[TCP]: Prevent reordering adjustments during FRTO
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114
115 /* Adapt the MSS value used to make delayed ack decision to the
116 * real world.
117 */
118 static void tcp_measure_rcv_mss(struct sock *sk,
119 const struct sk_buff *skb)
120 {
121 struct inet_connection_sock *icsk = inet_csk(sk);
122 const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 unsigned int len;
124
125 icsk->icsk_ack.last_seg_size = 0;
126
127 /* skb->len may jitter because of SACKs, even if peer
128 * sends good full-sized frames.
129 */
130 len = skb_shinfo(skb)->gso_size ?: skb->len;
131 if (len >= icsk->icsk_ack.rcv_mss) {
132 icsk->icsk_ack.rcv_mss = len;
133 } else {
134 /* Otherwise, we make more careful check taking into account,
135 * that SACKs block is variable.
136 *
137 * "len" is invariant segment length, including TCP header.
138 */
139 len += skb->data - skb->h.raw;
140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 /* If PSH is not set, packet should be
142 * full sized, provided peer TCP is not badly broken.
143 * This observation (if it is correct 8)) allows
144 * to handle super-low mtu links fairly.
145 */
146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 /* Subtract also invariant (if peer is RFC compliant),
149 * tcp header plus fixed timestamp option length.
150 * Resulting "len" is MSS free of SACK jitter.
151 */
152 len -= tcp_sk(sk)->tcp_header_len;
153 icsk->icsk_ack.last_seg_size = len;
154 if (len == lss) {
155 icsk->icsk_ack.rcv_mss = len;
156 return;
157 }
158 }
159 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
160 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
161 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
162 }
163 }
164
165 static void tcp_incr_quickack(struct sock *sk)
166 {
167 struct inet_connection_sock *icsk = inet_csk(sk);
168 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
169
170 if (quickacks==0)
171 quickacks=2;
172 if (quickacks > icsk->icsk_ack.quick)
173 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
174 }
175
176 void tcp_enter_quickack_mode(struct sock *sk)
177 {
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 tcp_incr_quickack(sk);
180 icsk->icsk_ack.pingpong = 0;
181 icsk->icsk_ack.ato = TCP_ATO_MIN;
182 }
183
184 /* Send ACKs quickly, if "quick" count is not exhausted
185 * and the session is not interactive.
186 */
187
188 static inline int tcp_in_quickack_mode(const struct sock *sk)
189 {
190 const struct inet_connection_sock *icsk = inet_csk(sk);
191 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
192 }
193
194 /* Buffer size and advertised window tuning.
195 *
196 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197 */
198
199 static void tcp_fixup_sndbuf(struct sock *sk)
200 {
201 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
202 sizeof(struct sk_buff);
203
204 if (sk->sk_sndbuf < 3 * sndmem)
205 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206 }
207
208 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
209 *
210 * All tcp_full_space() is split to two parts: "network" buffer, allocated
211 * forward and advertised in receiver window (tp->rcv_wnd) and
212 * "application buffer", required to isolate scheduling/application
213 * latencies from network.
214 * window_clamp is maximal advertised window. It can be less than
215 * tcp_full_space(), in this case tcp_full_space() - window_clamp
216 * is reserved for "application" buffer. The less window_clamp is
217 * the smoother our behaviour from viewpoint of network, but the lower
218 * throughput and the higher sensitivity of the connection to losses. 8)
219 *
220 * rcv_ssthresh is more strict window_clamp used at "slow start"
221 * phase to predict further behaviour of this connection.
222 * It is used for two goals:
223 * - to enforce header prediction at sender, even when application
224 * requires some significant "application buffer". It is check #1.
225 * - to prevent pruning of receive queue because of misprediction
226 * of receiver window. Check #2.
227 *
228 * The scheme does not work when sender sends good segments opening
229 * window and then starts to feed us spaghetti. But it should work
230 * in common situations. Otherwise, we have to rely on queue collapsing.
231 */
232
233 /* Slow part of check#2. */
234 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
235 const struct sk_buff *skb)
236 {
237 /* Optimize this! */
238 int truesize = tcp_win_from_space(skb->truesize)/2;
239 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
240
241 while (tp->rcv_ssthresh <= window) {
242 if (truesize <= skb->len)
243 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
244
245 truesize >>= 1;
246 window >>= 1;
247 }
248 return 0;
249 }
250
251 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
252 struct sk_buff *skb)
253 {
254 /* Check #1 */
255 if (tp->rcv_ssthresh < tp->window_clamp &&
256 (int)tp->rcv_ssthresh < tcp_space(sk) &&
257 !tcp_memory_pressure) {
258 int incr;
259
260 /* Check #2. Increase window, if skb with such overhead
261 * will fit to rcvbuf in future.
262 */
263 if (tcp_win_from_space(skb->truesize) <= skb->len)
264 incr = 2*tp->advmss;
265 else
266 incr = __tcp_grow_window(sk, tp, skb);
267
268 if (incr) {
269 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
270 inet_csk(sk)->icsk_ack.quick |= 1;
271 }
272 }
273 }
274
275 /* 3. Tuning rcvbuf, when connection enters established state. */
276
277 static void tcp_fixup_rcvbuf(struct sock *sk)
278 {
279 struct tcp_sock *tp = tcp_sk(sk);
280 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
281
282 /* Try to select rcvbuf so that 4 mss-sized segments
283 * will fit to window and corresponding skbs will fit to our rcvbuf.
284 * (was 3; 4 is minimum to allow fast retransmit to work.)
285 */
286 while (tcp_win_from_space(rcvmem) < tp->advmss)
287 rcvmem += 128;
288 if (sk->sk_rcvbuf < 4 * rcvmem)
289 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290 }
291
292 /* 4. Try to fixup all. It is made immediately after connection enters
293 * established state.
294 */
295 static void tcp_init_buffer_space(struct sock *sk)
296 {
297 struct tcp_sock *tp = tcp_sk(sk);
298 int maxwin;
299
300 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
301 tcp_fixup_rcvbuf(sk);
302 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
303 tcp_fixup_sndbuf(sk);
304
305 tp->rcvq_space.space = tp->rcv_wnd;
306
307 maxwin = tcp_full_space(sk);
308
309 if (tp->window_clamp >= maxwin) {
310 tp->window_clamp = maxwin;
311
312 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
313 tp->window_clamp = max(maxwin -
314 (maxwin >> sysctl_tcp_app_win),
315 4 * tp->advmss);
316 }
317
318 /* Force reservation of one segment. */
319 if (sysctl_tcp_app_win &&
320 tp->window_clamp > 2 * tp->advmss &&
321 tp->window_clamp + tp->advmss > maxwin)
322 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
323
324 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
325 tp->snd_cwnd_stamp = tcp_time_stamp;
326 }
327
328 /* 5. Recalculate window clamp after socket hit its memory bounds. */
329 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
330 {
331 struct inet_connection_sock *icsk = inet_csk(sk);
332
333 icsk->icsk_ack.quick = 0;
334
335 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
336 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
337 !tcp_memory_pressure &&
338 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
339 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
340 sysctl_tcp_rmem[2]);
341 }
342 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
343 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
344 }
345
346
347 /* Initialize RCV_MSS value.
348 * RCV_MSS is an our guess about MSS used by the peer.
349 * We haven't any direct information about the MSS.
350 * It's better to underestimate the RCV_MSS rather than overestimate.
351 * Overestimations make us ACKing less frequently than needed.
352 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
353 */
354 void tcp_initialize_rcv_mss(struct sock *sk)
355 {
356 struct tcp_sock *tp = tcp_sk(sk);
357 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
358
359 hint = min(hint, tp->rcv_wnd/2);
360 hint = min(hint, TCP_MIN_RCVMSS);
361 hint = max(hint, TCP_MIN_MSS);
362
363 inet_csk(sk)->icsk_ack.rcv_mss = hint;
364 }
365
366 /* Receiver "autotuning" code.
367 *
368 * The algorithm for RTT estimation w/o timestamps is based on
369 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
370 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
371 *
372 * More detail on this code can be found at
373 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
374 * though this reference is out of date. A new paper
375 * is pending.
376 */
377 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
378 {
379 u32 new_sample = tp->rcv_rtt_est.rtt;
380 long m = sample;
381
382 if (m == 0)
383 m = 1;
384
385 if (new_sample != 0) {
386 /* If we sample in larger samples in the non-timestamp
387 * case, we could grossly overestimate the RTT especially
388 * with chatty applications or bulk transfer apps which
389 * are stalled on filesystem I/O.
390 *
391 * Also, since we are only going for a minimum in the
392 * non-timestamp case, we do not smooth things out
393 * else with timestamps disabled convergence takes too
394 * long.
395 */
396 if (!win_dep) {
397 m -= (new_sample >> 3);
398 new_sample += m;
399 } else if (m < new_sample)
400 new_sample = m << 3;
401 } else {
402 /* No previous measure. */
403 new_sample = m << 3;
404 }
405
406 if (tp->rcv_rtt_est.rtt != new_sample)
407 tp->rcv_rtt_est.rtt = new_sample;
408 }
409
410 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
411 {
412 if (tp->rcv_rtt_est.time == 0)
413 goto new_measure;
414 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
415 return;
416 tcp_rcv_rtt_update(tp,
417 jiffies - tp->rcv_rtt_est.time,
418 1);
419
420 new_measure:
421 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
422 tp->rcv_rtt_est.time = tcp_time_stamp;
423 }
424
425 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
426 {
427 struct tcp_sock *tp = tcp_sk(sk);
428 if (tp->rx_opt.rcv_tsecr &&
429 (TCP_SKB_CB(skb)->end_seq -
430 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
431 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
432 }
433
434 /*
435 * This function should be called every time data is copied to user space.
436 * It calculates the appropriate TCP receive buffer space.
437 */
438 void tcp_rcv_space_adjust(struct sock *sk)
439 {
440 struct tcp_sock *tp = tcp_sk(sk);
441 int time;
442 int space;
443
444 if (tp->rcvq_space.time == 0)
445 goto new_measure;
446
447 time = tcp_time_stamp - tp->rcvq_space.time;
448 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
449 tp->rcv_rtt_est.rtt == 0)
450 return;
451
452 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
453
454 space = max(tp->rcvq_space.space, space);
455
456 if (tp->rcvq_space.space != space) {
457 int rcvmem;
458
459 tp->rcvq_space.space = space;
460
461 if (sysctl_tcp_moderate_rcvbuf &&
462 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
463 int new_clamp = space;
464
465 /* Receive space grows, normalize in order to
466 * take into account packet headers and sk_buff
467 * structure overhead.
468 */
469 space /= tp->advmss;
470 if (!space)
471 space = 1;
472 rcvmem = (tp->advmss + MAX_TCP_HEADER +
473 16 + sizeof(struct sk_buff));
474 while (tcp_win_from_space(rcvmem) < tp->advmss)
475 rcvmem += 128;
476 space *= rcvmem;
477 space = min(space, sysctl_tcp_rmem[2]);
478 if (space > sk->sk_rcvbuf) {
479 sk->sk_rcvbuf = space;
480
481 /* Make the window clamp follow along. */
482 tp->window_clamp = new_clamp;
483 }
484 }
485 }
486
487 new_measure:
488 tp->rcvq_space.seq = tp->copied_seq;
489 tp->rcvq_space.time = tcp_time_stamp;
490 }
491
492 /* There is something which you must keep in mind when you analyze the
493 * behavior of the tp->ato delayed ack timeout interval. When a
494 * connection starts up, we want to ack as quickly as possible. The
495 * problem is that "good" TCP's do slow start at the beginning of data
496 * transmission. The means that until we send the first few ACK's the
497 * sender will sit on his end and only queue most of his data, because
498 * he can only send snd_cwnd unacked packets at any given time. For
499 * each ACK we send, he increments snd_cwnd and transmits more of his
500 * queue. -DaveM
501 */
502 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
503 {
504 struct inet_connection_sock *icsk = inet_csk(sk);
505 u32 now;
506
507 inet_csk_schedule_ack(sk);
508
509 tcp_measure_rcv_mss(sk, skb);
510
511 tcp_rcv_rtt_measure(tp);
512
513 now = tcp_time_stamp;
514
515 if (!icsk->icsk_ack.ato) {
516 /* The _first_ data packet received, initialize
517 * delayed ACK engine.
518 */
519 tcp_incr_quickack(sk);
520 icsk->icsk_ack.ato = TCP_ATO_MIN;
521 } else {
522 int m = now - icsk->icsk_ack.lrcvtime;
523
524 if (m <= TCP_ATO_MIN/2) {
525 /* The fastest case is the first. */
526 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
527 } else if (m < icsk->icsk_ack.ato) {
528 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
529 if (icsk->icsk_ack.ato > icsk->icsk_rto)
530 icsk->icsk_ack.ato = icsk->icsk_rto;
531 } else if (m > icsk->icsk_rto) {
532 /* Too long gap. Apparently sender failed to
533 * restart window, so that we send ACKs quickly.
534 */
535 tcp_incr_quickack(sk);
536 sk_stream_mem_reclaim(sk);
537 }
538 }
539 icsk->icsk_ack.lrcvtime = now;
540
541 TCP_ECN_check_ce(tp, skb);
542
543 if (skb->len >= 128)
544 tcp_grow_window(sk, tp, skb);
545 }
546
547 /* Called to compute a smoothed rtt estimate. The data fed to this
548 * routine either comes from timestamps, or from segments that were
549 * known _not_ to have been retransmitted [see Karn/Partridge
550 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
551 * piece by Van Jacobson.
552 * NOTE: the next three routines used to be one big routine.
553 * To save cycles in the RFC 1323 implementation it was better to break
554 * it up into three procedures. -- erics
555 */
556 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
557 {
558 struct tcp_sock *tp = tcp_sk(sk);
559 long m = mrtt; /* RTT */
560
561 /* The following amusing code comes from Jacobson's
562 * article in SIGCOMM '88. Note that rtt and mdev
563 * are scaled versions of rtt and mean deviation.
564 * This is designed to be as fast as possible
565 * m stands for "measurement".
566 *
567 * On a 1990 paper the rto value is changed to:
568 * RTO = rtt + 4 * mdev
569 *
570 * Funny. This algorithm seems to be very broken.
571 * These formulae increase RTO, when it should be decreased, increase
572 * too slowly, when it should be increased quickly, decrease too quickly
573 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
574 * does not matter how to _calculate_ it. Seems, it was trap
575 * that VJ failed to avoid. 8)
576 */
577 if(m == 0)
578 m = 1;
579 if (tp->srtt != 0) {
580 m -= (tp->srtt >> 3); /* m is now error in rtt est */
581 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
582 if (m < 0) {
583 m = -m; /* m is now abs(error) */
584 m -= (tp->mdev >> 2); /* similar update on mdev */
585 /* This is similar to one of Eifel findings.
586 * Eifel blocks mdev updates when rtt decreases.
587 * This solution is a bit different: we use finer gain
588 * for mdev in this case (alpha*beta).
589 * Like Eifel it also prevents growth of rto,
590 * but also it limits too fast rto decreases,
591 * happening in pure Eifel.
592 */
593 if (m > 0)
594 m >>= 3;
595 } else {
596 m -= (tp->mdev >> 2); /* similar update on mdev */
597 }
598 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
599 if (tp->mdev > tp->mdev_max) {
600 tp->mdev_max = tp->mdev;
601 if (tp->mdev_max > tp->rttvar)
602 tp->rttvar = tp->mdev_max;
603 }
604 if (after(tp->snd_una, tp->rtt_seq)) {
605 if (tp->mdev_max < tp->rttvar)
606 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
607 tp->rtt_seq = tp->snd_nxt;
608 tp->mdev_max = TCP_RTO_MIN;
609 }
610 } else {
611 /* no previous measure. */
612 tp->srtt = m<<3; /* take the measured time to be rtt */
613 tp->mdev = m<<1; /* make sure rto = 3*rtt */
614 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
615 tp->rtt_seq = tp->snd_nxt;
616 }
617 }
618
619 /* Calculate rto without backoff. This is the second half of Van Jacobson's
620 * routine referred to above.
621 */
622 static inline void tcp_set_rto(struct sock *sk)
623 {
624 const struct tcp_sock *tp = tcp_sk(sk);
625 /* Old crap is replaced with new one. 8)
626 *
627 * More seriously:
628 * 1. If rtt variance happened to be less 50msec, it is hallucination.
629 * It cannot be less due to utterly erratic ACK generation made
630 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
631 * to do with delayed acks, because at cwnd>2 true delack timeout
632 * is invisible. Actually, Linux-2.4 also generates erratic
633 * ACKs in some circumstances.
634 */
635 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
636
637 /* 2. Fixups made earlier cannot be right.
638 * If we do not estimate RTO correctly without them,
639 * all the algo is pure shit and should be replaced
640 * with correct one. It is exactly, which we pretend to do.
641 */
642 }
643
644 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
645 * guarantees that rto is higher.
646 */
647 static inline void tcp_bound_rto(struct sock *sk)
648 {
649 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
650 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
651 }
652
653 /* Save metrics learned by this TCP session.
654 This function is called only, when TCP finishes successfully
655 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
656 */
657 void tcp_update_metrics(struct sock *sk)
658 {
659 struct tcp_sock *tp = tcp_sk(sk);
660 struct dst_entry *dst = __sk_dst_get(sk);
661
662 if (sysctl_tcp_nometrics_save)
663 return;
664
665 dst_confirm(dst);
666
667 if (dst && (dst->flags&DST_HOST)) {
668 const struct inet_connection_sock *icsk = inet_csk(sk);
669 int m;
670
671 if (icsk->icsk_backoff || !tp->srtt) {
672 /* This session failed to estimate rtt. Why?
673 * Probably, no packets returned in time.
674 * Reset our results.
675 */
676 if (!(dst_metric_locked(dst, RTAX_RTT)))
677 dst->metrics[RTAX_RTT-1] = 0;
678 return;
679 }
680
681 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
682
683 /* If newly calculated rtt larger than stored one,
684 * store new one. Otherwise, use EWMA. Remember,
685 * rtt overestimation is always better than underestimation.
686 */
687 if (!(dst_metric_locked(dst, RTAX_RTT))) {
688 if (m <= 0)
689 dst->metrics[RTAX_RTT-1] = tp->srtt;
690 else
691 dst->metrics[RTAX_RTT-1] -= (m>>3);
692 }
693
694 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
695 if (m < 0)
696 m = -m;
697
698 /* Scale deviation to rttvar fixed point */
699 m >>= 1;
700 if (m < tp->mdev)
701 m = tp->mdev;
702
703 if (m >= dst_metric(dst, RTAX_RTTVAR))
704 dst->metrics[RTAX_RTTVAR-1] = m;
705 else
706 dst->metrics[RTAX_RTTVAR-1] -=
707 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
708 }
709
710 if (tp->snd_ssthresh >= 0xFFFF) {
711 /* Slow start still did not finish. */
712 if (dst_metric(dst, RTAX_SSTHRESH) &&
713 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
714 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
715 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
716 if (!dst_metric_locked(dst, RTAX_CWND) &&
717 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
718 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
719 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
720 icsk->icsk_ca_state == TCP_CA_Open) {
721 /* Cong. avoidance phase, cwnd is reliable. */
722 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
723 dst->metrics[RTAX_SSTHRESH-1] =
724 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
725 if (!dst_metric_locked(dst, RTAX_CWND))
726 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
727 } else {
728 /* Else slow start did not finish, cwnd is non-sense,
729 ssthresh may be also invalid.
730 */
731 if (!dst_metric_locked(dst, RTAX_CWND))
732 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
733 if (dst->metrics[RTAX_SSTHRESH-1] &&
734 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
735 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
736 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
737 }
738
739 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
740 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
741 tp->reordering != sysctl_tcp_reordering)
742 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
743 }
744 }
745 }
746
747 /* Numbers are taken from RFC2414. */
748 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
749 {
750 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
751
752 if (!cwnd) {
753 if (tp->mss_cache > 1460)
754 cwnd = 2;
755 else
756 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
757 }
758 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
759 }
760
761 /* Set slow start threshold and cwnd not falling to slow start */
762 void tcp_enter_cwr(struct sock *sk)
763 {
764 struct tcp_sock *tp = tcp_sk(sk);
765
766 tp->prior_ssthresh = 0;
767 tp->bytes_acked = 0;
768 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
769 tp->undo_marker = 0;
770 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
771 tp->snd_cwnd = min(tp->snd_cwnd,
772 tcp_packets_in_flight(tp) + 1U);
773 tp->snd_cwnd_cnt = 0;
774 tp->high_seq = tp->snd_nxt;
775 tp->snd_cwnd_stamp = tcp_time_stamp;
776 TCP_ECN_queue_cwr(tp);
777
778 tcp_set_ca_state(sk, TCP_CA_CWR);
779 }
780 }
781
782 /* Initialize metrics on socket. */
783
784 static void tcp_init_metrics(struct sock *sk)
785 {
786 struct tcp_sock *tp = tcp_sk(sk);
787 struct dst_entry *dst = __sk_dst_get(sk);
788
789 if (dst == NULL)
790 goto reset;
791
792 dst_confirm(dst);
793
794 if (dst_metric_locked(dst, RTAX_CWND))
795 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
796 if (dst_metric(dst, RTAX_SSTHRESH)) {
797 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
798 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
799 tp->snd_ssthresh = tp->snd_cwnd_clamp;
800 }
801 if (dst_metric(dst, RTAX_REORDERING) &&
802 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
803 tp->rx_opt.sack_ok &= ~2;
804 tp->reordering = dst_metric(dst, RTAX_REORDERING);
805 }
806
807 if (dst_metric(dst, RTAX_RTT) == 0)
808 goto reset;
809
810 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
811 goto reset;
812
813 /* Initial rtt is determined from SYN,SYN-ACK.
814 * The segment is small and rtt may appear much
815 * less than real one. Use per-dst memory
816 * to make it more realistic.
817 *
818 * A bit of theory. RTT is time passed after "normal" sized packet
819 * is sent until it is ACKed. In normal circumstances sending small
820 * packets force peer to delay ACKs and calculation is correct too.
821 * The algorithm is adaptive and, provided we follow specs, it
822 * NEVER underestimate RTT. BUT! If peer tries to make some clever
823 * tricks sort of "quick acks" for time long enough to decrease RTT
824 * to low value, and then abruptly stops to do it and starts to delay
825 * ACKs, wait for troubles.
826 */
827 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
828 tp->srtt = dst_metric(dst, RTAX_RTT);
829 tp->rtt_seq = tp->snd_nxt;
830 }
831 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
832 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
833 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
834 }
835 tcp_set_rto(sk);
836 tcp_bound_rto(sk);
837 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
838 goto reset;
839 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
840 tp->snd_cwnd_stamp = tcp_time_stamp;
841 return;
842
843 reset:
844 /* Play conservative. If timestamps are not
845 * supported, TCP will fail to recalculate correct
846 * rtt, if initial rto is too small. FORGET ALL AND RESET!
847 */
848 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
849 tp->srtt = 0;
850 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
851 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
852 }
853 }
854
855 static void tcp_update_reordering(struct sock *sk, const int metric,
856 const int ts)
857 {
858 struct tcp_sock *tp = tcp_sk(sk);
859 if (metric > tp->reordering) {
860 tp->reordering = min(TCP_MAX_REORDERING, metric);
861
862 /* This exciting event is worth to be remembered. 8) */
863 if (ts)
864 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
865 else if (IsReno(tp))
866 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
867 else if (IsFack(tp))
868 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
869 else
870 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
871 #if FASTRETRANS_DEBUG > 1
872 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
873 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
874 tp->reordering,
875 tp->fackets_out,
876 tp->sacked_out,
877 tp->undo_marker ? tp->undo_retrans : 0);
878 #endif
879 /* Disable FACK yet. */
880 tp->rx_opt.sack_ok &= ~2;
881 }
882 }
883
884 /* This procedure tags the retransmission queue when SACKs arrive.
885 *
886 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
887 * Packets in queue with these bits set are counted in variables
888 * sacked_out, retrans_out and lost_out, correspondingly.
889 *
890 * Valid combinations are:
891 * Tag InFlight Description
892 * 0 1 - orig segment is in flight.
893 * S 0 - nothing flies, orig reached receiver.
894 * L 0 - nothing flies, orig lost by net.
895 * R 2 - both orig and retransmit are in flight.
896 * L|R 1 - orig is lost, retransmit is in flight.
897 * S|R 1 - orig reached receiver, retrans is still in flight.
898 * (L|S|R is logically valid, it could occur when L|R is sacked,
899 * but it is equivalent to plain S and code short-curcuits it to S.
900 * L|S is logically invalid, it would mean -1 packet in flight 8))
901 *
902 * These 6 states form finite state machine, controlled by the following events:
903 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
904 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
905 * 3. Loss detection event of one of three flavors:
906 * A. Scoreboard estimator decided the packet is lost.
907 * A'. Reno "three dupacks" marks head of queue lost.
908 * A''. Its FACK modfication, head until snd.fack is lost.
909 * B. SACK arrives sacking data transmitted after never retransmitted
910 * hole was sent out.
911 * C. SACK arrives sacking SND.NXT at the moment, when the
912 * segment was retransmitted.
913 * 4. D-SACK added new rule: D-SACK changes any tag to S.
914 *
915 * It is pleasant to note, that state diagram turns out to be commutative,
916 * so that we are allowed not to be bothered by order of our actions,
917 * when multiple events arrive simultaneously. (see the function below).
918 *
919 * Reordering detection.
920 * --------------------
921 * Reordering metric is maximal distance, which a packet can be displaced
922 * in packet stream. With SACKs we can estimate it:
923 *
924 * 1. SACK fills old hole and the corresponding segment was not
925 * ever retransmitted -> reordering. Alas, we cannot use it
926 * when segment was retransmitted.
927 * 2. The last flaw is solved with D-SACK. D-SACK arrives
928 * for retransmitted and already SACKed segment -> reordering..
929 * Both of these heuristics are not used in Loss state, when we cannot
930 * account for retransmits accurately.
931 */
932 static int
933 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
934 {
935 const struct inet_connection_sock *icsk = inet_csk(sk);
936 struct tcp_sock *tp = tcp_sk(sk);
937 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
938 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
939 struct sk_buff *cached_skb;
940 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
941 int reord = tp->packets_out;
942 int prior_fackets;
943 u32 lost_retrans = 0;
944 int flag = 0;
945 int dup_sack = 0;
946 int cached_fack_count;
947 int i;
948 int first_sack_index;
949
950 if (!tp->sacked_out)
951 tp->fackets_out = 0;
952 prior_fackets = tp->fackets_out;
953
954 /* Check for D-SACK. */
955 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
956 dup_sack = 1;
957 tp->rx_opt.sack_ok |= 4;
958 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
959 } else if (num_sacks > 1 &&
960 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
961 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
962 dup_sack = 1;
963 tp->rx_opt.sack_ok |= 4;
964 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
965 }
966
967 /* D-SACK for already forgotten data...
968 * Do dumb counting. */
969 if (dup_sack &&
970 !after(ntohl(sp[0].end_seq), prior_snd_una) &&
971 after(ntohl(sp[0].end_seq), tp->undo_marker))
972 tp->undo_retrans--;
973
974 /* Eliminate too old ACKs, but take into
975 * account more or less fresh ones, they can
976 * contain valid SACK info.
977 */
978 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
979 return 0;
980
981 /* SACK fastpath:
982 * if the only SACK change is the increase of the end_seq of
983 * the first block then only apply that SACK block
984 * and use retrans queue hinting otherwise slowpath */
985 flag = 1;
986 for (i = 0; i < num_sacks; i++) {
987 __be32 start_seq = sp[i].start_seq;
988 __be32 end_seq = sp[i].end_seq;
989
990 if (i == 0) {
991 if (tp->recv_sack_cache[i].start_seq != start_seq)
992 flag = 0;
993 } else {
994 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
995 (tp->recv_sack_cache[i].end_seq != end_seq))
996 flag = 0;
997 }
998 tp->recv_sack_cache[i].start_seq = start_seq;
999 tp->recv_sack_cache[i].end_seq = end_seq;
1000 }
1001 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1002 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1003 tp->recv_sack_cache[i].start_seq = 0;
1004 tp->recv_sack_cache[i].end_seq = 0;
1005 }
1006
1007 first_sack_index = 0;
1008 if (flag)
1009 num_sacks = 1;
1010 else {
1011 int j;
1012 tp->fastpath_skb_hint = NULL;
1013
1014 /* order SACK blocks to allow in order walk of the retrans queue */
1015 for (i = num_sacks-1; i > 0; i--) {
1016 for (j = 0; j < i; j++){
1017 if (after(ntohl(sp[j].start_seq),
1018 ntohl(sp[j+1].start_seq))){
1019 struct tcp_sack_block_wire tmp;
1020
1021 tmp = sp[j];
1022 sp[j] = sp[j+1];
1023 sp[j+1] = tmp;
1024
1025 /* Track where the first SACK block goes to */
1026 if (j == first_sack_index)
1027 first_sack_index = j+1;
1028 }
1029
1030 }
1031 }
1032 }
1033
1034 /* clear flag as used for different purpose in following code */
1035 flag = 0;
1036
1037 /* Use SACK fastpath hint if valid */
1038 cached_skb = tp->fastpath_skb_hint;
1039 cached_fack_count = tp->fastpath_cnt_hint;
1040 if (!cached_skb) {
1041 cached_skb = sk->sk_write_queue.next;
1042 cached_fack_count = 0;
1043 }
1044
1045 for (i=0; i<num_sacks; i++, sp++) {
1046 struct sk_buff *skb;
1047 __u32 start_seq = ntohl(sp->start_seq);
1048 __u32 end_seq = ntohl(sp->end_seq);
1049 int fack_count;
1050
1051 skb = cached_skb;
1052 fack_count = cached_fack_count;
1053
1054 /* Event "B" in the comment above. */
1055 if (after(end_seq, tp->high_seq))
1056 flag |= FLAG_DATA_LOST;
1057
1058 sk_stream_for_retrans_queue_from(skb, sk) {
1059 int in_sack, pcount;
1060 u8 sacked;
1061
1062 cached_skb = skb;
1063 cached_fack_count = fack_count;
1064 if (i == first_sack_index) {
1065 tp->fastpath_skb_hint = skb;
1066 tp->fastpath_cnt_hint = fack_count;
1067 }
1068
1069 /* The retransmission queue is always in order, so
1070 * we can short-circuit the walk early.
1071 */
1072 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1073 break;
1074
1075 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1076 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1077
1078 pcount = tcp_skb_pcount(skb);
1079
1080 if (pcount > 1 && !in_sack &&
1081 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1082 unsigned int pkt_len;
1083
1084 in_sack = !after(start_seq,
1085 TCP_SKB_CB(skb)->seq);
1086
1087 if (!in_sack)
1088 pkt_len = (start_seq -
1089 TCP_SKB_CB(skb)->seq);
1090 else
1091 pkt_len = (end_seq -
1092 TCP_SKB_CB(skb)->seq);
1093 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1094 break;
1095 pcount = tcp_skb_pcount(skb);
1096 }
1097
1098 fack_count += pcount;
1099
1100 sacked = TCP_SKB_CB(skb)->sacked;
1101
1102 /* Account D-SACK for retransmitted packet. */
1103 if ((dup_sack && in_sack) &&
1104 (sacked & TCPCB_RETRANS) &&
1105 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1106 tp->undo_retrans--;
1107
1108 /* The frame is ACKed. */
1109 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1110 if (sacked&TCPCB_RETRANS) {
1111 if ((dup_sack && in_sack) &&
1112 (sacked&TCPCB_SACKED_ACKED))
1113 reord = min(fack_count, reord);
1114 } else {
1115 /* If it was in a hole, we detected reordering. */
1116 if (fack_count < prior_fackets &&
1117 !(sacked&TCPCB_SACKED_ACKED))
1118 reord = min(fack_count, reord);
1119 }
1120
1121 /* Nothing to do; acked frame is about to be dropped. */
1122 continue;
1123 }
1124
1125 if ((sacked&TCPCB_SACKED_RETRANS) &&
1126 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1127 (!lost_retrans || after(end_seq, lost_retrans)))
1128 lost_retrans = end_seq;
1129
1130 if (!in_sack)
1131 continue;
1132
1133 if (!(sacked&TCPCB_SACKED_ACKED)) {
1134 if (sacked & TCPCB_SACKED_RETRANS) {
1135 /* If the segment is not tagged as lost,
1136 * we do not clear RETRANS, believing
1137 * that retransmission is still in flight.
1138 */
1139 if (sacked & TCPCB_LOST) {
1140 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1141 tp->lost_out -= tcp_skb_pcount(skb);
1142 tp->retrans_out -= tcp_skb_pcount(skb);
1143
1144 /* clear lost hint */
1145 tp->retransmit_skb_hint = NULL;
1146 }
1147 } else {
1148 /* New sack for not retransmitted frame,
1149 * which was in hole. It is reordering.
1150 */
1151 if (!(sacked & TCPCB_RETRANS) &&
1152 fack_count < prior_fackets)
1153 reord = min(fack_count, reord);
1154
1155 if (sacked & TCPCB_LOST) {
1156 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1157 tp->lost_out -= tcp_skb_pcount(skb);
1158
1159 /* clear lost hint */
1160 tp->retransmit_skb_hint = NULL;
1161 }
1162 }
1163
1164 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1165 flag |= FLAG_DATA_SACKED;
1166 tp->sacked_out += tcp_skb_pcount(skb);
1167
1168 if (fack_count > tp->fackets_out)
1169 tp->fackets_out = fack_count;
1170 } else {
1171 if (dup_sack && (sacked&TCPCB_RETRANS))
1172 reord = min(fack_count, reord);
1173 }
1174
1175 /* D-SACK. We can detect redundant retransmission
1176 * in S|R and plain R frames and clear it.
1177 * undo_retrans is decreased above, L|R frames
1178 * are accounted above as well.
1179 */
1180 if (dup_sack &&
1181 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1182 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1183 tp->retrans_out -= tcp_skb_pcount(skb);
1184 tp->retransmit_skb_hint = NULL;
1185 }
1186 }
1187 }
1188
1189 /* Check for lost retransmit. This superb idea is
1190 * borrowed from "ratehalving". Event "C".
1191 * Later note: FACK people cheated me again 8),
1192 * we have to account for reordering! Ugly,
1193 * but should help.
1194 */
1195 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1196 struct sk_buff *skb;
1197
1198 sk_stream_for_retrans_queue(skb, sk) {
1199 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1200 break;
1201 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1202 continue;
1203 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1204 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1205 (IsFack(tp) ||
1206 !before(lost_retrans,
1207 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1208 tp->mss_cache))) {
1209 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1210 tp->retrans_out -= tcp_skb_pcount(skb);
1211
1212 /* clear lost hint */
1213 tp->retransmit_skb_hint = NULL;
1214
1215 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1216 tp->lost_out += tcp_skb_pcount(skb);
1217 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1218 flag |= FLAG_DATA_SACKED;
1219 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1220 }
1221 }
1222 }
1223 }
1224
1225 tp->left_out = tp->sacked_out + tp->lost_out;
1226
1227 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1228 (tp->frto_highmark && after(tp->snd_una, tp->frto_highmark)))
1229 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1230
1231 #if FASTRETRANS_DEBUG > 0
1232 BUG_TRAP((int)tp->sacked_out >= 0);
1233 BUG_TRAP((int)tp->lost_out >= 0);
1234 BUG_TRAP((int)tp->retrans_out >= 0);
1235 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1236 #endif
1237 return flag;
1238 }
1239
1240 /* F-RTO can only be used if these conditions are satisfied:
1241 * - there must be some unsent new data
1242 * - the advertised window should allow sending it
1243 * - TCP has never retransmitted anything other than head
1244 */
1245 int tcp_use_frto(struct sock *sk)
1246 {
1247 const struct tcp_sock *tp = tcp_sk(sk);
1248 struct sk_buff *skb;
1249
1250 if (!sysctl_tcp_frto || !sk->sk_send_head ||
1251 after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
1252 tp->snd_una + tp->snd_wnd))
1253 return 0;
1254
1255 /* Avoid expensive walking of rexmit queue if possible */
1256 if (tp->retrans_out > 1)
1257 return 0;
1258
1259 skb = skb_peek(&sk->sk_write_queue)->next; /* Skips head */
1260 sk_stream_for_retrans_queue_from(skb, sk) {
1261 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1262 return 0;
1263 /* Short-circuit when first non-SACKed skb has been checked */
1264 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1265 break;
1266 }
1267 return 1;
1268 }
1269
1270 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1271 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1272 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1273 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1274 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1275 * bits are handled if the Loss state is really to be entered (in
1276 * tcp_enter_frto_loss).
1277 *
1278 * Do like tcp_enter_loss() would; when RTO expires the second time it
1279 * does:
1280 * "Reduce ssthresh if it has not yet been made inside this window."
1281 */
1282 void tcp_enter_frto(struct sock *sk)
1283 {
1284 const struct inet_connection_sock *icsk = inet_csk(sk);
1285 struct tcp_sock *tp = tcp_sk(sk);
1286 struct sk_buff *skb;
1287
1288 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1289 tp->snd_una == tp->high_seq ||
1290 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1291 !icsk->icsk_retransmits)) {
1292 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1293 /* Our state is too optimistic in ssthresh() call because cwnd
1294 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1295 * recovery has not yet completed. Pattern would be this: RTO,
1296 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1297 * up here twice).
1298 * RFC4138 should be more specific on what to do, even though
1299 * RTO is quite unlikely to occur after the first Cumulative ACK
1300 * due to back-off and complexity of triggering events ...
1301 */
1302 if (tp->frto_counter) {
1303 u32 stored_cwnd;
1304 stored_cwnd = tp->snd_cwnd;
1305 tp->snd_cwnd = 2;
1306 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1307 tp->snd_cwnd = stored_cwnd;
1308 } else {
1309 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1310 }
1311 /* ... in theory, cong.control module could do "any tricks" in
1312 * ssthresh(), which means that ca_state, lost bits and lost_out
1313 * counter would have to be faked before the call occurs. We
1314 * consider that too expensive, unlikely and hacky, so modules
1315 * using these in ssthresh() must deal these incompatibility
1316 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1317 */
1318 tcp_ca_event(sk, CA_EVENT_FRTO);
1319 }
1320
1321 tp->undo_marker = tp->snd_una;
1322 tp->undo_retrans = 0;
1323
1324 skb = skb_peek(&sk->sk_write_queue);
1325 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1326 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1327 tp->retrans_out -= tcp_skb_pcount(skb);
1328 }
1329 tcp_sync_left_out(tp);
1330
1331 tcp_set_ca_state(sk, TCP_CA_Disorder);
1332 tp->high_seq = tp->snd_nxt;
1333 tp->frto_highmark = tp->snd_nxt;
1334 tp->frto_counter = 1;
1335 }
1336
1337 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1338 * which indicates that we should follow the traditional RTO recovery,
1339 * i.e. mark everything lost and do go-back-N retransmission.
1340 */
1341 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1342 {
1343 struct tcp_sock *tp = tcp_sk(sk);
1344 struct sk_buff *skb;
1345 int cnt = 0;
1346
1347 tp->sacked_out = 0;
1348 tp->lost_out = 0;
1349 tp->fackets_out = 0;
1350 tp->retrans_out = 0;
1351
1352 sk_stream_for_retrans_queue(skb, sk) {
1353 cnt += tcp_skb_pcount(skb);
1354 /*
1355 * Count the retransmission made on RTO correctly (only when
1356 * waiting for the first ACK and did not get it)...
1357 */
1358 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1359 tp->retrans_out += tcp_skb_pcount(skb);
1360 /* ...enter this if branch just for the first segment */
1361 flag |= FLAG_DATA_ACKED;
1362 } else {
1363 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1364 }
1365 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1366
1367 /* Do not mark those segments lost that were
1368 * forward transmitted after RTO
1369 */
1370 if (!after(TCP_SKB_CB(skb)->end_seq,
1371 tp->frto_highmark)) {
1372 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1373 tp->lost_out += tcp_skb_pcount(skb);
1374 }
1375 } else {
1376 tp->sacked_out += tcp_skb_pcount(skb);
1377 tp->fackets_out = cnt;
1378 }
1379 }
1380 tcp_sync_left_out(tp);
1381
1382 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1383 tp->snd_cwnd_cnt = 0;
1384 tp->snd_cwnd_stamp = tcp_time_stamp;
1385 tp->undo_marker = 0;
1386 tp->frto_counter = 0;
1387
1388 tp->reordering = min_t(unsigned int, tp->reordering,
1389 sysctl_tcp_reordering);
1390 tcp_set_ca_state(sk, TCP_CA_Loss);
1391 tp->high_seq = tp->frto_highmark;
1392 TCP_ECN_queue_cwr(tp);
1393
1394 clear_all_retrans_hints(tp);
1395 }
1396
1397 void tcp_clear_retrans(struct tcp_sock *tp)
1398 {
1399 tp->left_out = 0;
1400 tp->retrans_out = 0;
1401
1402 tp->fackets_out = 0;
1403 tp->sacked_out = 0;
1404 tp->lost_out = 0;
1405
1406 tp->undo_marker = 0;
1407 tp->undo_retrans = 0;
1408 }
1409
1410 /* Enter Loss state. If "how" is not zero, forget all SACK information
1411 * and reset tags completely, otherwise preserve SACKs. If receiver
1412 * dropped its ofo queue, we will know this due to reneging detection.
1413 */
1414 void tcp_enter_loss(struct sock *sk, int how)
1415 {
1416 const struct inet_connection_sock *icsk = inet_csk(sk);
1417 struct tcp_sock *tp = tcp_sk(sk);
1418 struct sk_buff *skb;
1419 int cnt = 0;
1420
1421 /* Reduce ssthresh if it has not yet been made inside this window. */
1422 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1423 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1424 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1425 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1426 tcp_ca_event(sk, CA_EVENT_LOSS);
1427 }
1428 tp->snd_cwnd = 1;
1429 tp->snd_cwnd_cnt = 0;
1430 tp->snd_cwnd_stamp = tcp_time_stamp;
1431
1432 tp->bytes_acked = 0;
1433 tcp_clear_retrans(tp);
1434
1435 /* Push undo marker, if it was plain RTO and nothing
1436 * was retransmitted. */
1437 if (!how)
1438 tp->undo_marker = tp->snd_una;
1439
1440 sk_stream_for_retrans_queue(skb, sk) {
1441 cnt += tcp_skb_pcount(skb);
1442 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1443 tp->undo_marker = 0;
1444 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1445 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1446 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1447 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1448 tp->lost_out += tcp_skb_pcount(skb);
1449 } else {
1450 tp->sacked_out += tcp_skb_pcount(skb);
1451 tp->fackets_out = cnt;
1452 }
1453 }
1454 tcp_sync_left_out(tp);
1455
1456 tp->reordering = min_t(unsigned int, tp->reordering,
1457 sysctl_tcp_reordering);
1458 tcp_set_ca_state(sk, TCP_CA_Loss);
1459 tp->high_seq = tp->snd_nxt;
1460 TCP_ECN_queue_cwr(tp);
1461
1462 clear_all_retrans_hints(tp);
1463 }
1464
1465 static int tcp_check_sack_reneging(struct sock *sk)
1466 {
1467 struct sk_buff *skb;
1468
1469 /* If ACK arrived pointing to a remembered SACK,
1470 * it means that our remembered SACKs do not reflect
1471 * real state of receiver i.e.
1472 * receiver _host_ is heavily congested (or buggy).
1473 * Do processing similar to RTO timeout.
1474 */
1475 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1476 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1477 struct inet_connection_sock *icsk = inet_csk(sk);
1478 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1479
1480 tcp_enter_loss(sk, 1);
1481 icsk->icsk_retransmits++;
1482 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1483 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1484 icsk->icsk_rto, TCP_RTO_MAX);
1485 return 1;
1486 }
1487 return 0;
1488 }
1489
1490 static inline int tcp_fackets_out(struct tcp_sock *tp)
1491 {
1492 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1493 }
1494
1495 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1496 {
1497 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1498 }
1499
1500 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1501 {
1502 return tp->packets_out &&
1503 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1504 }
1505
1506 /* Linux NewReno/SACK/FACK/ECN state machine.
1507 * --------------------------------------
1508 *
1509 * "Open" Normal state, no dubious events, fast path.
1510 * "Disorder" In all the respects it is "Open",
1511 * but requires a bit more attention. It is entered when
1512 * we see some SACKs or dupacks. It is split of "Open"
1513 * mainly to move some processing from fast path to slow one.
1514 * "CWR" CWND was reduced due to some Congestion Notification event.
1515 * It can be ECN, ICMP source quench, local device congestion.
1516 * "Recovery" CWND was reduced, we are fast-retransmitting.
1517 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1518 *
1519 * tcp_fastretrans_alert() is entered:
1520 * - each incoming ACK, if state is not "Open"
1521 * - when arrived ACK is unusual, namely:
1522 * * SACK
1523 * * Duplicate ACK.
1524 * * ECN ECE.
1525 *
1526 * Counting packets in flight is pretty simple.
1527 *
1528 * in_flight = packets_out - left_out + retrans_out
1529 *
1530 * packets_out is SND.NXT-SND.UNA counted in packets.
1531 *
1532 * retrans_out is number of retransmitted segments.
1533 *
1534 * left_out is number of segments left network, but not ACKed yet.
1535 *
1536 * left_out = sacked_out + lost_out
1537 *
1538 * sacked_out: Packets, which arrived to receiver out of order
1539 * and hence not ACKed. With SACKs this number is simply
1540 * amount of SACKed data. Even without SACKs
1541 * it is easy to give pretty reliable estimate of this number,
1542 * counting duplicate ACKs.
1543 *
1544 * lost_out: Packets lost by network. TCP has no explicit
1545 * "loss notification" feedback from network (for now).
1546 * It means that this number can be only _guessed_.
1547 * Actually, it is the heuristics to predict lossage that
1548 * distinguishes different algorithms.
1549 *
1550 * F.e. after RTO, when all the queue is considered as lost,
1551 * lost_out = packets_out and in_flight = retrans_out.
1552 *
1553 * Essentially, we have now two algorithms counting
1554 * lost packets.
1555 *
1556 * FACK: It is the simplest heuristics. As soon as we decided
1557 * that something is lost, we decide that _all_ not SACKed
1558 * packets until the most forward SACK are lost. I.e.
1559 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1560 * It is absolutely correct estimate, if network does not reorder
1561 * packets. And it loses any connection to reality when reordering
1562 * takes place. We use FACK by default until reordering
1563 * is suspected on the path to this destination.
1564 *
1565 * NewReno: when Recovery is entered, we assume that one segment
1566 * is lost (classic Reno). While we are in Recovery and
1567 * a partial ACK arrives, we assume that one more packet
1568 * is lost (NewReno). This heuristics are the same in NewReno
1569 * and SACK.
1570 *
1571 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1572 * deflation etc. CWND is real congestion window, never inflated, changes
1573 * only according to classic VJ rules.
1574 *
1575 * Really tricky (and requiring careful tuning) part of algorithm
1576 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1577 * The first determines the moment _when_ we should reduce CWND and,
1578 * hence, slow down forward transmission. In fact, it determines the moment
1579 * when we decide that hole is caused by loss, rather than by a reorder.
1580 *
1581 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1582 * holes, caused by lost packets.
1583 *
1584 * And the most logically complicated part of algorithm is undo
1585 * heuristics. We detect false retransmits due to both too early
1586 * fast retransmit (reordering) and underestimated RTO, analyzing
1587 * timestamps and D-SACKs. When we detect that some segments were
1588 * retransmitted by mistake and CWND reduction was wrong, we undo
1589 * window reduction and abort recovery phase. This logic is hidden
1590 * inside several functions named tcp_try_undo_<something>.
1591 */
1592
1593 /* This function decides, when we should leave Disordered state
1594 * and enter Recovery phase, reducing congestion window.
1595 *
1596 * Main question: may we further continue forward transmission
1597 * with the same cwnd?
1598 */
1599 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1600 {
1601 __u32 packets_out;
1602
1603 /* Do not perform any recovery during FRTO algorithm */
1604 if (tp->frto_counter)
1605 return 0;
1606
1607 /* Trick#1: The loss is proven. */
1608 if (tp->lost_out)
1609 return 1;
1610
1611 /* Not-A-Trick#2 : Classic rule... */
1612 if (tcp_fackets_out(tp) > tp->reordering)
1613 return 1;
1614
1615 /* Trick#3 : when we use RFC2988 timer restart, fast
1616 * retransmit can be triggered by timeout of queue head.
1617 */
1618 if (tcp_head_timedout(sk, tp))
1619 return 1;
1620
1621 /* Trick#4: It is still not OK... But will it be useful to delay
1622 * recovery more?
1623 */
1624 packets_out = tp->packets_out;
1625 if (packets_out <= tp->reordering &&
1626 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1627 !tcp_may_send_now(sk, tp)) {
1628 /* We have nothing to send. This connection is limited
1629 * either by receiver window or by application.
1630 */
1631 return 1;
1632 }
1633
1634 return 0;
1635 }
1636
1637 /* If we receive more dupacks than we expected counting segments
1638 * in assumption of absent reordering, interpret this as reordering.
1639 * The only another reason could be bug in receiver TCP.
1640 */
1641 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1642 {
1643 struct tcp_sock *tp = tcp_sk(sk);
1644 u32 holes;
1645
1646 holes = max(tp->lost_out, 1U);
1647 holes = min(holes, tp->packets_out);
1648
1649 if ((tp->sacked_out + holes) > tp->packets_out) {
1650 tp->sacked_out = tp->packets_out - holes;
1651 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1652 }
1653 }
1654
1655 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1656
1657 static void tcp_add_reno_sack(struct sock *sk)
1658 {
1659 struct tcp_sock *tp = tcp_sk(sk);
1660 tp->sacked_out++;
1661 tcp_check_reno_reordering(sk, 0);
1662 tcp_sync_left_out(tp);
1663 }
1664
1665 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1666
1667 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1668 {
1669 if (acked > 0) {
1670 /* One ACK acked hole. The rest eat duplicate ACKs. */
1671 if (acked-1 >= tp->sacked_out)
1672 tp->sacked_out = 0;
1673 else
1674 tp->sacked_out -= acked-1;
1675 }
1676 tcp_check_reno_reordering(sk, acked);
1677 tcp_sync_left_out(tp);
1678 }
1679
1680 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1681 {
1682 tp->sacked_out = 0;
1683 tp->left_out = tp->lost_out;
1684 }
1685
1686 /* Mark head of queue up as lost. */
1687 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1688 int packets, u32 high_seq)
1689 {
1690 struct sk_buff *skb;
1691 int cnt;
1692
1693 BUG_TRAP(packets <= tp->packets_out);
1694 if (tp->lost_skb_hint) {
1695 skb = tp->lost_skb_hint;
1696 cnt = tp->lost_cnt_hint;
1697 } else {
1698 skb = sk->sk_write_queue.next;
1699 cnt = 0;
1700 }
1701
1702 sk_stream_for_retrans_queue_from(skb, sk) {
1703 /* TODO: do this better */
1704 /* this is not the most efficient way to do this... */
1705 tp->lost_skb_hint = skb;
1706 tp->lost_cnt_hint = cnt;
1707 cnt += tcp_skb_pcount(skb);
1708 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1709 break;
1710 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1711 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1712 tp->lost_out += tcp_skb_pcount(skb);
1713
1714 /* clear xmit_retransmit_queue hints
1715 * if this is beyond hint */
1716 if(tp->retransmit_skb_hint != NULL &&
1717 before(TCP_SKB_CB(skb)->seq,
1718 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1719
1720 tp->retransmit_skb_hint = NULL;
1721 }
1722 }
1723 }
1724 tcp_sync_left_out(tp);
1725 }
1726
1727 /* Account newly detected lost packet(s) */
1728
1729 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1730 {
1731 if (IsFack(tp)) {
1732 int lost = tp->fackets_out - tp->reordering;
1733 if (lost <= 0)
1734 lost = 1;
1735 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1736 } else {
1737 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1738 }
1739
1740 /* New heuristics: it is possible only after we switched
1741 * to restart timer each time when something is ACKed.
1742 * Hence, we can detect timed out packets during fast
1743 * retransmit without falling to slow start.
1744 */
1745 if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1746 struct sk_buff *skb;
1747
1748 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1749 : sk->sk_write_queue.next;
1750
1751 sk_stream_for_retrans_queue_from(skb, sk) {
1752 if (!tcp_skb_timedout(sk, skb))
1753 break;
1754
1755 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1756 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1757 tp->lost_out += tcp_skb_pcount(skb);
1758
1759 /* clear xmit_retrans hint */
1760 if (tp->retransmit_skb_hint &&
1761 before(TCP_SKB_CB(skb)->seq,
1762 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1763
1764 tp->retransmit_skb_hint = NULL;
1765 }
1766 }
1767
1768 tp->scoreboard_skb_hint = skb;
1769
1770 tcp_sync_left_out(tp);
1771 }
1772 }
1773
1774 /* CWND moderation, preventing bursts due to too big ACKs
1775 * in dubious situations.
1776 */
1777 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1778 {
1779 tp->snd_cwnd = min(tp->snd_cwnd,
1780 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1781 tp->snd_cwnd_stamp = tcp_time_stamp;
1782 }
1783
1784 /* Lower bound on congestion window is slow start threshold
1785 * unless congestion avoidance choice decides to overide it.
1786 */
1787 static inline u32 tcp_cwnd_min(const struct sock *sk)
1788 {
1789 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1790
1791 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1792 }
1793
1794 /* Decrease cwnd each second ack. */
1795 static void tcp_cwnd_down(struct sock *sk)
1796 {
1797 struct tcp_sock *tp = tcp_sk(sk);
1798 int decr = tp->snd_cwnd_cnt + 1;
1799
1800 tp->snd_cwnd_cnt = decr&1;
1801 decr >>= 1;
1802
1803 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1804 tp->snd_cwnd -= decr;
1805
1806 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1807 tp->snd_cwnd_stamp = tcp_time_stamp;
1808 }
1809
1810 /* Nothing was retransmitted or returned timestamp is less
1811 * than timestamp of the first retransmission.
1812 */
1813 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1814 {
1815 return !tp->retrans_stamp ||
1816 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1817 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1818 }
1819
1820 /* Undo procedures. */
1821
1822 #if FASTRETRANS_DEBUG > 1
1823 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1824 {
1825 struct inet_sock *inet = inet_sk(sk);
1826 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1827 msg,
1828 NIPQUAD(inet->daddr), ntohs(inet->dport),
1829 tp->snd_cwnd, tp->left_out,
1830 tp->snd_ssthresh, tp->prior_ssthresh,
1831 tp->packets_out);
1832 }
1833 #else
1834 #define DBGUNDO(x...) do { } while (0)
1835 #endif
1836
1837 static void tcp_undo_cwr(struct sock *sk, const int undo)
1838 {
1839 struct tcp_sock *tp = tcp_sk(sk);
1840
1841 if (tp->prior_ssthresh) {
1842 const struct inet_connection_sock *icsk = inet_csk(sk);
1843
1844 if (icsk->icsk_ca_ops->undo_cwnd)
1845 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1846 else
1847 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1848
1849 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1850 tp->snd_ssthresh = tp->prior_ssthresh;
1851 TCP_ECN_withdraw_cwr(tp);
1852 }
1853 } else {
1854 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1855 }
1856 tcp_moderate_cwnd(tp);
1857 tp->snd_cwnd_stamp = tcp_time_stamp;
1858
1859 /* There is something screwy going on with the retrans hints after
1860 an undo */
1861 clear_all_retrans_hints(tp);
1862 }
1863
1864 static inline int tcp_may_undo(struct tcp_sock *tp)
1865 {
1866 return tp->undo_marker &&
1867 (!tp->undo_retrans || tcp_packet_delayed(tp));
1868 }
1869
1870 /* People celebrate: "We love our President!" */
1871 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1872 {
1873 if (tcp_may_undo(tp)) {
1874 /* Happy end! We did not retransmit anything
1875 * or our original transmission succeeded.
1876 */
1877 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1878 tcp_undo_cwr(sk, 1);
1879 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1880 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1881 else
1882 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1883 tp->undo_marker = 0;
1884 }
1885 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1886 /* Hold old state until something *above* high_seq
1887 * is ACKed. For Reno it is MUST to prevent false
1888 * fast retransmits (RFC2582). SACK TCP is safe. */
1889 tcp_moderate_cwnd(tp);
1890 return 1;
1891 }
1892 tcp_set_ca_state(sk, TCP_CA_Open);
1893 return 0;
1894 }
1895
1896 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1897 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1898 {
1899 if (tp->undo_marker && !tp->undo_retrans) {
1900 DBGUNDO(sk, tp, "D-SACK");
1901 tcp_undo_cwr(sk, 1);
1902 tp->undo_marker = 0;
1903 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1904 }
1905 }
1906
1907 /* Undo during fast recovery after partial ACK. */
1908
1909 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1910 int acked)
1911 {
1912 /* Partial ACK arrived. Force Hoe's retransmit. */
1913 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1914
1915 if (tcp_may_undo(tp)) {
1916 /* Plain luck! Hole if filled with delayed
1917 * packet, rather than with a retransmit.
1918 */
1919 if (tp->retrans_out == 0)
1920 tp->retrans_stamp = 0;
1921
1922 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1923
1924 DBGUNDO(sk, tp, "Hoe");
1925 tcp_undo_cwr(sk, 0);
1926 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1927
1928 /* So... Do not make Hoe's retransmit yet.
1929 * If the first packet was delayed, the rest
1930 * ones are most probably delayed as well.
1931 */
1932 failed = 0;
1933 }
1934 return failed;
1935 }
1936
1937 /* Undo during loss recovery after partial ACK. */
1938 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1939 {
1940 if (tcp_may_undo(tp)) {
1941 struct sk_buff *skb;
1942 sk_stream_for_retrans_queue(skb, sk) {
1943 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1944 }
1945
1946 clear_all_retrans_hints(tp);
1947
1948 DBGUNDO(sk, tp, "partial loss");
1949 tp->lost_out = 0;
1950 tp->left_out = tp->sacked_out;
1951 tcp_undo_cwr(sk, 1);
1952 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1953 inet_csk(sk)->icsk_retransmits = 0;
1954 tp->undo_marker = 0;
1955 if (!IsReno(tp))
1956 tcp_set_ca_state(sk, TCP_CA_Open);
1957 return 1;
1958 }
1959 return 0;
1960 }
1961
1962 static inline void tcp_complete_cwr(struct sock *sk)
1963 {
1964 struct tcp_sock *tp = tcp_sk(sk);
1965 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1966 tp->snd_cwnd_stamp = tcp_time_stamp;
1967 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1968 }
1969
1970 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1971 {
1972 tp->left_out = tp->sacked_out;
1973
1974 if (tp->retrans_out == 0)
1975 tp->retrans_stamp = 0;
1976
1977 if (flag&FLAG_ECE)
1978 tcp_enter_cwr(sk);
1979
1980 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1981 int state = TCP_CA_Open;
1982
1983 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1984 state = TCP_CA_Disorder;
1985
1986 if (inet_csk(sk)->icsk_ca_state != state) {
1987 tcp_set_ca_state(sk, state);
1988 tp->high_seq = tp->snd_nxt;
1989 }
1990 tcp_moderate_cwnd(tp);
1991 } else {
1992 tcp_cwnd_down(sk);
1993 }
1994 }
1995
1996 static void tcp_mtup_probe_failed(struct sock *sk)
1997 {
1998 struct inet_connection_sock *icsk = inet_csk(sk);
1999
2000 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2001 icsk->icsk_mtup.probe_size = 0;
2002 }
2003
2004 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2005 {
2006 struct tcp_sock *tp = tcp_sk(sk);
2007 struct inet_connection_sock *icsk = inet_csk(sk);
2008
2009 /* FIXME: breaks with very large cwnd */
2010 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2011 tp->snd_cwnd = tp->snd_cwnd *
2012 tcp_mss_to_mtu(sk, tp->mss_cache) /
2013 icsk->icsk_mtup.probe_size;
2014 tp->snd_cwnd_cnt = 0;
2015 tp->snd_cwnd_stamp = tcp_time_stamp;
2016 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2017
2018 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2019 icsk->icsk_mtup.probe_size = 0;
2020 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2021 }
2022
2023
2024 /* Process an event, which can update packets-in-flight not trivially.
2025 * Main goal of this function is to calculate new estimate for left_out,
2026 * taking into account both packets sitting in receiver's buffer and
2027 * packets lost by network.
2028 *
2029 * Besides that it does CWND reduction, when packet loss is detected
2030 * and changes state of machine.
2031 *
2032 * It does _not_ decide what to send, it is made in function
2033 * tcp_xmit_retransmit_queue().
2034 */
2035 static void
2036 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
2037 int prior_packets, int flag)
2038 {
2039 struct inet_connection_sock *icsk = inet_csk(sk);
2040 struct tcp_sock *tp = tcp_sk(sk);
2041 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
2042
2043 /* Some technical things:
2044 * 1. Reno does not count dupacks (sacked_out) automatically. */
2045 if (!tp->packets_out)
2046 tp->sacked_out = 0;
2047 /* 2. SACK counts snd_fack in packets inaccurately. */
2048 if (tp->sacked_out == 0)
2049 tp->fackets_out = 0;
2050
2051 /* Now state machine starts.
2052 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2053 if (flag&FLAG_ECE)
2054 tp->prior_ssthresh = 0;
2055
2056 /* B. In all the states check for reneging SACKs. */
2057 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2058 return;
2059
2060 /* C. Process data loss notification, provided it is valid. */
2061 if ((flag&FLAG_DATA_LOST) &&
2062 before(tp->snd_una, tp->high_seq) &&
2063 icsk->icsk_ca_state != TCP_CA_Open &&
2064 tp->fackets_out > tp->reordering) {
2065 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
2066 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2067 }
2068
2069 /* D. Synchronize left_out to current state. */
2070 tcp_sync_left_out(tp);
2071
2072 /* E. Check state exit conditions. State can be terminated
2073 * when high_seq is ACKed. */
2074 if (icsk->icsk_ca_state == TCP_CA_Open) {
2075 BUG_TRAP(tp->retrans_out == 0);
2076 tp->retrans_stamp = 0;
2077 } else if (!before(tp->snd_una, tp->high_seq)) {
2078 switch (icsk->icsk_ca_state) {
2079 case TCP_CA_Loss:
2080 icsk->icsk_retransmits = 0;
2081 if (tcp_try_undo_recovery(sk, tp))
2082 return;
2083 break;
2084
2085 case TCP_CA_CWR:
2086 /* CWR is to be held something *above* high_seq
2087 * is ACKed for CWR bit to reach receiver. */
2088 if (tp->snd_una != tp->high_seq) {
2089 tcp_complete_cwr(sk);
2090 tcp_set_ca_state(sk, TCP_CA_Open);
2091 }
2092 break;
2093
2094 case TCP_CA_Disorder:
2095 tcp_try_undo_dsack(sk, tp);
2096 if (!tp->undo_marker ||
2097 /* For SACK case do not Open to allow to undo
2098 * catching for all duplicate ACKs. */
2099 IsReno(tp) || tp->snd_una != tp->high_seq) {
2100 tp->undo_marker = 0;
2101 tcp_set_ca_state(sk, TCP_CA_Open);
2102 }
2103 break;
2104
2105 case TCP_CA_Recovery:
2106 if (IsReno(tp))
2107 tcp_reset_reno_sack(tp);
2108 if (tcp_try_undo_recovery(sk, tp))
2109 return;
2110 tcp_complete_cwr(sk);
2111 break;
2112 }
2113 }
2114
2115 /* F. Process state. */
2116 switch (icsk->icsk_ca_state) {
2117 case TCP_CA_Recovery:
2118 if (prior_snd_una == tp->snd_una) {
2119 if (IsReno(tp) && is_dupack)
2120 tcp_add_reno_sack(sk);
2121 } else {
2122 int acked = prior_packets - tp->packets_out;
2123 if (IsReno(tp))
2124 tcp_remove_reno_sacks(sk, tp, acked);
2125 is_dupack = tcp_try_undo_partial(sk, tp, acked);
2126 }
2127 break;
2128 case TCP_CA_Loss:
2129 if (flag&FLAG_DATA_ACKED)
2130 icsk->icsk_retransmits = 0;
2131 if (!tcp_try_undo_loss(sk, tp)) {
2132 tcp_moderate_cwnd(tp);
2133 tcp_xmit_retransmit_queue(sk);
2134 return;
2135 }
2136 if (icsk->icsk_ca_state != TCP_CA_Open)
2137 return;
2138 /* Loss is undone; fall through to processing in Open state. */
2139 default:
2140 if (IsReno(tp)) {
2141 if (tp->snd_una != prior_snd_una)
2142 tcp_reset_reno_sack(tp);
2143 if (is_dupack)
2144 tcp_add_reno_sack(sk);
2145 }
2146
2147 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2148 tcp_try_undo_dsack(sk, tp);
2149
2150 if (!tcp_time_to_recover(sk, tp)) {
2151 tcp_try_to_open(sk, tp, flag);
2152 return;
2153 }
2154
2155 /* MTU probe failure: don't reduce cwnd */
2156 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2157 icsk->icsk_mtup.probe_size &&
2158 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2159 tcp_mtup_probe_failed(sk);
2160 /* Restores the reduction we did in tcp_mtup_probe() */
2161 tp->snd_cwnd++;
2162 tcp_simple_retransmit(sk);
2163 return;
2164 }
2165
2166 /* Otherwise enter Recovery state */
2167
2168 if (IsReno(tp))
2169 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2170 else
2171 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2172
2173 tp->high_seq = tp->snd_nxt;
2174 tp->prior_ssthresh = 0;
2175 tp->undo_marker = tp->snd_una;
2176 tp->undo_retrans = tp->retrans_out;
2177
2178 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2179 if (!(flag&FLAG_ECE))
2180 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2181 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2182 TCP_ECN_queue_cwr(tp);
2183 }
2184
2185 tp->bytes_acked = 0;
2186 tp->snd_cwnd_cnt = 0;
2187 tcp_set_ca_state(sk, TCP_CA_Recovery);
2188 }
2189
2190 if (is_dupack || tcp_head_timedout(sk, tp))
2191 tcp_update_scoreboard(sk, tp);
2192 tcp_cwnd_down(sk);
2193 tcp_xmit_retransmit_queue(sk);
2194 }
2195
2196 /* Read draft-ietf-tcplw-high-performance before mucking
2197 * with this code. (Supersedes RFC1323)
2198 */
2199 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2200 {
2201 /* RTTM Rule: A TSecr value received in a segment is used to
2202 * update the averaged RTT measurement only if the segment
2203 * acknowledges some new data, i.e., only if it advances the
2204 * left edge of the send window.
2205 *
2206 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2207 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2208 *
2209 * Changed: reset backoff as soon as we see the first valid sample.
2210 * If we do not, we get strongly overestimated rto. With timestamps
2211 * samples are accepted even from very old segments: f.e., when rtt=1
2212 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2213 * answer arrives rto becomes 120 seconds! If at least one of segments
2214 * in window is lost... Voila. --ANK (010210)
2215 */
2216 struct tcp_sock *tp = tcp_sk(sk);
2217 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2218 tcp_rtt_estimator(sk, seq_rtt);
2219 tcp_set_rto(sk);
2220 inet_csk(sk)->icsk_backoff = 0;
2221 tcp_bound_rto(sk);
2222 }
2223
2224 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2225 {
2226 /* We don't have a timestamp. Can only use
2227 * packets that are not retransmitted to determine
2228 * rtt estimates. Also, we must not reset the
2229 * backoff for rto until we get a non-retransmitted
2230 * packet. This allows us to deal with a situation
2231 * where the network delay has increased suddenly.
2232 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2233 */
2234
2235 if (flag & FLAG_RETRANS_DATA_ACKED)
2236 return;
2237
2238 tcp_rtt_estimator(sk, seq_rtt);
2239 tcp_set_rto(sk);
2240 inet_csk(sk)->icsk_backoff = 0;
2241 tcp_bound_rto(sk);
2242 }
2243
2244 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2245 const s32 seq_rtt)
2246 {
2247 const struct tcp_sock *tp = tcp_sk(sk);
2248 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2249 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2250 tcp_ack_saw_tstamp(sk, flag);
2251 else if (seq_rtt >= 0)
2252 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2253 }
2254
2255 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2256 u32 in_flight, int good)
2257 {
2258 const struct inet_connection_sock *icsk = inet_csk(sk);
2259 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2260 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2261 }
2262
2263 /* Restart timer after forward progress on connection.
2264 * RFC2988 recommends to restart timer to now+rto.
2265 */
2266
2267 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2268 {
2269 if (!tp->packets_out) {
2270 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2271 } else {
2272 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2273 }
2274 }
2275
2276 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2277 __u32 now, __s32 *seq_rtt)
2278 {
2279 struct tcp_sock *tp = tcp_sk(sk);
2280 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2281 __u32 seq = tp->snd_una;
2282 __u32 packets_acked;
2283 int acked = 0;
2284
2285 /* If we get here, the whole TSO packet has not been
2286 * acked.
2287 */
2288 BUG_ON(!after(scb->end_seq, seq));
2289
2290 packets_acked = tcp_skb_pcount(skb);
2291 if (tcp_trim_head(sk, skb, seq - scb->seq))
2292 return 0;
2293 packets_acked -= tcp_skb_pcount(skb);
2294
2295 if (packets_acked) {
2296 __u8 sacked = scb->sacked;
2297
2298 acked |= FLAG_DATA_ACKED;
2299 if (sacked) {
2300 if (sacked & TCPCB_RETRANS) {
2301 if (sacked & TCPCB_SACKED_RETRANS)
2302 tp->retrans_out -= packets_acked;
2303 acked |= FLAG_RETRANS_DATA_ACKED;
2304 *seq_rtt = -1;
2305 } else if (*seq_rtt < 0)
2306 *seq_rtt = now - scb->when;
2307 if (sacked & TCPCB_SACKED_ACKED)
2308 tp->sacked_out -= packets_acked;
2309 if (sacked & TCPCB_LOST)
2310 tp->lost_out -= packets_acked;
2311 if (sacked & TCPCB_URG) {
2312 if (tp->urg_mode &&
2313 !before(seq, tp->snd_up))
2314 tp->urg_mode = 0;
2315 }
2316 } else if (*seq_rtt < 0)
2317 *seq_rtt = now - scb->when;
2318
2319 if (tp->fackets_out) {
2320 __u32 dval = min(tp->fackets_out, packets_acked);
2321 tp->fackets_out -= dval;
2322 }
2323 tp->packets_out -= packets_acked;
2324
2325 BUG_ON(tcp_skb_pcount(skb) == 0);
2326 BUG_ON(!before(scb->seq, scb->end_seq));
2327 }
2328
2329 return acked;
2330 }
2331
2332 static u32 tcp_usrtt(struct timeval *tv)
2333 {
2334 struct timeval now;
2335
2336 do_gettimeofday(&now);
2337 return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2338 }
2339
2340 /* Remove acknowledged frames from the retransmission queue. */
2341 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2342 {
2343 struct tcp_sock *tp = tcp_sk(sk);
2344 const struct inet_connection_sock *icsk = inet_csk(sk);
2345 struct sk_buff *skb;
2346 __u32 now = tcp_time_stamp;
2347 int acked = 0;
2348 __s32 seq_rtt = -1;
2349 u32 pkts_acked = 0;
2350 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2351 = icsk->icsk_ca_ops->rtt_sample;
2352 struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
2353
2354 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2355 skb != sk->sk_send_head) {
2356 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2357 __u8 sacked = scb->sacked;
2358
2359 /* If our packet is before the ack sequence we can
2360 * discard it as it's confirmed to have arrived at
2361 * the other end.
2362 */
2363 if (after(scb->end_seq, tp->snd_una)) {
2364 if (tcp_skb_pcount(skb) > 1 &&
2365 after(tp->snd_una, scb->seq))
2366 acked |= tcp_tso_acked(sk, skb,
2367 now, &seq_rtt);
2368 break;
2369 }
2370
2371 /* Initial outgoing SYN's get put onto the write_queue
2372 * just like anything else we transmit. It is not
2373 * true data, and if we misinform our callers that
2374 * this ACK acks real data, we will erroneously exit
2375 * connection startup slow start one packet too
2376 * quickly. This is severely frowned upon behavior.
2377 */
2378 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2379 acked |= FLAG_DATA_ACKED;
2380 ++pkts_acked;
2381 } else {
2382 acked |= FLAG_SYN_ACKED;
2383 tp->retrans_stamp = 0;
2384 }
2385
2386 /* MTU probing checks */
2387 if (icsk->icsk_mtup.probe_size) {
2388 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2389 tcp_mtup_probe_success(sk, skb);
2390 }
2391 }
2392
2393 if (sacked) {
2394 if (sacked & TCPCB_RETRANS) {
2395 if(sacked & TCPCB_SACKED_RETRANS)
2396 tp->retrans_out -= tcp_skb_pcount(skb);
2397 acked |= FLAG_RETRANS_DATA_ACKED;
2398 seq_rtt = -1;
2399 } else if (seq_rtt < 0) {
2400 seq_rtt = now - scb->when;
2401 skb_get_timestamp(skb, &tv);
2402 }
2403 if (sacked & TCPCB_SACKED_ACKED)
2404 tp->sacked_out -= tcp_skb_pcount(skb);
2405 if (sacked & TCPCB_LOST)
2406 tp->lost_out -= tcp_skb_pcount(skb);
2407 if (sacked & TCPCB_URG) {
2408 if (tp->urg_mode &&
2409 !before(scb->end_seq, tp->snd_up))
2410 tp->urg_mode = 0;
2411 }
2412 } else if (seq_rtt < 0) {
2413 seq_rtt = now - scb->when;
2414 skb_get_timestamp(skb, &tv);
2415 }
2416 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2417 tcp_packets_out_dec(tp, skb);
2418 __skb_unlink(skb, &sk->sk_write_queue);
2419 sk_stream_free_skb(sk, skb);
2420 clear_all_retrans_hints(tp);
2421 }
2422
2423 if (acked&FLAG_ACKED) {
2424 tcp_ack_update_rtt(sk, acked, seq_rtt);
2425 tcp_ack_packets_out(sk, tp);
2426 if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2427 (*rtt_sample)(sk, tcp_usrtt(&tv));
2428
2429 if (icsk->icsk_ca_ops->pkts_acked)
2430 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2431 }
2432
2433 #if FASTRETRANS_DEBUG > 0
2434 BUG_TRAP((int)tp->sacked_out >= 0);
2435 BUG_TRAP((int)tp->lost_out >= 0);
2436 BUG_TRAP((int)tp->retrans_out >= 0);
2437 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2438 const struct inet_connection_sock *icsk = inet_csk(sk);
2439 if (tp->lost_out) {
2440 printk(KERN_DEBUG "Leak l=%u %d\n",
2441 tp->lost_out, icsk->icsk_ca_state);
2442 tp->lost_out = 0;
2443 }
2444 if (tp->sacked_out) {
2445 printk(KERN_DEBUG "Leak s=%u %d\n",
2446 tp->sacked_out, icsk->icsk_ca_state);
2447 tp->sacked_out = 0;
2448 }
2449 if (tp->retrans_out) {
2450 printk(KERN_DEBUG "Leak r=%u %d\n",
2451 tp->retrans_out, icsk->icsk_ca_state);
2452 tp->retrans_out = 0;
2453 }
2454 }
2455 #endif
2456 *seq_rtt_p = seq_rtt;
2457 return acked;
2458 }
2459
2460 static void tcp_ack_probe(struct sock *sk)
2461 {
2462 const struct tcp_sock *tp = tcp_sk(sk);
2463 struct inet_connection_sock *icsk = inet_csk(sk);
2464
2465 /* Was it a usable window open? */
2466
2467 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2468 tp->snd_una + tp->snd_wnd)) {
2469 icsk->icsk_backoff = 0;
2470 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2471 /* Socket must be waked up by subsequent tcp_data_snd_check().
2472 * This function is not for random using!
2473 */
2474 } else {
2475 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2476 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2477 TCP_RTO_MAX);
2478 }
2479 }
2480
2481 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2482 {
2483 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2484 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2485 }
2486
2487 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2488 {
2489 const struct tcp_sock *tp = tcp_sk(sk);
2490 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2491 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2492 }
2493
2494 /* Check that window update is acceptable.
2495 * The function assumes that snd_una<=ack<=snd_next.
2496 */
2497 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2498 const u32 ack_seq, const u32 nwin)
2499 {
2500 return (after(ack, tp->snd_una) ||
2501 after(ack_seq, tp->snd_wl1) ||
2502 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2503 }
2504
2505 /* Update our send window.
2506 *
2507 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2508 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2509 */
2510 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2511 struct sk_buff *skb, u32 ack, u32 ack_seq)
2512 {
2513 int flag = 0;
2514 u32 nwin = ntohs(skb->h.th->window);
2515
2516 if (likely(!skb->h.th->syn))
2517 nwin <<= tp->rx_opt.snd_wscale;
2518
2519 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2520 flag |= FLAG_WIN_UPDATE;
2521 tcp_update_wl(tp, ack, ack_seq);
2522
2523 if (tp->snd_wnd != nwin) {
2524 tp->snd_wnd = nwin;
2525
2526 /* Note, it is the only place, where
2527 * fast path is recovered for sending TCP.
2528 */
2529 tp->pred_flags = 0;
2530 tcp_fast_path_check(sk, tp);
2531
2532 if (nwin > tp->max_window) {
2533 tp->max_window = nwin;
2534 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2535 }
2536 }
2537 }
2538
2539 tp->snd_una = ack;
2540
2541 return flag;
2542 }
2543
2544 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2545 * continue in congestion avoidance.
2546 */
2547 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2548 {
2549 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2550 tp->snd_cwnd_cnt = 0;
2551 tcp_moderate_cwnd(tp);
2552 }
2553
2554 /* F-RTO spurious RTO detection algorithm (RFC4138)
2555 *
2556 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2557 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2558 * window (but not to or beyond highest sequence sent before RTO):
2559 * On First ACK, send two new segments out.
2560 * On Second ACK, RTO was likely spurious. Do spurious response (response
2561 * algorithm is not part of the F-RTO detection algorithm
2562 * given in RFC4138 but can be selected separately).
2563 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2564 * and TCP falls back to conventional RTO recovery.
2565 *
2566 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2567 * original window even after we transmit two new data segments.
2568 *
2569 * F-RTO is implemented (mainly) in four functions:
2570 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2571 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2572 * called when tcp_use_frto() showed green light
2573 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2574 * - tcp_enter_frto_loss() is called if there is not enough evidence
2575 * to prove that the RTO is indeed spurious. It transfers the control
2576 * from F-RTO to the conventional RTO recovery
2577 */
2578 static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
2579 {
2580 struct tcp_sock *tp = tcp_sk(sk);
2581
2582 tcp_sync_left_out(tp);
2583
2584 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2585 if (flag&FLAG_DATA_ACKED)
2586 inet_csk(sk)->icsk_retransmits = 0;
2587
2588 if (!before(tp->snd_una, tp->frto_highmark)) {
2589 tcp_enter_frto_loss(sk, tp->frto_counter + 1, flag);
2590 return 1;
2591 }
2592
2593 /* RFC4138 shortcoming in step 2; should also have case c): ACK isn't
2594 * duplicate nor advances window, e.g., opposite dir data, winupdate
2595 */
2596 if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) &&
2597 !(flag&FLAG_FORWARD_PROGRESS))
2598 return 1;
2599
2600 if (!(flag&FLAG_DATA_ACKED)) {
2601 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), flag);
2602 return 1;
2603 }
2604
2605 if (tp->frto_counter == 1) {
2606 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2607 tp->frto_counter = 2;
2608 return 1;
2609 } else /* frto_counter == 2 */ {
2610 tcp_conservative_spur_to_response(tp);
2611 tp->frto_counter = 0;
2612 }
2613 return 0;
2614 }
2615
2616 /* This routine deals with incoming acks, but not outgoing ones. */
2617 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2618 {
2619 struct inet_connection_sock *icsk = inet_csk(sk);
2620 struct tcp_sock *tp = tcp_sk(sk);
2621 u32 prior_snd_una = tp->snd_una;
2622 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2623 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2624 u32 prior_in_flight;
2625 s32 seq_rtt;
2626 int prior_packets;
2627 int frto_cwnd = 0;
2628
2629 /* If the ack is newer than sent or older than previous acks
2630 * then we can probably ignore it.
2631 */
2632 if (after(ack, tp->snd_nxt))
2633 goto uninteresting_ack;
2634
2635 if (before(ack, prior_snd_una))
2636 goto old_ack;
2637
2638 if (sysctl_tcp_abc) {
2639 if (icsk->icsk_ca_state < TCP_CA_CWR)
2640 tp->bytes_acked += ack - prior_snd_una;
2641 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2642 /* we assume just one segment left network */
2643 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2644 }
2645
2646 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2647 /* Window is constant, pure forward advance.
2648 * No more checks are required.
2649 * Note, we use the fact that SND.UNA>=SND.WL2.
2650 */
2651 tcp_update_wl(tp, ack, ack_seq);
2652 tp->snd_una = ack;
2653 flag |= FLAG_WIN_UPDATE;
2654
2655 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2656
2657 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2658 } else {
2659 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2660 flag |= FLAG_DATA;
2661 else
2662 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2663
2664 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2665
2666 if (TCP_SKB_CB(skb)->sacked)
2667 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2668
2669 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2670 flag |= FLAG_ECE;
2671
2672 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2673 }
2674
2675 /* We passed data and got it acked, remove any soft error
2676 * log. Something worked...
2677 */
2678 sk->sk_err_soft = 0;
2679 tp->rcv_tstamp = tcp_time_stamp;
2680 prior_packets = tp->packets_out;
2681 if (!prior_packets)
2682 goto no_queue;
2683
2684 prior_in_flight = tcp_packets_in_flight(tp);
2685
2686 /* See if we can take anything off of the retransmit queue. */
2687 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2688
2689 if (tp->frto_counter)
2690 frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag);
2691
2692 if (tcp_ack_is_dubious(sk, flag)) {
2693 /* Advance CWND, if state allows this. */
2694 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2695 tcp_may_raise_cwnd(sk, flag))
2696 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2697 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2698 } else {
2699 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2700 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2701 }
2702
2703 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2704 dst_confirm(sk->sk_dst_cache);
2705
2706 return 1;
2707
2708 no_queue:
2709 icsk->icsk_probes_out = 0;
2710
2711 /* If this ack opens up a zero window, clear backoff. It was
2712 * being used to time the probes, and is probably far higher than
2713 * it needs to be for normal retransmission.
2714 */
2715 if (sk->sk_send_head)
2716 tcp_ack_probe(sk);
2717 return 1;
2718
2719 old_ack:
2720 if (TCP_SKB_CB(skb)->sacked)
2721 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2722
2723 uninteresting_ack:
2724 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2725 return 0;
2726 }
2727
2728
2729 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2730 * But, this can also be called on packets in the established flow when
2731 * the fast version below fails.
2732 */
2733 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2734 {
2735 unsigned char *ptr;
2736 struct tcphdr *th = skb->h.th;
2737 int length=(th->doff*4)-sizeof(struct tcphdr);
2738
2739 ptr = (unsigned char *)(th + 1);
2740 opt_rx->saw_tstamp = 0;
2741
2742 while(length>0) {
2743 int opcode=*ptr++;
2744 int opsize;
2745
2746 switch (opcode) {
2747 case TCPOPT_EOL:
2748 return;
2749 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2750 length--;
2751 continue;
2752 default:
2753 opsize=*ptr++;
2754 if (opsize < 2) /* "silly options" */
2755 return;
2756 if (opsize > length)
2757 return; /* don't parse partial options */
2758 switch(opcode) {
2759 case TCPOPT_MSS:
2760 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2761 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2762 if (in_mss) {
2763 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2764 in_mss = opt_rx->user_mss;
2765 opt_rx->mss_clamp = in_mss;
2766 }
2767 }
2768 break;
2769 case TCPOPT_WINDOW:
2770 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2771 if (sysctl_tcp_window_scaling) {
2772 __u8 snd_wscale = *(__u8 *) ptr;
2773 opt_rx->wscale_ok = 1;
2774 if (snd_wscale > 14) {
2775 if(net_ratelimit())
2776 printk(KERN_INFO "tcp_parse_options: Illegal window "
2777 "scaling value %d >14 received.\n",
2778 snd_wscale);
2779 snd_wscale = 14;
2780 }
2781 opt_rx->snd_wscale = snd_wscale;
2782 }
2783 break;
2784 case TCPOPT_TIMESTAMP:
2785 if(opsize==TCPOLEN_TIMESTAMP) {
2786 if ((estab && opt_rx->tstamp_ok) ||
2787 (!estab && sysctl_tcp_timestamps)) {
2788 opt_rx->saw_tstamp = 1;
2789 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2790 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2791 }
2792 }
2793 break;
2794 case TCPOPT_SACK_PERM:
2795 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2796 if (sysctl_tcp_sack) {
2797 opt_rx->sack_ok = 1;
2798 tcp_sack_reset(opt_rx);
2799 }
2800 }
2801 break;
2802
2803 case TCPOPT_SACK:
2804 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2805 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2806 opt_rx->sack_ok) {
2807 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2808 }
2809 #ifdef CONFIG_TCP_MD5SIG
2810 case TCPOPT_MD5SIG:
2811 /*
2812 * The MD5 Hash has already been
2813 * checked (see tcp_v{4,6}_do_rcv()).
2814 */
2815 break;
2816 #endif
2817 };
2818 ptr+=opsize-2;
2819 length-=opsize;
2820 };
2821 }
2822 }
2823
2824 /* Fast parse options. This hopes to only see timestamps.
2825 * If it is wrong it falls back on tcp_parse_options().
2826 */
2827 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2828 struct tcp_sock *tp)
2829 {
2830 if (th->doff == sizeof(struct tcphdr)>>2) {
2831 tp->rx_opt.saw_tstamp = 0;
2832 return 0;
2833 } else if (tp->rx_opt.tstamp_ok &&
2834 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2835 __be32 *ptr = (__be32 *)(th + 1);
2836 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2837 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2838 tp->rx_opt.saw_tstamp = 1;
2839 ++ptr;
2840 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2841 ++ptr;
2842 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2843 return 1;
2844 }
2845 }
2846 tcp_parse_options(skb, &tp->rx_opt, 1);
2847 return 1;
2848 }
2849
2850 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2851 {
2852 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2853 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2854 }
2855
2856 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2857 {
2858 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2859 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2860 * extra check below makes sure this can only happen
2861 * for pure ACK frames. -DaveM
2862 *
2863 * Not only, also it occurs for expired timestamps.
2864 */
2865
2866 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2867 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2868 tcp_store_ts_recent(tp);
2869 }
2870 }
2871
2872 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2873 *
2874 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2875 * it can pass through stack. So, the following predicate verifies that
2876 * this segment is not used for anything but congestion avoidance or
2877 * fast retransmit. Moreover, we even are able to eliminate most of such
2878 * second order effects, if we apply some small "replay" window (~RTO)
2879 * to timestamp space.
2880 *
2881 * All these measures still do not guarantee that we reject wrapped ACKs
2882 * on networks with high bandwidth, when sequence space is recycled fastly,
2883 * but it guarantees that such events will be very rare and do not affect
2884 * connection seriously. This doesn't look nice, but alas, PAWS is really
2885 * buggy extension.
2886 *
2887 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2888 * states that events when retransmit arrives after original data are rare.
2889 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2890 * the biggest problem on large power networks even with minor reordering.
2891 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2892 * up to bandwidth of 18Gigabit/sec. 8) ]
2893 */
2894
2895 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2896 {
2897 struct tcp_sock *tp = tcp_sk(sk);
2898 struct tcphdr *th = skb->h.th;
2899 u32 seq = TCP_SKB_CB(skb)->seq;
2900 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2901
2902 return (/* 1. Pure ACK with correct sequence number. */
2903 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2904
2905 /* 2. ... and duplicate ACK. */
2906 ack == tp->snd_una &&
2907
2908 /* 3. ... and does not update window. */
2909 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2910
2911 /* 4. ... and sits in replay window. */
2912 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2913 }
2914
2915 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2916 {
2917 const struct tcp_sock *tp = tcp_sk(sk);
2918 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2919 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2920 !tcp_disordered_ack(sk, skb));
2921 }
2922
2923 /* Check segment sequence number for validity.
2924 *
2925 * Segment controls are considered valid, if the segment
2926 * fits to the window after truncation to the window. Acceptability
2927 * of data (and SYN, FIN, of course) is checked separately.
2928 * See tcp_data_queue(), for example.
2929 *
2930 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2931 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2932 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2933 * (borrowed from freebsd)
2934 */
2935
2936 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2937 {
2938 return !before(end_seq, tp->rcv_wup) &&
2939 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2940 }
2941
2942 /* When we get a reset we do this. */
2943 static void tcp_reset(struct sock *sk)
2944 {
2945 /* We want the right error as BSD sees it (and indeed as we do). */
2946 switch (sk->sk_state) {
2947 case TCP_SYN_SENT:
2948 sk->sk_err = ECONNREFUSED;
2949 break;
2950 case TCP_CLOSE_WAIT:
2951 sk->sk_err = EPIPE;
2952 break;
2953 case TCP_CLOSE:
2954 return;
2955 default:
2956 sk->sk_err = ECONNRESET;
2957 }
2958
2959 if (!sock_flag(sk, SOCK_DEAD))
2960 sk->sk_error_report(sk);
2961
2962 tcp_done(sk);
2963 }
2964
2965 /*
2966 * Process the FIN bit. This now behaves as it is supposed to work
2967 * and the FIN takes effect when it is validly part of sequence
2968 * space. Not before when we get holes.
2969 *
2970 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2971 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2972 * TIME-WAIT)
2973 *
2974 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2975 * close and we go into CLOSING (and later onto TIME-WAIT)
2976 *
2977 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2978 */
2979 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2980 {
2981 struct tcp_sock *tp = tcp_sk(sk);
2982
2983 inet_csk_schedule_ack(sk);
2984
2985 sk->sk_shutdown |= RCV_SHUTDOWN;
2986 sock_set_flag(sk, SOCK_DONE);
2987
2988 switch (sk->sk_state) {
2989 case TCP_SYN_RECV:
2990 case TCP_ESTABLISHED:
2991 /* Move to CLOSE_WAIT */
2992 tcp_set_state(sk, TCP_CLOSE_WAIT);
2993 inet_csk(sk)->icsk_ack.pingpong = 1;
2994 break;
2995
2996 case TCP_CLOSE_WAIT:
2997 case TCP_CLOSING:
2998 /* Received a retransmission of the FIN, do
2999 * nothing.
3000 */
3001 break;
3002 case TCP_LAST_ACK:
3003 /* RFC793: Remain in the LAST-ACK state. */
3004 break;
3005
3006 case TCP_FIN_WAIT1:
3007 /* This case occurs when a simultaneous close
3008 * happens, we must ack the received FIN and
3009 * enter the CLOSING state.
3010 */
3011 tcp_send_ack(sk);
3012 tcp_set_state(sk, TCP_CLOSING);
3013 break;
3014 case TCP_FIN_WAIT2:
3015 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3016 tcp_send_ack(sk);
3017 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3018 break;
3019 default:
3020 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3021 * cases we should never reach this piece of code.
3022 */
3023 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3024 __FUNCTION__, sk->sk_state);
3025 break;
3026 };
3027
3028 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3029 * Probably, we should reset in this case. For now drop them.
3030 */
3031 __skb_queue_purge(&tp->out_of_order_queue);
3032 if (tp->rx_opt.sack_ok)
3033 tcp_sack_reset(&tp->rx_opt);
3034 sk_stream_mem_reclaim(sk);
3035
3036 if (!sock_flag(sk, SOCK_DEAD)) {
3037 sk->sk_state_change(sk);
3038
3039 /* Do not send POLL_HUP for half duplex close. */
3040 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3041 sk->sk_state == TCP_CLOSE)
3042 sk_wake_async(sk, 1, POLL_HUP);
3043 else
3044 sk_wake_async(sk, 1, POLL_IN);
3045 }
3046 }
3047
3048 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3049 {
3050 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3051 if (before(seq, sp->start_seq))
3052 sp->start_seq = seq;
3053 if (after(end_seq, sp->end_seq))
3054 sp->end_seq = end_seq;
3055 return 1;
3056 }
3057 return 0;
3058 }
3059
3060 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3061 {
3062 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3063 if (before(seq, tp->rcv_nxt))
3064 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3065 else
3066 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3067
3068 tp->rx_opt.dsack = 1;
3069 tp->duplicate_sack[0].start_seq = seq;
3070 tp->duplicate_sack[0].end_seq = end_seq;
3071 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3072 }
3073 }
3074
3075 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3076 {
3077 if (!tp->rx_opt.dsack)
3078 tcp_dsack_set(tp, seq, end_seq);
3079 else
3080 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3081 }
3082
3083 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3084 {
3085 struct tcp_sock *tp = tcp_sk(sk);
3086
3087 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3088 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3089 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3090 tcp_enter_quickack_mode(sk);
3091
3092 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3093 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3094
3095 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3096 end_seq = tp->rcv_nxt;
3097 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3098 }
3099 }
3100
3101 tcp_send_ack(sk);
3102 }
3103
3104 /* These routines update the SACK block as out-of-order packets arrive or
3105 * in-order packets close up the sequence space.
3106 */
3107 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3108 {
3109 int this_sack;
3110 struct tcp_sack_block *sp = &tp->selective_acks[0];
3111 struct tcp_sack_block *swalk = sp+1;
3112
3113 /* See if the recent change to the first SACK eats into
3114 * or hits the sequence space of other SACK blocks, if so coalesce.
3115 */
3116 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3117 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3118 int i;
3119
3120 /* Zap SWALK, by moving every further SACK up by one slot.
3121 * Decrease num_sacks.
3122 */
3123 tp->rx_opt.num_sacks--;
3124 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3125 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
3126 sp[i] = sp[i+1];
3127 continue;
3128 }
3129 this_sack++, swalk++;
3130 }
3131 }
3132
3133 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3134 {
3135 __u32 tmp;
3136
3137 tmp = sack1->start_seq;
3138 sack1->start_seq = sack2->start_seq;
3139 sack2->start_seq = tmp;
3140
3141 tmp = sack1->end_seq;
3142 sack1->end_seq = sack2->end_seq;
3143 sack2->end_seq = tmp;
3144 }
3145
3146 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3147 {
3148 struct tcp_sock *tp = tcp_sk(sk);
3149 struct tcp_sack_block *sp = &tp->selective_acks[0];
3150 int cur_sacks = tp->rx_opt.num_sacks;
3151 int this_sack;
3152
3153 if (!cur_sacks)
3154 goto new_sack;
3155
3156 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3157 if (tcp_sack_extend(sp, seq, end_seq)) {
3158 /* Rotate this_sack to the first one. */
3159 for (; this_sack>0; this_sack--, sp--)
3160 tcp_sack_swap(sp, sp-1);
3161 if (cur_sacks > 1)
3162 tcp_sack_maybe_coalesce(tp);
3163 return;
3164 }
3165 }
3166
3167 /* Could not find an adjacent existing SACK, build a new one,
3168 * put it at the front, and shift everyone else down. We
3169 * always know there is at least one SACK present already here.
3170 *
3171 * If the sack array is full, forget about the last one.
3172 */
3173 if (this_sack >= 4) {
3174 this_sack--;
3175 tp->rx_opt.num_sacks--;
3176 sp--;
3177 }
3178 for(; this_sack > 0; this_sack--, sp--)
3179 *sp = *(sp-1);
3180
3181 new_sack:
3182 /* Build the new head SACK, and we're done. */
3183 sp->start_seq = seq;
3184 sp->end_seq = end_seq;
3185 tp->rx_opt.num_sacks++;
3186 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3187 }
3188
3189 /* RCV.NXT advances, some SACKs should be eaten. */
3190
3191 static void tcp_sack_remove(struct tcp_sock *tp)
3192 {
3193 struct tcp_sack_block *sp = &tp->selective_acks[0];
3194 int num_sacks = tp->rx_opt.num_sacks;
3195 int this_sack;
3196
3197 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3198 if (skb_queue_empty(&tp->out_of_order_queue)) {
3199 tp->rx_opt.num_sacks = 0;
3200 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3201 return;
3202 }
3203
3204 for(this_sack = 0; this_sack < num_sacks; ) {
3205 /* Check if the start of the sack is covered by RCV.NXT. */
3206 if (!before(tp->rcv_nxt, sp->start_seq)) {
3207 int i;
3208
3209 /* RCV.NXT must cover all the block! */
3210 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3211
3212 /* Zap this SACK, by moving forward any other SACKS. */
3213 for (i=this_sack+1; i < num_sacks; i++)
3214 tp->selective_acks[i-1] = tp->selective_acks[i];
3215 num_sacks--;
3216 continue;
3217 }
3218 this_sack++;
3219 sp++;
3220 }
3221 if (num_sacks != tp->rx_opt.num_sacks) {
3222 tp->rx_opt.num_sacks = num_sacks;
3223 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3224 }
3225 }
3226
3227 /* This one checks to see if we can put data from the
3228 * out_of_order queue into the receive_queue.
3229 */
3230 static void tcp_ofo_queue(struct sock *sk)
3231 {
3232 struct tcp_sock *tp = tcp_sk(sk);
3233 __u32 dsack_high = tp->rcv_nxt;
3234 struct sk_buff *skb;
3235
3236 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3237 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3238 break;
3239
3240 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3241 __u32 dsack = dsack_high;
3242 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3243 dsack_high = TCP_SKB_CB(skb)->end_seq;
3244 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3245 }
3246
3247 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3248 SOCK_DEBUG(sk, "ofo packet was already received \n");
3249 __skb_unlink(skb, &tp->out_of_order_queue);
3250 __kfree_skb(skb);
3251 continue;
3252 }
3253 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3254 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3255 TCP_SKB_CB(skb)->end_seq);
3256
3257 __skb_unlink(skb, &tp->out_of_order_queue);
3258 __skb_queue_tail(&sk->sk_receive_queue, skb);
3259 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3260 if(skb->h.th->fin)
3261 tcp_fin(skb, sk, skb->h.th);
3262 }
3263 }
3264
3265 static int tcp_prune_queue(struct sock *sk);
3266
3267 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3268 {
3269 struct tcphdr *th = skb->h.th;
3270 struct tcp_sock *tp = tcp_sk(sk);
3271 int eaten = -1;
3272
3273 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3274 goto drop;
3275
3276 __skb_pull(skb, th->doff*4);
3277
3278 TCP_ECN_accept_cwr(tp, skb);
3279
3280 if (tp->rx_opt.dsack) {
3281 tp->rx_opt.dsack = 0;
3282 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3283 4 - tp->rx_opt.tstamp_ok);
3284 }
3285
3286 /* Queue data for delivery to the user.
3287 * Packets in sequence go to the receive queue.
3288 * Out of sequence packets to the out_of_order_queue.
3289 */
3290 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3291 if (tcp_receive_window(tp) == 0)
3292 goto out_of_window;
3293
3294 /* Ok. In sequence. In window. */
3295 if (tp->ucopy.task == current &&
3296 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3297 sock_owned_by_user(sk) && !tp->urg_data) {
3298 int chunk = min_t(unsigned int, skb->len,
3299 tp->ucopy.len);
3300
3301 __set_current_state(TASK_RUNNING);
3302
3303 local_bh_enable();
3304 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3305 tp->ucopy.len -= chunk;
3306 tp->copied_seq += chunk;
3307 eaten = (chunk == skb->len && !th->fin);
3308 tcp_rcv_space_adjust(sk);
3309 }
3310 local_bh_disable();
3311 }
3312
3313 if (eaten <= 0) {
3314 queue_and_out:
3315 if (eaten < 0 &&
3316 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3317 !sk_stream_rmem_schedule(sk, skb))) {
3318 if (tcp_prune_queue(sk) < 0 ||
3319 !sk_stream_rmem_schedule(sk, skb))
3320 goto drop;
3321 }
3322 sk_stream_set_owner_r(skb, sk);
3323 __skb_queue_tail(&sk->sk_receive_queue, skb);
3324 }
3325 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3326 if(skb->len)
3327 tcp_event_data_recv(sk, tp, skb);
3328 if(th->fin)
3329 tcp_fin(skb, sk, th);
3330
3331 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3332 tcp_ofo_queue(sk);
3333
3334 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3335 * gap in queue is filled.
3336 */
3337 if (skb_queue_empty(&tp->out_of_order_queue))
3338 inet_csk(sk)->icsk_ack.pingpong = 0;
3339 }
3340
3341 if (tp->rx_opt.num_sacks)
3342 tcp_sack_remove(tp);
3343
3344 tcp_fast_path_check(sk, tp);
3345
3346 if (eaten > 0)
3347 __kfree_skb(skb);
3348 else if (!sock_flag(sk, SOCK_DEAD))
3349 sk->sk_data_ready(sk, 0);
3350 return;
3351 }
3352
3353 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3354 /* A retransmit, 2nd most common case. Force an immediate ack. */
3355 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3356 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3357
3358 out_of_window:
3359 tcp_enter_quickack_mode(sk);
3360 inet_csk_schedule_ack(sk);
3361 drop:
3362 __kfree_skb(skb);
3363 return;
3364 }
3365
3366 /* Out of window. F.e. zero window probe. */
3367 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3368 goto out_of_window;
3369
3370 tcp_enter_quickack_mode(sk);
3371
3372 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3373 /* Partial packet, seq < rcv_next < end_seq */
3374 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3375 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3376 TCP_SKB_CB(skb)->end_seq);
3377
3378 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3379
3380 /* If window is closed, drop tail of packet. But after
3381 * remembering D-SACK for its head made in previous line.
3382 */
3383 if (!tcp_receive_window(tp))
3384 goto out_of_window;
3385 goto queue_and_out;
3386 }
3387
3388 TCP_ECN_check_ce(tp, skb);
3389
3390 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3391 !sk_stream_rmem_schedule(sk, skb)) {
3392 if (tcp_prune_queue(sk) < 0 ||
3393 !sk_stream_rmem_schedule(sk, skb))
3394 goto drop;
3395 }
3396
3397 /* Disable header prediction. */
3398 tp->pred_flags = 0;
3399 inet_csk_schedule_ack(sk);
3400
3401 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3402 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3403
3404 sk_stream_set_owner_r(skb, sk);
3405
3406 if (!skb_peek(&tp->out_of_order_queue)) {
3407 /* Initial out of order segment, build 1 SACK. */
3408 if (tp->rx_opt.sack_ok) {
3409 tp->rx_opt.num_sacks = 1;
3410 tp->rx_opt.dsack = 0;
3411 tp->rx_opt.eff_sacks = 1;
3412 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3413 tp->selective_acks[0].end_seq =
3414 TCP_SKB_CB(skb)->end_seq;
3415 }
3416 __skb_queue_head(&tp->out_of_order_queue,skb);
3417 } else {
3418 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3419 u32 seq = TCP_SKB_CB(skb)->seq;
3420 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3421
3422 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3423 __skb_append(skb1, skb, &tp->out_of_order_queue);
3424
3425 if (!tp->rx_opt.num_sacks ||
3426 tp->selective_acks[0].end_seq != seq)
3427 goto add_sack;
3428
3429 /* Common case: data arrive in order after hole. */
3430 tp->selective_acks[0].end_seq = end_seq;
3431 return;
3432 }
3433
3434 /* Find place to insert this segment. */
3435 do {
3436 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3437 break;
3438 } while ((skb1 = skb1->prev) !=
3439 (struct sk_buff*)&tp->out_of_order_queue);
3440
3441 /* Do skb overlap to previous one? */
3442 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3443 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3444 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3445 /* All the bits are present. Drop. */
3446 __kfree_skb(skb);
3447 tcp_dsack_set(tp, seq, end_seq);
3448 goto add_sack;
3449 }
3450 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3451 /* Partial overlap. */
3452 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3453 } else {
3454 skb1 = skb1->prev;
3455 }
3456 }
3457 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3458
3459 /* And clean segments covered by new one as whole. */
3460 while ((skb1 = skb->next) !=
3461 (struct sk_buff*)&tp->out_of_order_queue &&
3462 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3463 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3464 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3465 break;
3466 }
3467 __skb_unlink(skb1, &tp->out_of_order_queue);
3468 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3469 __kfree_skb(skb1);
3470 }
3471
3472 add_sack:
3473 if (tp->rx_opt.sack_ok)
3474 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3475 }
3476 }
3477
3478 /* Collapse contiguous sequence of skbs head..tail with
3479 * sequence numbers start..end.
3480 * Segments with FIN/SYN are not collapsed (only because this
3481 * simplifies code)
3482 */
3483 static void
3484 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3485 struct sk_buff *head, struct sk_buff *tail,
3486 u32 start, u32 end)
3487 {
3488 struct sk_buff *skb;
3489
3490 /* First, check that queue is collapsible and find
3491 * the point where collapsing can be useful. */
3492 for (skb = head; skb != tail; ) {
3493 /* No new bits? It is possible on ofo queue. */
3494 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3495 struct sk_buff *next = skb->next;
3496 __skb_unlink(skb, list);
3497 __kfree_skb(skb);
3498 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3499 skb = next;
3500 continue;
3501 }
3502
3503 /* The first skb to collapse is:
3504 * - not SYN/FIN and
3505 * - bloated or contains data before "start" or
3506 * overlaps to the next one.
3507 */
3508 if (!skb->h.th->syn && !skb->h.th->fin &&
3509 (tcp_win_from_space(skb->truesize) > skb->len ||
3510 before(TCP_SKB_CB(skb)->seq, start) ||
3511 (skb->next != tail &&
3512 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3513 break;
3514
3515 /* Decided to skip this, advance start seq. */
3516 start = TCP_SKB_CB(skb)->end_seq;
3517 skb = skb->next;
3518 }
3519 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3520 return;
3521
3522 while (before(start, end)) {
3523 struct sk_buff *nskb;
3524 int header = skb_headroom(skb);
3525 int copy = SKB_MAX_ORDER(header, 0);
3526
3527 /* Too big header? This can happen with IPv6. */
3528 if (copy < 0)
3529 return;
3530 if (end-start < copy)
3531 copy = end-start;
3532 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3533 if (!nskb)
3534 return;
3535 skb_reserve(nskb, header);
3536 memcpy(nskb->head, skb->head, header);
3537 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3538 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3539 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3540 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3541 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3542 __skb_insert(nskb, skb->prev, skb, list);
3543 sk_stream_set_owner_r(nskb, sk);
3544
3545 /* Copy data, releasing collapsed skbs. */
3546 while (copy > 0) {
3547 int offset = start - TCP_SKB_CB(skb)->seq;
3548 int size = TCP_SKB_CB(skb)->end_seq - start;
3549
3550 BUG_ON(offset < 0);
3551 if (size > 0) {
3552 size = min(copy, size);
3553 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3554 BUG();
3555 TCP_SKB_CB(nskb)->end_seq += size;
3556 copy -= size;
3557 start += size;
3558 }
3559 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3560 struct sk_buff *next = skb->next;
3561 __skb_unlink(skb, list);
3562 __kfree_skb(skb);
3563 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3564 skb = next;
3565 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3566 return;
3567 }
3568 }
3569 }
3570 }
3571
3572 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3573 * and tcp_collapse() them until all the queue is collapsed.
3574 */
3575 static void tcp_collapse_ofo_queue(struct sock *sk)
3576 {
3577 struct tcp_sock *tp = tcp_sk(sk);
3578 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3579 struct sk_buff *head;
3580 u32 start, end;
3581
3582 if (skb == NULL)
3583 return;
3584
3585 start = TCP_SKB_CB(skb)->seq;
3586 end = TCP_SKB_CB(skb)->end_seq;
3587 head = skb;
3588
3589 for (;;) {
3590 skb = skb->next;
3591
3592 /* Segment is terminated when we see gap or when
3593 * we are at the end of all the queue. */
3594 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3595 after(TCP_SKB_CB(skb)->seq, end) ||
3596 before(TCP_SKB_CB(skb)->end_seq, start)) {
3597 tcp_collapse(sk, &tp->out_of_order_queue,
3598 head, skb, start, end);
3599 head = skb;
3600 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3601 break;
3602 /* Start new segment */
3603 start = TCP_SKB_CB(skb)->seq;
3604 end = TCP_SKB_CB(skb)->end_seq;
3605 } else {
3606 if (before(TCP_SKB_CB(skb)->seq, start))
3607 start = TCP_SKB_CB(skb)->seq;
3608 if (after(TCP_SKB_CB(skb)->end_seq, end))
3609 end = TCP_SKB_CB(skb)->end_seq;
3610 }
3611 }
3612 }
3613
3614 /* Reduce allocated memory if we can, trying to get
3615 * the socket within its memory limits again.
3616 *
3617 * Return less than zero if we should start dropping frames
3618 * until the socket owning process reads some of the data
3619 * to stabilize the situation.
3620 */
3621 static int tcp_prune_queue(struct sock *sk)
3622 {
3623 struct tcp_sock *tp = tcp_sk(sk);
3624
3625 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3626
3627 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3628
3629 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3630 tcp_clamp_window(sk, tp);
3631 else if (tcp_memory_pressure)
3632 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3633
3634 tcp_collapse_ofo_queue(sk);
3635 tcp_collapse(sk, &sk->sk_receive_queue,
3636 sk->sk_receive_queue.next,
3637 (struct sk_buff*)&sk->sk_receive_queue,
3638 tp->copied_seq, tp->rcv_nxt);
3639 sk_stream_mem_reclaim(sk);
3640
3641 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3642 return 0;
3643
3644 /* Collapsing did not help, destructive actions follow.
3645 * This must not ever occur. */
3646
3647 /* First, purge the out_of_order queue. */
3648 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3649 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3650 __skb_queue_purge(&tp->out_of_order_queue);
3651
3652 /* Reset SACK state. A conforming SACK implementation will
3653 * do the same at a timeout based retransmit. When a connection
3654 * is in a sad state like this, we care only about integrity
3655 * of the connection not performance.
3656 */
3657 if (tp->rx_opt.sack_ok)
3658 tcp_sack_reset(&tp->rx_opt);
3659 sk_stream_mem_reclaim(sk);
3660 }
3661
3662 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3663 return 0;
3664
3665 /* If we are really being abused, tell the caller to silently
3666 * drop receive data on the floor. It will get retransmitted
3667 * and hopefully then we'll have sufficient space.
3668 */
3669 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3670
3671 /* Massive buffer overcommit. */
3672 tp->pred_flags = 0;
3673 return -1;
3674 }
3675
3676
3677 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3678 * As additional protections, we do not touch cwnd in retransmission phases,
3679 * and if application hit its sndbuf limit recently.
3680 */
3681 void tcp_cwnd_application_limited(struct sock *sk)
3682 {
3683 struct tcp_sock *tp = tcp_sk(sk);
3684
3685 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3686 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3687 /* Limited by application or receiver window. */
3688 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3689 u32 win_used = max(tp->snd_cwnd_used, init_win);
3690 if (win_used < tp->snd_cwnd) {
3691 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3692 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3693 }
3694 tp->snd_cwnd_used = 0;
3695 }
3696 tp->snd_cwnd_stamp = tcp_time_stamp;
3697 }
3698
3699 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3700 {
3701 /* If the user specified a specific send buffer setting, do
3702 * not modify it.
3703 */
3704 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3705 return 0;
3706
3707 /* If we are under global TCP memory pressure, do not expand. */
3708 if (tcp_memory_pressure)
3709 return 0;
3710
3711 /* If we are under soft global TCP memory pressure, do not expand. */
3712 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3713 return 0;
3714
3715 /* If we filled the congestion window, do not expand. */
3716 if (tp->packets_out >= tp->snd_cwnd)
3717 return 0;
3718
3719 return 1;
3720 }
3721
3722 /* When incoming ACK allowed to free some skb from write_queue,
3723 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3724 * on the exit from tcp input handler.
3725 *
3726 * PROBLEM: sndbuf expansion does not work well with largesend.
3727 */
3728 static void tcp_new_space(struct sock *sk)
3729 {
3730 struct tcp_sock *tp = tcp_sk(sk);
3731
3732 if (tcp_should_expand_sndbuf(sk, tp)) {
3733 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3734 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3735 demanded = max_t(unsigned int, tp->snd_cwnd,
3736 tp->reordering + 1);
3737 sndmem *= 2*demanded;
3738 if (sndmem > sk->sk_sndbuf)
3739 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3740 tp->snd_cwnd_stamp = tcp_time_stamp;
3741 }
3742
3743 sk->sk_write_space(sk);
3744 }
3745
3746 static void tcp_check_space(struct sock *sk)
3747 {
3748 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3749 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3750 if (sk->sk_socket &&
3751 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3752 tcp_new_space(sk);
3753 }
3754 }
3755
3756 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3757 {
3758 tcp_push_pending_frames(sk, tp);
3759 tcp_check_space(sk);
3760 }
3761
3762 /*
3763 * Check if sending an ack is needed.
3764 */
3765 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3766 {
3767 struct tcp_sock *tp = tcp_sk(sk);
3768
3769 /* More than one full frame received... */
3770 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3771 /* ... and right edge of window advances far enough.
3772 * (tcp_recvmsg() will send ACK otherwise). Or...
3773 */
3774 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3775 /* We ACK each frame or... */
3776 tcp_in_quickack_mode(sk) ||
3777 /* We have out of order data. */
3778 (ofo_possible &&
3779 skb_peek(&tp->out_of_order_queue))) {
3780 /* Then ack it now */
3781 tcp_send_ack(sk);
3782 } else {
3783 /* Else, send delayed ack. */
3784 tcp_send_delayed_ack(sk);
3785 }
3786 }
3787
3788 static inline void tcp_ack_snd_check(struct sock *sk)
3789 {
3790 if (!inet_csk_ack_scheduled(sk)) {
3791 /* We sent a data segment already. */
3792 return;
3793 }
3794 __tcp_ack_snd_check(sk, 1);
3795 }
3796
3797 /*
3798 * This routine is only called when we have urgent data
3799 * signaled. Its the 'slow' part of tcp_urg. It could be
3800 * moved inline now as tcp_urg is only called from one
3801 * place. We handle URGent data wrong. We have to - as
3802 * BSD still doesn't use the correction from RFC961.
3803 * For 1003.1g we should support a new option TCP_STDURG to permit
3804 * either form (or just set the sysctl tcp_stdurg).
3805 */
3806
3807 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3808 {
3809 struct tcp_sock *tp = tcp_sk(sk);
3810 u32 ptr = ntohs(th->urg_ptr);
3811
3812 if (ptr && !sysctl_tcp_stdurg)
3813 ptr--;
3814 ptr += ntohl(th->seq);
3815
3816 /* Ignore urgent data that we've already seen and read. */
3817 if (after(tp->copied_seq, ptr))
3818 return;
3819
3820 /* Do not replay urg ptr.
3821 *
3822 * NOTE: interesting situation not covered by specs.
3823 * Misbehaving sender may send urg ptr, pointing to segment,
3824 * which we already have in ofo queue. We are not able to fetch
3825 * such data and will stay in TCP_URG_NOTYET until will be eaten
3826 * by recvmsg(). Seems, we are not obliged to handle such wicked
3827 * situations. But it is worth to think about possibility of some
3828 * DoSes using some hypothetical application level deadlock.
3829 */
3830 if (before(ptr, tp->rcv_nxt))
3831 return;
3832
3833 /* Do we already have a newer (or duplicate) urgent pointer? */
3834 if (tp->urg_data && !after(ptr, tp->urg_seq))
3835 return;
3836
3837 /* Tell the world about our new urgent pointer. */
3838 sk_send_sigurg(sk);
3839
3840 /* We may be adding urgent data when the last byte read was
3841 * urgent. To do this requires some care. We cannot just ignore
3842 * tp->copied_seq since we would read the last urgent byte again
3843 * as data, nor can we alter copied_seq until this data arrives
3844 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3845 *
3846 * NOTE. Double Dutch. Rendering to plain English: author of comment
3847 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3848 * and expect that both A and B disappear from stream. This is _wrong_.
3849 * Though this happens in BSD with high probability, this is occasional.
3850 * Any application relying on this is buggy. Note also, that fix "works"
3851 * only in this artificial test. Insert some normal data between A and B and we will
3852 * decline of BSD again. Verdict: it is better to remove to trap
3853 * buggy users.
3854 */
3855 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3856 !sock_flag(sk, SOCK_URGINLINE) &&
3857 tp->copied_seq != tp->rcv_nxt) {
3858 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3859 tp->copied_seq++;
3860 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3861 __skb_unlink(skb, &sk->sk_receive_queue);
3862 __kfree_skb(skb);
3863 }
3864 }
3865
3866 tp->urg_data = TCP_URG_NOTYET;
3867 tp->urg_seq = ptr;
3868
3869 /* Disable header prediction. */
3870 tp->pred_flags = 0;
3871 }
3872
3873 /* This is the 'fast' part of urgent handling. */
3874 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3875 {
3876 struct tcp_sock *tp = tcp_sk(sk);
3877
3878 /* Check if we get a new urgent pointer - normally not. */
3879 if (th->urg)
3880 tcp_check_urg(sk,th);
3881
3882 /* Do we wait for any urgent data? - normally not... */
3883 if (tp->urg_data == TCP_URG_NOTYET) {
3884 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3885 th->syn;
3886
3887 /* Is the urgent pointer pointing into this packet? */
3888 if (ptr < skb->len) {
3889 u8 tmp;
3890 if (skb_copy_bits(skb, ptr, &tmp, 1))
3891 BUG();
3892 tp->urg_data = TCP_URG_VALID | tmp;
3893 if (!sock_flag(sk, SOCK_DEAD))
3894 sk->sk_data_ready(sk, 0);
3895 }
3896 }
3897 }
3898
3899 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3900 {
3901 struct tcp_sock *tp = tcp_sk(sk);
3902 int chunk = skb->len - hlen;
3903 int err;
3904
3905 local_bh_enable();
3906 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3907 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3908 else
3909 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3910 tp->ucopy.iov);
3911
3912 if (!err) {
3913 tp->ucopy.len -= chunk;
3914 tp->copied_seq += chunk;
3915 tcp_rcv_space_adjust(sk);
3916 }
3917
3918 local_bh_disable();
3919 return err;
3920 }
3921
3922 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3923 {
3924 __sum16 result;
3925
3926 if (sock_owned_by_user(sk)) {
3927 local_bh_enable();
3928 result = __tcp_checksum_complete(skb);
3929 local_bh_disable();
3930 } else {
3931 result = __tcp_checksum_complete(skb);
3932 }
3933 return result;
3934 }
3935
3936 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3937 {
3938 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3939 __tcp_checksum_complete_user(sk, skb);
3940 }
3941
3942 #ifdef CONFIG_NET_DMA
3943 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3944 {
3945 struct tcp_sock *tp = tcp_sk(sk);
3946 int chunk = skb->len - hlen;
3947 int dma_cookie;
3948 int copied_early = 0;
3949
3950 if (tp->ucopy.wakeup)
3951 return 0;
3952
3953 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
3954 tp->ucopy.dma_chan = get_softnet_dma();
3955
3956 if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
3957
3958 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
3959 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
3960
3961 if (dma_cookie < 0)
3962 goto out;
3963
3964 tp->ucopy.dma_cookie = dma_cookie;
3965 copied_early = 1;
3966
3967 tp->ucopy.len -= chunk;
3968 tp->copied_seq += chunk;
3969 tcp_rcv_space_adjust(sk);
3970
3971 if ((tp->ucopy.len == 0) ||
3972 (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
3973 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
3974 tp->ucopy.wakeup = 1;
3975 sk->sk_data_ready(sk, 0);
3976 }
3977 } else if (chunk > 0) {
3978 tp->ucopy.wakeup = 1;
3979 sk->sk_data_ready(sk, 0);
3980 }
3981 out:
3982 return copied_early;
3983 }
3984 #endif /* CONFIG_NET_DMA */
3985
3986 /*
3987 * TCP receive function for the ESTABLISHED state.
3988 *
3989 * It is split into a fast path and a slow path. The fast path is
3990 * disabled when:
3991 * - A zero window was announced from us - zero window probing
3992 * is only handled properly in the slow path.
3993 * - Out of order segments arrived.
3994 * - Urgent data is expected.
3995 * - There is no buffer space left
3996 * - Unexpected TCP flags/window values/header lengths are received
3997 * (detected by checking the TCP header against pred_flags)
3998 * - Data is sent in both directions. Fast path only supports pure senders
3999 * or pure receivers (this means either the sequence number or the ack
4000 * value must stay constant)
4001 * - Unexpected TCP option.
4002 *
4003 * When these conditions are not satisfied it drops into a standard
4004 * receive procedure patterned after RFC793 to handle all cases.
4005 * The first three cases are guaranteed by proper pred_flags setting,
4006 * the rest is checked inline. Fast processing is turned on in
4007 * tcp_data_queue when everything is OK.
4008 */
4009 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4010 struct tcphdr *th, unsigned len)
4011 {
4012 struct tcp_sock *tp = tcp_sk(sk);
4013
4014 /*
4015 * Header prediction.
4016 * The code loosely follows the one in the famous
4017 * "30 instruction TCP receive" Van Jacobson mail.
4018 *
4019 * Van's trick is to deposit buffers into socket queue
4020 * on a device interrupt, to call tcp_recv function
4021 * on the receive process context and checksum and copy
4022 * the buffer to user space. smart...
4023 *
4024 * Our current scheme is not silly either but we take the
4025 * extra cost of the net_bh soft interrupt processing...
4026 * We do checksum and copy also but from device to kernel.
4027 */
4028
4029 tp->rx_opt.saw_tstamp = 0;
4030
4031 /* pred_flags is 0xS?10 << 16 + snd_wnd
4032 * if header_prediction is to be made
4033 * 'S' will always be tp->tcp_header_len >> 2
4034 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4035 * turn it off (when there are holes in the receive
4036 * space for instance)
4037 * PSH flag is ignored.
4038 */
4039
4040 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4041 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4042 int tcp_header_len = tp->tcp_header_len;
4043
4044 /* Timestamp header prediction: tcp_header_len
4045 * is automatically equal to th->doff*4 due to pred_flags
4046 * match.
4047 */
4048
4049 /* Check timestamp */
4050 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4051 __be32 *ptr = (__be32 *)(th + 1);
4052
4053 /* No? Slow path! */
4054 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4055 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4056 goto slow_path;
4057
4058 tp->rx_opt.saw_tstamp = 1;
4059 ++ptr;
4060 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4061 ++ptr;
4062 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4063
4064 /* If PAWS failed, check it more carefully in slow path */
4065 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4066 goto slow_path;
4067
4068 /* DO NOT update ts_recent here, if checksum fails
4069 * and timestamp was corrupted part, it will result
4070 * in a hung connection since we will drop all
4071 * future packets due to the PAWS test.
4072 */
4073 }
4074
4075 if (len <= tcp_header_len) {
4076 /* Bulk data transfer: sender */
4077 if (len == tcp_header_len) {
4078 /* Predicted packet is in window by definition.
4079 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4080 * Hence, check seq<=rcv_wup reduces to:
4081 */
4082 if (tcp_header_len ==
4083 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4084 tp->rcv_nxt == tp->rcv_wup)
4085 tcp_store_ts_recent(tp);
4086
4087 /* We know that such packets are checksummed
4088 * on entry.
4089 */
4090 tcp_ack(sk, skb, 0);
4091 __kfree_skb(skb);
4092 tcp_data_snd_check(sk, tp);
4093 return 0;
4094 } else { /* Header too small */
4095 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4096 goto discard;
4097 }
4098 } else {
4099 int eaten = 0;
4100 int copied_early = 0;
4101
4102 if (tp->copied_seq == tp->rcv_nxt &&
4103 len - tcp_header_len <= tp->ucopy.len) {
4104 #ifdef CONFIG_NET_DMA
4105 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4106 copied_early = 1;
4107 eaten = 1;
4108 }
4109 #endif
4110 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4111 __set_current_state(TASK_RUNNING);
4112
4113 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4114 eaten = 1;
4115 }
4116 if (eaten) {
4117 /* Predicted packet is in window by definition.
4118 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4119 * Hence, check seq<=rcv_wup reduces to:
4120 */
4121 if (tcp_header_len ==
4122 (sizeof(struct tcphdr) +
4123 TCPOLEN_TSTAMP_ALIGNED) &&
4124 tp->rcv_nxt == tp->rcv_wup)
4125 tcp_store_ts_recent(tp);
4126
4127 tcp_rcv_rtt_measure_ts(sk, skb);
4128
4129 __skb_pull(skb, tcp_header_len);
4130 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4131 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4132 }
4133 if (copied_early)
4134 tcp_cleanup_rbuf(sk, skb->len);
4135 }
4136 if (!eaten) {
4137 if (tcp_checksum_complete_user(sk, skb))
4138 goto csum_error;
4139
4140 /* Predicted packet is in window by definition.
4141 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4142 * Hence, check seq<=rcv_wup reduces to:
4143 */
4144 if (tcp_header_len ==
4145 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4146 tp->rcv_nxt == tp->rcv_wup)
4147 tcp_store_ts_recent(tp);
4148
4149 tcp_rcv_rtt_measure_ts(sk, skb);
4150
4151 if ((int)skb->truesize > sk->sk_forward_alloc)
4152 goto step5;
4153
4154 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4155
4156 /* Bulk data transfer: receiver */
4157 __skb_pull(skb,tcp_header_len);
4158 __skb_queue_tail(&sk->sk_receive_queue, skb);
4159 sk_stream_set_owner_r(skb, sk);
4160 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4161 }
4162
4163 tcp_event_data_recv(sk, tp, skb);
4164
4165 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4166 /* Well, only one small jumplet in fast path... */
4167 tcp_ack(sk, skb, FLAG_DATA);
4168 tcp_data_snd_check(sk, tp);
4169 if (!inet_csk_ack_scheduled(sk))
4170 goto no_ack;
4171 }
4172
4173 __tcp_ack_snd_check(sk, 0);
4174 no_ack:
4175 #ifdef CONFIG_NET_DMA
4176 if (copied_early)
4177 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4178 else
4179 #endif
4180 if (eaten)
4181 __kfree_skb(skb);
4182 else
4183 sk->sk_data_ready(sk, 0);
4184 return 0;
4185 }
4186 }
4187
4188 slow_path:
4189 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4190 goto csum_error;
4191
4192 /*
4193 * RFC1323: H1. Apply PAWS check first.
4194 */
4195 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4196 tcp_paws_discard(sk, skb)) {
4197 if (!th->rst) {
4198 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4199 tcp_send_dupack(sk, skb);
4200 goto discard;
4201 }
4202 /* Resets are accepted even if PAWS failed.
4203
4204 ts_recent update must be made after we are sure
4205 that the packet is in window.
4206 */
4207 }
4208
4209 /*
4210 * Standard slow path.
4211 */
4212
4213 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4214 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4215 * (RST) segments are validated by checking their SEQ-fields."
4216 * And page 69: "If an incoming segment is not acceptable,
4217 * an acknowledgment should be sent in reply (unless the RST bit
4218 * is set, if so drop the segment and return)".
4219 */
4220 if (!th->rst)
4221 tcp_send_dupack(sk, skb);
4222 goto discard;
4223 }
4224
4225 if(th->rst) {
4226 tcp_reset(sk);
4227 goto discard;
4228 }
4229
4230 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4231
4232 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4233 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4234 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4235 tcp_reset(sk);
4236 return 1;
4237 }
4238
4239 step5:
4240 if(th->ack)
4241 tcp_ack(sk, skb, FLAG_SLOWPATH);
4242
4243 tcp_rcv_rtt_measure_ts(sk, skb);
4244
4245 /* Process urgent data. */
4246 tcp_urg(sk, skb, th);
4247
4248 /* step 7: process the segment text */
4249 tcp_data_queue(sk, skb);
4250
4251 tcp_data_snd_check(sk, tp);
4252 tcp_ack_snd_check(sk);
4253 return 0;
4254
4255 csum_error:
4256 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4257
4258 discard:
4259 __kfree_skb(skb);
4260 return 0;
4261 }
4262
4263 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4264 struct tcphdr *th, unsigned len)
4265 {
4266 struct tcp_sock *tp = tcp_sk(sk);
4267 struct inet_connection_sock *icsk = inet_csk(sk);
4268 int saved_clamp = tp->rx_opt.mss_clamp;
4269
4270 tcp_parse_options(skb, &tp->rx_opt, 0);
4271
4272 if (th->ack) {
4273 /* rfc793:
4274 * "If the state is SYN-SENT then
4275 * first check the ACK bit
4276 * If the ACK bit is set
4277 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4278 * a reset (unless the RST bit is set, if so drop
4279 * the segment and return)"
4280 *
4281 * We do not send data with SYN, so that RFC-correct
4282 * test reduces to:
4283 */
4284 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4285 goto reset_and_undo;
4286
4287 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4288 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4289 tcp_time_stamp)) {
4290 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4291 goto reset_and_undo;
4292 }
4293
4294 /* Now ACK is acceptable.
4295 *
4296 * "If the RST bit is set
4297 * If the ACK was acceptable then signal the user "error:
4298 * connection reset", drop the segment, enter CLOSED state,
4299 * delete TCB, and return."
4300 */
4301
4302 if (th->rst) {
4303 tcp_reset(sk);
4304 goto discard;
4305 }
4306
4307 /* rfc793:
4308 * "fifth, if neither of the SYN or RST bits is set then
4309 * drop the segment and return."
4310 *
4311 * See note below!
4312 * --ANK(990513)
4313 */
4314 if (!th->syn)
4315 goto discard_and_undo;
4316
4317 /* rfc793:
4318 * "If the SYN bit is on ...
4319 * are acceptable then ...
4320 * (our SYN has been ACKed), change the connection
4321 * state to ESTABLISHED..."
4322 */
4323
4324 TCP_ECN_rcv_synack(tp, th);
4325
4326 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4327 tcp_ack(sk, skb, FLAG_SLOWPATH);
4328
4329 /* Ok.. it's good. Set up sequence numbers and
4330 * move to established.
4331 */
4332 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4333 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4334
4335 /* RFC1323: The window in SYN & SYN/ACK segments is
4336 * never scaled.
4337 */
4338 tp->snd_wnd = ntohs(th->window);
4339 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4340
4341 if (!tp->rx_opt.wscale_ok) {
4342 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4343 tp->window_clamp = min(tp->window_clamp, 65535U);
4344 }
4345
4346 if (tp->rx_opt.saw_tstamp) {
4347 tp->rx_opt.tstamp_ok = 1;
4348 tp->tcp_header_len =
4349 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4350 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4351 tcp_store_ts_recent(tp);
4352 } else {
4353 tp->tcp_header_len = sizeof(struct tcphdr);
4354 }
4355
4356 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4357 tp->rx_opt.sack_ok |= 2;
4358
4359 tcp_mtup_init(sk);
4360 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4361 tcp_initialize_rcv_mss(sk);
4362
4363 /* Remember, tcp_poll() does not lock socket!
4364 * Change state from SYN-SENT only after copied_seq
4365 * is initialized. */
4366 tp->copied_seq = tp->rcv_nxt;
4367 smp_mb();
4368 tcp_set_state(sk, TCP_ESTABLISHED);
4369
4370 security_inet_conn_established(sk, skb);
4371
4372 /* Make sure socket is routed, for correct metrics. */
4373 icsk->icsk_af_ops->rebuild_header(sk);
4374
4375 tcp_init_metrics(sk);
4376
4377 tcp_init_congestion_control(sk);
4378
4379 /* Prevent spurious tcp_cwnd_restart() on first data
4380 * packet.
4381 */
4382 tp->lsndtime = tcp_time_stamp;
4383
4384 tcp_init_buffer_space(sk);
4385
4386 if (sock_flag(sk, SOCK_KEEPOPEN))
4387 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4388
4389 if (!tp->rx_opt.snd_wscale)
4390 __tcp_fast_path_on(tp, tp->snd_wnd);
4391 else
4392 tp->pred_flags = 0;
4393
4394 if (!sock_flag(sk, SOCK_DEAD)) {
4395 sk->sk_state_change(sk);
4396 sk_wake_async(sk, 0, POLL_OUT);
4397 }
4398
4399 if (sk->sk_write_pending ||
4400 icsk->icsk_accept_queue.rskq_defer_accept ||
4401 icsk->icsk_ack.pingpong) {
4402 /* Save one ACK. Data will be ready after
4403 * several ticks, if write_pending is set.
4404 *
4405 * It may be deleted, but with this feature tcpdumps
4406 * look so _wonderfully_ clever, that I was not able
4407 * to stand against the temptation 8) --ANK
4408 */
4409 inet_csk_schedule_ack(sk);
4410 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4411 icsk->icsk_ack.ato = TCP_ATO_MIN;
4412 tcp_incr_quickack(sk);
4413 tcp_enter_quickack_mode(sk);
4414 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4415 TCP_DELACK_MAX, TCP_RTO_MAX);
4416
4417 discard:
4418 __kfree_skb(skb);
4419 return 0;
4420 } else {
4421 tcp_send_ack(sk);
4422 }
4423 return -1;
4424 }
4425
4426 /* No ACK in the segment */
4427
4428 if (th->rst) {
4429 /* rfc793:
4430 * "If the RST bit is set
4431 *
4432 * Otherwise (no ACK) drop the segment and return."
4433 */
4434
4435 goto discard_and_undo;
4436 }
4437
4438 /* PAWS check. */
4439 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4440 goto discard_and_undo;
4441
4442 if (th->syn) {
4443 /* We see SYN without ACK. It is attempt of
4444 * simultaneous connect with crossed SYNs.
4445 * Particularly, it can be connect to self.
4446 */
4447 tcp_set_state(sk, TCP_SYN_RECV);
4448
4449 if (tp->rx_opt.saw_tstamp) {
4450 tp->rx_opt.tstamp_ok = 1;
4451 tcp_store_ts_recent(tp);
4452 tp->tcp_header_len =
4453 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4454 } else {
4455 tp->tcp_header_len = sizeof(struct tcphdr);
4456 }
4457
4458 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4459 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4460
4461 /* RFC1323: The window in SYN & SYN/ACK segments is
4462 * never scaled.
4463 */
4464 tp->snd_wnd = ntohs(th->window);
4465 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4466 tp->max_window = tp->snd_wnd;
4467
4468 TCP_ECN_rcv_syn(tp, th);
4469
4470 tcp_mtup_init(sk);
4471 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4472 tcp_initialize_rcv_mss(sk);
4473
4474
4475 tcp_send_synack(sk);
4476 #if 0
4477 /* Note, we could accept data and URG from this segment.
4478 * There are no obstacles to make this.
4479 *
4480 * However, if we ignore data in ACKless segments sometimes,
4481 * we have no reasons to accept it sometimes.
4482 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4483 * is not flawless. So, discard packet for sanity.
4484 * Uncomment this return to process the data.
4485 */
4486 return -1;
4487 #else
4488 goto discard;
4489 #endif
4490 }
4491 /* "fifth, if neither of the SYN or RST bits is set then
4492 * drop the segment and return."
4493 */
4494
4495 discard_and_undo:
4496 tcp_clear_options(&tp->rx_opt);
4497 tp->rx_opt.mss_clamp = saved_clamp;
4498 goto discard;
4499
4500 reset_and_undo:
4501 tcp_clear_options(&tp->rx_opt);
4502 tp->rx_opt.mss_clamp = saved_clamp;
4503 return 1;
4504 }
4505
4506
4507 /*
4508 * This function implements the receiving procedure of RFC 793 for
4509 * all states except ESTABLISHED and TIME_WAIT.
4510 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4511 * address independent.
4512 */
4513
4514 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4515 struct tcphdr *th, unsigned len)
4516 {
4517 struct tcp_sock *tp = tcp_sk(sk);
4518 struct inet_connection_sock *icsk = inet_csk(sk);
4519 int queued = 0;
4520
4521 tp->rx_opt.saw_tstamp = 0;
4522
4523 switch (sk->sk_state) {
4524 case TCP_CLOSE:
4525 goto discard;
4526
4527 case TCP_LISTEN:
4528 if(th->ack)
4529 return 1;
4530
4531 if(th->rst)
4532 goto discard;
4533
4534 if(th->syn) {
4535 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4536 return 1;
4537
4538 /* Now we have several options: In theory there is
4539 * nothing else in the frame. KA9Q has an option to
4540 * send data with the syn, BSD accepts data with the
4541 * syn up to the [to be] advertised window and
4542 * Solaris 2.1 gives you a protocol error. For now
4543 * we just ignore it, that fits the spec precisely
4544 * and avoids incompatibilities. It would be nice in
4545 * future to drop through and process the data.
4546 *
4547 * Now that TTCP is starting to be used we ought to
4548 * queue this data.
4549 * But, this leaves one open to an easy denial of
4550 * service attack, and SYN cookies can't defend
4551 * against this problem. So, we drop the data
4552 * in the interest of security over speed unless
4553 * it's still in use.
4554 */
4555 kfree_skb(skb);
4556 return 0;
4557 }
4558 goto discard;
4559
4560 case TCP_SYN_SENT:
4561 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4562 if (queued >= 0)
4563 return queued;
4564
4565 /* Do step6 onward by hand. */
4566 tcp_urg(sk, skb, th);
4567 __kfree_skb(skb);
4568 tcp_data_snd_check(sk, tp);
4569 return 0;
4570 }
4571
4572 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4573 tcp_paws_discard(sk, skb)) {
4574 if (!th->rst) {
4575 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4576 tcp_send_dupack(sk, skb);
4577 goto discard;
4578 }
4579 /* Reset is accepted even if it did not pass PAWS. */
4580 }
4581
4582 /* step 1: check sequence number */
4583 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4584 if (!th->rst)
4585 tcp_send_dupack(sk, skb);
4586 goto discard;
4587 }
4588
4589 /* step 2: check RST bit */
4590 if(th->rst) {
4591 tcp_reset(sk);
4592 goto discard;
4593 }
4594
4595 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4596
4597 /* step 3: check security and precedence [ignored] */
4598
4599 /* step 4:
4600 *
4601 * Check for a SYN in window.
4602 */
4603 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4604 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4605 tcp_reset(sk);
4606 return 1;
4607 }
4608
4609 /* step 5: check the ACK field */
4610 if (th->ack) {
4611 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4612
4613 switch(sk->sk_state) {
4614 case TCP_SYN_RECV:
4615 if (acceptable) {
4616 tp->copied_seq = tp->rcv_nxt;
4617 smp_mb();
4618 tcp_set_state(sk, TCP_ESTABLISHED);
4619 sk->sk_state_change(sk);
4620
4621 /* Note, that this wakeup is only for marginal
4622 * crossed SYN case. Passively open sockets
4623 * are not waked up, because sk->sk_sleep ==
4624 * NULL and sk->sk_socket == NULL.
4625 */
4626 if (sk->sk_socket) {
4627 sk_wake_async(sk,0,POLL_OUT);
4628 }
4629
4630 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4631 tp->snd_wnd = ntohs(th->window) <<
4632 tp->rx_opt.snd_wscale;
4633 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4634 TCP_SKB_CB(skb)->seq);
4635
4636 /* tcp_ack considers this ACK as duplicate
4637 * and does not calculate rtt.
4638 * Fix it at least with timestamps.
4639 */
4640 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4641 !tp->srtt)
4642 tcp_ack_saw_tstamp(sk, 0);
4643
4644 if (tp->rx_opt.tstamp_ok)
4645 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4646
4647 /* Make sure socket is routed, for
4648 * correct metrics.
4649 */
4650 icsk->icsk_af_ops->rebuild_header(sk);
4651
4652 tcp_init_metrics(sk);
4653
4654 tcp_init_congestion_control(sk);
4655
4656 /* Prevent spurious tcp_cwnd_restart() on
4657 * first data packet.
4658 */
4659 tp->lsndtime = tcp_time_stamp;
4660
4661 tcp_mtup_init(sk);
4662 tcp_initialize_rcv_mss(sk);
4663 tcp_init_buffer_space(sk);
4664 tcp_fast_path_on(tp);
4665 } else {
4666 return 1;
4667 }
4668 break;
4669
4670 case TCP_FIN_WAIT1:
4671 if (tp->snd_una == tp->write_seq) {
4672 tcp_set_state(sk, TCP_FIN_WAIT2);
4673 sk->sk_shutdown |= SEND_SHUTDOWN;
4674 dst_confirm(sk->sk_dst_cache);
4675
4676 if (!sock_flag(sk, SOCK_DEAD))
4677 /* Wake up lingering close() */
4678 sk->sk_state_change(sk);
4679 else {
4680 int tmo;
4681
4682 if (tp->linger2 < 0 ||
4683 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4684 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4685 tcp_done(sk);
4686 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4687 return 1;
4688 }
4689
4690 tmo = tcp_fin_time(sk);
4691 if (tmo > TCP_TIMEWAIT_LEN) {
4692 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4693 } else if (th->fin || sock_owned_by_user(sk)) {
4694 /* Bad case. We could lose such FIN otherwise.
4695 * It is not a big problem, but it looks confusing
4696 * and not so rare event. We still can lose it now,
4697 * if it spins in bh_lock_sock(), but it is really
4698 * marginal case.
4699 */
4700 inet_csk_reset_keepalive_timer(sk, tmo);
4701 } else {
4702 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4703 goto discard;
4704 }
4705 }
4706 }
4707 break;
4708
4709 case TCP_CLOSING:
4710 if (tp->snd_una == tp->write_seq) {
4711 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4712 goto discard;
4713 }
4714 break;
4715
4716 case TCP_LAST_ACK:
4717 if (tp->snd_una == tp->write_seq) {
4718 tcp_update_metrics(sk);
4719 tcp_done(sk);
4720 goto discard;
4721 }
4722 break;
4723 }
4724 } else
4725 goto discard;
4726
4727 /* step 6: check the URG bit */
4728 tcp_urg(sk, skb, th);
4729
4730 /* step 7: process the segment text */
4731 switch (sk->sk_state) {
4732 case TCP_CLOSE_WAIT:
4733 case TCP_CLOSING:
4734 case TCP_LAST_ACK:
4735 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4736 break;
4737 case TCP_FIN_WAIT1:
4738 case TCP_FIN_WAIT2:
4739 /* RFC 793 says to queue data in these states,
4740 * RFC 1122 says we MUST send a reset.
4741 * BSD 4.4 also does reset.
4742 */
4743 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4744 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4745 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4746 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4747 tcp_reset(sk);
4748 return 1;
4749 }
4750 }
4751 /* Fall through */
4752 case TCP_ESTABLISHED:
4753 tcp_data_queue(sk, skb);
4754 queued = 1;
4755 break;
4756 }
4757
4758 /* tcp_data could move socket to TIME-WAIT */
4759 if (sk->sk_state != TCP_CLOSE) {
4760 tcp_data_snd_check(sk, tp);
4761 tcp_ack_snd_check(sk);
4762 }
4763
4764 if (!queued) {
4765 discard:
4766 __kfree_skb(skb);
4767 }
4768 return 0;
4769 }
4770
4771 EXPORT_SYMBOL(sysctl_tcp_ecn);
4772 EXPORT_SYMBOL(sysctl_tcp_reordering);
4773 EXPORT_SYMBOL(tcp_parse_options);
4774 EXPORT_SYMBOL(tcp_rcv_established);
4775 EXPORT_SYMBOL(tcp_rcv_state_process);
4776 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.143878 seconds and 6 git commands to generate.