oprofile: introduce module_param oprofile.cpu_type
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <linux/kernel.h>
68 #include <net/dst.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
109
110 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115
116 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
117 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
118
119 /* Adapt the MSS value used to make delayed ack decision to the
120 * real world.
121 */
122 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
123 {
124 struct inet_connection_sock *icsk = inet_csk(sk);
125 const unsigned int lss = icsk->icsk_ack.last_seg_size;
126 unsigned int len;
127
128 icsk->icsk_ack.last_seg_size = 0;
129
130 /* skb->len may jitter because of SACKs, even if peer
131 * sends good full-sized frames.
132 */
133 len = skb_shinfo(skb)->gso_size ? : skb->len;
134 if (len >= icsk->icsk_ack.rcv_mss) {
135 icsk->icsk_ack.rcv_mss = len;
136 } else {
137 /* Otherwise, we make more careful check taking into account,
138 * that SACKs block is variable.
139 *
140 * "len" is invariant segment length, including TCP header.
141 */
142 len += skb->data - skb_transport_header(skb);
143 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
144 /* If PSH is not set, packet should be
145 * full sized, provided peer TCP is not badly broken.
146 * This observation (if it is correct 8)) allows
147 * to handle super-low mtu links fairly.
148 */
149 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
150 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
151 /* Subtract also invariant (if peer is RFC compliant),
152 * tcp header plus fixed timestamp option length.
153 * Resulting "len" is MSS free of SACK jitter.
154 */
155 len -= tcp_sk(sk)->tcp_header_len;
156 icsk->icsk_ack.last_seg_size = len;
157 if (len == lss) {
158 icsk->icsk_ack.rcv_mss = len;
159 return;
160 }
161 }
162 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
165 }
166 }
167
168 static void tcp_incr_quickack(struct sock *sk)
169 {
170 struct inet_connection_sock *icsk = inet_csk(sk);
171 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
172
173 if (quickacks == 0)
174 quickacks = 2;
175 if (quickacks > icsk->icsk_ack.quick)
176 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
177 }
178
179 void tcp_enter_quickack_mode(struct sock *sk)
180 {
181 struct inet_connection_sock *icsk = inet_csk(sk);
182 tcp_incr_quickack(sk);
183 icsk->icsk_ack.pingpong = 0;
184 icsk->icsk_ack.ato = TCP_ATO_MIN;
185 }
186
187 /* Send ACKs quickly, if "quick" count is not exhausted
188 * and the session is not interactive.
189 */
190
191 static inline int tcp_in_quickack_mode(const struct sock *sk)
192 {
193 const struct inet_connection_sock *icsk = inet_csk(sk);
194 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
195 }
196
197 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
198 {
199 if (tp->ecn_flags & TCP_ECN_OK)
200 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
201 }
202
203 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
204 {
205 if (tcp_hdr(skb)->cwr)
206 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
207 }
208
209 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
210 {
211 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212 }
213
214 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
215 {
216 if (tp->ecn_flags & TCP_ECN_OK) {
217 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
218 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
219 /* Funny extension: if ECT is not set on a segment,
220 * it is surely retransmit. It is not in ECN RFC,
221 * but Linux follows this rule. */
222 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
223 tcp_enter_quickack_mode((struct sock *)tp);
224 }
225 }
226
227 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
228 {
229 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
230 tp->ecn_flags &= ~TCP_ECN_OK;
231 }
232
233 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
234 {
235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
236 tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238
239 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
240 {
241 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
242 return 1;
243 return 0;
244 }
245
246 /* Buffer size and advertised window tuning.
247 *
248 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
249 */
250
251 static void tcp_fixup_sndbuf(struct sock *sk)
252 {
253 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
254 sizeof(struct sk_buff);
255
256 if (sk->sk_sndbuf < 3 * sndmem)
257 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
258 }
259
260 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261 *
262 * All tcp_full_space() is split to two parts: "network" buffer, allocated
263 * forward and advertised in receiver window (tp->rcv_wnd) and
264 * "application buffer", required to isolate scheduling/application
265 * latencies from network.
266 * window_clamp is maximal advertised window. It can be less than
267 * tcp_full_space(), in this case tcp_full_space() - window_clamp
268 * is reserved for "application" buffer. The less window_clamp is
269 * the smoother our behaviour from viewpoint of network, but the lower
270 * throughput and the higher sensitivity of the connection to losses. 8)
271 *
272 * rcv_ssthresh is more strict window_clamp used at "slow start"
273 * phase to predict further behaviour of this connection.
274 * It is used for two goals:
275 * - to enforce header prediction at sender, even when application
276 * requires some significant "application buffer". It is check #1.
277 * - to prevent pruning of receive queue because of misprediction
278 * of receiver window. Check #2.
279 *
280 * The scheme does not work when sender sends good segments opening
281 * window and then starts to feed us spaghetti. But it should work
282 * in common situations. Otherwise, we have to rely on queue collapsing.
283 */
284
285 /* Slow part of check#2. */
286 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
287 {
288 struct tcp_sock *tp = tcp_sk(sk);
289 /* Optimize this! */
290 int truesize = tcp_win_from_space(skb->truesize) >> 1;
291 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
292
293 while (tp->rcv_ssthresh <= window) {
294 if (truesize <= skb->len)
295 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
296
297 truesize >>= 1;
298 window >>= 1;
299 }
300 return 0;
301 }
302
303 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
304 {
305 struct tcp_sock *tp = tcp_sk(sk);
306
307 /* Check #1 */
308 if (tp->rcv_ssthresh < tp->window_clamp &&
309 (int)tp->rcv_ssthresh < tcp_space(sk) &&
310 !tcp_memory_pressure) {
311 int incr;
312
313 /* Check #2. Increase window, if skb with such overhead
314 * will fit to rcvbuf in future.
315 */
316 if (tcp_win_from_space(skb->truesize) <= skb->len)
317 incr = 2 * tp->advmss;
318 else
319 incr = __tcp_grow_window(sk, skb);
320
321 if (incr) {
322 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
323 tp->window_clamp);
324 inet_csk(sk)->icsk_ack.quick |= 1;
325 }
326 }
327 }
328
329 /* 3. Tuning rcvbuf, when connection enters established state. */
330
331 static void tcp_fixup_rcvbuf(struct sock *sk)
332 {
333 struct tcp_sock *tp = tcp_sk(sk);
334 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
335
336 /* Try to select rcvbuf so that 4 mss-sized segments
337 * will fit to window and corresponding skbs will fit to our rcvbuf.
338 * (was 3; 4 is minimum to allow fast retransmit to work.)
339 */
340 while (tcp_win_from_space(rcvmem) < tp->advmss)
341 rcvmem += 128;
342 if (sk->sk_rcvbuf < 4 * rcvmem)
343 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
344 }
345
346 /* 4. Try to fixup all. It is made immediately after connection enters
347 * established state.
348 */
349 static void tcp_init_buffer_space(struct sock *sk)
350 {
351 struct tcp_sock *tp = tcp_sk(sk);
352 int maxwin;
353
354 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
355 tcp_fixup_rcvbuf(sk);
356 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
357 tcp_fixup_sndbuf(sk);
358
359 tp->rcvq_space.space = tp->rcv_wnd;
360
361 maxwin = tcp_full_space(sk);
362
363 if (tp->window_clamp >= maxwin) {
364 tp->window_clamp = maxwin;
365
366 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
367 tp->window_clamp = max(maxwin -
368 (maxwin >> sysctl_tcp_app_win),
369 4 * tp->advmss);
370 }
371
372 /* Force reservation of one segment. */
373 if (sysctl_tcp_app_win &&
374 tp->window_clamp > 2 * tp->advmss &&
375 tp->window_clamp + tp->advmss > maxwin)
376 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
377
378 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
379 tp->snd_cwnd_stamp = tcp_time_stamp;
380 }
381
382 /* 5. Recalculate window clamp after socket hit its memory bounds. */
383 static void tcp_clamp_window(struct sock *sk)
384 {
385 struct tcp_sock *tp = tcp_sk(sk);
386 struct inet_connection_sock *icsk = inet_csk(sk);
387
388 icsk->icsk_ack.quick = 0;
389
390 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
391 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
392 !tcp_memory_pressure &&
393 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
394 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
395 sysctl_tcp_rmem[2]);
396 }
397 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
398 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
399 }
400
401 /* Initialize RCV_MSS value.
402 * RCV_MSS is an our guess about MSS used by the peer.
403 * We haven't any direct information about the MSS.
404 * It's better to underestimate the RCV_MSS rather than overestimate.
405 * Overestimations make us ACKing less frequently than needed.
406 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407 */
408 void tcp_initialize_rcv_mss(struct sock *sk)
409 {
410 struct tcp_sock *tp = tcp_sk(sk);
411 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
412
413 hint = min(hint, tp->rcv_wnd / 2);
414 hint = min(hint, TCP_MIN_RCVMSS);
415 hint = max(hint, TCP_MIN_MSS);
416
417 inet_csk(sk)->icsk_ack.rcv_mss = hint;
418 }
419
420 /* Receiver "autotuning" code.
421 *
422 * The algorithm for RTT estimation w/o timestamps is based on
423 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
424 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425 *
426 * More detail on this code can be found at
427 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
428 * though this reference is out of date. A new paper
429 * is pending.
430 */
431 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
432 {
433 u32 new_sample = tp->rcv_rtt_est.rtt;
434 long m = sample;
435
436 if (m == 0)
437 m = 1;
438
439 if (new_sample != 0) {
440 /* If we sample in larger samples in the non-timestamp
441 * case, we could grossly overestimate the RTT especially
442 * with chatty applications or bulk transfer apps which
443 * are stalled on filesystem I/O.
444 *
445 * Also, since we are only going for a minimum in the
446 * non-timestamp case, we do not smooth things out
447 * else with timestamps disabled convergence takes too
448 * long.
449 */
450 if (!win_dep) {
451 m -= (new_sample >> 3);
452 new_sample += m;
453 } else if (m < new_sample)
454 new_sample = m << 3;
455 } else {
456 /* No previous measure. */
457 new_sample = m << 3;
458 }
459
460 if (tp->rcv_rtt_est.rtt != new_sample)
461 tp->rcv_rtt_est.rtt = new_sample;
462 }
463
464 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
465 {
466 if (tp->rcv_rtt_est.time == 0)
467 goto new_measure;
468 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
469 return;
470 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
471
472 new_measure:
473 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
474 tp->rcv_rtt_est.time = tcp_time_stamp;
475 }
476
477 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
478 const struct sk_buff *skb)
479 {
480 struct tcp_sock *tp = tcp_sk(sk);
481 if (tp->rx_opt.rcv_tsecr &&
482 (TCP_SKB_CB(skb)->end_seq -
483 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
484 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
485 }
486
487 /*
488 * This function should be called every time data is copied to user space.
489 * It calculates the appropriate TCP receive buffer space.
490 */
491 void tcp_rcv_space_adjust(struct sock *sk)
492 {
493 struct tcp_sock *tp = tcp_sk(sk);
494 int time;
495 int space;
496
497 if (tp->rcvq_space.time == 0)
498 goto new_measure;
499
500 time = tcp_time_stamp - tp->rcvq_space.time;
501 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
502 return;
503
504 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
505
506 space = max(tp->rcvq_space.space, space);
507
508 if (tp->rcvq_space.space != space) {
509 int rcvmem;
510
511 tp->rcvq_space.space = space;
512
513 if (sysctl_tcp_moderate_rcvbuf &&
514 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
515 int new_clamp = space;
516
517 /* Receive space grows, normalize in order to
518 * take into account packet headers and sk_buff
519 * structure overhead.
520 */
521 space /= tp->advmss;
522 if (!space)
523 space = 1;
524 rcvmem = (tp->advmss + MAX_TCP_HEADER +
525 16 + sizeof(struct sk_buff));
526 while (tcp_win_from_space(rcvmem) < tp->advmss)
527 rcvmem += 128;
528 space *= rcvmem;
529 space = min(space, sysctl_tcp_rmem[2]);
530 if (space > sk->sk_rcvbuf) {
531 sk->sk_rcvbuf = space;
532
533 /* Make the window clamp follow along. */
534 tp->window_clamp = new_clamp;
535 }
536 }
537 }
538
539 new_measure:
540 tp->rcvq_space.seq = tp->copied_seq;
541 tp->rcvq_space.time = tcp_time_stamp;
542 }
543
544 /* There is something which you must keep in mind when you analyze the
545 * behavior of the tp->ato delayed ack timeout interval. When a
546 * connection starts up, we want to ack as quickly as possible. The
547 * problem is that "good" TCP's do slow start at the beginning of data
548 * transmission. The means that until we send the first few ACK's the
549 * sender will sit on his end and only queue most of his data, because
550 * he can only send snd_cwnd unacked packets at any given time. For
551 * each ACK we send, he increments snd_cwnd and transmits more of his
552 * queue. -DaveM
553 */
554 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
555 {
556 struct tcp_sock *tp = tcp_sk(sk);
557 struct inet_connection_sock *icsk = inet_csk(sk);
558 u32 now;
559
560 inet_csk_schedule_ack(sk);
561
562 tcp_measure_rcv_mss(sk, skb);
563
564 tcp_rcv_rtt_measure(tp);
565
566 now = tcp_time_stamp;
567
568 if (!icsk->icsk_ack.ato) {
569 /* The _first_ data packet received, initialize
570 * delayed ACK engine.
571 */
572 tcp_incr_quickack(sk);
573 icsk->icsk_ack.ato = TCP_ATO_MIN;
574 } else {
575 int m = now - icsk->icsk_ack.lrcvtime;
576
577 if (m <= TCP_ATO_MIN / 2) {
578 /* The fastest case is the first. */
579 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
580 } else if (m < icsk->icsk_ack.ato) {
581 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
582 if (icsk->icsk_ack.ato > icsk->icsk_rto)
583 icsk->icsk_ack.ato = icsk->icsk_rto;
584 } else if (m > icsk->icsk_rto) {
585 /* Too long gap. Apparently sender failed to
586 * restart window, so that we send ACKs quickly.
587 */
588 tcp_incr_quickack(sk);
589 sk_mem_reclaim(sk);
590 }
591 }
592 icsk->icsk_ack.lrcvtime = now;
593
594 TCP_ECN_check_ce(tp, skb);
595
596 if (skb->len >= 128)
597 tcp_grow_window(sk, skb);
598 }
599
600 static u32 tcp_rto_min(struct sock *sk)
601 {
602 struct dst_entry *dst = __sk_dst_get(sk);
603 u32 rto_min = TCP_RTO_MIN;
604
605 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
606 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
607 return rto_min;
608 }
609
610 /* Called to compute a smoothed rtt estimate. The data fed to this
611 * routine either comes from timestamps, or from segments that were
612 * known _not_ to have been retransmitted [see Karn/Partridge
613 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614 * piece by Van Jacobson.
615 * NOTE: the next three routines used to be one big routine.
616 * To save cycles in the RFC 1323 implementation it was better to break
617 * it up into three procedures. -- erics
618 */
619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
620 {
621 struct tcp_sock *tp = tcp_sk(sk);
622 long m = mrtt; /* RTT */
623
624 /* The following amusing code comes from Jacobson's
625 * article in SIGCOMM '88. Note that rtt and mdev
626 * are scaled versions of rtt and mean deviation.
627 * This is designed to be as fast as possible
628 * m stands for "measurement".
629 *
630 * On a 1990 paper the rto value is changed to:
631 * RTO = rtt + 4 * mdev
632 *
633 * Funny. This algorithm seems to be very broken.
634 * These formulae increase RTO, when it should be decreased, increase
635 * too slowly, when it should be increased quickly, decrease too quickly
636 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637 * does not matter how to _calculate_ it. Seems, it was trap
638 * that VJ failed to avoid. 8)
639 */
640 if (m == 0)
641 m = 1;
642 if (tp->srtt != 0) {
643 m -= (tp->srtt >> 3); /* m is now error in rtt est */
644 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
645 if (m < 0) {
646 m = -m; /* m is now abs(error) */
647 m -= (tp->mdev >> 2); /* similar update on mdev */
648 /* This is similar to one of Eifel findings.
649 * Eifel blocks mdev updates when rtt decreases.
650 * This solution is a bit different: we use finer gain
651 * for mdev in this case (alpha*beta).
652 * Like Eifel it also prevents growth of rto,
653 * but also it limits too fast rto decreases,
654 * happening in pure Eifel.
655 */
656 if (m > 0)
657 m >>= 3;
658 } else {
659 m -= (tp->mdev >> 2); /* similar update on mdev */
660 }
661 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
662 if (tp->mdev > tp->mdev_max) {
663 tp->mdev_max = tp->mdev;
664 if (tp->mdev_max > tp->rttvar)
665 tp->rttvar = tp->mdev_max;
666 }
667 if (after(tp->snd_una, tp->rtt_seq)) {
668 if (tp->mdev_max < tp->rttvar)
669 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
670 tp->rtt_seq = tp->snd_nxt;
671 tp->mdev_max = tcp_rto_min(sk);
672 }
673 } else {
674 /* no previous measure. */
675 tp->srtt = m << 3; /* take the measured time to be rtt */
676 tp->mdev = m << 1; /* make sure rto = 3*rtt */
677 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
678 tp->rtt_seq = tp->snd_nxt;
679 }
680 }
681
682 /* Calculate rto without backoff. This is the second half of Van Jacobson's
683 * routine referred to above.
684 */
685 static inline void tcp_set_rto(struct sock *sk)
686 {
687 const struct tcp_sock *tp = tcp_sk(sk);
688 /* Old crap is replaced with new one. 8)
689 *
690 * More seriously:
691 * 1. If rtt variance happened to be less 50msec, it is hallucination.
692 * It cannot be less due to utterly erratic ACK generation made
693 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694 * to do with delayed acks, because at cwnd>2 true delack timeout
695 * is invisible. Actually, Linux-2.4 also generates erratic
696 * ACKs in some circumstances.
697 */
698 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
699
700 /* 2. Fixups made earlier cannot be right.
701 * If we do not estimate RTO correctly without them,
702 * all the algo is pure shit and should be replaced
703 * with correct one. It is exactly, which we pretend to do.
704 */
705
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
708 */
709 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
710 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
711 }
712
713 /* Save metrics learned by this TCP session.
714 This function is called only, when TCP finishes successfully
715 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
716 */
717 void tcp_update_metrics(struct sock *sk)
718 {
719 struct tcp_sock *tp = tcp_sk(sk);
720 struct dst_entry *dst = __sk_dst_get(sk);
721
722 if (sysctl_tcp_nometrics_save)
723 return;
724
725 dst_confirm(dst);
726
727 if (dst && (dst->flags & DST_HOST)) {
728 const struct inet_connection_sock *icsk = inet_csk(sk);
729 int m;
730 unsigned long rtt;
731
732 if (icsk->icsk_backoff || !tp->srtt) {
733 /* This session failed to estimate rtt. Why?
734 * Probably, no packets returned in time.
735 * Reset our results.
736 */
737 if (!(dst_metric_locked(dst, RTAX_RTT)))
738 dst->metrics[RTAX_RTT - 1] = 0;
739 return;
740 }
741
742 rtt = dst_metric_rtt(dst, RTAX_RTT);
743 m = rtt - tp->srtt;
744
745 /* If newly calculated rtt larger than stored one,
746 * store new one. Otherwise, use EWMA. Remember,
747 * rtt overestimation is always better than underestimation.
748 */
749 if (!(dst_metric_locked(dst, RTAX_RTT))) {
750 if (m <= 0)
751 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
752 else
753 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
754 }
755
756 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
757 unsigned long var;
758 if (m < 0)
759 m = -m;
760
761 /* Scale deviation to rttvar fixed point */
762 m >>= 1;
763 if (m < tp->mdev)
764 m = tp->mdev;
765
766 var = dst_metric_rtt(dst, RTAX_RTTVAR);
767 if (m >= var)
768 var = m;
769 else
770 var -= (var - m) >> 2;
771
772 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
773 }
774
775 if (tp->snd_ssthresh >= 0xFFFF) {
776 /* Slow start still did not finish. */
777 if (dst_metric(dst, RTAX_SSTHRESH) &&
778 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
779 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
780 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
781 if (!dst_metric_locked(dst, RTAX_CWND) &&
782 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
783 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
784 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
785 icsk->icsk_ca_state == TCP_CA_Open) {
786 /* Cong. avoidance phase, cwnd is reliable. */
787 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
788 dst->metrics[RTAX_SSTHRESH-1] =
789 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
790 if (!dst_metric_locked(dst, RTAX_CWND))
791 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
792 } else {
793 /* Else slow start did not finish, cwnd is non-sense,
794 ssthresh may be also invalid.
795 */
796 if (!dst_metric_locked(dst, RTAX_CWND))
797 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
798 if (dst_metric(dst, RTAX_SSTHRESH) &&
799 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
800 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
801 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
802 }
803
804 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
805 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
806 tp->reordering != sysctl_tcp_reordering)
807 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
808 }
809 }
810 }
811
812 /* Numbers are taken from RFC3390.
813 *
814 * John Heffner states:
815 *
816 * The RFC specifies a window of no more than 4380 bytes
817 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
818 * is a bit misleading because they use a clamp at 4380 bytes
819 * rather than use a multiplier in the relevant range.
820 */
821 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
822 {
823 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
824
825 if (!cwnd) {
826 if (tp->mss_cache > 1460)
827 cwnd = 2;
828 else
829 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
830 }
831 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
832 }
833
834 /* Set slow start threshold and cwnd not falling to slow start */
835 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
836 {
837 struct tcp_sock *tp = tcp_sk(sk);
838 const struct inet_connection_sock *icsk = inet_csk(sk);
839
840 tp->prior_ssthresh = 0;
841 tp->bytes_acked = 0;
842 if (icsk->icsk_ca_state < TCP_CA_CWR) {
843 tp->undo_marker = 0;
844 if (set_ssthresh)
845 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
846 tp->snd_cwnd = min(tp->snd_cwnd,
847 tcp_packets_in_flight(tp) + 1U);
848 tp->snd_cwnd_cnt = 0;
849 tp->high_seq = tp->snd_nxt;
850 tp->snd_cwnd_stamp = tcp_time_stamp;
851 TCP_ECN_queue_cwr(tp);
852
853 tcp_set_ca_state(sk, TCP_CA_CWR);
854 }
855 }
856
857 /*
858 * Packet counting of FACK is based on in-order assumptions, therefore TCP
859 * disables it when reordering is detected
860 */
861 static void tcp_disable_fack(struct tcp_sock *tp)
862 {
863 /* RFC3517 uses different metric in lost marker => reset on change */
864 if (tcp_is_fack(tp))
865 tp->lost_skb_hint = NULL;
866 tp->rx_opt.sack_ok &= ~2;
867 }
868
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872 tp->rx_opt.sack_ok |= 4;
873 }
874
875 /* Initialize metrics on socket. */
876
877 static void tcp_init_metrics(struct sock *sk)
878 {
879 struct tcp_sock *tp = tcp_sk(sk);
880 struct dst_entry *dst = __sk_dst_get(sk);
881
882 if (dst == NULL)
883 goto reset;
884
885 dst_confirm(dst);
886
887 if (dst_metric_locked(dst, RTAX_CWND))
888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 if (dst_metric(dst, RTAX_SSTHRESH)) {
890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 }
894 if (dst_metric(dst, RTAX_REORDERING) &&
895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896 tcp_disable_fack(tp);
897 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 }
899
900 if (dst_metric(dst, RTAX_RTT) == 0)
901 goto reset;
902
903 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 goto reset;
905
906 /* Initial rtt is determined from SYN,SYN-ACK.
907 * The segment is small and rtt may appear much
908 * less than real one. Use per-dst memory
909 * to make it more realistic.
910 *
911 * A bit of theory. RTT is time passed after "normal" sized packet
912 * is sent until it is ACKed. In normal circumstances sending small
913 * packets force peer to delay ACKs and calculation is correct too.
914 * The algorithm is adaptive and, provided we follow specs, it
915 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 * tricks sort of "quick acks" for time long enough to decrease RTT
917 * to low value, and then abruptly stops to do it and starts to delay
918 * ACKs, wait for troubles.
919 */
920 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
921 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
922 tp->rtt_seq = tp->snd_nxt;
923 }
924 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
925 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
926 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
927 }
928 tcp_set_rto(sk);
929 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
930 goto reset;
931
932 cwnd:
933 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
934 tp->snd_cwnd_stamp = tcp_time_stamp;
935 return;
936
937 reset:
938 /* Play conservative. If timestamps are not
939 * supported, TCP will fail to recalculate correct
940 * rtt, if initial rto is too small. FORGET ALL AND RESET!
941 */
942 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
943 tp->srtt = 0;
944 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
945 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
946 }
947 goto cwnd;
948 }
949
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951 const int ts)
952 {
953 struct tcp_sock *tp = tcp_sk(sk);
954 if (metric > tp->reordering) {
955 int mib_idx;
956
957 tp->reordering = min(TCP_MAX_REORDERING, metric);
958
959 /* This exciting event is worth to be remembered. 8) */
960 if (ts)
961 mib_idx = LINUX_MIB_TCPTSREORDER;
962 else if (tcp_is_reno(tp))
963 mib_idx = LINUX_MIB_TCPRENOREORDER;
964 else if (tcp_is_fack(tp))
965 mib_idx = LINUX_MIB_TCPFACKREORDER;
966 else
967 mib_idx = LINUX_MIB_TCPSACKREORDER;
968
969 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973 tp->reordering,
974 tp->fackets_out,
975 tp->sacked_out,
976 tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978 tcp_disable_fack(tp);
979 }
980 }
981
982 /* This must be called before lost_out is incremented */
983 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
984 {
985 if ((tp->retransmit_skb_hint == NULL) ||
986 before(TCP_SKB_CB(skb)->seq,
987 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
988 tp->retransmit_skb_hint = skb;
989
990 if (!tp->lost_out ||
991 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
992 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
993 }
994
995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
996 {
997 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998 tcp_verify_retransmit_hint(tp, skb);
999
1000 tp->lost_out += tcp_skb_pcount(skb);
1001 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002 }
1003 }
1004
1005 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1006 struct sk_buff *skb)
1007 {
1008 tcp_verify_retransmit_hint(tp, skb);
1009
1010 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1011 tp->lost_out += tcp_skb_pcount(skb);
1012 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013 }
1014 }
1015
1016 /* This procedure tags the retransmission queue when SACKs arrive.
1017 *
1018 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1019 * Packets in queue with these bits set are counted in variables
1020 * sacked_out, retrans_out and lost_out, correspondingly.
1021 *
1022 * Valid combinations are:
1023 * Tag InFlight Description
1024 * 0 1 - orig segment is in flight.
1025 * S 0 - nothing flies, orig reached receiver.
1026 * L 0 - nothing flies, orig lost by net.
1027 * R 2 - both orig and retransmit are in flight.
1028 * L|R 1 - orig is lost, retransmit is in flight.
1029 * S|R 1 - orig reached receiver, retrans is still in flight.
1030 * (L|S|R is logically valid, it could occur when L|R is sacked,
1031 * but it is equivalent to plain S and code short-curcuits it to S.
1032 * L|S is logically invalid, it would mean -1 packet in flight 8))
1033 *
1034 * These 6 states form finite state machine, controlled by the following events:
1035 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1036 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1037 * 3. Loss detection event of one of three flavors:
1038 * A. Scoreboard estimator decided the packet is lost.
1039 * A'. Reno "three dupacks" marks head of queue lost.
1040 * A''. Its FACK modfication, head until snd.fack is lost.
1041 * B. SACK arrives sacking data transmitted after never retransmitted
1042 * hole was sent out.
1043 * C. SACK arrives sacking SND.NXT at the moment, when the
1044 * segment was retransmitted.
1045 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1046 *
1047 * It is pleasant to note, that state diagram turns out to be commutative,
1048 * so that we are allowed not to be bothered by order of our actions,
1049 * when multiple events arrive simultaneously. (see the function below).
1050 *
1051 * Reordering detection.
1052 * --------------------
1053 * Reordering metric is maximal distance, which a packet can be displaced
1054 * in packet stream. With SACKs we can estimate it:
1055 *
1056 * 1. SACK fills old hole and the corresponding segment was not
1057 * ever retransmitted -> reordering. Alas, we cannot use it
1058 * when segment was retransmitted.
1059 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1060 * for retransmitted and already SACKed segment -> reordering..
1061 * Both of these heuristics are not used in Loss state, when we cannot
1062 * account for retransmits accurately.
1063 *
1064 * SACK block validation.
1065 * ----------------------
1066 *
1067 * SACK block range validation checks that the received SACK block fits to
1068 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1069 * Note that SND.UNA is not included to the range though being valid because
1070 * it means that the receiver is rather inconsistent with itself reporting
1071 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1072 * perfectly valid, however, in light of RFC2018 which explicitly states
1073 * that "SACK block MUST reflect the newest segment. Even if the newest
1074 * segment is going to be discarded ...", not that it looks very clever
1075 * in case of head skb. Due to potentional receiver driven attacks, we
1076 * choose to avoid immediate execution of a walk in write queue due to
1077 * reneging and defer head skb's loss recovery to standard loss recovery
1078 * procedure that will eventually trigger (nothing forbids us doing this).
1079 *
1080 * Implements also blockage to start_seq wrap-around. Problem lies in the
1081 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1082 * there's no guarantee that it will be before snd_nxt (n). The problem
1083 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1084 * wrap (s_w):
1085 *
1086 * <- outs wnd -> <- wrapzone ->
1087 * u e n u_w e_w s n_w
1088 * | | | | | | |
1089 * |<------------+------+----- TCP seqno space --------------+---------->|
1090 * ...-- <2^31 ->| |<--------...
1091 * ...---- >2^31 ------>| |<--------...
1092 *
1093 * Current code wouldn't be vulnerable but it's better still to discard such
1094 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1095 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1096 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1097 * equal to the ideal case (infinite seqno space without wrap caused issues).
1098 *
1099 * With D-SACK the lower bound is extended to cover sequence space below
1100 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1101 * again, D-SACK block must not to go across snd_una (for the same reason as
1102 * for the normal SACK blocks, explained above). But there all simplicity
1103 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1104 * fully below undo_marker they do not affect behavior in anyway and can
1105 * therefore be safely ignored. In rare cases (which are more or less
1106 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1107 * fragmentation and packet reordering past skb's retransmission. To consider
1108 * them correctly, the acceptable range must be extended even more though
1109 * the exact amount is rather hard to quantify. However, tp->max_window can
1110 * be used as an exaggerated estimate.
1111 */
1112 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1113 u32 start_seq, u32 end_seq)
1114 {
1115 /* Too far in future, or reversed (interpretation is ambiguous) */
1116 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1117 return 0;
1118
1119 /* Nasty start_seq wrap-around check (see comments above) */
1120 if (!before(start_seq, tp->snd_nxt))
1121 return 0;
1122
1123 /* In outstanding window? ...This is valid exit for D-SACKs too.
1124 * start_seq == snd_una is non-sensical (see comments above)
1125 */
1126 if (after(start_seq, tp->snd_una))
1127 return 1;
1128
1129 if (!is_dsack || !tp->undo_marker)
1130 return 0;
1131
1132 /* ...Then it's D-SACK, and must reside below snd_una completely */
1133 if (!after(end_seq, tp->snd_una))
1134 return 0;
1135
1136 if (!before(start_seq, tp->undo_marker))
1137 return 1;
1138
1139 /* Too old */
1140 if (!after(end_seq, tp->undo_marker))
1141 return 0;
1142
1143 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1144 * start_seq < undo_marker and end_seq >= undo_marker.
1145 */
1146 return !before(start_seq, end_seq - tp->max_window);
1147 }
1148
1149 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1150 * Event "C". Later note: FACK people cheated me again 8), we have to account
1151 * for reordering! Ugly, but should help.
1152 *
1153 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1154 * less than what is now known to be received by the other end (derived from
1155 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1156 * retransmitted skbs to avoid some costly processing per ACKs.
1157 */
1158 static void tcp_mark_lost_retrans(struct sock *sk)
1159 {
1160 const struct inet_connection_sock *icsk = inet_csk(sk);
1161 struct tcp_sock *tp = tcp_sk(sk);
1162 struct sk_buff *skb;
1163 int cnt = 0;
1164 u32 new_low_seq = tp->snd_nxt;
1165 u32 received_upto = tcp_highest_sack_seq(tp);
1166
1167 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1168 !after(received_upto, tp->lost_retrans_low) ||
1169 icsk->icsk_ca_state != TCP_CA_Recovery)
1170 return;
1171
1172 tcp_for_write_queue(skb, sk) {
1173 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1174
1175 if (skb == tcp_send_head(sk))
1176 break;
1177 if (cnt == tp->retrans_out)
1178 break;
1179 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1180 continue;
1181
1182 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1183 continue;
1184
1185 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1186 * constraint here (see above) but figuring out that at
1187 * least tp->reordering SACK blocks reside between ack_seq
1188 * and received_upto is not easy task to do cheaply with
1189 * the available datastructures.
1190 *
1191 * Whether FACK should check here for tp->reordering segs
1192 * in-between one could argue for either way (it would be
1193 * rather simple to implement as we could count fack_count
1194 * during the walk and do tp->fackets_out - fack_count).
1195 */
1196 if (after(received_upto, ack_seq)) {
1197 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1198 tp->retrans_out -= tcp_skb_pcount(skb);
1199
1200 tcp_skb_mark_lost_uncond_verify(tp, skb);
1201 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1202 } else {
1203 if (before(ack_seq, new_low_seq))
1204 new_low_seq = ack_seq;
1205 cnt += tcp_skb_pcount(skb);
1206 }
1207 }
1208
1209 if (tp->retrans_out)
1210 tp->lost_retrans_low = new_low_seq;
1211 }
1212
1213 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1214 struct tcp_sack_block_wire *sp, int num_sacks,
1215 u32 prior_snd_una)
1216 {
1217 struct tcp_sock *tp = tcp_sk(sk);
1218 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1219 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1220 int dup_sack = 0;
1221
1222 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1223 dup_sack = 1;
1224 tcp_dsack_seen(tp);
1225 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1226 } else if (num_sacks > 1) {
1227 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1228 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1229
1230 if (!after(end_seq_0, end_seq_1) &&
1231 !before(start_seq_0, start_seq_1)) {
1232 dup_sack = 1;
1233 tcp_dsack_seen(tp);
1234 NET_INC_STATS_BH(sock_net(sk),
1235 LINUX_MIB_TCPDSACKOFORECV);
1236 }
1237 }
1238
1239 /* D-SACK for already forgotten data... Do dumb counting. */
1240 if (dup_sack &&
1241 !after(end_seq_0, prior_snd_una) &&
1242 after(end_seq_0, tp->undo_marker))
1243 tp->undo_retrans--;
1244
1245 return dup_sack;
1246 }
1247
1248 struct tcp_sacktag_state {
1249 int reord;
1250 int fack_count;
1251 int flag;
1252 };
1253
1254 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1255 * the incoming SACK may not exactly match but we can find smaller MSS
1256 * aligned portion of it that matches. Therefore we might need to fragment
1257 * which may fail and creates some hassle (caller must handle error case
1258 * returns).
1259 *
1260 * FIXME: this could be merged to shift decision code
1261 */
1262 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1263 u32 start_seq, u32 end_seq)
1264 {
1265 int in_sack, err;
1266 unsigned int pkt_len;
1267 unsigned int mss;
1268
1269 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1270 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1271
1272 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1273 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1274 mss = tcp_skb_mss(skb);
1275 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1276
1277 if (!in_sack) {
1278 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1279 if (pkt_len < mss)
1280 pkt_len = mss;
1281 } else {
1282 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1283 if (pkt_len < mss)
1284 return -EINVAL;
1285 }
1286
1287 /* Round if necessary so that SACKs cover only full MSSes
1288 * and/or the remaining small portion (if present)
1289 */
1290 if (pkt_len > mss) {
1291 unsigned int new_len = (pkt_len / mss) * mss;
1292 if (!in_sack && new_len < pkt_len) {
1293 new_len += mss;
1294 if (new_len > skb->len)
1295 return 0;
1296 }
1297 pkt_len = new_len;
1298 }
1299 err = tcp_fragment(sk, skb, pkt_len, mss);
1300 if (err < 0)
1301 return err;
1302 }
1303
1304 return in_sack;
1305 }
1306
1307 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1308 struct tcp_sacktag_state *state,
1309 int dup_sack, int pcount)
1310 {
1311 struct tcp_sock *tp = tcp_sk(sk);
1312 u8 sacked = TCP_SKB_CB(skb)->sacked;
1313 int fack_count = state->fack_count;
1314
1315 /* Account D-SACK for retransmitted packet. */
1316 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1317 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1318 tp->undo_retrans--;
1319 if (sacked & TCPCB_SACKED_ACKED)
1320 state->reord = min(fack_count, state->reord);
1321 }
1322
1323 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1324 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1325 return sacked;
1326
1327 if (!(sacked & TCPCB_SACKED_ACKED)) {
1328 if (sacked & TCPCB_SACKED_RETRANS) {
1329 /* If the segment is not tagged as lost,
1330 * we do not clear RETRANS, believing
1331 * that retransmission is still in flight.
1332 */
1333 if (sacked & TCPCB_LOST) {
1334 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1335 tp->lost_out -= pcount;
1336 tp->retrans_out -= pcount;
1337 }
1338 } else {
1339 if (!(sacked & TCPCB_RETRANS)) {
1340 /* New sack for not retransmitted frame,
1341 * which was in hole. It is reordering.
1342 */
1343 if (before(TCP_SKB_CB(skb)->seq,
1344 tcp_highest_sack_seq(tp)))
1345 state->reord = min(fack_count,
1346 state->reord);
1347
1348 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1349 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1350 state->flag |= FLAG_ONLY_ORIG_SACKED;
1351 }
1352
1353 if (sacked & TCPCB_LOST) {
1354 sacked &= ~TCPCB_LOST;
1355 tp->lost_out -= pcount;
1356 }
1357 }
1358
1359 sacked |= TCPCB_SACKED_ACKED;
1360 state->flag |= FLAG_DATA_SACKED;
1361 tp->sacked_out += pcount;
1362
1363 fack_count += pcount;
1364
1365 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1366 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1367 before(TCP_SKB_CB(skb)->seq,
1368 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1369 tp->lost_cnt_hint += pcount;
1370
1371 if (fack_count > tp->fackets_out)
1372 tp->fackets_out = fack_count;
1373 }
1374
1375 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1376 * frames and clear it. undo_retrans is decreased above, L|R frames
1377 * are accounted above as well.
1378 */
1379 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1380 sacked &= ~TCPCB_SACKED_RETRANS;
1381 tp->retrans_out -= pcount;
1382 }
1383
1384 return sacked;
1385 }
1386
1387 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1388 struct tcp_sacktag_state *state,
1389 unsigned int pcount, int shifted, int mss,
1390 int dup_sack)
1391 {
1392 struct tcp_sock *tp = tcp_sk(sk);
1393 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1394
1395 BUG_ON(!pcount);
1396
1397 /* Tweak before seqno plays */
1398 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1399 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1400 tp->lost_cnt_hint += pcount;
1401
1402 TCP_SKB_CB(prev)->end_seq += shifted;
1403 TCP_SKB_CB(skb)->seq += shifted;
1404
1405 skb_shinfo(prev)->gso_segs += pcount;
1406 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1407 skb_shinfo(skb)->gso_segs -= pcount;
1408
1409 /* When we're adding to gso_segs == 1, gso_size will be zero,
1410 * in theory this shouldn't be necessary but as long as DSACK
1411 * code can come after this skb later on it's better to keep
1412 * setting gso_size to something.
1413 */
1414 if (!skb_shinfo(prev)->gso_size) {
1415 skb_shinfo(prev)->gso_size = mss;
1416 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1417 }
1418
1419 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1420 if (skb_shinfo(skb)->gso_segs <= 1) {
1421 skb_shinfo(skb)->gso_size = 0;
1422 skb_shinfo(skb)->gso_type = 0;
1423 }
1424
1425 /* We discard results */
1426 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1427
1428 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1429 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1430
1431 if (skb->len > 0) {
1432 BUG_ON(!tcp_skb_pcount(skb));
1433 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1434 return 0;
1435 }
1436
1437 /* Whole SKB was eaten :-) */
1438
1439 if (skb == tp->retransmit_skb_hint)
1440 tp->retransmit_skb_hint = prev;
1441 if (skb == tp->scoreboard_skb_hint)
1442 tp->scoreboard_skb_hint = prev;
1443 if (skb == tp->lost_skb_hint) {
1444 tp->lost_skb_hint = prev;
1445 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1446 }
1447
1448 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1449 if (skb == tcp_highest_sack(sk))
1450 tcp_advance_highest_sack(sk, skb);
1451
1452 tcp_unlink_write_queue(skb, sk);
1453 sk_wmem_free_skb(sk, skb);
1454
1455 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1456
1457 return 1;
1458 }
1459
1460 /* I wish gso_size would have a bit more sane initialization than
1461 * something-or-zero which complicates things
1462 */
1463 static int tcp_skb_seglen(struct sk_buff *skb)
1464 {
1465 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1466 }
1467
1468 /* Shifting pages past head area doesn't work */
1469 static int skb_can_shift(struct sk_buff *skb)
1470 {
1471 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1472 }
1473
1474 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1475 * skb.
1476 */
1477 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1478 struct tcp_sacktag_state *state,
1479 u32 start_seq, u32 end_seq,
1480 int dup_sack)
1481 {
1482 struct tcp_sock *tp = tcp_sk(sk);
1483 struct sk_buff *prev;
1484 int mss;
1485 int pcount = 0;
1486 int len;
1487 int in_sack;
1488
1489 if (!sk_can_gso(sk))
1490 goto fallback;
1491
1492 /* Normally R but no L won't result in plain S */
1493 if (!dup_sack &&
1494 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1495 goto fallback;
1496 if (!skb_can_shift(skb))
1497 goto fallback;
1498 /* This frame is about to be dropped (was ACKed). */
1499 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1500 goto fallback;
1501
1502 /* Can only happen with delayed DSACK + discard craziness */
1503 if (unlikely(skb == tcp_write_queue_head(sk)))
1504 goto fallback;
1505 prev = tcp_write_queue_prev(sk, skb);
1506
1507 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1508 goto fallback;
1509
1510 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1511 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1512
1513 if (in_sack) {
1514 len = skb->len;
1515 pcount = tcp_skb_pcount(skb);
1516 mss = tcp_skb_seglen(skb);
1517
1518 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1519 * drop this restriction as unnecessary
1520 */
1521 if (mss != tcp_skb_seglen(prev))
1522 goto fallback;
1523 } else {
1524 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1525 goto noop;
1526 /* CHECKME: This is non-MSS split case only?, this will
1527 * cause skipped skbs due to advancing loop btw, original
1528 * has that feature too
1529 */
1530 if (tcp_skb_pcount(skb) <= 1)
1531 goto noop;
1532
1533 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1534 if (!in_sack) {
1535 /* TODO: head merge to next could be attempted here
1536 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1537 * though it might not be worth of the additional hassle
1538 *
1539 * ...we can probably just fallback to what was done
1540 * previously. We could try merging non-SACKed ones
1541 * as well but it probably isn't going to buy off
1542 * because later SACKs might again split them, and
1543 * it would make skb timestamp tracking considerably
1544 * harder problem.
1545 */
1546 goto fallback;
1547 }
1548
1549 len = end_seq - TCP_SKB_CB(skb)->seq;
1550 BUG_ON(len < 0);
1551 BUG_ON(len > skb->len);
1552
1553 /* MSS boundaries should be honoured or else pcount will
1554 * severely break even though it makes things bit trickier.
1555 * Optimize common case to avoid most of the divides
1556 */
1557 mss = tcp_skb_mss(skb);
1558
1559 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1560 * drop this restriction as unnecessary
1561 */
1562 if (mss != tcp_skb_seglen(prev))
1563 goto fallback;
1564
1565 if (len == mss) {
1566 pcount = 1;
1567 } else if (len < mss) {
1568 goto noop;
1569 } else {
1570 pcount = len / mss;
1571 len = pcount * mss;
1572 }
1573 }
1574
1575 if (!skb_shift(prev, skb, len))
1576 goto fallback;
1577 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1578 goto out;
1579
1580 /* Hole filled allows collapsing with the next as well, this is very
1581 * useful when hole on every nth skb pattern happens
1582 */
1583 if (prev == tcp_write_queue_tail(sk))
1584 goto out;
1585 skb = tcp_write_queue_next(sk, prev);
1586
1587 if (!skb_can_shift(skb) ||
1588 (skb == tcp_send_head(sk)) ||
1589 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1590 (mss != tcp_skb_seglen(skb)))
1591 goto out;
1592
1593 len = skb->len;
1594 if (skb_shift(prev, skb, len)) {
1595 pcount += tcp_skb_pcount(skb);
1596 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1597 }
1598
1599 out:
1600 state->fack_count += pcount;
1601 return prev;
1602
1603 noop:
1604 return skb;
1605
1606 fallback:
1607 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1608 return NULL;
1609 }
1610
1611 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1612 struct tcp_sack_block *next_dup,
1613 struct tcp_sacktag_state *state,
1614 u32 start_seq, u32 end_seq,
1615 int dup_sack_in)
1616 {
1617 struct tcp_sock *tp = tcp_sk(sk);
1618 struct sk_buff *tmp;
1619
1620 tcp_for_write_queue_from(skb, sk) {
1621 int in_sack = 0;
1622 int dup_sack = dup_sack_in;
1623
1624 if (skb == tcp_send_head(sk))
1625 break;
1626
1627 /* queue is in-order => we can short-circuit the walk early */
1628 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1629 break;
1630
1631 if ((next_dup != NULL) &&
1632 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1633 in_sack = tcp_match_skb_to_sack(sk, skb,
1634 next_dup->start_seq,
1635 next_dup->end_seq);
1636 if (in_sack > 0)
1637 dup_sack = 1;
1638 }
1639
1640 /* skb reference here is a bit tricky to get right, since
1641 * shifting can eat and free both this skb and the next,
1642 * so not even _safe variant of the loop is enough.
1643 */
1644 if (in_sack <= 0) {
1645 tmp = tcp_shift_skb_data(sk, skb, state,
1646 start_seq, end_seq, dup_sack);
1647 if (tmp != NULL) {
1648 if (tmp != skb) {
1649 skb = tmp;
1650 continue;
1651 }
1652
1653 in_sack = 0;
1654 } else {
1655 in_sack = tcp_match_skb_to_sack(sk, skb,
1656 start_seq,
1657 end_seq);
1658 }
1659 }
1660
1661 if (unlikely(in_sack < 0))
1662 break;
1663
1664 if (in_sack) {
1665 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1666 state,
1667 dup_sack,
1668 tcp_skb_pcount(skb));
1669
1670 if (!before(TCP_SKB_CB(skb)->seq,
1671 tcp_highest_sack_seq(tp)))
1672 tcp_advance_highest_sack(sk, skb);
1673 }
1674
1675 state->fack_count += tcp_skb_pcount(skb);
1676 }
1677 return skb;
1678 }
1679
1680 /* Avoid all extra work that is being done by sacktag while walking in
1681 * a normal way
1682 */
1683 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1684 struct tcp_sacktag_state *state,
1685 u32 skip_to_seq)
1686 {
1687 tcp_for_write_queue_from(skb, sk) {
1688 if (skb == tcp_send_head(sk))
1689 break;
1690
1691 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1692 break;
1693
1694 state->fack_count += tcp_skb_pcount(skb);
1695 }
1696 return skb;
1697 }
1698
1699 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1700 struct sock *sk,
1701 struct tcp_sack_block *next_dup,
1702 struct tcp_sacktag_state *state,
1703 u32 skip_to_seq)
1704 {
1705 if (next_dup == NULL)
1706 return skb;
1707
1708 if (before(next_dup->start_seq, skip_to_seq)) {
1709 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1710 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1711 next_dup->start_seq, next_dup->end_seq,
1712 1);
1713 }
1714
1715 return skb;
1716 }
1717
1718 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1719 {
1720 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1721 }
1722
1723 static int
1724 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1725 u32 prior_snd_una)
1726 {
1727 const struct inet_connection_sock *icsk = inet_csk(sk);
1728 struct tcp_sock *tp = tcp_sk(sk);
1729 unsigned char *ptr = (skb_transport_header(ack_skb) +
1730 TCP_SKB_CB(ack_skb)->sacked);
1731 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1732 struct tcp_sack_block sp[TCP_NUM_SACKS];
1733 struct tcp_sack_block *cache;
1734 struct tcp_sacktag_state state;
1735 struct sk_buff *skb;
1736 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1737 int used_sacks;
1738 int found_dup_sack = 0;
1739 int i, j;
1740 int first_sack_index;
1741
1742 state.flag = 0;
1743 state.reord = tp->packets_out;
1744
1745 if (!tp->sacked_out) {
1746 if (WARN_ON(tp->fackets_out))
1747 tp->fackets_out = 0;
1748 tcp_highest_sack_reset(sk);
1749 }
1750
1751 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1752 num_sacks, prior_snd_una);
1753 if (found_dup_sack)
1754 state.flag |= FLAG_DSACKING_ACK;
1755
1756 /* Eliminate too old ACKs, but take into
1757 * account more or less fresh ones, they can
1758 * contain valid SACK info.
1759 */
1760 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1761 return 0;
1762
1763 if (!tp->packets_out)
1764 goto out;
1765
1766 used_sacks = 0;
1767 first_sack_index = 0;
1768 for (i = 0; i < num_sacks; i++) {
1769 int dup_sack = !i && found_dup_sack;
1770
1771 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1772 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1773
1774 if (!tcp_is_sackblock_valid(tp, dup_sack,
1775 sp[used_sacks].start_seq,
1776 sp[used_sacks].end_seq)) {
1777 int mib_idx;
1778
1779 if (dup_sack) {
1780 if (!tp->undo_marker)
1781 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1782 else
1783 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1784 } else {
1785 /* Don't count olds caused by ACK reordering */
1786 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1787 !after(sp[used_sacks].end_seq, tp->snd_una))
1788 continue;
1789 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1790 }
1791
1792 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1793 if (i == 0)
1794 first_sack_index = -1;
1795 continue;
1796 }
1797
1798 /* Ignore very old stuff early */
1799 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1800 continue;
1801
1802 used_sacks++;
1803 }
1804
1805 /* order SACK blocks to allow in order walk of the retrans queue */
1806 for (i = used_sacks - 1; i > 0; i--) {
1807 for (j = 0; j < i; j++) {
1808 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1809 swap(sp[j], sp[j + 1]);
1810
1811 /* Track where the first SACK block goes to */
1812 if (j == first_sack_index)
1813 first_sack_index = j + 1;
1814 }
1815 }
1816 }
1817
1818 skb = tcp_write_queue_head(sk);
1819 state.fack_count = 0;
1820 i = 0;
1821
1822 if (!tp->sacked_out) {
1823 /* It's already past, so skip checking against it */
1824 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1825 } else {
1826 cache = tp->recv_sack_cache;
1827 /* Skip empty blocks in at head of the cache */
1828 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1829 !cache->end_seq)
1830 cache++;
1831 }
1832
1833 while (i < used_sacks) {
1834 u32 start_seq = sp[i].start_seq;
1835 u32 end_seq = sp[i].end_seq;
1836 int dup_sack = (found_dup_sack && (i == first_sack_index));
1837 struct tcp_sack_block *next_dup = NULL;
1838
1839 if (found_dup_sack && ((i + 1) == first_sack_index))
1840 next_dup = &sp[i + 1];
1841
1842 /* Event "B" in the comment above. */
1843 if (after(end_seq, tp->high_seq))
1844 state.flag |= FLAG_DATA_LOST;
1845
1846 /* Skip too early cached blocks */
1847 while (tcp_sack_cache_ok(tp, cache) &&
1848 !before(start_seq, cache->end_seq))
1849 cache++;
1850
1851 /* Can skip some work by looking recv_sack_cache? */
1852 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1853 after(end_seq, cache->start_seq)) {
1854
1855 /* Head todo? */
1856 if (before(start_seq, cache->start_seq)) {
1857 skb = tcp_sacktag_skip(skb, sk, &state,
1858 start_seq);
1859 skb = tcp_sacktag_walk(skb, sk, next_dup,
1860 &state,
1861 start_seq,
1862 cache->start_seq,
1863 dup_sack);
1864 }
1865
1866 /* Rest of the block already fully processed? */
1867 if (!after(end_seq, cache->end_seq))
1868 goto advance_sp;
1869
1870 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1871 &state,
1872 cache->end_seq);
1873
1874 /* ...tail remains todo... */
1875 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1876 /* ...but better entrypoint exists! */
1877 skb = tcp_highest_sack(sk);
1878 if (skb == NULL)
1879 break;
1880 state.fack_count = tp->fackets_out;
1881 cache++;
1882 goto walk;
1883 }
1884
1885 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1886 /* Check overlap against next cached too (past this one already) */
1887 cache++;
1888 continue;
1889 }
1890
1891 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1892 skb = tcp_highest_sack(sk);
1893 if (skb == NULL)
1894 break;
1895 state.fack_count = tp->fackets_out;
1896 }
1897 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1898
1899 walk:
1900 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1901 start_seq, end_seq, dup_sack);
1902
1903 advance_sp:
1904 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1905 * due to in-order walk
1906 */
1907 if (after(end_seq, tp->frto_highmark))
1908 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1909
1910 i++;
1911 }
1912
1913 /* Clear the head of the cache sack blocks so we can skip it next time */
1914 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1915 tp->recv_sack_cache[i].start_seq = 0;
1916 tp->recv_sack_cache[i].end_seq = 0;
1917 }
1918 for (j = 0; j < used_sacks; j++)
1919 tp->recv_sack_cache[i++] = sp[j];
1920
1921 tcp_mark_lost_retrans(sk);
1922
1923 tcp_verify_left_out(tp);
1924
1925 if ((state.reord < tp->fackets_out) &&
1926 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1927 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1928 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1929
1930 out:
1931
1932 #if FASTRETRANS_DEBUG > 0
1933 WARN_ON((int)tp->sacked_out < 0);
1934 WARN_ON((int)tp->lost_out < 0);
1935 WARN_ON((int)tp->retrans_out < 0);
1936 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1937 #endif
1938 return state.flag;
1939 }
1940
1941 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1942 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1943 */
1944 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1945 {
1946 u32 holes;
1947
1948 holes = max(tp->lost_out, 1U);
1949 holes = min(holes, tp->packets_out);
1950
1951 if ((tp->sacked_out + holes) > tp->packets_out) {
1952 tp->sacked_out = tp->packets_out - holes;
1953 return 1;
1954 }
1955 return 0;
1956 }
1957
1958 /* If we receive more dupacks than we expected counting segments
1959 * in assumption of absent reordering, interpret this as reordering.
1960 * The only another reason could be bug in receiver TCP.
1961 */
1962 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1963 {
1964 struct tcp_sock *tp = tcp_sk(sk);
1965 if (tcp_limit_reno_sacked(tp))
1966 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1967 }
1968
1969 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1970
1971 static void tcp_add_reno_sack(struct sock *sk)
1972 {
1973 struct tcp_sock *tp = tcp_sk(sk);
1974 tp->sacked_out++;
1975 tcp_check_reno_reordering(sk, 0);
1976 tcp_verify_left_out(tp);
1977 }
1978
1979 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1980
1981 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1982 {
1983 struct tcp_sock *tp = tcp_sk(sk);
1984
1985 if (acked > 0) {
1986 /* One ACK acked hole. The rest eat duplicate ACKs. */
1987 if (acked - 1 >= tp->sacked_out)
1988 tp->sacked_out = 0;
1989 else
1990 tp->sacked_out -= acked - 1;
1991 }
1992 tcp_check_reno_reordering(sk, acked);
1993 tcp_verify_left_out(tp);
1994 }
1995
1996 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1997 {
1998 tp->sacked_out = 0;
1999 }
2000
2001 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2002 {
2003 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2004 }
2005
2006 /* F-RTO can only be used if TCP has never retransmitted anything other than
2007 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2008 */
2009 int tcp_use_frto(struct sock *sk)
2010 {
2011 const struct tcp_sock *tp = tcp_sk(sk);
2012 const struct inet_connection_sock *icsk = inet_csk(sk);
2013 struct sk_buff *skb;
2014
2015 if (!sysctl_tcp_frto)
2016 return 0;
2017
2018 /* MTU probe and F-RTO won't really play nicely along currently */
2019 if (icsk->icsk_mtup.probe_size)
2020 return 0;
2021
2022 if (tcp_is_sackfrto(tp))
2023 return 1;
2024
2025 /* Avoid expensive walking of rexmit queue if possible */
2026 if (tp->retrans_out > 1)
2027 return 0;
2028
2029 skb = tcp_write_queue_head(sk);
2030 if (tcp_skb_is_last(sk, skb))
2031 return 1;
2032 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2033 tcp_for_write_queue_from(skb, sk) {
2034 if (skb == tcp_send_head(sk))
2035 break;
2036 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2037 return 0;
2038 /* Short-circuit when first non-SACKed skb has been checked */
2039 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2040 break;
2041 }
2042 return 1;
2043 }
2044
2045 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2046 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2047 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2048 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2049 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2050 * bits are handled if the Loss state is really to be entered (in
2051 * tcp_enter_frto_loss).
2052 *
2053 * Do like tcp_enter_loss() would; when RTO expires the second time it
2054 * does:
2055 * "Reduce ssthresh if it has not yet been made inside this window."
2056 */
2057 void tcp_enter_frto(struct sock *sk)
2058 {
2059 const struct inet_connection_sock *icsk = inet_csk(sk);
2060 struct tcp_sock *tp = tcp_sk(sk);
2061 struct sk_buff *skb;
2062
2063 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2064 tp->snd_una == tp->high_seq ||
2065 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2066 !icsk->icsk_retransmits)) {
2067 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2068 /* Our state is too optimistic in ssthresh() call because cwnd
2069 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2070 * recovery has not yet completed. Pattern would be this: RTO,
2071 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2072 * up here twice).
2073 * RFC4138 should be more specific on what to do, even though
2074 * RTO is quite unlikely to occur after the first Cumulative ACK
2075 * due to back-off and complexity of triggering events ...
2076 */
2077 if (tp->frto_counter) {
2078 u32 stored_cwnd;
2079 stored_cwnd = tp->snd_cwnd;
2080 tp->snd_cwnd = 2;
2081 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2082 tp->snd_cwnd = stored_cwnd;
2083 } else {
2084 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2085 }
2086 /* ... in theory, cong.control module could do "any tricks" in
2087 * ssthresh(), which means that ca_state, lost bits and lost_out
2088 * counter would have to be faked before the call occurs. We
2089 * consider that too expensive, unlikely and hacky, so modules
2090 * using these in ssthresh() must deal these incompatibility
2091 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2092 */
2093 tcp_ca_event(sk, CA_EVENT_FRTO);
2094 }
2095
2096 tp->undo_marker = tp->snd_una;
2097 tp->undo_retrans = 0;
2098
2099 skb = tcp_write_queue_head(sk);
2100 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2101 tp->undo_marker = 0;
2102 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2103 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2104 tp->retrans_out -= tcp_skb_pcount(skb);
2105 }
2106 tcp_verify_left_out(tp);
2107
2108 /* Too bad if TCP was application limited */
2109 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2110
2111 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2112 * The last condition is necessary at least in tp->frto_counter case.
2113 */
2114 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2115 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2116 after(tp->high_seq, tp->snd_una)) {
2117 tp->frto_highmark = tp->high_seq;
2118 } else {
2119 tp->frto_highmark = tp->snd_nxt;
2120 }
2121 tcp_set_ca_state(sk, TCP_CA_Disorder);
2122 tp->high_seq = tp->snd_nxt;
2123 tp->frto_counter = 1;
2124 }
2125
2126 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2127 * which indicates that we should follow the traditional RTO recovery,
2128 * i.e. mark everything lost and do go-back-N retransmission.
2129 */
2130 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2131 {
2132 struct tcp_sock *tp = tcp_sk(sk);
2133 struct sk_buff *skb;
2134
2135 tp->lost_out = 0;
2136 tp->retrans_out = 0;
2137 if (tcp_is_reno(tp))
2138 tcp_reset_reno_sack(tp);
2139
2140 tcp_for_write_queue(skb, sk) {
2141 if (skb == tcp_send_head(sk))
2142 break;
2143
2144 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2145 /*
2146 * Count the retransmission made on RTO correctly (only when
2147 * waiting for the first ACK and did not get it)...
2148 */
2149 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2150 /* For some reason this R-bit might get cleared? */
2151 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2152 tp->retrans_out += tcp_skb_pcount(skb);
2153 /* ...enter this if branch just for the first segment */
2154 flag |= FLAG_DATA_ACKED;
2155 } else {
2156 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2157 tp->undo_marker = 0;
2158 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2159 }
2160
2161 /* Marking forward transmissions that were made after RTO lost
2162 * can cause unnecessary retransmissions in some scenarios,
2163 * SACK blocks will mitigate that in some but not in all cases.
2164 * We used to not mark them but it was causing break-ups with
2165 * receivers that do only in-order receival.
2166 *
2167 * TODO: we could detect presence of such receiver and select
2168 * different behavior per flow.
2169 */
2170 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2171 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2172 tp->lost_out += tcp_skb_pcount(skb);
2173 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2174 }
2175 }
2176 tcp_verify_left_out(tp);
2177
2178 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2179 tp->snd_cwnd_cnt = 0;
2180 tp->snd_cwnd_stamp = tcp_time_stamp;
2181 tp->frto_counter = 0;
2182 tp->bytes_acked = 0;
2183
2184 tp->reordering = min_t(unsigned int, tp->reordering,
2185 sysctl_tcp_reordering);
2186 tcp_set_ca_state(sk, TCP_CA_Loss);
2187 tp->high_seq = tp->snd_nxt;
2188 TCP_ECN_queue_cwr(tp);
2189
2190 tcp_clear_all_retrans_hints(tp);
2191 }
2192
2193 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2194 {
2195 tp->retrans_out = 0;
2196 tp->lost_out = 0;
2197
2198 tp->undo_marker = 0;
2199 tp->undo_retrans = 0;
2200 }
2201
2202 void tcp_clear_retrans(struct tcp_sock *tp)
2203 {
2204 tcp_clear_retrans_partial(tp);
2205
2206 tp->fackets_out = 0;
2207 tp->sacked_out = 0;
2208 }
2209
2210 /* Enter Loss state. If "how" is not zero, forget all SACK information
2211 * and reset tags completely, otherwise preserve SACKs. If receiver
2212 * dropped its ofo queue, we will know this due to reneging detection.
2213 */
2214 void tcp_enter_loss(struct sock *sk, int how)
2215 {
2216 const struct inet_connection_sock *icsk = inet_csk(sk);
2217 struct tcp_sock *tp = tcp_sk(sk);
2218 struct sk_buff *skb;
2219
2220 /* Reduce ssthresh if it has not yet been made inside this window. */
2221 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2222 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2223 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2224 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2225 tcp_ca_event(sk, CA_EVENT_LOSS);
2226 }
2227 tp->snd_cwnd = 1;
2228 tp->snd_cwnd_cnt = 0;
2229 tp->snd_cwnd_stamp = tcp_time_stamp;
2230
2231 tp->bytes_acked = 0;
2232 tcp_clear_retrans_partial(tp);
2233
2234 if (tcp_is_reno(tp))
2235 tcp_reset_reno_sack(tp);
2236
2237 if (!how) {
2238 /* Push undo marker, if it was plain RTO and nothing
2239 * was retransmitted. */
2240 tp->undo_marker = tp->snd_una;
2241 } else {
2242 tp->sacked_out = 0;
2243 tp->fackets_out = 0;
2244 }
2245 tcp_clear_all_retrans_hints(tp);
2246
2247 tcp_for_write_queue(skb, sk) {
2248 if (skb == tcp_send_head(sk))
2249 break;
2250
2251 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2252 tp->undo_marker = 0;
2253 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2254 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2255 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2256 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2257 tp->lost_out += tcp_skb_pcount(skb);
2258 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2259 }
2260 }
2261 tcp_verify_left_out(tp);
2262
2263 tp->reordering = min_t(unsigned int, tp->reordering,
2264 sysctl_tcp_reordering);
2265 tcp_set_ca_state(sk, TCP_CA_Loss);
2266 tp->high_seq = tp->snd_nxt;
2267 TCP_ECN_queue_cwr(tp);
2268 /* Abort F-RTO algorithm if one is in progress */
2269 tp->frto_counter = 0;
2270 }
2271
2272 /* If ACK arrived pointing to a remembered SACK, it means that our
2273 * remembered SACKs do not reflect real state of receiver i.e.
2274 * receiver _host_ is heavily congested (or buggy).
2275 *
2276 * Do processing similar to RTO timeout.
2277 */
2278 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2279 {
2280 if (flag & FLAG_SACK_RENEGING) {
2281 struct inet_connection_sock *icsk = inet_csk(sk);
2282 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2283
2284 tcp_enter_loss(sk, 1);
2285 icsk->icsk_retransmits++;
2286 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2287 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2288 icsk->icsk_rto, TCP_RTO_MAX);
2289 return 1;
2290 }
2291 return 0;
2292 }
2293
2294 static inline int tcp_fackets_out(struct tcp_sock *tp)
2295 {
2296 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2297 }
2298
2299 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2300 * counter when SACK is enabled (without SACK, sacked_out is used for
2301 * that purpose).
2302 *
2303 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2304 * segments up to the highest received SACK block so far and holes in
2305 * between them.
2306 *
2307 * With reordering, holes may still be in flight, so RFC3517 recovery
2308 * uses pure sacked_out (total number of SACKed segments) even though
2309 * it violates the RFC that uses duplicate ACKs, often these are equal
2310 * but when e.g. out-of-window ACKs or packet duplication occurs,
2311 * they differ. Since neither occurs due to loss, TCP should really
2312 * ignore them.
2313 */
2314 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2315 {
2316 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2317 }
2318
2319 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2320 {
2321 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2322 }
2323
2324 static inline int tcp_head_timedout(struct sock *sk)
2325 {
2326 struct tcp_sock *tp = tcp_sk(sk);
2327
2328 return tp->packets_out &&
2329 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2330 }
2331
2332 /* Linux NewReno/SACK/FACK/ECN state machine.
2333 * --------------------------------------
2334 *
2335 * "Open" Normal state, no dubious events, fast path.
2336 * "Disorder" In all the respects it is "Open",
2337 * but requires a bit more attention. It is entered when
2338 * we see some SACKs or dupacks. It is split of "Open"
2339 * mainly to move some processing from fast path to slow one.
2340 * "CWR" CWND was reduced due to some Congestion Notification event.
2341 * It can be ECN, ICMP source quench, local device congestion.
2342 * "Recovery" CWND was reduced, we are fast-retransmitting.
2343 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2344 *
2345 * tcp_fastretrans_alert() is entered:
2346 * - each incoming ACK, if state is not "Open"
2347 * - when arrived ACK is unusual, namely:
2348 * * SACK
2349 * * Duplicate ACK.
2350 * * ECN ECE.
2351 *
2352 * Counting packets in flight is pretty simple.
2353 *
2354 * in_flight = packets_out - left_out + retrans_out
2355 *
2356 * packets_out is SND.NXT-SND.UNA counted in packets.
2357 *
2358 * retrans_out is number of retransmitted segments.
2359 *
2360 * left_out is number of segments left network, but not ACKed yet.
2361 *
2362 * left_out = sacked_out + lost_out
2363 *
2364 * sacked_out: Packets, which arrived to receiver out of order
2365 * and hence not ACKed. With SACKs this number is simply
2366 * amount of SACKed data. Even without SACKs
2367 * it is easy to give pretty reliable estimate of this number,
2368 * counting duplicate ACKs.
2369 *
2370 * lost_out: Packets lost by network. TCP has no explicit
2371 * "loss notification" feedback from network (for now).
2372 * It means that this number can be only _guessed_.
2373 * Actually, it is the heuristics to predict lossage that
2374 * distinguishes different algorithms.
2375 *
2376 * F.e. after RTO, when all the queue is considered as lost,
2377 * lost_out = packets_out and in_flight = retrans_out.
2378 *
2379 * Essentially, we have now two algorithms counting
2380 * lost packets.
2381 *
2382 * FACK: It is the simplest heuristics. As soon as we decided
2383 * that something is lost, we decide that _all_ not SACKed
2384 * packets until the most forward SACK are lost. I.e.
2385 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2386 * It is absolutely correct estimate, if network does not reorder
2387 * packets. And it loses any connection to reality when reordering
2388 * takes place. We use FACK by default until reordering
2389 * is suspected on the path to this destination.
2390 *
2391 * NewReno: when Recovery is entered, we assume that one segment
2392 * is lost (classic Reno). While we are in Recovery and
2393 * a partial ACK arrives, we assume that one more packet
2394 * is lost (NewReno). This heuristics are the same in NewReno
2395 * and SACK.
2396 *
2397 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2398 * deflation etc. CWND is real congestion window, never inflated, changes
2399 * only according to classic VJ rules.
2400 *
2401 * Really tricky (and requiring careful tuning) part of algorithm
2402 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2403 * The first determines the moment _when_ we should reduce CWND and,
2404 * hence, slow down forward transmission. In fact, it determines the moment
2405 * when we decide that hole is caused by loss, rather than by a reorder.
2406 *
2407 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2408 * holes, caused by lost packets.
2409 *
2410 * And the most logically complicated part of algorithm is undo
2411 * heuristics. We detect false retransmits due to both too early
2412 * fast retransmit (reordering) and underestimated RTO, analyzing
2413 * timestamps and D-SACKs. When we detect that some segments were
2414 * retransmitted by mistake and CWND reduction was wrong, we undo
2415 * window reduction and abort recovery phase. This logic is hidden
2416 * inside several functions named tcp_try_undo_<something>.
2417 */
2418
2419 /* This function decides, when we should leave Disordered state
2420 * and enter Recovery phase, reducing congestion window.
2421 *
2422 * Main question: may we further continue forward transmission
2423 * with the same cwnd?
2424 */
2425 static int tcp_time_to_recover(struct sock *sk)
2426 {
2427 struct tcp_sock *tp = tcp_sk(sk);
2428 __u32 packets_out;
2429
2430 /* Do not perform any recovery during F-RTO algorithm */
2431 if (tp->frto_counter)
2432 return 0;
2433
2434 /* Trick#1: The loss is proven. */
2435 if (tp->lost_out)
2436 return 1;
2437
2438 /* Not-A-Trick#2 : Classic rule... */
2439 if (tcp_dupack_heurestics(tp) > tp->reordering)
2440 return 1;
2441
2442 /* Trick#3 : when we use RFC2988 timer restart, fast
2443 * retransmit can be triggered by timeout of queue head.
2444 */
2445 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2446 return 1;
2447
2448 /* Trick#4: It is still not OK... But will it be useful to delay
2449 * recovery more?
2450 */
2451 packets_out = tp->packets_out;
2452 if (packets_out <= tp->reordering &&
2453 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2454 !tcp_may_send_now(sk)) {
2455 /* We have nothing to send. This connection is limited
2456 * either by receiver window or by application.
2457 */
2458 return 1;
2459 }
2460
2461 return 0;
2462 }
2463
2464 /* New heuristics: it is possible only after we switched to restart timer
2465 * each time when something is ACKed. Hence, we can detect timed out packets
2466 * during fast retransmit without falling to slow start.
2467 *
2468 * Usefulness of this as is very questionable, since we should know which of
2469 * the segments is the next to timeout which is relatively expensive to find
2470 * in general case unless we add some data structure just for that. The
2471 * current approach certainly won't find the right one too often and when it
2472 * finally does find _something_ it usually marks large part of the window
2473 * right away (because a retransmission with a larger timestamp blocks the
2474 * loop from advancing). -ij
2475 */
2476 static void tcp_timeout_skbs(struct sock *sk)
2477 {
2478 struct tcp_sock *tp = tcp_sk(sk);
2479 struct sk_buff *skb;
2480
2481 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2482 return;
2483
2484 skb = tp->scoreboard_skb_hint;
2485 if (tp->scoreboard_skb_hint == NULL)
2486 skb = tcp_write_queue_head(sk);
2487
2488 tcp_for_write_queue_from(skb, sk) {
2489 if (skb == tcp_send_head(sk))
2490 break;
2491 if (!tcp_skb_timedout(sk, skb))
2492 break;
2493
2494 tcp_skb_mark_lost(tp, skb);
2495 }
2496
2497 tp->scoreboard_skb_hint = skb;
2498
2499 tcp_verify_left_out(tp);
2500 }
2501
2502 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2503 * is against sacked "cnt", otherwise it's against facked "cnt"
2504 */
2505 static void tcp_mark_head_lost(struct sock *sk, int packets)
2506 {
2507 struct tcp_sock *tp = tcp_sk(sk);
2508 struct sk_buff *skb;
2509 int cnt, oldcnt;
2510 int err;
2511 unsigned int mss;
2512
2513 WARN_ON(packets > tp->packets_out);
2514 if (tp->lost_skb_hint) {
2515 skb = tp->lost_skb_hint;
2516 cnt = tp->lost_cnt_hint;
2517 } else {
2518 skb = tcp_write_queue_head(sk);
2519 cnt = 0;
2520 }
2521
2522 tcp_for_write_queue_from(skb, sk) {
2523 if (skb == tcp_send_head(sk))
2524 break;
2525 /* TODO: do this better */
2526 /* this is not the most efficient way to do this... */
2527 tp->lost_skb_hint = skb;
2528 tp->lost_cnt_hint = cnt;
2529
2530 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2531 break;
2532
2533 oldcnt = cnt;
2534 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2535 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2536 cnt += tcp_skb_pcount(skb);
2537
2538 if (cnt > packets) {
2539 if (tcp_is_sack(tp) || (oldcnt >= packets))
2540 break;
2541
2542 mss = skb_shinfo(skb)->gso_size;
2543 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2544 if (err < 0)
2545 break;
2546 cnt = packets;
2547 }
2548
2549 tcp_skb_mark_lost(tp, skb);
2550 }
2551 tcp_verify_left_out(tp);
2552 }
2553
2554 /* Account newly detected lost packet(s) */
2555
2556 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2557 {
2558 struct tcp_sock *tp = tcp_sk(sk);
2559
2560 if (tcp_is_reno(tp)) {
2561 tcp_mark_head_lost(sk, 1);
2562 } else if (tcp_is_fack(tp)) {
2563 int lost = tp->fackets_out - tp->reordering;
2564 if (lost <= 0)
2565 lost = 1;
2566 tcp_mark_head_lost(sk, lost);
2567 } else {
2568 int sacked_upto = tp->sacked_out - tp->reordering;
2569 if (sacked_upto < fast_rexmit)
2570 sacked_upto = fast_rexmit;
2571 tcp_mark_head_lost(sk, sacked_upto);
2572 }
2573
2574 tcp_timeout_skbs(sk);
2575 }
2576
2577 /* CWND moderation, preventing bursts due to too big ACKs
2578 * in dubious situations.
2579 */
2580 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2581 {
2582 tp->snd_cwnd = min(tp->snd_cwnd,
2583 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2584 tp->snd_cwnd_stamp = tcp_time_stamp;
2585 }
2586
2587 /* Lower bound on congestion window is slow start threshold
2588 * unless congestion avoidance choice decides to overide it.
2589 */
2590 static inline u32 tcp_cwnd_min(const struct sock *sk)
2591 {
2592 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2593
2594 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2595 }
2596
2597 /* Decrease cwnd each second ack. */
2598 static void tcp_cwnd_down(struct sock *sk, int flag)
2599 {
2600 struct tcp_sock *tp = tcp_sk(sk);
2601 int decr = tp->snd_cwnd_cnt + 1;
2602
2603 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2604 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2605 tp->snd_cwnd_cnt = decr & 1;
2606 decr >>= 1;
2607
2608 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2609 tp->snd_cwnd -= decr;
2610
2611 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2612 tp->snd_cwnd_stamp = tcp_time_stamp;
2613 }
2614 }
2615
2616 /* Nothing was retransmitted or returned timestamp is less
2617 * than timestamp of the first retransmission.
2618 */
2619 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2620 {
2621 return !tp->retrans_stamp ||
2622 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2623 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2624 }
2625
2626 /* Undo procedures. */
2627
2628 #if FASTRETRANS_DEBUG > 1
2629 static void DBGUNDO(struct sock *sk, const char *msg)
2630 {
2631 struct tcp_sock *tp = tcp_sk(sk);
2632 struct inet_sock *inet = inet_sk(sk);
2633
2634 if (sk->sk_family == AF_INET) {
2635 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2636 msg,
2637 &inet->daddr, ntohs(inet->dport),
2638 tp->snd_cwnd, tcp_left_out(tp),
2639 tp->snd_ssthresh, tp->prior_ssthresh,
2640 tp->packets_out);
2641 }
2642 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2643 else if (sk->sk_family == AF_INET6) {
2644 struct ipv6_pinfo *np = inet6_sk(sk);
2645 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2646 msg,
2647 &np->daddr, ntohs(inet->dport),
2648 tp->snd_cwnd, tcp_left_out(tp),
2649 tp->snd_ssthresh, tp->prior_ssthresh,
2650 tp->packets_out);
2651 }
2652 #endif
2653 }
2654 #else
2655 #define DBGUNDO(x...) do { } while (0)
2656 #endif
2657
2658 static void tcp_undo_cwr(struct sock *sk, const int undo)
2659 {
2660 struct tcp_sock *tp = tcp_sk(sk);
2661
2662 if (tp->prior_ssthresh) {
2663 const struct inet_connection_sock *icsk = inet_csk(sk);
2664
2665 if (icsk->icsk_ca_ops->undo_cwnd)
2666 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2667 else
2668 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2669
2670 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2671 tp->snd_ssthresh = tp->prior_ssthresh;
2672 TCP_ECN_withdraw_cwr(tp);
2673 }
2674 } else {
2675 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2676 }
2677 tcp_moderate_cwnd(tp);
2678 tp->snd_cwnd_stamp = tcp_time_stamp;
2679 }
2680
2681 static inline int tcp_may_undo(struct tcp_sock *tp)
2682 {
2683 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2684 }
2685
2686 /* People celebrate: "We love our President!" */
2687 static int tcp_try_undo_recovery(struct sock *sk)
2688 {
2689 struct tcp_sock *tp = tcp_sk(sk);
2690
2691 if (tcp_may_undo(tp)) {
2692 int mib_idx;
2693
2694 /* Happy end! We did not retransmit anything
2695 * or our original transmission succeeded.
2696 */
2697 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2698 tcp_undo_cwr(sk, 1);
2699 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2700 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2701 else
2702 mib_idx = LINUX_MIB_TCPFULLUNDO;
2703
2704 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2705 tp->undo_marker = 0;
2706 }
2707 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2708 /* Hold old state until something *above* high_seq
2709 * is ACKed. For Reno it is MUST to prevent false
2710 * fast retransmits (RFC2582). SACK TCP is safe. */
2711 tcp_moderate_cwnd(tp);
2712 return 1;
2713 }
2714 tcp_set_ca_state(sk, TCP_CA_Open);
2715 return 0;
2716 }
2717
2718 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2719 static void tcp_try_undo_dsack(struct sock *sk)
2720 {
2721 struct tcp_sock *tp = tcp_sk(sk);
2722
2723 if (tp->undo_marker && !tp->undo_retrans) {
2724 DBGUNDO(sk, "D-SACK");
2725 tcp_undo_cwr(sk, 1);
2726 tp->undo_marker = 0;
2727 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2728 }
2729 }
2730
2731 /* Undo during fast recovery after partial ACK. */
2732
2733 static int tcp_try_undo_partial(struct sock *sk, int acked)
2734 {
2735 struct tcp_sock *tp = tcp_sk(sk);
2736 /* Partial ACK arrived. Force Hoe's retransmit. */
2737 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2738
2739 if (tcp_may_undo(tp)) {
2740 /* Plain luck! Hole if filled with delayed
2741 * packet, rather than with a retransmit.
2742 */
2743 if (tp->retrans_out == 0)
2744 tp->retrans_stamp = 0;
2745
2746 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2747
2748 DBGUNDO(sk, "Hoe");
2749 tcp_undo_cwr(sk, 0);
2750 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2751
2752 /* So... Do not make Hoe's retransmit yet.
2753 * If the first packet was delayed, the rest
2754 * ones are most probably delayed as well.
2755 */
2756 failed = 0;
2757 }
2758 return failed;
2759 }
2760
2761 /* Undo during loss recovery after partial ACK. */
2762 static int tcp_try_undo_loss(struct sock *sk)
2763 {
2764 struct tcp_sock *tp = tcp_sk(sk);
2765
2766 if (tcp_may_undo(tp)) {
2767 struct sk_buff *skb;
2768 tcp_for_write_queue(skb, sk) {
2769 if (skb == tcp_send_head(sk))
2770 break;
2771 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2772 }
2773
2774 tcp_clear_all_retrans_hints(tp);
2775
2776 DBGUNDO(sk, "partial loss");
2777 tp->lost_out = 0;
2778 tcp_undo_cwr(sk, 1);
2779 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2780 inet_csk(sk)->icsk_retransmits = 0;
2781 tp->undo_marker = 0;
2782 if (tcp_is_sack(tp))
2783 tcp_set_ca_state(sk, TCP_CA_Open);
2784 return 1;
2785 }
2786 return 0;
2787 }
2788
2789 static inline void tcp_complete_cwr(struct sock *sk)
2790 {
2791 struct tcp_sock *tp = tcp_sk(sk);
2792 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2793 tp->snd_cwnd_stamp = tcp_time_stamp;
2794 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2795 }
2796
2797 static void tcp_try_keep_open(struct sock *sk)
2798 {
2799 struct tcp_sock *tp = tcp_sk(sk);
2800 int state = TCP_CA_Open;
2801
2802 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2803 state = TCP_CA_Disorder;
2804
2805 if (inet_csk(sk)->icsk_ca_state != state) {
2806 tcp_set_ca_state(sk, state);
2807 tp->high_seq = tp->snd_nxt;
2808 }
2809 }
2810
2811 static void tcp_try_to_open(struct sock *sk, int flag)
2812 {
2813 struct tcp_sock *tp = tcp_sk(sk);
2814
2815 tcp_verify_left_out(tp);
2816
2817 if (!tp->frto_counter && tp->retrans_out == 0)
2818 tp->retrans_stamp = 0;
2819
2820 if (flag & FLAG_ECE)
2821 tcp_enter_cwr(sk, 1);
2822
2823 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2824 tcp_try_keep_open(sk);
2825 tcp_moderate_cwnd(tp);
2826 } else {
2827 tcp_cwnd_down(sk, flag);
2828 }
2829 }
2830
2831 static void tcp_mtup_probe_failed(struct sock *sk)
2832 {
2833 struct inet_connection_sock *icsk = inet_csk(sk);
2834
2835 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2836 icsk->icsk_mtup.probe_size = 0;
2837 }
2838
2839 static void tcp_mtup_probe_success(struct sock *sk)
2840 {
2841 struct tcp_sock *tp = tcp_sk(sk);
2842 struct inet_connection_sock *icsk = inet_csk(sk);
2843
2844 /* FIXME: breaks with very large cwnd */
2845 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2846 tp->snd_cwnd = tp->snd_cwnd *
2847 tcp_mss_to_mtu(sk, tp->mss_cache) /
2848 icsk->icsk_mtup.probe_size;
2849 tp->snd_cwnd_cnt = 0;
2850 tp->snd_cwnd_stamp = tcp_time_stamp;
2851 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2852
2853 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2854 icsk->icsk_mtup.probe_size = 0;
2855 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2856 }
2857
2858 /* Do a simple retransmit without using the backoff mechanisms in
2859 * tcp_timer. This is used for path mtu discovery.
2860 * The socket is already locked here.
2861 */
2862 void tcp_simple_retransmit(struct sock *sk)
2863 {
2864 const struct inet_connection_sock *icsk = inet_csk(sk);
2865 struct tcp_sock *tp = tcp_sk(sk);
2866 struct sk_buff *skb;
2867 unsigned int mss = tcp_current_mss(sk);
2868 u32 prior_lost = tp->lost_out;
2869
2870 tcp_for_write_queue(skb, sk) {
2871 if (skb == tcp_send_head(sk))
2872 break;
2873 if (tcp_skb_seglen(skb) > mss &&
2874 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2875 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2876 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2877 tp->retrans_out -= tcp_skb_pcount(skb);
2878 }
2879 tcp_skb_mark_lost_uncond_verify(tp, skb);
2880 }
2881 }
2882
2883 tcp_clear_retrans_hints_partial(tp);
2884
2885 if (prior_lost == tp->lost_out)
2886 return;
2887
2888 if (tcp_is_reno(tp))
2889 tcp_limit_reno_sacked(tp);
2890
2891 tcp_verify_left_out(tp);
2892
2893 /* Don't muck with the congestion window here.
2894 * Reason is that we do not increase amount of _data_
2895 * in network, but units changed and effective
2896 * cwnd/ssthresh really reduced now.
2897 */
2898 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2899 tp->high_seq = tp->snd_nxt;
2900 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2901 tp->prior_ssthresh = 0;
2902 tp->undo_marker = 0;
2903 tcp_set_ca_state(sk, TCP_CA_Loss);
2904 }
2905 tcp_xmit_retransmit_queue(sk);
2906 }
2907
2908 /* Process an event, which can update packets-in-flight not trivially.
2909 * Main goal of this function is to calculate new estimate for left_out,
2910 * taking into account both packets sitting in receiver's buffer and
2911 * packets lost by network.
2912 *
2913 * Besides that it does CWND reduction, when packet loss is detected
2914 * and changes state of machine.
2915 *
2916 * It does _not_ decide what to send, it is made in function
2917 * tcp_xmit_retransmit_queue().
2918 */
2919 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2920 {
2921 struct inet_connection_sock *icsk = inet_csk(sk);
2922 struct tcp_sock *tp = tcp_sk(sk);
2923 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2924 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2925 (tcp_fackets_out(tp) > tp->reordering));
2926 int fast_rexmit = 0, mib_idx;
2927
2928 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2929 tp->sacked_out = 0;
2930 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2931 tp->fackets_out = 0;
2932
2933 /* Now state machine starts.
2934 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2935 if (flag & FLAG_ECE)
2936 tp->prior_ssthresh = 0;
2937
2938 /* B. In all the states check for reneging SACKs. */
2939 if (tcp_check_sack_reneging(sk, flag))
2940 return;
2941
2942 /* C. Process data loss notification, provided it is valid. */
2943 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2944 before(tp->snd_una, tp->high_seq) &&
2945 icsk->icsk_ca_state != TCP_CA_Open &&
2946 tp->fackets_out > tp->reordering) {
2947 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2948 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2949 }
2950
2951 /* D. Check consistency of the current state. */
2952 tcp_verify_left_out(tp);
2953
2954 /* E. Check state exit conditions. State can be terminated
2955 * when high_seq is ACKed. */
2956 if (icsk->icsk_ca_state == TCP_CA_Open) {
2957 WARN_ON(tp->retrans_out != 0);
2958 tp->retrans_stamp = 0;
2959 } else if (!before(tp->snd_una, tp->high_seq)) {
2960 switch (icsk->icsk_ca_state) {
2961 case TCP_CA_Loss:
2962 icsk->icsk_retransmits = 0;
2963 if (tcp_try_undo_recovery(sk))
2964 return;
2965 break;
2966
2967 case TCP_CA_CWR:
2968 /* CWR is to be held something *above* high_seq
2969 * is ACKed for CWR bit to reach receiver. */
2970 if (tp->snd_una != tp->high_seq) {
2971 tcp_complete_cwr(sk);
2972 tcp_set_ca_state(sk, TCP_CA_Open);
2973 }
2974 break;
2975
2976 case TCP_CA_Disorder:
2977 tcp_try_undo_dsack(sk);
2978 if (!tp->undo_marker ||
2979 /* For SACK case do not Open to allow to undo
2980 * catching for all duplicate ACKs. */
2981 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2982 tp->undo_marker = 0;
2983 tcp_set_ca_state(sk, TCP_CA_Open);
2984 }
2985 break;
2986
2987 case TCP_CA_Recovery:
2988 if (tcp_is_reno(tp))
2989 tcp_reset_reno_sack(tp);
2990 if (tcp_try_undo_recovery(sk))
2991 return;
2992 tcp_complete_cwr(sk);
2993 break;
2994 }
2995 }
2996
2997 /* F. Process state. */
2998 switch (icsk->icsk_ca_state) {
2999 case TCP_CA_Recovery:
3000 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3001 if (tcp_is_reno(tp) && is_dupack)
3002 tcp_add_reno_sack(sk);
3003 } else
3004 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3005 break;
3006 case TCP_CA_Loss:
3007 if (flag & FLAG_DATA_ACKED)
3008 icsk->icsk_retransmits = 0;
3009 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3010 tcp_reset_reno_sack(tp);
3011 if (!tcp_try_undo_loss(sk)) {
3012 tcp_moderate_cwnd(tp);
3013 tcp_xmit_retransmit_queue(sk);
3014 return;
3015 }
3016 if (icsk->icsk_ca_state != TCP_CA_Open)
3017 return;
3018 /* Loss is undone; fall through to processing in Open state. */
3019 default:
3020 if (tcp_is_reno(tp)) {
3021 if (flag & FLAG_SND_UNA_ADVANCED)
3022 tcp_reset_reno_sack(tp);
3023 if (is_dupack)
3024 tcp_add_reno_sack(sk);
3025 }
3026
3027 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3028 tcp_try_undo_dsack(sk);
3029
3030 if (!tcp_time_to_recover(sk)) {
3031 tcp_try_to_open(sk, flag);
3032 return;
3033 }
3034
3035 /* MTU probe failure: don't reduce cwnd */
3036 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3037 icsk->icsk_mtup.probe_size &&
3038 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3039 tcp_mtup_probe_failed(sk);
3040 /* Restores the reduction we did in tcp_mtup_probe() */
3041 tp->snd_cwnd++;
3042 tcp_simple_retransmit(sk);
3043 return;
3044 }
3045
3046 /* Otherwise enter Recovery state */
3047
3048 if (tcp_is_reno(tp))
3049 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3050 else
3051 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3052
3053 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3054
3055 tp->high_seq = tp->snd_nxt;
3056 tp->prior_ssthresh = 0;
3057 tp->undo_marker = tp->snd_una;
3058 tp->undo_retrans = tp->retrans_out;
3059
3060 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3061 if (!(flag & FLAG_ECE))
3062 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3063 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3064 TCP_ECN_queue_cwr(tp);
3065 }
3066
3067 tp->bytes_acked = 0;
3068 tp->snd_cwnd_cnt = 0;
3069 tcp_set_ca_state(sk, TCP_CA_Recovery);
3070 fast_rexmit = 1;
3071 }
3072
3073 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3074 tcp_update_scoreboard(sk, fast_rexmit);
3075 tcp_cwnd_down(sk, flag);
3076 tcp_xmit_retransmit_queue(sk);
3077 }
3078
3079 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3080 {
3081 tcp_rtt_estimator(sk, seq_rtt);
3082 tcp_set_rto(sk);
3083 inet_csk(sk)->icsk_backoff = 0;
3084 }
3085
3086 /* Read draft-ietf-tcplw-high-performance before mucking
3087 * with this code. (Supersedes RFC1323)
3088 */
3089 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3090 {
3091 /* RTTM Rule: A TSecr value received in a segment is used to
3092 * update the averaged RTT measurement only if the segment
3093 * acknowledges some new data, i.e., only if it advances the
3094 * left edge of the send window.
3095 *
3096 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3097 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3098 *
3099 * Changed: reset backoff as soon as we see the first valid sample.
3100 * If we do not, we get strongly overestimated rto. With timestamps
3101 * samples are accepted even from very old segments: f.e., when rtt=1
3102 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3103 * answer arrives rto becomes 120 seconds! If at least one of segments
3104 * in window is lost... Voila. --ANK (010210)
3105 */
3106 struct tcp_sock *tp = tcp_sk(sk);
3107
3108 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3109 }
3110
3111 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3112 {
3113 /* We don't have a timestamp. Can only use
3114 * packets that are not retransmitted to determine
3115 * rtt estimates. Also, we must not reset the
3116 * backoff for rto until we get a non-retransmitted
3117 * packet. This allows us to deal with a situation
3118 * where the network delay has increased suddenly.
3119 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3120 */
3121
3122 if (flag & FLAG_RETRANS_DATA_ACKED)
3123 return;
3124
3125 tcp_valid_rtt_meas(sk, seq_rtt);
3126 }
3127
3128 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3129 const s32 seq_rtt)
3130 {
3131 const struct tcp_sock *tp = tcp_sk(sk);
3132 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3133 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3134 tcp_ack_saw_tstamp(sk, flag);
3135 else if (seq_rtt >= 0)
3136 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3137 }
3138
3139 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3140 {
3141 const struct inet_connection_sock *icsk = inet_csk(sk);
3142 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3143 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3144 }
3145
3146 /* Restart timer after forward progress on connection.
3147 * RFC2988 recommends to restart timer to now+rto.
3148 */
3149 static void tcp_rearm_rto(struct sock *sk)
3150 {
3151 struct tcp_sock *tp = tcp_sk(sk);
3152
3153 if (!tp->packets_out) {
3154 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3155 } else {
3156 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3157 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3158 }
3159 }
3160
3161 /* If we get here, the whole TSO packet has not been acked. */
3162 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3163 {
3164 struct tcp_sock *tp = tcp_sk(sk);
3165 u32 packets_acked;
3166
3167 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3168
3169 packets_acked = tcp_skb_pcount(skb);
3170 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3171 return 0;
3172 packets_acked -= tcp_skb_pcount(skb);
3173
3174 if (packets_acked) {
3175 BUG_ON(tcp_skb_pcount(skb) == 0);
3176 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3177 }
3178
3179 return packets_acked;
3180 }
3181
3182 /* Remove acknowledged frames from the retransmission queue. If our packet
3183 * is before the ack sequence we can discard it as it's confirmed to have
3184 * arrived at the other end.
3185 */
3186 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3187 u32 prior_snd_una)
3188 {
3189 struct tcp_sock *tp = tcp_sk(sk);
3190 const struct inet_connection_sock *icsk = inet_csk(sk);
3191 struct sk_buff *skb;
3192 u32 now = tcp_time_stamp;
3193 int fully_acked = 1;
3194 int flag = 0;
3195 u32 pkts_acked = 0;
3196 u32 reord = tp->packets_out;
3197 u32 prior_sacked = tp->sacked_out;
3198 s32 seq_rtt = -1;
3199 s32 ca_seq_rtt = -1;
3200 ktime_t last_ackt = net_invalid_timestamp();
3201
3202 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3203 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3204 u32 acked_pcount;
3205 u8 sacked = scb->sacked;
3206
3207 /* Determine how many packets and what bytes were acked, tso and else */
3208 if (after(scb->end_seq, tp->snd_una)) {
3209 if (tcp_skb_pcount(skb) == 1 ||
3210 !after(tp->snd_una, scb->seq))
3211 break;
3212
3213 acked_pcount = tcp_tso_acked(sk, skb);
3214 if (!acked_pcount)
3215 break;
3216
3217 fully_acked = 0;
3218 } else {
3219 acked_pcount = tcp_skb_pcount(skb);
3220 }
3221
3222 if (sacked & TCPCB_RETRANS) {
3223 if (sacked & TCPCB_SACKED_RETRANS)
3224 tp->retrans_out -= acked_pcount;
3225 flag |= FLAG_RETRANS_DATA_ACKED;
3226 ca_seq_rtt = -1;
3227 seq_rtt = -1;
3228 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3229 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3230 } else {
3231 ca_seq_rtt = now - scb->when;
3232 last_ackt = skb->tstamp;
3233 if (seq_rtt < 0) {
3234 seq_rtt = ca_seq_rtt;
3235 }
3236 if (!(sacked & TCPCB_SACKED_ACKED))
3237 reord = min(pkts_acked, reord);
3238 }
3239
3240 if (sacked & TCPCB_SACKED_ACKED)
3241 tp->sacked_out -= acked_pcount;
3242 if (sacked & TCPCB_LOST)
3243 tp->lost_out -= acked_pcount;
3244
3245 tp->packets_out -= acked_pcount;
3246 pkts_acked += acked_pcount;
3247
3248 /* Initial outgoing SYN's get put onto the write_queue
3249 * just like anything else we transmit. It is not
3250 * true data, and if we misinform our callers that
3251 * this ACK acks real data, we will erroneously exit
3252 * connection startup slow start one packet too
3253 * quickly. This is severely frowned upon behavior.
3254 */
3255 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3256 flag |= FLAG_DATA_ACKED;
3257 } else {
3258 flag |= FLAG_SYN_ACKED;
3259 tp->retrans_stamp = 0;
3260 }
3261
3262 if (!fully_acked)
3263 break;
3264
3265 tcp_unlink_write_queue(skb, sk);
3266 sk_wmem_free_skb(sk, skb);
3267 tp->scoreboard_skb_hint = NULL;
3268 if (skb == tp->retransmit_skb_hint)
3269 tp->retransmit_skb_hint = NULL;
3270 if (skb == tp->lost_skb_hint)
3271 tp->lost_skb_hint = NULL;
3272 }
3273
3274 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3275 tp->snd_up = tp->snd_una;
3276
3277 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3278 flag |= FLAG_SACK_RENEGING;
3279
3280 if (flag & FLAG_ACKED) {
3281 const struct tcp_congestion_ops *ca_ops
3282 = inet_csk(sk)->icsk_ca_ops;
3283
3284 if (unlikely(icsk->icsk_mtup.probe_size &&
3285 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3286 tcp_mtup_probe_success(sk);
3287 }
3288
3289 tcp_ack_update_rtt(sk, flag, seq_rtt);
3290 tcp_rearm_rto(sk);
3291
3292 if (tcp_is_reno(tp)) {
3293 tcp_remove_reno_sacks(sk, pkts_acked);
3294 } else {
3295 int delta;
3296
3297 /* Non-retransmitted hole got filled? That's reordering */
3298 if (reord < prior_fackets)
3299 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3300
3301 delta = tcp_is_fack(tp) ? pkts_acked :
3302 prior_sacked - tp->sacked_out;
3303 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3304 }
3305
3306 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3307
3308 if (ca_ops->pkts_acked) {
3309 s32 rtt_us = -1;
3310
3311 /* Is the ACK triggering packet unambiguous? */
3312 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3313 /* High resolution needed and available? */
3314 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3315 !ktime_equal(last_ackt,
3316 net_invalid_timestamp()))
3317 rtt_us = ktime_us_delta(ktime_get_real(),
3318 last_ackt);
3319 else if (ca_seq_rtt > 0)
3320 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3321 }
3322
3323 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3324 }
3325 }
3326
3327 #if FASTRETRANS_DEBUG > 0
3328 WARN_ON((int)tp->sacked_out < 0);
3329 WARN_ON((int)tp->lost_out < 0);
3330 WARN_ON((int)tp->retrans_out < 0);
3331 if (!tp->packets_out && tcp_is_sack(tp)) {
3332 icsk = inet_csk(sk);
3333 if (tp->lost_out) {
3334 printk(KERN_DEBUG "Leak l=%u %d\n",
3335 tp->lost_out, icsk->icsk_ca_state);
3336 tp->lost_out = 0;
3337 }
3338 if (tp->sacked_out) {
3339 printk(KERN_DEBUG "Leak s=%u %d\n",
3340 tp->sacked_out, icsk->icsk_ca_state);
3341 tp->sacked_out = 0;
3342 }
3343 if (tp->retrans_out) {
3344 printk(KERN_DEBUG "Leak r=%u %d\n",
3345 tp->retrans_out, icsk->icsk_ca_state);
3346 tp->retrans_out = 0;
3347 }
3348 }
3349 #endif
3350 return flag;
3351 }
3352
3353 static void tcp_ack_probe(struct sock *sk)
3354 {
3355 const struct tcp_sock *tp = tcp_sk(sk);
3356 struct inet_connection_sock *icsk = inet_csk(sk);
3357
3358 /* Was it a usable window open? */
3359
3360 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3361 icsk->icsk_backoff = 0;
3362 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3363 /* Socket must be waked up by subsequent tcp_data_snd_check().
3364 * This function is not for random using!
3365 */
3366 } else {
3367 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3368 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3369 TCP_RTO_MAX);
3370 }
3371 }
3372
3373 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3374 {
3375 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3376 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3377 }
3378
3379 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3380 {
3381 const struct tcp_sock *tp = tcp_sk(sk);
3382 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3383 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3384 }
3385
3386 /* Check that window update is acceptable.
3387 * The function assumes that snd_una<=ack<=snd_next.
3388 */
3389 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3390 const u32 ack, const u32 ack_seq,
3391 const u32 nwin)
3392 {
3393 return (after(ack, tp->snd_una) ||
3394 after(ack_seq, tp->snd_wl1) ||
3395 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3396 }
3397
3398 /* Update our send window.
3399 *
3400 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3401 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3402 */
3403 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3404 u32 ack_seq)
3405 {
3406 struct tcp_sock *tp = tcp_sk(sk);
3407 int flag = 0;
3408 u32 nwin = ntohs(tcp_hdr(skb)->window);
3409
3410 if (likely(!tcp_hdr(skb)->syn))
3411 nwin <<= tp->rx_opt.snd_wscale;
3412
3413 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3414 flag |= FLAG_WIN_UPDATE;
3415 tcp_update_wl(tp, ack_seq);
3416
3417 if (tp->snd_wnd != nwin) {
3418 tp->snd_wnd = nwin;
3419
3420 /* Note, it is the only place, where
3421 * fast path is recovered for sending TCP.
3422 */
3423 tp->pred_flags = 0;
3424 tcp_fast_path_check(sk);
3425
3426 if (nwin > tp->max_window) {
3427 tp->max_window = nwin;
3428 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3429 }
3430 }
3431 }
3432
3433 tp->snd_una = ack;
3434
3435 return flag;
3436 }
3437
3438 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3439 * continue in congestion avoidance.
3440 */
3441 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3442 {
3443 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3444 tp->snd_cwnd_cnt = 0;
3445 tp->bytes_acked = 0;
3446 TCP_ECN_queue_cwr(tp);
3447 tcp_moderate_cwnd(tp);
3448 }
3449
3450 /* A conservative spurious RTO response algorithm: reduce cwnd using
3451 * rate halving and continue in congestion avoidance.
3452 */
3453 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3454 {
3455 tcp_enter_cwr(sk, 0);
3456 }
3457
3458 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3459 {
3460 if (flag & FLAG_ECE)
3461 tcp_ratehalving_spur_to_response(sk);
3462 else
3463 tcp_undo_cwr(sk, 1);
3464 }
3465
3466 /* F-RTO spurious RTO detection algorithm (RFC4138)
3467 *
3468 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3469 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3470 * window (but not to or beyond highest sequence sent before RTO):
3471 * On First ACK, send two new segments out.
3472 * On Second ACK, RTO was likely spurious. Do spurious response (response
3473 * algorithm is not part of the F-RTO detection algorithm
3474 * given in RFC4138 but can be selected separately).
3475 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3476 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3477 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3478 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3479 *
3480 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3481 * original window even after we transmit two new data segments.
3482 *
3483 * SACK version:
3484 * on first step, wait until first cumulative ACK arrives, then move to
3485 * the second step. In second step, the next ACK decides.
3486 *
3487 * F-RTO is implemented (mainly) in four functions:
3488 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3489 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3490 * called when tcp_use_frto() showed green light
3491 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3492 * - tcp_enter_frto_loss() is called if there is not enough evidence
3493 * to prove that the RTO is indeed spurious. It transfers the control
3494 * from F-RTO to the conventional RTO recovery
3495 */
3496 static int tcp_process_frto(struct sock *sk, int flag)
3497 {
3498 struct tcp_sock *tp = tcp_sk(sk);
3499
3500 tcp_verify_left_out(tp);
3501
3502 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3503 if (flag & FLAG_DATA_ACKED)
3504 inet_csk(sk)->icsk_retransmits = 0;
3505
3506 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3507 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3508 tp->undo_marker = 0;
3509
3510 if (!before(tp->snd_una, tp->frto_highmark)) {
3511 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3512 return 1;
3513 }
3514
3515 if (!tcp_is_sackfrto(tp)) {
3516 /* RFC4138 shortcoming in step 2; should also have case c):
3517 * ACK isn't duplicate nor advances window, e.g., opposite dir
3518 * data, winupdate
3519 */
3520 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3521 return 1;
3522
3523 if (!(flag & FLAG_DATA_ACKED)) {
3524 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3525 flag);
3526 return 1;
3527 }
3528 } else {
3529 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3530 /* Prevent sending of new data. */
3531 tp->snd_cwnd = min(tp->snd_cwnd,
3532 tcp_packets_in_flight(tp));
3533 return 1;
3534 }
3535
3536 if ((tp->frto_counter >= 2) &&
3537 (!(flag & FLAG_FORWARD_PROGRESS) ||
3538 ((flag & FLAG_DATA_SACKED) &&
3539 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3540 /* RFC4138 shortcoming (see comment above) */
3541 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3542 (flag & FLAG_NOT_DUP))
3543 return 1;
3544
3545 tcp_enter_frto_loss(sk, 3, flag);
3546 return 1;
3547 }
3548 }
3549
3550 if (tp->frto_counter == 1) {
3551 /* tcp_may_send_now needs to see updated state */
3552 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3553 tp->frto_counter = 2;
3554
3555 if (!tcp_may_send_now(sk))
3556 tcp_enter_frto_loss(sk, 2, flag);
3557
3558 return 1;
3559 } else {
3560 switch (sysctl_tcp_frto_response) {
3561 case 2:
3562 tcp_undo_spur_to_response(sk, flag);
3563 break;
3564 case 1:
3565 tcp_conservative_spur_to_response(tp);
3566 break;
3567 default:
3568 tcp_ratehalving_spur_to_response(sk);
3569 break;
3570 }
3571 tp->frto_counter = 0;
3572 tp->undo_marker = 0;
3573 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3574 }
3575 return 0;
3576 }
3577
3578 /* This routine deals with incoming acks, but not outgoing ones. */
3579 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3580 {
3581 struct inet_connection_sock *icsk = inet_csk(sk);
3582 struct tcp_sock *tp = tcp_sk(sk);
3583 u32 prior_snd_una = tp->snd_una;
3584 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3585 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3586 u32 prior_in_flight;
3587 u32 prior_fackets;
3588 int prior_packets;
3589 int frto_cwnd = 0;
3590
3591 /* If the ack is older than previous acks
3592 * then we can probably ignore it.
3593 */
3594 if (before(ack, prior_snd_una))
3595 goto old_ack;
3596
3597 /* If the ack includes data we haven't sent yet, discard
3598 * this segment (RFC793 Section 3.9).
3599 */
3600 if (after(ack, tp->snd_nxt))
3601 goto invalid_ack;
3602
3603 if (after(ack, prior_snd_una))
3604 flag |= FLAG_SND_UNA_ADVANCED;
3605
3606 if (sysctl_tcp_abc) {
3607 if (icsk->icsk_ca_state < TCP_CA_CWR)
3608 tp->bytes_acked += ack - prior_snd_una;
3609 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3610 /* we assume just one segment left network */
3611 tp->bytes_acked += min(ack - prior_snd_una,
3612 tp->mss_cache);
3613 }
3614
3615 prior_fackets = tp->fackets_out;
3616 prior_in_flight = tcp_packets_in_flight(tp);
3617
3618 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3619 /* Window is constant, pure forward advance.
3620 * No more checks are required.
3621 * Note, we use the fact that SND.UNA>=SND.WL2.
3622 */
3623 tcp_update_wl(tp, ack_seq);
3624 tp->snd_una = ack;
3625 flag |= FLAG_WIN_UPDATE;
3626
3627 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3628
3629 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3630 } else {
3631 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3632 flag |= FLAG_DATA;
3633 else
3634 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3635
3636 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3637
3638 if (TCP_SKB_CB(skb)->sacked)
3639 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3640
3641 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3642 flag |= FLAG_ECE;
3643
3644 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3645 }
3646
3647 /* We passed data and got it acked, remove any soft error
3648 * log. Something worked...
3649 */
3650 sk->sk_err_soft = 0;
3651 icsk->icsk_probes_out = 0;
3652 tp->rcv_tstamp = tcp_time_stamp;
3653 prior_packets = tp->packets_out;
3654 if (!prior_packets)
3655 goto no_queue;
3656
3657 /* See if we can take anything off of the retransmit queue. */
3658 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3659
3660 if (tp->frto_counter)
3661 frto_cwnd = tcp_process_frto(sk, flag);
3662 /* Guarantee sacktag reordering detection against wrap-arounds */
3663 if (before(tp->frto_highmark, tp->snd_una))
3664 tp->frto_highmark = 0;
3665
3666 if (tcp_ack_is_dubious(sk, flag)) {
3667 /* Advance CWND, if state allows this. */
3668 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3669 tcp_may_raise_cwnd(sk, flag))
3670 tcp_cong_avoid(sk, ack, prior_in_flight);
3671 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3672 flag);
3673 } else {
3674 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3675 tcp_cong_avoid(sk, ack, prior_in_flight);
3676 }
3677
3678 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3679 dst_confirm(sk->sk_dst_cache);
3680
3681 return 1;
3682
3683 no_queue:
3684 /* If this ack opens up a zero window, clear backoff. It was
3685 * being used to time the probes, and is probably far higher than
3686 * it needs to be for normal retransmission.
3687 */
3688 if (tcp_send_head(sk))
3689 tcp_ack_probe(sk);
3690 return 1;
3691
3692 invalid_ack:
3693 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3694 return -1;
3695
3696 old_ack:
3697 if (TCP_SKB_CB(skb)->sacked) {
3698 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3699 if (icsk->icsk_ca_state == TCP_CA_Open)
3700 tcp_try_keep_open(sk);
3701 }
3702
3703 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3704 return 0;
3705 }
3706
3707 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3708 * But, this can also be called on packets in the established flow when
3709 * the fast version below fails.
3710 */
3711 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3712 int estab)
3713 {
3714 unsigned char *ptr;
3715 struct tcphdr *th = tcp_hdr(skb);
3716 int length = (th->doff * 4) - sizeof(struct tcphdr);
3717
3718 ptr = (unsigned char *)(th + 1);
3719 opt_rx->saw_tstamp = 0;
3720
3721 while (length > 0) {
3722 int opcode = *ptr++;
3723 int opsize;
3724
3725 switch (opcode) {
3726 case TCPOPT_EOL:
3727 return;
3728 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3729 length--;
3730 continue;
3731 default:
3732 opsize = *ptr++;
3733 if (opsize < 2) /* "silly options" */
3734 return;
3735 if (opsize > length)
3736 return; /* don't parse partial options */
3737 switch (opcode) {
3738 case TCPOPT_MSS:
3739 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3740 u16 in_mss = get_unaligned_be16(ptr);
3741 if (in_mss) {
3742 if (opt_rx->user_mss &&
3743 opt_rx->user_mss < in_mss)
3744 in_mss = opt_rx->user_mss;
3745 opt_rx->mss_clamp = in_mss;
3746 }
3747 }
3748 break;
3749 case TCPOPT_WINDOW:
3750 if (opsize == TCPOLEN_WINDOW && th->syn &&
3751 !estab && sysctl_tcp_window_scaling) {
3752 __u8 snd_wscale = *(__u8 *)ptr;
3753 opt_rx->wscale_ok = 1;
3754 if (snd_wscale > 14) {
3755 if (net_ratelimit())
3756 printk(KERN_INFO "tcp_parse_options: Illegal window "
3757 "scaling value %d >14 received.\n",
3758 snd_wscale);
3759 snd_wscale = 14;
3760 }
3761 opt_rx->snd_wscale = snd_wscale;
3762 }
3763 break;
3764 case TCPOPT_TIMESTAMP:
3765 if ((opsize == TCPOLEN_TIMESTAMP) &&
3766 ((estab && opt_rx->tstamp_ok) ||
3767 (!estab && sysctl_tcp_timestamps))) {
3768 opt_rx->saw_tstamp = 1;
3769 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3770 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3771 }
3772 break;
3773 case TCPOPT_SACK_PERM:
3774 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3775 !estab && sysctl_tcp_sack) {
3776 opt_rx->sack_ok = 1;
3777 tcp_sack_reset(opt_rx);
3778 }
3779 break;
3780
3781 case TCPOPT_SACK:
3782 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3783 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3784 opt_rx->sack_ok) {
3785 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3786 }
3787 break;
3788 #ifdef CONFIG_TCP_MD5SIG
3789 case TCPOPT_MD5SIG:
3790 /*
3791 * The MD5 Hash has already been
3792 * checked (see tcp_v{4,6}_do_rcv()).
3793 */
3794 break;
3795 #endif
3796 }
3797
3798 ptr += opsize-2;
3799 length -= opsize;
3800 }
3801 }
3802 }
3803
3804 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3805 {
3806 __be32 *ptr = (__be32 *)(th + 1);
3807
3808 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3809 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3810 tp->rx_opt.saw_tstamp = 1;
3811 ++ptr;
3812 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3813 ++ptr;
3814 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3815 return 1;
3816 }
3817 return 0;
3818 }
3819
3820 /* Fast parse options. This hopes to only see timestamps.
3821 * If it is wrong it falls back on tcp_parse_options().
3822 */
3823 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3824 struct tcp_sock *tp)
3825 {
3826 if (th->doff == sizeof(struct tcphdr) >> 2) {
3827 tp->rx_opt.saw_tstamp = 0;
3828 return 0;
3829 } else if (tp->rx_opt.tstamp_ok &&
3830 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3831 if (tcp_parse_aligned_timestamp(tp, th))
3832 return 1;
3833 }
3834 tcp_parse_options(skb, &tp->rx_opt, 1);
3835 return 1;
3836 }
3837
3838 #ifdef CONFIG_TCP_MD5SIG
3839 /*
3840 * Parse MD5 Signature option
3841 */
3842 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3843 {
3844 int length = (th->doff << 2) - sizeof (*th);
3845 u8 *ptr = (u8*)(th + 1);
3846
3847 /* If the TCP option is too short, we can short cut */
3848 if (length < TCPOLEN_MD5SIG)
3849 return NULL;
3850
3851 while (length > 0) {
3852 int opcode = *ptr++;
3853 int opsize;
3854
3855 switch(opcode) {
3856 case TCPOPT_EOL:
3857 return NULL;
3858 case TCPOPT_NOP:
3859 length--;
3860 continue;
3861 default:
3862 opsize = *ptr++;
3863 if (opsize < 2 || opsize > length)
3864 return NULL;
3865 if (opcode == TCPOPT_MD5SIG)
3866 return ptr;
3867 }
3868 ptr += opsize - 2;
3869 length -= opsize;
3870 }
3871 return NULL;
3872 }
3873 #endif
3874
3875 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3876 {
3877 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3878 tp->rx_opt.ts_recent_stamp = get_seconds();
3879 }
3880
3881 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3882 {
3883 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3884 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3885 * extra check below makes sure this can only happen
3886 * for pure ACK frames. -DaveM
3887 *
3888 * Not only, also it occurs for expired timestamps.
3889 */
3890
3891 if (tcp_paws_check(&tp->rx_opt, 0))
3892 tcp_store_ts_recent(tp);
3893 }
3894 }
3895
3896 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3897 *
3898 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3899 * it can pass through stack. So, the following predicate verifies that
3900 * this segment is not used for anything but congestion avoidance or
3901 * fast retransmit. Moreover, we even are able to eliminate most of such
3902 * second order effects, if we apply some small "replay" window (~RTO)
3903 * to timestamp space.
3904 *
3905 * All these measures still do not guarantee that we reject wrapped ACKs
3906 * on networks with high bandwidth, when sequence space is recycled fastly,
3907 * but it guarantees that such events will be very rare and do not affect
3908 * connection seriously. This doesn't look nice, but alas, PAWS is really
3909 * buggy extension.
3910 *
3911 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3912 * states that events when retransmit arrives after original data are rare.
3913 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3914 * the biggest problem on large power networks even with minor reordering.
3915 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3916 * up to bandwidth of 18Gigabit/sec. 8) ]
3917 */
3918
3919 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3920 {
3921 struct tcp_sock *tp = tcp_sk(sk);
3922 struct tcphdr *th = tcp_hdr(skb);
3923 u32 seq = TCP_SKB_CB(skb)->seq;
3924 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3925
3926 return (/* 1. Pure ACK with correct sequence number. */
3927 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3928
3929 /* 2. ... and duplicate ACK. */
3930 ack == tp->snd_una &&
3931
3932 /* 3. ... and does not update window. */
3933 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3934
3935 /* 4. ... and sits in replay window. */
3936 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3937 }
3938
3939 static inline int tcp_paws_discard(const struct sock *sk,
3940 const struct sk_buff *skb)
3941 {
3942 const struct tcp_sock *tp = tcp_sk(sk);
3943
3944 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3945 !tcp_disordered_ack(sk, skb);
3946 }
3947
3948 /* Check segment sequence number for validity.
3949 *
3950 * Segment controls are considered valid, if the segment
3951 * fits to the window after truncation to the window. Acceptability
3952 * of data (and SYN, FIN, of course) is checked separately.
3953 * See tcp_data_queue(), for example.
3954 *
3955 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3956 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3957 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3958 * (borrowed from freebsd)
3959 */
3960
3961 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3962 {
3963 return !before(end_seq, tp->rcv_wup) &&
3964 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3965 }
3966
3967 /* When we get a reset we do this. */
3968 static void tcp_reset(struct sock *sk)
3969 {
3970 /* We want the right error as BSD sees it (and indeed as we do). */
3971 switch (sk->sk_state) {
3972 case TCP_SYN_SENT:
3973 sk->sk_err = ECONNREFUSED;
3974 break;
3975 case TCP_CLOSE_WAIT:
3976 sk->sk_err = EPIPE;
3977 break;
3978 case TCP_CLOSE:
3979 return;
3980 default:
3981 sk->sk_err = ECONNRESET;
3982 }
3983
3984 if (!sock_flag(sk, SOCK_DEAD))
3985 sk->sk_error_report(sk);
3986
3987 tcp_done(sk);
3988 }
3989
3990 /*
3991 * Process the FIN bit. This now behaves as it is supposed to work
3992 * and the FIN takes effect when it is validly part of sequence
3993 * space. Not before when we get holes.
3994 *
3995 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3996 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3997 * TIME-WAIT)
3998 *
3999 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4000 * close and we go into CLOSING (and later onto TIME-WAIT)
4001 *
4002 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4003 */
4004 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4005 {
4006 struct tcp_sock *tp = tcp_sk(sk);
4007
4008 inet_csk_schedule_ack(sk);
4009
4010 sk->sk_shutdown |= RCV_SHUTDOWN;
4011 sock_set_flag(sk, SOCK_DONE);
4012
4013 switch (sk->sk_state) {
4014 case TCP_SYN_RECV:
4015 case TCP_ESTABLISHED:
4016 /* Move to CLOSE_WAIT */
4017 tcp_set_state(sk, TCP_CLOSE_WAIT);
4018 inet_csk(sk)->icsk_ack.pingpong = 1;
4019 break;
4020
4021 case TCP_CLOSE_WAIT:
4022 case TCP_CLOSING:
4023 /* Received a retransmission of the FIN, do
4024 * nothing.
4025 */
4026 break;
4027 case TCP_LAST_ACK:
4028 /* RFC793: Remain in the LAST-ACK state. */
4029 break;
4030
4031 case TCP_FIN_WAIT1:
4032 /* This case occurs when a simultaneous close
4033 * happens, we must ack the received FIN and
4034 * enter the CLOSING state.
4035 */
4036 tcp_send_ack(sk);
4037 tcp_set_state(sk, TCP_CLOSING);
4038 break;
4039 case TCP_FIN_WAIT2:
4040 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4041 tcp_send_ack(sk);
4042 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4043 break;
4044 default:
4045 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4046 * cases we should never reach this piece of code.
4047 */
4048 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4049 __func__, sk->sk_state);
4050 break;
4051 }
4052
4053 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4054 * Probably, we should reset in this case. For now drop them.
4055 */
4056 __skb_queue_purge(&tp->out_of_order_queue);
4057 if (tcp_is_sack(tp))
4058 tcp_sack_reset(&tp->rx_opt);
4059 sk_mem_reclaim(sk);
4060
4061 if (!sock_flag(sk, SOCK_DEAD)) {
4062 sk->sk_state_change(sk);
4063
4064 /* Do not send POLL_HUP for half duplex close. */
4065 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4066 sk->sk_state == TCP_CLOSE)
4067 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4068 else
4069 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4070 }
4071 }
4072
4073 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4074 u32 end_seq)
4075 {
4076 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4077 if (before(seq, sp->start_seq))
4078 sp->start_seq = seq;
4079 if (after(end_seq, sp->end_seq))
4080 sp->end_seq = end_seq;
4081 return 1;
4082 }
4083 return 0;
4084 }
4085
4086 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4087 {
4088 struct tcp_sock *tp = tcp_sk(sk);
4089
4090 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4091 int mib_idx;
4092
4093 if (before(seq, tp->rcv_nxt))
4094 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4095 else
4096 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4097
4098 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4099
4100 tp->rx_opt.dsack = 1;
4101 tp->duplicate_sack[0].start_seq = seq;
4102 tp->duplicate_sack[0].end_seq = end_seq;
4103 }
4104 }
4105
4106 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4107 {
4108 struct tcp_sock *tp = tcp_sk(sk);
4109
4110 if (!tp->rx_opt.dsack)
4111 tcp_dsack_set(sk, seq, end_seq);
4112 else
4113 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4114 }
4115
4116 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4117 {
4118 struct tcp_sock *tp = tcp_sk(sk);
4119
4120 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4121 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4122 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4123 tcp_enter_quickack_mode(sk);
4124
4125 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4126 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4127
4128 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4129 end_seq = tp->rcv_nxt;
4130 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4131 }
4132 }
4133
4134 tcp_send_ack(sk);
4135 }
4136
4137 /* These routines update the SACK block as out-of-order packets arrive or
4138 * in-order packets close up the sequence space.
4139 */
4140 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4141 {
4142 int this_sack;
4143 struct tcp_sack_block *sp = &tp->selective_acks[0];
4144 struct tcp_sack_block *swalk = sp + 1;
4145
4146 /* See if the recent change to the first SACK eats into
4147 * or hits the sequence space of other SACK blocks, if so coalesce.
4148 */
4149 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4150 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4151 int i;
4152
4153 /* Zap SWALK, by moving every further SACK up by one slot.
4154 * Decrease num_sacks.
4155 */
4156 tp->rx_opt.num_sacks--;
4157 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4158 sp[i] = sp[i + 1];
4159 continue;
4160 }
4161 this_sack++, swalk++;
4162 }
4163 }
4164
4165 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4166 {
4167 struct tcp_sock *tp = tcp_sk(sk);
4168 struct tcp_sack_block *sp = &tp->selective_acks[0];
4169 int cur_sacks = tp->rx_opt.num_sacks;
4170 int this_sack;
4171
4172 if (!cur_sacks)
4173 goto new_sack;
4174
4175 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4176 if (tcp_sack_extend(sp, seq, end_seq)) {
4177 /* Rotate this_sack to the first one. */
4178 for (; this_sack > 0; this_sack--, sp--)
4179 swap(*sp, *(sp - 1));
4180 if (cur_sacks > 1)
4181 tcp_sack_maybe_coalesce(tp);
4182 return;
4183 }
4184 }
4185
4186 /* Could not find an adjacent existing SACK, build a new one,
4187 * put it at the front, and shift everyone else down. We
4188 * always know there is at least one SACK present already here.
4189 *
4190 * If the sack array is full, forget about the last one.
4191 */
4192 if (this_sack >= TCP_NUM_SACKS) {
4193 this_sack--;
4194 tp->rx_opt.num_sacks--;
4195 sp--;
4196 }
4197 for (; this_sack > 0; this_sack--, sp--)
4198 *sp = *(sp - 1);
4199
4200 new_sack:
4201 /* Build the new head SACK, and we're done. */
4202 sp->start_seq = seq;
4203 sp->end_seq = end_seq;
4204 tp->rx_opt.num_sacks++;
4205 }
4206
4207 /* RCV.NXT advances, some SACKs should be eaten. */
4208
4209 static void tcp_sack_remove(struct tcp_sock *tp)
4210 {
4211 struct tcp_sack_block *sp = &tp->selective_acks[0];
4212 int num_sacks = tp->rx_opt.num_sacks;
4213 int this_sack;
4214
4215 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4216 if (skb_queue_empty(&tp->out_of_order_queue)) {
4217 tp->rx_opt.num_sacks = 0;
4218 return;
4219 }
4220
4221 for (this_sack = 0; this_sack < num_sacks;) {
4222 /* Check if the start of the sack is covered by RCV.NXT. */
4223 if (!before(tp->rcv_nxt, sp->start_seq)) {
4224 int i;
4225
4226 /* RCV.NXT must cover all the block! */
4227 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4228
4229 /* Zap this SACK, by moving forward any other SACKS. */
4230 for (i=this_sack+1; i < num_sacks; i++)
4231 tp->selective_acks[i-1] = tp->selective_acks[i];
4232 num_sacks--;
4233 continue;
4234 }
4235 this_sack++;
4236 sp++;
4237 }
4238 tp->rx_opt.num_sacks = num_sacks;
4239 }
4240
4241 /* This one checks to see if we can put data from the
4242 * out_of_order queue into the receive_queue.
4243 */
4244 static void tcp_ofo_queue(struct sock *sk)
4245 {
4246 struct tcp_sock *tp = tcp_sk(sk);
4247 __u32 dsack_high = tp->rcv_nxt;
4248 struct sk_buff *skb;
4249
4250 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4251 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4252 break;
4253
4254 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4255 __u32 dsack = dsack_high;
4256 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4257 dsack_high = TCP_SKB_CB(skb)->end_seq;
4258 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4259 }
4260
4261 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4262 SOCK_DEBUG(sk, "ofo packet was already received \n");
4263 __skb_unlink(skb, &tp->out_of_order_queue);
4264 __kfree_skb(skb);
4265 continue;
4266 }
4267 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4268 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4269 TCP_SKB_CB(skb)->end_seq);
4270
4271 __skb_unlink(skb, &tp->out_of_order_queue);
4272 __skb_queue_tail(&sk->sk_receive_queue, skb);
4273 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4274 if (tcp_hdr(skb)->fin)
4275 tcp_fin(skb, sk, tcp_hdr(skb));
4276 }
4277 }
4278
4279 static int tcp_prune_ofo_queue(struct sock *sk);
4280 static int tcp_prune_queue(struct sock *sk);
4281
4282 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4283 {
4284 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4285 !sk_rmem_schedule(sk, size)) {
4286
4287 if (tcp_prune_queue(sk) < 0)
4288 return -1;
4289
4290 if (!sk_rmem_schedule(sk, size)) {
4291 if (!tcp_prune_ofo_queue(sk))
4292 return -1;
4293
4294 if (!sk_rmem_schedule(sk, size))
4295 return -1;
4296 }
4297 }
4298 return 0;
4299 }
4300
4301 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4302 {
4303 struct tcphdr *th = tcp_hdr(skb);
4304 struct tcp_sock *tp = tcp_sk(sk);
4305 int eaten = -1;
4306
4307 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4308 goto drop;
4309
4310 __skb_pull(skb, th->doff * 4);
4311
4312 TCP_ECN_accept_cwr(tp, skb);
4313
4314 tp->rx_opt.dsack = 0;
4315
4316 /* Queue data for delivery to the user.
4317 * Packets in sequence go to the receive queue.
4318 * Out of sequence packets to the out_of_order_queue.
4319 */
4320 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4321 if (tcp_receive_window(tp) == 0)
4322 goto out_of_window;
4323
4324 /* Ok. In sequence. In window. */
4325 if (tp->ucopy.task == current &&
4326 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4327 sock_owned_by_user(sk) && !tp->urg_data) {
4328 int chunk = min_t(unsigned int, skb->len,
4329 tp->ucopy.len);
4330
4331 __set_current_state(TASK_RUNNING);
4332
4333 local_bh_enable();
4334 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4335 tp->ucopy.len -= chunk;
4336 tp->copied_seq += chunk;
4337 eaten = (chunk == skb->len && !th->fin);
4338 tcp_rcv_space_adjust(sk);
4339 }
4340 local_bh_disable();
4341 }
4342
4343 if (eaten <= 0) {
4344 queue_and_out:
4345 if (eaten < 0 &&
4346 tcp_try_rmem_schedule(sk, skb->truesize))
4347 goto drop;
4348
4349 skb_set_owner_r(skb, sk);
4350 __skb_queue_tail(&sk->sk_receive_queue, skb);
4351 }
4352 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4353 if (skb->len)
4354 tcp_event_data_recv(sk, skb);
4355 if (th->fin)
4356 tcp_fin(skb, sk, th);
4357
4358 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4359 tcp_ofo_queue(sk);
4360
4361 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4362 * gap in queue is filled.
4363 */
4364 if (skb_queue_empty(&tp->out_of_order_queue))
4365 inet_csk(sk)->icsk_ack.pingpong = 0;
4366 }
4367
4368 if (tp->rx_opt.num_sacks)
4369 tcp_sack_remove(tp);
4370
4371 tcp_fast_path_check(sk);
4372
4373 if (eaten > 0)
4374 __kfree_skb(skb);
4375 else if (!sock_flag(sk, SOCK_DEAD))
4376 sk->sk_data_ready(sk, 0);
4377 return;
4378 }
4379
4380 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4381 /* A retransmit, 2nd most common case. Force an immediate ack. */
4382 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4383 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4384
4385 out_of_window:
4386 tcp_enter_quickack_mode(sk);
4387 inet_csk_schedule_ack(sk);
4388 drop:
4389 __kfree_skb(skb);
4390 return;
4391 }
4392
4393 /* Out of window. F.e. zero window probe. */
4394 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4395 goto out_of_window;
4396
4397 tcp_enter_quickack_mode(sk);
4398
4399 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4400 /* Partial packet, seq < rcv_next < end_seq */
4401 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4402 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4403 TCP_SKB_CB(skb)->end_seq);
4404
4405 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4406
4407 /* If window is closed, drop tail of packet. But after
4408 * remembering D-SACK for its head made in previous line.
4409 */
4410 if (!tcp_receive_window(tp))
4411 goto out_of_window;
4412 goto queue_and_out;
4413 }
4414
4415 TCP_ECN_check_ce(tp, skb);
4416
4417 if (tcp_try_rmem_schedule(sk, skb->truesize))
4418 goto drop;
4419
4420 /* Disable header prediction. */
4421 tp->pred_flags = 0;
4422 inet_csk_schedule_ack(sk);
4423
4424 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4425 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4426
4427 skb_set_owner_r(skb, sk);
4428
4429 if (!skb_peek(&tp->out_of_order_queue)) {
4430 /* Initial out of order segment, build 1 SACK. */
4431 if (tcp_is_sack(tp)) {
4432 tp->rx_opt.num_sacks = 1;
4433 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4434 tp->selective_acks[0].end_seq =
4435 TCP_SKB_CB(skb)->end_seq;
4436 }
4437 __skb_queue_head(&tp->out_of_order_queue, skb);
4438 } else {
4439 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4440 u32 seq = TCP_SKB_CB(skb)->seq;
4441 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4442
4443 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4444 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4445
4446 if (!tp->rx_opt.num_sacks ||
4447 tp->selective_acks[0].end_seq != seq)
4448 goto add_sack;
4449
4450 /* Common case: data arrive in order after hole. */
4451 tp->selective_acks[0].end_seq = end_seq;
4452 return;
4453 }
4454
4455 /* Find place to insert this segment. */
4456 do {
4457 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4458 break;
4459 } while ((skb1 = skb1->prev) !=
4460 (struct sk_buff *)&tp->out_of_order_queue);
4461
4462 /* Do skb overlap to previous one? */
4463 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4464 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4465 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4466 /* All the bits are present. Drop. */
4467 __kfree_skb(skb);
4468 tcp_dsack_set(sk, seq, end_seq);
4469 goto add_sack;
4470 }
4471 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4472 /* Partial overlap. */
4473 tcp_dsack_set(sk, seq,
4474 TCP_SKB_CB(skb1)->end_seq);
4475 } else {
4476 skb1 = skb1->prev;
4477 }
4478 }
4479 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4480
4481 /* And clean segments covered by new one as whole. */
4482 while ((skb1 = skb->next) !=
4483 (struct sk_buff *)&tp->out_of_order_queue &&
4484 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4485 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4486 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4487 end_seq);
4488 break;
4489 }
4490 __skb_unlink(skb1, &tp->out_of_order_queue);
4491 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4492 TCP_SKB_CB(skb1)->end_seq);
4493 __kfree_skb(skb1);
4494 }
4495
4496 add_sack:
4497 if (tcp_is_sack(tp))
4498 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4499 }
4500 }
4501
4502 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4503 struct sk_buff_head *list)
4504 {
4505 struct sk_buff *next = skb->next;
4506
4507 __skb_unlink(skb, list);
4508 __kfree_skb(skb);
4509 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4510
4511 return next;
4512 }
4513
4514 /* Collapse contiguous sequence of skbs head..tail with
4515 * sequence numbers start..end.
4516 * Segments with FIN/SYN are not collapsed (only because this
4517 * simplifies code)
4518 */
4519 static void
4520 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4521 struct sk_buff *head, struct sk_buff *tail,
4522 u32 start, u32 end)
4523 {
4524 struct sk_buff *skb;
4525
4526 /* First, check that queue is collapsible and find
4527 * the point where collapsing can be useful. */
4528 for (skb = head; skb != tail;) {
4529 /* No new bits? It is possible on ofo queue. */
4530 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4531 skb = tcp_collapse_one(sk, skb, list);
4532 continue;
4533 }
4534
4535 /* The first skb to collapse is:
4536 * - not SYN/FIN and
4537 * - bloated or contains data before "start" or
4538 * overlaps to the next one.
4539 */
4540 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4541 (tcp_win_from_space(skb->truesize) > skb->len ||
4542 before(TCP_SKB_CB(skb)->seq, start) ||
4543 (skb->next != tail &&
4544 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4545 break;
4546
4547 /* Decided to skip this, advance start seq. */
4548 start = TCP_SKB_CB(skb)->end_seq;
4549 skb = skb->next;
4550 }
4551 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4552 return;
4553
4554 while (before(start, end)) {
4555 struct sk_buff *nskb;
4556 unsigned int header = skb_headroom(skb);
4557 int copy = SKB_MAX_ORDER(header, 0);
4558
4559 /* Too big header? This can happen with IPv6. */
4560 if (copy < 0)
4561 return;
4562 if (end - start < copy)
4563 copy = end - start;
4564 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4565 if (!nskb)
4566 return;
4567
4568 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4569 skb_set_network_header(nskb, (skb_network_header(skb) -
4570 skb->head));
4571 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4572 skb->head));
4573 skb_reserve(nskb, header);
4574 memcpy(nskb->head, skb->head, header);
4575 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4576 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4577 __skb_queue_before(list, skb, nskb);
4578 skb_set_owner_r(nskb, sk);
4579
4580 /* Copy data, releasing collapsed skbs. */
4581 while (copy > 0) {
4582 int offset = start - TCP_SKB_CB(skb)->seq;
4583 int size = TCP_SKB_CB(skb)->end_seq - start;
4584
4585 BUG_ON(offset < 0);
4586 if (size > 0) {
4587 size = min(copy, size);
4588 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4589 BUG();
4590 TCP_SKB_CB(nskb)->end_seq += size;
4591 copy -= size;
4592 start += size;
4593 }
4594 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4595 skb = tcp_collapse_one(sk, skb, list);
4596 if (skb == tail ||
4597 tcp_hdr(skb)->syn ||
4598 tcp_hdr(skb)->fin)
4599 return;
4600 }
4601 }
4602 }
4603 }
4604
4605 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4606 * and tcp_collapse() them until all the queue is collapsed.
4607 */
4608 static void tcp_collapse_ofo_queue(struct sock *sk)
4609 {
4610 struct tcp_sock *tp = tcp_sk(sk);
4611 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4612 struct sk_buff *head;
4613 u32 start, end;
4614
4615 if (skb == NULL)
4616 return;
4617
4618 start = TCP_SKB_CB(skb)->seq;
4619 end = TCP_SKB_CB(skb)->end_seq;
4620 head = skb;
4621
4622 for (;;) {
4623 skb = skb->next;
4624
4625 /* Segment is terminated when we see gap or when
4626 * we are at the end of all the queue. */
4627 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4628 after(TCP_SKB_CB(skb)->seq, end) ||
4629 before(TCP_SKB_CB(skb)->end_seq, start)) {
4630 tcp_collapse(sk, &tp->out_of_order_queue,
4631 head, skb, start, end);
4632 head = skb;
4633 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4634 break;
4635 /* Start new segment */
4636 start = TCP_SKB_CB(skb)->seq;
4637 end = TCP_SKB_CB(skb)->end_seq;
4638 } else {
4639 if (before(TCP_SKB_CB(skb)->seq, start))
4640 start = TCP_SKB_CB(skb)->seq;
4641 if (after(TCP_SKB_CB(skb)->end_seq, end))
4642 end = TCP_SKB_CB(skb)->end_seq;
4643 }
4644 }
4645 }
4646
4647 /*
4648 * Purge the out-of-order queue.
4649 * Return true if queue was pruned.
4650 */
4651 static int tcp_prune_ofo_queue(struct sock *sk)
4652 {
4653 struct tcp_sock *tp = tcp_sk(sk);
4654 int res = 0;
4655
4656 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4657 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4658 __skb_queue_purge(&tp->out_of_order_queue);
4659
4660 /* Reset SACK state. A conforming SACK implementation will
4661 * do the same at a timeout based retransmit. When a connection
4662 * is in a sad state like this, we care only about integrity
4663 * of the connection not performance.
4664 */
4665 if (tp->rx_opt.sack_ok)
4666 tcp_sack_reset(&tp->rx_opt);
4667 sk_mem_reclaim(sk);
4668 res = 1;
4669 }
4670 return res;
4671 }
4672
4673 /* Reduce allocated memory if we can, trying to get
4674 * the socket within its memory limits again.
4675 *
4676 * Return less than zero if we should start dropping frames
4677 * until the socket owning process reads some of the data
4678 * to stabilize the situation.
4679 */
4680 static int tcp_prune_queue(struct sock *sk)
4681 {
4682 struct tcp_sock *tp = tcp_sk(sk);
4683
4684 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4685
4686 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4687
4688 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4689 tcp_clamp_window(sk);
4690 else if (tcp_memory_pressure)
4691 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4692
4693 tcp_collapse_ofo_queue(sk);
4694 tcp_collapse(sk, &sk->sk_receive_queue,
4695 sk->sk_receive_queue.next,
4696 (struct sk_buff *)&sk->sk_receive_queue,
4697 tp->copied_seq, tp->rcv_nxt);
4698 sk_mem_reclaim(sk);
4699
4700 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4701 return 0;
4702
4703 /* Collapsing did not help, destructive actions follow.
4704 * This must not ever occur. */
4705
4706 tcp_prune_ofo_queue(sk);
4707
4708 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4709 return 0;
4710
4711 /* If we are really being abused, tell the caller to silently
4712 * drop receive data on the floor. It will get retransmitted
4713 * and hopefully then we'll have sufficient space.
4714 */
4715 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4716
4717 /* Massive buffer overcommit. */
4718 tp->pred_flags = 0;
4719 return -1;
4720 }
4721
4722 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4723 * As additional protections, we do not touch cwnd in retransmission phases,
4724 * and if application hit its sndbuf limit recently.
4725 */
4726 void tcp_cwnd_application_limited(struct sock *sk)
4727 {
4728 struct tcp_sock *tp = tcp_sk(sk);
4729
4730 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4731 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4732 /* Limited by application or receiver window. */
4733 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4734 u32 win_used = max(tp->snd_cwnd_used, init_win);
4735 if (win_used < tp->snd_cwnd) {
4736 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4737 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4738 }
4739 tp->snd_cwnd_used = 0;
4740 }
4741 tp->snd_cwnd_stamp = tcp_time_stamp;
4742 }
4743
4744 static int tcp_should_expand_sndbuf(struct sock *sk)
4745 {
4746 struct tcp_sock *tp = tcp_sk(sk);
4747
4748 /* If the user specified a specific send buffer setting, do
4749 * not modify it.
4750 */
4751 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4752 return 0;
4753
4754 /* If we are under global TCP memory pressure, do not expand. */
4755 if (tcp_memory_pressure)
4756 return 0;
4757
4758 /* If we are under soft global TCP memory pressure, do not expand. */
4759 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4760 return 0;
4761
4762 /* If we filled the congestion window, do not expand. */
4763 if (tp->packets_out >= tp->snd_cwnd)
4764 return 0;
4765
4766 return 1;
4767 }
4768
4769 /* When incoming ACK allowed to free some skb from write_queue,
4770 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4771 * on the exit from tcp input handler.
4772 *
4773 * PROBLEM: sndbuf expansion does not work well with largesend.
4774 */
4775 static void tcp_new_space(struct sock *sk)
4776 {
4777 struct tcp_sock *tp = tcp_sk(sk);
4778
4779 if (tcp_should_expand_sndbuf(sk)) {
4780 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4781 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4782 int demanded = max_t(unsigned int, tp->snd_cwnd,
4783 tp->reordering + 1);
4784 sndmem *= 2 * demanded;
4785 if (sndmem > sk->sk_sndbuf)
4786 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4787 tp->snd_cwnd_stamp = tcp_time_stamp;
4788 }
4789
4790 sk->sk_write_space(sk);
4791 }
4792
4793 static void tcp_check_space(struct sock *sk)
4794 {
4795 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4796 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4797 if (sk->sk_socket &&
4798 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4799 tcp_new_space(sk);
4800 }
4801 }
4802
4803 static inline void tcp_data_snd_check(struct sock *sk)
4804 {
4805 tcp_push_pending_frames(sk);
4806 tcp_check_space(sk);
4807 }
4808
4809 /*
4810 * Check if sending an ack is needed.
4811 */
4812 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4813 {
4814 struct tcp_sock *tp = tcp_sk(sk);
4815
4816 /* More than one full frame received... */
4817 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4818 /* ... and right edge of window advances far enough.
4819 * (tcp_recvmsg() will send ACK otherwise). Or...
4820 */
4821 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4822 /* We ACK each frame or... */
4823 tcp_in_quickack_mode(sk) ||
4824 /* We have out of order data. */
4825 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4826 /* Then ack it now */
4827 tcp_send_ack(sk);
4828 } else {
4829 /* Else, send delayed ack. */
4830 tcp_send_delayed_ack(sk);
4831 }
4832 }
4833
4834 static inline void tcp_ack_snd_check(struct sock *sk)
4835 {
4836 if (!inet_csk_ack_scheduled(sk)) {
4837 /* We sent a data segment already. */
4838 return;
4839 }
4840 __tcp_ack_snd_check(sk, 1);
4841 }
4842
4843 /*
4844 * This routine is only called when we have urgent data
4845 * signaled. Its the 'slow' part of tcp_urg. It could be
4846 * moved inline now as tcp_urg is only called from one
4847 * place. We handle URGent data wrong. We have to - as
4848 * BSD still doesn't use the correction from RFC961.
4849 * For 1003.1g we should support a new option TCP_STDURG to permit
4850 * either form (or just set the sysctl tcp_stdurg).
4851 */
4852
4853 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4854 {
4855 struct tcp_sock *tp = tcp_sk(sk);
4856 u32 ptr = ntohs(th->urg_ptr);
4857
4858 if (ptr && !sysctl_tcp_stdurg)
4859 ptr--;
4860 ptr += ntohl(th->seq);
4861
4862 /* Ignore urgent data that we've already seen and read. */
4863 if (after(tp->copied_seq, ptr))
4864 return;
4865
4866 /* Do not replay urg ptr.
4867 *
4868 * NOTE: interesting situation not covered by specs.
4869 * Misbehaving sender may send urg ptr, pointing to segment,
4870 * which we already have in ofo queue. We are not able to fetch
4871 * such data and will stay in TCP_URG_NOTYET until will be eaten
4872 * by recvmsg(). Seems, we are not obliged to handle such wicked
4873 * situations. But it is worth to think about possibility of some
4874 * DoSes using some hypothetical application level deadlock.
4875 */
4876 if (before(ptr, tp->rcv_nxt))
4877 return;
4878
4879 /* Do we already have a newer (or duplicate) urgent pointer? */
4880 if (tp->urg_data && !after(ptr, tp->urg_seq))
4881 return;
4882
4883 /* Tell the world about our new urgent pointer. */
4884 sk_send_sigurg(sk);
4885
4886 /* We may be adding urgent data when the last byte read was
4887 * urgent. To do this requires some care. We cannot just ignore
4888 * tp->copied_seq since we would read the last urgent byte again
4889 * as data, nor can we alter copied_seq until this data arrives
4890 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4891 *
4892 * NOTE. Double Dutch. Rendering to plain English: author of comment
4893 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4894 * and expect that both A and B disappear from stream. This is _wrong_.
4895 * Though this happens in BSD with high probability, this is occasional.
4896 * Any application relying on this is buggy. Note also, that fix "works"
4897 * only in this artificial test. Insert some normal data between A and B and we will
4898 * decline of BSD again. Verdict: it is better to remove to trap
4899 * buggy users.
4900 */
4901 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4902 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4903 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4904 tp->copied_seq++;
4905 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4906 __skb_unlink(skb, &sk->sk_receive_queue);
4907 __kfree_skb(skb);
4908 }
4909 }
4910
4911 tp->urg_data = TCP_URG_NOTYET;
4912 tp->urg_seq = ptr;
4913
4914 /* Disable header prediction. */
4915 tp->pred_flags = 0;
4916 }
4917
4918 /* This is the 'fast' part of urgent handling. */
4919 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4920 {
4921 struct tcp_sock *tp = tcp_sk(sk);
4922
4923 /* Check if we get a new urgent pointer - normally not. */
4924 if (th->urg)
4925 tcp_check_urg(sk, th);
4926
4927 /* Do we wait for any urgent data? - normally not... */
4928 if (tp->urg_data == TCP_URG_NOTYET) {
4929 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4930 th->syn;
4931
4932 /* Is the urgent pointer pointing into this packet? */
4933 if (ptr < skb->len) {
4934 u8 tmp;
4935 if (skb_copy_bits(skb, ptr, &tmp, 1))
4936 BUG();
4937 tp->urg_data = TCP_URG_VALID | tmp;
4938 if (!sock_flag(sk, SOCK_DEAD))
4939 sk->sk_data_ready(sk, 0);
4940 }
4941 }
4942 }
4943
4944 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4945 {
4946 struct tcp_sock *tp = tcp_sk(sk);
4947 int chunk = skb->len - hlen;
4948 int err;
4949
4950 local_bh_enable();
4951 if (skb_csum_unnecessary(skb))
4952 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4953 else
4954 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4955 tp->ucopy.iov);
4956
4957 if (!err) {
4958 tp->ucopy.len -= chunk;
4959 tp->copied_seq += chunk;
4960 tcp_rcv_space_adjust(sk);
4961 }
4962
4963 local_bh_disable();
4964 return err;
4965 }
4966
4967 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4968 struct sk_buff *skb)
4969 {
4970 __sum16 result;
4971
4972 if (sock_owned_by_user(sk)) {
4973 local_bh_enable();
4974 result = __tcp_checksum_complete(skb);
4975 local_bh_disable();
4976 } else {
4977 result = __tcp_checksum_complete(skb);
4978 }
4979 return result;
4980 }
4981
4982 static inline int tcp_checksum_complete_user(struct sock *sk,
4983 struct sk_buff *skb)
4984 {
4985 return !skb_csum_unnecessary(skb) &&
4986 __tcp_checksum_complete_user(sk, skb);
4987 }
4988
4989 #ifdef CONFIG_NET_DMA
4990 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4991 int hlen)
4992 {
4993 struct tcp_sock *tp = tcp_sk(sk);
4994 int chunk = skb->len - hlen;
4995 int dma_cookie;
4996 int copied_early = 0;
4997
4998 if (tp->ucopy.wakeup)
4999 return 0;
5000
5001 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5002 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5003
5004 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5005
5006 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5007 skb, hlen,
5008 tp->ucopy.iov, chunk,
5009 tp->ucopy.pinned_list);
5010
5011 if (dma_cookie < 0)
5012 goto out;
5013
5014 tp->ucopy.dma_cookie = dma_cookie;
5015 copied_early = 1;
5016
5017 tp->ucopy.len -= chunk;
5018 tp->copied_seq += chunk;
5019 tcp_rcv_space_adjust(sk);
5020
5021 if ((tp->ucopy.len == 0) ||
5022 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5023 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5024 tp->ucopy.wakeup = 1;
5025 sk->sk_data_ready(sk, 0);
5026 }
5027 } else if (chunk > 0) {
5028 tp->ucopy.wakeup = 1;
5029 sk->sk_data_ready(sk, 0);
5030 }
5031 out:
5032 return copied_early;
5033 }
5034 #endif /* CONFIG_NET_DMA */
5035
5036 /* Does PAWS and seqno based validation of an incoming segment, flags will
5037 * play significant role here.
5038 */
5039 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5040 struct tcphdr *th, int syn_inerr)
5041 {
5042 struct tcp_sock *tp = tcp_sk(sk);
5043
5044 /* RFC1323: H1. Apply PAWS check first. */
5045 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5046 tcp_paws_discard(sk, skb)) {
5047 if (!th->rst) {
5048 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5049 tcp_send_dupack(sk, skb);
5050 goto discard;
5051 }
5052 /* Reset is accepted even if it did not pass PAWS. */
5053 }
5054
5055 /* Step 1: check sequence number */
5056 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5057 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5058 * (RST) segments are validated by checking their SEQ-fields."
5059 * And page 69: "If an incoming segment is not acceptable,
5060 * an acknowledgment should be sent in reply (unless the RST
5061 * bit is set, if so drop the segment and return)".
5062 */
5063 if (!th->rst)
5064 tcp_send_dupack(sk, skb);
5065 goto discard;
5066 }
5067
5068 /* Step 2: check RST bit */
5069 if (th->rst) {
5070 tcp_reset(sk);
5071 goto discard;
5072 }
5073
5074 /* ts_recent update must be made after we are sure that the packet
5075 * is in window.
5076 */
5077 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5078
5079 /* step 3: check security and precedence [ignored] */
5080
5081 /* step 4: Check for a SYN in window. */
5082 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5083 if (syn_inerr)
5084 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5085 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5086 tcp_reset(sk);
5087 return -1;
5088 }
5089
5090 return 1;
5091
5092 discard:
5093 __kfree_skb(skb);
5094 return 0;
5095 }
5096
5097 /*
5098 * TCP receive function for the ESTABLISHED state.
5099 *
5100 * It is split into a fast path and a slow path. The fast path is
5101 * disabled when:
5102 * - A zero window was announced from us - zero window probing
5103 * is only handled properly in the slow path.
5104 * - Out of order segments arrived.
5105 * - Urgent data is expected.
5106 * - There is no buffer space left
5107 * - Unexpected TCP flags/window values/header lengths are received
5108 * (detected by checking the TCP header against pred_flags)
5109 * - Data is sent in both directions. Fast path only supports pure senders
5110 * or pure receivers (this means either the sequence number or the ack
5111 * value must stay constant)
5112 * - Unexpected TCP option.
5113 *
5114 * When these conditions are not satisfied it drops into a standard
5115 * receive procedure patterned after RFC793 to handle all cases.
5116 * The first three cases are guaranteed by proper pred_flags setting,
5117 * the rest is checked inline. Fast processing is turned on in
5118 * tcp_data_queue when everything is OK.
5119 */
5120 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5121 struct tcphdr *th, unsigned len)
5122 {
5123 struct tcp_sock *tp = tcp_sk(sk);
5124 int res;
5125
5126 /*
5127 * Header prediction.
5128 * The code loosely follows the one in the famous
5129 * "30 instruction TCP receive" Van Jacobson mail.
5130 *
5131 * Van's trick is to deposit buffers into socket queue
5132 * on a device interrupt, to call tcp_recv function
5133 * on the receive process context and checksum and copy
5134 * the buffer to user space. smart...
5135 *
5136 * Our current scheme is not silly either but we take the
5137 * extra cost of the net_bh soft interrupt processing...
5138 * We do checksum and copy also but from device to kernel.
5139 */
5140
5141 tp->rx_opt.saw_tstamp = 0;
5142
5143 /* pred_flags is 0xS?10 << 16 + snd_wnd
5144 * if header_prediction is to be made
5145 * 'S' will always be tp->tcp_header_len >> 2
5146 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5147 * turn it off (when there are holes in the receive
5148 * space for instance)
5149 * PSH flag is ignored.
5150 */
5151
5152 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5153 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5154 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5155 int tcp_header_len = tp->tcp_header_len;
5156
5157 /* Timestamp header prediction: tcp_header_len
5158 * is automatically equal to th->doff*4 due to pred_flags
5159 * match.
5160 */
5161
5162 /* Check timestamp */
5163 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5164 /* No? Slow path! */
5165 if (!tcp_parse_aligned_timestamp(tp, th))
5166 goto slow_path;
5167
5168 /* If PAWS failed, check it more carefully in slow path */
5169 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5170 goto slow_path;
5171
5172 /* DO NOT update ts_recent here, if checksum fails
5173 * and timestamp was corrupted part, it will result
5174 * in a hung connection since we will drop all
5175 * future packets due to the PAWS test.
5176 */
5177 }
5178
5179 if (len <= tcp_header_len) {
5180 /* Bulk data transfer: sender */
5181 if (len == tcp_header_len) {
5182 /* Predicted packet is in window by definition.
5183 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5184 * Hence, check seq<=rcv_wup reduces to:
5185 */
5186 if (tcp_header_len ==
5187 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5188 tp->rcv_nxt == tp->rcv_wup)
5189 tcp_store_ts_recent(tp);
5190
5191 /* We know that such packets are checksummed
5192 * on entry.
5193 */
5194 tcp_ack(sk, skb, 0);
5195 __kfree_skb(skb);
5196 tcp_data_snd_check(sk);
5197 return 0;
5198 } else { /* Header too small */
5199 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5200 goto discard;
5201 }
5202 } else {
5203 int eaten = 0;
5204 int copied_early = 0;
5205
5206 if (tp->copied_seq == tp->rcv_nxt &&
5207 len - tcp_header_len <= tp->ucopy.len) {
5208 #ifdef CONFIG_NET_DMA
5209 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5210 copied_early = 1;
5211 eaten = 1;
5212 }
5213 #endif
5214 if (tp->ucopy.task == current &&
5215 sock_owned_by_user(sk) && !copied_early) {
5216 __set_current_state(TASK_RUNNING);
5217
5218 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5219 eaten = 1;
5220 }
5221 if (eaten) {
5222 /* Predicted packet is in window by definition.
5223 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5224 * Hence, check seq<=rcv_wup reduces to:
5225 */
5226 if (tcp_header_len ==
5227 (sizeof(struct tcphdr) +
5228 TCPOLEN_TSTAMP_ALIGNED) &&
5229 tp->rcv_nxt == tp->rcv_wup)
5230 tcp_store_ts_recent(tp);
5231
5232 tcp_rcv_rtt_measure_ts(sk, skb);
5233
5234 __skb_pull(skb, tcp_header_len);
5235 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5236 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5237 }
5238 if (copied_early)
5239 tcp_cleanup_rbuf(sk, skb->len);
5240 }
5241 if (!eaten) {
5242 if (tcp_checksum_complete_user(sk, skb))
5243 goto csum_error;
5244
5245 /* Predicted packet is in window by definition.
5246 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5247 * Hence, check seq<=rcv_wup reduces to:
5248 */
5249 if (tcp_header_len ==
5250 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5251 tp->rcv_nxt == tp->rcv_wup)
5252 tcp_store_ts_recent(tp);
5253
5254 tcp_rcv_rtt_measure_ts(sk, skb);
5255
5256 if ((int)skb->truesize > sk->sk_forward_alloc)
5257 goto step5;
5258
5259 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5260
5261 /* Bulk data transfer: receiver */
5262 __skb_pull(skb, tcp_header_len);
5263 __skb_queue_tail(&sk->sk_receive_queue, skb);
5264 skb_set_owner_r(skb, sk);
5265 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5266 }
5267
5268 tcp_event_data_recv(sk, skb);
5269
5270 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5271 /* Well, only one small jumplet in fast path... */
5272 tcp_ack(sk, skb, FLAG_DATA);
5273 tcp_data_snd_check(sk);
5274 if (!inet_csk_ack_scheduled(sk))
5275 goto no_ack;
5276 }
5277
5278 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5279 __tcp_ack_snd_check(sk, 0);
5280 no_ack:
5281 #ifdef CONFIG_NET_DMA
5282 if (copied_early)
5283 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5284 else
5285 #endif
5286 if (eaten)
5287 __kfree_skb(skb);
5288 else
5289 sk->sk_data_ready(sk, 0);
5290 return 0;
5291 }
5292 }
5293
5294 slow_path:
5295 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5296 goto csum_error;
5297
5298 /*
5299 * Standard slow path.
5300 */
5301
5302 res = tcp_validate_incoming(sk, skb, th, 1);
5303 if (res <= 0)
5304 return -res;
5305
5306 step5:
5307 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5308 goto discard;
5309
5310 tcp_rcv_rtt_measure_ts(sk, skb);
5311
5312 /* Process urgent data. */
5313 tcp_urg(sk, skb, th);
5314
5315 /* step 7: process the segment text */
5316 tcp_data_queue(sk, skb);
5317
5318 tcp_data_snd_check(sk);
5319 tcp_ack_snd_check(sk);
5320 return 0;
5321
5322 csum_error:
5323 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5324
5325 discard:
5326 __kfree_skb(skb);
5327 return 0;
5328 }
5329
5330 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5331 struct tcphdr *th, unsigned len)
5332 {
5333 struct tcp_sock *tp = tcp_sk(sk);
5334 struct inet_connection_sock *icsk = inet_csk(sk);
5335 int saved_clamp = tp->rx_opt.mss_clamp;
5336
5337 tcp_parse_options(skb, &tp->rx_opt, 0);
5338
5339 if (th->ack) {
5340 /* rfc793:
5341 * "If the state is SYN-SENT then
5342 * first check the ACK bit
5343 * If the ACK bit is set
5344 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5345 * a reset (unless the RST bit is set, if so drop
5346 * the segment and return)"
5347 *
5348 * We do not send data with SYN, so that RFC-correct
5349 * test reduces to:
5350 */
5351 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5352 goto reset_and_undo;
5353
5354 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5355 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5356 tcp_time_stamp)) {
5357 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5358 goto reset_and_undo;
5359 }
5360
5361 /* Now ACK is acceptable.
5362 *
5363 * "If the RST bit is set
5364 * If the ACK was acceptable then signal the user "error:
5365 * connection reset", drop the segment, enter CLOSED state,
5366 * delete TCB, and return."
5367 */
5368
5369 if (th->rst) {
5370 tcp_reset(sk);
5371 goto discard;
5372 }
5373
5374 /* rfc793:
5375 * "fifth, if neither of the SYN or RST bits is set then
5376 * drop the segment and return."
5377 *
5378 * See note below!
5379 * --ANK(990513)
5380 */
5381 if (!th->syn)
5382 goto discard_and_undo;
5383
5384 /* rfc793:
5385 * "If the SYN bit is on ...
5386 * are acceptable then ...
5387 * (our SYN has been ACKed), change the connection
5388 * state to ESTABLISHED..."
5389 */
5390
5391 TCP_ECN_rcv_synack(tp, th);
5392
5393 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5394 tcp_ack(sk, skb, FLAG_SLOWPATH);
5395
5396 /* Ok.. it's good. Set up sequence numbers and
5397 * move to established.
5398 */
5399 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5400 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5401
5402 /* RFC1323: The window in SYN & SYN/ACK segments is
5403 * never scaled.
5404 */
5405 tp->snd_wnd = ntohs(th->window);
5406 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5407
5408 if (!tp->rx_opt.wscale_ok) {
5409 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5410 tp->window_clamp = min(tp->window_clamp, 65535U);
5411 }
5412
5413 if (tp->rx_opt.saw_tstamp) {
5414 tp->rx_opt.tstamp_ok = 1;
5415 tp->tcp_header_len =
5416 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5417 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5418 tcp_store_ts_recent(tp);
5419 } else {
5420 tp->tcp_header_len = sizeof(struct tcphdr);
5421 }
5422
5423 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5424 tcp_enable_fack(tp);
5425
5426 tcp_mtup_init(sk);
5427 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5428 tcp_initialize_rcv_mss(sk);
5429
5430 /* Remember, tcp_poll() does not lock socket!
5431 * Change state from SYN-SENT only after copied_seq
5432 * is initialized. */
5433 tp->copied_seq = tp->rcv_nxt;
5434 smp_mb();
5435 tcp_set_state(sk, TCP_ESTABLISHED);
5436
5437 security_inet_conn_established(sk, skb);
5438
5439 /* Make sure socket is routed, for correct metrics. */
5440 icsk->icsk_af_ops->rebuild_header(sk);
5441
5442 tcp_init_metrics(sk);
5443
5444 tcp_init_congestion_control(sk);
5445
5446 /* Prevent spurious tcp_cwnd_restart() on first data
5447 * packet.
5448 */
5449 tp->lsndtime = tcp_time_stamp;
5450
5451 tcp_init_buffer_space(sk);
5452
5453 if (sock_flag(sk, SOCK_KEEPOPEN))
5454 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5455
5456 if (!tp->rx_opt.snd_wscale)
5457 __tcp_fast_path_on(tp, tp->snd_wnd);
5458 else
5459 tp->pred_flags = 0;
5460
5461 if (!sock_flag(sk, SOCK_DEAD)) {
5462 sk->sk_state_change(sk);
5463 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5464 }
5465
5466 if (sk->sk_write_pending ||
5467 icsk->icsk_accept_queue.rskq_defer_accept ||
5468 icsk->icsk_ack.pingpong) {
5469 /* Save one ACK. Data will be ready after
5470 * several ticks, if write_pending is set.
5471 *
5472 * It may be deleted, but with this feature tcpdumps
5473 * look so _wonderfully_ clever, that I was not able
5474 * to stand against the temptation 8) --ANK
5475 */
5476 inet_csk_schedule_ack(sk);
5477 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5478 icsk->icsk_ack.ato = TCP_ATO_MIN;
5479 tcp_incr_quickack(sk);
5480 tcp_enter_quickack_mode(sk);
5481 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5482 TCP_DELACK_MAX, TCP_RTO_MAX);
5483
5484 discard:
5485 __kfree_skb(skb);
5486 return 0;
5487 } else {
5488 tcp_send_ack(sk);
5489 }
5490 return -1;
5491 }
5492
5493 /* No ACK in the segment */
5494
5495 if (th->rst) {
5496 /* rfc793:
5497 * "If the RST bit is set
5498 *
5499 * Otherwise (no ACK) drop the segment and return."
5500 */
5501
5502 goto discard_and_undo;
5503 }
5504
5505 /* PAWS check. */
5506 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5507 tcp_paws_reject(&tp->rx_opt, 0))
5508 goto discard_and_undo;
5509
5510 if (th->syn) {
5511 /* We see SYN without ACK. It is attempt of
5512 * simultaneous connect with crossed SYNs.
5513 * Particularly, it can be connect to self.
5514 */
5515 tcp_set_state(sk, TCP_SYN_RECV);
5516
5517 if (tp->rx_opt.saw_tstamp) {
5518 tp->rx_opt.tstamp_ok = 1;
5519 tcp_store_ts_recent(tp);
5520 tp->tcp_header_len =
5521 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5522 } else {
5523 tp->tcp_header_len = sizeof(struct tcphdr);
5524 }
5525
5526 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5527 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5528
5529 /* RFC1323: The window in SYN & SYN/ACK segments is
5530 * never scaled.
5531 */
5532 tp->snd_wnd = ntohs(th->window);
5533 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5534 tp->max_window = tp->snd_wnd;
5535
5536 TCP_ECN_rcv_syn(tp, th);
5537
5538 tcp_mtup_init(sk);
5539 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5540 tcp_initialize_rcv_mss(sk);
5541
5542 tcp_send_synack(sk);
5543 #if 0
5544 /* Note, we could accept data and URG from this segment.
5545 * There are no obstacles to make this.
5546 *
5547 * However, if we ignore data in ACKless segments sometimes,
5548 * we have no reasons to accept it sometimes.
5549 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5550 * is not flawless. So, discard packet for sanity.
5551 * Uncomment this return to process the data.
5552 */
5553 return -1;
5554 #else
5555 goto discard;
5556 #endif
5557 }
5558 /* "fifth, if neither of the SYN or RST bits is set then
5559 * drop the segment and return."
5560 */
5561
5562 discard_and_undo:
5563 tcp_clear_options(&tp->rx_opt);
5564 tp->rx_opt.mss_clamp = saved_clamp;
5565 goto discard;
5566
5567 reset_and_undo:
5568 tcp_clear_options(&tp->rx_opt);
5569 tp->rx_opt.mss_clamp = saved_clamp;
5570 return 1;
5571 }
5572
5573 /*
5574 * This function implements the receiving procedure of RFC 793 for
5575 * all states except ESTABLISHED and TIME_WAIT.
5576 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5577 * address independent.
5578 */
5579
5580 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5581 struct tcphdr *th, unsigned len)
5582 {
5583 struct tcp_sock *tp = tcp_sk(sk);
5584 struct inet_connection_sock *icsk = inet_csk(sk);
5585 int queued = 0;
5586 int res;
5587
5588 tp->rx_opt.saw_tstamp = 0;
5589
5590 switch (sk->sk_state) {
5591 case TCP_CLOSE:
5592 goto discard;
5593
5594 case TCP_LISTEN:
5595 if (th->ack)
5596 return 1;
5597
5598 if (th->rst)
5599 goto discard;
5600
5601 if (th->syn) {
5602 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5603 return 1;
5604
5605 /* Now we have several options: In theory there is
5606 * nothing else in the frame. KA9Q has an option to
5607 * send data with the syn, BSD accepts data with the
5608 * syn up to the [to be] advertised window and
5609 * Solaris 2.1 gives you a protocol error. For now
5610 * we just ignore it, that fits the spec precisely
5611 * and avoids incompatibilities. It would be nice in
5612 * future to drop through and process the data.
5613 *
5614 * Now that TTCP is starting to be used we ought to
5615 * queue this data.
5616 * But, this leaves one open to an easy denial of
5617 * service attack, and SYN cookies can't defend
5618 * against this problem. So, we drop the data
5619 * in the interest of security over speed unless
5620 * it's still in use.
5621 */
5622 kfree_skb(skb);
5623 return 0;
5624 }
5625 goto discard;
5626
5627 case TCP_SYN_SENT:
5628 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5629 if (queued >= 0)
5630 return queued;
5631
5632 /* Do step6 onward by hand. */
5633 tcp_urg(sk, skb, th);
5634 __kfree_skb(skb);
5635 tcp_data_snd_check(sk);
5636 return 0;
5637 }
5638
5639 res = tcp_validate_incoming(sk, skb, th, 0);
5640 if (res <= 0)
5641 return -res;
5642
5643 /* step 5: check the ACK field */
5644 if (th->ack) {
5645 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5646
5647 switch (sk->sk_state) {
5648 case TCP_SYN_RECV:
5649 if (acceptable) {
5650 tp->copied_seq = tp->rcv_nxt;
5651 smp_mb();
5652 tcp_set_state(sk, TCP_ESTABLISHED);
5653 sk->sk_state_change(sk);
5654
5655 /* Note, that this wakeup is only for marginal
5656 * crossed SYN case. Passively open sockets
5657 * are not waked up, because sk->sk_sleep ==
5658 * NULL and sk->sk_socket == NULL.
5659 */
5660 if (sk->sk_socket)
5661 sk_wake_async(sk,
5662 SOCK_WAKE_IO, POLL_OUT);
5663
5664 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5665 tp->snd_wnd = ntohs(th->window) <<
5666 tp->rx_opt.snd_wscale;
5667 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5668
5669 /* tcp_ack considers this ACK as duplicate
5670 * and does not calculate rtt.
5671 * Fix it at least with timestamps.
5672 */
5673 if (tp->rx_opt.saw_tstamp &&
5674 tp->rx_opt.rcv_tsecr && !tp->srtt)
5675 tcp_ack_saw_tstamp(sk, 0);
5676
5677 if (tp->rx_opt.tstamp_ok)
5678 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5679
5680 /* Make sure socket is routed, for
5681 * correct metrics.
5682 */
5683 icsk->icsk_af_ops->rebuild_header(sk);
5684
5685 tcp_init_metrics(sk);
5686
5687 tcp_init_congestion_control(sk);
5688
5689 /* Prevent spurious tcp_cwnd_restart() on
5690 * first data packet.
5691 */
5692 tp->lsndtime = tcp_time_stamp;
5693
5694 tcp_mtup_init(sk);
5695 tcp_initialize_rcv_mss(sk);
5696 tcp_init_buffer_space(sk);
5697 tcp_fast_path_on(tp);
5698 } else {
5699 return 1;
5700 }
5701 break;
5702
5703 case TCP_FIN_WAIT1:
5704 if (tp->snd_una == tp->write_seq) {
5705 tcp_set_state(sk, TCP_FIN_WAIT2);
5706 sk->sk_shutdown |= SEND_SHUTDOWN;
5707 dst_confirm(sk->sk_dst_cache);
5708
5709 if (!sock_flag(sk, SOCK_DEAD))
5710 /* Wake up lingering close() */
5711 sk->sk_state_change(sk);
5712 else {
5713 int tmo;
5714
5715 if (tp->linger2 < 0 ||
5716 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5717 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5718 tcp_done(sk);
5719 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5720 return 1;
5721 }
5722
5723 tmo = tcp_fin_time(sk);
5724 if (tmo > TCP_TIMEWAIT_LEN) {
5725 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5726 } else if (th->fin || sock_owned_by_user(sk)) {
5727 /* Bad case. We could lose such FIN otherwise.
5728 * It is not a big problem, but it looks confusing
5729 * and not so rare event. We still can lose it now,
5730 * if it spins in bh_lock_sock(), but it is really
5731 * marginal case.
5732 */
5733 inet_csk_reset_keepalive_timer(sk, tmo);
5734 } else {
5735 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5736 goto discard;
5737 }
5738 }
5739 }
5740 break;
5741
5742 case TCP_CLOSING:
5743 if (tp->snd_una == tp->write_seq) {
5744 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5745 goto discard;
5746 }
5747 break;
5748
5749 case TCP_LAST_ACK:
5750 if (tp->snd_una == tp->write_seq) {
5751 tcp_update_metrics(sk);
5752 tcp_done(sk);
5753 goto discard;
5754 }
5755 break;
5756 }
5757 } else
5758 goto discard;
5759
5760 /* step 6: check the URG bit */
5761 tcp_urg(sk, skb, th);
5762
5763 /* step 7: process the segment text */
5764 switch (sk->sk_state) {
5765 case TCP_CLOSE_WAIT:
5766 case TCP_CLOSING:
5767 case TCP_LAST_ACK:
5768 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5769 break;
5770 case TCP_FIN_WAIT1:
5771 case TCP_FIN_WAIT2:
5772 /* RFC 793 says to queue data in these states,
5773 * RFC 1122 says we MUST send a reset.
5774 * BSD 4.4 also does reset.
5775 */
5776 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5777 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5778 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5779 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5780 tcp_reset(sk);
5781 return 1;
5782 }
5783 }
5784 /* Fall through */
5785 case TCP_ESTABLISHED:
5786 tcp_data_queue(sk, skb);
5787 queued = 1;
5788 break;
5789 }
5790
5791 /* tcp_data could move socket to TIME-WAIT */
5792 if (sk->sk_state != TCP_CLOSE) {
5793 tcp_data_snd_check(sk);
5794 tcp_ack_snd_check(sk);
5795 }
5796
5797 if (!queued) {
5798 discard:
5799 __kfree_skb(skb);
5800 }
5801 return 0;
5802 }
5803
5804 EXPORT_SYMBOL(sysctl_tcp_ecn);
5805 EXPORT_SYMBOL(sysctl_tcp_reordering);
5806 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5807 EXPORT_SYMBOL(tcp_parse_options);
5808 #ifdef CONFIG_TCP_MD5SIG
5809 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5810 #endif
5811 EXPORT_SYMBOL(tcp_rcv_established);
5812 EXPORT_SYMBOL(tcp_rcv_state_process);
5813 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.151755 seconds and 5 git commands to generate.