opsize = *ptr++;
3547 if (opsize < 2) /* "silly options" */
3548 return;
3549 if (opsize > length)
3550 return; /* don't parse partial options */
3551 switch (opcode) {
3552 case TCPOPT_MSS:
3553 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3554 u16 in_mss = get_unaligned_be16(ptr);
3555 if (in_mss) {
3556 if (opt_rx->user_mss &&
3557 opt_rx->user_mss < in_mss)
3558 in_mss = opt_rx->user_mss;
3559 opt_rx->mss_clamp = in_mss;
3560 }
3561 }
3562 break;
3563 case TCPOPT_WINDOW:
3564 if (opsize == TCPOLEN_WINDOW && th->syn &&
3565 !estab && sysctl_tcp_window_scaling) {
3566 __u8 snd_wscale = *(__u8 *)ptr;
3567 opt_rx->wscale_ok = 1;
3568 if (snd_wscale > 14) {
3569 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3570 __func__,
3571 snd_wscale);
3572 snd_wscale = 14;
3573 }
3574 opt_rx->snd_wscale = snd_wscale;
3575 }
3576 break;
3577 case TCPOPT_TIMESTAMP:
3578 if ((opsize == TCPOLEN_TIMESTAMP) &&
3579 ((estab && opt_rx->tstamp_ok) ||
3580 (!estab && sysctl_tcp_timestamps))) {
3581 opt_rx->saw_tstamp = 1;
3582 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3583 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3584 }
3585 break;
3586 case TCPOPT_SACK_PERM:
3587 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3588 !estab && sysctl_tcp_sack) {
3589 opt_rx->sack_ok = TCP_SACK_SEEN;
3590 tcp_sack_reset(opt_rx);
3591 }
3592 break;
3593
3594 case TCPOPT_SACK:
3595 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3596 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3597 opt_rx->sack_ok) {
3598 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3599 }
3600 break;
3601 #ifdef CONFIG_TCP_MD5SIG
3602 case TCPOPT_MD5SIG:
3603 /*
3604 * The MD5 Hash has already been
3605 * checked (see tcp_v{4,6}_do_rcv()).
3606 */
3607 break;
3608 #endif
3609 case TCPOPT_EXP:
3610 /* Fast Open option shares code 254 using a
3611 * 16 bits magic number. It's valid only in
3612 * SYN or SYN-ACK with an even size.
3613 */
3614 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3615 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3616 foc == NULL || !th->syn || (opsize & 1))
3617 break;
3618 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3619 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3620 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3621 memcpy(foc->val, ptr + 2, foc->len);
3622 else if (foc->len != 0)
3623 foc->len = -1;
3624 break;
3625
3626 }
3627 ptr += opsize-2;
3628 length -= opsize;
3629 }
3630 }
3631 }
3632 EXPORT_SYMBOL(tcp_parse_options);
3633
3634 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3635 {
3636 const __be32 *ptr = (const __be32 *)(th + 1);
3637
3638 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3639 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3640 tp->rx_opt.saw_tstamp = 1;
3641 ++ptr;
3642 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3643 ++ptr;
3644 if (*ptr)
3645 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3646 else
3647 tp->rx_opt.rcv_tsecr = 0;
3648 return true;
3649 }
3650 return false;
3651 }
3652
3653 /* Fast parse options. This hopes to only see timestamps.
3654 * If it is wrong it falls back on tcp_parse_options().
3655 */
3656 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3657 const struct tcphdr *th, struct tcp_sock *tp)
3658 {
3659 /* In the spirit of fast parsing, compare doff directly to constant
3660 * values. Because equality is used, short doff can be ignored here.
3661 */
3662 if (th->doff == (sizeof(*th) / 4)) {
3663 tp->rx_opt.saw_tstamp = 0;
3664 return false;
3665 } else if (tp->rx_opt.tstamp_ok &&
3666 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3667 if (tcp_parse_aligned_timestamp(tp, th))
3668 return true;
3669 }
3670
3671 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3672 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3673 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3674
3675 return true;
3676 }
3677
3678 #ifdef CONFIG_TCP_MD5SIG
3679 /*
3680 * Parse MD5 Signature option
3681 */
3682 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3683 {
3684 int length = (th->doff << 2) - sizeof(*th);
3685 const u8 *ptr = (const u8 *)(th + 1);
3686
3687 /* If the TCP option is too short, we can short cut */
3688 if (length < TCPOLEN_MD5SIG)
3689 return NULL;
3690
3691 while (length > 0) {
3692 int opcode = *ptr++;
3693 int opsize;
3694
3695 switch (opcode) {
3696 case TCPOPT_EOL:
3697 return NULL;
3698 case TCPOPT_NOP:
3699 length--;
3700 continue;
3701 default:
3702 opsize = *ptr++;
3703 if (opsize < 2 || opsize > length)
3704 return NULL;
3705 if (opcode == TCPOPT_MD5SIG)
3706 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3707 }
3708 ptr += opsize - 2;
3709 length -= opsize;
3710 }
3711 return NULL;
3712 }
3713 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3714 #endif
3715
3716 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3717 *
3718 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3719 * it can pass through stack. So, the following predicate verifies that
3720 * this segment is not used for anything but congestion avoidance or
3721 * fast retransmit. Moreover, we even are able to eliminate most of such
3722 * second order effects, if we apply some small "replay" window (~RTO)
3723 * to timestamp space.
3724 *
3725 * All these measures still do not guarantee that we reject wrapped ACKs
3726 * on networks with high bandwidth, when sequence space is recycled fastly,
3727 * but it guarantees that such events will be very rare and do not affect
3728 * connection seriously. This doesn't look nice, but alas, PAWS is really
3729 * buggy extension.
3730 *
3731 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3732 * states that events when retransmit arrives after original data are rare.
3733 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3734 * the biggest problem on large power networks even with minor reordering.
3735 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3736 * up to bandwidth of 18Gigabit/sec. 8) ]
3737 */
3738
3739 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3740 {
3741 const struct tcp_sock *tp = tcp_sk(sk);
3742 const struct tcphdr *th = tcp_hdr(skb);
3743 u32 seq = TCP_SKB_CB(skb)->seq;
3744 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3745
3746 return (/* 1. Pure ACK with correct sequence number. */
3747 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3748
3749 /* 2. ... and duplicate ACK. */
3750 ack == tp->snd_una &&
3751
3752 /* 3. ... and does not update window. */
3753 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3754
3755 /* 4. ... and sits in replay window. */
3756 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3757 }
3758
3759 static inline bool tcp_paws_discard(const struct sock *sk,
3760 const struct sk_buff *skb)
3761 {
3762 const struct tcp_sock *tp = tcp_sk(sk);
3763
3764 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3765 !tcp_disordered_ack(sk, skb);
3766 }
3767
3768 /* Check segment sequence number for validity.
3769 *
3770 * Segment controls are considered valid, if the segment
3771 * fits to the window after truncation to the window. Acceptability
3772 * of data (and SYN, FIN, of course) is checked separately.
3773 * See tcp_data_queue(), for example.
3774 *
3775 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3776 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3777 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3778 * (borrowed from freebsd)
3779 */
3780
3781 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3782 {
3783 return !before(end_seq, tp->rcv_wup) &&
3784 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3785 }
3786
3787 /* When we get a reset we do this. */
3788 void tcp_reset(struct sock *sk)
3789 {
3790 /* We want the right error as BSD sees it (and indeed as we do). */
3791 switch (sk->sk_state) {
3792 case TCP_SYN_SENT:
3793 sk->sk_err = ECONNREFUSED;
3794 break;
3795 case TCP_CLOSE_WAIT:
3796 sk->sk_err = EPIPE;
3797 break;
3798 case TCP_CLOSE:
3799 return;
3800 default:
3801 sk->sk_err = ECONNRESET;
3802 }
3803 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3804 smp_wmb();
3805
3806 if (!sock_flag(sk, SOCK_DEAD))
3807 sk->sk_error_report(sk);
3808
3809 tcp_done(sk);
3810 }
3811
3812 /*
3813 * Process the FIN bit. This now behaves as it is supposed to work
3814 * and the FIN takes effect when it is validly part of sequence
3815 * space. Not before when we get holes.
3816 *
3817 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3818 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3819 * TIME-WAIT)
3820 *
3821 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3822 * close and we go into CLOSING (and later onto TIME-WAIT)
3823 *
3824 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3825 */
3826 static void tcp_fin(struct sock *sk)
3827 {
3828 struct tcp_sock *tp = tcp_sk(sk);
3829 const struct dst_entry *dst;
3830
3831 inet_csk_schedule_ack(sk);
3832
3833 sk->sk_shutdown |= RCV_SHUTDOWN;
3834 sock_set_flag(sk, SOCK_DONE);
3835
3836 switch (sk->sk_state) {
3837 case TCP_SYN_RECV:
3838 case TCP_ESTABLISHED:
3839 /* Move to CLOSE_WAIT */
3840 tcp_set_state(sk, TCP_CLOSE_WAIT);
3841 dst = __sk_dst_get(sk);
3842 if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3843 inet_csk(sk)->icsk_ack.pingpong = 1;
3844 break;
3845
3846 case TCP_CLOSE_WAIT:
3847 case TCP_CLOSING:
3848 /* Received a retransmission of the FIN, do
3849 * nothing.
3850 */
3851 break;
3852 case TCP_LAST_ACK:
3853 /* RFC793: Remain in the LAST-ACK state. */
3854 break;
3855
3856 case TCP_FIN_WAIT1:
3857 /* This case occurs when a simultaneous close
3858 * happens, we must ack the received FIN and
3859 * enter the CLOSING state.
3860 */
3861 tcp_send_ack(sk);
3862 tcp_set_state(sk, TCP_CLOSING);
3863 break;
3864 case TCP_FIN_WAIT2:
3865 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3866 tcp_send_ack(sk);
3867 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3868 break;
3869 default:
3870 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3871 * cases we should never reach this piece of code.
3872 */
3873 pr_err("%s: Impossible, sk->sk_state=%d\n",
3874 __func__, sk->sk_state);
3875 break;
3876 }
3877
3878 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3879 * Probably, we should reset in this case. For now drop them.
3880 */
3881 __skb_queue_purge(&tp->out_of_order_queue);
3882 if (tcp_is_sack(tp))
3883 tcp_sack_reset(&tp->rx_opt);
3884 sk_mem_reclaim(sk);
3885
3886 if (!sock_flag(sk, SOCK_DEAD)) {
3887 sk->sk_state_change(sk);
3888
3889 /* Do not send POLL_HUP for half duplex close. */
3890 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3891 sk->sk_state == TCP_CLOSE)
3892 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3893 else
3894 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3895 }
3896 }
3897
3898 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3899 u32 end_seq)
3900 {
3901 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3902 if (before(seq, sp->start_seq))
3903 sp->start_seq = seq;
3904 if (after(end_seq, sp->end_seq))
3905 sp->end_seq = end_seq;
3906 return true;
3907 }
3908 return false;
3909 }
3910
3911 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3912 {
3913 struct tcp_sock *tp = tcp_sk(sk);
3914
3915 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3916 int mib_idx;
3917
3918 if (before(seq, tp->rcv_nxt))
3919 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3920 else
3921 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3922
3923 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3924
3925 tp->rx_opt.dsack = 1;
3926 tp->duplicate_sack[0].start_seq = seq;
3927 tp->duplicate_sack[0].end_seq = end_seq;
3928 }
3929 }
3930
3931 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3932 {
3933 struct tcp_sock *tp = tcp_sk(sk);
3934
3935 if (!tp->rx_opt.dsack)
3936 tcp_dsack_set(sk, seq, end_seq);
3937 else
3938 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3939 }
3940
3941 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3942 {
3943 struct tcp_sock *tp = tcp_sk(sk);
3944
3945 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3946 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3947 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3948 tcp_enter_quickack_mode(sk);
3949
3950 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3951 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3952
3953 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3954 end_seq = tp->rcv_nxt;
3955 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3956 }
3957 }
3958
3959 tcp_send_ack(sk);
3960 }
3961
3962 /* These routines update the SACK block as out-of-order packets arrive or
3963 * in-order packets close up the sequence space.
3964 */
3965 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3966 {
3967 int this_sack;
3968 struct tcp_sack_block *sp = &tp->selective_acks[0];
3969 struct tcp_sack_block *swalk = sp + 1;
3970
3971 /* See if the recent change to the first SACK eats into
3972 * or hits the sequence space of other SACK blocks, if so coalesce.
3973 */
3974 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3975 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3976 int i;
3977
3978 /* Zap SWALK, by moving every further SACK up by one slot.
3979 * Decrease num_sacks.
3980 */
3981 tp->rx_opt.num_sacks--;
3982 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3983 sp[i] = sp[i + 1];
3984 continue;
3985 }
3986 this_sack++, swalk++;
3987 }
3988 }
3989
3990 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3991 {
3992 struct tcp_sock *tp = tcp_sk(sk);
3993 struct tcp_sack_block *sp = &tp->selective_acks[0];
3994 int cur_sacks = tp->rx_opt.num_sacks;
3995 int this_sack;
3996
3997 if (!cur_sacks)
3998 goto new_sack;
3999
4000 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4001 if (tcp_sack_extend(sp, seq, end_seq)) {
4002 /* Rotate this_sack to the first one. */
4003 for (; this_sack > 0; this_sack--, sp--)
4004 swap(*sp, *(sp - 1));
4005 if (cur_sacks > 1)
4006 tcp_sack_maybe_coalesce(tp);
4007 return;
4008 }
4009 }
4010
4011 /* Could not find an adjacent existing SACK, build a new one,
4012 * put it at the front, and shift everyone else down. We
4013 * always know there is at least one SACK present already here.
4014 *
4015 * If the sack array is full, forget about the last one.
4016 */
4017 if (this_sack >= TCP_NUM_SACKS) {
4018 this_sack--;
4019 tp->rx_opt.num_sacks--;
4020 sp--;
4021 }
4022 for (; this_sack > 0; this_sack--, sp--)
4023 *sp = *(sp - 1);
4024
4025 new_sack:
4026 /* Build the new head SACK, and we're done. */
4027 sp->start_seq = seq;
4028 sp->end_seq = end_seq;
4029 tp->rx_opt.num_sacks++;
4030 }
4031
4032 /* RCV.NXT advances, some SACKs should be eaten. */
4033
4034 static void tcp_sack_remove(struct tcp_sock *tp)
4035 {
4036 struct tcp_sack_block *sp = &tp->selective_acks[0];
4037 int num_sacks = tp->rx_opt.num_sacks;
4038 int this_sack;
4039
4040 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4041 if (skb_queue_empty(&tp->out_of_order_queue)) {
4042 tp->rx_opt.num_sacks = 0;
4043 return;
4044 }
4045
4046 for (this_sack = 0; this_sack < num_sacks;) {
4047 /* Check if the start of the sack is covered by RCV.NXT. */
4048 if (!before(tp->rcv_nxt, sp->start_seq)) {
4049 int i;
4050
4051 /* RCV.NXT must cover all the block! */
4052 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4053
4054 /* Zap this SACK, by moving forward any other SACKS. */
4055 for (i = this_sack+1; i < num_sacks; i++)
4056 tp->selective_acks[i-1] = tp->selective_acks[i];
4057 num_sacks--;
4058 continue;
4059 }
4060 this_sack++;
4061 sp++;
4062 }
4063 tp->rx_opt.num_sacks = num_sacks;
4064 }
4065
4066 /* This one checks to see if we can put data from the
4067 * out_of_order queue into the receive_queue.
4068 */
4069 static void tcp_ofo_queue(struct sock *sk)
4070 {
4071 struct tcp_sock *tp = tcp_sk(sk);
4072 __u32 dsack_high = tp->rcv_nxt;
4073 struct sk_buff *skb;
4074
4075 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4076 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4077 break;
4078
4079 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4080 __u32 dsack = dsack_high;
4081 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4082 dsack_high = TCP_SKB_CB(skb)->end_seq;
4083 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4084 }
4085
4086 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4087 SOCK_DEBUG(sk, "ofo packet was already received\n");
4088 __skb_unlink(skb, &tp->out_of_order_queue);
4089 __kfree_skb(skb);
4090 continue;
4091 }
4092 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4093 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4094 TCP_SKB_CB(skb)->end_seq);
4095
4096 __skb_unlink(skb, &tp->out_of_order_queue);
4097 __skb_queue_tail(&sk->sk_receive_queue, skb);
4098 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4099 if (tcp_hdr(skb)->fin)
4100 tcp_fin(sk);
4101 }
4102 }
4103
4104 static bool tcp_prune_ofo_queue(struct sock *sk);
4105 static int tcp_prune_queue(struct sock *sk);
4106
4107 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4108 unsigned int size)
4109 {
4110 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4111 !sk_rmem_schedule(sk, skb, size)) {
4112
4113 if (tcp_prune_queue(sk) < 0)
4114 return -1;
4115
4116 if (!sk_rmem_schedule(sk, skb, size)) {
4117 if (!tcp_prune_ofo_queue(sk))
4118 return -1;
4119
4120 if (!sk_rmem_schedule(sk, skb, size))
4121 return -1;
4122 }
4123 }
4124 return 0;
4125 }
4126
4127 /**
4128 * tcp_try_coalesce - try to merge skb to prior one
4129 * @sk: socket
4130 * @to: prior buffer
4131 * @from: buffer to add in queue
4132 * @fragstolen: pointer to boolean
4133 *
4134 * Before queueing skb @from after @to, try to merge them
4135 * to reduce overall memory use and queue lengths, if cost is small.
4136 * Packets in ofo or receive queues can stay a long time.
4137 * Better try to coalesce them right now to avoid future collapses.
4138 * Returns true if caller should free @from instead of queueing it
4139 */
4140 static bool tcp_try_coalesce(struct sock *sk,
4141 struct sk_buff *to,
4142 struct sk_buff *from,
4143 bool *fragstolen)
4144 {
4145 int delta;
4146
4147 *fragstolen = false;
4148
4149 if (tcp_hdr(from)->fin)
4150 return false;
4151
4152 /* Its possible this segment overlaps with prior segment in queue */
4153 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4154 return false;
4155
4156 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4157 return false;
4158
4159 atomic_add(delta, &sk->sk_rmem_alloc);
4160 sk_mem_charge(sk, delta);
4161 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4162 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4163 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4164 return true;
4165 }
4166
4167 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4168 {
4169 struct tcp_sock *tp = tcp_sk(sk);
4170 struct sk_buff *skb1;
4171 u32 seq, end_seq;
4172
4173 TCP_ECN_check_ce(tp, skb);
4174
4175 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4176 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4177 __kfree_skb(skb);
4178 return;
4179 }
4180
4181 /* Disable header prediction. */
4182 tp->pred_flags = 0;
4183 inet_csk_schedule_ack(sk);
4184
4185 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4186 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4187 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4188
4189 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4190 if (!skb1) {
4191 /* Initial out of order segment, build 1 SACK. */
4192 if (tcp_is_sack(tp)) {
4193 tp->rx_opt.num_sacks = 1;
4194 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4195 tp->selective_acks[0].end_seq =
4196 TCP_SKB_CB(skb)->end_seq;
4197 }
4198 __skb_queue_head(&tp->out_of_order_queue, skb);
4199 goto end;
4200 }
4201
4202 seq = TCP_SKB_CB(skb)->seq;
4203 end_seq = TCP_SKB_CB(skb)->end_seq;
4204
4205 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4206 bool fragstolen;
4207
4208 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4209 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4210 } else {
4211 tcp_grow_window(sk, skb);
4212 kfree_skb_partial(skb, fragstolen);
4213 skb = NULL;
4214 }
4215
4216 if (!tp->rx_opt.num_sacks ||
4217 tp->selective_acks[0].end_seq != seq)
4218 goto add_sack;
4219
4220 /* Common case: data arrive in order after hole. */
4221 tp->selective_acks[0].end_seq = end_seq;
4222 goto end;
4223 }
4224
4225 /* Find place to insert this segment. */
4226 while (1) {
4227 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4228 break;
4229 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4230 skb1 = NULL;
4231 break;
4232 }
4233 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4234 }
4235
4236 /* Do skb overlap to previous one? */
4237 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4238 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4239 /* All the bits are present. Drop. */
4240 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4241 __kfree_skb(skb);
4242 skb = NULL;
4243 tcp_dsack_set(sk, seq, end_seq);
4244 goto add_sack;
4245 }
4246 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4247 /* Partial overlap. */
4248 tcp_dsack_set(sk, seq,
4249 TCP_SKB_CB(skb1)->end_seq);
4250 } else {
4251 if (skb_queue_is_first(&tp->out_of_order_queue,
4252 skb1))
4253 skb1 = NULL;
4254 else
4255 skb1 = skb_queue_prev(
4256 &tp->out_of_order_queue,
4257 skb1);
4258 }
4259 }
4260 if (!skb1)
4261 __skb_queue_head(&tp->out_of_order_queue, skb);
4262 else
4263 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4264
4265 /* And clean segments covered by new one as whole. */
4266 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4267 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4268
4269 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4270 break;
4271 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4272 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4273 end_seq);
4274 break;
4275 }
4276 __skb_unlink(skb1, &tp->out_of_order_queue);
4277 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4278 TCP_SKB_CB(skb1)->end_seq);
4279 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4280 __kfree_skb(skb1);
4281 }
4282
4283 add_sack:
4284 if (tcp_is_sack(tp))
4285 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4286 end:
4287 if (skb) {
4288 tcp_grow_window(sk, skb);
4289 skb_set_owner_r(skb, sk);
4290 }
4291 }
4292
4293 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4294 bool *fragstolen)
4295 {
4296 int eaten;
4297 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4298
4299 __skb_pull(skb, hdrlen);
4300 eaten = (tail &&
4301 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4302 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4303 if (!eaten) {
4304 __skb_queue_tail(&sk->sk_receive_queue, skb);
4305 skb_set_owner_r(skb, sk);
4306 }
4307 return eaten;
4308 }
4309
4310 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4311 {
4312 struct sk_buff *skb = NULL;
4313 struct tcphdr *th;
4314 bool fragstolen;
4315
4316 if (size == 0)
4317 return 0;
4318
4319 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4320 if (!skb)
4321 goto err;
4322
4323 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4324 goto err_free;
4325
4326 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4327 skb_reset_transport_header(skb);
4328 memset(th, 0, sizeof(*th));
4329
4330 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4331 goto err_free;
4332
4333 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4334 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4335 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4336
4337 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4338 WARN_ON_ONCE(fragstolen); /* should not happen */
4339 __kfree_skb(skb);
4340 }
4341 return size;
4342
4343 err_free:
4344 kfree_skb(skb);
4345 err:
4346 return -ENOMEM;
4347 }
4348
4349 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4350 {
4351 const struct tcphdr *th = tcp_hdr(skb);
4352 struct tcp_sock *tp = tcp_sk(sk);
4353 int eaten = -1;
4354 bool fragstolen = false;
4355
4356 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4357 goto drop;
4358
4359 skb_dst_drop(skb);
4360 __skb_pull(skb, th->doff * 4);
4361
4362 TCP_ECN_accept_cwr(tp, skb);
4363
4364 tp->rx_opt.dsack = 0;
4365
4366 /* Queue data for delivery to the user.
4367 * Packets in sequence go to the receive queue.
4368 * Out of sequence packets to the out_of_order_queue.
4369 */
4370 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4371 if (tcp_receive_window(tp) == 0)
4372 goto out_of_window;
4373
4374 /* Ok. In sequence. In window. */
4375 if (tp->ucopy.task == current &&
4376 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4377 sock_owned_by_user(sk) && !tp->urg_data) {
4378 int chunk = min_t(unsigned int, skb->len,
4379 tp->ucopy.len);
4380
4381 __set_current_state(TASK_RUNNING);
4382
4383 local_bh_enable();
4384 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4385 tp->ucopy.len -= chunk;
4386 tp->copied_seq += chunk;
4387 eaten = (chunk == skb->len);
4388 tcp_rcv_space_adjust(sk);
4389 }
4390 local_bh_disable();
4391 }
4392
4393 if (eaten <= 0) {
4394 queue_and_out:
4395 if (eaten < 0 &&
4396 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4397 goto drop;
4398
4399 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4400 }
4401 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4402 if (skb->len)
4403 tcp_event_data_recv(sk, skb);
4404 if (th->fin)
4405 tcp_fin(sk);
4406
4407 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4408 tcp_ofo_queue(sk);
4409
4410 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4411 * gap in queue is filled.
4412 */
4413 if (skb_queue_empty(&tp->out_of_order_queue))
4414 inet_csk(sk)->icsk_ack.pingpong = 0;
4415 }
4416
4417 if (tp->rx_opt.num_sacks)
4418 tcp_sack_remove(tp);
4419
4420 tcp_fast_path_check(sk);
4421
4422 if (eaten > 0)
4423 kfree_skb_partial(skb, fragstolen);
4424 if (!sock_flag(sk, SOCK_DEAD))
4425 sk->sk_data_ready(sk);
4426 return;
4427 }
4428
4429 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4430 /* A retransmit, 2nd most common case. Force an immediate ack. */
4431 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4432 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4433
4434 out_of_window:
4435 tcp_enter_quickack_mode(sk);
4436 inet_csk_schedule_ack(sk);
4437 drop:
4438 __kfree_skb(skb);
4439 return;
4440 }
4441
4442 /* Out of window. F.e. zero window probe. */
4443 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4444 goto out_of_window;
4445
4446 tcp_enter_quickack_mode(sk);
4447
4448 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4449 /* Partial packet, seq < rcv_next < end_seq */
4450 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4451 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4452 TCP_SKB_CB(skb)->end_seq);
4453
4454 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4455
4456 /* If window is closed, drop tail of packet. But after
4457 * remembering D-SACK for its head made in previous line.
4458 */
4459 if (!tcp_receive_window(tp))
4460 goto out_of_window;
4461 goto queue_and_out;
4462 }
4463
4464 tcp_data_queue_ofo(sk, skb);
4465 }
4466
4467 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4468 struct sk_buff_head *list)
4469 {
4470 struct sk_buff *next = NULL;
4471
4472 if (!skb_queue_is_last(list, skb))
4473 next = skb_queue_next(list, skb);
4474
4475 __skb_unlink(skb, list);
4476 __kfree_skb(skb);
4477 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4478
4479 return next;
4480 }
4481
4482 /* Collapse contiguous sequence of skbs head..tail with
4483 * sequence numbers start..end.
4484 *
4485 * If tail is NULL, this means until the end of the list.
4486 *
4487 * Segments with FIN/SYN are not collapsed (only because this
4488 * simplifies code)
4489 */
4490 static void
4491 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4492 struct sk_buff *head, struct sk_buff *tail,
4493 u32 start, u32 end)
4494 {
4495 struct sk_buff *skb, *n;
4496 bool end_of_skbs;
4497
4498 /* First, check that queue is collapsible and find
4499 * the point where collapsing can be useful. */
4500 skb = head;
4501 restart:
4502 end_of_skbs = true;
4503 skb_queue_walk_from_safe(list, skb, n) {
4504 if (skb == tail)
4505 break;
4506 /* No new bits? It is possible on ofo queue. */
4507 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4508 skb = tcp_collapse_one(sk, skb, list);
4509 if (!skb)
4510 break;
4511 goto restart;
4512 }
4513
4514 /* The first skb to collapse is:
4515 * - not SYN/FIN and
4516 * - bloated or contains data before "start" or
4517 * overlaps to the next one.
4518 */
4519 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4520 (tcp_win_from_space(skb->truesize) > skb->len ||
4521 before(TCP_SKB_CB(skb)->seq, start))) {
4522 end_of_skbs = false;
4523 break;
4524 }
4525
4526 if (!skb_queue_is_last(list, skb)) {
4527 struct sk_buff *next = skb_queue_next(list, skb);
4528 if (next != tail &&
4529 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4530 end_of_skbs = false;
4531 break;
4532 }
4533 }
4534
4535 /* Decided to skip this, advance start seq. */
4536 start = TCP_SKB_CB(skb)->end_seq;
4537 }
4538 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4539 return;
4540
4541 while (before(start, end)) {
4542 struct sk_buff *nskb;
4543 unsigned int header = skb_headroom(skb);
4544 int copy = SKB_MAX_ORDER(header, 0);
4545
4546 /* Too big header? This can happen with IPv6. */
4547 if (copy < 0)
4548 return;
4549 if (end - start < copy)
4550 copy = end - start;
4551 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4552 if (!nskb)
4553 return;
4554
4555 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4556 skb_set_network_header(nskb, (skb_network_header(skb) -
4557 skb->head));
4558 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4559 skb->head));
4560 skb_reserve(nskb, header);
4561 memcpy(nskb->head, skb->head, header);
4562 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4563 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4564 __skb_queue_before(list, skb, nskb);
4565 skb_set_owner_r(nskb, sk);
4566
4567 /* Copy data, releasing collapsed skbs. */
4568 while (copy > 0) {
4569 int offset = start - TCP_SKB_CB(skb)->seq;
4570 int size = TCP_SKB_CB(skb)->end_seq - start;
4571
4572 BUG_ON(offset < 0);
4573 if (size > 0) {
4574 size = min(copy, size);
4575 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4576 BUG();
4577 TCP_SKB_CB(nskb)->end_seq += size;
4578 copy -= size;
4579 start += size;
4580 }
4581 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4582 skb = tcp_collapse_one(sk, skb, list);
4583 if (!skb ||
4584 skb == tail ||
4585 tcp_hdr(skb)->syn ||
4586 tcp_hdr(skb)->fin)
4587 return;
4588 }
4589 }
4590 }
4591 }
4592
4593 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4594 * and tcp_collapse() them until all the queue is collapsed.
4595 */
4596 static void tcp_collapse_ofo_queue(struct sock *sk)
4597 {
4598 struct tcp_sock *tp = tcp_sk(sk);
4599 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4600 struct sk_buff *head;
4601 u32 start, end;
4602
4603 if (skb == NULL)
4604 return;
4605
4606 start = TCP_SKB_CB(skb)->seq;
4607 end = TCP_SKB_CB(skb)->end_seq;
4608 head = skb;
4609
4610 for (;;) {
4611 struct sk_buff *next = NULL;
4612
4613 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4614 next = skb_queue_next(&tp->out_of_order_queue, skb);
4615 skb = next;
4616
4617 /* Segment is terminated when we see gap or when
4618 * we are at the end of all the queue. */
4619 if (!skb ||
4620 after(TCP_SKB_CB(skb)->seq, end) ||
4621 before(TCP_SKB_CB(skb)->end_seq, start)) {
4622 tcp_collapse(sk, &tp->out_of_order_queue,
4623 head, skb, start, end);
4624 head = skb;
4625 if (!skb)
4626 break;
4627 /* Start new segment */
4628 start = TCP_SKB_CB(skb)->seq;
4629 end = TCP_SKB_CB(skb)->end_seq;
4630 } else {
4631 if (before(TCP_SKB_CB(skb)->seq, start))
4632 start = TCP_SKB_CB(skb)->seq;
4633 if (after(TCP_SKB_CB(skb)->end_seq, end))
4634 end = TCP_SKB_CB(skb)->end_seq;
4635 }
4636 }
4637 }
4638
4639 /*
4640 * Purge the out-of-order queue.
4641 * Return true if queue was pruned.
4642 */
4643 static bool tcp_prune_ofo_queue(struct sock *sk)
4644 {
4645 struct tcp_sock *tp = tcp_sk(sk);
4646 bool res = false;
4647
4648 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4649 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4650 __skb_queue_purge(&tp->out_of_order_queue);
4651
4652 /* Reset SACK state. A conforming SACK implementation will
4653 * do the same at a timeout based retransmit. When a connection
4654 * is in a sad state like this, we care only about integrity
4655 * of the connection not performance.
4656 */
4657 if (tp->rx_opt.sack_ok)
4658 tcp_sack_reset(&tp->rx_opt);
4659 sk_mem_reclaim(sk);
4660 res = true;
4661 }
4662 return res;
4663 }
4664
4665 /* Reduce allocated memory if we can, trying to get
4666 * the socket within its memory limits again.
4667 *
4668 * Return less than zero if we should start dropping frames
4669 * until the socket owning process reads some of the data
4670 * to stabilize the situation.
4671 */
4672 static int tcp_prune_queue(struct sock *sk)
4673 {
4674 struct tcp_sock *tp = tcp_sk(sk);
4675
4676 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4677
4678 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4679
4680 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4681 tcp_clamp_window(sk);
4682 else if (sk_under_memory_pressure(sk))
4683 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4684
4685 tcp_collapse_ofo_queue(sk);
4686 if (!skb_queue_empty(&sk->sk_receive_queue))
4687 tcp_collapse(sk, &sk->sk_receive_queue,
4688 skb_peek(&sk->sk_receive_queue),
4689 NULL,
4690 tp->copied_seq, tp->rcv_nxt);
4691 sk_mem_reclaim(sk);
4692
4693 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4694 return 0;
4695
4696 /* Collapsing did not help, destructive actions follow.
4697 * This must not ever occur. */
4698
4699 tcp_prune_ofo_queue(sk);
4700
4701 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4702 return 0;
4703
4704 /* If we are really being abused, tell the caller to silently
4705 * drop receive data on the floor. It will get retransmitted
4706 * and hopefully then we'll have sufficient space.
4707 */
4708 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4709
4710 /* Massive buffer overcommit. */
4711 tp->pred_flags = 0;
4712 return -1;
4713 }
4714
4715 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4716 {
4717 const struct tcp_sock *tp = tcp_sk(sk);
4718
4719 /* If the user specified a specific send buffer setting, do
4720 * not modify it.
4721 */
4722 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4723 return false;
4724
4725 /* If we are under global TCP memory pressure, do not expand. */
4726 if (sk_under_memory_pressure(sk))
4727 return false;
4728
4729 /* If we are under soft global TCP memory pressure, do not expand. */
4730 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4731 return false;
4732
4733 /* If we filled the congestion window, do not expand. */
4734 if (tp->packets_out >= tp->snd_cwnd)
4735 return false;
4736
4737 return true;
4738 }
4739
4740 /* When incoming ACK allowed to free some skb from write_queue,
4741 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4742 * on the exit from tcp input handler.
4743 *
4744 * PROBLEM: sndbuf expansion does not work well with largesend.
4745 */
4746 static void tcp_new_space(struct sock *sk)
4747 {
4748 struct tcp_sock *tp = tcp_sk(sk);
4749
4750 if (tcp_should_expand_sndbuf(sk)) {
4751 tcp_sndbuf_expand(sk);
4752 tp->snd_cwnd_stamp = tcp_time_stamp;
4753 }
4754
4755 sk->sk_write_space(sk);
4756 }
4757
4758 static void tcp_check_space(struct sock *sk)
4759 {
4760 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4761 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4762 if (sk->sk_socket &&
4763 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4764 tcp_new_space(sk);
4765 }
4766 }
4767
4768 static inline void tcp_data_snd_check(struct sock *sk)
4769 {
4770 tcp_push_pending_frames(sk);
4771 tcp_check_space(sk);
4772 }
4773
4774 /*
4775 * Check if sending an ack is needed.
4776 */
4777 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4778 {
4779 struct tcp_sock *tp = tcp_sk(sk);
4780
4781 /* More than one full frame received... */
4782 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4783 /* ... and right edge of window advances far enough.
4784 * (tcp_recvmsg() will send ACK otherwise). Or...
4785 */
4786 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4787 /* We ACK each frame or... */
4788 tcp_in_quickack_mode(sk) ||
4789 /* We have out of order data. */
4790 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4791 /* Then ack it now */
4792 tcp_send_ack(sk);
4793 } else {
4794 /* Else, send delayed ack. */
4795 tcp_send_delayed_ack(sk);
4796 }
4797 }
4798
4799 static inline void tcp_ack_snd_check(struct sock *sk)
4800 {
4801 if (!inet_csk_ack_scheduled(sk)) {
4802 /* We sent a data segment already. */
4803 return;
4804 }
4805 __tcp_ack_snd_check(sk, 1);
4806 }
4807
4808 /*
4809 * This routine is only called when we have urgent data
4810 * signaled. Its the 'slow' part of tcp_urg. It could be
4811 * moved inline now as tcp_urg is only called from one
4812 * place. We handle URGent data wrong. We have to - as
4813 * BSD still doesn't use the correction from RFC961.
4814 * For 1003.1g we should support a new option TCP_STDURG to permit
4815 * either form (or just set the sysctl tcp_stdurg).
4816 */
4817
4818 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4819 {
4820 struct tcp_sock *tp = tcp_sk(sk);
4821 u32 ptr = ntohs(th->urg_ptr);
4822
4823 if (ptr && !sysctl_tcp_stdurg)
4824 ptr--;
4825 ptr += ntohl(th->seq);
4826
4827 /* Ignore urgent data that we've already seen and read. */
4828 if (after(tp->copied_seq, ptr))
4829 return;
4830
4831 /* Do not replay urg ptr.
4832 *
4833 * NOTE: interesting situation not covered by specs.
4834 * Misbehaving sender may send urg ptr, pointing to segment,
4835 * which we already have in ofo queue. We are not able to fetch
4836 * such data and will stay in TCP_URG_NOTYET until will be eaten
4837 * by recvmsg(). Seems, we are not obliged to handle such wicked
4838 * situations. But it is worth to think about possibility of some
4839 * DoSes using some hypothetical application level deadlock.
4840 */
4841 if (before(ptr, tp->rcv_nxt))
4842 return;
4843
4844 /* Do we already have a newer (or duplicate) urgent pointer? */
4845 if (tp->urg_data && !after(ptr, tp->urg_seq))
4846 return;
4847
4848 /* Tell the world about our new urgent pointer. */
4849 sk_send_sigurg(sk);
4850
4851 /* We may be adding urgent data when the last byte read was
4852 * urgent. To do this requires some care. We cannot just ignore
4853 * tp->copied_seq since we would read the last urgent byte again
4854 * as data, nor can we alter copied_seq until this data arrives
4855 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4856 *
4857 * NOTE. Double Dutch. Rendering to plain English: author of comment
4858 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4859 * and expect that both A and B disappear from stream. This is _wrong_.
4860 * Though this happens in BSD with high probability, this is occasional.
4861 * Any application relying on this is buggy. Note also, that fix "works"
4862 * only in this artificial test. Insert some normal data between A and B and we will
4863 * decline of BSD again. Verdict: it is better to remove to trap
4864 * buggy users.
4865 */
4866 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4867 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4868 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4869 tp->copied_seq++;
4870 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4871 __skb_unlink(skb, &sk->sk_receive_queue);
4872 __kfree_skb(skb);
4873 }
4874 }
4875
4876 tp->urg_data = TCP_URG_NOTYET;
4877 tp->urg_seq = ptr;
4878
4879 /* Disable header prediction. */
4880 tp->pred_flags = 0;
4881 }
4882
4883 /* This is the 'fast' part of urgent handling. */
4884 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4885 {
4886 struct tcp_sock *tp = tcp_sk(sk);
4887
4888 /* Check if we get a new urgent pointer - normally not. */
4889 if (th->urg)
4890 tcp_check_urg(sk, th);
4891
4892 /* Do we wait for any urgent data? - normally not... */
4893 if (tp->urg_data == TCP_URG_NOTYET) {
4894 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4895 th->syn;
4896
4897 /* Is the urgent pointer pointing into this packet? */
4898 if (ptr < skb->len) {
4899 u8 tmp;
4900 if (skb_copy_bits(skb, ptr, &tmp, 1))
4901 BUG();
4902 tp->urg_data = TCP_URG_VALID | tmp;
4903 if (!sock_flag(sk, SOCK_DEAD))
4904 sk->sk_data_ready(sk);
4905 }
4906 }
4907 }
4908
4909 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4910 {
4911 struct tcp_sock *tp = tcp_sk(sk);
4912 int chunk = skb->len - hlen;
4913 int err;
4914
4915 local_bh_enable();
4916 if (skb_csum_unnecessary(skb))
4917 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4918 else
4919 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4920 tp->ucopy.iov);
4921
4922 if (!err) {
4923 tp->ucopy.len -= chunk;
4924 tp->copied_seq += chunk;
4925 tcp_rcv_space_adjust(sk);
4926 }
4927
4928 local_bh_disable();
4929 return err;
4930 }
4931
4932 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4933 struct sk_buff *skb)
4934 {
4935 __sum16 result;
4936
4937 if (sock_owned_by_user(sk)) {
4938 local_bh_enable();
4939 result = __tcp_checksum_complete(skb);
4940 local_bh_disable();
4941 } else {
4942 result = __tcp_checksum_complete(skb);
4943 }
4944 return result;
4945 }
4946
4947 static inline bool tcp_checksum_complete_user(struct sock *sk,
4948 struct sk_buff *skb)
4949 {
4950 return !skb_csum_unnecessary(skb) &&
4951 __tcp_checksum_complete_user(sk, skb);
4952 }
4953
4954 #ifdef CONFIG_NET_DMA
4955 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4956 int hlen)
4957 {
4958 struct tcp_sock *tp = tcp_sk(sk);
4959 int chunk = skb->len - hlen;
4960 int dma_cookie;
4961 bool copied_early = false;
4962
4963 if (tp->ucopy.wakeup)
4964 return false;
4965
4966 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4967 tp->ucopy.dma_chan = net_dma_find_channel();
4968
4969 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4970
4971 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4972 skb, hlen,
4973 tp->ucopy.iov, chunk,
4974 tp->ucopy.pinned_list);
4975
4976 if (dma_cookie < 0)
4977 goto out;
4978
4979 tp->ucopy.dma_cookie = dma_cookie;
4980 copied_early = true;
4981
4982 tp->ucopy.len -= chunk;
4983 tp->copied_seq += chunk;
4984 tcp_rcv_space_adjust(sk);
4985
4986 if ((tp->ucopy.len == 0) ||
4987 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4988 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4989 tp->ucopy.wakeup = 1;
4990 sk->sk_data_ready(sk);
4991 }
4992 } else if (chunk > 0) {
4993 tp->ucopy.wakeup = 1;
4994 sk->sk_data_ready(sk);
4995 }
4996 out:
4997 return copied_early;
4998 }
4999 #endif /* CONFIG_NET_DMA */
5000
5001 /* Does PAWS and seqno based validation of an incoming segment, flags will
5002 * play significant role here.
5003 */
5004 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5005 const struct tcphdr *th, int syn_inerr)
5006 {
5007 struct tcp_sock *tp = tcp_sk(sk);
5008
5009 /* RFC1323: H1. Apply PAWS check first. */
5010 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5011 tcp_paws_discard(sk, skb)) {
5012 if (!th->rst) {
5013 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5014 tcp_send_dupack(sk, skb);
5015 goto discard;
5016 }
5017 /* Reset is accepted even if it did not pass PAWS. */
5018 }
5019
5020 /* Step 1: check sequence number */
5021 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5022 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5023 * (RST) segments are validated by checking their SEQ-fields."
5024 * And page 69: "If an incoming segment is not acceptable,
5025 * an acknowledgment should be sent in reply (unless the RST
5026 * bit is set, if so drop the segment and return)".
5027 */
5028 if (!th->rst) {
5029 if (th->syn)
5030 goto syn_challenge;
5031 tcp_send_dupack(sk, skb);
5032 }
5033 goto discard;
5034 }
5035
5036 /* Step 2: check RST bit */
5037 if (th->rst) {
5038 /* RFC 5961 3.2 :
5039 * If sequence number exactly matches RCV.NXT, then
5040 * RESET the connection
5041 * else
5042 * Send a challenge ACK
5043 */
5044 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5045 tcp_reset(sk);
5046 else
5047 tcp_send_challenge_ack(sk);
5048 goto discard;
5049 }
5050
5051 /* step 3: check security and precedence [ignored] */
5052
5053 /* step 4: Check for a SYN
5054 * RFC 5691 4.2 : Send a challenge ack
5055 */
5056 if (th->syn) {
5057 syn_challenge:
5058 if (syn_inerr)
5059 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5060 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5061 tcp_send_challenge_ack(sk);
5062 goto discard;
5063 }
5064
5065 return true;
5066
5067 discard:
5068 __kfree_skb(skb);
5069 return false;
5070 }
5071
5072 /*
5073 * TCP receive function for the ESTABLISHED state.
5074 *
5075 * It is split into a fast path and a slow path. The fast path is
5076 * disabled when:
5077 * - A zero window was announced from us - zero window probing
5078 * is only handled properly in the slow path.
5079 * - Out of order segments arrived.
5080 * - Urgent data is expected.
5081 * - There is no buffer space left
5082 * - Unexpected TCP flags/window values/header lengths are received
5083 * (detected by checking the TCP header against pred_flags)
5084 * - Data is sent in both directions. Fast path only supports pure senders
5085 * or pure receivers (this means either the sequence number or the ack
5086 * value must stay constant)
5087 * - Unexpected TCP option.
5088 *
5089 * When these conditions are not satisfied it drops into a standard
5090 * receive procedure patterned after RFC793 to handle all cases.
5091 * The first three cases are guaranteed by proper pred_flags setting,
5092 * the rest is checked inline. Fast processing is turned on in
5093 * tcp_data_queue when everything is OK.
5094 */
5095 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5096 const struct tcphdr *th, unsigned int len)
5097 {
5098 struct tcp_sock *tp = tcp_sk(sk);
5099
5100 if (unlikely(sk->sk_rx_dst == NULL))
5101 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5102 /*
5103 * Header prediction.
5104 * The code loosely follows the one in the famous
5105 * "30 instruction TCP receive" Van Jacobson mail.
5106 *
5107 * Van's trick is to deposit buffers into socket queue
5108 * on a device interrupt, to call tcp_recv function
5109 * on the receive process context and checksum and copy
5110 * the buffer to user space. smart...
5111 *
5112 * Our current scheme is not silly either but we take the
5113 * extra cost of the net_bh soft interrupt processing...
5114 * We do checksum and copy also but from device to kernel.
5115 */
5116
5117 tp->rx_opt.saw_tstamp = 0;
5118
5119 /* pred_flags is 0xS?10 << 16 + snd_wnd
5120 * if header_prediction is to be made
5121 * 'S' will always be tp->tcp_header_len >> 2
5122 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5123 * turn it off (when there are holes in the receive
5124 * space for instance)
5125 * PSH flag is ignored.
5126 */
5127
5128 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5129 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5130 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5131 int tcp_header_len = tp->tcp_header_len;
5132
5133 /* Timestamp header prediction: tcp_header_len
5134 * is automatically equal to th->doff*4 due to pred_flags
5135 * match.
5136 */
5137
5138 /* Check timestamp */
5139 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5140 /* No? Slow path! */
5141 if (!tcp_parse_aligned_timestamp(tp, th))
5142 goto slow_path;
5143
5144 /* If PAWS failed, check it more carefully in slow path */
5145 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5146 goto slow_path;
5147
5148 /* DO NOT update ts_recent here, if checksum fails
5149 * and timestamp was corrupted part, it will result
5150 * in a hung connection since we will drop all
5151 * future packets due to the PAWS test.
5152 */
5153 }
5154
5155 if (len <= tcp_header_len) {
5156 /* Bulk data transfer: sender */
5157 if (len == tcp_header_len) {
5158 /* Predicted packet is in window by definition.
5159 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5160 * Hence, check seq<=rcv_wup reduces to:
5161 */
5162 if (tcp_header_len ==
5163 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5164 tp->rcv_nxt == tp->rcv_wup)
5165 tcp_store_ts_recent(tp);
5166
5167 /* We know that such packets are checksummed
5168 * on entry.
5169 */
5170 tcp_ack(sk, skb, 0);
5171 __kfree_skb(skb);
5172 tcp_data_snd_check(sk);
5173 return;
5174 } else { /* Header too small */
5175 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5176 goto discard;
5177 }
5178 } else {
5179 int eaten = 0;
5180 int copied_early = 0;
5181 bool fragstolen = false;
5182
5183 if (tp->copied_seq == tp->rcv_nxt &&
5184 len - tcp_header_len <= tp->ucopy.len) {
5185 #ifdef CONFIG_NET_DMA
5186 if (tp->ucopy.task == current &&
5187 sock_owned_by_user(sk) &&
5188 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5189 copied_early = 1;
5190 eaten = 1;
5191 }
5192 #endif
5193 if (tp->ucopy.task == current &&
5194 sock_owned_by_user(sk) && !copied_early) {
5195 __set_current_state(TASK_RUNNING);
5196
5197 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5198 eaten = 1;
5199 }
5200 if (eaten) {
5201 /* Predicted packet is in window by definition.
5202 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5203 * Hence, check seq<=rcv_wup reduces to:
5204 */
5205 if (tcp_header_len ==
5206 (sizeof(struct tcphdr) +
5207 TCPOLEN_TSTAMP_ALIGNED) &&
5208 tp->rcv_nxt == tp->rcv_wup)
5209 tcp_store_ts_recent(tp);
5210
5211 tcp_rcv_rtt_measure_ts(sk, skb);
5212
5213 __skb_pull(skb, tcp_header_len);
5214 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5215 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5216 }
5217 if (copied_early)
5218 tcp_cleanup_rbuf(sk, skb->len);
5219 }
5220 if (!eaten) {
5221 if (tcp_checksum_complete_user(sk, skb))
5222 goto csum_error;
5223
5224 if ((int)skb->truesize > sk->sk_forward_alloc)
5225 goto step5;
5226
5227 /* Predicted packet is in window by definition.
5228 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5229 * Hence, check seq<=rcv_wup reduces to:
5230 */
5231 if (tcp_header_len ==
5232 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5233 tp->rcv_nxt == tp->rcv_wup)
5234 tcp_store_ts_recent(tp);
5235
5236 tcp_rcv_rtt_measure_ts(sk, skb);
5237
5238 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5239
5240 /* Bulk data transfer: receiver */
5241 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5242 &fragstolen);
5243 }
5244
5245 tcp_event_data_recv(sk, skb);
5246
5247 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5248 /* Well, only one small jumplet in fast path... */
5249 tcp_ack(sk, skb, FLAG_DATA);
5250 tcp_data_snd_check(sk);
5251 if (!inet_csk_ack_scheduled(sk))
5252 goto no_ack;
5253 }
5254
5255 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5256 __tcp_ack_snd_check(sk, 0);
5257 no_ack:
5258 #ifdef CONFIG_NET_DMA
5259 if (copied_early)
5260 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5261 else
5262 #endif
5263 if (eaten)
5264 kfree_skb_partial(skb, fragstolen);
5265 sk->sk_data_ready(sk);
5266 return;
5267 }
5268 }
5269
5270 slow_path:
5271 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5272 goto csum_error;
5273
5274 if (!th->ack && !th->rst)
5275 goto discard;
5276
5277 /*
5278 * Standard slow path.
5279 */
5280
5281 if (!tcp_validate_incoming(sk, skb, th, 1))
5282 return;
5283
5284 step5:
5285 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5286 goto discard;
5287
5288 tcp_rcv_rtt_measure_ts(sk, skb);
5289
5290 /* Process urgent data. */
5291 tcp_urg(sk, skb, th);
5292
5293 /* step 7: process the segment text */
5294 tcp_data_queue(sk, skb);
5295
5296 tcp_data_snd_check(sk);
5297 tcp_ack_snd_check(sk);
5298 return;
5299
5300 csum_error:
5301 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5302 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5303
5304 discard:
5305 __kfree_skb(skb);
5306 }
5307 EXPORT_SYMBOL(tcp_rcv_established);
5308
5309 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5310 {
5311 struct tcp_sock *tp = tcp_sk(sk);
5312 struct inet_connection_sock *icsk = inet_csk(sk);
5313
5314 tcp_set_state(sk, TCP_ESTABLISHED);
5315
5316 if (skb != NULL) {
5317 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5318 security_inet_conn_established(sk, skb);
5319 }
5320
5321 /* Make sure socket is routed, for correct metrics. */
5322 icsk->icsk_af_ops->rebuild_header(sk);
5323
5324 tcp_init_metrics(sk);
5325
5326 tcp_init_congestion_control(sk);
5327
5328 /* Prevent spurious tcp_cwnd_restart() on first data
5329 * packet.
5330 */
5331 tp->lsndtime = tcp_time_stamp;
5332
5333 tcp_init_buffer_space(sk);
5334
5335 if (sock_flag(sk, SOCK_KEEPOPEN))
5336 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5337
5338 if (!tp->rx_opt.snd_wscale)
5339 __tcp_fast_path_on(tp, tp->snd_wnd);
5340 else
5341 tp->pred_flags = 0;
5342
5343 if (!sock_flag(sk, SOCK_DEAD)) {
5344 sk->sk_state_change(sk);
5345 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5346 }
5347 }
5348
5349 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5350 struct tcp_fastopen_cookie *cookie)
5351 {
5352 struct tcp_sock *tp = tcp_sk(sk);
5353 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5354 u16 mss = tp->rx_opt.mss_clamp;
5355 bool syn_drop;
5356
5357 if (mss == tp->rx_opt.user_mss) {
5358 struct tcp_options_received opt;
5359
5360 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5361 tcp_clear_options(&opt);
5362 opt.user_mss = opt.mss_clamp = 0;
5363 tcp_parse_options(synack, &opt, 0, NULL);
5364 mss = opt.mss_clamp;
5365 }
5366
5367 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5368 cookie->len = -1;
5369
5370 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5371 * the remote receives only the retransmitted (regular) SYNs: either
5372 * the original SYN-data or the corresponding SYN-ACK is lost.
5373 */
5374 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5375
5376 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5377
5378 if (data) { /* Retransmit unacked data in SYN */
5379 tcp_for_write_queue_from(data, sk) {
5380 if (data == tcp_send_head(sk) ||
5381 __tcp_retransmit_skb(sk, data))
5382 break;
5383 }
5384 tcp_rearm_rto(sk);
5385 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5386 return true;
5387 }
5388 tp->syn_data_acked = tp->syn_data;
5389 if (tp->syn_data_acked)
5390 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5391 return false;
5392 }
5393
5394 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5395 const struct tcphdr *th, unsigned int len)
5396 {
5397 struct inet_connection_sock *icsk = inet_csk(sk);
5398 struct tcp_sock *tp = tcp_sk(sk);
5399 struct tcp_fastopen_cookie foc = { .len = -1 };
5400 int saved_clamp = tp->rx_opt.mss_clamp;
5401
5402 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5403 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5404 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5405
5406 if (th->ack) {
5407 /* rfc793:
5408 * "If the state is SYN-SENT then
5409 * first check the ACK bit
5410 * If the ACK bit is set
5411 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5412 * a reset (unless the RST bit is set, if so drop
5413 * the segment and return)"
5414 */
5415 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5416 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5417 goto reset_and_undo;
5418
5419 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5420 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5421 tcp_time_stamp)) {
5422 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5423 goto reset_and_undo;
5424 }
5425
5426 /* Now ACK is acceptable.
5427 *
5428 * "If the RST bit is set
5429 * If the ACK was acceptable then signal the user "error:
5430 * connection reset", drop the segment, enter CLOSED state,
5431 * delete TCB, and return."
5432 */
5433
5434 if (th->rst) {
5435 tcp_reset(sk);
5436 goto discard;
5437 }
5438
5439 /* rfc793:
5440 * "fifth, if neither of the SYN or RST bits is set then
5441 * drop the segment and return."
5442 *
5443 * See note below!
5444 * --ANK(990513)
5445 */
5446 if (!th->syn)
5447 goto discard_and_undo;
5448
5449 /* rfc793:
5450 * "If the SYN bit is on ...
5451 * are acceptable then ...
5452 * (our SYN has been ACKed), change the connection
5453 * state to ESTABLISHED..."
5454 */
5455
5456 TCP_ECN_rcv_synack(tp, th);
5457
5458 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5459 tcp_ack(sk, skb, FLAG_SLOWPATH);
5460
5461 /* Ok.. it's good. Set up sequence numbers and
5462 * move to established.
5463 */
5464 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5465 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5466
5467 /* RFC1323: The window in SYN & SYN/ACK segments is
5468 * never scaled.
5469 */
5470 tp->snd_wnd = ntohs(th->window);
5471
5472 if (!tp->rx_opt.wscale_ok) {
5473 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5474 tp->window_clamp = min(tp->window_clamp, 65535U);
5475 }
5476
5477 if (tp->rx_opt.saw_tstamp) {
5478 tp->rx_opt.tstamp_ok = 1;
5479 tp->tcp_header_len =
5480 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5481 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5482 tcp_store_ts_recent(tp);
5483 } else {
5484 tp->tcp_header_len = sizeof(struct tcphdr);
5485 }
5486
5487 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5488 tcp_enable_fack(tp);
5489
5490 tcp_mtup_init(sk);
5491 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5492 tcp_initialize_rcv_mss(sk);
5493
5494 /* Remember, tcp_poll() does not lock socket!
5495 * Change state from SYN-SENT only after copied_seq
5496 * is initialized. */
5497 tp->copied_seq = tp->rcv_nxt;
5498
5499 smp_mb();
5500
5501 tcp_finish_connect(sk, skb);
5502
5503 if ((tp->syn_fastopen || tp->syn_data) &&
5504 tcp_rcv_fastopen_synack(sk, skb, &foc))
5505 return -1;
5506
5507 if (sk->sk_write_pending ||
5508 icsk->icsk_accept_queue.rskq_defer_accept ||
5509 icsk->icsk_ack.pingpong) {
5510 /* Save one ACK. Data will be ready after
5511 * several ticks, if write_pending is set.
5512 *
5513 * It may be deleted, but with this feature tcpdumps
5514 * look so _wonderfully_ clever, that I was not able
5515 * to stand against the temptation 8) --ANK
5516 */
5517 inet_csk_schedule_ack(sk);
5518 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5519 tcp_enter_quickack_mode(sk);
5520 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5521 TCP_DELACK_MAX, TCP_RTO_MAX);
5522
5523 discard:
5524 __kfree_skb(skb);
5525 return 0;
5526 } else {
5527 tcp_send_ack(sk);
5528 }
5529 return -1;
5530 }
5531
5532 /* No ACK in the segment */
5533
5534 if (th->rst) {
5535 /* rfc793:
5536 * "If the RST bit is set
5537 *
5538 * Otherwise (no ACK) drop the segment and return."
5539 */
5540
5541 goto discard_and_undo;
5542 }
5543
5544 /* PAWS check. */
5545 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5546 tcp_paws_reject(&tp->rx_opt, 0))
5547 goto discard_and_undo;
5548
5549 if (th->syn) {
5550 /* We see SYN without ACK. It is attempt of
5551 * simultaneous connect with crossed SYNs.
5552 * Particularly, it can be connect to self.
5553 */
5554 tcp_set_state(sk, TCP_SYN_RECV);
5555
5556 if (tp->rx_opt.saw_tstamp) {
5557 tp->rx_opt.tstamp_ok = 1;
5558 tcp_store_ts_recent(tp);
5559 tp->tcp_header_len =
5560 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5561 } else {
5562 tp->tcp_header_len = sizeof(struct tcphdr);
5563 }
5564
5565 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5566 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5567
5568 /* RFC1323: The window in SYN & SYN/ACK segments is
5569 * never scaled.
5570 */
5571 tp->snd_wnd = ntohs(th->window);
5572 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5573 tp->max_window = tp->snd_wnd;
5574
5575 TCP_ECN_rcv_syn(tp, th);
5576
5577 tcp_mtup_init(sk);
5578 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5579 tcp_initialize_rcv_mss(sk);
5580
5581 tcp_send_synack(sk);
5582 #if 0
5583 /* Note, we could accept data and URG from this segment.
5584 * There are no obstacles to make this (except that we must
5585 * either change tcp_recvmsg() to prevent it from returning data
5586 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5587 *
5588 * However, if we ignore data in ACKless segments sometimes,
5589 * we have no reasons to accept it sometimes.
5590 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5591 * is not flawless. So, discard packet for sanity.
5592 * Uncomment this return to process the data.
5593 */
5594 return -1;
5595 #else
5596 goto discard;
5597 #endif
5598 }
5599 /* "fifth, if neither of the SYN or RST bits is set then
5600 * drop the segment and return."
5601 */
5602
5603 discard_and_undo:
5604 tcp_clear_options(&tp->rx_opt);
5605 tp->rx_opt.mss_clamp = saved_clamp;
5606 goto discard;
5607
5608 reset_and_undo:
5609 tcp_clear_options(&tp->rx_opt);
5610 tp->rx_opt.mss_clamp = saved_clamp;
5611 return 1;
5612 }
5613
5614 /*
5615 * This function implements the receiving procedure of RFC 793 for
5616 * all states except ESTABLISHED and TIME_WAIT.
5617 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5618 * address independent.
5619 */
5620
5621 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5622 const struct tcphdr *th, unsigned int len)
5623 {
5624 struct tcp_sock *tp = tcp_sk(sk);
5625 struct inet_connection_sock *icsk = inet_csk(sk);
5626 struct request_sock *req;
5627 int queued = 0;
5628 bool acceptable;
5629 u32 synack_stamp;
5630
5631 tp->rx_opt.saw_tstamp = 0;
5632
5633 switch (sk->sk_state) {
5634 case TCP_CLOSE:
5635 goto discard;
5636
5637 case TCP_LISTEN:
5638 if (th->ack)
5639 return 1;
5640
5641 if (th->rst)
5642 goto discard;
5643
5644 if (th->syn) {
5645 if (th->fin)
5646 goto discard;
5647 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5648 return 1;
5649
5650 /* Now we have several options: In theory there is
5651 * nothing else in the frame. KA9Q has an option to
5652 * send data with the syn, BSD accepts data with the
5653 * syn up to the [to be] advertised window and
5654 * Solaris 2.1 gives you a protocol error. For now
5655 * we just ignore it, that fits the spec precisely
5656 * and avoids incompatibilities. It would be nice in
5657 * future to drop through and process the data.
5658 *
5659 * Now that TTCP is starting to be used we ought to
5660 * queue this data.
5661 * But, this leaves one open to an easy denial of
5662 * service attack, and SYN cookies can't defend
5663 * against this problem. So, we drop the data
5664 * in the interest of security over speed unless
5665 * it's still in use.
5666 */
5667 kfree_skb(skb);
5668 return 0;
5669 }
5670 goto discard;
5671
5672 case TCP_SYN_SENT:
5673 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5674 if (queued >= 0)
5675 return queued;
5676
5677 /* Do step6 onward by hand. */
5678 tcp_urg(sk, skb, th);
5679 __kfree_skb(skb);
5680 tcp_data_snd_check(sk);
5681 return 0;
5682 }
5683
5684 req = tp->fastopen_rsk;
5685 if (req != NULL) {
5686 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5687 sk->sk_state != TCP_FIN_WAIT1);
5688
5689 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5690 goto discard;
5691 }
5692
5693 if (!th->ack && !th->rst)
5694 goto discard;
5695
5696 if (!tcp_validate_incoming(sk, skb, th, 0))
5697 return 0;
5698
5699 /* step 5: check the ACK field */
5700 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5701 FLAG_UPDATE_TS_RECENT) > 0;
5702
5703 switch (sk->sk_state) {
5704 case TCP_SYN_RECV:
5705 if (!acceptable)
5706 return 1;
5707
5708 /* Once we leave TCP_SYN_RECV, we no longer need req
5709 * so release it.
5710 */
5711 if (req) {
5712 synack_stamp = tcp_rsk(req)->snt_synack;
5713 tp->total_retrans = req->num_retrans;
5714 reqsk_fastopen_remove(sk, req, false);
5715 } else {
5716 synack_stamp = tp->lsndtime;
5717 /* Make sure socket is routed, for correct metrics. */
5718 icsk->icsk_af_ops->rebuild_header(sk);
5719 tcp_init_congestion_control(sk);
5720
5721 tcp_mtup_init(sk);
5722 tp->copied_seq = tp->rcv_nxt;
5723 tcp_init_buffer_space(sk);
5724 }
5725 smp_mb();
5726 tcp_set_state(sk, TCP_ESTABLISHED);
5727 sk->sk_state_change(sk);
5728
5729 /* Note, that this wakeup is only for marginal crossed SYN case.
5730 * Passively open sockets are not waked up, because
5731 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5732 */
5733 if (sk->sk_socket)
5734 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5735
5736 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5737 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5738 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5739 tcp_synack_rtt_meas(sk, synack_stamp);
5740
5741 if (tp->rx_opt.tstamp_ok)
5742 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5743
5744 if (req) {
5745 /* Re-arm the timer because data may have been sent out.
5746 * This is similar to the regular data transmission case
5747 * when new data has just been ack'ed.
5748 *
5749 * (TFO) - we could try to be more aggressive and
5750 * retransmitting any data sooner based on when they
5751 * are sent out.
5752 */
5753 tcp_rearm_rto(sk);
5754 } else
5755 tcp_init_metrics(sk);
5756
5757 tcp_update_pacing_rate(sk);
5758
5759 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5760 tp->lsndtime = tcp_time_stamp;
5761
5762 tcp_initialize_rcv_mss(sk);
5763 tcp_fast_path_on(tp);
5764 break;
5765
5766 case TCP_FIN_WAIT1: {
5767 struct dst_entry *dst;
5768 int tmo;
5769
5770 /* If we enter the TCP_FIN_WAIT1 state and we are a
5771 * Fast Open socket and this is the first acceptable
5772 * ACK we have received, this would have acknowledged
5773 * our SYNACK so stop the SYNACK timer.
5774 */
5775 if (req != NULL) {
5776 /* Return RST if ack_seq is invalid.
5777 * Note that RFC793 only says to generate a
5778 * DUPACK for it but for TCP Fast Open it seems
5779 * better to treat this case like TCP_SYN_RECV
5780 * above.
5781 */
5782 if (!acceptable)
5783 return 1;
5784 /* We no longer need the request sock. */
5785 reqsk_fastopen_remove(sk, req, false);
5786 tcp_rearm_rto(sk);
5787 }
5788 if (tp->snd_una != tp->write_seq)
5789 break;
5790
5791 tcp_set_state(sk, TCP_FIN_WAIT2);
5792 sk->sk_shutdown |= SEND_SHUTDOWN;
5793
5794 dst = __sk_dst_get(sk);
5795 if (dst)
5796 dst_confirm(dst);
5797
5798 if (!sock_flag(sk, SOCK_DEAD)) {
5799 /* Wake up lingering close() */
5800 sk->sk_state_change(sk);
5801 break;
5802 }
5803
5804 if (tp->linger2 < 0 ||
5805 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5806 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5807 tcp_done(sk);
5808 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5809 return 1;
5810 }
5811
5812 tmo = tcp_fin_time(sk);
5813 if (tmo > TCP_TIMEWAIT_LEN) {
5814 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5815 } else if (th->fin || sock_owned_by_user(sk)) {
5816 /* Bad case. We could lose such FIN otherwise.
5817 * It is not a big problem, but it looks confusing
5818 * and not so rare event. We still can lose it now,
5819 * if it spins in bh_lock_sock(), but it is really
5820 * marginal case.
5821 */
5822 inet_csk_reset_keepalive_timer(sk, tmo);
5823 } else {
5824 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5825 goto discard;
5826 }
5827 break;
5828 }
5829
5830 case TCP_CLOSING:
5831 if (tp->snd_una == tp->write_seq) {
5832 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5833 goto discard;
5834 }
5835 break;
5836
5837 case TCP_LAST_ACK:
5838 if (tp->snd_una == tp->write_seq) {
5839 tcp_update_metrics(sk);
5840 tcp_done(sk);
5841 goto discard;
5842 }
5843 break;
5844 }
5845
5846 /* step 6: check the URG bit */
5847 tcp_urg(sk, skb, th);
5848
5849 /* step 7: process the segment text */
5850 switch (sk->sk_state) {
5851 case TCP_CLOSE_WAIT:
5852 case TCP_CLOSING:
5853 case TCP_LAST_ACK:
5854 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5855 break;
5856 case TCP_FIN_WAIT1:
5857 case TCP_FIN_WAIT2:
5858 /* RFC 793 says to queue data in these states,
5859 * RFC 1122 says we MUST send a reset.
5860 * BSD 4.4 also does reset.
5861 */
5862 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5863 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5864 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5865 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5866 tcp_reset(sk);
5867 return 1;
5868 }
5869 }
5870 /* Fall through */
5871 case TCP_ESTABLISHED:
5872 tcp_data_queue(sk, skb);
5873 queued = 1;
5874 break;
5875 }
5876
5877 /* tcp_data could move socket to TIME-WAIT */
5878 if (sk->sk_state != TCP_CLOSE) {
5879 tcp_data_snd_check(sk);
5880 tcp_ack_snd_check(sk);
5881 }
5882
5883 if (!queued) {
5884 discard:
5885 __kfree_skb(skb);
5886 }
5887 return 0;
5888 }
5889 EXPORT_SYMBOL(tcp_rcv_state_process);
5890
5891 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5892 {
5893 struct inet_request_sock *ireq = inet_rsk(req);
5894
5895 if (family == AF_INET)
5896 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
5897 &ireq->ir_rmt_addr, port);
5898 #if IS_ENABLED(CONFIG_IPV6)
5899 else if (family == AF_INET6)
5900 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI6/%u\n"),
5901 &ireq->ir_v6_rmt_addr, port);
5902 #endif
5903 }
5904
5905 int tcp_conn_request(struct request_sock_ops *rsk_ops,
5906 const struct tcp_request_sock_ops *af_ops,
5907 struct sock *sk, struct sk_buff *skb)
5908 {
5909 struct tcp_options_received tmp_opt;
5910 struct request_sock *req;
5911 struct tcp_sock *tp = tcp_sk(sk);
5912 struct dst_entry *dst = NULL;
5913 __u32 isn = TCP_SKB_CB(skb)->when;
5914 bool want_cookie = false, fastopen;
5915 struct flowi fl;
5916 struct tcp_fastopen_cookie foc = { .len = -1 };
5917 int err;
5918
5919
5920 /* TW buckets are converted to open requests without
5921 * limitations, they conserve resources and peer is
5922 * evidently real one.
5923 */
5924 if ((sysctl_tcp_syncookies == 2 ||
5925 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
5926 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
5927 if (!want_cookie)
5928 goto drop;
5929 }
5930
5931
5932 /* Accept backlog is full. If we have already queued enough
5933 * of warm entries in syn queue, drop request. It is better than
5934 * clogging syn queue with openreqs with exponentially increasing
5935 * timeout.
5936 */
5937 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
5938 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
5939 goto drop;
5940 }
5941
5942 req = inet_reqsk_alloc(rsk_ops);
5943 if (!req)
5944 goto drop;
5945
5946 tcp_rsk(req)->af_specific = af_ops;
5947
5948 tcp_clear_options(&tmp_opt);
5949 tmp_opt.mss_clamp = af_ops->mss_clamp;
5950 tmp_opt.user_mss = tp->rx_opt.user_mss;
5951 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
5952
5953 if (want_cookie && !tmp_opt.saw_tstamp)
5954 tcp_clear_options(&tmp_opt);
5955
5956 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
5957 tcp_openreq_init(req, &tmp_opt, skb, sk);
5958
5959 af_ops->init_req(req, sk, skb);
5960
5961 if (security_inet_conn_request(sk, skb, req))
5962 goto drop_and_free;
5963
5964 if (!want_cookie || tmp_opt.tstamp_ok)
5965 TCP_ECN_create_request(req, skb, sock_net(sk));
5966
5967 if (want_cookie) {
5968 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
5969 req->cookie_ts = tmp_opt.tstamp_ok;
5970 } else if (!isn) {
5971 /* VJ's idea. We save last timestamp seen
5972 * from the destination in peer table, when entering
5973 * state TIME-WAIT, and check against it before
5974 * accepting new connection request.
5975 *
5976 * If "isn" is not zero, this request hit alive
5977 * timewait bucket, so that all the necessary checks
5978 * are made in the function processing timewait state.
5979 */
5980 if (tcp_death_row.sysctl_tw_recycle) {
5981 bool strict;
5982
5983 dst = af_ops->route_req(sk, &fl, req, &strict);
5984
5985 if (dst && strict &&
5986 !tcp_peer_is_proven(req, dst, true,
5987 tmp_opt.saw_tstamp)) {
5988 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
5989 goto drop_and_release;
5990 }
5991 }
5992 /* Kill the following clause, if you dislike this way. */
5993 else if (!sysctl_tcp_syncookies &&
5994 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
5995 (sysctl_max_syn_backlog >> 2)) &&
5996 !tcp_peer_is_proven(req, dst, false,
5997 tmp_opt.saw_tstamp)) {
5998 /* Without syncookies last quarter of
5999 * backlog is filled with destinations,
6000 * proven to be alive.
6001 * It means that we continue to communicate
6002 * to destinations, already remembered
6003 * to the moment of synflood.
6004 */
6005 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6006 rsk_ops->family);
6007 goto drop_and_release;
6008 }
6009
6010 isn = af_ops->init_seq(skb);
6011 }
6012 if (!dst) {
6013 dst = af_ops->route_req(sk, &fl, req, NULL);
6014 if (!dst)
6015 goto drop_and_free;
6016 }
6017
6018 tcp_rsk(req)->snt_isn = isn;
6019 tcp_openreq_init_rwin(req, sk, dst);
6020 fastopen = !want_cookie &&
6021 tcp_try_fastopen(sk, skb, req, &foc, dst);
6022 err = af_ops->send_synack(sk, dst, &fl, req,
6023 skb_get_queue_mapping(skb), &foc);
6024 if (!fastopen) {
6025 if (err || want_cookie)
6026 goto drop_and_free;
6027
6028 tcp_rsk(req)->listener = NULL;
6029 af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6030 }
6031
6032 return 0;
6033
6034 drop_and_release:
6035 dst_release(dst);
6036 drop_and_free:
6037 reqsk_free(req);
6038 drop:
6039 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6040 return 0;
6041 }
6042 EXPORT_SYMBOL(tcp_conn_request);
This page took 0.15801 seconds and 5 git commands to generate.