Merge branch 'fix/hda' into for-linus
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 int sysctl_tcp_ecn __read_mostly = 2;
82 int sysctl_tcp_dsack __read_mostly = 1;
83 int sysctl_tcp_app_win __read_mostly = 31;
84 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85
86 int sysctl_tcp_stdurg __read_mostly;
87 int sysctl_tcp_rfc1337 __read_mostly;
88 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
89 int sysctl_tcp_frto __read_mostly = 2;
90 int sysctl_tcp_frto_response __read_mostly;
91 int sysctl_tcp_nometrics_save __read_mostly;
92
93 int sysctl_tcp_thin_dupack __read_mostly;
94
95 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
96 int sysctl_tcp_abc __read_mostly;
97
98 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
99 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
100 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
101 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
102 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
103 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
104 #define FLAG_ECE 0x40 /* ECE in this ACK */
105 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
106 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
107 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
108 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
109 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
110 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
111 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
112
113 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
114 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
115 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
116 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
117 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
118
119 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
120 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
121
122 /* Adapt the MSS value used to make delayed ack decision to the
123 * real world.
124 */
125 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
126 {
127 struct inet_connection_sock *icsk = inet_csk(sk);
128 const unsigned int lss = icsk->icsk_ack.last_seg_size;
129 unsigned int len;
130
131 icsk->icsk_ack.last_seg_size = 0;
132
133 /* skb->len may jitter because of SACKs, even if peer
134 * sends good full-sized frames.
135 */
136 len = skb_shinfo(skb)->gso_size ? : skb->len;
137 if (len >= icsk->icsk_ack.rcv_mss) {
138 icsk->icsk_ack.rcv_mss = len;
139 } else {
140 /* Otherwise, we make more careful check taking into account,
141 * that SACKs block is variable.
142 *
143 * "len" is invariant segment length, including TCP header.
144 */
145 len += skb->data - skb_transport_header(skb);
146 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
147 /* If PSH is not set, packet should be
148 * full sized, provided peer TCP is not badly broken.
149 * This observation (if it is correct 8)) allows
150 * to handle super-low mtu links fairly.
151 */
152 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
153 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
154 /* Subtract also invariant (if peer is RFC compliant),
155 * tcp header plus fixed timestamp option length.
156 * Resulting "len" is MSS free of SACK jitter.
157 */
158 len -= tcp_sk(sk)->tcp_header_len;
159 icsk->icsk_ack.last_seg_size = len;
160 if (len == lss) {
161 icsk->icsk_ack.rcv_mss = len;
162 return;
163 }
164 }
165 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
167 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
168 }
169 }
170
171 static void tcp_incr_quickack(struct sock *sk)
172 {
173 struct inet_connection_sock *icsk = inet_csk(sk);
174 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
175
176 if (quickacks == 0)
177 quickacks = 2;
178 if (quickacks > icsk->icsk_ack.quick)
179 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
180 }
181
182 void tcp_enter_quickack_mode(struct sock *sk)
183 {
184 struct inet_connection_sock *icsk = inet_csk(sk);
185 tcp_incr_quickack(sk);
186 icsk->icsk_ack.pingpong = 0;
187 icsk->icsk_ack.ato = TCP_ATO_MIN;
188 }
189
190 /* Send ACKs quickly, if "quick" count is not exhausted
191 * and the session is not interactive.
192 */
193
194 static inline int tcp_in_quickack_mode(const struct sock *sk)
195 {
196 const struct inet_connection_sock *icsk = inet_csk(sk);
197 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
198 }
199
200 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
201 {
202 if (tp->ecn_flags & TCP_ECN_OK)
203 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
204 }
205
206 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
207 {
208 if (tcp_hdr(skb)->cwr)
209 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
210 }
211
212 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
213 {
214 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 }
216
217 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
218 {
219 if (tp->ecn_flags & TCP_ECN_OK) {
220 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
221 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
222 /* Funny extension: if ECT is not set on a segment,
223 * it is surely retransmit. It is not in ECN RFC,
224 * but Linux follows this rule. */
225 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
226 tcp_enter_quickack_mode((struct sock *)tp);
227 }
228 }
229
230 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
231 {
232 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
233 tp->ecn_flags &= ~TCP_ECN_OK;
234 }
235
236 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
237 {
238 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
239 tp->ecn_flags &= ~TCP_ECN_OK;
240 }
241
242 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
243 {
244 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
245 return 1;
246 return 0;
247 }
248
249 /* Buffer size and advertised window tuning.
250 *
251 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
252 */
253
254 static void tcp_fixup_sndbuf(struct sock *sk)
255 {
256 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
257 sizeof(struct sk_buff);
258
259 if (sk->sk_sndbuf < 3 * sndmem)
260 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
261 }
262
263 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
264 *
265 * All tcp_full_space() is split to two parts: "network" buffer, allocated
266 * forward and advertised in receiver window (tp->rcv_wnd) and
267 * "application buffer", required to isolate scheduling/application
268 * latencies from network.
269 * window_clamp is maximal advertised window. It can be less than
270 * tcp_full_space(), in this case tcp_full_space() - window_clamp
271 * is reserved for "application" buffer. The less window_clamp is
272 * the smoother our behaviour from viewpoint of network, but the lower
273 * throughput and the higher sensitivity of the connection to losses. 8)
274 *
275 * rcv_ssthresh is more strict window_clamp used at "slow start"
276 * phase to predict further behaviour of this connection.
277 * It is used for two goals:
278 * - to enforce header prediction at sender, even when application
279 * requires some significant "application buffer". It is check #1.
280 * - to prevent pruning of receive queue because of misprediction
281 * of receiver window. Check #2.
282 *
283 * The scheme does not work when sender sends good segments opening
284 * window and then starts to feed us spaghetti. But it should work
285 * in common situations. Otherwise, we have to rely on queue collapsing.
286 */
287
288 /* Slow part of check#2. */
289 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
290 {
291 struct tcp_sock *tp = tcp_sk(sk);
292 /* Optimize this! */
293 int truesize = tcp_win_from_space(skb->truesize) >> 1;
294 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
295
296 while (tp->rcv_ssthresh <= window) {
297 if (truesize <= skb->len)
298 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
299
300 truesize >>= 1;
301 window >>= 1;
302 }
303 return 0;
304 }
305
306 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
307 {
308 struct tcp_sock *tp = tcp_sk(sk);
309
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2 * tp->advmss;
321 else
322 incr = __tcp_grow_window(sk, skb);
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
326 tp->window_clamp);
327 inet_csk(sk)->icsk_ack.quick |= 1;
328 }
329 }
330 }
331
332 /* 3. Tuning rcvbuf, when connection enters established state. */
333
334 static void tcp_fixup_rcvbuf(struct sock *sk)
335 {
336 struct tcp_sock *tp = tcp_sk(sk);
337 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
338
339 /* Try to select rcvbuf so that 4 mss-sized segments
340 * will fit to window and corresponding skbs will fit to our rcvbuf.
341 * (was 3; 4 is minimum to allow fast retransmit to work.)
342 */
343 while (tcp_win_from_space(rcvmem) < tp->advmss)
344 rcvmem += 128;
345 if (sk->sk_rcvbuf < 4 * rcvmem)
346 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
347 }
348
349 /* 4. Try to fixup all. It is made immediately after connection enters
350 * established state.
351 */
352 static void tcp_init_buffer_space(struct sock *sk)
353 {
354 struct tcp_sock *tp = tcp_sk(sk);
355 int maxwin;
356
357 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
358 tcp_fixup_rcvbuf(sk);
359 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
360 tcp_fixup_sndbuf(sk);
361
362 tp->rcvq_space.space = tp->rcv_wnd;
363
364 maxwin = tcp_full_space(sk);
365
366 if (tp->window_clamp >= maxwin) {
367 tp->window_clamp = maxwin;
368
369 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
370 tp->window_clamp = max(maxwin -
371 (maxwin >> sysctl_tcp_app_win),
372 4 * tp->advmss);
373 }
374
375 /* Force reservation of one segment. */
376 if (sysctl_tcp_app_win &&
377 tp->window_clamp > 2 * tp->advmss &&
378 tp->window_clamp + tp->advmss > maxwin)
379 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
380
381 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
382 tp->snd_cwnd_stamp = tcp_time_stamp;
383 }
384
385 /* 5. Recalculate window clamp after socket hit its memory bounds. */
386 static void tcp_clamp_window(struct sock *sk)
387 {
388 struct tcp_sock *tp = tcp_sk(sk);
389 struct inet_connection_sock *icsk = inet_csk(sk);
390
391 icsk->icsk_ack.quick = 0;
392
393 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
394 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
395 !tcp_memory_pressure &&
396 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
397 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
398 sysctl_tcp_rmem[2]);
399 }
400 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
401 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
402 }
403
404 /* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd / 2);
417 hint = min(hint, TCP_MSS_DEFAULT);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
449 * non-timestamp case, we do not smooth things out
450 * else with timestamps disabled convergence takes too
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
459 /* No previous measure. */
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
474
475 new_measure:
476 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
477 tp->rcv_rtt_est.time = tcp_time_stamp;
478 }
479
480 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
481 const struct sk_buff *skb)
482 {
483 struct tcp_sock *tp = tcp_sk(sk);
484 if (tp->rx_opt.rcv_tsecr &&
485 (TCP_SKB_CB(skb)->end_seq -
486 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
487 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
488 }
489
490 /*
491 * This function should be called every time data is copied to user space.
492 * It calculates the appropriate TCP receive buffer space.
493 */
494 void tcp_rcv_space_adjust(struct sock *sk)
495 {
496 struct tcp_sock *tp = tcp_sk(sk);
497 int time;
498 int space;
499
500 if (tp->rcvq_space.time == 0)
501 goto new_measure;
502
503 time = tcp_time_stamp - tp->rcvq_space.time;
504 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
505 return;
506
507 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
508
509 space = max(tp->rcvq_space.space, space);
510
511 if (tp->rcvq_space.space != space) {
512 int rcvmem;
513
514 tp->rcvq_space.space = space;
515
516 if (sysctl_tcp_moderate_rcvbuf &&
517 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
518 int new_clamp = space;
519
520 /* Receive space grows, normalize in order to
521 * take into account packet headers and sk_buff
522 * structure overhead.
523 */
524 space /= tp->advmss;
525 if (!space)
526 space = 1;
527 rcvmem = (tp->advmss + MAX_TCP_HEADER +
528 16 + sizeof(struct sk_buff));
529 while (tcp_win_from_space(rcvmem) < tp->advmss)
530 rcvmem += 128;
531 space *= rcvmem;
532 space = min(space, sysctl_tcp_rmem[2]);
533 if (space > sk->sk_rcvbuf) {
534 sk->sk_rcvbuf = space;
535
536 /* Make the window clamp follow along. */
537 tp->window_clamp = new_clamp;
538 }
539 }
540 }
541
542 new_measure:
543 tp->rcvq_space.seq = tp->copied_seq;
544 tp->rcvq_space.time = tcp_time_stamp;
545 }
546
547 /* There is something which you must keep in mind when you analyze the
548 * behavior of the tp->ato delayed ack timeout interval. When a
549 * connection starts up, we want to ack as quickly as possible. The
550 * problem is that "good" TCP's do slow start at the beginning of data
551 * transmission. The means that until we send the first few ACK's the
552 * sender will sit on his end and only queue most of his data, because
553 * he can only send snd_cwnd unacked packets at any given time. For
554 * each ACK we send, he increments snd_cwnd and transmits more of his
555 * queue. -DaveM
556 */
557 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
558 {
559 struct tcp_sock *tp = tcp_sk(sk);
560 struct inet_connection_sock *icsk = inet_csk(sk);
561 u32 now;
562
563 inet_csk_schedule_ack(sk);
564
565 tcp_measure_rcv_mss(sk, skb);
566
567 tcp_rcv_rtt_measure(tp);
568
569 now = tcp_time_stamp;
570
571 if (!icsk->icsk_ack.ato) {
572 /* The _first_ data packet received, initialize
573 * delayed ACK engine.
574 */
575 tcp_incr_quickack(sk);
576 icsk->icsk_ack.ato = TCP_ATO_MIN;
577 } else {
578 int m = now - icsk->icsk_ack.lrcvtime;
579
580 if (m <= TCP_ATO_MIN / 2) {
581 /* The fastest case is the first. */
582 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
583 } else if (m < icsk->icsk_ack.ato) {
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
585 if (icsk->icsk_ack.ato > icsk->icsk_rto)
586 icsk->icsk_ack.ato = icsk->icsk_rto;
587 } else if (m > icsk->icsk_rto) {
588 /* Too long gap. Apparently sender failed to
589 * restart window, so that we send ACKs quickly.
590 */
591 tcp_incr_quickack(sk);
592 sk_mem_reclaim(sk);
593 }
594 }
595 icsk->icsk_ack.lrcvtime = now;
596
597 TCP_ECN_check_ce(tp, skb);
598
599 if (skb->len >= 128)
600 tcp_grow_window(sk, skb);
601 }
602
603 /* Called to compute a smoothed rtt estimate. The data fed to this
604 * routine either comes from timestamps, or from segments that were
605 * known _not_ to have been retransmitted [see Karn/Partridge
606 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
607 * piece by Van Jacobson.
608 * NOTE: the next three routines used to be one big routine.
609 * To save cycles in the RFC 1323 implementation it was better to break
610 * it up into three procedures. -- erics
611 */
612 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
613 {
614 struct tcp_sock *tp = tcp_sk(sk);
615 long m = mrtt; /* RTT */
616
617 /* The following amusing code comes from Jacobson's
618 * article in SIGCOMM '88. Note that rtt and mdev
619 * are scaled versions of rtt and mean deviation.
620 * This is designed to be as fast as possible
621 * m stands for "measurement".
622 *
623 * On a 1990 paper the rto value is changed to:
624 * RTO = rtt + 4 * mdev
625 *
626 * Funny. This algorithm seems to be very broken.
627 * These formulae increase RTO, when it should be decreased, increase
628 * too slowly, when it should be increased quickly, decrease too quickly
629 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
630 * does not matter how to _calculate_ it. Seems, it was trap
631 * that VJ failed to avoid. 8)
632 */
633 if (m == 0)
634 m = 1;
635 if (tp->srtt != 0) {
636 m -= (tp->srtt >> 3); /* m is now error in rtt est */
637 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
638 if (m < 0) {
639 m = -m; /* m is now abs(error) */
640 m -= (tp->mdev >> 2); /* similar update on mdev */
641 /* This is similar to one of Eifel findings.
642 * Eifel blocks mdev updates when rtt decreases.
643 * This solution is a bit different: we use finer gain
644 * for mdev in this case (alpha*beta).
645 * Like Eifel it also prevents growth of rto,
646 * but also it limits too fast rto decreases,
647 * happening in pure Eifel.
648 */
649 if (m > 0)
650 m >>= 3;
651 } else {
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 }
654 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
655 if (tp->mdev > tp->mdev_max) {
656 tp->mdev_max = tp->mdev;
657 if (tp->mdev_max > tp->rttvar)
658 tp->rttvar = tp->mdev_max;
659 }
660 if (after(tp->snd_una, tp->rtt_seq)) {
661 if (tp->mdev_max < tp->rttvar)
662 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
663 tp->rtt_seq = tp->snd_nxt;
664 tp->mdev_max = tcp_rto_min(sk);
665 }
666 } else {
667 /* no previous measure. */
668 tp->srtt = m << 3; /* take the measured time to be rtt */
669 tp->mdev = m << 1; /* make sure rto = 3*rtt */
670 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
671 tp->rtt_seq = tp->snd_nxt;
672 }
673 }
674
675 /* Calculate rto without backoff. This is the second half of Van Jacobson's
676 * routine referred to above.
677 */
678 static inline void tcp_set_rto(struct sock *sk)
679 {
680 const struct tcp_sock *tp = tcp_sk(sk);
681 /* Old crap is replaced with new one. 8)
682 *
683 * More seriously:
684 * 1. If rtt variance happened to be less 50msec, it is hallucination.
685 * It cannot be less due to utterly erratic ACK generation made
686 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
687 * to do with delayed acks, because at cwnd>2 true delack timeout
688 * is invisible. Actually, Linux-2.4 also generates erratic
689 * ACKs in some circumstances.
690 */
691 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
692
693 /* 2. Fixups made earlier cannot be right.
694 * If we do not estimate RTO correctly without them,
695 * all the algo is pure shit and should be replaced
696 * with correct one. It is exactly, which we pretend to do.
697 */
698
699 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
700 * guarantees that rto is higher.
701 */
702 tcp_bound_rto(sk);
703 }
704
705 /* Save metrics learned by this TCP session.
706 This function is called only, when TCP finishes successfully
707 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
708 */
709 void tcp_update_metrics(struct sock *sk)
710 {
711 struct tcp_sock *tp = tcp_sk(sk);
712 struct dst_entry *dst = __sk_dst_get(sk);
713
714 if (sysctl_tcp_nometrics_save)
715 return;
716
717 dst_confirm(dst);
718
719 if (dst && (dst->flags & DST_HOST)) {
720 const struct inet_connection_sock *icsk = inet_csk(sk);
721 int m;
722 unsigned long rtt;
723
724 if (icsk->icsk_backoff || !tp->srtt) {
725 /* This session failed to estimate rtt. Why?
726 * Probably, no packets returned in time.
727 * Reset our results.
728 */
729 if (!(dst_metric_locked(dst, RTAX_RTT)))
730 dst->metrics[RTAX_RTT - 1] = 0;
731 return;
732 }
733
734 rtt = dst_metric_rtt(dst, RTAX_RTT);
735 m = rtt - tp->srtt;
736
737 /* If newly calculated rtt larger than stored one,
738 * store new one. Otherwise, use EWMA. Remember,
739 * rtt overestimation is always better than underestimation.
740 */
741 if (!(dst_metric_locked(dst, RTAX_RTT))) {
742 if (m <= 0)
743 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
744 else
745 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
746 }
747
748 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
749 unsigned long var;
750 if (m < 0)
751 m = -m;
752
753 /* Scale deviation to rttvar fixed point */
754 m >>= 1;
755 if (m < tp->mdev)
756 m = tp->mdev;
757
758 var = dst_metric_rtt(dst, RTAX_RTTVAR);
759 if (m >= var)
760 var = m;
761 else
762 var -= (var - m) >> 2;
763
764 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
765 }
766
767 if (tcp_in_initial_slowstart(tp)) {
768 /* Slow start still did not finish. */
769 if (dst_metric(dst, RTAX_SSTHRESH) &&
770 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
771 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
772 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
773 if (!dst_metric_locked(dst, RTAX_CWND) &&
774 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
775 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
776 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
777 icsk->icsk_ca_state == TCP_CA_Open) {
778 /* Cong. avoidance phase, cwnd is reliable. */
779 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
780 dst->metrics[RTAX_SSTHRESH-1] =
781 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
782 if (!dst_metric_locked(dst, RTAX_CWND))
783 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
784 } else {
785 /* Else slow start did not finish, cwnd is non-sense,
786 ssthresh may be also invalid.
787 */
788 if (!dst_metric_locked(dst, RTAX_CWND))
789 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
790 if (dst_metric(dst, RTAX_SSTHRESH) &&
791 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
792 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
793 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
794 }
795
796 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
797 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
798 tp->reordering != sysctl_tcp_reordering)
799 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
800 }
801 }
802 }
803
804 /* Numbers are taken from RFC3390.
805 *
806 * John Heffner states:
807 *
808 * The RFC specifies a window of no more than 4380 bytes
809 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
810 * is a bit misleading because they use a clamp at 4380 bytes
811 * rather than use a multiplier in the relevant range.
812 */
813 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
814 {
815 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
816
817 if (!cwnd) {
818 if (tp->mss_cache > 1460)
819 cwnd = 2;
820 else
821 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
822 }
823 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
824 }
825
826 /* Set slow start threshold and cwnd not falling to slow start */
827 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
828 {
829 struct tcp_sock *tp = tcp_sk(sk);
830 const struct inet_connection_sock *icsk = inet_csk(sk);
831
832 tp->prior_ssthresh = 0;
833 tp->bytes_acked = 0;
834 if (icsk->icsk_ca_state < TCP_CA_CWR) {
835 tp->undo_marker = 0;
836 if (set_ssthresh)
837 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
838 tp->snd_cwnd = min(tp->snd_cwnd,
839 tcp_packets_in_flight(tp) + 1U);
840 tp->snd_cwnd_cnt = 0;
841 tp->high_seq = tp->snd_nxt;
842 tp->snd_cwnd_stamp = tcp_time_stamp;
843 TCP_ECN_queue_cwr(tp);
844
845 tcp_set_ca_state(sk, TCP_CA_CWR);
846 }
847 }
848
849 /*
850 * Packet counting of FACK is based on in-order assumptions, therefore TCP
851 * disables it when reordering is detected
852 */
853 static void tcp_disable_fack(struct tcp_sock *tp)
854 {
855 /* RFC3517 uses different metric in lost marker => reset on change */
856 if (tcp_is_fack(tp))
857 tp->lost_skb_hint = NULL;
858 tp->rx_opt.sack_ok &= ~2;
859 }
860
861 /* Take a notice that peer is sending D-SACKs */
862 static void tcp_dsack_seen(struct tcp_sock *tp)
863 {
864 tp->rx_opt.sack_ok |= 4;
865 }
866
867 /* Initialize metrics on socket. */
868
869 static void tcp_init_metrics(struct sock *sk)
870 {
871 struct tcp_sock *tp = tcp_sk(sk);
872 struct dst_entry *dst = __sk_dst_get(sk);
873
874 if (dst == NULL)
875 goto reset;
876
877 dst_confirm(dst);
878
879 if (dst_metric_locked(dst, RTAX_CWND))
880 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
881 if (dst_metric(dst, RTAX_SSTHRESH)) {
882 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
883 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
884 tp->snd_ssthresh = tp->snd_cwnd_clamp;
885 }
886 if (dst_metric(dst, RTAX_REORDERING) &&
887 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
888 tcp_disable_fack(tp);
889 tp->reordering = dst_metric(dst, RTAX_REORDERING);
890 }
891
892 if (dst_metric(dst, RTAX_RTT) == 0)
893 goto reset;
894
895 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
896 goto reset;
897
898 /* Initial rtt is determined from SYN,SYN-ACK.
899 * The segment is small and rtt may appear much
900 * less than real one. Use per-dst memory
901 * to make it more realistic.
902 *
903 * A bit of theory. RTT is time passed after "normal" sized packet
904 * is sent until it is ACKed. In normal circumstances sending small
905 * packets force peer to delay ACKs and calculation is correct too.
906 * The algorithm is adaptive and, provided we follow specs, it
907 * NEVER underestimate RTT. BUT! If peer tries to make some clever
908 * tricks sort of "quick acks" for time long enough to decrease RTT
909 * to low value, and then abruptly stops to do it and starts to delay
910 * ACKs, wait for troubles.
911 */
912 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
913 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
914 tp->rtt_seq = tp->snd_nxt;
915 }
916 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
917 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
918 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
919 }
920 tcp_set_rto(sk);
921 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
922 goto reset;
923
924 cwnd:
925 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
926 tp->snd_cwnd_stamp = tcp_time_stamp;
927 return;
928
929 reset:
930 /* Play conservative. If timestamps are not
931 * supported, TCP will fail to recalculate correct
932 * rtt, if initial rto is too small. FORGET ALL AND RESET!
933 */
934 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
935 tp->srtt = 0;
936 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
937 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
938 }
939 goto cwnd;
940 }
941
942 static void tcp_update_reordering(struct sock *sk, const int metric,
943 const int ts)
944 {
945 struct tcp_sock *tp = tcp_sk(sk);
946 if (metric > tp->reordering) {
947 int mib_idx;
948
949 tp->reordering = min(TCP_MAX_REORDERING, metric);
950
951 /* This exciting event is worth to be remembered. 8) */
952 if (ts)
953 mib_idx = LINUX_MIB_TCPTSREORDER;
954 else if (tcp_is_reno(tp))
955 mib_idx = LINUX_MIB_TCPRENOREORDER;
956 else if (tcp_is_fack(tp))
957 mib_idx = LINUX_MIB_TCPFACKREORDER;
958 else
959 mib_idx = LINUX_MIB_TCPSACKREORDER;
960
961 NET_INC_STATS_BH(sock_net(sk), mib_idx);
962 #if FASTRETRANS_DEBUG > 1
963 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
964 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
965 tp->reordering,
966 tp->fackets_out,
967 tp->sacked_out,
968 tp->undo_marker ? tp->undo_retrans : 0);
969 #endif
970 tcp_disable_fack(tp);
971 }
972 }
973
974 /* This must be called before lost_out is incremented */
975 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
976 {
977 if ((tp->retransmit_skb_hint == NULL) ||
978 before(TCP_SKB_CB(skb)->seq,
979 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
980 tp->retransmit_skb_hint = skb;
981
982 if (!tp->lost_out ||
983 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
984 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
985 }
986
987 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
988 {
989 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
990 tcp_verify_retransmit_hint(tp, skb);
991
992 tp->lost_out += tcp_skb_pcount(skb);
993 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
994 }
995 }
996
997 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
998 struct sk_buff *skb)
999 {
1000 tcp_verify_retransmit_hint(tp, skb);
1001
1002 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1003 tp->lost_out += tcp_skb_pcount(skb);
1004 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1005 }
1006 }
1007
1008 /* This procedure tags the retransmission queue when SACKs arrive.
1009 *
1010 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1011 * Packets in queue with these bits set are counted in variables
1012 * sacked_out, retrans_out and lost_out, correspondingly.
1013 *
1014 * Valid combinations are:
1015 * Tag InFlight Description
1016 * 0 1 - orig segment is in flight.
1017 * S 0 - nothing flies, orig reached receiver.
1018 * L 0 - nothing flies, orig lost by net.
1019 * R 2 - both orig and retransmit are in flight.
1020 * L|R 1 - orig is lost, retransmit is in flight.
1021 * S|R 1 - orig reached receiver, retrans is still in flight.
1022 * (L|S|R is logically valid, it could occur when L|R is sacked,
1023 * but it is equivalent to plain S and code short-curcuits it to S.
1024 * L|S is logically invalid, it would mean -1 packet in flight 8))
1025 *
1026 * These 6 states form finite state machine, controlled by the following events:
1027 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1028 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1029 * 3. Loss detection event of one of three flavors:
1030 * A. Scoreboard estimator decided the packet is lost.
1031 * A'. Reno "three dupacks" marks head of queue lost.
1032 * A''. Its FACK modfication, head until snd.fack is lost.
1033 * B. SACK arrives sacking data transmitted after never retransmitted
1034 * hole was sent out.
1035 * C. SACK arrives sacking SND.NXT at the moment, when the
1036 * segment was retransmitted.
1037 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1038 *
1039 * It is pleasant to note, that state diagram turns out to be commutative,
1040 * so that we are allowed not to be bothered by order of our actions,
1041 * when multiple events arrive simultaneously. (see the function below).
1042 *
1043 * Reordering detection.
1044 * --------------------
1045 * Reordering metric is maximal distance, which a packet can be displaced
1046 * in packet stream. With SACKs we can estimate it:
1047 *
1048 * 1. SACK fills old hole and the corresponding segment was not
1049 * ever retransmitted -> reordering. Alas, we cannot use it
1050 * when segment was retransmitted.
1051 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1052 * for retransmitted and already SACKed segment -> reordering..
1053 * Both of these heuristics are not used in Loss state, when we cannot
1054 * account for retransmits accurately.
1055 *
1056 * SACK block validation.
1057 * ----------------------
1058 *
1059 * SACK block range validation checks that the received SACK block fits to
1060 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1061 * Note that SND.UNA is not included to the range though being valid because
1062 * it means that the receiver is rather inconsistent with itself reporting
1063 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1064 * perfectly valid, however, in light of RFC2018 which explicitly states
1065 * that "SACK block MUST reflect the newest segment. Even if the newest
1066 * segment is going to be discarded ...", not that it looks very clever
1067 * in case of head skb. Due to potentional receiver driven attacks, we
1068 * choose to avoid immediate execution of a walk in write queue due to
1069 * reneging and defer head skb's loss recovery to standard loss recovery
1070 * procedure that will eventually trigger (nothing forbids us doing this).
1071 *
1072 * Implements also blockage to start_seq wrap-around. Problem lies in the
1073 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1074 * there's no guarantee that it will be before snd_nxt (n). The problem
1075 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1076 * wrap (s_w):
1077 *
1078 * <- outs wnd -> <- wrapzone ->
1079 * u e n u_w e_w s n_w
1080 * | | | | | | |
1081 * |<------------+------+----- TCP seqno space --------------+---------->|
1082 * ...-- <2^31 ->| |<--------...
1083 * ...---- >2^31 ------>| |<--------...
1084 *
1085 * Current code wouldn't be vulnerable but it's better still to discard such
1086 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1087 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1088 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1089 * equal to the ideal case (infinite seqno space without wrap caused issues).
1090 *
1091 * With D-SACK the lower bound is extended to cover sequence space below
1092 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1093 * again, D-SACK block must not to go across snd_una (for the same reason as
1094 * for the normal SACK blocks, explained above). But there all simplicity
1095 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1096 * fully below undo_marker they do not affect behavior in anyway and can
1097 * therefore be safely ignored. In rare cases (which are more or less
1098 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1099 * fragmentation and packet reordering past skb's retransmission. To consider
1100 * them correctly, the acceptable range must be extended even more though
1101 * the exact amount is rather hard to quantify. However, tp->max_window can
1102 * be used as an exaggerated estimate.
1103 */
1104 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1105 u32 start_seq, u32 end_seq)
1106 {
1107 /* Too far in future, or reversed (interpretation is ambiguous) */
1108 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1109 return 0;
1110
1111 /* Nasty start_seq wrap-around check (see comments above) */
1112 if (!before(start_seq, tp->snd_nxt))
1113 return 0;
1114
1115 /* In outstanding window? ...This is valid exit for D-SACKs too.
1116 * start_seq == snd_una is non-sensical (see comments above)
1117 */
1118 if (after(start_seq, tp->snd_una))
1119 return 1;
1120
1121 if (!is_dsack || !tp->undo_marker)
1122 return 0;
1123
1124 /* ...Then it's D-SACK, and must reside below snd_una completely */
1125 if (!after(end_seq, tp->snd_una))
1126 return 0;
1127
1128 if (!before(start_seq, tp->undo_marker))
1129 return 1;
1130
1131 /* Too old */
1132 if (!after(end_seq, tp->undo_marker))
1133 return 0;
1134
1135 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1136 * start_seq < undo_marker and end_seq >= undo_marker.
1137 */
1138 return !before(start_seq, end_seq - tp->max_window);
1139 }
1140
1141 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1142 * Event "C". Later note: FACK people cheated me again 8), we have to account
1143 * for reordering! Ugly, but should help.
1144 *
1145 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1146 * less than what is now known to be received by the other end (derived from
1147 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1148 * retransmitted skbs to avoid some costly processing per ACKs.
1149 */
1150 static void tcp_mark_lost_retrans(struct sock *sk)
1151 {
1152 const struct inet_connection_sock *icsk = inet_csk(sk);
1153 struct tcp_sock *tp = tcp_sk(sk);
1154 struct sk_buff *skb;
1155 int cnt = 0;
1156 u32 new_low_seq = tp->snd_nxt;
1157 u32 received_upto = tcp_highest_sack_seq(tp);
1158
1159 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1160 !after(received_upto, tp->lost_retrans_low) ||
1161 icsk->icsk_ca_state != TCP_CA_Recovery)
1162 return;
1163
1164 tcp_for_write_queue(skb, sk) {
1165 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1166
1167 if (skb == tcp_send_head(sk))
1168 break;
1169 if (cnt == tp->retrans_out)
1170 break;
1171 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1172 continue;
1173
1174 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1175 continue;
1176
1177 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1178 * constraint here (see above) but figuring out that at
1179 * least tp->reordering SACK blocks reside between ack_seq
1180 * and received_upto is not easy task to do cheaply with
1181 * the available datastructures.
1182 *
1183 * Whether FACK should check here for tp->reordering segs
1184 * in-between one could argue for either way (it would be
1185 * rather simple to implement as we could count fack_count
1186 * during the walk and do tp->fackets_out - fack_count).
1187 */
1188 if (after(received_upto, ack_seq)) {
1189 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1190 tp->retrans_out -= tcp_skb_pcount(skb);
1191
1192 tcp_skb_mark_lost_uncond_verify(tp, skb);
1193 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1194 } else {
1195 if (before(ack_seq, new_low_seq))
1196 new_low_seq = ack_seq;
1197 cnt += tcp_skb_pcount(skb);
1198 }
1199 }
1200
1201 if (tp->retrans_out)
1202 tp->lost_retrans_low = new_low_seq;
1203 }
1204
1205 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1206 struct tcp_sack_block_wire *sp, int num_sacks,
1207 u32 prior_snd_una)
1208 {
1209 struct tcp_sock *tp = tcp_sk(sk);
1210 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1211 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1212 int dup_sack = 0;
1213
1214 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1215 dup_sack = 1;
1216 tcp_dsack_seen(tp);
1217 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1218 } else if (num_sacks > 1) {
1219 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1220 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1221
1222 if (!after(end_seq_0, end_seq_1) &&
1223 !before(start_seq_0, start_seq_1)) {
1224 dup_sack = 1;
1225 tcp_dsack_seen(tp);
1226 NET_INC_STATS_BH(sock_net(sk),
1227 LINUX_MIB_TCPDSACKOFORECV);
1228 }
1229 }
1230
1231 /* D-SACK for already forgotten data... Do dumb counting. */
1232 if (dup_sack &&
1233 !after(end_seq_0, prior_snd_una) &&
1234 after(end_seq_0, tp->undo_marker))
1235 tp->undo_retrans--;
1236
1237 return dup_sack;
1238 }
1239
1240 struct tcp_sacktag_state {
1241 int reord;
1242 int fack_count;
1243 int flag;
1244 };
1245
1246 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1247 * the incoming SACK may not exactly match but we can find smaller MSS
1248 * aligned portion of it that matches. Therefore we might need to fragment
1249 * which may fail and creates some hassle (caller must handle error case
1250 * returns).
1251 *
1252 * FIXME: this could be merged to shift decision code
1253 */
1254 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1255 u32 start_seq, u32 end_seq)
1256 {
1257 int in_sack, err;
1258 unsigned int pkt_len;
1259 unsigned int mss;
1260
1261 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1262 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1263
1264 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1265 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1266 mss = tcp_skb_mss(skb);
1267 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1268
1269 if (!in_sack) {
1270 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1271 if (pkt_len < mss)
1272 pkt_len = mss;
1273 } else {
1274 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1275 if (pkt_len < mss)
1276 return -EINVAL;
1277 }
1278
1279 /* Round if necessary so that SACKs cover only full MSSes
1280 * and/or the remaining small portion (if present)
1281 */
1282 if (pkt_len > mss) {
1283 unsigned int new_len = (pkt_len / mss) * mss;
1284 if (!in_sack && new_len < pkt_len) {
1285 new_len += mss;
1286 if (new_len > skb->len)
1287 return 0;
1288 }
1289 pkt_len = new_len;
1290 }
1291 err = tcp_fragment(sk, skb, pkt_len, mss);
1292 if (err < 0)
1293 return err;
1294 }
1295
1296 return in_sack;
1297 }
1298
1299 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1300 struct tcp_sacktag_state *state,
1301 int dup_sack, int pcount)
1302 {
1303 struct tcp_sock *tp = tcp_sk(sk);
1304 u8 sacked = TCP_SKB_CB(skb)->sacked;
1305 int fack_count = state->fack_count;
1306
1307 /* Account D-SACK for retransmitted packet. */
1308 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1309 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1310 tp->undo_retrans--;
1311 if (sacked & TCPCB_SACKED_ACKED)
1312 state->reord = min(fack_count, state->reord);
1313 }
1314
1315 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1316 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1317 return sacked;
1318
1319 if (!(sacked & TCPCB_SACKED_ACKED)) {
1320 if (sacked & TCPCB_SACKED_RETRANS) {
1321 /* If the segment is not tagged as lost,
1322 * we do not clear RETRANS, believing
1323 * that retransmission is still in flight.
1324 */
1325 if (sacked & TCPCB_LOST) {
1326 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1327 tp->lost_out -= pcount;
1328 tp->retrans_out -= pcount;
1329 }
1330 } else {
1331 if (!(sacked & TCPCB_RETRANS)) {
1332 /* New sack for not retransmitted frame,
1333 * which was in hole. It is reordering.
1334 */
1335 if (before(TCP_SKB_CB(skb)->seq,
1336 tcp_highest_sack_seq(tp)))
1337 state->reord = min(fack_count,
1338 state->reord);
1339
1340 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1341 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1342 state->flag |= FLAG_ONLY_ORIG_SACKED;
1343 }
1344
1345 if (sacked & TCPCB_LOST) {
1346 sacked &= ~TCPCB_LOST;
1347 tp->lost_out -= pcount;
1348 }
1349 }
1350
1351 sacked |= TCPCB_SACKED_ACKED;
1352 state->flag |= FLAG_DATA_SACKED;
1353 tp->sacked_out += pcount;
1354
1355 fack_count += pcount;
1356
1357 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1358 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1359 before(TCP_SKB_CB(skb)->seq,
1360 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1361 tp->lost_cnt_hint += pcount;
1362
1363 if (fack_count > tp->fackets_out)
1364 tp->fackets_out = fack_count;
1365 }
1366
1367 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1368 * frames and clear it. undo_retrans is decreased above, L|R frames
1369 * are accounted above as well.
1370 */
1371 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1372 sacked &= ~TCPCB_SACKED_RETRANS;
1373 tp->retrans_out -= pcount;
1374 }
1375
1376 return sacked;
1377 }
1378
1379 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1380 struct tcp_sacktag_state *state,
1381 unsigned int pcount, int shifted, int mss,
1382 int dup_sack)
1383 {
1384 struct tcp_sock *tp = tcp_sk(sk);
1385 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1386
1387 BUG_ON(!pcount);
1388
1389 /* Tweak before seqno plays */
1390 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1391 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1392 tp->lost_cnt_hint += pcount;
1393
1394 TCP_SKB_CB(prev)->end_seq += shifted;
1395 TCP_SKB_CB(skb)->seq += shifted;
1396
1397 skb_shinfo(prev)->gso_segs += pcount;
1398 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1399 skb_shinfo(skb)->gso_segs -= pcount;
1400
1401 /* When we're adding to gso_segs == 1, gso_size will be zero,
1402 * in theory this shouldn't be necessary but as long as DSACK
1403 * code can come after this skb later on it's better to keep
1404 * setting gso_size to something.
1405 */
1406 if (!skb_shinfo(prev)->gso_size) {
1407 skb_shinfo(prev)->gso_size = mss;
1408 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1409 }
1410
1411 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1412 if (skb_shinfo(skb)->gso_segs <= 1) {
1413 skb_shinfo(skb)->gso_size = 0;
1414 skb_shinfo(skb)->gso_type = 0;
1415 }
1416
1417 /* We discard results */
1418 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1419
1420 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1421 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1422
1423 if (skb->len > 0) {
1424 BUG_ON(!tcp_skb_pcount(skb));
1425 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1426 return 0;
1427 }
1428
1429 /* Whole SKB was eaten :-) */
1430
1431 if (skb == tp->retransmit_skb_hint)
1432 tp->retransmit_skb_hint = prev;
1433 if (skb == tp->scoreboard_skb_hint)
1434 tp->scoreboard_skb_hint = prev;
1435 if (skb == tp->lost_skb_hint) {
1436 tp->lost_skb_hint = prev;
1437 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1438 }
1439
1440 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1441 if (skb == tcp_highest_sack(sk))
1442 tcp_advance_highest_sack(sk, skb);
1443
1444 tcp_unlink_write_queue(skb, sk);
1445 sk_wmem_free_skb(sk, skb);
1446
1447 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1448
1449 return 1;
1450 }
1451
1452 /* I wish gso_size would have a bit more sane initialization than
1453 * something-or-zero which complicates things
1454 */
1455 static int tcp_skb_seglen(struct sk_buff *skb)
1456 {
1457 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1458 }
1459
1460 /* Shifting pages past head area doesn't work */
1461 static int skb_can_shift(struct sk_buff *skb)
1462 {
1463 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1464 }
1465
1466 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1467 * skb.
1468 */
1469 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1470 struct tcp_sacktag_state *state,
1471 u32 start_seq, u32 end_seq,
1472 int dup_sack)
1473 {
1474 struct tcp_sock *tp = tcp_sk(sk);
1475 struct sk_buff *prev;
1476 int mss;
1477 int pcount = 0;
1478 int len;
1479 int in_sack;
1480
1481 if (!sk_can_gso(sk))
1482 goto fallback;
1483
1484 /* Normally R but no L won't result in plain S */
1485 if (!dup_sack &&
1486 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1487 goto fallback;
1488 if (!skb_can_shift(skb))
1489 goto fallback;
1490 /* This frame is about to be dropped (was ACKed). */
1491 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1492 goto fallback;
1493
1494 /* Can only happen with delayed DSACK + discard craziness */
1495 if (unlikely(skb == tcp_write_queue_head(sk)))
1496 goto fallback;
1497 prev = tcp_write_queue_prev(sk, skb);
1498
1499 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1500 goto fallback;
1501
1502 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1503 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1504
1505 if (in_sack) {
1506 len = skb->len;
1507 pcount = tcp_skb_pcount(skb);
1508 mss = tcp_skb_seglen(skb);
1509
1510 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1511 * drop this restriction as unnecessary
1512 */
1513 if (mss != tcp_skb_seglen(prev))
1514 goto fallback;
1515 } else {
1516 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1517 goto noop;
1518 /* CHECKME: This is non-MSS split case only?, this will
1519 * cause skipped skbs due to advancing loop btw, original
1520 * has that feature too
1521 */
1522 if (tcp_skb_pcount(skb) <= 1)
1523 goto noop;
1524
1525 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1526 if (!in_sack) {
1527 /* TODO: head merge to next could be attempted here
1528 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1529 * though it might not be worth of the additional hassle
1530 *
1531 * ...we can probably just fallback to what was done
1532 * previously. We could try merging non-SACKed ones
1533 * as well but it probably isn't going to buy off
1534 * because later SACKs might again split them, and
1535 * it would make skb timestamp tracking considerably
1536 * harder problem.
1537 */
1538 goto fallback;
1539 }
1540
1541 len = end_seq - TCP_SKB_CB(skb)->seq;
1542 BUG_ON(len < 0);
1543 BUG_ON(len > skb->len);
1544
1545 /* MSS boundaries should be honoured or else pcount will
1546 * severely break even though it makes things bit trickier.
1547 * Optimize common case to avoid most of the divides
1548 */
1549 mss = tcp_skb_mss(skb);
1550
1551 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1552 * drop this restriction as unnecessary
1553 */
1554 if (mss != tcp_skb_seglen(prev))
1555 goto fallback;
1556
1557 if (len == mss) {
1558 pcount = 1;
1559 } else if (len < mss) {
1560 goto noop;
1561 } else {
1562 pcount = len / mss;
1563 len = pcount * mss;
1564 }
1565 }
1566
1567 if (!skb_shift(prev, skb, len))
1568 goto fallback;
1569 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1570 goto out;
1571
1572 /* Hole filled allows collapsing with the next as well, this is very
1573 * useful when hole on every nth skb pattern happens
1574 */
1575 if (prev == tcp_write_queue_tail(sk))
1576 goto out;
1577 skb = tcp_write_queue_next(sk, prev);
1578
1579 if (!skb_can_shift(skb) ||
1580 (skb == tcp_send_head(sk)) ||
1581 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1582 (mss != tcp_skb_seglen(skb)))
1583 goto out;
1584
1585 len = skb->len;
1586 if (skb_shift(prev, skb, len)) {
1587 pcount += tcp_skb_pcount(skb);
1588 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1589 }
1590
1591 out:
1592 state->fack_count += pcount;
1593 return prev;
1594
1595 noop:
1596 return skb;
1597
1598 fallback:
1599 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1600 return NULL;
1601 }
1602
1603 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1604 struct tcp_sack_block *next_dup,
1605 struct tcp_sacktag_state *state,
1606 u32 start_seq, u32 end_seq,
1607 int dup_sack_in)
1608 {
1609 struct tcp_sock *tp = tcp_sk(sk);
1610 struct sk_buff *tmp;
1611
1612 tcp_for_write_queue_from(skb, sk) {
1613 int in_sack = 0;
1614 int dup_sack = dup_sack_in;
1615
1616 if (skb == tcp_send_head(sk))
1617 break;
1618
1619 /* queue is in-order => we can short-circuit the walk early */
1620 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1621 break;
1622
1623 if ((next_dup != NULL) &&
1624 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1625 in_sack = tcp_match_skb_to_sack(sk, skb,
1626 next_dup->start_seq,
1627 next_dup->end_seq);
1628 if (in_sack > 0)
1629 dup_sack = 1;
1630 }
1631
1632 /* skb reference here is a bit tricky to get right, since
1633 * shifting can eat and free both this skb and the next,
1634 * so not even _safe variant of the loop is enough.
1635 */
1636 if (in_sack <= 0) {
1637 tmp = tcp_shift_skb_data(sk, skb, state,
1638 start_seq, end_seq, dup_sack);
1639 if (tmp != NULL) {
1640 if (tmp != skb) {
1641 skb = tmp;
1642 continue;
1643 }
1644
1645 in_sack = 0;
1646 } else {
1647 in_sack = tcp_match_skb_to_sack(sk, skb,
1648 start_seq,
1649 end_seq);
1650 }
1651 }
1652
1653 if (unlikely(in_sack < 0))
1654 break;
1655
1656 if (in_sack) {
1657 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1658 state,
1659 dup_sack,
1660 tcp_skb_pcount(skb));
1661
1662 if (!before(TCP_SKB_CB(skb)->seq,
1663 tcp_highest_sack_seq(tp)))
1664 tcp_advance_highest_sack(sk, skb);
1665 }
1666
1667 state->fack_count += tcp_skb_pcount(skb);
1668 }
1669 return skb;
1670 }
1671
1672 /* Avoid all extra work that is being done by sacktag while walking in
1673 * a normal way
1674 */
1675 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1676 struct tcp_sacktag_state *state,
1677 u32 skip_to_seq)
1678 {
1679 tcp_for_write_queue_from(skb, sk) {
1680 if (skb == tcp_send_head(sk))
1681 break;
1682
1683 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1684 break;
1685
1686 state->fack_count += tcp_skb_pcount(skb);
1687 }
1688 return skb;
1689 }
1690
1691 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1692 struct sock *sk,
1693 struct tcp_sack_block *next_dup,
1694 struct tcp_sacktag_state *state,
1695 u32 skip_to_seq)
1696 {
1697 if (next_dup == NULL)
1698 return skb;
1699
1700 if (before(next_dup->start_seq, skip_to_seq)) {
1701 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1702 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1703 next_dup->start_seq, next_dup->end_seq,
1704 1);
1705 }
1706
1707 return skb;
1708 }
1709
1710 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1711 {
1712 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1713 }
1714
1715 static int
1716 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1717 u32 prior_snd_una)
1718 {
1719 const struct inet_connection_sock *icsk = inet_csk(sk);
1720 struct tcp_sock *tp = tcp_sk(sk);
1721 unsigned char *ptr = (skb_transport_header(ack_skb) +
1722 TCP_SKB_CB(ack_skb)->sacked);
1723 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1724 struct tcp_sack_block sp[TCP_NUM_SACKS];
1725 struct tcp_sack_block *cache;
1726 struct tcp_sacktag_state state;
1727 struct sk_buff *skb;
1728 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1729 int used_sacks;
1730 int found_dup_sack = 0;
1731 int i, j;
1732 int first_sack_index;
1733
1734 state.flag = 0;
1735 state.reord = tp->packets_out;
1736
1737 if (!tp->sacked_out) {
1738 if (WARN_ON(tp->fackets_out))
1739 tp->fackets_out = 0;
1740 tcp_highest_sack_reset(sk);
1741 }
1742
1743 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1744 num_sacks, prior_snd_una);
1745 if (found_dup_sack)
1746 state.flag |= FLAG_DSACKING_ACK;
1747
1748 /* Eliminate too old ACKs, but take into
1749 * account more or less fresh ones, they can
1750 * contain valid SACK info.
1751 */
1752 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1753 return 0;
1754
1755 if (!tp->packets_out)
1756 goto out;
1757
1758 used_sacks = 0;
1759 first_sack_index = 0;
1760 for (i = 0; i < num_sacks; i++) {
1761 int dup_sack = !i && found_dup_sack;
1762
1763 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1764 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1765
1766 if (!tcp_is_sackblock_valid(tp, dup_sack,
1767 sp[used_sacks].start_seq,
1768 sp[used_sacks].end_seq)) {
1769 int mib_idx;
1770
1771 if (dup_sack) {
1772 if (!tp->undo_marker)
1773 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1774 else
1775 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1776 } else {
1777 /* Don't count olds caused by ACK reordering */
1778 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1779 !after(sp[used_sacks].end_seq, tp->snd_una))
1780 continue;
1781 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1782 }
1783
1784 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1785 if (i == 0)
1786 first_sack_index = -1;
1787 continue;
1788 }
1789
1790 /* Ignore very old stuff early */
1791 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1792 continue;
1793
1794 used_sacks++;
1795 }
1796
1797 /* order SACK blocks to allow in order walk of the retrans queue */
1798 for (i = used_sacks - 1; i > 0; i--) {
1799 for (j = 0; j < i; j++) {
1800 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1801 swap(sp[j], sp[j + 1]);
1802
1803 /* Track where the first SACK block goes to */
1804 if (j == first_sack_index)
1805 first_sack_index = j + 1;
1806 }
1807 }
1808 }
1809
1810 skb = tcp_write_queue_head(sk);
1811 state.fack_count = 0;
1812 i = 0;
1813
1814 if (!tp->sacked_out) {
1815 /* It's already past, so skip checking against it */
1816 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1817 } else {
1818 cache = tp->recv_sack_cache;
1819 /* Skip empty blocks in at head of the cache */
1820 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1821 !cache->end_seq)
1822 cache++;
1823 }
1824
1825 while (i < used_sacks) {
1826 u32 start_seq = sp[i].start_seq;
1827 u32 end_seq = sp[i].end_seq;
1828 int dup_sack = (found_dup_sack && (i == first_sack_index));
1829 struct tcp_sack_block *next_dup = NULL;
1830
1831 if (found_dup_sack && ((i + 1) == first_sack_index))
1832 next_dup = &sp[i + 1];
1833
1834 /* Event "B" in the comment above. */
1835 if (after(end_seq, tp->high_seq))
1836 state.flag |= FLAG_DATA_LOST;
1837
1838 /* Skip too early cached blocks */
1839 while (tcp_sack_cache_ok(tp, cache) &&
1840 !before(start_seq, cache->end_seq))
1841 cache++;
1842
1843 /* Can skip some work by looking recv_sack_cache? */
1844 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1845 after(end_seq, cache->start_seq)) {
1846
1847 /* Head todo? */
1848 if (before(start_seq, cache->start_seq)) {
1849 skb = tcp_sacktag_skip(skb, sk, &state,
1850 start_seq);
1851 skb = tcp_sacktag_walk(skb, sk, next_dup,
1852 &state,
1853 start_seq,
1854 cache->start_seq,
1855 dup_sack);
1856 }
1857
1858 /* Rest of the block already fully processed? */
1859 if (!after(end_seq, cache->end_seq))
1860 goto advance_sp;
1861
1862 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1863 &state,
1864 cache->end_seq);
1865
1866 /* ...tail remains todo... */
1867 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1868 /* ...but better entrypoint exists! */
1869 skb = tcp_highest_sack(sk);
1870 if (skb == NULL)
1871 break;
1872 state.fack_count = tp->fackets_out;
1873 cache++;
1874 goto walk;
1875 }
1876
1877 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1878 /* Check overlap against next cached too (past this one already) */
1879 cache++;
1880 continue;
1881 }
1882
1883 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1884 skb = tcp_highest_sack(sk);
1885 if (skb == NULL)
1886 break;
1887 state.fack_count = tp->fackets_out;
1888 }
1889 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1890
1891 walk:
1892 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1893 start_seq, end_seq, dup_sack);
1894
1895 advance_sp:
1896 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1897 * due to in-order walk
1898 */
1899 if (after(end_seq, tp->frto_highmark))
1900 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1901
1902 i++;
1903 }
1904
1905 /* Clear the head of the cache sack blocks so we can skip it next time */
1906 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1907 tp->recv_sack_cache[i].start_seq = 0;
1908 tp->recv_sack_cache[i].end_seq = 0;
1909 }
1910 for (j = 0; j < used_sacks; j++)
1911 tp->recv_sack_cache[i++] = sp[j];
1912
1913 tcp_mark_lost_retrans(sk);
1914
1915 tcp_verify_left_out(tp);
1916
1917 if ((state.reord < tp->fackets_out) &&
1918 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1919 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1920 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1921
1922 out:
1923
1924 #if FASTRETRANS_DEBUG > 0
1925 WARN_ON((int)tp->sacked_out < 0);
1926 WARN_ON((int)tp->lost_out < 0);
1927 WARN_ON((int)tp->retrans_out < 0);
1928 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1929 #endif
1930 return state.flag;
1931 }
1932
1933 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1934 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1935 */
1936 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1937 {
1938 u32 holes;
1939
1940 holes = max(tp->lost_out, 1U);
1941 holes = min(holes, tp->packets_out);
1942
1943 if ((tp->sacked_out + holes) > tp->packets_out) {
1944 tp->sacked_out = tp->packets_out - holes;
1945 return 1;
1946 }
1947 return 0;
1948 }
1949
1950 /* If we receive more dupacks than we expected counting segments
1951 * in assumption of absent reordering, interpret this as reordering.
1952 * The only another reason could be bug in receiver TCP.
1953 */
1954 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1955 {
1956 struct tcp_sock *tp = tcp_sk(sk);
1957 if (tcp_limit_reno_sacked(tp))
1958 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1959 }
1960
1961 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1962
1963 static void tcp_add_reno_sack(struct sock *sk)
1964 {
1965 struct tcp_sock *tp = tcp_sk(sk);
1966 tp->sacked_out++;
1967 tcp_check_reno_reordering(sk, 0);
1968 tcp_verify_left_out(tp);
1969 }
1970
1971 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1972
1973 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1974 {
1975 struct tcp_sock *tp = tcp_sk(sk);
1976
1977 if (acked > 0) {
1978 /* One ACK acked hole. The rest eat duplicate ACKs. */
1979 if (acked - 1 >= tp->sacked_out)
1980 tp->sacked_out = 0;
1981 else
1982 tp->sacked_out -= acked - 1;
1983 }
1984 tcp_check_reno_reordering(sk, acked);
1985 tcp_verify_left_out(tp);
1986 }
1987
1988 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1989 {
1990 tp->sacked_out = 0;
1991 }
1992
1993 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1994 {
1995 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1996 }
1997
1998 /* F-RTO can only be used if TCP has never retransmitted anything other than
1999 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2000 */
2001 int tcp_use_frto(struct sock *sk)
2002 {
2003 const struct tcp_sock *tp = tcp_sk(sk);
2004 const struct inet_connection_sock *icsk = inet_csk(sk);
2005 struct sk_buff *skb;
2006
2007 if (!sysctl_tcp_frto)
2008 return 0;
2009
2010 /* MTU probe and F-RTO won't really play nicely along currently */
2011 if (icsk->icsk_mtup.probe_size)
2012 return 0;
2013
2014 if (tcp_is_sackfrto(tp))
2015 return 1;
2016
2017 /* Avoid expensive walking of rexmit queue if possible */
2018 if (tp->retrans_out > 1)
2019 return 0;
2020
2021 skb = tcp_write_queue_head(sk);
2022 if (tcp_skb_is_last(sk, skb))
2023 return 1;
2024 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2025 tcp_for_write_queue_from(skb, sk) {
2026 if (skb == tcp_send_head(sk))
2027 break;
2028 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2029 return 0;
2030 /* Short-circuit when first non-SACKed skb has been checked */
2031 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2032 break;
2033 }
2034 return 1;
2035 }
2036
2037 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2038 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2039 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2040 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2041 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2042 * bits are handled if the Loss state is really to be entered (in
2043 * tcp_enter_frto_loss).
2044 *
2045 * Do like tcp_enter_loss() would; when RTO expires the second time it
2046 * does:
2047 * "Reduce ssthresh if it has not yet been made inside this window."
2048 */
2049 void tcp_enter_frto(struct sock *sk)
2050 {
2051 const struct inet_connection_sock *icsk = inet_csk(sk);
2052 struct tcp_sock *tp = tcp_sk(sk);
2053 struct sk_buff *skb;
2054
2055 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2056 tp->snd_una == tp->high_seq ||
2057 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2058 !icsk->icsk_retransmits)) {
2059 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2060 /* Our state is too optimistic in ssthresh() call because cwnd
2061 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2062 * recovery has not yet completed. Pattern would be this: RTO,
2063 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2064 * up here twice).
2065 * RFC4138 should be more specific on what to do, even though
2066 * RTO is quite unlikely to occur after the first Cumulative ACK
2067 * due to back-off and complexity of triggering events ...
2068 */
2069 if (tp->frto_counter) {
2070 u32 stored_cwnd;
2071 stored_cwnd = tp->snd_cwnd;
2072 tp->snd_cwnd = 2;
2073 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2074 tp->snd_cwnd = stored_cwnd;
2075 } else {
2076 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2077 }
2078 /* ... in theory, cong.control module could do "any tricks" in
2079 * ssthresh(), which means that ca_state, lost bits and lost_out
2080 * counter would have to be faked before the call occurs. We
2081 * consider that too expensive, unlikely and hacky, so modules
2082 * using these in ssthresh() must deal these incompatibility
2083 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2084 */
2085 tcp_ca_event(sk, CA_EVENT_FRTO);
2086 }
2087
2088 tp->undo_marker = tp->snd_una;
2089 tp->undo_retrans = 0;
2090
2091 skb = tcp_write_queue_head(sk);
2092 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2093 tp->undo_marker = 0;
2094 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2095 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2096 tp->retrans_out -= tcp_skb_pcount(skb);
2097 }
2098 tcp_verify_left_out(tp);
2099
2100 /* Too bad if TCP was application limited */
2101 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2102
2103 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2104 * The last condition is necessary at least in tp->frto_counter case.
2105 */
2106 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2107 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2108 after(tp->high_seq, tp->snd_una)) {
2109 tp->frto_highmark = tp->high_seq;
2110 } else {
2111 tp->frto_highmark = tp->snd_nxt;
2112 }
2113 tcp_set_ca_state(sk, TCP_CA_Disorder);
2114 tp->high_seq = tp->snd_nxt;
2115 tp->frto_counter = 1;
2116 }
2117
2118 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2119 * which indicates that we should follow the traditional RTO recovery,
2120 * i.e. mark everything lost and do go-back-N retransmission.
2121 */
2122 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2123 {
2124 struct tcp_sock *tp = tcp_sk(sk);
2125 struct sk_buff *skb;
2126
2127 tp->lost_out = 0;
2128 tp->retrans_out = 0;
2129 if (tcp_is_reno(tp))
2130 tcp_reset_reno_sack(tp);
2131
2132 tcp_for_write_queue(skb, sk) {
2133 if (skb == tcp_send_head(sk))
2134 break;
2135
2136 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2137 /*
2138 * Count the retransmission made on RTO correctly (only when
2139 * waiting for the first ACK and did not get it)...
2140 */
2141 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2142 /* For some reason this R-bit might get cleared? */
2143 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2144 tp->retrans_out += tcp_skb_pcount(skb);
2145 /* ...enter this if branch just for the first segment */
2146 flag |= FLAG_DATA_ACKED;
2147 } else {
2148 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2149 tp->undo_marker = 0;
2150 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2151 }
2152
2153 /* Marking forward transmissions that were made after RTO lost
2154 * can cause unnecessary retransmissions in some scenarios,
2155 * SACK blocks will mitigate that in some but not in all cases.
2156 * We used to not mark them but it was causing break-ups with
2157 * receivers that do only in-order receival.
2158 *
2159 * TODO: we could detect presence of such receiver and select
2160 * different behavior per flow.
2161 */
2162 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2163 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2164 tp->lost_out += tcp_skb_pcount(skb);
2165 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2166 }
2167 }
2168 tcp_verify_left_out(tp);
2169
2170 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2171 tp->snd_cwnd_cnt = 0;
2172 tp->snd_cwnd_stamp = tcp_time_stamp;
2173 tp->frto_counter = 0;
2174 tp->bytes_acked = 0;
2175
2176 tp->reordering = min_t(unsigned int, tp->reordering,
2177 sysctl_tcp_reordering);
2178 tcp_set_ca_state(sk, TCP_CA_Loss);
2179 tp->high_seq = tp->snd_nxt;
2180 TCP_ECN_queue_cwr(tp);
2181
2182 tcp_clear_all_retrans_hints(tp);
2183 }
2184
2185 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2186 {
2187 tp->retrans_out = 0;
2188 tp->lost_out = 0;
2189
2190 tp->undo_marker = 0;
2191 tp->undo_retrans = 0;
2192 }
2193
2194 void tcp_clear_retrans(struct tcp_sock *tp)
2195 {
2196 tcp_clear_retrans_partial(tp);
2197
2198 tp->fackets_out = 0;
2199 tp->sacked_out = 0;
2200 }
2201
2202 /* Enter Loss state. If "how" is not zero, forget all SACK information
2203 * and reset tags completely, otherwise preserve SACKs. If receiver
2204 * dropped its ofo queue, we will know this due to reneging detection.
2205 */
2206 void tcp_enter_loss(struct sock *sk, int how)
2207 {
2208 const struct inet_connection_sock *icsk = inet_csk(sk);
2209 struct tcp_sock *tp = tcp_sk(sk);
2210 struct sk_buff *skb;
2211
2212 /* Reduce ssthresh if it has not yet been made inside this window. */
2213 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2214 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2215 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2216 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2217 tcp_ca_event(sk, CA_EVENT_LOSS);
2218 }
2219 tp->snd_cwnd = 1;
2220 tp->snd_cwnd_cnt = 0;
2221 tp->snd_cwnd_stamp = tcp_time_stamp;
2222
2223 tp->bytes_acked = 0;
2224 tcp_clear_retrans_partial(tp);
2225
2226 if (tcp_is_reno(tp))
2227 tcp_reset_reno_sack(tp);
2228
2229 if (!how) {
2230 /* Push undo marker, if it was plain RTO and nothing
2231 * was retransmitted. */
2232 tp->undo_marker = tp->snd_una;
2233 } else {
2234 tp->sacked_out = 0;
2235 tp->fackets_out = 0;
2236 }
2237 tcp_clear_all_retrans_hints(tp);
2238
2239 tcp_for_write_queue(skb, sk) {
2240 if (skb == tcp_send_head(sk))
2241 break;
2242
2243 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2244 tp->undo_marker = 0;
2245 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2246 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2247 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2248 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2249 tp->lost_out += tcp_skb_pcount(skb);
2250 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2251 }
2252 }
2253 tcp_verify_left_out(tp);
2254
2255 tp->reordering = min_t(unsigned int, tp->reordering,
2256 sysctl_tcp_reordering);
2257 tcp_set_ca_state(sk, TCP_CA_Loss);
2258 tp->high_seq = tp->snd_nxt;
2259 TCP_ECN_queue_cwr(tp);
2260 /* Abort F-RTO algorithm if one is in progress */
2261 tp->frto_counter = 0;
2262 }
2263
2264 /* If ACK arrived pointing to a remembered SACK, it means that our
2265 * remembered SACKs do not reflect real state of receiver i.e.
2266 * receiver _host_ is heavily congested (or buggy).
2267 *
2268 * Do processing similar to RTO timeout.
2269 */
2270 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2271 {
2272 if (flag & FLAG_SACK_RENEGING) {
2273 struct inet_connection_sock *icsk = inet_csk(sk);
2274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2275
2276 tcp_enter_loss(sk, 1);
2277 icsk->icsk_retransmits++;
2278 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2279 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2280 icsk->icsk_rto, TCP_RTO_MAX);
2281 return 1;
2282 }
2283 return 0;
2284 }
2285
2286 static inline int tcp_fackets_out(struct tcp_sock *tp)
2287 {
2288 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2289 }
2290
2291 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2292 * counter when SACK is enabled (without SACK, sacked_out is used for
2293 * that purpose).
2294 *
2295 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2296 * segments up to the highest received SACK block so far and holes in
2297 * between them.
2298 *
2299 * With reordering, holes may still be in flight, so RFC3517 recovery
2300 * uses pure sacked_out (total number of SACKed segments) even though
2301 * it violates the RFC that uses duplicate ACKs, often these are equal
2302 * but when e.g. out-of-window ACKs or packet duplication occurs,
2303 * they differ. Since neither occurs due to loss, TCP should really
2304 * ignore them.
2305 */
2306 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2307 {
2308 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2309 }
2310
2311 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2312 {
2313 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2314 }
2315
2316 static inline int tcp_head_timedout(struct sock *sk)
2317 {
2318 struct tcp_sock *tp = tcp_sk(sk);
2319
2320 return tp->packets_out &&
2321 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2322 }
2323
2324 /* Linux NewReno/SACK/FACK/ECN state machine.
2325 * --------------------------------------
2326 *
2327 * "Open" Normal state, no dubious events, fast path.
2328 * "Disorder" In all the respects it is "Open",
2329 * but requires a bit more attention. It is entered when
2330 * we see some SACKs or dupacks. It is split of "Open"
2331 * mainly to move some processing from fast path to slow one.
2332 * "CWR" CWND was reduced due to some Congestion Notification event.
2333 * It can be ECN, ICMP source quench, local device congestion.
2334 * "Recovery" CWND was reduced, we are fast-retransmitting.
2335 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2336 *
2337 * tcp_fastretrans_alert() is entered:
2338 * - each incoming ACK, if state is not "Open"
2339 * - when arrived ACK is unusual, namely:
2340 * * SACK
2341 * * Duplicate ACK.
2342 * * ECN ECE.
2343 *
2344 * Counting packets in flight is pretty simple.
2345 *
2346 * in_flight = packets_out - left_out + retrans_out
2347 *
2348 * packets_out is SND.NXT-SND.UNA counted in packets.
2349 *
2350 * retrans_out is number of retransmitted segments.
2351 *
2352 * left_out is number of segments left network, but not ACKed yet.
2353 *
2354 * left_out = sacked_out + lost_out
2355 *
2356 * sacked_out: Packets, which arrived to receiver out of order
2357 * and hence not ACKed. With SACKs this number is simply
2358 * amount of SACKed data. Even without SACKs
2359 * it is easy to give pretty reliable estimate of this number,
2360 * counting duplicate ACKs.
2361 *
2362 * lost_out: Packets lost by network. TCP has no explicit
2363 * "loss notification" feedback from network (for now).
2364 * It means that this number can be only _guessed_.
2365 * Actually, it is the heuristics to predict lossage that
2366 * distinguishes different algorithms.
2367 *
2368 * F.e. after RTO, when all the queue is considered as lost,
2369 * lost_out = packets_out and in_flight = retrans_out.
2370 *
2371 * Essentially, we have now two algorithms counting
2372 * lost packets.
2373 *
2374 * FACK: It is the simplest heuristics. As soon as we decided
2375 * that something is lost, we decide that _all_ not SACKed
2376 * packets until the most forward SACK are lost. I.e.
2377 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2378 * It is absolutely correct estimate, if network does not reorder
2379 * packets. And it loses any connection to reality when reordering
2380 * takes place. We use FACK by default until reordering
2381 * is suspected on the path to this destination.
2382 *
2383 * NewReno: when Recovery is entered, we assume that one segment
2384 * is lost (classic Reno). While we are in Recovery and
2385 * a partial ACK arrives, we assume that one more packet
2386 * is lost (NewReno). This heuristics are the same in NewReno
2387 * and SACK.
2388 *
2389 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2390 * deflation etc. CWND is real congestion window, never inflated, changes
2391 * only according to classic VJ rules.
2392 *
2393 * Really tricky (and requiring careful tuning) part of algorithm
2394 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2395 * The first determines the moment _when_ we should reduce CWND and,
2396 * hence, slow down forward transmission. In fact, it determines the moment
2397 * when we decide that hole is caused by loss, rather than by a reorder.
2398 *
2399 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2400 * holes, caused by lost packets.
2401 *
2402 * And the most logically complicated part of algorithm is undo
2403 * heuristics. We detect false retransmits due to both too early
2404 * fast retransmit (reordering) and underestimated RTO, analyzing
2405 * timestamps and D-SACKs. When we detect that some segments were
2406 * retransmitted by mistake and CWND reduction was wrong, we undo
2407 * window reduction and abort recovery phase. This logic is hidden
2408 * inside several functions named tcp_try_undo_<something>.
2409 */
2410
2411 /* This function decides, when we should leave Disordered state
2412 * and enter Recovery phase, reducing congestion window.
2413 *
2414 * Main question: may we further continue forward transmission
2415 * with the same cwnd?
2416 */
2417 static int tcp_time_to_recover(struct sock *sk)
2418 {
2419 struct tcp_sock *tp = tcp_sk(sk);
2420 __u32 packets_out;
2421
2422 /* Do not perform any recovery during F-RTO algorithm */
2423 if (tp->frto_counter)
2424 return 0;
2425
2426 /* Trick#1: The loss is proven. */
2427 if (tp->lost_out)
2428 return 1;
2429
2430 /* Not-A-Trick#2 : Classic rule... */
2431 if (tcp_dupack_heuristics(tp) > tp->reordering)
2432 return 1;
2433
2434 /* Trick#3 : when we use RFC2988 timer restart, fast
2435 * retransmit can be triggered by timeout of queue head.
2436 */
2437 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2438 return 1;
2439
2440 /* Trick#4: It is still not OK... But will it be useful to delay
2441 * recovery more?
2442 */
2443 packets_out = tp->packets_out;
2444 if (packets_out <= tp->reordering &&
2445 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2446 !tcp_may_send_now(sk)) {
2447 /* We have nothing to send. This connection is limited
2448 * either by receiver window or by application.
2449 */
2450 return 1;
2451 }
2452
2453 /* If a thin stream is detected, retransmit after first
2454 * received dupack. Employ only if SACK is supported in order
2455 * to avoid possible corner-case series of spurious retransmissions
2456 * Use only if there are no unsent data.
2457 */
2458 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2459 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2460 tcp_is_sack(tp) && !tcp_send_head(sk))
2461 return 1;
2462
2463 return 0;
2464 }
2465
2466 /* New heuristics: it is possible only after we switched to restart timer
2467 * each time when something is ACKed. Hence, we can detect timed out packets
2468 * during fast retransmit without falling to slow start.
2469 *
2470 * Usefulness of this as is very questionable, since we should know which of
2471 * the segments is the next to timeout which is relatively expensive to find
2472 * in general case unless we add some data structure just for that. The
2473 * current approach certainly won't find the right one too often and when it
2474 * finally does find _something_ it usually marks large part of the window
2475 * right away (because a retransmission with a larger timestamp blocks the
2476 * loop from advancing). -ij
2477 */
2478 static void tcp_timeout_skbs(struct sock *sk)
2479 {
2480 struct tcp_sock *tp = tcp_sk(sk);
2481 struct sk_buff *skb;
2482
2483 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2484 return;
2485
2486 skb = tp->scoreboard_skb_hint;
2487 if (tp->scoreboard_skb_hint == NULL)
2488 skb = tcp_write_queue_head(sk);
2489
2490 tcp_for_write_queue_from(skb, sk) {
2491 if (skb == tcp_send_head(sk))
2492 break;
2493 if (!tcp_skb_timedout(sk, skb))
2494 break;
2495
2496 tcp_skb_mark_lost(tp, skb);
2497 }
2498
2499 tp->scoreboard_skb_hint = skb;
2500
2501 tcp_verify_left_out(tp);
2502 }
2503
2504 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2505 * is against sacked "cnt", otherwise it's against facked "cnt"
2506 */
2507 static void tcp_mark_head_lost(struct sock *sk, int packets)
2508 {
2509 struct tcp_sock *tp = tcp_sk(sk);
2510 struct sk_buff *skb;
2511 int cnt, oldcnt;
2512 int err;
2513 unsigned int mss;
2514
2515 if (packets == 0)
2516 return;
2517
2518 WARN_ON(packets > tp->packets_out);
2519 if (tp->lost_skb_hint) {
2520 skb = tp->lost_skb_hint;
2521 cnt = tp->lost_cnt_hint;
2522 } else {
2523 skb = tcp_write_queue_head(sk);
2524 cnt = 0;
2525 }
2526
2527 tcp_for_write_queue_from(skb, sk) {
2528 if (skb == tcp_send_head(sk))
2529 break;
2530 /* TODO: do this better */
2531 /* this is not the most efficient way to do this... */
2532 tp->lost_skb_hint = skb;
2533 tp->lost_cnt_hint = cnt;
2534
2535 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2536 break;
2537
2538 oldcnt = cnt;
2539 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2540 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2541 cnt += tcp_skb_pcount(skb);
2542
2543 if (cnt > packets) {
2544 if (tcp_is_sack(tp) || (oldcnt >= packets))
2545 break;
2546
2547 mss = skb_shinfo(skb)->gso_size;
2548 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2549 if (err < 0)
2550 break;
2551 cnt = packets;
2552 }
2553
2554 tcp_skb_mark_lost(tp, skb);
2555 }
2556 tcp_verify_left_out(tp);
2557 }
2558
2559 /* Account newly detected lost packet(s) */
2560
2561 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2562 {
2563 struct tcp_sock *tp = tcp_sk(sk);
2564
2565 if (tcp_is_reno(tp)) {
2566 tcp_mark_head_lost(sk, 1);
2567 } else if (tcp_is_fack(tp)) {
2568 int lost = tp->fackets_out - tp->reordering;
2569 if (lost <= 0)
2570 lost = 1;
2571 tcp_mark_head_lost(sk, lost);
2572 } else {
2573 int sacked_upto = tp->sacked_out - tp->reordering;
2574 if (sacked_upto < fast_rexmit)
2575 sacked_upto = fast_rexmit;
2576 tcp_mark_head_lost(sk, sacked_upto);
2577 }
2578
2579 tcp_timeout_skbs(sk);
2580 }
2581
2582 /* CWND moderation, preventing bursts due to too big ACKs
2583 * in dubious situations.
2584 */
2585 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2586 {
2587 tp->snd_cwnd = min(tp->snd_cwnd,
2588 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2589 tp->snd_cwnd_stamp = tcp_time_stamp;
2590 }
2591
2592 /* Lower bound on congestion window is slow start threshold
2593 * unless congestion avoidance choice decides to overide it.
2594 */
2595 static inline u32 tcp_cwnd_min(const struct sock *sk)
2596 {
2597 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2598
2599 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2600 }
2601
2602 /* Decrease cwnd each second ack. */
2603 static void tcp_cwnd_down(struct sock *sk, int flag)
2604 {
2605 struct tcp_sock *tp = tcp_sk(sk);
2606 int decr = tp->snd_cwnd_cnt + 1;
2607
2608 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2609 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2610 tp->snd_cwnd_cnt = decr & 1;
2611 decr >>= 1;
2612
2613 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2614 tp->snd_cwnd -= decr;
2615
2616 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2617 tp->snd_cwnd_stamp = tcp_time_stamp;
2618 }
2619 }
2620
2621 /* Nothing was retransmitted or returned timestamp is less
2622 * than timestamp of the first retransmission.
2623 */
2624 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2625 {
2626 return !tp->retrans_stamp ||
2627 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2628 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2629 }
2630
2631 /* Undo procedures. */
2632
2633 #if FASTRETRANS_DEBUG > 1
2634 static void DBGUNDO(struct sock *sk, const char *msg)
2635 {
2636 struct tcp_sock *tp = tcp_sk(sk);
2637 struct inet_sock *inet = inet_sk(sk);
2638
2639 if (sk->sk_family == AF_INET) {
2640 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2641 msg,
2642 &inet->daddr, ntohs(inet->dport),
2643 tp->snd_cwnd, tcp_left_out(tp),
2644 tp->snd_ssthresh, tp->prior_ssthresh,
2645 tp->packets_out);
2646 }
2647 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2648 else if (sk->sk_family == AF_INET6) {
2649 struct ipv6_pinfo *np = inet6_sk(sk);
2650 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2651 msg,
2652 &np->daddr, ntohs(inet->dport),
2653 tp->snd_cwnd, tcp_left_out(tp),
2654 tp->snd_ssthresh, tp->prior_ssthresh,
2655 tp->packets_out);
2656 }
2657 #endif
2658 }
2659 #else
2660 #define DBGUNDO(x...) do { } while (0)
2661 #endif
2662
2663 static void tcp_undo_cwr(struct sock *sk, const int undo)
2664 {
2665 struct tcp_sock *tp = tcp_sk(sk);
2666
2667 if (tp->prior_ssthresh) {
2668 const struct inet_connection_sock *icsk = inet_csk(sk);
2669
2670 if (icsk->icsk_ca_ops->undo_cwnd)
2671 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2672 else
2673 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2674
2675 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2676 tp->snd_ssthresh = tp->prior_ssthresh;
2677 TCP_ECN_withdraw_cwr(tp);
2678 }
2679 } else {
2680 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2681 }
2682 tcp_moderate_cwnd(tp);
2683 tp->snd_cwnd_stamp = tcp_time_stamp;
2684 }
2685
2686 static inline int tcp_may_undo(struct tcp_sock *tp)
2687 {
2688 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2689 }
2690
2691 /* People celebrate: "We love our President!" */
2692 static int tcp_try_undo_recovery(struct sock *sk)
2693 {
2694 struct tcp_sock *tp = tcp_sk(sk);
2695
2696 if (tcp_may_undo(tp)) {
2697 int mib_idx;
2698
2699 /* Happy end! We did not retransmit anything
2700 * or our original transmission succeeded.
2701 */
2702 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2703 tcp_undo_cwr(sk, 1);
2704 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2705 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2706 else
2707 mib_idx = LINUX_MIB_TCPFULLUNDO;
2708
2709 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2710 tp->undo_marker = 0;
2711 }
2712 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2713 /* Hold old state until something *above* high_seq
2714 * is ACKed. For Reno it is MUST to prevent false
2715 * fast retransmits (RFC2582). SACK TCP is safe. */
2716 tcp_moderate_cwnd(tp);
2717 return 1;
2718 }
2719 tcp_set_ca_state(sk, TCP_CA_Open);
2720 return 0;
2721 }
2722
2723 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2724 static void tcp_try_undo_dsack(struct sock *sk)
2725 {
2726 struct tcp_sock *tp = tcp_sk(sk);
2727
2728 if (tp->undo_marker && !tp->undo_retrans) {
2729 DBGUNDO(sk, "D-SACK");
2730 tcp_undo_cwr(sk, 1);
2731 tp->undo_marker = 0;
2732 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2733 }
2734 }
2735
2736 /* We can clear retrans_stamp when there are no retransmissions in the
2737 * window. It would seem that it is trivially available for us in
2738 * tp->retrans_out, however, that kind of assumptions doesn't consider
2739 * what will happen if errors occur when sending retransmission for the
2740 * second time. ...It could the that such segment has only
2741 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2742 * the head skb is enough except for some reneging corner cases that
2743 * are not worth the effort.
2744 *
2745 * Main reason for all this complexity is the fact that connection dying
2746 * time now depends on the validity of the retrans_stamp, in particular,
2747 * that successive retransmissions of a segment must not advance
2748 * retrans_stamp under any conditions.
2749 */
2750 static int tcp_any_retrans_done(struct sock *sk)
2751 {
2752 struct tcp_sock *tp = tcp_sk(sk);
2753 struct sk_buff *skb;
2754
2755 if (tp->retrans_out)
2756 return 1;
2757
2758 skb = tcp_write_queue_head(sk);
2759 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2760 return 1;
2761
2762 return 0;
2763 }
2764
2765 /* Undo during fast recovery after partial ACK. */
2766
2767 static int tcp_try_undo_partial(struct sock *sk, int acked)
2768 {
2769 struct tcp_sock *tp = tcp_sk(sk);
2770 /* Partial ACK arrived. Force Hoe's retransmit. */
2771 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2772
2773 if (tcp_may_undo(tp)) {
2774 /* Plain luck! Hole if filled with delayed
2775 * packet, rather than with a retransmit.
2776 */
2777 if (!tcp_any_retrans_done(sk))
2778 tp->retrans_stamp = 0;
2779
2780 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2781
2782 DBGUNDO(sk, "Hoe");
2783 tcp_undo_cwr(sk, 0);
2784 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2785
2786 /* So... Do not make Hoe's retransmit yet.
2787 * If the first packet was delayed, the rest
2788 * ones are most probably delayed as well.
2789 */
2790 failed = 0;
2791 }
2792 return failed;
2793 }
2794
2795 /* Undo during loss recovery after partial ACK. */
2796 static int tcp_try_undo_loss(struct sock *sk)
2797 {
2798 struct tcp_sock *tp = tcp_sk(sk);
2799
2800 if (tcp_may_undo(tp)) {
2801 struct sk_buff *skb;
2802 tcp_for_write_queue(skb, sk) {
2803 if (skb == tcp_send_head(sk))
2804 break;
2805 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2806 }
2807
2808 tcp_clear_all_retrans_hints(tp);
2809
2810 DBGUNDO(sk, "partial loss");
2811 tp->lost_out = 0;
2812 tcp_undo_cwr(sk, 1);
2813 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2814 inet_csk(sk)->icsk_retransmits = 0;
2815 tp->undo_marker = 0;
2816 if (tcp_is_sack(tp))
2817 tcp_set_ca_state(sk, TCP_CA_Open);
2818 return 1;
2819 }
2820 return 0;
2821 }
2822
2823 static inline void tcp_complete_cwr(struct sock *sk)
2824 {
2825 struct tcp_sock *tp = tcp_sk(sk);
2826 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2827 tp->snd_cwnd_stamp = tcp_time_stamp;
2828 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2829 }
2830
2831 static void tcp_try_keep_open(struct sock *sk)
2832 {
2833 struct tcp_sock *tp = tcp_sk(sk);
2834 int state = TCP_CA_Open;
2835
2836 if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2837 state = TCP_CA_Disorder;
2838
2839 if (inet_csk(sk)->icsk_ca_state != state) {
2840 tcp_set_ca_state(sk, state);
2841 tp->high_seq = tp->snd_nxt;
2842 }
2843 }
2844
2845 static void tcp_try_to_open(struct sock *sk, int flag)
2846 {
2847 struct tcp_sock *tp = tcp_sk(sk);
2848
2849 tcp_verify_left_out(tp);
2850
2851 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2852 tp->retrans_stamp = 0;
2853
2854 if (flag & FLAG_ECE)
2855 tcp_enter_cwr(sk, 1);
2856
2857 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2858 tcp_try_keep_open(sk);
2859 tcp_moderate_cwnd(tp);
2860 } else {
2861 tcp_cwnd_down(sk, flag);
2862 }
2863 }
2864
2865 static void tcp_mtup_probe_failed(struct sock *sk)
2866 {
2867 struct inet_connection_sock *icsk = inet_csk(sk);
2868
2869 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2870 icsk->icsk_mtup.probe_size = 0;
2871 }
2872
2873 static void tcp_mtup_probe_success(struct sock *sk)
2874 {
2875 struct tcp_sock *tp = tcp_sk(sk);
2876 struct inet_connection_sock *icsk = inet_csk(sk);
2877
2878 /* FIXME: breaks with very large cwnd */
2879 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2880 tp->snd_cwnd = tp->snd_cwnd *
2881 tcp_mss_to_mtu(sk, tp->mss_cache) /
2882 icsk->icsk_mtup.probe_size;
2883 tp->snd_cwnd_cnt = 0;
2884 tp->snd_cwnd_stamp = tcp_time_stamp;
2885 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2886
2887 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2888 icsk->icsk_mtup.probe_size = 0;
2889 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2890 }
2891
2892 /* Do a simple retransmit without using the backoff mechanisms in
2893 * tcp_timer. This is used for path mtu discovery.
2894 * The socket is already locked here.
2895 */
2896 void tcp_simple_retransmit(struct sock *sk)
2897 {
2898 const struct inet_connection_sock *icsk = inet_csk(sk);
2899 struct tcp_sock *tp = tcp_sk(sk);
2900 struct sk_buff *skb;
2901 unsigned int mss = tcp_current_mss(sk);
2902 u32 prior_lost = tp->lost_out;
2903
2904 tcp_for_write_queue(skb, sk) {
2905 if (skb == tcp_send_head(sk))
2906 break;
2907 if (tcp_skb_seglen(skb) > mss &&
2908 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2909 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2910 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2911 tp->retrans_out -= tcp_skb_pcount(skb);
2912 }
2913 tcp_skb_mark_lost_uncond_verify(tp, skb);
2914 }
2915 }
2916
2917 tcp_clear_retrans_hints_partial(tp);
2918
2919 if (prior_lost == tp->lost_out)
2920 return;
2921
2922 if (tcp_is_reno(tp))
2923 tcp_limit_reno_sacked(tp);
2924
2925 tcp_verify_left_out(tp);
2926
2927 /* Don't muck with the congestion window here.
2928 * Reason is that we do not increase amount of _data_
2929 * in network, but units changed and effective
2930 * cwnd/ssthresh really reduced now.
2931 */
2932 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2933 tp->high_seq = tp->snd_nxt;
2934 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2935 tp->prior_ssthresh = 0;
2936 tp->undo_marker = 0;
2937 tcp_set_ca_state(sk, TCP_CA_Loss);
2938 }
2939 tcp_xmit_retransmit_queue(sk);
2940 }
2941
2942 /* Process an event, which can update packets-in-flight not trivially.
2943 * Main goal of this function is to calculate new estimate for left_out,
2944 * taking into account both packets sitting in receiver's buffer and
2945 * packets lost by network.
2946 *
2947 * Besides that it does CWND reduction, when packet loss is detected
2948 * and changes state of machine.
2949 *
2950 * It does _not_ decide what to send, it is made in function
2951 * tcp_xmit_retransmit_queue().
2952 */
2953 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2954 {
2955 struct inet_connection_sock *icsk = inet_csk(sk);
2956 struct tcp_sock *tp = tcp_sk(sk);
2957 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2958 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2959 (tcp_fackets_out(tp) > tp->reordering));
2960 int fast_rexmit = 0, mib_idx;
2961
2962 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2963 tp->sacked_out = 0;
2964 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2965 tp->fackets_out = 0;
2966
2967 /* Now state machine starts.
2968 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2969 if (flag & FLAG_ECE)
2970 tp->prior_ssthresh = 0;
2971
2972 /* B. In all the states check for reneging SACKs. */
2973 if (tcp_check_sack_reneging(sk, flag))
2974 return;
2975
2976 /* C. Process data loss notification, provided it is valid. */
2977 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2978 before(tp->snd_una, tp->high_seq) &&
2979 icsk->icsk_ca_state != TCP_CA_Open &&
2980 tp->fackets_out > tp->reordering) {
2981 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2982 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2983 }
2984
2985 /* D. Check consistency of the current state. */
2986 tcp_verify_left_out(tp);
2987
2988 /* E. Check state exit conditions. State can be terminated
2989 * when high_seq is ACKed. */
2990 if (icsk->icsk_ca_state == TCP_CA_Open) {
2991 WARN_ON(tp->retrans_out != 0);
2992 tp->retrans_stamp = 0;
2993 } else if (!before(tp->snd_una, tp->high_seq)) {
2994 switch (icsk->icsk_ca_state) {
2995 case TCP_CA_Loss:
2996 icsk->icsk_retransmits = 0;
2997 if (tcp_try_undo_recovery(sk))
2998 return;
2999 break;
3000
3001 case TCP_CA_CWR:
3002 /* CWR is to be held something *above* high_seq
3003 * is ACKed for CWR bit to reach receiver. */
3004 if (tp->snd_una != tp->high_seq) {
3005 tcp_complete_cwr(sk);
3006 tcp_set_ca_state(sk, TCP_CA_Open);
3007 }
3008 break;
3009
3010 case TCP_CA_Disorder:
3011 tcp_try_undo_dsack(sk);
3012 if (!tp->undo_marker ||
3013 /* For SACK case do not Open to allow to undo
3014 * catching for all duplicate ACKs. */
3015 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3016 tp->undo_marker = 0;
3017 tcp_set_ca_state(sk, TCP_CA_Open);
3018 }
3019 break;
3020
3021 case TCP_CA_Recovery:
3022 if (tcp_is_reno(tp))
3023 tcp_reset_reno_sack(tp);
3024 if (tcp_try_undo_recovery(sk))
3025 return;
3026 tcp_complete_cwr(sk);
3027 break;
3028 }
3029 }
3030
3031 /* F. Process state. */
3032 switch (icsk->icsk_ca_state) {
3033 case TCP_CA_Recovery:
3034 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3035 if (tcp_is_reno(tp) && is_dupack)
3036 tcp_add_reno_sack(sk);
3037 } else
3038 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3039 break;
3040 case TCP_CA_Loss:
3041 if (flag & FLAG_DATA_ACKED)
3042 icsk->icsk_retransmits = 0;
3043 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3044 tcp_reset_reno_sack(tp);
3045 if (!tcp_try_undo_loss(sk)) {
3046 tcp_moderate_cwnd(tp);
3047 tcp_xmit_retransmit_queue(sk);
3048 return;
3049 }
3050 if (icsk->icsk_ca_state != TCP_CA_Open)
3051 return;
3052 /* Loss is undone; fall through to processing in Open state. */
3053 default:
3054 if (tcp_is_reno(tp)) {
3055 if (flag & FLAG_SND_UNA_ADVANCED)
3056 tcp_reset_reno_sack(tp);
3057 if (is_dupack)
3058 tcp_add_reno_sack(sk);
3059 }
3060
3061 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3062 tcp_try_undo_dsack(sk);
3063
3064 if (!tcp_time_to_recover(sk)) {
3065 tcp_try_to_open(sk, flag);
3066 return;
3067 }
3068
3069 /* MTU probe failure: don't reduce cwnd */
3070 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3071 icsk->icsk_mtup.probe_size &&
3072 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3073 tcp_mtup_probe_failed(sk);
3074 /* Restores the reduction we did in tcp_mtup_probe() */
3075 tp->snd_cwnd++;
3076 tcp_simple_retransmit(sk);
3077 return;
3078 }
3079
3080 /* Otherwise enter Recovery state */
3081
3082 if (tcp_is_reno(tp))
3083 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3084 else
3085 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3086
3087 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3088
3089 tp->high_seq = tp->snd_nxt;
3090 tp->prior_ssthresh = 0;
3091 tp->undo_marker = tp->snd_una;
3092 tp->undo_retrans = tp->retrans_out;
3093
3094 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3095 if (!(flag & FLAG_ECE))
3096 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3097 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3098 TCP_ECN_queue_cwr(tp);
3099 }
3100
3101 tp->bytes_acked = 0;
3102 tp->snd_cwnd_cnt = 0;
3103 tcp_set_ca_state(sk, TCP_CA_Recovery);
3104 fast_rexmit = 1;
3105 }
3106
3107 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3108 tcp_update_scoreboard(sk, fast_rexmit);
3109 tcp_cwnd_down(sk, flag);
3110 tcp_xmit_retransmit_queue(sk);
3111 }
3112
3113 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3114 {
3115 tcp_rtt_estimator(sk, seq_rtt);
3116 tcp_set_rto(sk);
3117 inet_csk(sk)->icsk_backoff = 0;
3118 }
3119
3120 /* Read draft-ietf-tcplw-high-performance before mucking
3121 * with this code. (Supersedes RFC1323)
3122 */
3123 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3124 {
3125 /* RTTM Rule: A TSecr value received in a segment is used to
3126 * update the averaged RTT measurement only if the segment
3127 * acknowledges some new data, i.e., only if it advances the
3128 * left edge of the send window.
3129 *
3130 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3131 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3132 *
3133 * Changed: reset backoff as soon as we see the first valid sample.
3134 * If we do not, we get strongly overestimated rto. With timestamps
3135 * samples are accepted even from very old segments: f.e., when rtt=1
3136 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3137 * answer arrives rto becomes 120 seconds! If at least one of segments
3138 * in window is lost... Voila. --ANK (010210)
3139 */
3140 struct tcp_sock *tp = tcp_sk(sk);
3141
3142 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3143 }
3144
3145 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3146 {
3147 /* We don't have a timestamp. Can only use
3148 * packets that are not retransmitted to determine
3149 * rtt estimates. Also, we must not reset the
3150 * backoff for rto until we get a non-retransmitted
3151 * packet. This allows us to deal with a situation
3152 * where the network delay has increased suddenly.
3153 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3154 */
3155
3156 if (flag & FLAG_RETRANS_DATA_ACKED)
3157 return;
3158
3159 tcp_valid_rtt_meas(sk, seq_rtt);
3160 }
3161
3162 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3163 const s32 seq_rtt)
3164 {
3165 const struct tcp_sock *tp = tcp_sk(sk);
3166 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3167 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3168 tcp_ack_saw_tstamp(sk, flag);
3169 else if (seq_rtt >= 0)
3170 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3171 }
3172
3173 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3174 {
3175 const struct inet_connection_sock *icsk = inet_csk(sk);
3176 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3177 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3178 }
3179
3180 /* Restart timer after forward progress on connection.
3181 * RFC2988 recommends to restart timer to now+rto.
3182 */
3183 static void tcp_rearm_rto(struct sock *sk)
3184 {
3185 struct tcp_sock *tp = tcp_sk(sk);
3186
3187 if (!tp->packets_out) {
3188 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3189 } else {
3190 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3191 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3192 }
3193 }
3194
3195 /* If we get here, the whole TSO packet has not been acked. */
3196 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3197 {
3198 struct tcp_sock *tp = tcp_sk(sk);
3199 u32 packets_acked;
3200
3201 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3202
3203 packets_acked = tcp_skb_pcount(skb);
3204 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3205 return 0;
3206 packets_acked -= tcp_skb_pcount(skb);
3207
3208 if (packets_acked) {
3209 BUG_ON(tcp_skb_pcount(skb) == 0);
3210 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3211 }
3212
3213 return packets_acked;
3214 }
3215
3216 /* Remove acknowledged frames from the retransmission queue. If our packet
3217 * is before the ack sequence we can discard it as it's confirmed to have
3218 * arrived at the other end.
3219 */
3220 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3221 u32 prior_snd_una)
3222 {
3223 struct tcp_sock *tp = tcp_sk(sk);
3224 const struct inet_connection_sock *icsk = inet_csk(sk);
3225 struct sk_buff *skb;
3226 u32 now = tcp_time_stamp;
3227 int fully_acked = 1;
3228 int flag = 0;
3229 u32 pkts_acked = 0;
3230 u32 reord = tp->packets_out;
3231 u32 prior_sacked = tp->sacked_out;
3232 s32 seq_rtt = -1;
3233 s32 ca_seq_rtt = -1;
3234 ktime_t last_ackt = net_invalid_timestamp();
3235
3236 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3237 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3238 u32 acked_pcount;
3239 u8 sacked = scb->sacked;
3240
3241 /* Determine how many packets and what bytes were acked, tso and else */
3242 if (after(scb->end_seq, tp->snd_una)) {
3243 if (tcp_skb_pcount(skb) == 1 ||
3244 !after(tp->snd_una, scb->seq))
3245 break;
3246
3247 acked_pcount = tcp_tso_acked(sk, skb);
3248 if (!acked_pcount)
3249 break;
3250
3251 fully_acked = 0;
3252 } else {
3253 acked_pcount = tcp_skb_pcount(skb);
3254 }
3255
3256 if (sacked & TCPCB_RETRANS) {
3257 if (sacked & TCPCB_SACKED_RETRANS)
3258 tp->retrans_out -= acked_pcount;
3259 flag |= FLAG_RETRANS_DATA_ACKED;
3260 ca_seq_rtt = -1;
3261 seq_rtt = -1;
3262 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3263 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3264 } else {
3265 ca_seq_rtt = now - scb->when;
3266 last_ackt = skb->tstamp;
3267 if (seq_rtt < 0) {
3268 seq_rtt = ca_seq_rtt;
3269 }
3270 if (!(sacked & TCPCB_SACKED_ACKED))
3271 reord = min(pkts_acked, reord);
3272 }
3273
3274 if (sacked & TCPCB_SACKED_ACKED)
3275 tp->sacked_out -= acked_pcount;
3276 if (sacked & TCPCB_LOST)
3277 tp->lost_out -= acked_pcount;
3278
3279 tp->packets_out -= acked_pcount;
3280 pkts_acked += acked_pcount;
3281
3282 /* Initial outgoing SYN's get put onto the write_queue
3283 * just like anything else we transmit. It is not
3284 * true data, and if we misinform our callers that
3285 * this ACK acks real data, we will erroneously exit
3286 * connection startup slow start one packet too
3287 * quickly. This is severely frowned upon behavior.
3288 */
3289 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3290 flag |= FLAG_DATA_ACKED;
3291 } else {
3292 flag |= FLAG_SYN_ACKED;
3293 tp->retrans_stamp = 0;
3294 }
3295
3296 if (!fully_acked)
3297 break;
3298
3299 tcp_unlink_write_queue(skb, sk);
3300 sk_wmem_free_skb(sk, skb);
3301 tp->scoreboard_skb_hint = NULL;
3302 if (skb == tp->retransmit_skb_hint)
3303 tp->retransmit_skb_hint = NULL;
3304 if (skb == tp->lost_skb_hint)
3305 tp->lost_skb_hint = NULL;
3306 }
3307
3308 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3309 tp->snd_up = tp->snd_una;
3310
3311 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3312 flag |= FLAG_SACK_RENEGING;
3313
3314 if (flag & FLAG_ACKED) {
3315 const struct tcp_congestion_ops *ca_ops
3316 = inet_csk(sk)->icsk_ca_ops;
3317
3318 if (unlikely(icsk->icsk_mtup.probe_size &&
3319 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3320 tcp_mtup_probe_success(sk);
3321 }
3322
3323 tcp_ack_update_rtt(sk, flag, seq_rtt);
3324 tcp_rearm_rto(sk);
3325
3326 if (tcp_is_reno(tp)) {
3327 tcp_remove_reno_sacks(sk, pkts_acked);
3328 } else {
3329 int delta;
3330
3331 /* Non-retransmitted hole got filled? That's reordering */
3332 if (reord < prior_fackets)
3333 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3334
3335 delta = tcp_is_fack(tp) ? pkts_acked :
3336 prior_sacked - tp->sacked_out;
3337 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3338 }
3339
3340 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3341
3342 if (ca_ops->pkts_acked) {
3343 s32 rtt_us = -1;
3344
3345 /* Is the ACK triggering packet unambiguous? */
3346 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3347 /* High resolution needed and available? */
3348 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3349 !ktime_equal(last_ackt,
3350 net_invalid_timestamp()))
3351 rtt_us = ktime_us_delta(ktime_get_real(),
3352 last_ackt);
3353 else if (ca_seq_rtt > 0)
3354 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3355 }
3356
3357 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3358 }
3359 }
3360
3361 #if FASTRETRANS_DEBUG > 0
3362 WARN_ON((int)tp->sacked_out < 0);
3363 WARN_ON((int)tp->lost_out < 0);
3364 WARN_ON((int)tp->retrans_out < 0);
3365 if (!tp->packets_out && tcp_is_sack(tp)) {
3366 icsk = inet_csk(sk);
3367 if (tp->lost_out) {
3368 printk(KERN_DEBUG "Leak l=%u %d\n",
3369 tp->lost_out, icsk->icsk_ca_state);
3370 tp->lost_out = 0;
3371 }
3372 if (tp->sacked_out) {
3373 printk(KERN_DEBUG "Leak s=%u %d\n",
3374 tp->sacked_out, icsk->icsk_ca_state);
3375 tp->sacked_out = 0;
3376 }
3377 if (tp->retrans_out) {
3378 printk(KERN_DEBUG "Leak r=%u %d\n",
3379 tp->retrans_out, icsk->icsk_ca_state);
3380 tp->retrans_out = 0;
3381 }
3382 }
3383 #endif
3384 return flag;
3385 }
3386
3387 static void tcp_ack_probe(struct sock *sk)
3388 {
3389 const struct tcp_sock *tp = tcp_sk(sk);
3390 struct inet_connection_sock *icsk = inet_csk(sk);
3391
3392 /* Was it a usable window open? */
3393
3394 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3395 icsk->icsk_backoff = 0;
3396 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3397 /* Socket must be waked up by subsequent tcp_data_snd_check().
3398 * This function is not for random using!
3399 */
3400 } else {
3401 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3402 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3403 TCP_RTO_MAX);
3404 }
3405 }
3406
3407 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3408 {
3409 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3410 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3411 }
3412
3413 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3414 {
3415 const struct tcp_sock *tp = tcp_sk(sk);
3416 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3417 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3418 }
3419
3420 /* Check that window update is acceptable.
3421 * The function assumes that snd_una<=ack<=snd_next.
3422 */
3423 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3424 const u32 ack, const u32 ack_seq,
3425 const u32 nwin)
3426 {
3427 return (after(ack, tp->snd_una) ||
3428 after(ack_seq, tp->snd_wl1) ||
3429 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3430 }
3431
3432 /* Update our send window.
3433 *
3434 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3435 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3436 */
3437 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3438 u32 ack_seq)
3439 {
3440 struct tcp_sock *tp = tcp_sk(sk);
3441 int flag = 0;
3442 u32 nwin = ntohs(tcp_hdr(skb)->window);
3443
3444 if (likely(!tcp_hdr(skb)->syn))
3445 nwin <<= tp->rx_opt.snd_wscale;
3446
3447 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3448 flag |= FLAG_WIN_UPDATE;
3449 tcp_update_wl(tp, ack_seq);
3450
3451 if (tp->snd_wnd != nwin) {
3452 tp->snd_wnd = nwin;
3453
3454 /* Note, it is the only place, where
3455 * fast path is recovered for sending TCP.
3456 */
3457 tp->pred_flags = 0;
3458 tcp_fast_path_check(sk);
3459
3460 if (nwin > tp->max_window) {
3461 tp->max_window = nwin;
3462 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3463 }
3464 }
3465 }
3466
3467 tp->snd_una = ack;
3468
3469 return flag;
3470 }
3471
3472 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3473 * continue in congestion avoidance.
3474 */
3475 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3476 {
3477 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3478 tp->snd_cwnd_cnt = 0;
3479 tp->bytes_acked = 0;
3480 TCP_ECN_queue_cwr(tp);
3481 tcp_moderate_cwnd(tp);
3482 }
3483
3484 /* A conservative spurious RTO response algorithm: reduce cwnd using
3485 * rate halving and continue in congestion avoidance.
3486 */
3487 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3488 {
3489 tcp_enter_cwr(sk, 0);
3490 }
3491
3492 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3493 {
3494 if (flag & FLAG_ECE)
3495 tcp_ratehalving_spur_to_response(sk);
3496 else
3497 tcp_undo_cwr(sk, 1);
3498 }
3499
3500 /* F-RTO spurious RTO detection algorithm (RFC4138)
3501 *
3502 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3503 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3504 * window (but not to or beyond highest sequence sent before RTO):
3505 * On First ACK, send two new segments out.
3506 * On Second ACK, RTO was likely spurious. Do spurious response (response
3507 * algorithm is not part of the F-RTO detection algorithm
3508 * given in RFC4138 but can be selected separately).
3509 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3510 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3511 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3512 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3513 *
3514 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3515 * original window even after we transmit two new data segments.
3516 *
3517 * SACK version:
3518 * on first step, wait until first cumulative ACK arrives, then move to
3519 * the second step. In second step, the next ACK decides.
3520 *
3521 * F-RTO is implemented (mainly) in four functions:
3522 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3523 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3524 * called when tcp_use_frto() showed green light
3525 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3526 * - tcp_enter_frto_loss() is called if there is not enough evidence
3527 * to prove that the RTO is indeed spurious. It transfers the control
3528 * from F-RTO to the conventional RTO recovery
3529 */
3530 static int tcp_process_frto(struct sock *sk, int flag)
3531 {
3532 struct tcp_sock *tp = tcp_sk(sk);
3533
3534 tcp_verify_left_out(tp);
3535
3536 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3537 if (flag & FLAG_DATA_ACKED)
3538 inet_csk(sk)->icsk_retransmits = 0;
3539
3540 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3541 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3542 tp->undo_marker = 0;
3543
3544 if (!before(tp->snd_una, tp->frto_highmark)) {
3545 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3546 return 1;
3547 }
3548
3549 if (!tcp_is_sackfrto(tp)) {
3550 /* RFC4138 shortcoming in step 2; should also have case c):
3551 * ACK isn't duplicate nor advances window, e.g., opposite dir
3552 * data, winupdate
3553 */
3554 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3555 return 1;
3556
3557 if (!(flag & FLAG_DATA_ACKED)) {
3558 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3559 flag);
3560 return 1;
3561 }
3562 } else {
3563 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3564 /* Prevent sending of new data. */
3565 tp->snd_cwnd = min(tp->snd_cwnd,
3566 tcp_packets_in_flight(tp));
3567 return 1;
3568 }
3569
3570 if ((tp->frto_counter >= 2) &&
3571 (!(flag & FLAG_FORWARD_PROGRESS) ||
3572 ((flag & FLAG_DATA_SACKED) &&
3573 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3574 /* RFC4138 shortcoming (see comment above) */
3575 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3576 (flag & FLAG_NOT_DUP))
3577 return 1;
3578
3579 tcp_enter_frto_loss(sk, 3, flag);
3580 return 1;
3581 }
3582 }
3583
3584 if (tp->frto_counter == 1) {
3585 /* tcp_may_send_now needs to see updated state */
3586 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3587 tp->frto_counter = 2;
3588
3589 if (!tcp_may_send_now(sk))
3590 tcp_enter_frto_loss(sk, 2, flag);
3591
3592 return 1;
3593 } else {
3594 switch (sysctl_tcp_frto_response) {
3595 case 2:
3596 tcp_undo_spur_to_response(sk, flag);
3597 break;
3598 case 1:
3599 tcp_conservative_spur_to_response(tp);
3600 break;
3601 default:
3602 tcp_ratehalving_spur_to_response(sk);
3603 break;
3604 }
3605 tp->frto_counter = 0;
3606 tp->undo_marker = 0;
3607 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3608 }
3609 return 0;
3610 }
3611
3612 /* This routine deals with incoming acks, but not outgoing ones. */
3613 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3614 {
3615 struct inet_connection_sock *icsk = inet_csk(sk);
3616 struct tcp_sock *tp = tcp_sk(sk);
3617 u32 prior_snd_una = tp->snd_una;
3618 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3619 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3620 u32 prior_in_flight;
3621 u32 prior_fackets;
3622 int prior_packets;
3623 int frto_cwnd = 0;
3624
3625 /* If the ack is older than previous acks
3626 * then we can probably ignore it.
3627 */
3628 if (before(ack, prior_snd_una))
3629 goto old_ack;
3630
3631 /* If the ack includes data we haven't sent yet, discard
3632 * this segment (RFC793 Section 3.9).
3633 */
3634 if (after(ack, tp->snd_nxt))
3635 goto invalid_ack;
3636
3637 if (after(ack, prior_snd_una))
3638 flag |= FLAG_SND_UNA_ADVANCED;
3639
3640 if (sysctl_tcp_abc) {
3641 if (icsk->icsk_ca_state < TCP_CA_CWR)
3642 tp->bytes_acked += ack - prior_snd_una;
3643 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3644 /* we assume just one segment left network */
3645 tp->bytes_acked += min(ack - prior_snd_una,
3646 tp->mss_cache);
3647 }
3648
3649 prior_fackets = tp->fackets_out;
3650 prior_in_flight = tcp_packets_in_flight(tp);
3651
3652 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3653 /* Window is constant, pure forward advance.
3654 * No more checks are required.
3655 * Note, we use the fact that SND.UNA>=SND.WL2.
3656 */
3657 tcp_update_wl(tp, ack_seq);
3658 tp->snd_una = ack;
3659 flag |= FLAG_WIN_UPDATE;
3660
3661 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3662
3663 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3664 } else {
3665 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3666 flag |= FLAG_DATA;
3667 else
3668 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3669
3670 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3671
3672 if (TCP_SKB_CB(skb)->sacked)
3673 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3674
3675 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3676 flag |= FLAG_ECE;
3677
3678 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3679 }
3680
3681 /* We passed data and got it acked, remove any soft error
3682 * log. Something worked...
3683 */
3684 sk->sk_err_soft = 0;
3685 icsk->icsk_probes_out = 0;
3686 tp->rcv_tstamp = tcp_time_stamp;
3687 prior_packets = tp->packets_out;
3688 if (!prior_packets)
3689 goto no_queue;
3690
3691 /* See if we can take anything off of the retransmit queue. */
3692 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3693
3694 if (tp->frto_counter)
3695 frto_cwnd = tcp_process_frto(sk, flag);
3696 /* Guarantee sacktag reordering detection against wrap-arounds */
3697 if (before(tp->frto_highmark, tp->snd_una))
3698 tp->frto_highmark = 0;
3699
3700 if (tcp_ack_is_dubious(sk, flag)) {
3701 /* Advance CWND, if state allows this. */
3702 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3703 tcp_may_raise_cwnd(sk, flag))
3704 tcp_cong_avoid(sk, ack, prior_in_flight);
3705 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3706 flag);
3707 } else {
3708 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3709 tcp_cong_avoid(sk, ack, prior_in_flight);
3710 }
3711
3712 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3713 dst_confirm(sk->sk_dst_cache);
3714
3715 return 1;
3716
3717 no_queue:
3718 /* If this ack opens up a zero window, clear backoff. It was
3719 * being used to time the probes, and is probably far higher than
3720 * it needs to be for normal retransmission.
3721 */
3722 if (tcp_send_head(sk))
3723 tcp_ack_probe(sk);
3724 return 1;
3725
3726 invalid_ack:
3727 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3728 return -1;
3729
3730 old_ack:
3731 if (TCP_SKB_CB(skb)->sacked) {
3732 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3733 if (icsk->icsk_ca_state == TCP_CA_Open)
3734 tcp_try_keep_open(sk);
3735 }
3736
3737 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3738 return 0;
3739 }
3740
3741 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3742 * But, this can also be called on packets in the established flow when
3743 * the fast version below fails.
3744 */
3745 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3746 u8 **hvpp, int estab)
3747 {
3748 unsigned char *ptr;
3749 struct tcphdr *th = tcp_hdr(skb);
3750 int length = (th->doff * 4) - sizeof(struct tcphdr);
3751
3752 ptr = (unsigned char *)(th + 1);
3753 opt_rx->saw_tstamp = 0;
3754
3755 while (length > 0) {
3756 int opcode = *ptr++;
3757 int opsize;
3758
3759 switch (opcode) {
3760 case TCPOPT_EOL:
3761 return;
3762 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3763 length--;
3764 continue;
3765 default:
3766 opsize = *ptr++;
3767 if (opsize < 2) /* "silly options" */
3768 return;
3769 if (opsize > length)
3770 return; /* don't parse partial options */
3771 switch (opcode) {
3772 case TCPOPT_MSS:
3773 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3774 u16 in_mss = get_unaligned_be16(ptr);
3775 if (in_mss) {
3776 if (opt_rx->user_mss &&
3777 opt_rx->user_mss < in_mss)
3778 in_mss = opt_rx->user_mss;
3779 opt_rx->mss_clamp = in_mss;
3780 }
3781 }
3782 break;
3783 case TCPOPT_WINDOW:
3784 if (opsize == TCPOLEN_WINDOW && th->syn &&
3785 !estab && sysctl_tcp_window_scaling) {
3786 __u8 snd_wscale = *(__u8 *)ptr;
3787 opt_rx->wscale_ok = 1;
3788 if (snd_wscale > 14) {
3789 if (net_ratelimit())
3790 printk(KERN_INFO "tcp_parse_options: Illegal window "
3791 "scaling value %d >14 received.\n",
3792 snd_wscale);
3793 snd_wscale = 14;
3794 }
3795 opt_rx->snd_wscale = snd_wscale;
3796 }
3797 break;
3798 case TCPOPT_TIMESTAMP:
3799 if ((opsize == TCPOLEN_TIMESTAMP) &&
3800 ((estab && opt_rx->tstamp_ok) ||
3801 (!estab && sysctl_tcp_timestamps))) {
3802 opt_rx->saw_tstamp = 1;
3803 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3804 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3805 }
3806 break;
3807 case TCPOPT_SACK_PERM:
3808 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3809 !estab && sysctl_tcp_sack) {
3810 opt_rx->sack_ok = 1;
3811 tcp_sack_reset(opt_rx);
3812 }
3813 break;
3814
3815 case TCPOPT_SACK:
3816 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3817 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3818 opt_rx->sack_ok) {
3819 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3820 }
3821 break;
3822 #ifdef CONFIG_TCP_MD5SIG
3823 case TCPOPT_MD5SIG:
3824 /*
3825 * The MD5 Hash has already been
3826 * checked (see tcp_v{4,6}_do_rcv()).
3827 */
3828 break;
3829 #endif
3830 case TCPOPT_COOKIE:
3831 /* This option is variable length.
3832 */
3833 switch (opsize) {
3834 case TCPOLEN_COOKIE_BASE:
3835 /* not yet implemented */
3836 break;
3837 case TCPOLEN_COOKIE_PAIR:
3838 /* not yet implemented */
3839 break;
3840 case TCPOLEN_COOKIE_MIN+0:
3841 case TCPOLEN_COOKIE_MIN+2:
3842 case TCPOLEN_COOKIE_MIN+4:
3843 case TCPOLEN_COOKIE_MIN+6:
3844 case TCPOLEN_COOKIE_MAX:
3845 /* 16-bit multiple */
3846 opt_rx->cookie_plus = opsize;
3847 *hvpp = ptr;
3848 default:
3849 /* ignore option */
3850 break;
3851 };
3852 break;
3853 };
3854
3855 ptr += opsize-2;
3856 length -= opsize;
3857 }
3858 }
3859 }
3860
3861 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3862 {
3863 __be32 *ptr = (__be32 *)(th + 1);
3864
3865 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3866 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3867 tp->rx_opt.saw_tstamp = 1;
3868 ++ptr;
3869 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3870 ++ptr;
3871 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3872 return 1;
3873 }
3874 return 0;
3875 }
3876
3877 /* Fast parse options. This hopes to only see timestamps.
3878 * If it is wrong it falls back on tcp_parse_options().
3879 */
3880 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3881 struct tcp_sock *tp, u8 **hvpp)
3882 {
3883 /* In the spirit of fast parsing, compare doff directly to constant
3884 * values. Because equality is used, short doff can be ignored here.
3885 */
3886 if (th->doff == (sizeof(*th) / 4)) {
3887 tp->rx_opt.saw_tstamp = 0;
3888 return 0;
3889 } else if (tp->rx_opt.tstamp_ok &&
3890 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3891 if (tcp_parse_aligned_timestamp(tp, th))
3892 return 1;
3893 }
3894 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3895 return 1;
3896 }
3897
3898 #ifdef CONFIG_TCP_MD5SIG
3899 /*
3900 * Parse MD5 Signature option
3901 */
3902 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3903 {
3904 int length = (th->doff << 2) - sizeof (*th);
3905 u8 *ptr = (u8*)(th + 1);
3906
3907 /* If the TCP option is too short, we can short cut */
3908 if (length < TCPOLEN_MD5SIG)
3909 return NULL;
3910
3911 while (length > 0) {
3912 int opcode = *ptr++;
3913 int opsize;
3914
3915 switch(opcode) {
3916 case TCPOPT_EOL:
3917 return NULL;
3918 case TCPOPT_NOP:
3919 length--;
3920 continue;
3921 default:
3922 opsize = *ptr++;
3923 if (opsize < 2 || opsize > length)
3924 return NULL;
3925 if (opcode == TCPOPT_MD5SIG)
3926 return ptr;
3927 }
3928 ptr += opsize - 2;
3929 length -= opsize;
3930 }
3931 return NULL;
3932 }
3933 #endif
3934
3935 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3936 {
3937 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3938 tp->rx_opt.ts_recent_stamp = get_seconds();
3939 }
3940
3941 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3942 {
3943 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3944 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3945 * extra check below makes sure this can only happen
3946 * for pure ACK frames. -DaveM
3947 *
3948 * Not only, also it occurs for expired timestamps.
3949 */
3950
3951 if (tcp_paws_check(&tp->rx_opt, 0))
3952 tcp_store_ts_recent(tp);
3953 }
3954 }
3955
3956 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3957 *
3958 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3959 * it can pass through stack. So, the following predicate verifies that
3960 * this segment is not used for anything but congestion avoidance or
3961 * fast retransmit. Moreover, we even are able to eliminate most of such
3962 * second order effects, if we apply some small "replay" window (~RTO)
3963 * to timestamp space.
3964 *
3965 * All these measures still do not guarantee that we reject wrapped ACKs
3966 * on networks with high bandwidth, when sequence space is recycled fastly,
3967 * but it guarantees that such events will be very rare and do not affect
3968 * connection seriously. This doesn't look nice, but alas, PAWS is really
3969 * buggy extension.
3970 *
3971 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3972 * states that events when retransmit arrives after original data are rare.
3973 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3974 * the biggest problem on large power networks even with minor reordering.
3975 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3976 * up to bandwidth of 18Gigabit/sec. 8) ]
3977 */
3978
3979 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3980 {
3981 struct tcp_sock *tp = tcp_sk(sk);
3982 struct tcphdr *th = tcp_hdr(skb);
3983 u32 seq = TCP_SKB_CB(skb)->seq;
3984 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3985
3986 return (/* 1. Pure ACK with correct sequence number. */
3987 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3988
3989 /* 2. ... and duplicate ACK. */
3990 ack == tp->snd_una &&
3991
3992 /* 3. ... and does not update window. */
3993 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3994
3995 /* 4. ... and sits in replay window. */
3996 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3997 }
3998
3999 static inline int tcp_paws_discard(const struct sock *sk,
4000 const struct sk_buff *skb)
4001 {
4002 const struct tcp_sock *tp = tcp_sk(sk);
4003
4004 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4005 !tcp_disordered_ack(sk, skb);
4006 }
4007
4008 /* Check segment sequence number for validity.
4009 *
4010 * Segment controls are considered valid, if the segment
4011 * fits to the window after truncation to the window. Acceptability
4012 * of data (and SYN, FIN, of course) is checked separately.
4013 * See tcp_data_queue(), for example.
4014 *
4015 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4016 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4017 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4018 * (borrowed from freebsd)
4019 */
4020
4021 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4022 {
4023 return !before(end_seq, tp->rcv_wup) &&
4024 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4025 }
4026
4027 /* When we get a reset we do this. */
4028 static void tcp_reset(struct sock *sk)
4029 {
4030 /* We want the right error as BSD sees it (and indeed as we do). */
4031 switch (sk->sk_state) {
4032 case TCP_SYN_SENT:
4033 sk->sk_err = ECONNREFUSED;
4034 break;
4035 case TCP_CLOSE_WAIT:
4036 sk->sk_err = EPIPE;
4037 break;
4038 case TCP_CLOSE:
4039 return;
4040 default:
4041 sk->sk_err = ECONNRESET;
4042 }
4043
4044 if (!sock_flag(sk, SOCK_DEAD))
4045 sk->sk_error_report(sk);
4046
4047 tcp_done(sk);
4048 }
4049
4050 /*
4051 * Process the FIN bit. This now behaves as it is supposed to work
4052 * and the FIN takes effect when it is validly part of sequence
4053 * space. Not before when we get holes.
4054 *
4055 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4056 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4057 * TIME-WAIT)
4058 *
4059 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4060 * close and we go into CLOSING (and later onto TIME-WAIT)
4061 *
4062 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4063 */
4064 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4065 {
4066 struct tcp_sock *tp = tcp_sk(sk);
4067
4068 inet_csk_schedule_ack(sk);
4069
4070 sk->sk_shutdown |= RCV_SHUTDOWN;
4071 sock_set_flag(sk, SOCK_DONE);
4072
4073 switch (sk->sk_state) {
4074 case TCP_SYN_RECV:
4075 case TCP_ESTABLISHED:
4076 /* Move to CLOSE_WAIT */
4077 tcp_set_state(sk, TCP_CLOSE_WAIT);
4078 inet_csk(sk)->icsk_ack.pingpong = 1;
4079 break;
4080
4081 case TCP_CLOSE_WAIT:
4082 case TCP_CLOSING:
4083 /* Received a retransmission of the FIN, do
4084 * nothing.
4085 */
4086 break;
4087 case TCP_LAST_ACK:
4088 /* RFC793: Remain in the LAST-ACK state. */
4089 break;
4090
4091 case TCP_FIN_WAIT1:
4092 /* This case occurs when a simultaneous close
4093 * happens, we must ack the received FIN and
4094 * enter the CLOSING state.
4095 */
4096 tcp_send_ack(sk);
4097 tcp_set_state(sk, TCP_CLOSING);
4098 break;
4099 case TCP_FIN_WAIT2:
4100 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4101 tcp_send_ack(sk);
4102 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4103 break;
4104 default:
4105 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4106 * cases we should never reach this piece of code.
4107 */
4108 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4109 __func__, sk->sk_state);
4110 break;
4111 }
4112
4113 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4114 * Probably, we should reset in this case. For now drop them.
4115 */
4116 __skb_queue_purge(&tp->out_of_order_queue);
4117 if (tcp_is_sack(tp))
4118 tcp_sack_reset(&tp->rx_opt);
4119 sk_mem_reclaim(sk);
4120
4121 if (!sock_flag(sk, SOCK_DEAD)) {
4122 sk->sk_state_change(sk);
4123
4124 /* Do not send POLL_HUP for half duplex close. */
4125 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4126 sk->sk_state == TCP_CLOSE)
4127 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4128 else
4129 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4130 }
4131 }
4132
4133 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4134 u32 end_seq)
4135 {
4136 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4137 if (before(seq, sp->start_seq))
4138 sp->start_seq = seq;
4139 if (after(end_seq, sp->end_seq))
4140 sp->end_seq = end_seq;
4141 return 1;
4142 }
4143 return 0;
4144 }
4145
4146 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4147 {
4148 struct tcp_sock *tp = tcp_sk(sk);
4149
4150 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4151 int mib_idx;
4152
4153 if (before(seq, tp->rcv_nxt))
4154 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4155 else
4156 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4157
4158 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4159
4160 tp->rx_opt.dsack = 1;
4161 tp->duplicate_sack[0].start_seq = seq;
4162 tp->duplicate_sack[0].end_seq = end_seq;
4163 }
4164 }
4165
4166 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4167 {
4168 struct tcp_sock *tp = tcp_sk(sk);
4169
4170 if (!tp->rx_opt.dsack)
4171 tcp_dsack_set(sk, seq, end_seq);
4172 else
4173 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4174 }
4175
4176 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4177 {
4178 struct tcp_sock *tp = tcp_sk(sk);
4179
4180 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4181 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4182 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4183 tcp_enter_quickack_mode(sk);
4184
4185 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4186 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4187
4188 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4189 end_seq = tp->rcv_nxt;
4190 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4191 }
4192 }
4193
4194 tcp_send_ack(sk);
4195 }
4196
4197 /* These routines update the SACK block as out-of-order packets arrive or
4198 * in-order packets close up the sequence space.
4199 */
4200 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4201 {
4202 int this_sack;
4203 struct tcp_sack_block *sp = &tp->selective_acks[0];
4204 struct tcp_sack_block *swalk = sp + 1;
4205
4206 /* See if the recent change to the first SACK eats into
4207 * or hits the sequence space of other SACK blocks, if so coalesce.
4208 */
4209 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4210 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4211 int i;
4212
4213 /* Zap SWALK, by moving every further SACK up by one slot.
4214 * Decrease num_sacks.
4215 */
4216 tp->rx_opt.num_sacks--;
4217 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4218 sp[i] = sp[i + 1];
4219 continue;
4220 }
4221 this_sack++, swalk++;
4222 }
4223 }
4224
4225 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4226 {
4227 struct tcp_sock *tp = tcp_sk(sk);
4228 struct tcp_sack_block *sp = &tp->selective_acks[0];
4229 int cur_sacks = tp->rx_opt.num_sacks;
4230 int this_sack;
4231
4232 if (!cur_sacks)
4233 goto new_sack;
4234
4235 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4236 if (tcp_sack_extend(sp, seq, end_seq)) {
4237 /* Rotate this_sack to the first one. */
4238 for (; this_sack > 0; this_sack--, sp--)
4239 swap(*sp, *(sp - 1));
4240 if (cur_sacks > 1)
4241 tcp_sack_maybe_coalesce(tp);
4242 return;
4243 }
4244 }
4245
4246 /* Could not find an adjacent existing SACK, build a new one,
4247 * put it at the front, and shift everyone else down. We
4248 * always know there is at least one SACK present already here.
4249 *
4250 * If the sack array is full, forget about the last one.
4251 */
4252 if (this_sack >= TCP_NUM_SACKS) {
4253 this_sack--;
4254 tp->rx_opt.num_sacks--;
4255 sp--;
4256 }
4257 for (; this_sack > 0; this_sack--, sp--)
4258 *sp = *(sp - 1);
4259
4260 new_sack:
4261 /* Build the new head SACK, and we're done. */
4262 sp->start_seq = seq;
4263 sp->end_seq = end_seq;
4264 tp->rx_opt.num_sacks++;
4265 }
4266
4267 /* RCV.NXT advances, some SACKs should be eaten. */
4268
4269 static void tcp_sack_remove(struct tcp_sock *tp)
4270 {
4271 struct tcp_sack_block *sp = &tp->selective_acks[0];
4272 int num_sacks = tp->rx_opt.num_sacks;
4273 int this_sack;
4274
4275 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4276 if (skb_queue_empty(&tp->out_of_order_queue)) {
4277 tp->rx_opt.num_sacks = 0;
4278 return;
4279 }
4280
4281 for (this_sack = 0; this_sack < num_sacks;) {
4282 /* Check if the start of the sack is covered by RCV.NXT. */
4283 if (!before(tp->rcv_nxt, sp->start_seq)) {
4284 int i;
4285
4286 /* RCV.NXT must cover all the block! */
4287 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4288
4289 /* Zap this SACK, by moving forward any other SACKS. */
4290 for (i=this_sack+1; i < num_sacks; i++)
4291 tp->selective_acks[i-1] = tp->selective_acks[i];
4292 num_sacks--;
4293 continue;
4294 }
4295 this_sack++;
4296 sp++;
4297 }
4298 tp->rx_opt.num_sacks = num_sacks;
4299 }
4300
4301 /* This one checks to see if we can put data from the
4302 * out_of_order queue into the receive_queue.
4303 */
4304 static void tcp_ofo_queue(struct sock *sk)
4305 {
4306 struct tcp_sock *tp = tcp_sk(sk);
4307 __u32 dsack_high = tp->rcv_nxt;
4308 struct sk_buff *skb;
4309
4310 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4311 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4312 break;
4313
4314 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4315 __u32 dsack = dsack_high;
4316 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4317 dsack_high = TCP_SKB_CB(skb)->end_seq;
4318 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4319 }
4320
4321 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4322 SOCK_DEBUG(sk, "ofo packet was already received \n");
4323 __skb_unlink(skb, &tp->out_of_order_queue);
4324 __kfree_skb(skb);
4325 continue;
4326 }
4327 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4328 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4329 TCP_SKB_CB(skb)->end_seq);
4330
4331 __skb_unlink(skb, &tp->out_of_order_queue);
4332 __skb_queue_tail(&sk->sk_receive_queue, skb);
4333 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4334 if (tcp_hdr(skb)->fin)
4335 tcp_fin(skb, sk, tcp_hdr(skb));
4336 }
4337 }
4338
4339 static int tcp_prune_ofo_queue(struct sock *sk);
4340 static int tcp_prune_queue(struct sock *sk);
4341
4342 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4343 {
4344 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4345 !sk_rmem_schedule(sk, size)) {
4346
4347 if (tcp_prune_queue(sk) < 0)
4348 return -1;
4349
4350 if (!sk_rmem_schedule(sk, size)) {
4351 if (!tcp_prune_ofo_queue(sk))
4352 return -1;
4353
4354 if (!sk_rmem_schedule(sk, size))
4355 return -1;
4356 }
4357 }
4358 return 0;
4359 }
4360
4361 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4362 {
4363 struct tcphdr *th = tcp_hdr(skb);
4364 struct tcp_sock *tp = tcp_sk(sk);
4365 int eaten = -1;
4366
4367 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4368 goto drop;
4369
4370 __skb_pull(skb, th->doff * 4);
4371
4372 TCP_ECN_accept_cwr(tp, skb);
4373
4374 tp->rx_opt.dsack = 0;
4375
4376 /* Queue data for delivery to the user.
4377 * Packets in sequence go to the receive queue.
4378 * Out of sequence packets to the out_of_order_queue.
4379 */
4380 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4381 if (tcp_receive_window(tp) == 0)
4382 goto out_of_window;
4383
4384 /* Ok. In sequence. In window. */
4385 if (tp->ucopy.task == current &&
4386 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4387 sock_owned_by_user(sk) && !tp->urg_data) {
4388 int chunk = min_t(unsigned int, skb->len,
4389 tp->ucopy.len);
4390
4391 __set_current_state(TASK_RUNNING);
4392
4393 local_bh_enable();
4394 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4395 tp->ucopy.len -= chunk;
4396 tp->copied_seq += chunk;
4397 eaten = (chunk == skb->len && !th->fin);
4398 tcp_rcv_space_adjust(sk);
4399 }
4400 local_bh_disable();
4401 }
4402
4403 if (eaten <= 0) {
4404 queue_and_out:
4405 if (eaten < 0 &&
4406 tcp_try_rmem_schedule(sk, skb->truesize))
4407 goto drop;
4408
4409 skb_set_owner_r(skb, sk);
4410 __skb_queue_tail(&sk->sk_receive_queue, skb);
4411 }
4412 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4413 if (skb->len)
4414 tcp_event_data_recv(sk, skb);
4415 if (th->fin)
4416 tcp_fin(skb, sk, th);
4417
4418 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4419 tcp_ofo_queue(sk);
4420
4421 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4422 * gap in queue is filled.
4423 */
4424 if (skb_queue_empty(&tp->out_of_order_queue))
4425 inet_csk(sk)->icsk_ack.pingpong = 0;
4426 }
4427
4428 if (tp->rx_opt.num_sacks)
4429 tcp_sack_remove(tp);
4430
4431 tcp_fast_path_check(sk);
4432
4433 if (eaten > 0)
4434 __kfree_skb(skb);
4435 else if (!sock_flag(sk, SOCK_DEAD))
4436 sk->sk_data_ready(sk, 0);
4437 return;
4438 }
4439
4440 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4441 /* A retransmit, 2nd most common case. Force an immediate ack. */
4442 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4443 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4444
4445 out_of_window:
4446 tcp_enter_quickack_mode(sk);
4447 inet_csk_schedule_ack(sk);
4448 drop:
4449 __kfree_skb(skb);
4450 return;
4451 }
4452
4453 /* Out of window. F.e. zero window probe. */
4454 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4455 goto out_of_window;
4456
4457 tcp_enter_quickack_mode(sk);
4458
4459 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4460 /* Partial packet, seq < rcv_next < end_seq */
4461 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4462 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4463 TCP_SKB_CB(skb)->end_seq);
4464
4465 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4466
4467 /* If window is closed, drop tail of packet. But after
4468 * remembering D-SACK for its head made in previous line.
4469 */
4470 if (!tcp_receive_window(tp))
4471 goto out_of_window;
4472 goto queue_and_out;
4473 }
4474
4475 TCP_ECN_check_ce(tp, skb);
4476
4477 if (tcp_try_rmem_schedule(sk, skb->truesize))
4478 goto drop;
4479
4480 /* Disable header prediction. */
4481 tp->pred_flags = 0;
4482 inet_csk_schedule_ack(sk);
4483
4484 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4485 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4486
4487 skb_set_owner_r(skb, sk);
4488
4489 if (!skb_peek(&tp->out_of_order_queue)) {
4490 /* Initial out of order segment, build 1 SACK. */
4491 if (tcp_is_sack(tp)) {
4492 tp->rx_opt.num_sacks = 1;
4493 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4494 tp->selective_acks[0].end_seq =
4495 TCP_SKB_CB(skb)->end_seq;
4496 }
4497 __skb_queue_head(&tp->out_of_order_queue, skb);
4498 } else {
4499 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4500 u32 seq = TCP_SKB_CB(skb)->seq;
4501 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4502
4503 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4504 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4505
4506 if (!tp->rx_opt.num_sacks ||
4507 tp->selective_acks[0].end_seq != seq)
4508 goto add_sack;
4509
4510 /* Common case: data arrive in order after hole. */
4511 tp->selective_acks[0].end_seq = end_seq;
4512 return;
4513 }
4514
4515 /* Find place to insert this segment. */
4516 while (1) {
4517 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4518 break;
4519 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4520 skb1 = NULL;
4521 break;
4522 }
4523 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4524 }
4525
4526 /* Do skb overlap to previous one? */
4527 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4528 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4529 /* All the bits are present. Drop. */
4530 __kfree_skb(skb);
4531 tcp_dsack_set(sk, seq, end_seq);
4532 goto add_sack;
4533 }
4534 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4535 /* Partial overlap. */
4536 tcp_dsack_set(sk, seq,
4537 TCP_SKB_CB(skb1)->end_seq);
4538 } else {
4539 if (skb_queue_is_first(&tp->out_of_order_queue,
4540 skb1))
4541 skb1 = NULL;
4542 else
4543 skb1 = skb_queue_prev(
4544 &tp->out_of_order_queue,
4545 skb1);
4546 }
4547 }
4548 if (!skb1)
4549 __skb_queue_head(&tp->out_of_order_queue, skb);
4550 else
4551 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4552
4553 /* And clean segments covered by new one as whole. */
4554 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4555 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4556
4557 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4558 break;
4559 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4560 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4561 end_seq);
4562 break;
4563 }
4564 __skb_unlink(skb1, &tp->out_of_order_queue);
4565 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4566 TCP_SKB_CB(skb1)->end_seq);
4567 __kfree_skb(skb1);
4568 }
4569
4570 add_sack:
4571 if (tcp_is_sack(tp))
4572 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4573 }
4574 }
4575
4576 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4577 struct sk_buff_head *list)
4578 {
4579 struct sk_buff *next = NULL;
4580
4581 if (!skb_queue_is_last(list, skb))
4582 next = skb_queue_next(list, skb);
4583
4584 __skb_unlink(skb, list);
4585 __kfree_skb(skb);
4586 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4587
4588 return next;
4589 }
4590
4591 /* Collapse contiguous sequence of skbs head..tail with
4592 * sequence numbers start..end.
4593 *
4594 * If tail is NULL, this means until the end of the list.
4595 *
4596 * Segments with FIN/SYN are not collapsed (only because this
4597 * simplifies code)
4598 */
4599 static void
4600 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4601 struct sk_buff *head, struct sk_buff *tail,
4602 u32 start, u32 end)
4603 {
4604 struct sk_buff *skb, *n;
4605 bool end_of_skbs;
4606
4607 /* First, check that queue is collapsible and find
4608 * the point where collapsing can be useful. */
4609 skb = head;
4610 restart:
4611 end_of_skbs = true;
4612 skb_queue_walk_from_safe(list, skb, n) {
4613 if (skb == tail)
4614 break;
4615 /* No new bits? It is possible on ofo queue. */
4616 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4617 skb = tcp_collapse_one(sk, skb, list);
4618 if (!skb)
4619 break;
4620 goto restart;
4621 }
4622
4623 /* The first skb to collapse is:
4624 * - not SYN/FIN and
4625 * - bloated or contains data before "start" or
4626 * overlaps to the next one.
4627 */
4628 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4629 (tcp_win_from_space(skb->truesize) > skb->len ||
4630 before(TCP_SKB_CB(skb)->seq, start))) {
4631 end_of_skbs = false;
4632 break;
4633 }
4634
4635 if (!skb_queue_is_last(list, skb)) {
4636 struct sk_buff *next = skb_queue_next(list, skb);
4637 if (next != tail &&
4638 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4639 end_of_skbs = false;
4640 break;
4641 }
4642 }
4643
4644 /* Decided to skip this, advance start seq. */
4645 start = TCP_SKB_CB(skb)->end_seq;
4646 }
4647 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4648 return;
4649
4650 while (before(start, end)) {
4651 struct sk_buff *nskb;
4652 unsigned int header = skb_headroom(skb);
4653 int copy = SKB_MAX_ORDER(header, 0);
4654
4655 /* Too big header? This can happen with IPv6. */
4656 if (copy < 0)
4657 return;
4658 if (end - start < copy)
4659 copy = end - start;
4660 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4661 if (!nskb)
4662 return;
4663
4664 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4665 skb_set_network_header(nskb, (skb_network_header(skb) -
4666 skb->head));
4667 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4668 skb->head));
4669 skb_reserve(nskb, header);
4670 memcpy(nskb->head, skb->head, header);
4671 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4672 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4673 __skb_queue_before(list, skb, nskb);
4674 skb_set_owner_r(nskb, sk);
4675
4676 /* Copy data, releasing collapsed skbs. */
4677 while (copy > 0) {
4678 int offset = start - TCP_SKB_CB(skb)->seq;
4679 int size = TCP_SKB_CB(skb)->end_seq - start;
4680
4681 BUG_ON(offset < 0);
4682 if (size > 0) {
4683 size = min(copy, size);
4684 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4685 BUG();
4686 TCP_SKB_CB(nskb)->end_seq += size;
4687 copy -= size;
4688 start += size;
4689 }
4690 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4691 skb = tcp_collapse_one(sk, skb, list);
4692 if (!skb ||
4693 skb == tail ||
4694 tcp_hdr(skb)->syn ||
4695 tcp_hdr(skb)->fin)
4696 return;
4697 }
4698 }
4699 }
4700 }
4701
4702 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4703 * and tcp_collapse() them until all the queue is collapsed.
4704 */
4705 static void tcp_collapse_ofo_queue(struct sock *sk)
4706 {
4707 struct tcp_sock *tp = tcp_sk(sk);
4708 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4709 struct sk_buff *head;
4710 u32 start, end;
4711
4712 if (skb == NULL)
4713 return;
4714
4715 start = TCP_SKB_CB(skb)->seq;
4716 end = TCP_SKB_CB(skb)->end_seq;
4717 head = skb;
4718
4719 for (;;) {
4720 struct sk_buff *next = NULL;
4721
4722 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4723 next = skb_queue_next(&tp->out_of_order_queue, skb);
4724 skb = next;
4725
4726 /* Segment is terminated when we see gap or when
4727 * we are at the end of all the queue. */
4728 if (!skb ||
4729 after(TCP_SKB_CB(skb)->seq, end) ||
4730 before(TCP_SKB_CB(skb)->end_seq, start)) {
4731 tcp_collapse(sk, &tp->out_of_order_queue,
4732 head, skb, start, end);
4733 head = skb;
4734 if (!skb)
4735 break;
4736 /* Start new segment */
4737 start = TCP_SKB_CB(skb)->seq;
4738 end = TCP_SKB_CB(skb)->end_seq;
4739 } else {
4740 if (before(TCP_SKB_CB(skb)->seq, start))
4741 start = TCP_SKB_CB(skb)->seq;
4742 if (after(TCP_SKB_CB(skb)->end_seq, end))
4743 end = TCP_SKB_CB(skb)->end_seq;
4744 }
4745 }
4746 }
4747
4748 /*
4749 * Purge the out-of-order queue.
4750 * Return true if queue was pruned.
4751 */
4752 static int tcp_prune_ofo_queue(struct sock *sk)
4753 {
4754 struct tcp_sock *tp = tcp_sk(sk);
4755 int res = 0;
4756
4757 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4758 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4759 __skb_queue_purge(&tp->out_of_order_queue);
4760
4761 /* Reset SACK state. A conforming SACK implementation will
4762 * do the same at a timeout based retransmit. When a connection
4763 * is in a sad state like this, we care only about integrity
4764 * of the connection not performance.
4765 */
4766 if (tp->rx_opt.sack_ok)
4767 tcp_sack_reset(&tp->rx_opt);
4768 sk_mem_reclaim(sk);
4769 res = 1;
4770 }
4771 return res;
4772 }
4773
4774 /* Reduce allocated memory if we can, trying to get
4775 * the socket within its memory limits again.
4776 *
4777 * Return less than zero if we should start dropping frames
4778 * until the socket owning process reads some of the data
4779 * to stabilize the situation.
4780 */
4781 static int tcp_prune_queue(struct sock *sk)
4782 {
4783 struct tcp_sock *tp = tcp_sk(sk);
4784
4785 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4786
4787 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4788
4789 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4790 tcp_clamp_window(sk);
4791 else if (tcp_memory_pressure)
4792 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4793
4794 tcp_collapse_ofo_queue(sk);
4795 if (!skb_queue_empty(&sk->sk_receive_queue))
4796 tcp_collapse(sk, &sk->sk_receive_queue,
4797 skb_peek(&sk->sk_receive_queue),
4798 NULL,
4799 tp->copied_seq, tp->rcv_nxt);
4800 sk_mem_reclaim(sk);
4801
4802 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4803 return 0;
4804
4805 /* Collapsing did not help, destructive actions follow.
4806 * This must not ever occur. */
4807
4808 tcp_prune_ofo_queue(sk);
4809
4810 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4811 return 0;
4812
4813 /* If we are really being abused, tell the caller to silently
4814 * drop receive data on the floor. It will get retransmitted
4815 * and hopefully then we'll have sufficient space.
4816 */
4817 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4818
4819 /* Massive buffer overcommit. */
4820 tp->pred_flags = 0;
4821 return -1;
4822 }
4823
4824 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4825 * As additional protections, we do not touch cwnd in retransmission phases,
4826 * and if application hit its sndbuf limit recently.
4827 */
4828 void tcp_cwnd_application_limited(struct sock *sk)
4829 {
4830 struct tcp_sock *tp = tcp_sk(sk);
4831
4832 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4833 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4834 /* Limited by application or receiver window. */
4835 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4836 u32 win_used = max(tp->snd_cwnd_used, init_win);
4837 if (win_used < tp->snd_cwnd) {
4838 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4839 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4840 }
4841 tp->snd_cwnd_used = 0;
4842 }
4843 tp->snd_cwnd_stamp = tcp_time_stamp;
4844 }
4845
4846 static int tcp_should_expand_sndbuf(struct sock *sk)
4847 {
4848 struct tcp_sock *tp = tcp_sk(sk);
4849
4850 /* If the user specified a specific send buffer setting, do
4851 * not modify it.
4852 */
4853 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4854 return 0;
4855
4856 /* If we are under global TCP memory pressure, do not expand. */
4857 if (tcp_memory_pressure)
4858 return 0;
4859
4860 /* If we are under soft global TCP memory pressure, do not expand. */
4861 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4862 return 0;
4863
4864 /* If we filled the congestion window, do not expand. */
4865 if (tp->packets_out >= tp->snd_cwnd)
4866 return 0;
4867
4868 return 1;
4869 }
4870
4871 /* When incoming ACK allowed to free some skb from write_queue,
4872 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4873 * on the exit from tcp input handler.
4874 *
4875 * PROBLEM: sndbuf expansion does not work well with largesend.
4876 */
4877 static void tcp_new_space(struct sock *sk)
4878 {
4879 struct tcp_sock *tp = tcp_sk(sk);
4880
4881 if (tcp_should_expand_sndbuf(sk)) {
4882 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4883 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4884 int demanded = max_t(unsigned int, tp->snd_cwnd,
4885 tp->reordering + 1);
4886 sndmem *= 2 * demanded;
4887 if (sndmem > sk->sk_sndbuf)
4888 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4889 tp->snd_cwnd_stamp = tcp_time_stamp;
4890 }
4891
4892 sk->sk_write_space(sk);
4893 }
4894
4895 static void tcp_check_space(struct sock *sk)
4896 {
4897 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4898 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4899 if (sk->sk_socket &&
4900 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4901 tcp_new_space(sk);
4902 }
4903 }
4904
4905 static inline void tcp_data_snd_check(struct sock *sk)
4906 {
4907 tcp_push_pending_frames(sk);
4908 tcp_check_space(sk);
4909 }
4910
4911 /*
4912 * Check if sending an ack is needed.
4913 */
4914 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4915 {
4916 struct tcp_sock *tp = tcp_sk(sk);
4917
4918 /* More than one full frame received... */
4919 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4920 /* ... and right edge of window advances far enough.
4921 * (tcp_recvmsg() will send ACK otherwise). Or...
4922 */
4923 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4924 /* We ACK each frame or... */
4925 tcp_in_quickack_mode(sk) ||
4926 /* We have out of order data. */
4927 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4928 /* Then ack it now */
4929 tcp_send_ack(sk);
4930 } else {
4931 /* Else, send delayed ack. */
4932 tcp_send_delayed_ack(sk);
4933 }
4934 }
4935
4936 static inline void tcp_ack_snd_check(struct sock *sk)
4937 {
4938 if (!inet_csk_ack_scheduled(sk)) {
4939 /* We sent a data segment already. */
4940 return;
4941 }
4942 __tcp_ack_snd_check(sk, 1);
4943 }
4944
4945 /*
4946 * This routine is only called when we have urgent data
4947 * signaled. Its the 'slow' part of tcp_urg. It could be
4948 * moved inline now as tcp_urg is only called from one
4949 * place. We handle URGent data wrong. We have to - as
4950 * BSD still doesn't use the correction from RFC961.
4951 * For 1003.1g we should support a new option TCP_STDURG to permit
4952 * either form (or just set the sysctl tcp_stdurg).
4953 */
4954
4955 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4956 {
4957 struct tcp_sock *tp = tcp_sk(sk);
4958 u32 ptr = ntohs(th->urg_ptr);
4959
4960 if (ptr && !sysctl_tcp_stdurg)
4961 ptr--;
4962 ptr += ntohl(th->seq);
4963
4964 /* Ignore urgent data that we've already seen and read. */
4965 if (after(tp->copied_seq, ptr))
4966 return;
4967
4968 /* Do not replay urg ptr.
4969 *
4970 * NOTE: interesting situation not covered by specs.
4971 * Misbehaving sender may send urg ptr, pointing to segment,
4972 * which we already have in ofo queue. We are not able to fetch
4973 * such data and will stay in TCP_URG_NOTYET until will be eaten
4974 * by recvmsg(). Seems, we are not obliged to handle such wicked
4975 * situations. But it is worth to think about possibility of some
4976 * DoSes using some hypothetical application level deadlock.
4977 */
4978 if (before(ptr, tp->rcv_nxt))
4979 return;
4980
4981 /* Do we already have a newer (or duplicate) urgent pointer? */
4982 if (tp->urg_data && !after(ptr, tp->urg_seq))
4983 return;
4984
4985 /* Tell the world about our new urgent pointer. */
4986 sk_send_sigurg(sk);
4987
4988 /* We may be adding urgent data when the last byte read was
4989 * urgent. To do this requires some care. We cannot just ignore
4990 * tp->copied_seq since we would read the last urgent byte again
4991 * as data, nor can we alter copied_seq until this data arrives
4992 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4993 *
4994 * NOTE. Double Dutch. Rendering to plain English: author of comment
4995 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4996 * and expect that both A and B disappear from stream. This is _wrong_.
4997 * Though this happens in BSD with high probability, this is occasional.
4998 * Any application relying on this is buggy. Note also, that fix "works"
4999 * only in this artificial test. Insert some normal data between A and B and we will
5000 * decline of BSD again. Verdict: it is better to remove to trap
5001 * buggy users.
5002 */
5003 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5004 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5005 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5006 tp->copied_seq++;
5007 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5008 __skb_unlink(skb, &sk->sk_receive_queue);
5009 __kfree_skb(skb);
5010 }
5011 }
5012
5013 tp->urg_data = TCP_URG_NOTYET;
5014 tp->urg_seq = ptr;
5015
5016 /* Disable header prediction. */
5017 tp->pred_flags = 0;
5018 }
5019
5020 /* This is the 'fast' part of urgent handling. */
5021 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5022 {
5023 struct tcp_sock *tp = tcp_sk(sk);
5024
5025 /* Check if we get a new urgent pointer - normally not. */
5026 if (th->urg)
5027 tcp_check_urg(sk, th);
5028
5029 /* Do we wait for any urgent data? - normally not... */
5030 if (tp->urg_data == TCP_URG_NOTYET) {
5031 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5032 th->syn;
5033
5034 /* Is the urgent pointer pointing into this packet? */
5035 if (ptr < skb->len) {
5036 u8 tmp;
5037 if (skb_copy_bits(skb, ptr, &tmp, 1))
5038 BUG();
5039 tp->urg_data = TCP_URG_VALID | tmp;
5040 if (!sock_flag(sk, SOCK_DEAD))
5041 sk->sk_data_ready(sk, 0);
5042 }
5043 }
5044 }
5045
5046 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5047 {
5048 struct tcp_sock *tp = tcp_sk(sk);
5049 int chunk = skb->len - hlen;
5050 int err;
5051
5052 local_bh_enable();
5053 if (skb_csum_unnecessary(skb))
5054 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5055 else
5056 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5057 tp->ucopy.iov);
5058
5059 if (!err) {
5060 tp->ucopy.len -= chunk;
5061 tp->copied_seq += chunk;
5062 tcp_rcv_space_adjust(sk);
5063 }
5064
5065 local_bh_disable();
5066 return err;
5067 }
5068
5069 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5070 struct sk_buff *skb)
5071 {
5072 __sum16 result;
5073
5074 if (sock_owned_by_user(sk)) {
5075 local_bh_enable();
5076 result = __tcp_checksum_complete(skb);
5077 local_bh_disable();
5078 } else {
5079 result = __tcp_checksum_complete(skb);
5080 }
5081 return result;
5082 }
5083
5084 static inline int tcp_checksum_complete_user(struct sock *sk,
5085 struct sk_buff *skb)
5086 {
5087 return !skb_csum_unnecessary(skb) &&
5088 __tcp_checksum_complete_user(sk, skb);
5089 }
5090
5091 #ifdef CONFIG_NET_DMA
5092 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5093 int hlen)
5094 {
5095 struct tcp_sock *tp = tcp_sk(sk);
5096 int chunk = skb->len - hlen;
5097 int dma_cookie;
5098 int copied_early = 0;
5099
5100 if (tp->ucopy.wakeup)
5101 return 0;
5102
5103 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5104 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5105
5106 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5107
5108 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5109 skb, hlen,
5110 tp->ucopy.iov, chunk,
5111 tp->ucopy.pinned_list);
5112
5113 if (dma_cookie < 0)
5114 goto out;
5115
5116 tp->ucopy.dma_cookie = dma_cookie;
5117 copied_early = 1;
5118
5119 tp->ucopy.len -= chunk;
5120 tp->copied_seq += chunk;
5121 tcp_rcv_space_adjust(sk);
5122
5123 if ((tp->ucopy.len == 0) ||
5124 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5125 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5126 tp->ucopy.wakeup = 1;
5127 sk->sk_data_ready(sk, 0);
5128 }
5129 } else if (chunk > 0) {
5130 tp->ucopy.wakeup = 1;
5131 sk->sk_data_ready(sk, 0);
5132 }
5133 out:
5134 return copied_early;
5135 }
5136 #endif /* CONFIG_NET_DMA */
5137
5138 /* Does PAWS and seqno based validation of an incoming segment, flags will
5139 * play significant role here.
5140 */
5141 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5142 struct tcphdr *th, int syn_inerr)
5143 {
5144 u8 *hash_location;
5145 struct tcp_sock *tp = tcp_sk(sk);
5146
5147 /* RFC1323: H1. Apply PAWS check first. */
5148 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5149 tp->rx_opt.saw_tstamp &&
5150 tcp_paws_discard(sk, skb)) {
5151 if (!th->rst) {
5152 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5153 tcp_send_dupack(sk, skb);
5154 goto discard;
5155 }
5156 /* Reset is accepted even if it did not pass PAWS. */
5157 }
5158
5159 /* Step 1: check sequence number */
5160 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5161 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5162 * (RST) segments are validated by checking their SEQ-fields."
5163 * And page 69: "If an incoming segment is not acceptable,
5164 * an acknowledgment should be sent in reply (unless the RST
5165 * bit is set, if so drop the segment and return)".
5166 */
5167 if (!th->rst)
5168 tcp_send_dupack(sk, skb);
5169 goto discard;
5170 }
5171
5172 /* Step 2: check RST bit */
5173 if (th->rst) {
5174 tcp_reset(sk);
5175 goto discard;
5176 }
5177
5178 /* ts_recent update must be made after we are sure that the packet
5179 * is in window.
5180 */
5181 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5182
5183 /* step 3: check security and precedence [ignored] */
5184
5185 /* step 4: Check for a SYN in window. */
5186 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5187 if (syn_inerr)
5188 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5189 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5190 tcp_reset(sk);
5191 return -1;
5192 }
5193
5194 return 1;
5195
5196 discard:
5197 __kfree_skb(skb);
5198 return 0;
5199 }
5200
5201 /*
5202 * TCP receive function for the ESTABLISHED state.
5203 *
5204 * It is split into a fast path and a slow path. The fast path is
5205 * disabled when:
5206 * - A zero window was announced from us - zero window probing
5207 * is only handled properly in the slow path.
5208 * - Out of order segments arrived.
5209 * - Urgent data is expected.
5210 * - There is no buffer space left
5211 * - Unexpected TCP flags/window values/header lengths are received
5212 * (detected by checking the TCP header against pred_flags)
5213 * - Data is sent in both directions. Fast path only supports pure senders
5214 * or pure receivers (this means either the sequence number or the ack
5215 * value must stay constant)
5216 * - Unexpected TCP option.
5217 *
5218 * When these conditions are not satisfied it drops into a standard
5219 * receive procedure patterned after RFC793 to handle all cases.
5220 * The first three cases are guaranteed by proper pred_flags setting,
5221 * the rest is checked inline. Fast processing is turned on in
5222 * tcp_data_queue when everything is OK.
5223 */
5224 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5225 struct tcphdr *th, unsigned len)
5226 {
5227 struct tcp_sock *tp = tcp_sk(sk);
5228 int res;
5229
5230 /*
5231 * Header prediction.
5232 * The code loosely follows the one in the famous
5233 * "30 instruction TCP receive" Van Jacobson mail.
5234 *
5235 * Van's trick is to deposit buffers into socket queue
5236 * on a device interrupt, to call tcp_recv function
5237 * on the receive process context and checksum and copy
5238 * the buffer to user space. smart...
5239 *
5240 * Our current scheme is not silly either but we take the
5241 * extra cost of the net_bh soft interrupt processing...
5242 * We do checksum and copy also but from device to kernel.
5243 */
5244
5245 tp->rx_opt.saw_tstamp = 0;
5246
5247 /* pred_flags is 0xS?10 << 16 + snd_wnd
5248 * if header_prediction is to be made
5249 * 'S' will always be tp->tcp_header_len >> 2
5250 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5251 * turn it off (when there are holes in the receive
5252 * space for instance)
5253 * PSH flag is ignored.
5254 */
5255
5256 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5257 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5258 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5259 int tcp_header_len = tp->tcp_header_len;
5260
5261 /* Timestamp header prediction: tcp_header_len
5262 * is automatically equal to th->doff*4 due to pred_flags
5263 * match.
5264 */
5265
5266 /* Check timestamp */
5267 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5268 /* No? Slow path! */
5269 if (!tcp_parse_aligned_timestamp(tp, th))
5270 goto slow_path;
5271
5272 /* If PAWS failed, check it more carefully in slow path */
5273 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5274 goto slow_path;
5275
5276 /* DO NOT update ts_recent here, if checksum fails
5277 * and timestamp was corrupted part, it will result
5278 * in a hung connection since we will drop all
5279 * future packets due to the PAWS test.
5280 */
5281 }
5282
5283 if (len <= tcp_header_len) {
5284 /* Bulk data transfer: sender */
5285 if (len == tcp_header_len) {
5286 /* Predicted packet is in window by definition.
5287 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5288 * Hence, check seq<=rcv_wup reduces to:
5289 */
5290 if (tcp_header_len ==
5291 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5292 tp->rcv_nxt == tp->rcv_wup)
5293 tcp_store_ts_recent(tp);
5294
5295 /* We know that such packets are checksummed
5296 * on entry.
5297 */
5298 tcp_ack(sk, skb, 0);
5299 __kfree_skb(skb);
5300 tcp_data_snd_check(sk);
5301 return 0;
5302 } else { /* Header too small */
5303 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5304 goto discard;
5305 }
5306 } else {
5307 int eaten = 0;
5308 int copied_early = 0;
5309
5310 if (tp->copied_seq == tp->rcv_nxt &&
5311 len - tcp_header_len <= tp->ucopy.len) {
5312 #ifdef CONFIG_NET_DMA
5313 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5314 copied_early = 1;
5315 eaten = 1;
5316 }
5317 #endif
5318 if (tp->ucopy.task == current &&
5319 sock_owned_by_user(sk) && !copied_early) {
5320 __set_current_state(TASK_RUNNING);
5321
5322 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5323 eaten = 1;
5324 }
5325 if (eaten) {
5326 /* Predicted packet is in window by definition.
5327 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5328 * Hence, check seq<=rcv_wup reduces to:
5329 */
5330 if (tcp_header_len ==
5331 (sizeof(struct tcphdr) +
5332 TCPOLEN_TSTAMP_ALIGNED) &&
5333 tp->rcv_nxt == tp->rcv_wup)
5334 tcp_store_ts_recent(tp);
5335
5336 tcp_rcv_rtt_measure_ts(sk, skb);
5337
5338 __skb_pull(skb, tcp_header_len);
5339 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5340 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5341 }
5342 if (copied_early)
5343 tcp_cleanup_rbuf(sk, skb->len);
5344 }
5345 if (!eaten) {
5346 if (tcp_checksum_complete_user(sk, skb))
5347 goto csum_error;
5348
5349 /* Predicted packet is in window by definition.
5350 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5351 * Hence, check seq<=rcv_wup reduces to:
5352 */
5353 if (tcp_header_len ==
5354 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5355 tp->rcv_nxt == tp->rcv_wup)
5356 tcp_store_ts_recent(tp);
5357
5358 tcp_rcv_rtt_measure_ts(sk, skb);
5359
5360 if ((int)skb->truesize > sk->sk_forward_alloc)
5361 goto step5;
5362
5363 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5364
5365 /* Bulk data transfer: receiver */
5366 __skb_pull(skb, tcp_header_len);
5367 __skb_queue_tail(&sk->sk_receive_queue, skb);
5368 skb_set_owner_r(skb, sk);
5369 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5370 }
5371
5372 tcp_event_data_recv(sk, skb);
5373
5374 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5375 /* Well, only one small jumplet in fast path... */
5376 tcp_ack(sk, skb, FLAG_DATA);
5377 tcp_data_snd_check(sk);
5378 if (!inet_csk_ack_scheduled(sk))
5379 goto no_ack;
5380 }
5381
5382 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5383 __tcp_ack_snd_check(sk, 0);
5384 no_ack:
5385 #ifdef CONFIG_NET_DMA
5386 if (copied_early)
5387 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5388 else
5389 #endif
5390 if (eaten)
5391 __kfree_skb(skb);
5392 else
5393 sk->sk_data_ready(sk, 0);
5394 return 0;
5395 }
5396 }
5397
5398 slow_path:
5399 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5400 goto csum_error;
5401
5402 /*
5403 * Standard slow path.
5404 */
5405
5406 res = tcp_validate_incoming(sk, skb, th, 1);
5407 if (res <= 0)
5408 return -res;
5409
5410 step5:
5411 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5412 goto discard;
5413
5414 tcp_rcv_rtt_measure_ts(sk, skb);
5415
5416 /* Process urgent data. */
5417 tcp_urg(sk, skb, th);
5418
5419 /* step 7: process the segment text */
5420 tcp_data_queue(sk, skb);
5421
5422 tcp_data_snd_check(sk);
5423 tcp_ack_snd_check(sk);
5424 return 0;
5425
5426 csum_error:
5427 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5428
5429 discard:
5430 __kfree_skb(skb);
5431 return 0;
5432 }
5433
5434 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5435 struct tcphdr *th, unsigned len)
5436 {
5437 u8 *hash_location;
5438 struct inet_connection_sock *icsk = inet_csk(sk);
5439 struct tcp_sock *tp = tcp_sk(sk);
5440 struct tcp_cookie_values *cvp = tp->cookie_values;
5441 int saved_clamp = tp->rx_opt.mss_clamp;
5442
5443 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5444
5445 if (th->ack) {
5446 /* rfc793:
5447 * "If the state is SYN-SENT then
5448 * first check the ACK bit
5449 * If the ACK bit is set
5450 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5451 * a reset (unless the RST bit is set, if so drop
5452 * the segment and return)"
5453 *
5454 * We do not send data with SYN, so that RFC-correct
5455 * test reduces to:
5456 */
5457 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5458 goto reset_and_undo;
5459
5460 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5461 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5462 tcp_time_stamp)) {
5463 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5464 goto reset_and_undo;
5465 }
5466
5467 /* Now ACK is acceptable.
5468 *
5469 * "If the RST bit is set
5470 * If the ACK was acceptable then signal the user "error:
5471 * connection reset", drop the segment, enter CLOSED state,
5472 * delete TCB, and return."
5473 */
5474
5475 if (th->rst) {
5476 tcp_reset(sk);
5477 goto discard;
5478 }
5479
5480 /* rfc793:
5481 * "fifth, if neither of the SYN or RST bits is set then
5482 * drop the segment and return."
5483 *
5484 * See note below!
5485 * --ANK(990513)
5486 */
5487 if (!th->syn)
5488 goto discard_and_undo;
5489
5490 /* rfc793:
5491 * "If the SYN bit is on ...
5492 * are acceptable then ...
5493 * (our SYN has been ACKed), change the connection
5494 * state to ESTABLISHED..."
5495 */
5496
5497 TCP_ECN_rcv_synack(tp, th);
5498
5499 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5500 tcp_ack(sk, skb, FLAG_SLOWPATH);
5501
5502 /* Ok.. it's good. Set up sequence numbers and
5503 * move to established.
5504 */
5505 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5506 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5507
5508 /* RFC1323: The window in SYN & SYN/ACK segments is
5509 * never scaled.
5510 */
5511 tp->snd_wnd = ntohs(th->window);
5512 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5513
5514 if (!tp->rx_opt.wscale_ok) {
5515 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5516 tp->window_clamp = min(tp->window_clamp, 65535U);
5517 }
5518
5519 if (tp->rx_opt.saw_tstamp) {
5520 tp->rx_opt.tstamp_ok = 1;
5521 tp->tcp_header_len =
5522 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5523 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5524 tcp_store_ts_recent(tp);
5525 } else {
5526 tp->tcp_header_len = sizeof(struct tcphdr);
5527 }
5528
5529 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5530 tcp_enable_fack(tp);
5531
5532 tcp_mtup_init(sk);
5533 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5534 tcp_initialize_rcv_mss(sk);
5535
5536 /* Remember, tcp_poll() does not lock socket!
5537 * Change state from SYN-SENT only after copied_seq
5538 * is initialized. */
5539 tp->copied_seq = tp->rcv_nxt;
5540
5541 if (cvp != NULL &&
5542 cvp->cookie_pair_size > 0 &&
5543 tp->rx_opt.cookie_plus > 0) {
5544 int cookie_size = tp->rx_opt.cookie_plus
5545 - TCPOLEN_COOKIE_BASE;
5546 int cookie_pair_size = cookie_size
5547 + cvp->cookie_desired;
5548
5549 /* A cookie extension option was sent and returned.
5550 * Note that each incoming SYNACK replaces the
5551 * Responder cookie. The initial exchange is most
5552 * fragile, as protection against spoofing relies
5553 * entirely upon the sequence and timestamp (above).
5554 * This replacement strategy allows the correct pair to
5555 * pass through, while any others will be filtered via
5556 * Responder verification later.
5557 */
5558 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5559 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5560 hash_location, cookie_size);
5561 cvp->cookie_pair_size = cookie_pair_size;
5562 }
5563 }
5564
5565 smp_mb();
5566 tcp_set_state(sk, TCP_ESTABLISHED);
5567
5568 security_inet_conn_established(sk, skb);
5569
5570 /* Make sure socket is routed, for correct metrics. */
5571 icsk->icsk_af_ops->rebuild_header(sk);
5572
5573 tcp_init_metrics(sk);
5574
5575 tcp_init_congestion_control(sk);
5576
5577 /* Prevent spurious tcp_cwnd_restart() on first data
5578 * packet.
5579 */
5580 tp->lsndtime = tcp_time_stamp;
5581
5582 tcp_init_buffer_space(sk);
5583
5584 if (sock_flag(sk, SOCK_KEEPOPEN))
5585 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5586
5587 if (!tp->rx_opt.snd_wscale)
5588 __tcp_fast_path_on(tp, tp->snd_wnd);
5589 else
5590 tp->pred_flags = 0;
5591
5592 if (!sock_flag(sk, SOCK_DEAD)) {
5593 sk->sk_state_change(sk);
5594 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5595 }
5596
5597 if (sk->sk_write_pending ||
5598 icsk->icsk_accept_queue.rskq_defer_accept ||
5599 icsk->icsk_ack.pingpong) {
5600 /* Save one ACK. Data will be ready after
5601 * several ticks, if write_pending is set.
5602 *
5603 * It may be deleted, but with this feature tcpdumps
5604 * look so _wonderfully_ clever, that I was not able
5605 * to stand against the temptation 8) --ANK
5606 */
5607 inet_csk_schedule_ack(sk);
5608 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5609 icsk->icsk_ack.ato = TCP_ATO_MIN;
5610 tcp_incr_quickack(sk);
5611 tcp_enter_quickack_mode(sk);
5612 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5613 TCP_DELACK_MAX, TCP_RTO_MAX);
5614
5615 discard:
5616 __kfree_skb(skb);
5617 return 0;
5618 } else {
5619 tcp_send_ack(sk);
5620 }
5621 return -1;
5622 }
5623
5624 /* No ACK in the segment */
5625
5626 if (th->rst) {
5627 /* rfc793:
5628 * "If the RST bit is set
5629 *
5630 * Otherwise (no ACK) drop the segment and return."
5631 */
5632
5633 goto discard_and_undo;
5634 }
5635
5636 /* PAWS check. */
5637 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5638 tcp_paws_reject(&tp->rx_opt, 0))
5639 goto discard_and_undo;
5640
5641 if (th->syn) {
5642 /* We see SYN without ACK. It is attempt of
5643 * simultaneous connect with crossed SYNs.
5644 * Particularly, it can be connect to self.
5645 */
5646 tcp_set_state(sk, TCP_SYN_RECV);
5647
5648 if (tp->rx_opt.saw_tstamp) {
5649 tp->rx_opt.tstamp_ok = 1;
5650 tcp_store_ts_recent(tp);
5651 tp->tcp_header_len =
5652 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5653 } else {
5654 tp->tcp_header_len = sizeof(struct tcphdr);
5655 }
5656
5657 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5658 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5659
5660 /* RFC1323: The window in SYN & SYN/ACK segments is
5661 * never scaled.
5662 */
5663 tp->snd_wnd = ntohs(th->window);
5664 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5665 tp->max_window = tp->snd_wnd;
5666
5667 TCP_ECN_rcv_syn(tp, th);
5668
5669 tcp_mtup_init(sk);
5670 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5671 tcp_initialize_rcv_mss(sk);
5672
5673 tcp_send_synack(sk);
5674 #if 0
5675 /* Note, we could accept data and URG from this segment.
5676 * There are no obstacles to make this.
5677 *
5678 * However, if we ignore data in ACKless segments sometimes,
5679 * we have no reasons to accept it sometimes.
5680 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5681 * is not flawless. So, discard packet for sanity.
5682 * Uncomment this return to process the data.
5683 */
5684 return -1;
5685 #else
5686 goto discard;
5687 #endif
5688 }
5689 /* "fifth, if neither of the SYN or RST bits is set then
5690 * drop the segment and return."
5691 */
5692
5693 discard_and_undo:
5694 tcp_clear_options(&tp->rx_opt);
5695 tp->rx_opt.mss_clamp = saved_clamp;
5696 goto discard;
5697
5698 reset_and_undo:
5699 tcp_clear_options(&tp->rx_opt);
5700 tp->rx_opt.mss_clamp = saved_clamp;
5701 return 1;
5702 }
5703
5704 /*
5705 * This function implements the receiving procedure of RFC 793 for
5706 * all states except ESTABLISHED and TIME_WAIT.
5707 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5708 * address independent.
5709 */
5710
5711 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5712 struct tcphdr *th, unsigned len)
5713 {
5714 struct tcp_sock *tp = tcp_sk(sk);
5715 struct inet_connection_sock *icsk = inet_csk(sk);
5716 int queued = 0;
5717 int res;
5718
5719 tp->rx_opt.saw_tstamp = 0;
5720
5721 switch (sk->sk_state) {
5722 case TCP_CLOSE:
5723 goto discard;
5724
5725 case TCP_LISTEN:
5726 if (th->ack)
5727 return 1;
5728
5729 if (th->rst)
5730 goto discard;
5731
5732 if (th->syn) {
5733 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5734 return 1;
5735
5736 /* Now we have several options: In theory there is
5737 * nothing else in the frame. KA9Q has an option to
5738 * send data with the syn, BSD accepts data with the
5739 * syn up to the [to be] advertised window and
5740 * Solaris 2.1 gives you a protocol error. For now
5741 * we just ignore it, that fits the spec precisely
5742 * and avoids incompatibilities. It would be nice in
5743 * future to drop through and process the data.
5744 *
5745 * Now that TTCP is starting to be used we ought to
5746 * queue this data.
5747 * But, this leaves one open to an easy denial of
5748 * service attack, and SYN cookies can't defend
5749 * against this problem. So, we drop the data
5750 * in the interest of security over speed unless
5751 * it's still in use.
5752 */
5753 kfree_skb(skb);
5754 return 0;
5755 }
5756 goto discard;
5757
5758 case TCP_SYN_SENT:
5759 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5760 if (queued >= 0)
5761 return queued;
5762
5763 /* Do step6 onward by hand. */
5764 tcp_urg(sk, skb, th);
5765 __kfree_skb(skb);
5766 tcp_data_snd_check(sk);
5767 return 0;
5768 }
5769
5770 res = tcp_validate_incoming(sk, skb, th, 0);
5771 if (res <= 0)
5772 return -res;
5773
5774 /* step 5: check the ACK field */
5775 if (th->ack) {
5776 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5777
5778 switch (sk->sk_state) {
5779 case TCP_SYN_RECV:
5780 if (acceptable) {
5781 tp->copied_seq = tp->rcv_nxt;
5782 smp_mb();
5783 tcp_set_state(sk, TCP_ESTABLISHED);
5784 sk->sk_state_change(sk);
5785
5786 /* Note, that this wakeup is only for marginal
5787 * crossed SYN case. Passively open sockets
5788 * are not waked up, because sk->sk_sleep ==
5789 * NULL and sk->sk_socket == NULL.
5790 */
5791 if (sk->sk_socket)
5792 sk_wake_async(sk,
5793 SOCK_WAKE_IO, POLL_OUT);
5794
5795 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5796 tp->snd_wnd = ntohs(th->window) <<
5797 tp->rx_opt.snd_wscale;
5798 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5799
5800 /* tcp_ack considers this ACK as duplicate
5801 * and does not calculate rtt.
5802 * Force it here.
5803 */
5804 tcp_ack_update_rtt(sk, 0, 0);
5805
5806 if (tp->rx_opt.tstamp_ok)
5807 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5808
5809 /* Make sure socket is routed, for
5810 * correct metrics.
5811 */
5812 icsk->icsk_af_ops->rebuild_header(sk);
5813
5814 tcp_init_metrics(sk);
5815
5816 tcp_init_congestion_control(sk);
5817
5818 /* Prevent spurious tcp_cwnd_restart() on
5819 * first data packet.
5820 */
5821 tp->lsndtime = tcp_time_stamp;
5822
5823 tcp_mtup_init(sk);
5824 tcp_initialize_rcv_mss(sk);
5825 tcp_init_buffer_space(sk);
5826 tcp_fast_path_on(tp);
5827 } else {
5828 return 1;
5829 }
5830 break;
5831
5832 case TCP_FIN_WAIT1:
5833 if (tp->snd_una == tp->write_seq) {
5834 tcp_set_state(sk, TCP_FIN_WAIT2);
5835 sk->sk_shutdown |= SEND_SHUTDOWN;
5836 dst_confirm(sk->sk_dst_cache);
5837
5838 if (!sock_flag(sk, SOCK_DEAD))
5839 /* Wake up lingering close() */
5840 sk->sk_state_change(sk);
5841 else {
5842 int tmo;
5843
5844 if (tp->linger2 < 0 ||
5845 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5846 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5847 tcp_done(sk);
5848 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5849 return 1;
5850 }
5851
5852 tmo = tcp_fin_time(sk);
5853 if (tmo > TCP_TIMEWAIT_LEN) {
5854 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5855 } else if (th->fin || sock_owned_by_user(sk)) {
5856 /* Bad case. We could lose such FIN otherwise.
5857 * It is not a big problem, but it looks confusing
5858 * and not so rare event. We still can lose it now,
5859 * if it spins in bh_lock_sock(), but it is really
5860 * marginal case.
5861 */
5862 inet_csk_reset_keepalive_timer(sk, tmo);
5863 } else {
5864 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5865 goto discard;
5866 }
5867 }
5868 }
5869 break;
5870
5871 case TCP_CLOSING:
5872 if (tp->snd_una == tp->write_seq) {
5873 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5874 goto discard;
5875 }
5876 break;
5877
5878 case TCP_LAST_ACK:
5879 if (tp->snd_una == tp->write_seq) {
5880 tcp_update_metrics(sk);
5881 tcp_done(sk);
5882 goto discard;
5883 }
5884 break;
5885 }
5886 } else
5887 goto discard;
5888
5889 /* step 6: check the URG bit */
5890 tcp_urg(sk, skb, th);
5891
5892 /* step 7: process the segment text */
5893 switch (sk->sk_state) {
5894 case TCP_CLOSE_WAIT:
5895 case TCP_CLOSING:
5896 case TCP_LAST_ACK:
5897 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5898 break;
5899 case TCP_FIN_WAIT1:
5900 case TCP_FIN_WAIT2:
5901 /* RFC 793 says to queue data in these states,
5902 * RFC 1122 says we MUST send a reset.
5903 * BSD 4.4 also does reset.
5904 */
5905 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5906 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5907 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5908 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5909 tcp_reset(sk);
5910 return 1;
5911 }
5912 }
5913 /* Fall through */
5914 case TCP_ESTABLISHED:
5915 tcp_data_queue(sk, skb);
5916 queued = 1;
5917 break;
5918 }
5919
5920 /* tcp_data could move socket to TIME-WAIT */
5921 if (sk->sk_state != TCP_CLOSE) {
5922 tcp_data_snd_check(sk);
5923 tcp_ack_snd_check(sk);
5924 }
5925
5926 if (!queued) {
5927 discard:
5928 __kfree_skb(skb);
5929 }
5930 return 0;
5931 }
5932
5933 EXPORT_SYMBOL(sysctl_tcp_ecn);
5934 EXPORT_SYMBOL(sysctl_tcp_reordering);
5935 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5936 EXPORT_SYMBOL(tcp_parse_options);
5937 #ifdef CONFIG_TCP_MD5SIG
5938 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5939 #endif
5940 EXPORT_SYMBOL(tcp_rcv_established);
5941 EXPORT_SYMBOL(tcp_rcv_state_process);
5942 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.160301 seconds and 5 git commands to generate.