Merge branch 'upstream' of git://git.infradead.org/users/pcmoore/audit
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 int sysctl_tcp_max_reordering __read_mostly = 300;
85 EXPORT_SYMBOL(sysctl_tcp_reordering);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 100;
93
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
99
100 int sysctl_tcp_thin_dupack __read_mostly;
101
102 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
103 int sysctl_tcp_early_retrans __read_mostly = 3;
104 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
105
106 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
107 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
108 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
109 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
110 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
111 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
112 #define FLAG_ECE 0x40 /* ECE in this ACK */
113 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
114 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
115 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
116 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
117 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
118 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
119 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
120
121 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
122 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
123 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
124 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
125
126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
128
129 /* Adapt the MSS value used to make delayed ack decision to the
130 * real world.
131 */
132 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
133 {
134 struct inet_connection_sock *icsk = inet_csk(sk);
135 const unsigned int lss = icsk->icsk_ack.last_seg_size;
136 unsigned int len;
137
138 icsk->icsk_ack.last_seg_size = 0;
139
140 /* skb->len may jitter because of SACKs, even if peer
141 * sends good full-sized frames.
142 */
143 len = skb_shinfo(skb)->gso_size ? : skb->len;
144 if (len >= icsk->icsk_ack.rcv_mss) {
145 icsk->icsk_ack.rcv_mss = len;
146 } else {
147 /* Otherwise, we make more careful check taking into account,
148 * that SACKs block is variable.
149 *
150 * "len" is invariant segment length, including TCP header.
151 */
152 len += skb->data - skb_transport_header(skb);
153 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
154 /* If PSH is not set, packet should be
155 * full sized, provided peer TCP is not badly broken.
156 * This observation (if it is correct 8)) allows
157 * to handle super-low mtu links fairly.
158 */
159 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
160 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
161 /* Subtract also invariant (if peer is RFC compliant),
162 * tcp header plus fixed timestamp option length.
163 * Resulting "len" is MSS free of SACK jitter.
164 */
165 len -= tcp_sk(sk)->tcp_header_len;
166 icsk->icsk_ack.last_seg_size = len;
167 if (len == lss) {
168 icsk->icsk_ack.rcv_mss = len;
169 return;
170 }
171 }
172 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
173 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
174 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
175 }
176 }
177
178 static void tcp_incr_quickack(struct sock *sk)
179 {
180 struct inet_connection_sock *icsk = inet_csk(sk);
181 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
182
183 if (quickacks == 0)
184 quickacks = 2;
185 if (quickacks > icsk->icsk_ack.quick)
186 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
187 }
188
189 static void tcp_enter_quickack_mode(struct sock *sk)
190 {
191 struct inet_connection_sock *icsk = inet_csk(sk);
192 tcp_incr_quickack(sk);
193 icsk->icsk_ack.pingpong = 0;
194 icsk->icsk_ack.ato = TCP_ATO_MIN;
195 }
196
197 /* Send ACKs quickly, if "quick" count is not exhausted
198 * and the session is not interactive.
199 */
200
201 static bool tcp_in_quickack_mode(struct sock *sk)
202 {
203 const struct inet_connection_sock *icsk = inet_csk(sk);
204 const struct dst_entry *dst = __sk_dst_get(sk);
205
206 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
207 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
208 }
209
210 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
211 {
212 if (tp->ecn_flags & TCP_ECN_OK)
213 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
214 }
215
216 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
217 {
218 if (tcp_hdr(skb)->cwr)
219 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 }
221
222 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
223 {
224 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
225 }
226
227 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
228 {
229 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
230 case INET_ECN_NOT_ECT:
231 /* Funny extension: if ECT is not set on a segment,
232 * and we already seen ECT on a previous segment,
233 * it is probably a retransmit.
234 */
235 if (tp->ecn_flags & TCP_ECN_SEEN)
236 tcp_enter_quickack_mode((struct sock *)tp);
237 break;
238 case INET_ECN_CE:
239 if (tcp_ca_needs_ecn((struct sock *)tp))
240 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
241
242 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
243 /* Better not delay acks, sender can have a very low cwnd */
244 tcp_enter_quickack_mode((struct sock *)tp);
245 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
246 }
247 tp->ecn_flags |= TCP_ECN_SEEN;
248 break;
249 default:
250 if (tcp_ca_needs_ecn((struct sock *)tp))
251 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
252 tp->ecn_flags |= TCP_ECN_SEEN;
253 break;
254 }
255 }
256
257 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
258 {
259 if (tp->ecn_flags & TCP_ECN_OK)
260 __tcp_ecn_check_ce(tp, skb);
261 }
262
263 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
264 {
265 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
266 tp->ecn_flags &= ~TCP_ECN_OK;
267 }
268
269 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
270 {
271 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
272 tp->ecn_flags &= ~TCP_ECN_OK;
273 }
274
275 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
276 {
277 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
278 return true;
279 return false;
280 }
281
282 /* Buffer size and advertised window tuning.
283 *
284 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
285 */
286
287 static void tcp_sndbuf_expand(struct sock *sk)
288 {
289 const struct tcp_sock *tp = tcp_sk(sk);
290 int sndmem, per_mss;
291 u32 nr_segs;
292
293 /* Worst case is non GSO/TSO : each frame consumes one skb
294 * and skb->head is kmalloced using power of two area of memory
295 */
296 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
297 MAX_TCP_HEADER +
298 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
299
300 per_mss = roundup_pow_of_two(per_mss) +
301 SKB_DATA_ALIGN(sizeof(struct sk_buff));
302
303 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
304 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
305
306 /* Fast Recovery (RFC 5681 3.2) :
307 * Cubic needs 1.7 factor, rounded to 2 to include
308 * extra cushion (application might react slowly to POLLOUT)
309 */
310 sndmem = 2 * nr_segs * per_mss;
311
312 if (sk->sk_sndbuf < sndmem)
313 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
314 }
315
316 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
317 *
318 * All tcp_full_space() is split to two parts: "network" buffer, allocated
319 * forward and advertised in receiver window (tp->rcv_wnd) and
320 * "application buffer", required to isolate scheduling/application
321 * latencies from network.
322 * window_clamp is maximal advertised window. It can be less than
323 * tcp_full_space(), in this case tcp_full_space() - window_clamp
324 * is reserved for "application" buffer. The less window_clamp is
325 * the smoother our behaviour from viewpoint of network, but the lower
326 * throughput and the higher sensitivity of the connection to losses. 8)
327 *
328 * rcv_ssthresh is more strict window_clamp used at "slow start"
329 * phase to predict further behaviour of this connection.
330 * It is used for two goals:
331 * - to enforce header prediction at sender, even when application
332 * requires some significant "application buffer". It is check #1.
333 * - to prevent pruning of receive queue because of misprediction
334 * of receiver window. Check #2.
335 *
336 * The scheme does not work when sender sends good segments opening
337 * window and then starts to feed us spaghetti. But it should work
338 * in common situations. Otherwise, we have to rely on queue collapsing.
339 */
340
341 /* Slow part of check#2. */
342 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
343 {
344 struct tcp_sock *tp = tcp_sk(sk);
345 /* Optimize this! */
346 int truesize = tcp_win_from_space(skb->truesize) >> 1;
347 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
348
349 while (tp->rcv_ssthresh <= window) {
350 if (truesize <= skb->len)
351 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
352
353 truesize >>= 1;
354 window >>= 1;
355 }
356 return 0;
357 }
358
359 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
360 {
361 struct tcp_sock *tp = tcp_sk(sk);
362
363 /* Check #1 */
364 if (tp->rcv_ssthresh < tp->window_clamp &&
365 (int)tp->rcv_ssthresh < tcp_space(sk) &&
366 !tcp_under_memory_pressure(sk)) {
367 int incr;
368
369 /* Check #2. Increase window, if skb with such overhead
370 * will fit to rcvbuf in future.
371 */
372 if (tcp_win_from_space(skb->truesize) <= skb->len)
373 incr = 2 * tp->advmss;
374 else
375 incr = __tcp_grow_window(sk, skb);
376
377 if (incr) {
378 incr = max_t(int, incr, 2 * skb->len);
379 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
380 tp->window_clamp);
381 inet_csk(sk)->icsk_ack.quick |= 1;
382 }
383 }
384 }
385
386 /* 3. Tuning rcvbuf, when connection enters established state. */
387 static void tcp_fixup_rcvbuf(struct sock *sk)
388 {
389 u32 mss = tcp_sk(sk)->advmss;
390 int rcvmem;
391
392 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
393 tcp_default_init_rwnd(mss);
394
395 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
396 * Allow enough cushion so that sender is not limited by our window
397 */
398 if (sysctl_tcp_moderate_rcvbuf)
399 rcvmem <<= 2;
400
401 if (sk->sk_rcvbuf < rcvmem)
402 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
403 }
404
405 /* 4. Try to fixup all. It is made immediately after connection enters
406 * established state.
407 */
408 void tcp_init_buffer_space(struct sock *sk)
409 {
410 struct tcp_sock *tp = tcp_sk(sk);
411 int maxwin;
412
413 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
414 tcp_fixup_rcvbuf(sk);
415 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
416 tcp_sndbuf_expand(sk);
417
418 tp->rcvq_space.space = tp->rcv_wnd;
419 tp->rcvq_space.time = tcp_time_stamp;
420 tp->rcvq_space.seq = tp->copied_seq;
421
422 maxwin = tcp_full_space(sk);
423
424 if (tp->window_clamp >= maxwin) {
425 tp->window_clamp = maxwin;
426
427 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
428 tp->window_clamp = max(maxwin -
429 (maxwin >> sysctl_tcp_app_win),
430 4 * tp->advmss);
431 }
432
433 /* Force reservation of one segment. */
434 if (sysctl_tcp_app_win &&
435 tp->window_clamp > 2 * tp->advmss &&
436 tp->window_clamp + tp->advmss > maxwin)
437 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
438
439 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
440 tp->snd_cwnd_stamp = tcp_time_stamp;
441 }
442
443 /* 5. Recalculate window clamp after socket hit its memory bounds. */
444 static void tcp_clamp_window(struct sock *sk)
445 {
446 struct tcp_sock *tp = tcp_sk(sk);
447 struct inet_connection_sock *icsk = inet_csk(sk);
448
449 icsk->icsk_ack.quick = 0;
450
451 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
452 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
453 !tcp_under_memory_pressure(sk) &&
454 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
455 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
456 sysctl_tcp_rmem[2]);
457 }
458 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
459 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
460 }
461
462 /* Initialize RCV_MSS value.
463 * RCV_MSS is an our guess about MSS used by the peer.
464 * We haven't any direct information about the MSS.
465 * It's better to underestimate the RCV_MSS rather than overestimate.
466 * Overestimations make us ACKing less frequently than needed.
467 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
468 */
469 void tcp_initialize_rcv_mss(struct sock *sk)
470 {
471 const struct tcp_sock *tp = tcp_sk(sk);
472 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
473
474 hint = min(hint, tp->rcv_wnd / 2);
475 hint = min(hint, TCP_MSS_DEFAULT);
476 hint = max(hint, TCP_MIN_MSS);
477
478 inet_csk(sk)->icsk_ack.rcv_mss = hint;
479 }
480 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
481
482 /* Receiver "autotuning" code.
483 *
484 * The algorithm for RTT estimation w/o timestamps is based on
485 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
486 * <http://public.lanl.gov/radiant/pubs.html#DRS>
487 *
488 * More detail on this code can be found at
489 * <http://staff.psc.edu/jheffner/>,
490 * though this reference is out of date. A new paper
491 * is pending.
492 */
493 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
494 {
495 u32 new_sample = tp->rcv_rtt_est.rtt;
496 long m = sample;
497
498 if (m == 0)
499 m = 1;
500
501 if (new_sample != 0) {
502 /* If we sample in larger samples in the non-timestamp
503 * case, we could grossly overestimate the RTT especially
504 * with chatty applications or bulk transfer apps which
505 * are stalled on filesystem I/O.
506 *
507 * Also, since we are only going for a minimum in the
508 * non-timestamp case, we do not smooth things out
509 * else with timestamps disabled convergence takes too
510 * long.
511 */
512 if (!win_dep) {
513 m -= (new_sample >> 3);
514 new_sample += m;
515 } else {
516 m <<= 3;
517 if (m < new_sample)
518 new_sample = m;
519 }
520 } else {
521 /* No previous measure. */
522 new_sample = m << 3;
523 }
524
525 if (tp->rcv_rtt_est.rtt != new_sample)
526 tp->rcv_rtt_est.rtt = new_sample;
527 }
528
529 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
530 {
531 if (tp->rcv_rtt_est.time == 0)
532 goto new_measure;
533 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
534 return;
535 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
536
537 new_measure:
538 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
539 tp->rcv_rtt_est.time = tcp_time_stamp;
540 }
541
542 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
543 const struct sk_buff *skb)
544 {
545 struct tcp_sock *tp = tcp_sk(sk);
546 if (tp->rx_opt.rcv_tsecr &&
547 (TCP_SKB_CB(skb)->end_seq -
548 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
549 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
550 }
551
552 /*
553 * This function should be called every time data is copied to user space.
554 * It calculates the appropriate TCP receive buffer space.
555 */
556 void tcp_rcv_space_adjust(struct sock *sk)
557 {
558 struct tcp_sock *tp = tcp_sk(sk);
559 int time;
560 int copied;
561
562 time = tcp_time_stamp - tp->rcvq_space.time;
563 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
564 return;
565
566 /* Number of bytes copied to user in last RTT */
567 copied = tp->copied_seq - tp->rcvq_space.seq;
568 if (copied <= tp->rcvq_space.space)
569 goto new_measure;
570
571 /* A bit of theory :
572 * copied = bytes received in previous RTT, our base window
573 * To cope with packet losses, we need a 2x factor
574 * To cope with slow start, and sender growing its cwin by 100 %
575 * every RTT, we need a 4x factor, because the ACK we are sending
576 * now is for the next RTT, not the current one :
577 * <prev RTT . ><current RTT .. ><next RTT .... >
578 */
579
580 if (sysctl_tcp_moderate_rcvbuf &&
581 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
582 int rcvwin, rcvmem, rcvbuf;
583
584 /* minimal window to cope with packet losses, assuming
585 * steady state. Add some cushion because of small variations.
586 */
587 rcvwin = (copied << 1) + 16 * tp->advmss;
588
589 /* If rate increased by 25%,
590 * assume slow start, rcvwin = 3 * copied
591 * If rate increased by 50%,
592 * assume sender can use 2x growth, rcvwin = 4 * copied
593 */
594 if (copied >=
595 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
596 if (copied >=
597 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
598 rcvwin <<= 1;
599 else
600 rcvwin += (rcvwin >> 1);
601 }
602
603 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
604 while (tcp_win_from_space(rcvmem) < tp->advmss)
605 rcvmem += 128;
606
607 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
608 if (rcvbuf > sk->sk_rcvbuf) {
609 sk->sk_rcvbuf = rcvbuf;
610
611 /* Make the window clamp follow along. */
612 tp->window_clamp = rcvwin;
613 }
614 }
615 tp->rcvq_space.space = copied;
616
617 new_measure:
618 tp->rcvq_space.seq = tp->copied_seq;
619 tp->rcvq_space.time = tcp_time_stamp;
620 }
621
622 /* There is something which you must keep in mind when you analyze the
623 * behavior of the tp->ato delayed ack timeout interval. When a
624 * connection starts up, we want to ack as quickly as possible. The
625 * problem is that "good" TCP's do slow start at the beginning of data
626 * transmission. The means that until we send the first few ACK's the
627 * sender will sit on his end and only queue most of his data, because
628 * he can only send snd_cwnd unacked packets at any given time. For
629 * each ACK we send, he increments snd_cwnd and transmits more of his
630 * queue. -DaveM
631 */
632 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
633 {
634 struct tcp_sock *tp = tcp_sk(sk);
635 struct inet_connection_sock *icsk = inet_csk(sk);
636 u32 now;
637
638 inet_csk_schedule_ack(sk);
639
640 tcp_measure_rcv_mss(sk, skb);
641
642 tcp_rcv_rtt_measure(tp);
643
644 now = tcp_time_stamp;
645
646 if (!icsk->icsk_ack.ato) {
647 /* The _first_ data packet received, initialize
648 * delayed ACK engine.
649 */
650 tcp_incr_quickack(sk);
651 icsk->icsk_ack.ato = TCP_ATO_MIN;
652 } else {
653 int m = now - icsk->icsk_ack.lrcvtime;
654
655 if (m <= TCP_ATO_MIN / 2) {
656 /* The fastest case is the first. */
657 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
658 } else if (m < icsk->icsk_ack.ato) {
659 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
660 if (icsk->icsk_ack.ato > icsk->icsk_rto)
661 icsk->icsk_ack.ato = icsk->icsk_rto;
662 } else if (m > icsk->icsk_rto) {
663 /* Too long gap. Apparently sender failed to
664 * restart window, so that we send ACKs quickly.
665 */
666 tcp_incr_quickack(sk);
667 sk_mem_reclaim(sk);
668 }
669 }
670 icsk->icsk_ack.lrcvtime = now;
671
672 tcp_ecn_check_ce(tp, skb);
673
674 if (skb->len >= 128)
675 tcp_grow_window(sk, skb);
676 }
677
678 /* Called to compute a smoothed rtt estimate. The data fed to this
679 * routine either comes from timestamps, or from segments that were
680 * known _not_ to have been retransmitted [see Karn/Partridge
681 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
682 * piece by Van Jacobson.
683 * NOTE: the next three routines used to be one big routine.
684 * To save cycles in the RFC 1323 implementation it was better to break
685 * it up into three procedures. -- erics
686 */
687 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
688 {
689 struct tcp_sock *tp = tcp_sk(sk);
690 long m = mrtt_us; /* RTT */
691 u32 srtt = tp->srtt_us;
692
693 /* The following amusing code comes from Jacobson's
694 * article in SIGCOMM '88. Note that rtt and mdev
695 * are scaled versions of rtt and mean deviation.
696 * This is designed to be as fast as possible
697 * m stands for "measurement".
698 *
699 * On a 1990 paper the rto value is changed to:
700 * RTO = rtt + 4 * mdev
701 *
702 * Funny. This algorithm seems to be very broken.
703 * These formulae increase RTO, when it should be decreased, increase
704 * too slowly, when it should be increased quickly, decrease too quickly
705 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
706 * does not matter how to _calculate_ it. Seems, it was trap
707 * that VJ failed to avoid. 8)
708 */
709 if (srtt != 0) {
710 m -= (srtt >> 3); /* m is now error in rtt est */
711 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
712 if (m < 0) {
713 m = -m; /* m is now abs(error) */
714 m -= (tp->mdev_us >> 2); /* similar update on mdev */
715 /* This is similar to one of Eifel findings.
716 * Eifel blocks mdev updates when rtt decreases.
717 * This solution is a bit different: we use finer gain
718 * for mdev in this case (alpha*beta).
719 * Like Eifel it also prevents growth of rto,
720 * but also it limits too fast rto decreases,
721 * happening in pure Eifel.
722 */
723 if (m > 0)
724 m >>= 3;
725 } else {
726 m -= (tp->mdev_us >> 2); /* similar update on mdev */
727 }
728 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
729 if (tp->mdev_us > tp->mdev_max_us) {
730 tp->mdev_max_us = tp->mdev_us;
731 if (tp->mdev_max_us > tp->rttvar_us)
732 tp->rttvar_us = tp->mdev_max_us;
733 }
734 if (after(tp->snd_una, tp->rtt_seq)) {
735 if (tp->mdev_max_us < tp->rttvar_us)
736 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
737 tp->rtt_seq = tp->snd_nxt;
738 tp->mdev_max_us = tcp_rto_min_us(sk);
739 }
740 } else {
741 /* no previous measure. */
742 srtt = m << 3; /* take the measured time to be rtt */
743 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
744 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
745 tp->mdev_max_us = tp->rttvar_us;
746 tp->rtt_seq = tp->snd_nxt;
747 }
748 tp->srtt_us = max(1U, srtt);
749 }
750
751 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
752 * Note: TCP stack does not yet implement pacing.
753 * FQ packet scheduler can be used to implement cheap but effective
754 * TCP pacing, to smooth the burst on large writes when packets
755 * in flight is significantly lower than cwnd (or rwin)
756 */
757 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
758 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
759
760 static void tcp_update_pacing_rate(struct sock *sk)
761 {
762 const struct tcp_sock *tp = tcp_sk(sk);
763 u64 rate;
764
765 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
766 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
767
768 /* current rate is (cwnd * mss) / srtt
769 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
770 * In Congestion Avoidance phase, set it to 120 % the current rate.
771 *
772 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
773 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
774 * end of slow start and should slow down.
775 */
776 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
777 rate *= sysctl_tcp_pacing_ss_ratio;
778 else
779 rate *= sysctl_tcp_pacing_ca_ratio;
780
781 rate *= max(tp->snd_cwnd, tp->packets_out);
782
783 if (likely(tp->srtt_us))
784 do_div(rate, tp->srtt_us);
785
786 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
787 * without any lock. We want to make sure compiler wont store
788 * intermediate values in this location.
789 */
790 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
791 sk->sk_max_pacing_rate);
792 }
793
794 /* Calculate rto without backoff. This is the second half of Van Jacobson's
795 * routine referred to above.
796 */
797 static void tcp_set_rto(struct sock *sk)
798 {
799 const struct tcp_sock *tp = tcp_sk(sk);
800 /* Old crap is replaced with new one. 8)
801 *
802 * More seriously:
803 * 1. If rtt variance happened to be less 50msec, it is hallucination.
804 * It cannot be less due to utterly erratic ACK generation made
805 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
806 * to do with delayed acks, because at cwnd>2 true delack timeout
807 * is invisible. Actually, Linux-2.4 also generates erratic
808 * ACKs in some circumstances.
809 */
810 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
811
812 /* 2. Fixups made earlier cannot be right.
813 * If we do not estimate RTO correctly without them,
814 * all the algo is pure shit and should be replaced
815 * with correct one. It is exactly, which we pretend to do.
816 */
817
818 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
819 * guarantees that rto is higher.
820 */
821 tcp_bound_rto(sk);
822 }
823
824 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
825 {
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd)
829 cwnd = TCP_INIT_CWND;
830 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
831 }
832
833 /*
834 * Packet counting of FACK is based on in-order assumptions, therefore TCP
835 * disables it when reordering is detected
836 */
837 void tcp_disable_fack(struct tcp_sock *tp)
838 {
839 /* RFC3517 uses different metric in lost marker => reset on change */
840 if (tcp_is_fack(tp))
841 tp->lost_skb_hint = NULL;
842 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
843 }
844
845 /* Take a notice that peer is sending D-SACKs */
846 static void tcp_dsack_seen(struct tcp_sock *tp)
847 {
848 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
849 }
850
851 static void tcp_update_reordering(struct sock *sk, const int metric,
852 const int ts)
853 {
854 struct tcp_sock *tp = tcp_sk(sk);
855 if (metric > tp->reordering) {
856 int mib_idx;
857
858 tp->reordering = min(sysctl_tcp_max_reordering, metric);
859
860 /* This exciting event is worth to be remembered. 8) */
861 if (ts)
862 mib_idx = LINUX_MIB_TCPTSREORDER;
863 else if (tcp_is_reno(tp))
864 mib_idx = LINUX_MIB_TCPRENOREORDER;
865 else if (tcp_is_fack(tp))
866 mib_idx = LINUX_MIB_TCPFACKREORDER;
867 else
868 mib_idx = LINUX_MIB_TCPSACKREORDER;
869
870 NET_INC_STATS_BH(sock_net(sk), mib_idx);
871 #if FASTRETRANS_DEBUG > 1
872 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
873 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
874 tp->reordering,
875 tp->fackets_out,
876 tp->sacked_out,
877 tp->undo_marker ? tp->undo_retrans : 0);
878 #endif
879 tcp_disable_fack(tp);
880 }
881
882 if (metric > 0)
883 tcp_disable_early_retrans(tp);
884 tp->rack.reord = 1;
885 }
886
887 /* This must be called before lost_out is incremented */
888 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
889 {
890 if (!tp->retransmit_skb_hint ||
891 before(TCP_SKB_CB(skb)->seq,
892 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
893 tp->retransmit_skb_hint = skb;
894
895 if (!tp->lost_out ||
896 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
897 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
898 }
899
900 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
901 {
902 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
903 tcp_verify_retransmit_hint(tp, skb);
904
905 tp->lost_out += tcp_skb_pcount(skb);
906 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
907 }
908 }
909
910 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
911 {
912 tcp_verify_retransmit_hint(tp, skb);
913
914 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
915 tp->lost_out += tcp_skb_pcount(skb);
916 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
917 }
918 }
919
920 /* This procedure tags the retransmission queue when SACKs arrive.
921 *
922 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
923 * Packets in queue with these bits set are counted in variables
924 * sacked_out, retrans_out and lost_out, correspondingly.
925 *
926 * Valid combinations are:
927 * Tag InFlight Description
928 * 0 1 - orig segment is in flight.
929 * S 0 - nothing flies, orig reached receiver.
930 * L 0 - nothing flies, orig lost by net.
931 * R 2 - both orig and retransmit are in flight.
932 * L|R 1 - orig is lost, retransmit is in flight.
933 * S|R 1 - orig reached receiver, retrans is still in flight.
934 * (L|S|R is logically valid, it could occur when L|R is sacked,
935 * but it is equivalent to plain S and code short-curcuits it to S.
936 * L|S is logically invalid, it would mean -1 packet in flight 8))
937 *
938 * These 6 states form finite state machine, controlled by the following events:
939 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
940 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
941 * 3. Loss detection event of two flavors:
942 * A. Scoreboard estimator decided the packet is lost.
943 * A'. Reno "three dupacks" marks head of queue lost.
944 * A''. Its FACK modification, head until snd.fack is lost.
945 * B. SACK arrives sacking SND.NXT at the moment, when the
946 * segment was retransmitted.
947 * 4. D-SACK added new rule: D-SACK changes any tag to S.
948 *
949 * It is pleasant to note, that state diagram turns out to be commutative,
950 * so that we are allowed not to be bothered by order of our actions,
951 * when multiple events arrive simultaneously. (see the function below).
952 *
953 * Reordering detection.
954 * --------------------
955 * Reordering metric is maximal distance, which a packet can be displaced
956 * in packet stream. With SACKs we can estimate it:
957 *
958 * 1. SACK fills old hole and the corresponding segment was not
959 * ever retransmitted -> reordering. Alas, we cannot use it
960 * when segment was retransmitted.
961 * 2. The last flaw is solved with D-SACK. D-SACK arrives
962 * for retransmitted and already SACKed segment -> reordering..
963 * Both of these heuristics are not used in Loss state, when we cannot
964 * account for retransmits accurately.
965 *
966 * SACK block validation.
967 * ----------------------
968 *
969 * SACK block range validation checks that the received SACK block fits to
970 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
971 * Note that SND.UNA is not included to the range though being valid because
972 * it means that the receiver is rather inconsistent with itself reporting
973 * SACK reneging when it should advance SND.UNA. Such SACK block this is
974 * perfectly valid, however, in light of RFC2018 which explicitly states
975 * that "SACK block MUST reflect the newest segment. Even if the newest
976 * segment is going to be discarded ...", not that it looks very clever
977 * in case of head skb. Due to potentional receiver driven attacks, we
978 * choose to avoid immediate execution of a walk in write queue due to
979 * reneging and defer head skb's loss recovery to standard loss recovery
980 * procedure that will eventually trigger (nothing forbids us doing this).
981 *
982 * Implements also blockage to start_seq wrap-around. Problem lies in the
983 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
984 * there's no guarantee that it will be before snd_nxt (n). The problem
985 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
986 * wrap (s_w):
987 *
988 * <- outs wnd -> <- wrapzone ->
989 * u e n u_w e_w s n_w
990 * | | | | | | |
991 * |<------------+------+----- TCP seqno space --------------+---------->|
992 * ...-- <2^31 ->| |<--------...
993 * ...---- >2^31 ------>| |<--------...
994 *
995 * Current code wouldn't be vulnerable but it's better still to discard such
996 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
997 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
998 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
999 * equal to the ideal case (infinite seqno space without wrap caused issues).
1000 *
1001 * With D-SACK the lower bound is extended to cover sequence space below
1002 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1003 * again, D-SACK block must not to go across snd_una (for the same reason as
1004 * for the normal SACK blocks, explained above). But there all simplicity
1005 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1006 * fully below undo_marker they do not affect behavior in anyway and can
1007 * therefore be safely ignored. In rare cases (which are more or less
1008 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1009 * fragmentation and packet reordering past skb's retransmission. To consider
1010 * them correctly, the acceptable range must be extended even more though
1011 * the exact amount is rather hard to quantify. However, tp->max_window can
1012 * be used as an exaggerated estimate.
1013 */
1014 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1015 u32 start_seq, u32 end_seq)
1016 {
1017 /* Too far in future, or reversed (interpretation is ambiguous) */
1018 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1019 return false;
1020
1021 /* Nasty start_seq wrap-around check (see comments above) */
1022 if (!before(start_seq, tp->snd_nxt))
1023 return false;
1024
1025 /* In outstanding window? ...This is valid exit for D-SACKs too.
1026 * start_seq == snd_una is non-sensical (see comments above)
1027 */
1028 if (after(start_seq, tp->snd_una))
1029 return true;
1030
1031 if (!is_dsack || !tp->undo_marker)
1032 return false;
1033
1034 /* ...Then it's D-SACK, and must reside below snd_una completely */
1035 if (after(end_seq, tp->snd_una))
1036 return false;
1037
1038 if (!before(start_seq, tp->undo_marker))
1039 return true;
1040
1041 /* Too old */
1042 if (!after(end_seq, tp->undo_marker))
1043 return false;
1044
1045 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1046 * start_seq < undo_marker and end_seq >= undo_marker.
1047 */
1048 return !before(start_seq, end_seq - tp->max_window);
1049 }
1050
1051 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1052 struct tcp_sack_block_wire *sp, int num_sacks,
1053 u32 prior_snd_una)
1054 {
1055 struct tcp_sock *tp = tcp_sk(sk);
1056 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1057 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1058 bool dup_sack = false;
1059
1060 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1061 dup_sack = true;
1062 tcp_dsack_seen(tp);
1063 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1064 } else if (num_sacks > 1) {
1065 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1066 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1067
1068 if (!after(end_seq_0, end_seq_1) &&
1069 !before(start_seq_0, start_seq_1)) {
1070 dup_sack = true;
1071 tcp_dsack_seen(tp);
1072 NET_INC_STATS_BH(sock_net(sk),
1073 LINUX_MIB_TCPDSACKOFORECV);
1074 }
1075 }
1076
1077 /* D-SACK for already forgotten data... Do dumb counting. */
1078 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1079 !after(end_seq_0, prior_snd_una) &&
1080 after(end_seq_0, tp->undo_marker))
1081 tp->undo_retrans--;
1082
1083 return dup_sack;
1084 }
1085
1086 struct tcp_sacktag_state {
1087 int reord;
1088 int fack_count;
1089 /* Timestamps for earliest and latest never-retransmitted segment
1090 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1091 * but congestion control should still get an accurate delay signal.
1092 */
1093 struct skb_mstamp first_sackt;
1094 struct skb_mstamp last_sackt;
1095 int flag;
1096 };
1097
1098 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1099 * the incoming SACK may not exactly match but we can find smaller MSS
1100 * aligned portion of it that matches. Therefore we might need to fragment
1101 * which may fail and creates some hassle (caller must handle error case
1102 * returns).
1103 *
1104 * FIXME: this could be merged to shift decision code
1105 */
1106 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1107 u32 start_seq, u32 end_seq)
1108 {
1109 int err;
1110 bool in_sack;
1111 unsigned int pkt_len;
1112 unsigned int mss;
1113
1114 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1115 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1116
1117 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1118 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1119 mss = tcp_skb_mss(skb);
1120 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1121
1122 if (!in_sack) {
1123 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1124 if (pkt_len < mss)
1125 pkt_len = mss;
1126 } else {
1127 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1128 if (pkt_len < mss)
1129 return -EINVAL;
1130 }
1131
1132 /* Round if necessary so that SACKs cover only full MSSes
1133 * and/or the remaining small portion (if present)
1134 */
1135 if (pkt_len > mss) {
1136 unsigned int new_len = (pkt_len / mss) * mss;
1137 if (!in_sack && new_len < pkt_len) {
1138 new_len += mss;
1139 if (new_len >= skb->len)
1140 return 0;
1141 }
1142 pkt_len = new_len;
1143 }
1144 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1145 if (err < 0)
1146 return err;
1147 }
1148
1149 return in_sack;
1150 }
1151
1152 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1153 static u8 tcp_sacktag_one(struct sock *sk,
1154 struct tcp_sacktag_state *state, u8 sacked,
1155 u32 start_seq, u32 end_seq,
1156 int dup_sack, int pcount,
1157 const struct skb_mstamp *xmit_time)
1158 {
1159 struct tcp_sock *tp = tcp_sk(sk);
1160 int fack_count = state->fack_count;
1161
1162 /* Account D-SACK for retransmitted packet. */
1163 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1164 if (tp->undo_marker && tp->undo_retrans > 0 &&
1165 after(end_seq, tp->undo_marker))
1166 tp->undo_retrans--;
1167 if (sacked & TCPCB_SACKED_ACKED)
1168 state->reord = min(fack_count, state->reord);
1169 }
1170
1171 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1172 if (!after(end_seq, tp->snd_una))
1173 return sacked;
1174
1175 if (!(sacked & TCPCB_SACKED_ACKED)) {
1176 tcp_rack_advance(tp, xmit_time, sacked);
1177
1178 if (sacked & TCPCB_SACKED_RETRANS) {
1179 /* If the segment is not tagged as lost,
1180 * we do not clear RETRANS, believing
1181 * that retransmission is still in flight.
1182 */
1183 if (sacked & TCPCB_LOST) {
1184 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1185 tp->lost_out -= pcount;
1186 tp->retrans_out -= pcount;
1187 }
1188 } else {
1189 if (!(sacked & TCPCB_RETRANS)) {
1190 /* New sack for not retransmitted frame,
1191 * which was in hole. It is reordering.
1192 */
1193 if (before(start_seq,
1194 tcp_highest_sack_seq(tp)))
1195 state->reord = min(fack_count,
1196 state->reord);
1197 if (!after(end_seq, tp->high_seq))
1198 state->flag |= FLAG_ORIG_SACK_ACKED;
1199 if (state->first_sackt.v64 == 0)
1200 state->first_sackt = *xmit_time;
1201 state->last_sackt = *xmit_time;
1202 }
1203
1204 if (sacked & TCPCB_LOST) {
1205 sacked &= ~TCPCB_LOST;
1206 tp->lost_out -= pcount;
1207 }
1208 }
1209
1210 sacked |= TCPCB_SACKED_ACKED;
1211 state->flag |= FLAG_DATA_SACKED;
1212 tp->sacked_out += pcount;
1213
1214 fack_count += pcount;
1215
1216 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1217 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1218 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1219 tp->lost_cnt_hint += pcount;
1220
1221 if (fack_count > tp->fackets_out)
1222 tp->fackets_out = fack_count;
1223 }
1224
1225 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1226 * frames and clear it. undo_retrans is decreased above, L|R frames
1227 * are accounted above as well.
1228 */
1229 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1230 sacked &= ~TCPCB_SACKED_RETRANS;
1231 tp->retrans_out -= pcount;
1232 }
1233
1234 return sacked;
1235 }
1236
1237 /* Shift newly-SACKed bytes from this skb to the immediately previous
1238 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1239 */
1240 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1241 struct tcp_sacktag_state *state,
1242 unsigned int pcount, int shifted, int mss,
1243 bool dup_sack)
1244 {
1245 struct tcp_sock *tp = tcp_sk(sk);
1246 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1247 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1248 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1249
1250 BUG_ON(!pcount);
1251
1252 /* Adjust counters and hints for the newly sacked sequence
1253 * range but discard the return value since prev is already
1254 * marked. We must tag the range first because the seq
1255 * advancement below implicitly advances
1256 * tcp_highest_sack_seq() when skb is highest_sack.
1257 */
1258 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1259 start_seq, end_seq, dup_sack, pcount,
1260 &skb->skb_mstamp);
1261
1262 if (skb == tp->lost_skb_hint)
1263 tp->lost_cnt_hint += pcount;
1264
1265 TCP_SKB_CB(prev)->end_seq += shifted;
1266 TCP_SKB_CB(skb)->seq += shifted;
1267
1268 tcp_skb_pcount_add(prev, pcount);
1269 BUG_ON(tcp_skb_pcount(skb) < pcount);
1270 tcp_skb_pcount_add(skb, -pcount);
1271
1272 /* When we're adding to gso_segs == 1, gso_size will be zero,
1273 * in theory this shouldn't be necessary but as long as DSACK
1274 * code can come after this skb later on it's better to keep
1275 * setting gso_size to something.
1276 */
1277 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1278 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1279
1280 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1281 if (tcp_skb_pcount(skb) <= 1)
1282 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1283
1284 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1285 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1286
1287 if (skb->len > 0) {
1288 BUG_ON(!tcp_skb_pcount(skb));
1289 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1290 return false;
1291 }
1292
1293 /* Whole SKB was eaten :-) */
1294
1295 if (skb == tp->retransmit_skb_hint)
1296 tp->retransmit_skb_hint = prev;
1297 if (skb == tp->lost_skb_hint) {
1298 tp->lost_skb_hint = prev;
1299 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1300 }
1301
1302 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1303 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1304 TCP_SKB_CB(prev)->end_seq++;
1305
1306 if (skb == tcp_highest_sack(sk))
1307 tcp_advance_highest_sack(sk, skb);
1308
1309 tcp_unlink_write_queue(skb, sk);
1310 sk_wmem_free_skb(sk, skb);
1311
1312 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1313
1314 return true;
1315 }
1316
1317 /* I wish gso_size would have a bit more sane initialization than
1318 * something-or-zero which complicates things
1319 */
1320 static int tcp_skb_seglen(const struct sk_buff *skb)
1321 {
1322 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1323 }
1324
1325 /* Shifting pages past head area doesn't work */
1326 static int skb_can_shift(const struct sk_buff *skb)
1327 {
1328 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1329 }
1330
1331 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1332 * skb.
1333 */
1334 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1335 struct tcp_sacktag_state *state,
1336 u32 start_seq, u32 end_seq,
1337 bool dup_sack)
1338 {
1339 struct tcp_sock *tp = tcp_sk(sk);
1340 struct sk_buff *prev;
1341 int mss;
1342 int pcount = 0;
1343 int len;
1344 int in_sack;
1345
1346 if (!sk_can_gso(sk))
1347 goto fallback;
1348
1349 /* Normally R but no L won't result in plain S */
1350 if (!dup_sack &&
1351 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1352 goto fallback;
1353 if (!skb_can_shift(skb))
1354 goto fallback;
1355 /* This frame is about to be dropped (was ACKed). */
1356 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1357 goto fallback;
1358
1359 /* Can only happen with delayed DSACK + discard craziness */
1360 if (unlikely(skb == tcp_write_queue_head(sk)))
1361 goto fallback;
1362 prev = tcp_write_queue_prev(sk, skb);
1363
1364 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1365 goto fallback;
1366
1367 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1368 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1369
1370 if (in_sack) {
1371 len = skb->len;
1372 pcount = tcp_skb_pcount(skb);
1373 mss = tcp_skb_seglen(skb);
1374
1375 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1376 * drop this restriction as unnecessary
1377 */
1378 if (mss != tcp_skb_seglen(prev))
1379 goto fallback;
1380 } else {
1381 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1382 goto noop;
1383 /* CHECKME: This is non-MSS split case only?, this will
1384 * cause skipped skbs due to advancing loop btw, original
1385 * has that feature too
1386 */
1387 if (tcp_skb_pcount(skb) <= 1)
1388 goto noop;
1389
1390 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1391 if (!in_sack) {
1392 /* TODO: head merge to next could be attempted here
1393 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1394 * though it might not be worth of the additional hassle
1395 *
1396 * ...we can probably just fallback to what was done
1397 * previously. We could try merging non-SACKed ones
1398 * as well but it probably isn't going to buy off
1399 * because later SACKs might again split them, and
1400 * it would make skb timestamp tracking considerably
1401 * harder problem.
1402 */
1403 goto fallback;
1404 }
1405
1406 len = end_seq - TCP_SKB_CB(skb)->seq;
1407 BUG_ON(len < 0);
1408 BUG_ON(len > skb->len);
1409
1410 /* MSS boundaries should be honoured or else pcount will
1411 * severely break even though it makes things bit trickier.
1412 * Optimize common case to avoid most of the divides
1413 */
1414 mss = tcp_skb_mss(skb);
1415
1416 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1417 * drop this restriction as unnecessary
1418 */
1419 if (mss != tcp_skb_seglen(prev))
1420 goto fallback;
1421
1422 if (len == mss) {
1423 pcount = 1;
1424 } else if (len < mss) {
1425 goto noop;
1426 } else {
1427 pcount = len / mss;
1428 len = pcount * mss;
1429 }
1430 }
1431
1432 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1433 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1434 goto fallback;
1435
1436 if (!skb_shift(prev, skb, len))
1437 goto fallback;
1438 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1439 goto out;
1440
1441 /* Hole filled allows collapsing with the next as well, this is very
1442 * useful when hole on every nth skb pattern happens
1443 */
1444 if (prev == tcp_write_queue_tail(sk))
1445 goto out;
1446 skb = tcp_write_queue_next(sk, prev);
1447
1448 if (!skb_can_shift(skb) ||
1449 (skb == tcp_send_head(sk)) ||
1450 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1451 (mss != tcp_skb_seglen(skb)))
1452 goto out;
1453
1454 len = skb->len;
1455 if (skb_shift(prev, skb, len)) {
1456 pcount += tcp_skb_pcount(skb);
1457 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1458 }
1459
1460 out:
1461 state->fack_count += pcount;
1462 return prev;
1463
1464 noop:
1465 return skb;
1466
1467 fallback:
1468 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1469 return NULL;
1470 }
1471
1472 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1473 struct tcp_sack_block *next_dup,
1474 struct tcp_sacktag_state *state,
1475 u32 start_seq, u32 end_seq,
1476 bool dup_sack_in)
1477 {
1478 struct tcp_sock *tp = tcp_sk(sk);
1479 struct sk_buff *tmp;
1480
1481 tcp_for_write_queue_from(skb, sk) {
1482 int in_sack = 0;
1483 bool dup_sack = dup_sack_in;
1484
1485 if (skb == tcp_send_head(sk))
1486 break;
1487
1488 /* queue is in-order => we can short-circuit the walk early */
1489 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1490 break;
1491
1492 if (next_dup &&
1493 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1494 in_sack = tcp_match_skb_to_sack(sk, skb,
1495 next_dup->start_seq,
1496 next_dup->end_seq);
1497 if (in_sack > 0)
1498 dup_sack = true;
1499 }
1500
1501 /* skb reference here is a bit tricky to get right, since
1502 * shifting can eat and free both this skb and the next,
1503 * so not even _safe variant of the loop is enough.
1504 */
1505 if (in_sack <= 0) {
1506 tmp = tcp_shift_skb_data(sk, skb, state,
1507 start_seq, end_seq, dup_sack);
1508 if (tmp) {
1509 if (tmp != skb) {
1510 skb = tmp;
1511 continue;
1512 }
1513
1514 in_sack = 0;
1515 } else {
1516 in_sack = tcp_match_skb_to_sack(sk, skb,
1517 start_seq,
1518 end_seq);
1519 }
1520 }
1521
1522 if (unlikely(in_sack < 0))
1523 break;
1524
1525 if (in_sack) {
1526 TCP_SKB_CB(skb)->sacked =
1527 tcp_sacktag_one(sk,
1528 state,
1529 TCP_SKB_CB(skb)->sacked,
1530 TCP_SKB_CB(skb)->seq,
1531 TCP_SKB_CB(skb)->end_seq,
1532 dup_sack,
1533 tcp_skb_pcount(skb),
1534 &skb->skb_mstamp);
1535
1536 if (!before(TCP_SKB_CB(skb)->seq,
1537 tcp_highest_sack_seq(tp)))
1538 tcp_advance_highest_sack(sk, skb);
1539 }
1540
1541 state->fack_count += tcp_skb_pcount(skb);
1542 }
1543 return skb;
1544 }
1545
1546 /* Avoid all extra work that is being done by sacktag while walking in
1547 * a normal way
1548 */
1549 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1550 struct tcp_sacktag_state *state,
1551 u32 skip_to_seq)
1552 {
1553 tcp_for_write_queue_from(skb, sk) {
1554 if (skb == tcp_send_head(sk))
1555 break;
1556
1557 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1558 break;
1559
1560 state->fack_count += tcp_skb_pcount(skb);
1561 }
1562 return skb;
1563 }
1564
1565 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1566 struct sock *sk,
1567 struct tcp_sack_block *next_dup,
1568 struct tcp_sacktag_state *state,
1569 u32 skip_to_seq)
1570 {
1571 if (!next_dup)
1572 return skb;
1573
1574 if (before(next_dup->start_seq, skip_to_seq)) {
1575 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1576 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1577 next_dup->start_seq, next_dup->end_seq,
1578 1);
1579 }
1580
1581 return skb;
1582 }
1583
1584 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1585 {
1586 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1587 }
1588
1589 static int
1590 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1591 u32 prior_snd_una, struct tcp_sacktag_state *state)
1592 {
1593 struct tcp_sock *tp = tcp_sk(sk);
1594 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1595 TCP_SKB_CB(ack_skb)->sacked);
1596 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1597 struct tcp_sack_block sp[TCP_NUM_SACKS];
1598 struct tcp_sack_block *cache;
1599 struct sk_buff *skb;
1600 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1601 int used_sacks;
1602 bool found_dup_sack = false;
1603 int i, j;
1604 int first_sack_index;
1605
1606 state->flag = 0;
1607 state->reord = tp->packets_out;
1608
1609 if (!tp->sacked_out) {
1610 if (WARN_ON(tp->fackets_out))
1611 tp->fackets_out = 0;
1612 tcp_highest_sack_reset(sk);
1613 }
1614
1615 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1616 num_sacks, prior_snd_una);
1617 if (found_dup_sack)
1618 state->flag |= FLAG_DSACKING_ACK;
1619
1620 /* Eliminate too old ACKs, but take into
1621 * account more or less fresh ones, they can
1622 * contain valid SACK info.
1623 */
1624 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1625 return 0;
1626
1627 if (!tp->packets_out)
1628 goto out;
1629
1630 used_sacks = 0;
1631 first_sack_index = 0;
1632 for (i = 0; i < num_sacks; i++) {
1633 bool dup_sack = !i && found_dup_sack;
1634
1635 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1636 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1637
1638 if (!tcp_is_sackblock_valid(tp, dup_sack,
1639 sp[used_sacks].start_seq,
1640 sp[used_sacks].end_seq)) {
1641 int mib_idx;
1642
1643 if (dup_sack) {
1644 if (!tp->undo_marker)
1645 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1646 else
1647 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1648 } else {
1649 /* Don't count olds caused by ACK reordering */
1650 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1651 !after(sp[used_sacks].end_seq, tp->snd_una))
1652 continue;
1653 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1654 }
1655
1656 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1657 if (i == 0)
1658 first_sack_index = -1;
1659 continue;
1660 }
1661
1662 /* Ignore very old stuff early */
1663 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1664 continue;
1665
1666 used_sacks++;
1667 }
1668
1669 /* order SACK blocks to allow in order walk of the retrans queue */
1670 for (i = used_sacks - 1; i > 0; i--) {
1671 for (j = 0; j < i; j++) {
1672 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1673 swap(sp[j], sp[j + 1]);
1674
1675 /* Track where the first SACK block goes to */
1676 if (j == first_sack_index)
1677 first_sack_index = j + 1;
1678 }
1679 }
1680 }
1681
1682 skb = tcp_write_queue_head(sk);
1683 state->fack_count = 0;
1684 i = 0;
1685
1686 if (!tp->sacked_out) {
1687 /* It's already past, so skip checking against it */
1688 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1689 } else {
1690 cache = tp->recv_sack_cache;
1691 /* Skip empty blocks in at head of the cache */
1692 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1693 !cache->end_seq)
1694 cache++;
1695 }
1696
1697 while (i < used_sacks) {
1698 u32 start_seq = sp[i].start_seq;
1699 u32 end_seq = sp[i].end_seq;
1700 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1701 struct tcp_sack_block *next_dup = NULL;
1702
1703 if (found_dup_sack && ((i + 1) == first_sack_index))
1704 next_dup = &sp[i + 1];
1705
1706 /* Skip too early cached blocks */
1707 while (tcp_sack_cache_ok(tp, cache) &&
1708 !before(start_seq, cache->end_seq))
1709 cache++;
1710
1711 /* Can skip some work by looking recv_sack_cache? */
1712 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1713 after(end_seq, cache->start_seq)) {
1714
1715 /* Head todo? */
1716 if (before(start_seq, cache->start_seq)) {
1717 skb = tcp_sacktag_skip(skb, sk, state,
1718 start_seq);
1719 skb = tcp_sacktag_walk(skb, sk, next_dup,
1720 state,
1721 start_seq,
1722 cache->start_seq,
1723 dup_sack);
1724 }
1725
1726 /* Rest of the block already fully processed? */
1727 if (!after(end_seq, cache->end_seq))
1728 goto advance_sp;
1729
1730 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1731 state,
1732 cache->end_seq);
1733
1734 /* ...tail remains todo... */
1735 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1736 /* ...but better entrypoint exists! */
1737 skb = tcp_highest_sack(sk);
1738 if (!skb)
1739 break;
1740 state->fack_count = tp->fackets_out;
1741 cache++;
1742 goto walk;
1743 }
1744
1745 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1746 /* Check overlap against next cached too (past this one already) */
1747 cache++;
1748 continue;
1749 }
1750
1751 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1752 skb = tcp_highest_sack(sk);
1753 if (!skb)
1754 break;
1755 state->fack_count = tp->fackets_out;
1756 }
1757 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1758
1759 walk:
1760 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1761 start_seq, end_seq, dup_sack);
1762
1763 advance_sp:
1764 i++;
1765 }
1766
1767 /* Clear the head of the cache sack blocks so we can skip it next time */
1768 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1769 tp->recv_sack_cache[i].start_seq = 0;
1770 tp->recv_sack_cache[i].end_seq = 0;
1771 }
1772 for (j = 0; j < used_sacks; j++)
1773 tp->recv_sack_cache[i++] = sp[j];
1774
1775 if ((state->reord < tp->fackets_out) &&
1776 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1777 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1778
1779 tcp_verify_left_out(tp);
1780 out:
1781
1782 #if FASTRETRANS_DEBUG > 0
1783 WARN_ON((int)tp->sacked_out < 0);
1784 WARN_ON((int)tp->lost_out < 0);
1785 WARN_ON((int)tp->retrans_out < 0);
1786 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1787 #endif
1788 return state->flag;
1789 }
1790
1791 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1792 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1793 */
1794 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1795 {
1796 u32 holes;
1797
1798 holes = max(tp->lost_out, 1U);
1799 holes = min(holes, tp->packets_out);
1800
1801 if ((tp->sacked_out + holes) > tp->packets_out) {
1802 tp->sacked_out = tp->packets_out - holes;
1803 return true;
1804 }
1805 return false;
1806 }
1807
1808 /* If we receive more dupacks than we expected counting segments
1809 * in assumption of absent reordering, interpret this as reordering.
1810 * The only another reason could be bug in receiver TCP.
1811 */
1812 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1813 {
1814 struct tcp_sock *tp = tcp_sk(sk);
1815 if (tcp_limit_reno_sacked(tp))
1816 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1817 }
1818
1819 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1820
1821 static void tcp_add_reno_sack(struct sock *sk)
1822 {
1823 struct tcp_sock *tp = tcp_sk(sk);
1824 tp->sacked_out++;
1825 tcp_check_reno_reordering(sk, 0);
1826 tcp_verify_left_out(tp);
1827 }
1828
1829 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1830
1831 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1832 {
1833 struct tcp_sock *tp = tcp_sk(sk);
1834
1835 if (acked > 0) {
1836 /* One ACK acked hole. The rest eat duplicate ACKs. */
1837 if (acked - 1 >= tp->sacked_out)
1838 tp->sacked_out = 0;
1839 else
1840 tp->sacked_out -= acked - 1;
1841 }
1842 tcp_check_reno_reordering(sk, acked);
1843 tcp_verify_left_out(tp);
1844 }
1845
1846 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1847 {
1848 tp->sacked_out = 0;
1849 }
1850
1851 void tcp_clear_retrans(struct tcp_sock *tp)
1852 {
1853 tp->retrans_out = 0;
1854 tp->lost_out = 0;
1855 tp->undo_marker = 0;
1856 tp->undo_retrans = -1;
1857 tp->fackets_out = 0;
1858 tp->sacked_out = 0;
1859 }
1860
1861 static inline void tcp_init_undo(struct tcp_sock *tp)
1862 {
1863 tp->undo_marker = tp->snd_una;
1864 /* Retransmission still in flight may cause DSACKs later. */
1865 tp->undo_retrans = tp->retrans_out ? : -1;
1866 }
1867
1868 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1869 * and reset tags completely, otherwise preserve SACKs. If receiver
1870 * dropped its ofo queue, we will know this due to reneging detection.
1871 */
1872 void tcp_enter_loss(struct sock *sk)
1873 {
1874 const struct inet_connection_sock *icsk = inet_csk(sk);
1875 struct tcp_sock *tp = tcp_sk(sk);
1876 struct sk_buff *skb;
1877 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1878 bool is_reneg; /* is receiver reneging on SACKs? */
1879
1880 /* Reduce ssthresh if it has not yet been made inside this window. */
1881 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1882 !after(tp->high_seq, tp->snd_una) ||
1883 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1884 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1885 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1886 tcp_ca_event(sk, CA_EVENT_LOSS);
1887 tcp_init_undo(tp);
1888 }
1889 tp->snd_cwnd = 1;
1890 tp->snd_cwnd_cnt = 0;
1891 tp->snd_cwnd_stamp = tcp_time_stamp;
1892
1893 tp->retrans_out = 0;
1894 tp->lost_out = 0;
1895
1896 if (tcp_is_reno(tp))
1897 tcp_reset_reno_sack(tp);
1898
1899 skb = tcp_write_queue_head(sk);
1900 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1901 if (is_reneg) {
1902 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1903 tp->sacked_out = 0;
1904 tp->fackets_out = 0;
1905 }
1906 tcp_clear_all_retrans_hints(tp);
1907
1908 tcp_for_write_queue(skb, sk) {
1909 if (skb == tcp_send_head(sk))
1910 break;
1911
1912 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1913 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1914 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1915 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1916 tp->lost_out += tcp_skb_pcount(skb);
1917 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1918 }
1919 }
1920 tcp_verify_left_out(tp);
1921
1922 /* Timeout in disordered state after receiving substantial DUPACKs
1923 * suggests that the degree of reordering is over-estimated.
1924 */
1925 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1926 tp->sacked_out >= sysctl_tcp_reordering)
1927 tp->reordering = min_t(unsigned int, tp->reordering,
1928 sysctl_tcp_reordering);
1929 tcp_set_ca_state(sk, TCP_CA_Loss);
1930 tp->high_seq = tp->snd_nxt;
1931 tcp_ecn_queue_cwr(tp);
1932
1933 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1934 * loss recovery is underway except recurring timeout(s) on
1935 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1936 */
1937 tp->frto = sysctl_tcp_frto &&
1938 (new_recovery || icsk->icsk_retransmits) &&
1939 !inet_csk(sk)->icsk_mtup.probe_size;
1940 }
1941
1942 /* If ACK arrived pointing to a remembered SACK, it means that our
1943 * remembered SACKs do not reflect real state of receiver i.e.
1944 * receiver _host_ is heavily congested (or buggy).
1945 *
1946 * To avoid big spurious retransmission bursts due to transient SACK
1947 * scoreboard oddities that look like reneging, we give the receiver a
1948 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1949 * restore sanity to the SACK scoreboard. If the apparent reneging
1950 * persists until this RTO then we'll clear the SACK scoreboard.
1951 */
1952 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1953 {
1954 if (flag & FLAG_SACK_RENEGING) {
1955 struct tcp_sock *tp = tcp_sk(sk);
1956 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1957 msecs_to_jiffies(10));
1958
1959 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1960 delay, TCP_RTO_MAX);
1961 return true;
1962 }
1963 return false;
1964 }
1965
1966 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1967 {
1968 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1969 }
1970
1971 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1972 * counter when SACK is enabled (without SACK, sacked_out is used for
1973 * that purpose).
1974 *
1975 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1976 * segments up to the highest received SACK block so far and holes in
1977 * between them.
1978 *
1979 * With reordering, holes may still be in flight, so RFC3517 recovery
1980 * uses pure sacked_out (total number of SACKed segments) even though
1981 * it violates the RFC that uses duplicate ACKs, often these are equal
1982 * but when e.g. out-of-window ACKs or packet duplication occurs,
1983 * they differ. Since neither occurs due to loss, TCP should really
1984 * ignore them.
1985 */
1986 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1987 {
1988 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1989 }
1990
1991 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1992 {
1993 struct tcp_sock *tp = tcp_sk(sk);
1994 unsigned long delay;
1995
1996 /* Delay early retransmit and entering fast recovery for
1997 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1998 * available, or RTO is scheduled to fire first.
1999 */
2000 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2001 (flag & FLAG_ECE) || !tp->srtt_us)
2002 return false;
2003
2004 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2005 msecs_to_jiffies(2));
2006
2007 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2008 return false;
2009
2010 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2011 TCP_RTO_MAX);
2012 return true;
2013 }
2014
2015 /* Linux NewReno/SACK/FACK/ECN state machine.
2016 * --------------------------------------
2017 *
2018 * "Open" Normal state, no dubious events, fast path.
2019 * "Disorder" In all the respects it is "Open",
2020 * but requires a bit more attention. It is entered when
2021 * we see some SACKs or dupacks. It is split of "Open"
2022 * mainly to move some processing from fast path to slow one.
2023 * "CWR" CWND was reduced due to some Congestion Notification event.
2024 * It can be ECN, ICMP source quench, local device congestion.
2025 * "Recovery" CWND was reduced, we are fast-retransmitting.
2026 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2027 *
2028 * tcp_fastretrans_alert() is entered:
2029 * - each incoming ACK, if state is not "Open"
2030 * - when arrived ACK is unusual, namely:
2031 * * SACK
2032 * * Duplicate ACK.
2033 * * ECN ECE.
2034 *
2035 * Counting packets in flight is pretty simple.
2036 *
2037 * in_flight = packets_out - left_out + retrans_out
2038 *
2039 * packets_out is SND.NXT-SND.UNA counted in packets.
2040 *
2041 * retrans_out is number of retransmitted segments.
2042 *
2043 * left_out is number of segments left network, but not ACKed yet.
2044 *
2045 * left_out = sacked_out + lost_out
2046 *
2047 * sacked_out: Packets, which arrived to receiver out of order
2048 * and hence not ACKed. With SACKs this number is simply
2049 * amount of SACKed data. Even without SACKs
2050 * it is easy to give pretty reliable estimate of this number,
2051 * counting duplicate ACKs.
2052 *
2053 * lost_out: Packets lost by network. TCP has no explicit
2054 * "loss notification" feedback from network (for now).
2055 * It means that this number can be only _guessed_.
2056 * Actually, it is the heuristics to predict lossage that
2057 * distinguishes different algorithms.
2058 *
2059 * F.e. after RTO, when all the queue is considered as lost,
2060 * lost_out = packets_out and in_flight = retrans_out.
2061 *
2062 * Essentially, we have now two algorithms counting
2063 * lost packets.
2064 *
2065 * FACK: It is the simplest heuristics. As soon as we decided
2066 * that something is lost, we decide that _all_ not SACKed
2067 * packets until the most forward SACK are lost. I.e.
2068 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2069 * It is absolutely correct estimate, if network does not reorder
2070 * packets. And it loses any connection to reality when reordering
2071 * takes place. We use FACK by default until reordering
2072 * is suspected on the path to this destination.
2073 *
2074 * NewReno: when Recovery is entered, we assume that one segment
2075 * is lost (classic Reno). While we are in Recovery and
2076 * a partial ACK arrives, we assume that one more packet
2077 * is lost (NewReno). This heuristics are the same in NewReno
2078 * and SACK.
2079 *
2080 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2081 * deflation etc. CWND is real congestion window, never inflated, changes
2082 * only according to classic VJ rules.
2083 *
2084 * Really tricky (and requiring careful tuning) part of algorithm
2085 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2086 * The first determines the moment _when_ we should reduce CWND and,
2087 * hence, slow down forward transmission. In fact, it determines the moment
2088 * when we decide that hole is caused by loss, rather than by a reorder.
2089 *
2090 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2091 * holes, caused by lost packets.
2092 *
2093 * And the most logically complicated part of algorithm is undo
2094 * heuristics. We detect false retransmits due to both too early
2095 * fast retransmit (reordering) and underestimated RTO, analyzing
2096 * timestamps and D-SACKs. When we detect that some segments were
2097 * retransmitted by mistake and CWND reduction was wrong, we undo
2098 * window reduction and abort recovery phase. This logic is hidden
2099 * inside several functions named tcp_try_undo_<something>.
2100 */
2101
2102 /* This function decides, when we should leave Disordered state
2103 * and enter Recovery phase, reducing congestion window.
2104 *
2105 * Main question: may we further continue forward transmission
2106 * with the same cwnd?
2107 */
2108 static bool tcp_time_to_recover(struct sock *sk, int flag)
2109 {
2110 struct tcp_sock *tp = tcp_sk(sk);
2111 __u32 packets_out;
2112
2113 /* Trick#1: The loss is proven. */
2114 if (tp->lost_out)
2115 return true;
2116
2117 /* Not-A-Trick#2 : Classic rule... */
2118 if (tcp_dupack_heuristics(tp) > tp->reordering)
2119 return true;
2120
2121 /* Trick#4: It is still not OK... But will it be useful to delay
2122 * recovery more?
2123 */
2124 packets_out = tp->packets_out;
2125 if (packets_out <= tp->reordering &&
2126 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2127 !tcp_may_send_now(sk)) {
2128 /* We have nothing to send. This connection is limited
2129 * either by receiver window or by application.
2130 */
2131 return true;
2132 }
2133
2134 /* If a thin stream is detected, retransmit after first
2135 * received dupack. Employ only if SACK is supported in order
2136 * to avoid possible corner-case series of spurious retransmissions
2137 * Use only if there are no unsent data.
2138 */
2139 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2140 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2141 tcp_is_sack(tp) && !tcp_send_head(sk))
2142 return true;
2143
2144 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2145 * retransmissions due to small network reorderings, we implement
2146 * Mitigation A.3 in the RFC and delay the retransmission for a short
2147 * interval if appropriate.
2148 */
2149 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2150 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2151 !tcp_may_send_now(sk))
2152 return !tcp_pause_early_retransmit(sk, flag);
2153
2154 return false;
2155 }
2156
2157 /* Detect loss in event "A" above by marking head of queue up as lost.
2158 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2159 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2160 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2161 * the maximum SACKed segments to pass before reaching this limit.
2162 */
2163 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2164 {
2165 struct tcp_sock *tp = tcp_sk(sk);
2166 struct sk_buff *skb;
2167 int cnt, oldcnt;
2168 int err;
2169 unsigned int mss;
2170 /* Use SACK to deduce losses of new sequences sent during recovery */
2171 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2172
2173 WARN_ON(packets > tp->packets_out);
2174 if (tp->lost_skb_hint) {
2175 skb = tp->lost_skb_hint;
2176 cnt = tp->lost_cnt_hint;
2177 /* Head already handled? */
2178 if (mark_head && skb != tcp_write_queue_head(sk))
2179 return;
2180 } else {
2181 skb = tcp_write_queue_head(sk);
2182 cnt = 0;
2183 }
2184
2185 tcp_for_write_queue_from(skb, sk) {
2186 if (skb == tcp_send_head(sk))
2187 break;
2188 /* TODO: do this better */
2189 /* this is not the most efficient way to do this... */
2190 tp->lost_skb_hint = skb;
2191 tp->lost_cnt_hint = cnt;
2192
2193 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2194 break;
2195
2196 oldcnt = cnt;
2197 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2198 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2199 cnt += tcp_skb_pcount(skb);
2200
2201 if (cnt > packets) {
2202 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2203 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2204 (oldcnt >= packets))
2205 break;
2206
2207 mss = tcp_skb_mss(skb);
2208 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2209 mss, GFP_ATOMIC);
2210 if (err < 0)
2211 break;
2212 cnt = packets;
2213 }
2214
2215 tcp_skb_mark_lost(tp, skb);
2216
2217 if (mark_head)
2218 break;
2219 }
2220 tcp_verify_left_out(tp);
2221 }
2222
2223 /* Account newly detected lost packet(s) */
2224
2225 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2226 {
2227 struct tcp_sock *tp = tcp_sk(sk);
2228
2229 if (tcp_is_reno(tp)) {
2230 tcp_mark_head_lost(sk, 1, 1);
2231 } else if (tcp_is_fack(tp)) {
2232 int lost = tp->fackets_out - tp->reordering;
2233 if (lost <= 0)
2234 lost = 1;
2235 tcp_mark_head_lost(sk, lost, 0);
2236 } else {
2237 int sacked_upto = tp->sacked_out - tp->reordering;
2238 if (sacked_upto >= 0)
2239 tcp_mark_head_lost(sk, sacked_upto, 0);
2240 else if (fast_rexmit)
2241 tcp_mark_head_lost(sk, 1, 1);
2242 }
2243 }
2244
2245 /* CWND moderation, preventing bursts due to too big ACKs
2246 * in dubious situations.
2247 */
2248 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2249 {
2250 tp->snd_cwnd = min(tp->snd_cwnd,
2251 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2252 tp->snd_cwnd_stamp = tcp_time_stamp;
2253 }
2254
2255 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2256 {
2257 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2258 before(tp->rx_opt.rcv_tsecr, when);
2259 }
2260
2261 /* skb is spurious retransmitted if the returned timestamp echo
2262 * reply is prior to the skb transmission time
2263 */
2264 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2265 const struct sk_buff *skb)
2266 {
2267 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2268 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2269 }
2270
2271 /* Nothing was retransmitted or returned timestamp is less
2272 * than timestamp of the first retransmission.
2273 */
2274 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2275 {
2276 return !tp->retrans_stamp ||
2277 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2278 }
2279
2280 /* Undo procedures. */
2281
2282 /* We can clear retrans_stamp when there are no retransmissions in the
2283 * window. It would seem that it is trivially available for us in
2284 * tp->retrans_out, however, that kind of assumptions doesn't consider
2285 * what will happen if errors occur when sending retransmission for the
2286 * second time. ...It could the that such segment has only
2287 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2288 * the head skb is enough except for some reneging corner cases that
2289 * are not worth the effort.
2290 *
2291 * Main reason for all this complexity is the fact that connection dying
2292 * time now depends on the validity of the retrans_stamp, in particular,
2293 * that successive retransmissions of a segment must not advance
2294 * retrans_stamp under any conditions.
2295 */
2296 static bool tcp_any_retrans_done(const struct sock *sk)
2297 {
2298 const struct tcp_sock *tp = tcp_sk(sk);
2299 struct sk_buff *skb;
2300
2301 if (tp->retrans_out)
2302 return true;
2303
2304 skb = tcp_write_queue_head(sk);
2305 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2306 return true;
2307
2308 return false;
2309 }
2310
2311 #if FASTRETRANS_DEBUG > 1
2312 static void DBGUNDO(struct sock *sk, const char *msg)
2313 {
2314 struct tcp_sock *tp = tcp_sk(sk);
2315 struct inet_sock *inet = inet_sk(sk);
2316
2317 if (sk->sk_family == AF_INET) {
2318 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2319 msg,
2320 &inet->inet_daddr, ntohs(inet->inet_dport),
2321 tp->snd_cwnd, tcp_left_out(tp),
2322 tp->snd_ssthresh, tp->prior_ssthresh,
2323 tp->packets_out);
2324 }
2325 #if IS_ENABLED(CONFIG_IPV6)
2326 else if (sk->sk_family == AF_INET6) {
2327 struct ipv6_pinfo *np = inet6_sk(sk);
2328 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2329 msg,
2330 &np->daddr, ntohs(inet->inet_dport),
2331 tp->snd_cwnd, tcp_left_out(tp),
2332 tp->snd_ssthresh, tp->prior_ssthresh,
2333 tp->packets_out);
2334 }
2335 #endif
2336 }
2337 #else
2338 #define DBGUNDO(x...) do { } while (0)
2339 #endif
2340
2341 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2342 {
2343 struct tcp_sock *tp = tcp_sk(sk);
2344
2345 if (unmark_loss) {
2346 struct sk_buff *skb;
2347
2348 tcp_for_write_queue(skb, sk) {
2349 if (skb == tcp_send_head(sk))
2350 break;
2351 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2352 }
2353 tp->lost_out = 0;
2354 tcp_clear_all_retrans_hints(tp);
2355 }
2356
2357 if (tp->prior_ssthresh) {
2358 const struct inet_connection_sock *icsk = inet_csk(sk);
2359
2360 if (icsk->icsk_ca_ops->undo_cwnd)
2361 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2362 else
2363 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2364
2365 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2366 tp->snd_ssthresh = tp->prior_ssthresh;
2367 tcp_ecn_withdraw_cwr(tp);
2368 }
2369 } else {
2370 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2371 }
2372 tp->snd_cwnd_stamp = tcp_time_stamp;
2373 tp->undo_marker = 0;
2374 }
2375
2376 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2377 {
2378 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2379 }
2380
2381 /* People celebrate: "We love our President!" */
2382 static bool tcp_try_undo_recovery(struct sock *sk)
2383 {
2384 struct tcp_sock *tp = tcp_sk(sk);
2385
2386 if (tcp_may_undo(tp)) {
2387 int mib_idx;
2388
2389 /* Happy end! We did not retransmit anything
2390 * or our original transmission succeeded.
2391 */
2392 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2393 tcp_undo_cwnd_reduction(sk, false);
2394 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2395 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2396 else
2397 mib_idx = LINUX_MIB_TCPFULLUNDO;
2398
2399 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2400 }
2401 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2402 /* Hold old state until something *above* high_seq
2403 * is ACKed. For Reno it is MUST to prevent false
2404 * fast retransmits (RFC2582). SACK TCP is safe. */
2405 tcp_moderate_cwnd(tp);
2406 if (!tcp_any_retrans_done(sk))
2407 tp->retrans_stamp = 0;
2408 return true;
2409 }
2410 tcp_set_ca_state(sk, TCP_CA_Open);
2411 return false;
2412 }
2413
2414 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2415 static bool tcp_try_undo_dsack(struct sock *sk)
2416 {
2417 struct tcp_sock *tp = tcp_sk(sk);
2418
2419 if (tp->undo_marker && !tp->undo_retrans) {
2420 DBGUNDO(sk, "D-SACK");
2421 tcp_undo_cwnd_reduction(sk, false);
2422 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2423 return true;
2424 }
2425 return false;
2426 }
2427
2428 /* Undo during loss recovery after partial ACK or using F-RTO. */
2429 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2430 {
2431 struct tcp_sock *tp = tcp_sk(sk);
2432
2433 if (frto_undo || tcp_may_undo(tp)) {
2434 tcp_undo_cwnd_reduction(sk, true);
2435
2436 DBGUNDO(sk, "partial loss");
2437 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2438 if (frto_undo)
2439 NET_INC_STATS_BH(sock_net(sk),
2440 LINUX_MIB_TCPSPURIOUSRTOS);
2441 inet_csk(sk)->icsk_retransmits = 0;
2442 if (frto_undo || tcp_is_sack(tp))
2443 tcp_set_ca_state(sk, TCP_CA_Open);
2444 return true;
2445 }
2446 return false;
2447 }
2448
2449 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2450 * It computes the number of packets to send (sndcnt) based on packets newly
2451 * delivered:
2452 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2453 * cwnd reductions across a full RTT.
2454 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2455 * But when the retransmits are acked without further losses, PRR
2456 * slow starts cwnd up to ssthresh to speed up the recovery.
2457 */
2458 static void tcp_init_cwnd_reduction(struct sock *sk)
2459 {
2460 struct tcp_sock *tp = tcp_sk(sk);
2461
2462 tp->high_seq = tp->snd_nxt;
2463 tp->tlp_high_seq = 0;
2464 tp->snd_cwnd_cnt = 0;
2465 tp->prior_cwnd = tp->snd_cwnd;
2466 tp->prr_delivered = 0;
2467 tp->prr_out = 0;
2468 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2469 tcp_ecn_queue_cwr(tp);
2470 }
2471
2472 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2473 int fast_rexmit, int flag)
2474 {
2475 struct tcp_sock *tp = tcp_sk(sk);
2476 int sndcnt = 0;
2477 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2478 int newly_acked_sacked = prior_unsacked -
2479 (tp->packets_out - tp->sacked_out);
2480
2481 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2482 return;
2483
2484 tp->prr_delivered += newly_acked_sacked;
2485 if (delta < 0) {
2486 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2487 tp->prior_cwnd - 1;
2488 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2489 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2490 !(flag & FLAG_LOST_RETRANS)) {
2491 sndcnt = min_t(int, delta,
2492 max_t(int, tp->prr_delivered - tp->prr_out,
2493 newly_acked_sacked) + 1);
2494 } else {
2495 sndcnt = min(delta, newly_acked_sacked);
2496 }
2497 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2498 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2499 }
2500
2501 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2502 {
2503 struct tcp_sock *tp = tcp_sk(sk);
2504
2505 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2506 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2507 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2508 tp->snd_cwnd = tp->snd_ssthresh;
2509 tp->snd_cwnd_stamp = tcp_time_stamp;
2510 }
2511 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2512 }
2513
2514 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2515 void tcp_enter_cwr(struct sock *sk)
2516 {
2517 struct tcp_sock *tp = tcp_sk(sk);
2518
2519 tp->prior_ssthresh = 0;
2520 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2521 tp->undo_marker = 0;
2522 tcp_init_cwnd_reduction(sk);
2523 tcp_set_ca_state(sk, TCP_CA_CWR);
2524 }
2525 }
2526 EXPORT_SYMBOL(tcp_enter_cwr);
2527
2528 static void tcp_try_keep_open(struct sock *sk)
2529 {
2530 struct tcp_sock *tp = tcp_sk(sk);
2531 int state = TCP_CA_Open;
2532
2533 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2534 state = TCP_CA_Disorder;
2535
2536 if (inet_csk(sk)->icsk_ca_state != state) {
2537 tcp_set_ca_state(sk, state);
2538 tp->high_seq = tp->snd_nxt;
2539 }
2540 }
2541
2542 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2543 {
2544 struct tcp_sock *tp = tcp_sk(sk);
2545
2546 tcp_verify_left_out(tp);
2547
2548 if (!tcp_any_retrans_done(sk))
2549 tp->retrans_stamp = 0;
2550
2551 if (flag & FLAG_ECE)
2552 tcp_enter_cwr(sk);
2553
2554 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2555 tcp_try_keep_open(sk);
2556 } else {
2557 tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
2558 }
2559 }
2560
2561 static void tcp_mtup_probe_failed(struct sock *sk)
2562 {
2563 struct inet_connection_sock *icsk = inet_csk(sk);
2564
2565 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2566 icsk->icsk_mtup.probe_size = 0;
2567 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2568 }
2569
2570 static void tcp_mtup_probe_success(struct sock *sk)
2571 {
2572 struct tcp_sock *tp = tcp_sk(sk);
2573 struct inet_connection_sock *icsk = inet_csk(sk);
2574
2575 /* FIXME: breaks with very large cwnd */
2576 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2577 tp->snd_cwnd = tp->snd_cwnd *
2578 tcp_mss_to_mtu(sk, tp->mss_cache) /
2579 icsk->icsk_mtup.probe_size;
2580 tp->snd_cwnd_cnt = 0;
2581 tp->snd_cwnd_stamp = tcp_time_stamp;
2582 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2583
2584 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2585 icsk->icsk_mtup.probe_size = 0;
2586 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2587 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2588 }
2589
2590 /* Do a simple retransmit without using the backoff mechanisms in
2591 * tcp_timer. This is used for path mtu discovery.
2592 * The socket is already locked here.
2593 */
2594 void tcp_simple_retransmit(struct sock *sk)
2595 {
2596 const struct inet_connection_sock *icsk = inet_csk(sk);
2597 struct tcp_sock *tp = tcp_sk(sk);
2598 struct sk_buff *skb;
2599 unsigned int mss = tcp_current_mss(sk);
2600 u32 prior_lost = tp->lost_out;
2601
2602 tcp_for_write_queue(skb, sk) {
2603 if (skb == tcp_send_head(sk))
2604 break;
2605 if (tcp_skb_seglen(skb) > mss &&
2606 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2607 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2608 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2609 tp->retrans_out -= tcp_skb_pcount(skb);
2610 }
2611 tcp_skb_mark_lost_uncond_verify(tp, skb);
2612 }
2613 }
2614
2615 tcp_clear_retrans_hints_partial(tp);
2616
2617 if (prior_lost == tp->lost_out)
2618 return;
2619
2620 if (tcp_is_reno(tp))
2621 tcp_limit_reno_sacked(tp);
2622
2623 tcp_verify_left_out(tp);
2624
2625 /* Don't muck with the congestion window here.
2626 * Reason is that we do not increase amount of _data_
2627 * in network, but units changed and effective
2628 * cwnd/ssthresh really reduced now.
2629 */
2630 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2631 tp->high_seq = tp->snd_nxt;
2632 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2633 tp->prior_ssthresh = 0;
2634 tp->undo_marker = 0;
2635 tcp_set_ca_state(sk, TCP_CA_Loss);
2636 }
2637 tcp_xmit_retransmit_queue(sk);
2638 }
2639 EXPORT_SYMBOL(tcp_simple_retransmit);
2640
2641 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2642 {
2643 struct tcp_sock *tp = tcp_sk(sk);
2644 int mib_idx;
2645
2646 if (tcp_is_reno(tp))
2647 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2648 else
2649 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2650
2651 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2652
2653 tp->prior_ssthresh = 0;
2654 tcp_init_undo(tp);
2655
2656 if (!tcp_in_cwnd_reduction(sk)) {
2657 if (!ece_ack)
2658 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2659 tcp_init_cwnd_reduction(sk);
2660 }
2661 tcp_set_ca_state(sk, TCP_CA_Recovery);
2662 }
2663
2664 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2665 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2666 */
2667 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2668 {
2669 struct tcp_sock *tp = tcp_sk(sk);
2670 bool recovered = !before(tp->snd_una, tp->high_seq);
2671
2672 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2673 tcp_try_undo_loss(sk, false))
2674 return;
2675
2676 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2677 /* Step 3.b. A timeout is spurious if not all data are
2678 * lost, i.e., never-retransmitted data are (s)acked.
2679 */
2680 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2681 tcp_try_undo_loss(sk, true))
2682 return;
2683
2684 if (after(tp->snd_nxt, tp->high_seq)) {
2685 if (flag & FLAG_DATA_SACKED || is_dupack)
2686 tp->frto = 0; /* Step 3.a. loss was real */
2687 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2688 tp->high_seq = tp->snd_nxt;
2689 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2690 TCP_NAGLE_OFF);
2691 if (after(tp->snd_nxt, tp->high_seq))
2692 return; /* Step 2.b */
2693 tp->frto = 0;
2694 }
2695 }
2696
2697 if (recovered) {
2698 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2699 tcp_try_undo_recovery(sk);
2700 return;
2701 }
2702 if (tcp_is_reno(tp)) {
2703 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2704 * delivered. Lower inflight to clock out (re)tranmissions.
2705 */
2706 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2707 tcp_add_reno_sack(sk);
2708 else if (flag & FLAG_SND_UNA_ADVANCED)
2709 tcp_reset_reno_sack(tp);
2710 }
2711 tcp_xmit_retransmit_queue(sk);
2712 }
2713
2714 /* Undo during fast recovery after partial ACK. */
2715 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2716 const int prior_unsacked, int flag)
2717 {
2718 struct tcp_sock *tp = tcp_sk(sk);
2719
2720 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2721 /* Plain luck! Hole if filled with delayed
2722 * packet, rather than with a retransmit.
2723 */
2724 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2725
2726 /* We are getting evidence that the reordering degree is higher
2727 * than we realized. If there are no retransmits out then we
2728 * can undo. Otherwise we clock out new packets but do not
2729 * mark more packets lost or retransmit more.
2730 */
2731 if (tp->retrans_out) {
2732 tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
2733 return true;
2734 }
2735
2736 if (!tcp_any_retrans_done(sk))
2737 tp->retrans_stamp = 0;
2738
2739 DBGUNDO(sk, "partial recovery");
2740 tcp_undo_cwnd_reduction(sk, true);
2741 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2742 tcp_try_keep_open(sk);
2743 return true;
2744 }
2745 return false;
2746 }
2747
2748 /* Process an event, which can update packets-in-flight not trivially.
2749 * Main goal of this function is to calculate new estimate for left_out,
2750 * taking into account both packets sitting in receiver's buffer and
2751 * packets lost by network.
2752 *
2753 * Besides that it does CWND reduction, when packet loss is detected
2754 * and changes state of machine.
2755 *
2756 * It does _not_ decide what to send, it is made in function
2757 * tcp_xmit_retransmit_queue().
2758 */
2759 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2760 const int prior_unsacked,
2761 bool is_dupack, int flag)
2762 {
2763 struct inet_connection_sock *icsk = inet_csk(sk);
2764 struct tcp_sock *tp = tcp_sk(sk);
2765 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2766 (tcp_fackets_out(tp) > tp->reordering));
2767 int fast_rexmit = 0;
2768
2769 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2770 tp->sacked_out = 0;
2771 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2772 tp->fackets_out = 0;
2773
2774 /* Now state machine starts.
2775 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2776 if (flag & FLAG_ECE)
2777 tp->prior_ssthresh = 0;
2778
2779 /* B. In all the states check for reneging SACKs. */
2780 if (tcp_check_sack_reneging(sk, flag))
2781 return;
2782
2783 /* C. Check consistency of the current state. */
2784 tcp_verify_left_out(tp);
2785
2786 /* D. Check state exit conditions. State can be terminated
2787 * when high_seq is ACKed. */
2788 if (icsk->icsk_ca_state == TCP_CA_Open) {
2789 WARN_ON(tp->retrans_out != 0);
2790 tp->retrans_stamp = 0;
2791 } else if (!before(tp->snd_una, tp->high_seq)) {
2792 switch (icsk->icsk_ca_state) {
2793 case TCP_CA_CWR:
2794 /* CWR is to be held something *above* high_seq
2795 * is ACKed for CWR bit to reach receiver. */
2796 if (tp->snd_una != tp->high_seq) {
2797 tcp_end_cwnd_reduction(sk);
2798 tcp_set_ca_state(sk, TCP_CA_Open);
2799 }
2800 break;
2801
2802 case TCP_CA_Recovery:
2803 if (tcp_is_reno(tp))
2804 tcp_reset_reno_sack(tp);
2805 if (tcp_try_undo_recovery(sk))
2806 return;
2807 tcp_end_cwnd_reduction(sk);
2808 break;
2809 }
2810 }
2811
2812 /* Use RACK to detect loss */
2813 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2814 tcp_rack_mark_lost(sk))
2815 flag |= FLAG_LOST_RETRANS;
2816
2817 /* E. Process state. */
2818 switch (icsk->icsk_ca_state) {
2819 case TCP_CA_Recovery:
2820 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2821 if (tcp_is_reno(tp) && is_dupack)
2822 tcp_add_reno_sack(sk);
2823 } else {
2824 if (tcp_try_undo_partial(sk, acked, prior_unsacked, flag))
2825 return;
2826 /* Partial ACK arrived. Force fast retransmit. */
2827 do_lost = tcp_is_reno(tp) ||
2828 tcp_fackets_out(tp) > tp->reordering;
2829 }
2830 if (tcp_try_undo_dsack(sk)) {
2831 tcp_try_keep_open(sk);
2832 return;
2833 }
2834 break;
2835 case TCP_CA_Loss:
2836 tcp_process_loss(sk, flag, is_dupack);
2837 if (icsk->icsk_ca_state != TCP_CA_Open &&
2838 !(flag & FLAG_LOST_RETRANS))
2839 return;
2840 /* Change state if cwnd is undone or retransmits are lost */
2841 default:
2842 if (tcp_is_reno(tp)) {
2843 if (flag & FLAG_SND_UNA_ADVANCED)
2844 tcp_reset_reno_sack(tp);
2845 if (is_dupack)
2846 tcp_add_reno_sack(sk);
2847 }
2848
2849 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2850 tcp_try_undo_dsack(sk);
2851
2852 if (!tcp_time_to_recover(sk, flag)) {
2853 tcp_try_to_open(sk, flag, prior_unsacked);
2854 return;
2855 }
2856
2857 /* MTU probe failure: don't reduce cwnd */
2858 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2859 icsk->icsk_mtup.probe_size &&
2860 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2861 tcp_mtup_probe_failed(sk);
2862 /* Restores the reduction we did in tcp_mtup_probe() */
2863 tp->snd_cwnd++;
2864 tcp_simple_retransmit(sk);
2865 return;
2866 }
2867
2868 /* Otherwise enter Recovery state */
2869 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2870 fast_rexmit = 1;
2871 }
2872
2873 if (do_lost)
2874 tcp_update_scoreboard(sk, fast_rexmit);
2875 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit, flag);
2876 tcp_xmit_retransmit_queue(sk);
2877 }
2878
2879 /* Kathleen Nichols' algorithm for tracking the minimum value of
2880 * a data stream over some fixed time interval. (E.g., the minimum
2881 * RTT over the past five minutes.) It uses constant space and constant
2882 * time per update yet almost always delivers the same minimum as an
2883 * implementation that has to keep all the data in the window.
2884 *
2885 * The algorithm keeps track of the best, 2nd best & 3rd best min
2886 * values, maintaining an invariant that the measurement time of the
2887 * n'th best >= n-1'th best. It also makes sure that the three values
2888 * are widely separated in the time window since that bounds the worse
2889 * case error when that data is monotonically increasing over the window.
2890 *
2891 * Upon getting a new min, we can forget everything earlier because it
2892 * has no value - the new min is <= everything else in the window by
2893 * definition and it's the most recent. So we restart fresh on every new min
2894 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2895 * best.
2896 */
2897 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2898 {
2899 const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2900 struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2901 struct rtt_meas rttm = { .rtt = (rtt_us ? : 1), .ts = now };
2902 u32 elapsed;
2903
2904 /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2905 if (unlikely(rttm.rtt <= m[0].rtt))
2906 m[0] = m[1] = m[2] = rttm;
2907 else if (rttm.rtt <= m[1].rtt)
2908 m[1] = m[2] = rttm;
2909 else if (rttm.rtt <= m[2].rtt)
2910 m[2] = rttm;
2911
2912 elapsed = now - m[0].ts;
2913 if (unlikely(elapsed > wlen)) {
2914 /* Passed entire window without a new min so make 2nd choice
2915 * the new min & 3rd choice the new 2nd. So forth and so on.
2916 */
2917 m[0] = m[1];
2918 m[1] = m[2];
2919 m[2] = rttm;
2920 if (now - m[0].ts > wlen) {
2921 m[0] = m[1];
2922 m[1] = rttm;
2923 if (now - m[0].ts > wlen)
2924 m[0] = rttm;
2925 }
2926 } else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2927 /* Passed a quarter of the window without a new min so
2928 * take 2nd choice from the 2nd quarter of the window.
2929 */
2930 m[2] = m[1] = rttm;
2931 } else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2932 /* Passed half the window without a new min so take the 3rd
2933 * choice from the last half of the window.
2934 */
2935 m[2] = rttm;
2936 }
2937 }
2938
2939 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2940 long seq_rtt_us, long sack_rtt_us,
2941 long ca_rtt_us)
2942 {
2943 const struct tcp_sock *tp = tcp_sk(sk);
2944
2945 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2946 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2947 * Karn's algorithm forbids taking RTT if some retransmitted data
2948 * is acked (RFC6298).
2949 */
2950 if (seq_rtt_us < 0)
2951 seq_rtt_us = sack_rtt_us;
2952
2953 /* RTTM Rule: A TSecr value received in a segment is used to
2954 * update the averaged RTT measurement only if the segment
2955 * acknowledges some new data, i.e., only if it advances the
2956 * left edge of the send window.
2957 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2958 */
2959 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2960 flag & FLAG_ACKED)
2961 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2962 tp->rx_opt.rcv_tsecr);
2963 if (seq_rtt_us < 0)
2964 return false;
2965
2966 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2967 * always taken together with ACK, SACK, or TS-opts. Any negative
2968 * values will be skipped with the seq_rtt_us < 0 check above.
2969 */
2970 tcp_update_rtt_min(sk, ca_rtt_us);
2971 tcp_rtt_estimator(sk, seq_rtt_us);
2972 tcp_set_rto(sk);
2973
2974 /* RFC6298: only reset backoff on valid RTT measurement. */
2975 inet_csk(sk)->icsk_backoff = 0;
2976 return true;
2977 }
2978
2979 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2980 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2981 {
2982 long rtt_us = -1L;
2983
2984 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2985 struct skb_mstamp now;
2986
2987 skb_mstamp_get(&now);
2988 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2989 }
2990
2991 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2992 }
2993
2994
2995 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2996 {
2997 const struct inet_connection_sock *icsk = inet_csk(sk);
2998
2999 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3000 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3001 }
3002
3003 /* Restart timer after forward progress on connection.
3004 * RFC2988 recommends to restart timer to now+rto.
3005 */
3006 void tcp_rearm_rto(struct sock *sk)
3007 {
3008 const struct inet_connection_sock *icsk = inet_csk(sk);
3009 struct tcp_sock *tp = tcp_sk(sk);
3010
3011 /* If the retrans timer is currently being used by Fast Open
3012 * for SYN-ACK retrans purpose, stay put.
3013 */
3014 if (tp->fastopen_rsk)
3015 return;
3016
3017 if (!tp->packets_out) {
3018 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3019 } else {
3020 u32 rto = inet_csk(sk)->icsk_rto;
3021 /* Offset the time elapsed after installing regular RTO */
3022 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3023 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3024 struct sk_buff *skb = tcp_write_queue_head(sk);
3025 const u32 rto_time_stamp =
3026 tcp_skb_timestamp(skb) + rto;
3027 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3028 /* delta may not be positive if the socket is locked
3029 * when the retrans timer fires and is rescheduled.
3030 */
3031 if (delta > 0)
3032 rto = delta;
3033 }
3034 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3035 TCP_RTO_MAX);
3036 }
3037 }
3038
3039 /* This function is called when the delayed ER timer fires. TCP enters
3040 * fast recovery and performs fast-retransmit.
3041 */
3042 void tcp_resume_early_retransmit(struct sock *sk)
3043 {
3044 struct tcp_sock *tp = tcp_sk(sk);
3045
3046 tcp_rearm_rto(sk);
3047
3048 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3049 if (!tp->do_early_retrans)
3050 return;
3051
3052 tcp_enter_recovery(sk, false);
3053 tcp_update_scoreboard(sk, 1);
3054 tcp_xmit_retransmit_queue(sk);
3055 }
3056
3057 /* If we get here, the whole TSO packet has not been acked. */
3058 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3059 {
3060 struct tcp_sock *tp = tcp_sk(sk);
3061 u32 packets_acked;
3062
3063 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3064
3065 packets_acked = tcp_skb_pcount(skb);
3066 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3067 return 0;
3068 packets_acked -= tcp_skb_pcount(skb);
3069
3070 if (packets_acked) {
3071 BUG_ON(tcp_skb_pcount(skb) == 0);
3072 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3073 }
3074
3075 return packets_acked;
3076 }
3077
3078 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3079 u32 prior_snd_una)
3080 {
3081 const struct skb_shared_info *shinfo;
3082
3083 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3084 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3085 return;
3086
3087 shinfo = skb_shinfo(skb);
3088 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3089 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3090 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3091 }
3092
3093 /* Remove acknowledged frames from the retransmission queue. If our packet
3094 * is before the ack sequence we can discard it as it's confirmed to have
3095 * arrived at the other end.
3096 */
3097 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3098 u32 prior_snd_una,
3099 struct tcp_sacktag_state *sack)
3100 {
3101 const struct inet_connection_sock *icsk = inet_csk(sk);
3102 struct skb_mstamp first_ackt, last_ackt, now;
3103 struct tcp_sock *tp = tcp_sk(sk);
3104 u32 prior_sacked = tp->sacked_out;
3105 u32 reord = tp->packets_out;
3106 bool fully_acked = true;
3107 long sack_rtt_us = -1L;
3108 long seq_rtt_us = -1L;
3109 long ca_rtt_us = -1L;
3110 struct sk_buff *skb;
3111 u32 pkts_acked = 0;
3112 bool rtt_update;
3113 int flag = 0;
3114
3115 first_ackt.v64 = 0;
3116
3117 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3118 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3119 u8 sacked = scb->sacked;
3120 u32 acked_pcount;
3121
3122 tcp_ack_tstamp(sk, skb, prior_snd_una);
3123
3124 /* Determine how many packets and what bytes were acked, tso and else */
3125 if (after(scb->end_seq, tp->snd_una)) {
3126 if (tcp_skb_pcount(skb) == 1 ||
3127 !after(tp->snd_una, scb->seq))
3128 break;
3129
3130 acked_pcount = tcp_tso_acked(sk, skb);
3131 if (!acked_pcount)
3132 break;
3133
3134 fully_acked = false;
3135 } else {
3136 /* Speedup tcp_unlink_write_queue() and next loop */
3137 prefetchw(skb->next);
3138 acked_pcount = tcp_skb_pcount(skb);
3139 }
3140
3141 if (unlikely(sacked & TCPCB_RETRANS)) {
3142 if (sacked & TCPCB_SACKED_RETRANS)
3143 tp->retrans_out -= acked_pcount;
3144 flag |= FLAG_RETRANS_DATA_ACKED;
3145 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3146 last_ackt = skb->skb_mstamp;
3147 WARN_ON_ONCE(last_ackt.v64 == 0);
3148 if (!first_ackt.v64)
3149 first_ackt = last_ackt;
3150
3151 reord = min(pkts_acked, reord);
3152 if (!after(scb->end_seq, tp->high_seq))
3153 flag |= FLAG_ORIG_SACK_ACKED;
3154 }
3155
3156 if (sacked & TCPCB_SACKED_ACKED)
3157 tp->sacked_out -= acked_pcount;
3158 else if (tcp_is_sack(tp) && !tcp_skb_spurious_retrans(tp, skb))
3159 tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3160 if (sacked & TCPCB_LOST)
3161 tp->lost_out -= acked_pcount;
3162
3163 tp->packets_out -= acked_pcount;
3164 pkts_acked += acked_pcount;
3165
3166 /* Initial outgoing SYN's get put onto the write_queue
3167 * just like anything else we transmit. It is not
3168 * true data, and if we misinform our callers that
3169 * this ACK acks real data, we will erroneously exit
3170 * connection startup slow start one packet too
3171 * quickly. This is severely frowned upon behavior.
3172 */
3173 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3174 flag |= FLAG_DATA_ACKED;
3175 } else {
3176 flag |= FLAG_SYN_ACKED;
3177 tp->retrans_stamp = 0;
3178 }
3179
3180 if (!fully_acked)
3181 break;
3182
3183 tcp_unlink_write_queue(skb, sk);
3184 sk_wmem_free_skb(sk, skb);
3185 if (unlikely(skb == tp->retransmit_skb_hint))
3186 tp->retransmit_skb_hint = NULL;
3187 if (unlikely(skb == tp->lost_skb_hint))
3188 tp->lost_skb_hint = NULL;
3189 }
3190
3191 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3192 tp->snd_up = tp->snd_una;
3193
3194 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3195 flag |= FLAG_SACK_RENEGING;
3196
3197 skb_mstamp_get(&now);
3198 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3199 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3200 ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3201 }
3202 if (sack->first_sackt.v64) {
3203 sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3204 ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3205 }
3206
3207 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3208 ca_rtt_us);
3209
3210 if (flag & FLAG_ACKED) {
3211 tcp_rearm_rto(sk);
3212 if (unlikely(icsk->icsk_mtup.probe_size &&
3213 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3214 tcp_mtup_probe_success(sk);
3215 }
3216
3217 if (tcp_is_reno(tp)) {
3218 tcp_remove_reno_sacks(sk, pkts_acked);
3219 } else {
3220 int delta;
3221
3222 /* Non-retransmitted hole got filled? That's reordering */
3223 if (reord < prior_fackets)
3224 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3225
3226 delta = tcp_is_fack(tp) ? pkts_acked :
3227 prior_sacked - tp->sacked_out;
3228 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3229 }
3230
3231 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3232
3233 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3234 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3235 /* Do not re-arm RTO if the sack RTT is measured from data sent
3236 * after when the head was last (re)transmitted. Otherwise the
3237 * timeout may continue to extend in loss recovery.
3238 */
3239 tcp_rearm_rto(sk);
3240 }
3241
3242 if (icsk->icsk_ca_ops->pkts_acked)
3243 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
3244
3245 #if FASTRETRANS_DEBUG > 0
3246 WARN_ON((int)tp->sacked_out < 0);
3247 WARN_ON((int)tp->lost_out < 0);
3248 WARN_ON((int)tp->retrans_out < 0);
3249 if (!tp->packets_out && tcp_is_sack(tp)) {
3250 icsk = inet_csk(sk);
3251 if (tp->lost_out) {
3252 pr_debug("Leak l=%u %d\n",
3253 tp->lost_out, icsk->icsk_ca_state);
3254 tp->lost_out = 0;
3255 }
3256 if (tp->sacked_out) {
3257 pr_debug("Leak s=%u %d\n",
3258 tp->sacked_out, icsk->icsk_ca_state);
3259 tp->sacked_out = 0;
3260 }
3261 if (tp->retrans_out) {
3262 pr_debug("Leak r=%u %d\n",
3263 tp->retrans_out, icsk->icsk_ca_state);
3264 tp->retrans_out = 0;
3265 }
3266 }
3267 #endif
3268 return flag;
3269 }
3270
3271 static void tcp_ack_probe(struct sock *sk)
3272 {
3273 const struct tcp_sock *tp = tcp_sk(sk);
3274 struct inet_connection_sock *icsk = inet_csk(sk);
3275
3276 /* Was it a usable window open? */
3277
3278 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3279 icsk->icsk_backoff = 0;
3280 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3281 /* Socket must be waked up by subsequent tcp_data_snd_check().
3282 * This function is not for random using!
3283 */
3284 } else {
3285 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3286
3287 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3288 when, TCP_RTO_MAX);
3289 }
3290 }
3291
3292 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3293 {
3294 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3295 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3296 }
3297
3298 /* Decide wheather to run the increase function of congestion control. */
3299 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3300 {
3301 if (tcp_in_cwnd_reduction(sk))
3302 return false;
3303
3304 /* If reordering is high then always grow cwnd whenever data is
3305 * delivered regardless of its ordering. Otherwise stay conservative
3306 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3307 * new SACK or ECE mark may first advance cwnd here and later reduce
3308 * cwnd in tcp_fastretrans_alert() based on more states.
3309 */
3310 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3311 return flag & FLAG_FORWARD_PROGRESS;
3312
3313 return flag & FLAG_DATA_ACKED;
3314 }
3315
3316 /* Check that window update is acceptable.
3317 * The function assumes that snd_una<=ack<=snd_next.
3318 */
3319 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3320 const u32 ack, const u32 ack_seq,
3321 const u32 nwin)
3322 {
3323 return after(ack, tp->snd_una) ||
3324 after(ack_seq, tp->snd_wl1) ||
3325 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3326 }
3327
3328 /* If we update tp->snd_una, also update tp->bytes_acked */
3329 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3330 {
3331 u32 delta = ack - tp->snd_una;
3332
3333 u64_stats_update_begin(&tp->syncp);
3334 tp->bytes_acked += delta;
3335 u64_stats_update_end(&tp->syncp);
3336 tp->snd_una = ack;
3337 }
3338
3339 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3340 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3341 {
3342 u32 delta = seq - tp->rcv_nxt;
3343
3344 u64_stats_update_begin(&tp->syncp);
3345 tp->bytes_received += delta;
3346 u64_stats_update_end(&tp->syncp);
3347 tp->rcv_nxt = seq;
3348 }
3349
3350 /* Update our send window.
3351 *
3352 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3353 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3354 */
3355 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3356 u32 ack_seq)
3357 {
3358 struct tcp_sock *tp = tcp_sk(sk);
3359 int flag = 0;
3360 u32 nwin = ntohs(tcp_hdr(skb)->window);
3361
3362 if (likely(!tcp_hdr(skb)->syn))
3363 nwin <<= tp->rx_opt.snd_wscale;
3364
3365 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3366 flag |= FLAG_WIN_UPDATE;
3367 tcp_update_wl(tp, ack_seq);
3368
3369 if (tp->snd_wnd != nwin) {
3370 tp->snd_wnd = nwin;
3371
3372 /* Note, it is the only place, where
3373 * fast path is recovered for sending TCP.
3374 */
3375 tp->pred_flags = 0;
3376 tcp_fast_path_check(sk);
3377
3378 if (tcp_send_head(sk))
3379 tcp_slow_start_after_idle_check(sk);
3380
3381 if (nwin > tp->max_window) {
3382 tp->max_window = nwin;
3383 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3384 }
3385 }
3386 }
3387
3388 tcp_snd_una_update(tp, ack);
3389
3390 return flag;
3391 }
3392
3393 /* Return true if we're currently rate-limiting out-of-window ACKs and
3394 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3395 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3396 * attacks that send repeated SYNs or ACKs for the same connection. To
3397 * do this, we do not send a duplicate SYNACK or ACK if the remote
3398 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3399 */
3400 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3401 int mib_idx, u32 *last_oow_ack_time)
3402 {
3403 /* Data packets without SYNs are not likely part of an ACK loop. */
3404 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3405 !tcp_hdr(skb)->syn)
3406 goto not_rate_limited;
3407
3408 if (*last_oow_ack_time) {
3409 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3410
3411 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3412 NET_INC_STATS_BH(net, mib_idx);
3413 return true; /* rate-limited: don't send yet! */
3414 }
3415 }
3416
3417 *last_oow_ack_time = tcp_time_stamp;
3418
3419 not_rate_limited:
3420 return false; /* not rate-limited: go ahead, send dupack now! */
3421 }
3422
3423 /* RFC 5961 7 [ACK Throttling] */
3424 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3425 {
3426 /* unprotected vars, we dont care of overwrites */
3427 static u32 challenge_timestamp;
3428 static unsigned int challenge_count;
3429 struct tcp_sock *tp = tcp_sk(sk);
3430 u32 now;
3431
3432 /* First check our per-socket dupack rate limit. */
3433 if (tcp_oow_rate_limited(sock_net(sk), skb,
3434 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3435 &tp->last_oow_ack_time))
3436 return;
3437
3438 /* Then check the check host-wide RFC 5961 rate limit. */
3439 now = jiffies / HZ;
3440 if (now != challenge_timestamp) {
3441 challenge_timestamp = now;
3442 challenge_count = 0;
3443 }
3444 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3445 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3446 tcp_send_ack(sk);
3447 }
3448 }
3449
3450 static void tcp_store_ts_recent(struct tcp_sock *tp)
3451 {
3452 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3453 tp->rx_opt.ts_recent_stamp = get_seconds();
3454 }
3455
3456 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3457 {
3458 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3459 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3460 * extra check below makes sure this can only happen
3461 * for pure ACK frames. -DaveM
3462 *
3463 * Not only, also it occurs for expired timestamps.
3464 */
3465
3466 if (tcp_paws_check(&tp->rx_opt, 0))
3467 tcp_store_ts_recent(tp);
3468 }
3469 }
3470
3471 /* This routine deals with acks during a TLP episode.
3472 * We mark the end of a TLP episode on receiving TLP dupack or when
3473 * ack is after tlp_high_seq.
3474 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3475 */
3476 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3477 {
3478 struct tcp_sock *tp = tcp_sk(sk);
3479
3480 if (before(ack, tp->tlp_high_seq))
3481 return;
3482
3483 if (flag & FLAG_DSACKING_ACK) {
3484 /* This DSACK means original and TLP probe arrived; no loss */
3485 tp->tlp_high_seq = 0;
3486 } else if (after(ack, tp->tlp_high_seq)) {
3487 /* ACK advances: there was a loss, so reduce cwnd. Reset
3488 * tlp_high_seq in tcp_init_cwnd_reduction()
3489 */
3490 tcp_init_cwnd_reduction(sk);
3491 tcp_set_ca_state(sk, TCP_CA_CWR);
3492 tcp_end_cwnd_reduction(sk);
3493 tcp_try_keep_open(sk);
3494 NET_INC_STATS_BH(sock_net(sk),
3495 LINUX_MIB_TCPLOSSPROBERECOVERY);
3496 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3497 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3498 /* Pure dupack: original and TLP probe arrived; no loss */
3499 tp->tlp_high_seq = 0;
3500 }
3501 }
3502
3503 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3504 {
3505 const struct inet_connection_sock *icsk = inet_csk(sk);
3506
3507 if (icsk->icsk_ca_ops->in_ack_event)
3508 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3509 }
3510
3511 /* This routine deals with incoming acks, but not outgoing ones. */
3512 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3513 {
3514 struct inet_connection_sock *icsk = inet_csk(sk);
3515 struct tcp_sock *tp = tcp_sk(sk);
3516 struct tcp_sacktag_state sack_state;
3517 u32 prior_snd_una = tp->snd_una;
3518 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3519 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3520 bool is_dupack = false;
3521 u32 prior_fackets;
3522 int prior_packets = tp->packets_out;
3523 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3524 int acked = 0; /* Number of packets newly acked */
3525
3526 sack_state.first_sackt.v64 = 0;
3527
3528 /* We very likely will need to access write queue head. */
3529 prefetchw(sk->sk_write_queue.next);
3530
3531 /* If the ack is older than previous acks
3532 * then we can probably ignore it.
3533 */
3534 if (before(ack, prior_snd_una)) {
3535 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3536 if (before(ack, prior_snd_una - tp->max_window)) {
3537 tcp_send_challenge_ack(sk, skb);
3538 return -1;
3539 }
3540 goto old_ack;
3541 }
3542
3543 /* If the ack includes data we haven't sent yet, discard
3544 * this segment (RFC793 Section 3.9).
3545 */
3546 if (after(ack, tp->snd_nxt))
3547 goto invalid_ack;
3548
3549 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3550 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3551 tcp_rearm_rto(sk);
3552
3553 if (after(ack, prior_snd_una)) {
3554 flag |= FLAG_SND_UNA_ADVANCED;
3555 icsk->icsk_retransmits = 0;
3556 }
3557
3558 prior_fackets = tp->fackets_out;
3559
3560 /* ts_recent update must be made after we are sure that the packet
3561 * is in window.
3562 */
3563 if (flag & FLAG_UPDATE_TS_RECENT)
3564 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3565
3566 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3567 /* Window is constant, pure forward advance.
3568 * No more checks are required.
3569 * Note, we use the fact that SND.UNA>=SND.WL2.
3570 */
3571 tcp_update_wl(tp, ack_seq);
3572 tcp_snd_una_update(tp, ack);
3573 flag |= FLAG_WIN_UPDATE;
3574
3575 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3576
3577 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3578 } else {
3579 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3580
3581 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3582 flag |= FLAG_DATA;
3583 else
3584 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3585
3586 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3587
3588 if (TCP_SKB_CB(skb)->sacked)
3589 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3590 &sack_state);
3591
3592 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3593 flag |= FLAG_ECE;
3594 ack_ev_flags |= CA_ACK_ECE;
3595 }
3596
3597 if (flag & FLAG_WIN_UPDATE)
3598 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3599
3600 tcp_in_ack_event(sk, ack_ev_flags);
3601 }
3602
3603 /* We passed data and got it acked, remove any soft error
3604 * log. Something worked...
3605 */
3606 sk->sk_err_soft = 0;
3607 icsk->icsk_probes_out = 0;
3608 tp->rcv_tstamp = tcp_time_stamp;
3609 if (!prior_packets)
3610 goto no_queue;
3611
3612 /* See if we can take anything off of the retransmit queue. */
3613 acked = tp->packets_out;
3614 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3615 &sack_state);
3616 acked -= tp->packets_out;
3617
3618 if (tcp_ack_is_dubious(sk, flag)) {
3619 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3620 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3621 is_dupack, flag);
3622 }
3623 if (tp->tlp_high_seq)
3624 tcp_process_tlp_ack(sk, ack, flag);
3625
3626 /* Advance cwnd if state allows */
3627 if (tcp_may_raise_cwnd(sk, flag))
3628 tcp_cong_avoid(sk, ack, acked);
3629
3630 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3631 struct dst_entry *dst = __sk_dst_get(sk);
3632 if (dst)
3633 dst_confirm(dst);
3634 }
3635
3636 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3637 tcp_schedule_loss_probe(sk);
3638 tcp_update_pacing_rate(sk);
3639 return 1;
3640
3641 no_queue:
3642 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3643 if (flag & FLAG_DSACKING_ACK)
3644 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3645 is_dupack, flag);
3646 /* If this ack opens up a zero window, clear backoff. It was
3647 * being used to time the probes, and is probably far higher than
3648 * it needs to be for normal retransmission.
3649 */
3650 if (tcp_send_head(sk))
3651 tcp_ack_probe(sk);
3652
3653 if (tp->tlp_high_seq)
3654 tcp_process_tlp_ack(sk, ack, flag);
3655 return 1;
3656
3657 invalid_ack:
3658 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3659 return -1;
3660
3661 old_ack:
3662 /* If data was SACKed, tag it and see if we should send more data.
3663 * If data was DSACKed, see if we can undo a cwnd reduction.
3664 */
3665 if (TCP_SKB_CB(skb)->sacked) {
3666 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3667 &sack_state);
3668 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3669 is_dupack, flag);
3670 }
3671
3672 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3673 return 0;
3674 }
3675
3676 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3677 bool syn, struct tcp_fastopen_cookie *foc,
3678 bool exp_opt)
3679 {
3680 /* Valid only in SYN or SYN-ACK with an even length. */
3681 if (!foc || !syn || len < 0 || (len & 1))
3682 return;
3683
3684 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3685 len <= TCP_FASTOPEN_COOKIE_MAX)
3686 memcpy(foc->val, cookie, len);
3687 else if (len != 0)
3688 len = -1;
3689 foc->len = len;
3690 foc->exp = exp_opt;
3691 }
3692
3693 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3694 * But, this can also be called on packets in the established flow when
3695 * the fast version below fails.
3696 */
3697 void tcp_parse_options(const struct sk_buff *skb,
3698 struct tcp_options_received *opt_rx, int estab,
3699 struct tcp_fastopen_cookie *foc)
3700 {
3701 const unsigned char *ptr;
3702 const struct tcphdr *th = tcp_hdr(skb);
3703 int length = (th->doff * 4) - sizeof(struct tcphdr);
3704
3705 ptr = (const unsigned char *)(th + 1);
3706 opt_rx->saw_tstamp = 0;
3707
3708 while (length > 0) {
3709 int opcode = *ptr++;
3710 int opsize;
3711
3712 switch (opcode) {
3713 case TCPOPT_EOL:
3714 return;
3715 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3716 length--;
3717 continue;
3718 default:
3719 opsize = *ptr++;
3720 if (opsize < 2) /* "silly options" */
3721 return;
3722 if (opsize > length)
3723 return; /* don't parse partial options */
3724 switch (opcode) {
3725 case TCPOPT_MSS:
3726 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3727 u16 in_mss = get_unaligned_be16(ptr);
3728 if (in_mss) {
3729 if (opt_rx->user_mss &&
3730 opt_rx->user_mss < in_mss)
3731 in_mss = opt_rx->user_mss;
3732 opt_rx->mss_clamp = in_mss;
3733 }
3734 }
3735 break;
3736 case TCPOPT_WINDOW:
3737 if (opsize == TCPOLEN_WINDOW && th->syn &&
3738 !estab && sysctl_tcp_window_scaling) {
3739 __u8 snd_wscale = *(__u8 *)ptr;
3740 opt_rx->wscale_ok = 1;
3741 if (snd_wscale > 14) {
3742 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3743 __func__,
3744 snd_wscale);
3745 snd_wscale = 14;
3746 }
3747 opt_rx->snd_wscale = snd_wscale;
3748 }
3749 break;
3750 case TCPOPT_TIMESTAMP:
3751 if ((opsize == TCPOLEN_TIMESTAMP) &&
3752 ((estab && opt_rx->tstamp_ok) ||
3753 (!estab && sysctl_tcp_timestamps))) {
3754 opt_rx->saw_tstamp = 1;
3755 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3756 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3757 }
3758 break;
3759 case TCPOPT_SACK_PERM:
3760 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3761 !estab && sysctl_tcp_sack) {
3762 opt_rx->sack_ok = TCP_SACK_SEEN;
3763 tcp_sack_reset(opt_rx);
3764 }
3765 break;
3766
3767 case TCPOPT_SACK:
3768 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3769 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3770 opt_rx->sack_ok) {
3771 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3772 }
3773 break;
3774 #ifdef CONFIG_TCP_MD5SIG
3775 case TCPOPT_MD5SIG:
3776 /*
3777 * The MD5 Hash has already been
3778 * checked (see tcp_v{4,6}_do_rcv()).
3779 */
3780 break;
3781 #endif
3782 case TCPOPT_FASTOPEN:
3783 tcp_parse_fastopen_option(
3784 opsize - TCPOLEN_FASTOPEN_BASE,
3785 ptr, th->syn, foc, false);
3786 break;
3787
3788 case TCPOPT_EXP:
3789 /* Fast Open option shares code 254 using a
3790 * 16 bits magic number.
3791 */
3792 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3793 get_unaligned_be16(ptr) ==
3794 TCPOPT_FASTOPEN_MAGIC)
3795 tcp_parse_fastopen_option(opsize -
3796 TCPOLEN_EXP_FASTOPEN_BASE,
3797 ptr + 2, th->syn, foc, true);
3798 break;
3799
3800 }
3801 ptr += opsize-2;
3802 length -= opsize;
3803 }
3804 }
3805 }
3806 EXPORT_SYMBOL(tcp_parse_options);
3807
3808 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3809 {
3810 const __be32 *ptr = (const __be32 *)(th + 1);
3811
3812 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3813 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3814 tp->rx_opt.saw_tstamp = 1;
3815 ++ptr;
3816 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3817 ++ptr;
3818 if (*ptr)
3819 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3820 else
3821 tp->rx_opt.rcv_tsecr = 0;
3822 return true;
3823 }
3824 return false;
3825 }
3826
3827 /* Fast parse options. This hopes to only see timestamps.
3828 * If it is wrong it falls back on tcp_parse_options().
3829 */
3830 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3831 const struct tcphdr *th, struct tcp_sock *tp)
3832 {
3833 /* In the spirit of fast parsing, compare doff directly to constant
3834 * values. Because equality is used, short doff can be ignored here.
3835 */
3836 if (th->doff == (sizeof(*th) / 4)) {
3837 tp->rx_opt.saw_tstamp = 0;
3838 return false;
3839 } else if (tp->rx_opt.tstamp_ok &&
3840 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3841 if (tcp_parse_aligned_timestamp(tp, th))
3842 return true;
3843 }
3844
3845 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3846 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3847 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3848
3849 return true;
3850 }
3851
3852 #ifdef CONFIG_TCP_MD5SIG
3853 /*
3854 * Parse MD5 Signature option
3855 */
3856 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3857 {
3858 int length = (th->doff << 2) - sizeof(*th);
3859 const u8 *ptr = (const u8 *)(th + 1);
3860
3861 /* If the TCP option is too short, we can short cut */
3862 if (length < TCPOLEN_MD5SIG)
3863 return NULL;
3864
3865 while (length > 0) {
3866 int opcode = *ptr++;
3867 int opsize;
3868
3869 switch (opcode) {
3870 case TCPOPT_EOL:
3871 return NULL;
3872 case TCPOPT_NOP:
3873 length--;
3874 continue;
3875 default:
3876 opsize = *ptr++;
3877 if (opsize < 2 || opsize > length)
3878 return NULL;
3879 if (opcode == TCPOPT_MD5SIG)
3880 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3881 }
3882 ptr += opsize - 2;
3883 length -= opsize;
3884 }
3885 return NULL;
3886 }
3887 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3888 #endif
3889
3890 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3891 *
3892 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3893 * it can pass through stack. So, the following predicate verifies that
3894 * this segment is not used for anything but congestion avoidance or
3895 * fast retransmit. Moreover, we even are able to eliminate most of such
3896 * second order effects, if we apply some small "replay" window (~RTO)
3897 * to timestamp space.
3898 *
3899 * All these measures still do not guarantee that we reject wrapped ACKs
3900 * on networks with high bandwidth, when sequence space is recycled fastly,
3901 * but it guarantees that such events will be very rare and do not affect
3902 * connection seriously. This doesn't look nice, but alas, PAWS is really
3903 * buggy extension.
3904 *
3905 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3906 * states that events when retransmit arrives after original data are rare.
3907 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3908 * the biggest problem on large power networks even with minor reordering.
3909 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3910 * up to bandwidth of 18Gigabit/sec. 8) ]
3911 */
3912
3913 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3914 {
3915 const struct tcp_sock *tp = tcp_sk(sk);
3916 const struct tcphdr *th = tcp_hdr(skb);
3917 u32 seq = TCP_SKB_CB(skb)->seq;
3918 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3919
3920 return (/* 1. Pure ACK with correct sequence number. */
3921 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3922
3923 /* 2. ... and duplicate ACK. */
3924 ack == tp->snd_una &&
3925
3926 /* 3. ... and does not update window. */
3927 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3928
3929 /* 4. ... and sits in replay window. */
3930 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3931 }
3932
3933 static inline bool tcp_paws_discard(const struct sock *sk,
3934 const struct sk_buff *skb)
3935 {
3936 const struct tcp_sock *tp = tcp_sk(sk);
3937
3938 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3939 !tcp_disordered_ack(sk, skb);
3940 }
3941
3942 /* Check segment sequence number for validity.
3943 *
3944 * Segment controls are considered valid, if the segment
3945 * fits to the window after truncation to the window. Acceptability
3946 * of data (and SYN, FIN, of course) is checked separately.
3947 * See tcp_data_queue(), for example.
3948 *
3949 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3950 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3951 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3952 * (borrowed from freebsd)
3953 */
3954
3955 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3956 {
3957 return !before(end_seq, tp->rcv_wup) &&
3958 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3959 }
3960
3961 /* When we get a reset we do this. */
3962 void tcp_reset(struct sock *sk)
3963 {
3964 /* We want the right error as BSD sees it (and indeed as we do). */
3965 switch (sk->sk_state) {
3966 case TCP_SYN_SENT:
3967 sk->sk_err = ECONNREFUSED;
3968 break;
3969 case TCP_CLOSE_WAIT:
3970 sk->sk_err = EPIPE;
3971 break;
3972 case TCP_CLOSE:
3973 return;
3974 default:
3975 sk->sk_err = ECONNRESET;
3976 }
3977 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3978 smp_wmb();
3979
3980 if (!sock_flag(sk, SOCK_DEAD))
3981 sk->sk_error_report(sk);
3982
3983 tcp_done(sk);
3984 }
3985
3986 /*
3987 * Process the FIN bit. This now behaves as it is supposed to work
3988 * and the FIN takes effect when it is validly part of sequence
3989 * space. Not before when we get holes.
3990 *
3991 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3992 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3993 * TIME-WAIT)
3994 *
3995 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3996 * close and we go into CLOSING (and later onto TIME-WAIT)
3997 *
3998 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3999 */
4000 static void tcp_fin(struct sock *sk)
4001 {
4002 struct tcp_sock *tp = tcp_sk(sk);
4003
4004 inet_csk_schedule_ack(sk);
4005
4006 sk->sk_shutdown |= RCV_SHUTDOWN;
4007 sock_set_flag(sk, SOCK_DONE);
4008
4009 switch (sk->sk_state) {
4010 case TCP_SYN_RECV:
4011 case TCP_ESTABLISHED:
4012 /* Move to CLOSE_WAIT */
4013 tcp_set_state(sk, TCP_CLOSE_WAIT);
4014 inet_csk(sk)->icsk_ack.pingpong = 1;
4015 break;
4016
4017 case TCP_CLOSE_WAIT:
4018 case TCP_CLOSING:
4019 /* Received a retransmission of the FIN, do
4020 * nothing.
4021 */
4022 break;
4023 case TCP_LAST_ACK:
4024 /* RFC793: Remain in the LAST-ACK state. */
4025 break;
4026
4027 case TCP_FIN_WAIT1:
4028 /* This case occurs when a simultaneous close
4029 * happens, we must ack the received FIN and
4030 * enter the CLOSING state.
4031 */
4032 tcp_send_ack(sk);
4033 tcp_set_state(sk, TCP_CLOSING);
4034 break;
4035 case TCP_FIN_WAIT2:
4036 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4037 tcp_send_ack(sk);
4038 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4039 break;
4040 default:
4041 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4042 * cases we should never reach this piece of code.
4043 */
4044 pr_err("%s: Impossible, sk->sk_state=%d\n",
4045 __func__, sk->sk_state);
4046 break;
4047 }
4048
4049 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4050 * Probably, we should reset in this case. For now drop them.
4051 */
4052 __skb_queue_purge(&tp->out_of_order_queue);
4053 if (tcp_is_sack(tp))
4054 tcp_sack_reset(&tp->rx_opt);
4055 sk_mem_reclaim(sk);
4056
4057 if (!sock_flag(sk, SOCK_DEAD)) {
4058 sk->sk_state_change(sk);
4059
4060 /* Do not send POLL_HUP for half duplex close. */
4061 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4062 sk->sk_state == TCP_CLOSE)
4063 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4064 else
4065 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4066 }
4067 }
4068
4069 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4070 u32 end_seq)
4071 {
4072 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4073 if (before(seq, sp->start_seq))
4074 sp->start_seq = seq;
4075 if (after(end_seq, sp->end_seq))
4076 sp->end_seq = end_seq;
4077 return true;
4078 }
4079 return false;
4080 }
4081
4082 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4083 {
4084 struct tcp_sock *tp = tcp_sk(sk);
4085
4086 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4087 int mib_idx;
4088
4089 if (before(seq, tp->rcv_nxt))
4090 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4091 else
4092 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4093
4094 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4095
4096 tp->rx_opt.dsack = 1;
4097 tp->duplicate_sack[0].start_seq = seq;
4098 tp->duplicate_sack[0].end_seq = end_seq;
4099 }
4100 }
4101
4102 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4103 {
4104 struct tcp_sock *tp = tcp_sk(sk);
4105
4106 if (!tp->rx_opt.dsack)
4107 tcp_dsack_set(sk, seq, end_seq);
4108 else
4109 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4110 }
4111
4112 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4113 {
4114 struct tcp_sock *tp = tcp_sk(sk);
4115
4116 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4117 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4118 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4119 tcp_enter_quickack_mode(sk);
4120
4121 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4122 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4123
4124 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4125 end_seq = tp->rcv_nxt;
4126 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4127 }
4128 }
4129
4130 tcp_send_ack(sk);
4131 }
4132
4133 /* These routines update the SACK block as out-of-order packets arrive or
4134 * in-order packets close up the sequence space.
4135 */
4136 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4137 {
4138 int this_sack;
4139 struct tcp_sack_block *sp = &tp->selective_acks[0];
4140 struct tcp_sack_block *swalk = sp + 1;
4141
4142 /* See if the recent change to the first SACK eats into
4143 * or hits the sequence space of other SACK blocks, if so coalesce.
4144 */
4145 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4146 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4147 int i;
4148
4149 /* Zap SWALK, by moving every further SACK up by one slot.
4150 * Decrease num_sacks.
4151 */
4152 tp->rx_opt.num_sacks--;
4153 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4154 sp[i] = sp[i + 1];
4155 continue;
4156 }
4157 this_sack++, swalk++;
4158 }
4159 }
4160
4161 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4162 {
4163 struct tcp_sock *tp = tcp_sk(sk);
4164 struct tcp_sack_block *sp = &tp->selective_acks[0];
4165 int cur_sacks = tp->rx_opt.num_sacks;
4166 int this_sack;
4167
4168 if (!cur_sacks)
4169 goto new_sack;
4170
4171 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4172 if (tcp_sack_extend(sp, seq, end_seq)) {
4173 /* Rotate this_sack to the first one. */
4174 for (; this_sack > 0; this_sack--, sp--)
4175 swap(*sp, *(sp - 1));
4176 if (cur_sacks > 1)
4177 tcp_sack_maybe_coalesce(tp);
4178 return;
4179 }
4180 }
4181
4182 /* Could not find an adjacent existing SACK, build a new one,
4183 * put it at the front, and shift everyone else down. We
4184 * always know there is at least one SACK present already here.
4185 *
4186 * If the sack array is full, forget about the last one.
4187 */
4188 if (this_sack >= TCP_NUM_SACKS) {
4189 this_sack--;
4190 tp->rx_opt.num_sacks--;
4191 sp--;
4192 }
4193 for (; this_sack > 0; this_sack--, sp--)
4194 *sp = *(sp - 1);
4195
4196 new_sack:
4197 /* Build the new head SACK, and we're done. */
4198 sp->start_seq = seq;
4199 sp->end_seq = end_seq;
4200 tp->rx_opt.num_sacks++;
4201 }
4202
4203 /* RCV.NXT advances, some SACKs should be eaten. */
4204
4205 static void tcp_sack_remove(struct tcp_sock *tp)
4206 {
4207 struct tcp_sack_block *sp = &tp->selective_acks[0];
4208 int num_sacks = tp->rx_opt.num_sacks;
4209 int this_sack;
4210
4211 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4212 if (skb_queue_empty(&tp->out_of_order_queue)) {
4213 tp->rx_opt.num_sacks = 0;
4214 return;
4215 }
4216
4217 for (this_sack = 0; this_sack < num_sacks;) {
4218 /* Check if the start of the sack is covered by RCV.NXT. */
4219 if (!before(tp->rcv_nxt, sp->start_seq)) {
4220 int i;
4221
4222 /* RCV.NXT must cover all the block! */
4223 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4224
4225 /* Zap this SACK, by moving forward any other SACKS. */
4226 for (i = this_sack+1; i < num_sacks; i++)
4227 tp->selective_acks[i-1] = tp->selective_acks[i];
4228 num_sacks--;
4229 continue;
4230 }
4231 this_sack++;
4232 sp++;
4233 }
4234 tp->rx_opt.num_sacks = num_sacks;
4235 }
4236
4237 /**
4238 * tcp_try_coalesce - try to merge skb to prior one
4239 * @sk: socket
4240 * @to: prior buffer
4241 * @from: buffer to add in queue
4242 * @fragstolen: pointer to boolean
4243 *
4244 * Before queueing skb @from after @to, try to merge them
4245 * to reduce overall memory use and queue lengths, if cost is small.
4246 * Packets in ofo or receive queues can stay a long time.
4247 * Better try to coalesce them right now to avoid future collapses.
4248 * Returns true if caller should free @from instead of queueing it
4249 */
4250 static bool tcp_try_coalesce(struct sock *sk,
4251 struct sk_buff *to,
4252 struct sk_buff *from,
4253 bool *fragstolen)
4254 {
4255 int delta;
4256
4257 *fragstolen = false;
4258
4259 /* Its possible this segment overlaps with prior segment in queue */
4260 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4261 return false;
4262
4263 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4264 return false;
4265
4266 atomic_add(delta, &sk->sk_rmem_alloc);
4267 sk_mem_charge(sk, delta);
4268 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4269 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4270 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4271 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4272 return true;
4273 }
4274
4275 /* This one checks to see if we can put data from the
4276 * out_of_order queue into the receive_queue.
4277 */
4278 static void tcp_ofo_queue(struct sock *sk)
4279 {
4280 struct tcp_sock *tp = tcp_sk(sk);
4281 __u32 dsack_high = tp->rcv_nxt;
4282 struct sk_buff *skb, *tail;
4283 bool fragstolen, eaten;
4284
4285 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4286 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4287 break;
4288
4289 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4290 __u32 dsack = dsack_high;
4291 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4292 dsack_high = TCP_SKB_CB(skb)->end_seq;
4293 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4294 }
4295
4296 __skb_unlink(skb, &tp->out_of_order_queue);
4297 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4298 SOCK_DEBUG(sk, "ofo packet was already received\n");
4299 __kfree_skb(skb);
4300 continue;
4301 }
4302 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4303 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4304 TCP_SKB_CB(skb)->end_seq);
4305
4306 tail = skb_peek_tail(&sk->sk_receive_queue);
4307 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4308 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4309 if (!eaten)
4310 __skb_queue_tail(&sk->sk_receive_queue, skb);
4311 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4312 tcp_fin(sk);
4313 if (eaten)
4314 kfree_skb_partial(skb, fragstolen);
4315 }
4316 }
4317
4318 static bool tcp_prune_ofo_queue(struct sock *sk);
4319 static int tcp_prune_queue(struct sock *sk);
4320
4321 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4322 unsigned int size)
4323 {
4324 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4325 !sk_rmem_schedule(sk, skb, size)) {
4326
4327 if (tcp_prune_queue(sk) < 0)
4328 return -1;
4329
4330 if (!sk_rmem_schedule(sk, skb, size)) {
4331 if (!tcp_prune_ofo_queue(sk))
4332 return -1;
4333
4334 if (!sk_rmem_schedule(sk, skb, size))
4335 return -1;
4336 }
4337 }
4338 return 0;
4339 }
4340
4341 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4342 {
4343 struct tcp_sock *tp = tcp_sk(sk);
4344 struct sk_buff *skb1;
4345 u32 seq, end_seq;
4346
4347 tcp_ecn_check_ce(tp, skb);
4348
4349 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4350 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4351 __kfree_skb(skb);
4352 return;
4353 }
4354
4355 /* Disable header prediction. */
4356 tp->pred_flags = 0;
4357 inet_csk_schedule_ack(sk);
4358
4359 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4360 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4361 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4362
4363 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4364 if (!skb1) {
4365 /* Initial out of order segment, build 1 SACK. */
4366 if (tcp_is_sack(tp)) {
4367 tp->rx_opt.num_sacks = 1;
4368 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4369 tp->selective_acks[0].end_seq =
4370 TCP_SKB_CB(skb)->end_seq;
4371 }
4372 __skb_queue_head(&tp->out_of_order_queue, skb);
4373 goto end;
4374 }
4375
4376 seq = TCP_SKB_CB(skb)->seq;
4377 end_seq = TCP_SKB_CB(skb)->end_seq;
4378
4379 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4380 bool fragstolen;
4381
4382 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4383 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4384 } else {
4385 tcp_grow_window(sk, skb);
4386 kfree_skb_partial(skb, fragstolen);
4387 skb = NULL;
4388 }
4389
4390 if (!tp->rx_opt.num_sacks ||
4391 tp->selective_acks[0].end_seq != seq)
4392 goto add_sack;
4393
4394 /* Common case: data arrive in order after hole. */
4395 tp->selective_acks[0].end_seq = end_seq;
4396 goto end;
4397 }
4398
4399 /* Find place to insert this segment. */
4400 while (1) {
4401 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4402 break;
4403 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4404 skb1 = NULL;
4405 break;
4406 }
4407 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4408 }
4409
4410 /* Do skb overlap to previous one? */
4411 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4412 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4413 /* All the bits are present. Drop. */
4414 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4415 __kfree_skb(skb);
4416 skb = NULL;
4417 tcp_dsack_set(sk, seq, end_seq);
4418 goto add_sack;
4419 }
4420 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4421 /* Partial overlap. */
4422 tcp_dsack_set(sk, seq,
4423 TCP_SKB_CB(skb1)->end_seq);
4424 } else {
4425 if (skb_queue_is_first(&tp->out_of_order_queue,
4426 skb1))
4427 skb1 = NULL;
4428 else
4429 skb1 = skb_queue_prev(
4430 &tp->out_of_order_queue,
4431 skb1);
4432 }
4433 }
4434 if (!skb1)
4435 __skb_queue_head(&tp->out_of_order_queue, skb);
4436 else
4437 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4438
4439 /* And clean segments covered by new one as whole. */
4440 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4441 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4442
4443 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4444 break;
4445 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4446 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4447 end_seq);
4448 break;
4449 }
4450 __skb_unlink(skb1, &tp->out_of_order_queue);
4451 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4452 TCP_SKB_CB(skb1)->end_seq);
4453 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4454 __kfree_skb(skb1);
4455 }
4456
4457 add_sack:
4458 if (tcp_is_sack(tp))
4459 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4460 end:
4461 if (skb) {
4462 tcp_grow_window(sk, skb);
4463 skb_set_owner_r(skb, sk);
4464 }
4465 }
4466
4467 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4468 bool *fragstolen)
4469 {
4470 int eaten;
4471 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4472
4473 __skb_pull(skb, hdrlen);
4474 eaten = (tail &&
4475 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4476 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4477 if (!eaten) {
4478 __skb_queue_tail(&sk->sk_receive_queue, skb);
4479 skb_set_owner_r(skb, sk);
4480 }
4481 return eaten;
4482 }
4483
4484 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4485 {
4486 struct sk_buff *skb;
4487 int err = -ENOMEM;
4488 int data_len = 0;
4489 bool fragstolen;
4490
4491 if (size == 0)
4492 return 0;
4493
4494 if (size > PAGE_SIZE) {
4495 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4496
4497 data_len = npages << PAGE_SHIFT;
4498 size = data_len + (size & ~PAGE_MASK);
4499 }
4500 skb = alloc_skb_with_frags(size - data_len, data_len,
4501 PAGE_ALLOC_COSTLY_ORDER,
4502 &err, sk->sk_allocation);
4503 if (!skb)
4504 goto err;
4505
4506 skb_put(skb, size - data_len);
4507 skb->data_len = data_len;
4508 skb->len = size;
4509
4510 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4511 goto err_free;
4512
4513 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4514 if (err)
4515 goto err_free;
4516
4517 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4518 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4519 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4520
4521 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4522 WARN_ON_ONCE(fragstolen); /* should not happen */
4523 __kfree_skb(skb);
4524 }
4525 return size;
4526
4527 err_free:
4528 kfree_skb(skb);
4529 err:
4530 return err;
4531
4532 }
4533
4534 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4535 {
4536 struct tcp_sock *tp = tcp_sk(sk);
4537 int eaten = -1;
4538 bool fragstolen = false;
4539
4540 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4541 goto drop;
4542
4543 skb_dst_drop(skb);
4544 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4545
4546 tcp_ecn_accept_cwr(tp, skb);
4547
4548 tp->rx_opt.dsack = 0;
4549
4550 /* Queue data for delivery to the user.
4551 * Packets in sequence go to the receive queue.
4552 * Out of sequence packets to the out_of_order_queue.
4553 */
4554 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4555 if (tcp_receive_window(tp) == 0)
4556 goto out_of_window;
4557
4558 /* Ok. In sequence. In window. */
4559 if (tp->ucopy.task == current &&
4560 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4561 sock_owned_by_user(sk) && !tp->urg_data) {
4562 int chunk = min_t(unsigned int, skb->len,
4563 tp->ucopy.len);
4564
4565 __set_current_state(TASK_RUNNING);
4566
4567 local_bh_enable();
4568 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4569 tp->ucopy.len -= chunk;
4570 tp->copied_seq += chunk;
4571 eaten = (chunk == skb->len);
4572 tcp_rcv_space_adjust(sk);
4573 }
4574 local_bh_disable();
4575 }
4576
4577 if (eaten <= 0) {
4578 queue_and_out:
4579 if (eaten < 0) {
4580 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4581 sk_forced_mem_schedule(sk, skb->truesize);
4582 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4583 goto drop;
4584 }
4585 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4586 }
4587 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4588 if (skb->len)
4589 tcp_event_data_recv(sk, skb);
4590 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4591 tcp_fin(sk);
4592
4593 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4594 tcp_ofo_queue(sk);
4595
4596 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4597 * gap in queue is filled.
4598 */
4599 if (skb_queue_empty(&tp->out_of_order_queue))
4600 inet_csk(sk)->icsk_ack.pingpong = 0;
4601 }
4602
4603 if (tp->rx_opt.num_sacks)
4604 tcp_sack_remove(tp);
4605
4606 tcp_fast_path_check(sk);
4607
4608 if (eaten > 0)
4609 kfree_skb_partial(skb, fragstolen);
4610 if (!sock_flag(sk, SOCK_DEAD))
4611 sk->sk_data_ready(sk);
4612 return;
4613 }
4614
4615 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4616 /* A retransmit, 2nd most common case. Force an immediate ack. */
4617 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4618 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4619
4620 out_of_window:
4621 tcp_enter_quickack_mode(sk);
4622 inet_csk_schedule_ack(sk);
4623 drop:
4624 __kfree_skb(skb);
4625 return;
4626 }
4627
4628 /* Out of window. F.e. zero window probe. */
4629 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4630 goto out_of_window;
4631
4632 tcp_enter_quickack_mode(sk);
4633
4634 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4635 /* Partial packet, seq < rcv_next < end_seq */
4636 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4637 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4638 TCP_SKB_CB(skb)->end_seq);
4639
4640 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4641
4642 /* If window is closed, drop tail of packet. But after
4643 * remembering D-SACK for its head made in previous line.
4644 */
4645 if (!tcp_receive_window(tp))
4646 goto out_of_window;
4647 goto queue_and_out;
4648 }
4649
4650 tcp_data_queue_ofo(sk, skb);
4651 }
4652
4653 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4654 struct sk_buff_head *list)
4655 {
4656 struct sk_buff *next = NULL;
4657
4658 if (!skb_queue_is_last(list, skb))
4659 next = skb_queue_next(list, skb);
4660
4661 __skb_unlink(skb, list);
4662 __kfree_skb(skb);
4663 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4664
4665 return next;
4666 }
4667
4668 /* Collapse contiguous sequence of skbs head..tail with
4669 * sequence numbers start..end.
4670 *
4671 * If tail is NULL, this means until the end of the list.
4672 *
4673 * Segments with FIN/SYN are not collapsed (only because this
4674 * simplifies code)
4675 */
4676 static void
4677 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4678 struct sk_buff *head, struct sk_buff *tail,
4679 u32 start, u32 end)
4680 {
4681 struct sk_buff *skb, *n;
4682 bool end_of_skbs;
4683
4684 /* First, check that queue is collapsible and find
4685 * the point where collapsing can be useful. */
4686 skb = head;
4687 restart:
4688 end_of_skbs = true;
4689 skb_queue_walk_from_safe(list, skb, n) {
4690 if (skb == tail)
4691 break;
4692 /* No new bits? It is possible on ofo queue. */
4693 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4694 skb = tcp_collapse_one(sk, skb, list);
4695 if (!skb)
4696 break;
4697 goto restart;
4698 }
4699
4700 /* The first skb to collapse is:
4701 * - not SYN/FIN and
4702 * - bloated or contains data before "start" or
4703 * overlaps to the next one.
4704 */
4705 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4706 (tcp_win_from_space(skb->truesize) > skb->len ||
4707 before(TCP_SKB_CB(skb)->seq, start))) {
4708 end_of_skbs = false;
4709 break;
4710 }
4711
4712 if (!skb_queue_is_last(list, skb)) {
4713 struct sk_buff *next = skb_queue_next(list, skb);
4714 if (next != tail &&
4715 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4716 end_of_skbs = false;
4717 break;
4718 }
4719 }
4720
4721 /* Decided to skip this, advance start seq. */
4722 start = TCP_SKB_CB(skb)->end_seq;
4723 }
4724 if (end_of_skbs ||
4725 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4726 return;
4727
4728 while (before(start, end)) {
4729 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4730 struct sk_buff *nskb;
4731
4732 nskb = alloc_skb(copy, GFP_ATOMIC);
4733 if (!nskb)
4734 return;
4735
4736 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4737 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4738 __skb_queue_before(list, skb, nskb);
4739 skb_set_owner_r(nskb, sk);
4740
4741 /* Copy data, releasing collapsed skbs. */
4742 while (copy > 0) {
4743 int offset = start - TCP_SKB_CB(skb)->seq;
4744 int size = TCP_SKB_CB(skb)->end_seq - start;
4745
4746 BUG_ON(offset < 0);
4747 if (size > 0) {
4748 size = min(copy, size);
4749 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4750 BUG();
4751 TCP_SKB_CB(nskb)->end_seq += size;
4752 copy -= size;
4753 start += size;
4754 }
4755 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4756 skb = tcp_collapse_one(sk, skb, list);
4757 if (!skb ||
4758 skb == tail ||
4759 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4760 return;
4761 }
4762 }
4763 }
4764 }
4765
4766 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4767 * and tcp_collapse() them until all the queue is collapsed.
4768 */
4769 static void tcp_collapse_ofo_queue(struct sock *sk)
4770 {
4771 struct tcp_sock *tp = tcp_sk(sk);
4772 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4773 struct sk_buff *head;
4774 u32 start, end;
4775
4776 if (!skb)
4777 return;
4778
4779 start = TCP_SKB_CB(skb)->seq;
4780 end = TCP_SKB_CB(skb)->end_seq;
4781 head = skb;
4782
4783 for (;;) {
4784 struct sk_buff *next = NULL;
4785
4786 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4787 next = skb_queue_next(&tp->out_of_order_queue, skb);
4788 skb = next;
4789
4790 /* Segment is terminated when we see gap or when
4791 * we are at the end of all the queue. */
4792 if (!skb ||
4793 after(TCP_SKB_CB(skb)->seq, end) ||
4794 before(TCP_SKB_CB(skb)->end_seq, start)) {
4795 tcp_collapse(sk, &tp->out_of_order_queue,
4796 head, skb, start, end);
4797 head = skb;
4798 if (!skb)
4799 break;
4800 /* Start new segment */
4801 start = TCP_SKB_CB(skb)->seq;
4802 end = TCP_SKB_CB(skb)->end_seq;
4803 } else {
4804 if (before(TCP_SKB_CB(skb)->seq, start))
4805 start = TCP_SKB_CB(skb)->seq;
4806 if (after(TCP_SKB_CB(skb)->end_seq, end))
4807 end = TCP_SKB_CB(skb)->end_seq;
4808 }
4809 }
4810 }
4811
4812 /*
4813 * Purge the out-of-order queue.
4814 * Return true if queue was pruned.
4815 */
4816 static bool tcp_prune_ofo_queue(struct sock *sk)
4817 {
4818 struct tcp_sock *tp = tcp_sk(sk);
4819 bool res = false;
4820
4821 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4822 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4823 __skb_queue_purge(&tp->out_of_order_queue);
4824
4825 /* Reset SACK state. A conforming SACK implementation will
4826 * do the same at a timeout based retransmit. When a connection
4827 * is in a sad state like this, we care only about integrity
4828 * of the connection not performance.
4829 */
4830 if (tp->rx_opt.sack_ok)
4831 tcp_sack_reset(&tp->rx_opt);
4832 sk_mem_reclaim(sk);
4833 res = true;
4834 }
4835 return res;
4836 }
4837
4838 /* Reduce allocated memory if we can, trying to get
4839 * the socket within its memory limits again.
4840 *
4841 * Return less than zero if we should start dropping frames
4842 * until the socket owning process reads some of the data
4843 * to stabilize the situation.
4844 */
4845 static int tcp_prune_queue(struct sock *sk)
4846 {
4847 struct tcp_sock *tp = tcp_sk(sk);
4848
4849 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4850
4851 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4852
4853 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4854 tcp_clamp_window(sk);
4855 else if (tcp_under_memory_pressure(sk))
4856 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4857
4858 tcp_collapse_ofo_queue(sk);
4859 if (!skb_queue_empty(&sk->sk_receive_queue))
4860 tcp_collapse(sk, &sk->sk_receive_queue,
4861 skb_peek(&sk->sk_receive_queue),
4862 NULL,
4863 tp->copied_seq, tp->rcv_nxt);
4864 sk_mem_reclaim(sk);
4865
4866 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4867 return 0;
4868
4869 /* Collapsing did not help, destructive actions follow.
4870 * This must not ever occur. */
4871
4872 tcp_prune_ofo_queue(sk);
4873
4874 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4875 return 0;
4876
4877 /* If we are really being abused, tell the caller to silently
4878 * drop receive data on the floor. It will get retransmitted
4879 * and hopefully then we'll have sufficient space.
4880 */
4881 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4882
4883 /* Massive buffer overcommit. */
4884 tp->pred_flags = 0;
4885 return -1;
4886 }
4887
4888 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4889 {
4890 const struct tcp_sock *tp = tcp_sk(sk);
4891
4892 /* If the user specified a specific send buffer setting, do
4893 * not modify it.
4894 */
4895 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4896 return false;
4897
4898 /* If we are under global TCP memory pressure, do not expand. */
4899 if (tcp_under_memory_pressure(sk))
4900 return false;
4901
4902 /* If we are under soft global TCP memory pressure, do not expand. */
4903 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4904 return false;
4905
4906 /* If we filled the congestion window, do not expand. */
4907 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4908 return false;
4909
4910 return true;
4911 }
4912
4913 /* When incoming ACK allowed to free some skb from write_queue,
4914 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4915 * on the exit from tcp input handler.
4916 *
4917 * PROBLEM: sndbuf expansion does not work well with largesend.
4918 */
4919 static void tcp_new_space(struct sock *sk)
4920 {
4921 struct tcp_sock *tp = tcp_sk(sk);
4922
4923 if (tcp_should_expand_sndbuf(sk)) {
4924 tcp_sndbuf_expand(sk);
4925 tp->snd_cwnd_stamp = tcp_time_stamp;
4926 }
4927
4928 sk->sk_write_space(sk);
4929 }
4930
4931 static void tcp_check_space(struct sock *sk)
4932 {
4933 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4934 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4935 /* pairs with tcp_poll() */
4936 smp_mb__after_atomic();
4937 if (sk->sk_socket &&
4938 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4939 tcp_new_space(sk);
4940 }
4941 }
4942
4943 static inline void tcp_data_snd_check(struct sock *sk)
4944 {
4945 tcp_push_pending_frames(sk);
4946 tcp_check_space(sk);
4947 }
4948
4949 /*
4950 * Check if sending an ack is needed.
4951 */
4952 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4953 {
4954 struct tcp_sock *tp = tcp_sk(sk);
4955
4956 /* More than one full frame received... */
4957 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4958 /* ... and right edge of window advances far enough.
4959 * (tcp_recvmsg() will send ACK otherwise). Or...
4960 */
4961 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4962 /* We ACK each frame or... */
4963 tcp_in_quickack_mode(sk) ||
4964 /* We have out of order data. */
4965 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4966 /* Then ack it now */
4967 tcp_send_ack(sk);
4968 } else {
4969 /* Else, send delayed ack. */
4970 tcp_send_delayed_ack(sk);
4971 }
4972 }
4973
4974 static inline void tcp_ack_snd_check(struct sock *sk)
4975 {
4976 if (!inet_csk_ack_scheduled(sk)) {
4977 /* We sent a data segment already. */
4978 return;
4979 }
4980 __tcp_ack_snd_check(sk, 1);
4981 }
4982
4983 /*
4984 * This routine is only called when we have urgent data
4985 * signaled. Its the 'slow' part of tcp_urg. It could be
4986 * moved inline now as tcp_urg is only called from one
4987 * place. We handle URGent data wrong. We have to - as
4988 * BSD still doesn't use the correction from RFC961.
4989 * For 1003.1g we should support a new option TCP_STDURG to permit
4990 * either form (or just set the sysctl tcp_stdurg).
4991 */
4992
4993 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4994 {
4995 struct tcp_sock *tp = tcp_sk(sk);
4996 u32 ptr = ntohs(th->urg_ptr);
4997
4998 if (ptr && !sysctl_tcp_stdurg)
4999 ptr--;
5000 ptr += ntohl(th->seq);
5001
5002 /* Ignore urgent data that we've already seen and read. */
5003 if (after(tp->copied_seq, ptr))
5004 return;
5005
5006 /* Do not replay urg ptr.
5007 *
5008 * NOTE: interesting situation not covered by specs.
5009 * Misbehaving sender may send urg ptr, pointing to segment,
5010 * which we already have in ofo queue. We are not able to fetch
5011 * such data and will stay in TCP_URG_NOTYET until will be eaten
5012 * by recvmsg(). Seems, we are not obliged to handle such wicked
5013 * situations. But it is worth to think about possibility of some
5014 * DoSes using some hypothetical application level deadlock.
5015 */
5016 if (before(ptr, tp->rcv_nxt))
5017 return;
5018
5019 /* Do we already have a newer (or duplicate) urgent pointer? */
5020 if (tp->urg_data && !after(ptr, tp->urg_seq))
5021 return;
5022
5023 /* Tell the world about our new urgent pointer. */
5024 sk_send_sigurg(sk);
5025
5026 /* We may be adding urgent data when the last byte read was
5027 * urgent. To do this requires some care. We cannot just ignore
5028 * tp->copied_seq since we would read the last urgent byte again
5029 * as data, nor can we alter copied_seq until this data arrives
5030 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5031 *
5032 * NOTE. Double Dutch. Rendering to plain English: author of comment
5033 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5034 * and expect that both A and B disappear from stream. This is _wrong_.
5035 * Though this happens in BSD with high probability, this is occasional.
5036 * Any application relying on this is buggy. Note also, that fix "works"
5037 * only in this artificial test. Insert some normal data between A and B and we will
5038 * decline of BSD again. Verdict: it is better to remove to trap
5039 * buggy users.
5040 */
5041 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5042 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5043 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5044 tp->copied_seq++;
5045 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5046 __skb_unlink(skb, &sk->sk_receive_queue);
5047 __kfree_skb(skb);
5048 }
5049 }
5050
5051 tp->urg_data = TCP_URG_NOTYET;
5052 tp->urg_seq = ptr;
5053
5054 /* Disable header prediction. */
5055 tp->pred_flags = 0;
5056 }
5057
5058 /* This is the 'fast' part of urgent handling. */
5059 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5060 {
5061 struct tcp_sock *tp = tcp_sk(sk);
5062
5063 /* Check if we get a new urgent pointer - normally not. */
5064 if (th->urg)
5065 tcp_check_urg(sk, th);
5066
5067 /* Do we wait for any urgent data? - normally not... */
5068 if (tp->urg_data == TCP_URG_NOTYET) {
5069 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5070 th->syn;
5071
5072 /* Is the urgent pointer pointing into this packet? */
5073 if (ptr < skb->len) {
5074 u8 tmp;
5075 if (skb_copy_bits(skb, ptr, &tmp, 1))
5076 BUG();
5077 tp->urg_data = TCP_URG_VALID | tmp;
5078 if (!sock_flag(sk, SOCK_DEAD))
5079 sk->sk_data_ready(sk);
5080 }
5081 }
5082 }
5083
5084 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5085 {
5086 struct tcp_sock *tp = tcp_sk(sk);
5087 int chunk = skb->len - hlen;
5088 int err;
5089
5090 local_bh_enable();
5091 if (skb_csum_unnecessary(skb))
5092 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5093 else
5094 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5095
5096 if (!err) {
5097 tp->ucopy.len -= chunk;
5098 tp->copied_seq += chunk;
5099 tcp_rcv_space_adjust(sk);
5100 }
5101
5102 local_bh_disable();
5103 return err;
5104 }
5105
5106 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5107 struct sk_buff *skb)
5108 {
5109 __sum16 result;
5110
5111 if (sock_owned_by_user(sk)) {
5112 local_bh_enable();
5113 result = __tcp_checksum_complete(skb);
5114 local_bh_disable();
5115 } else {
5116 result = __tcp_checksum_complete(skb);
5117 }
5118 return result;
5119 }
5120
5121 static inline bool tcp_checksum_complete_user(struct sock *sk,
5122 struct sk_buff *skb)
5123 {
5124 return !skb_csum_unnecessary(skb) &&
5125 __tcp_checksum_complete_user(sk, skb);
5126 }
5127
5128 /* Does PAWS and seqno based validation of an incoming segment, flags will
5129 * play significant role here.
5130 */
5131 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5132 const struct tcphdr *th, int syn_inerr)
5133 {
5134 struct tcp_sock *tp = tcp_sk(sk);
5135
5136 /* RFC1323: H1. Apply PAWS check first. */
5137 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5138 tcp_paws_discard(sk, skb)) {
5139 if (!th->rst) {
5140 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5141 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5142 LINUX_MIB_TCPACKSKIPPEDPAWS,
5143 &tp->last_oow_ack_time))
5144 tcp_send_dupack(sk, skb);
5145 goto discard;
5146 }
5147 /* Reset is accepted even if it did not pass PAWS. */
5148 }
5149
5150 /* Step 1: check sequence number */
5151 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5152 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5153 * (RST) segments are validated by checking their SEQ-fields."
5154 * And page 69: "If an incoming segment is not acceptable,
5155 * an acknowledgment should be sent in reply (unless the RST
5156 * bit is set, if so drop the segment and return)".
5157 */
5158 if (!th->rst) {
5159 if (th->syn)
5160 goto syn_challenge;
5161 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5162 LINUX_MIB_TCPACKSKIPPEDSEQ,
5163 &tp->last_oow_ack_time))
5164 tcp_send_dupack(sk, skb);
5165 }
5166 goto discard;
5167 }
5168
5169 /* Step 2: check RST bit */
5170 if (th->rst) {
5171 /* RFC 5961 3.2 :
5172 * If sequence number exactly matches RCV.NXT, then
5173 * RESET the connection
5174 * else
5175 * Send a challenge ACK
5176 */
5177 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5178 tcp_reset(sk);
5179 else
5180 tcp_send_challenge_ack(sk, skb);
5181 goto discard;
5182 }
5183
5184 /* step 3: check security and precedence [ignored] */
5185
5186 /* step 4: Check for a SYN
5187 * RFC 5961 4.2 : Send a challenge ack
5188 */
5189 if (th->syn) {
5190 syn_challenge:
5191 if (syn_inerr)
5192 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5193 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5194 tcp_send_challenge_ack(sk, skb);
5195 goto discard;
5196 }
5197
5198 return true;
5199
5200 discard:
5201 __kfree_skb(skb);
5202 return false;
5203 }
5204
5205 /*
5206 * TCP receive function for the ESTABLISHED state.
5207 *
5208 * It is split into a fast path and a slow path. The fast path is
5209 * disabled when:
5210 * - A zero window was announced from us - zero window probing
5211 * is only handled properly in the slow path.
5212 * - Out of order segments arrived.
5213 * - Urgent data is expected.
5214 * - There is no buffer space left
5215 * - Unexpected TCP flags/window values/header lengths are received
5216 * (detected by checking the TCP header against pred_flags)
5217 * - Data is sent in both directions. Fast path only supports pure senders
5218 * or pure receivers (this means either the sequence number or the ack
5219 * value must stay constant)
5220 * - Unexpected TCP option.
5221 *
5222 * When these conditions are not satisfied it drops into a standard
5223 * receive procedure patterned after RFC793 to handle all cases.
5224 * The first three cases are guaranteed by proper pred_flags setting,
5225 * the rest is checked inline. Fast processing is turned on in
5226 * tcp_data_queue when everything is OK.
5227 */
5228 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5229 const struct tcphdr *th, unsigned int len)
5230 {
5231 struct tcp_sock *tp = tcp_sk(sk);
5232
5233 if (unlikely(!sk->sk_rx_dst))
5234 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5235 /*
5236 * Header prediction.
5237 * The code loosely follows the one in the famous
5238 * "30 instruction TCP receive" Van Jacobson mail.
5239 *
5240 * Van's trick is to deposit buffers into socket queue
5241 * on a device interrupt, to call tcp_recv function
5242 * on the receive process context and checksum and copy
5243 * the buffer to user space. smart...
5244 *
5245 * Our current scheme is not silly either but we take the
5246 * extra cost of the net_bh soft interrupt processing...
5247 * We do checksum and copy also but from device to kernel.
5248 */
5249
5250 tp->rx_opt.saw_tstamp = 0;
5251
5252 /* pred_flags is 0xS?10 << 16 + snd_wnd
5253 * if header_prediction is to be made
5254 * 'S' will always be tp->tcp_header_len >> 2
5255 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5256 * turn it off (when there are holes in the receive
5257 * space for instance)
5258 * PSH flag is ignored.
5259 */
5260
5261 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5262 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5263 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5264 int tcp_header_len = tp->tcp_header_len;
5265
5266 /* Timestamp header prediction: tcp_header_len
5267 * is automatically equal to th->doff*4 due to pred_flags
5268 * match.
5269 */
5270
5271 /* Check timestamp */
5272 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5273 /* No? Slow path! */
5274 if (!tcp_parse_aligned_timestamp(tp, th))
5275 goto slow_path;
5276
5277 /* If PAWS failed, check it more carefully in slow path */
5278 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5279 goto slow_path;
5280
5281 /* DO NOT update ts_recent here, if checksum fails
5282 * and timestamp was corrupted part, it will result
5283 * in a hung connection since we will drop all
5284 * future packets due to the PAWS test.
5285 */
5286 }
5287
5288 if (len <= tcp_header_len) {
5289 /* Bulk data transfer: sender */
5290 if (len == tcp_header_len) {
5291 /* Predicted packet is in window by definition.
5292 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5293 * Hence, check seq<=rcv_wup reduces to:
5294 */
5295 if (tcp_header_len ==
5296 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5297 tp->rcv_nxt == tp->rcv_wup)
5298 tcp_store_ts_recent(tp);
5299
5300 /* We know that such packets are checksummed
5301 * on entry.
5302 */
5303 tcp_ack(sk, skb, 0);
5304 __kfree_skb(skb);
5305 tcp_data_snd_check(sk);
5306 return;
5307 } else { /* Header too small */
5308 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5309 goto discard;
5310 }
5311 } else {
5312 int eaten = 0;
5313 bool fragstolen = false;
5314
5315 if (tp->ucopy.task == current &&
5316 tp->copied_seq == tp->rcv_nxt &&
5317 len - tcp_header_len <= tp->ucopy.len &&
5318 sock_owned_by_user(sk)) {
5319 __set_current_state(TASK_RUNNING);
5320
5321 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5322 /* Predicted packet is in window by definition.
5323 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5324 * Hence, check seq<=rcv_wup reduces to:
5325 */
5326 if (tcp_header_len ==
5327 (sizeof(struct tcphdr) +
5328 TCPOLEN_TSTAMP_ALIGNED) &&
5329 tp->rcv_nxt == tp->rcv_wup)
5330 tcp_store_ts_recent(tp);
5331
5332 tcp_rcv_rtt_measure_ts(sk, skb);
5333
5334 __skb_pull(skb, tcp_header_len);
5335 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5336 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5337 eaten = 1;
5338 }
5339 }
5340 if (!eaten) {
5341 if (tcp_checksum_complete_user(sk, skb))
5342 goto csum_error;
5343
5344 if ((int)skb->truesize > sk->sk_forward_alloc)
5345 goto step5;
5346
5347 /* Predicted packet is in window by definition.
5348 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5349 * Hence, check seq<=rcv_wup reduces to:
5350 */
5351 if (tcp_header_len ==
5352 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5353 tp->rcv_nxt == tp->rcv_wup)
5354 tcp_store_ts_recent(tp);
5355
5356 tcp_rcv_rtt_measure_ts(sk, skb);
5357
5358 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5359
5360 /* Bulk data transfer: receiver */
5361 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5362 &fragstolen);
5363 }
5364
5365 tcp_event_data_recv(sk, skb);
5366
5367 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5368 /* Well, only one small jumplet in fast path... */
5369 tcp_ack(sk, skb, FLAG_DATA);
5370 tcp_data_snd_check(sk);
5371 if (!inet_csk_ack_scheduled(sk))
5372 goto no_ack;
5373 }
5374
5375 __tcp_ack_snd_check(sk, 0);
5376 no_ack:
5377 if (eaten)
5378 kfree_skb_partial(skb, fragstolen);
5379 sk->sk_data_ready(sk);
5380 return;
5381 }
5382 }
5383
5384 slow_path:
5385 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5386 goto csum_error;
5387
5388 if (!th->ack && !th->rst && !th->syn)
5389 goto discard;
5390
5391 /*
5392 * Standard slow path.
5393 */
5394
5395 if (!tcp_validate_incoming(sk, skb, th, 1))
5396 return;
5397
5398 step5:
5399 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5400 goto discard;
5401
5402 tcp_rcv_rtt_measure_ts(sk, skb);
5403
5404 /* Process urgent data. */
5405 tcp_urg(sk, skb, th);
5406
5407 /* step 7: process the segment text */
5408 tcp_data_queue(sk, skb);
5409
5410 tcp_data_snd_check(sk);
5411 tcp_ack_snd_check(sk);
5412 return;
5413
5414 csum_error:
5415 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5416 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5417
5418 discard:
5419 __kfree_skb(skb);
5420 }
5421 EXPORT_SYMBOL(tcp_rcv_established);
5422
5423 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5424 {
5425 struct tcp_sock *tp = tcp_sk(sk);
5426 struct inet_connection_sock *icsk = inet_csk(sk);
5427
5428 tcp_set_state(sk, TCP_ESTABLISHED);
5429
5430 if (skb) {
5431 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5432 security_inet_conn_established(sk, skb);
5433 }
5434
5435 /* Make sure socket is routed, for correct metrics. */
5436 icsk->icsk_af_ops->rebuild_header(sk);
5437
5438 tcp_init_metrics(sk);
5439
5440 tcp_init_congestion_control(sk);
5441
5442 /* Prevent spurious tcp_cwnd_restart() on first data
5443 * packet.
5444 */
5445 tp->lsndtime = tcp_time_stamp;
5446
5447 tcp_init_buffer_space(sk);
5448
5449 if (sock_flag(sk, SOCK_KEEPOPEN))
5450 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5451
5452 if (!tp->rx_opt.snd_wscale)
5453 __tcp_fast_path_on(tp, tp->snd_wnd);
5454 else
5455 tp->pred_flags = 0;
5456
5457 if (!sock_flag(sk, SOCK_DEAD)) {
5458 sk->sk_state_change(sk);
5459 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5460 }
5461 }
5462
5463 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5464 struct tcp_fastopen_cookie *cookie)
5465 {
5466 struct tcp_sock *tp = tcp_sk(sk);
5467 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5468 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5469 bool syn_drop = false;
5470
5471 if (mss == tp->rx_opt.user_mss) {
5472 struct tcp_options_received opt;
5473
5474 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5475 tcp_clear_options(&opt);
5476 opt.user_mss = opt.mss_clamp = 0;
5477 tcp_parse_options(synack, &opt, 0, NULL);
5478 mss = opt.mss_clamp;
5479 }
5480
5481 if (!tp->syn_fastopen) {
5482 /* Ignore an unsolicited cookie */
5483 cookie->len = -1;
5484 } else if (tp->total_retrans) {
5485 /* SYN timed out and the SYN-ACK neither has a cookie nor
5486 * acknowledges data. Presumably the remote received only
5487 * the retransmitted (regular) SYNs: either the original
5488 * SYN-data or the corresponding SYN-ACK was dropped.
5489 */
5490 syn_drop = (cookie->len < 0 && data);
5491 } else if (cookie->len < 0 && !tp->syn_data) {
5492 /* We requested a cookie but didn't get it. If we did not use
5493 * the (old) exp opt format then try so next time (try_exp=1).
5494 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5495 */
5496 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5497 }
5498
5499 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5500
5501 if (data) { /* Retransmit unacked data in SYN */
5502 tcp_for_write_queue_from(data, sk) {
5503 if (data == tcp_send_head(sk) ||
5504 __tcp_retransmit_skb(sk, data))
5505 break;
5506 }
5507 tcp_rearm_rto(sk);
5508 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5509 return true;
5510 }
5511 tp->syn_data_acked = tp->syn_data;
5512 if (tp->syn_data_acked)
5513 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5514 return false;
5515 }
5516
5517 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5518 const struct tcphdr *th)
5519 {
5520 struct inet_connection_sock *icsk = inet_csk(sk);
5521 struct tcp_sock *tp = tcp_sk(sk);
5522 struct tcp_fastopen_cookie foc = { .len = -1 };
5523 int saved_clamp = tp->rx_opt.mss_clamp;
5524
5525 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5526 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5527 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5528
5529 if (th->ack) {
5530 /* rfc793:
5531 * "If the state is SYN-SENT then
5532 * first check the ACK bit
5533 * If the ACK bit is set
5534 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5535 * a reset (unless the RST bit is set, if so drop
5536 * the segment and return)"
5537 */
5538 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5539 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5540 goto reset_and_undo;
5541
5542 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5543 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5544 tcp_time_stamp)) {
5545 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5546 goto reset_and_undo;
5547 }
5548
5549 /* Now ACK is acceptable.
5550 *
5551 * "If the RST bit is set
5552 * If the ACK was acceptable then signal the user "error:
5553 * connection reset", drop the segment, enter CLOSED state,
5554 * delete TCB, and return."
5555 */
5556
5557 if (th->rst) {
5558 tcp_reset(sk);
5559 goto discard;
5560 }
5561
5562 /* rfc793:
5563 * "fifth, if neither of the SYN or RST bits is set then
5564 * drop the segment and return."
5565 *
5566 * See note below!
5567 * --ANK(990513)
5568 */
5569 if (!th->syn)
5570 goto discard_and_undo;
5571
5572 /* rfc793:
5573 * "If the SYN bit is on ...
5574 * are acceptable then ...
5575 * (our SYN has been ACKed), change the connection
5576 * state to ESTABLISHED..."
5577 */
5578
5579 tcp_ecn_rcv_synack(tp, th);
5580
5581 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5582 tcp_ack(sk, skb, FLAG_SLOWPATH);
5583
5584 /* Ok.. it's good. Set up sequence numbers and
5585 * move to established.
5586 */
5587 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5588 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5589
5590 /* RFC1323: The window in SYN & SYN/ACK segments is
5591 * never scaled.
5592 */
5593 tp->snd_wnd = ntohs(th->window);
5594
5595 if (!tp->rx_opt.wscale_ok) {
5596 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5597 tp->window_clamp = min(tp->window_clamp, 65535U);
5598 }
5599
5600 if (tp->rx_opt.saw_tstamp) {
5601 tp->rx_opt.tstamp_ok = 1;
5602 tp->tcp_header_len =
5603 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5604 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5605 tcp_store_ts_recent(tp);
5606 } else {
5607 tp->tcp_header_len = sizeof(struct tcphdr);
5608 }
5609
5610 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5611 tcp_enable_fack(tp);
5612
5613 tcp_mtup_init(sk);
5614 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5615 tcp_initialize_rcv_mss(sk);
5616
5617 /* Remember, tcp_poll() does not lock socket!
5618 * Change state from SYN-SENT only after copied_seq
5619 * is initialized. */
5620 tp->copied_seq = tp->rcv_nxt;
5621
5622 smp_mb();
5623
5624 tcp_finish_connect(sk, skb);
5625
5626 if ((tp->syn_fastopen || tp->syn_data) &&
5627 tcp_rcv_fastopen_synack(sk, skb, &foc))
5628 return -1;
5629
5630 if (sk->sk_write_pending ||
5631 icsk->icsk_accept_queue.rskq_defer_accept ||
5632 icsk->icsk_ack.pingpong) {
5633 /* Save one ACK. Data will be ready after
5634 * several ticks, if write_pending is set.
5635 *
5636 * It may be deleted, but with this feature tcpdumps
5637 * look so _wonderfully_ clever, that I was not able
5638 * to stand against the temptation 8) --ANK
5639 */
5640 inet_csk_schedule_ack(sk);
5641 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5642 tcp_enter_quickack_mode(sk);
5643 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5644 TCP_DELACK_MAX, TCP_RTO_MAX);
5645
5646 discard:
5647 __kfree_skb(skb);
5648 return 0;
5649 } else {
5650 tcp_send_ack(sk);
5651 }
5652 return -1;
5653 }
5654
5655 /* No ACK in the segment */
5656
5657 if (th->rst) {
5658 /* rfc793:
5659 * "If the RST bit is set
5660 *
5661 * Otherwise (no ACK) drop the segment and return."
5662 */
5663
5664 goto discard_and_undo;
5665 }
5666
5667 /* PAWS check. */
5668 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5669 tcp_paws_reject(&tp->rx_opt, 0))
5670 goto discard_and_undo;
5671
5672 if (th->syn) {
5673 /* We see SYN without ACK. It is attempt of
5674 * simultaneous connect with crossed SYNs.
5675 * Particularly, it can be connect to self.
5676 */
5677 tcp_set_state(sk, TCP_SYN_RECV);
5678
5679 if (tp->rx_opt.saw_tstamp) {
5680 tp->rx_opt.tstamp_ok = 1;
5681 tcp_store_ts_recent(tp);
5682 tp->tcp_header_len =
5683 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5684 } else {
5685 tp->tcp_header_len = sizeof(struct tcphdr);
5686 }
5687
5688 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5689 tp->copied_seq = tp->rcv_nxt;
5690 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5691
5692 /* RFC1323: The window in SYN & SYN/ACK segments is
5693 * never scaled.
5694 */
5695 tp->snd_wnd = ntohs(th->window);
5696 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5697 tp->max_window = tp->snd_wnd;
5698
5699 tcp_ecn_rcv_syn(tp, th);
5700
5701 tcp_mtup_init(sk);
5702 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5703 tcp_initialize_rcv_mss(sk);
5704
5705 tcp_send_synack(sk);
5706 #if 0
5707 /* Note, we could accept data and URG from this segment.
5708 * There are no obstacles to make this (except that we must
5709 * either change tcp_recvmsg() to prevent it from returning data
5710 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5711 *
5712 * However, if we ignore data in ACKless segments sometimes,
5713 * we have no reasons to accept it sometimes.
5714 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5715 * is not flawless. So, discard packet for sanity.
5716 * Uncomment this return to process the data.
5717 */
5718 return -1;
5719 #else
5720 goto discard;
5721 #endif
5722 }
5723 /* "fifth, if neither of the SYN or RST bits is set then
5724 * drop the segment and return."
5725 */
5726
5727 discard_and_undo:
5728 tcp_clear_options(&tp->rx_opt);
5729 tp->rx_opt.mss_clamp = saved_clamp;
5730 goto discard;
5731
5732 reset_and_undo:
5733 tcp_clear_options(&tp->rx_opt);
5734 tp->rx_opt.mss_clamp = saved_clamp;
5735 return 1;
5736 }
5737
5738 /*
5739 * This function implements the receiving procedure of RFC 793 for
5740 * all states except ESTABLISHED and TIME_WAIT.
5741 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5742 * address independent.
5743 */
5744
5745 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5746 {
5747 struct tcp_sock *tp = tcp_sk(sk);
5748 struct inet_connection_sock *icsk = inet_csk(sk);
5749 const struct tcphdr *th = tcp_hdr(skb);
5750 struct request_sock *req;
5751 int queued = 0;
5752 bool acceptable;
5753
5754 tp->rx_opt.saw_tstamp = 0;
5755
5756 switch (sk->sk_state) {
5757 case TCP_CLOSE:
5758 goto discard;
5759
5760 case TCP_LISTEN:
5761 if (th->ack)
5762 return 1;
5763
5764 if (th->rst)
5765 goto discard;
5766
5767 if (th->syn) {
5768 if (th->fin)
5769 goto discard;
5770 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5771 return 1;
5772
5773 /* Now we have several options: In theory there is
5774 * nothing else in the frame. KA9Q has an option to
5775 * send data with the syn, BSD accepts data with the
5776 * syn up to the [to be] advertised window and
5777 * Solaris 2.1 gives you a protocol error. For now
5778 * we just ignore it, that fits the spec precisely
5779 * and avoids incompatibilities. It would be nice in
5780 * future to drop through and process the data.
5781 *
5782 * Now that TTCP is starting to be used we ought to
5783 * queue this data.
5784 * But, this leaves one open to an easy denial of
5785 * service attack, and SYN cookies can't defend
5786 * against this problem. So, we drop the data
5787 * in the interest of security over speed unless
5788 * it's still in use.
5789 */
5790 kfree_skb(skb);
5791 return 0;
5792 }
5793 goto discard;
5794
5795 case TCP_SYN_SENT:
5796 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5797 if (queued >= 0)
5798 return queued;
5799
5800 /* Do step6 onward by hand. */
5801 tcp_urg(sk, skb, th);
5802 __kfree_skb(skb);
5803 tcp_data_snd_check(sk);
5804 return 0;
5805 }
5806
5807 req = tp->fastopen_rsk;
5808 if (req) {
5809 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5810 sk->sk_state != TCP_FIN_WAIT1);
5811
5812 if (!tcp_check_req(sk, skb, req, true))
5813 goto discard;
5814 }
5815
5816 if (!th->ack && !th->rst && !th->syn)
5817 goto discard;
5818
5819 if (!tcp_validate_incoming(sk, skb, th, 0))
5820 return 0;
5821
5822 /* step 5: check the ACK field */
5823 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5824 FLAG_UPDATE_TS_RECENT) > 0;
5825
5826 switch (sk->sk_state) {
5827 case TCP_SYN_RECV:
5828 if (!acceptable)
5829 return 1;
5830
5831 if (!tp->srtt_us)
5832 tcp_synack_rtt_meas(sk, req);
5833
5834 /* Once we leave TCP_SYN_RECV, we no longer need req
5835 * so release it.
5836 */
5837 if (req) {
5838 tp->total_retrans = req->num_retrans;
5839 reqsk_fastopen_remove(sk, req, false);
5840 } else {
5841 /* Make sure socket is routed, for correct metrics. */
5842 icsk->icsk_af_ops->rebuild_header(sk);
5843 tcp_init_congestion_control(sk);
5844
5845 tcp_mtup_init(sk);
5846 tp->copied_seq = tp->rcv_nxt;
5847 tcp_init_buffer_space(sk);
5848 }
5849 smp_mb();
5850 tcp_set_state(sk, TCP_ESTABLISHED);
5851 sk->sk_state_change(sk);
5852
5853 /* Note, that this wakeup is only for marginal crossed SYN case.
5854 * Passively open sockets are not waked up, because
5855 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5856 */
5857 if (sk->sk_socket)
5858 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5859
5860 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5861 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5862 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5863
5864 if (tp->rx_opt.tstamp_ok)
5865 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5866
5867 if (req) {
5868 /* Re-arm the timer because data may have been sent out.
5869 * This is similar to the regular data transmission case
5870 * when new data has just been ack'ed.
5871 *
5872 * (TFO) - we could try to be more aggressive and
5873 * retransmitting any data sooner based on when they
5874 * are sent out.
5875 */
5876 tcp_rearm_rto(sk);
5877 } else
5878 tcp_init_metrics(sk);
5879
5880 tcp_update_pacing_rate(sk);
5881
5882 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5883 tp->lsndtime = tcp_time_stamp;
5884
5885 tcp_initialize_rcv_mss(sk);
5886 tcp_fast_path_on(tp);
5887 break;
5888
5889 case TCP_FIN_WAIT1: {
5890 struct dst_entry *dst;
5891 int tmo;
5892
5893 /* If we enter the TCP_FIN_WAIT1 state and we are a
5894 * Fast Open socket and this is the first acceptable
5895 * ACK we have received, this would have acknowledged
5896 * our SYNACK so stop the SYNACK timer.
5897 */
5898 if (req) {
5899 /* Return RST if ack_seq is invalid.
5900 * Note that RFC793 only says to generate a
5901 * DUPACK for it but for TCP Fast Open it seems
5902 * better to treat this case like TCP_SYN_RECV
5903 * above.
5904 */
5905 if (!acceptable)
5906 return 1;
5907 /* We no longer need the request sock. */
5908 reqsk_fastopen_remove(sk, req, false);
5909 tcp_rearm_rto(sk);
5910 }
5911 if (tp->snd_una != tp->write_seq)
5912 break;
5913
5914 tcp_set_state(sk, TCP_FIN_WAIT2);
5915 sk->sk_shutdown |= SEND_SHUTDOWN;
5916
5917 dst = __sk_dst_get(sk);
5918 if (dst)
5919 dst_confirm(dst);
5920
5921 if (!sock_flag(sk, SOCK_DEAD)) {
5922 /* Wake up lingering close() */
5923 sk->sk_state_change(sk);
5924 break;
5925 }
5926
5927 if (tp->linger2 < 0 ||
5928 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5929 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5930 tcp_done(sk);
5931 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5932 return 1;
5933 }
5934
5935 tmo = tcp_fin_time(sk);
5936 if (tmo > TCP_TIMEWAIT_LEN) {
5937 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5938 } else if (th->fin || sock_owned_by_user(sk)) {
5939 /* Bad case. We could lose such FIN otherwise.
5940 * It is not a big problem, but it looks confusing
5941 * and not so rare event. We still can lose it now,
5942 * if it spins in bh_lock_sock(), but it is really
5943 * marginal case.
5944 */
5945 inet_csk_reset_keepalive_timer(sk, tmo);
5946 } else {
5947 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5948 goto discard;
5949 }
5950 break;
5951 }
5952
5953 case TCP_CLOSING:
5954 if (tp->snd_una == tp->write_seq) {
5955 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5956 goto discard;
5957 }
5958 break;
5959
5960 case TCP_LAST_ACK:
5961 if (tp->snd_una == tp->write_seq) {
5962 tcp_update_metrics(sk);
5963 tcp_done(sk);
5964 goto discard;
5965 }
5966 break;
5967 }
5968
5969 /* step 6: check the URG bit */
5970 tcp_urg(sk, skb, th);
5971
5972 /* step 7: process the segment text */
5973 switch (sk->sk_state) {
5974 case TCP_CLOSE_WAIT:
5975 case TCP_CLOSING:
5976 case TCP_LAST_ACK:
5977 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5978 break;
5979 case TCP_FIN_WAIT1:
5980 case TCP_FIN_WAIT2:
5981 /* RFC 793 says to queue data in these states,
5982 * RFC 1122 says we MUST send a reset.
5983 * BSD 4.4 also does reset.
5984 */
5985 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5986 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5987 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5988 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5989 tcp_reset(sk);
5990 return 1;
5991 }
5992 }
5993 /* Fall through */
5994 case TCP_ESTABLISHED:
5995 tcp_data_queue(sk, skb);
5996 queued = 1;
5997 break;
5998 }
5999
6000 /* tcp_data could move socket to TIME-WAIT */
6001 if (sk->sk_state != TCP_CLOSE) {
6002 tcp_data_snd_check(sk);
6003 tcp_ack_snd_check(sk);
6004 }
6005
6006 if (!queued) {
6007 discard:
6008 __kfree_skb(skb);
6009 }
6010 return 0;
6011 }
6012 EXPORT_SYMBOL(tcp_rcv_state_process);
6013
6014 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6015 {
6016 struct inet_request_sock *ireq = inet_rsk(req);
6017
6018 if (family == AF_INET)
6019 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6020 &ireq->ir_rmt_addr, port);
6021 #if IS_ENABLED(CONFIG_IPV6)
6022 else if (family == AF_INET6)
6023 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6024 &ireq->ir_v6_rmt_addr, port);
6025 #endif
6026 }
6027
6028 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6029 *
6030 * If we receive a SYN packet with these bits set, it means a
6031 * network is playing bad games with TOS bits. In order to
6032 * avoid possible false congestion notifications, we disable
6033 * TCP ECN negotiation.
6034 *
6035 * Exception: tcp_ca wants ECN. This is required for DCTCP
6036 * congestion control: Linux DCTCP asserts ECT on all packets,
6037 * including SYN, which is most optimal solution; however,
6038 * others, such as FreeBSD do not.
6039 */
6040 static void tcp_ecn_create_request(struct request_sock *req,
6041 const struct sk_buff *skb,
6042 const struct sock *listen_sk,
6043 const struct dst_entry *dst)
6044 {
6045 const struct tcphdr *th = tcp_hdr(skb);
6046 const struct net *net = sock_net(listen_sk);
6047 bool th_ecn = th->ece && th->cwr;
6048 bool ect, ecn_ok;
6049 u32 ecn_ok_dst;
6050
6051 if (!th_ecn)
6052 return;
6053
6054 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6055 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6056 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6057
6058 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6059 (ecn_ok_dst & DST_FEATURE_ECN_CA))
6060 inet_rsk(req)->ecn_ok = 1;
6061 }
6062
6063 static void tcp_openreq_init(struct request_sock *req,
6064 const struct tcp_options_received *rx_opt,
6065 struct sk_buff *skb, const struct sock *sk)
6066 {
6067 struct inet_request_sock *ireq = inet_rsk(req);
6068
6069 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6070 req->cookie_ts = 0;
6071 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6072 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6073 skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6074 tcp_rsk(req)->last_oow_ack_time = 0;
6075 req->mss = rx_opt->mss_clamp;
6076 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6077 ireq->tstamp_ok = rx_opt->tstamp_ok;
6078 ireq->sack_ok = rx_opt->sack_ok;
6079 ireq->snd_wscale = rx_opt->snd_wscale;
6080 ireq->wscale_ok = rx_opt->wscale_ok;
6081 ireq->acked = 0;
6082 ireq->ecn_ok = 0;
6083 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6084 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6085 ireq->ir_mark = inet_request_mark(sk, skb);
6086 }
6087
6088 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6089 struct sock *sk_listener,
6090 bool attach_listener)
6091 {
6092 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6093 attach_listener);
6094
6095 if (req) {
6096 struct inet_request_sock *ireq = inet_rsk(req);
6097
6098 kmemcheck_annotate_bitfield(ireq, flags);
6099 ireq->opt = NULL;
6100 atomic64_set(&ireq->ir_cookie, 0);
6101 ireq->ireq_state = TCP_NEW_SYN_RECV;
6102 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6103 ireq->ireq_family = sk_listener->sk_family;
6104 }
6105
6106 return req;
6107 }
6108 EXPORT_SYMBOL(inet_reqsk_alloc);
6109
6110 /*
6111 * Return true if a syncookie should be sent
6112 */
6113 static bool tcp_syn_flood_action(const struct sock *sk,
6114 const struct sk_buff *skb,
6115 const char *proto)
6116 {
6117 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6118 const char *msg = "Dropping request";
6119 bool want_cookie = false;
6120
6121 #ifdef CONFIG_SYN_COOKIES
6122 if (sysctl_tcp_syncookies) {
6123 msg = "Sending cookies";
6124 want_cookie = true;
6125 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6126 } else
6127 #endif
6128 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6129
6130 if (!queue->synflood_warned &&
6131 sysctl_tcp_syncookies != 2 &&
6132 xchg(&queue->synflood_warned, 1) == 0)
6133 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6134 proto, ntohs(tcp_hdr(skb)->dest), msg);
6135
6136 return want_cookie;
6137 }
6138
6139 static void tcp_reqsk_record_syn(const struct sock *sk,
6140 struct request_sock *req,
6141 const struct sk_buff *skb)
6142 {
6143 if (tcp_sk(sk)->save_syn) {
6144 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6145 u32 *copy;
6146
6147 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6148 if (copy) {
6149 copy[0] = len;
6150 memcpy(&copy[1], skb_network_header(skb), len);
6151 req->saved_syn = copy;
6152 }
6153 }
6154 }
6155
6156 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6157 const struct tcp_request_sock_ops *af_ops,
6158 struct sock *sk, struct sk_buff *skb)
6159 {
6160 struct tcp_fastopen_cookie foc = { .len = -1 };
6161 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6162 struct tcp_options_received tmp_opt;
6163 struct tcp_sock *tp = tcp_sk(sk);
6164 struct sock *fastopen_sk = NULL;
6165 struct dst_entry *dst = NULL;
6166 struct request_sock *req;
6167 bool want_cookie = false;
6168 struct flowi fl;
6169
6170 /* TW buckets are converted to open requests without
6171 * limitations, they conserve resources and peer is
6172 * evidently real one.
6173 */
6174 if ((sysctl_tcp_syncookies == 2 ||
6175 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6176 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6177 if (!want_cookie)
6178 goto drop;
6179 }
6180
6181
6182 /* Accept backlog is full. If we have already queued enough
6183 * of warm entries in syn queue, drop request. It is better than
6184 * clogging syn queue with openreqs with exponentially increasing
6185 * timeout.
6186 */
6187 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6188 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6189 goto drop;
6190 }
6191
6192 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6193 if (!req)
6194 goto drop;
6195
6196 tcp_rsk(req)->af_specific = af_ops;
6197
6198 tcp_clear_options(&tmp_opt);
6199 tmp_opt.mss_clamp = af_ops->mss_clamp;
6200 tmp_opt.user_mss = tp->rx_opt.user_mss;
6201 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6202
6203 if (want_cookie && !tmp_opt.saw_tstamp)
6204 tcp_clear_options(&tmp_opt);
6205
6206 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6207 tcp_openreq_init(req, &tmp_opt, skb, sk);
6208
6209 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6210 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6211
6212 af_ops->init_req(req, sk, skb);
6213
6214 if (security_inet_conn_request(sk, skb, req))
6215 goto drop_and_free;
6216
6217 if (!want_cookie && !isn) {
6218 /* VJ's idea. We save last timestamp seen
6219 * from the destination in peer table, when entering
6220 * state TIME-WAIT, and check against it before
6221 * accepting new connection request.
6222 *
6223 * If "isn" is not zero, this request hit alive
6224 * timewait bucket, so that all the necessary checks
6225 * are made in the function processing timewait state.
6226 */
6227 if (tcp_death_row.sysctl_tw_recycle) {
6228 bool strict;
6229
6230 dst = af_ops->route_req(sk, &fl, req, &strict);
6231
6232 if (dst && strict &&
6233 !tcp_peer_is_proven(req, dst, true,
6234 tmp_opt.saw_tstamp)) {
6235 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6236 goto drop_and_release;
6237 }
6238 }
6239 /* Kill the following clause, if you dislike this way. */
6240 else if (!sysctl_tcp_syncookies &&
6241 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6242 (sysctl_max_syn_backlog >> 2)) &&
6243 !tcp_peer_is_proven(req, dst, false,
6244 tmp_opt.saw_tstamp)) {
6245 /* Without syncookies last quarter of
6246 * backlog is filled with destinations,
6247 * proven to be alive.
6248 * It means that we continue to communicate
6249 * to destinations, already remembered
6250 * to the moment of synflood.
6251 */
6252 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6253 rsk_ops->family);
6254 goto drop_and_release;
6255 }
6256
6257 isn = af_ops->init_seq(skb);
6258 }
6259 if (!dst) {
6260 dst = af_ops->route_req(sk, &fl, req, NULL);
6261 if (!dst)
6262 goto drop_and_free;
6263 }
6264
6265 tcp_ecn_create_request(req, skb, sk, dst);
6266
6267 if (want_cookie) {
6268 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6269 req->cookie_ts = tmp_opt.tstamp_ok;
6270 if (!tmp_opt.tstamp_ok)
6271 inet_rsk(req)->ecn_ok = 0;
6272 }
6273
6274 tcp_rsk(req)->snt_isn = isn;
6275 tcp_rsk(req)->txhash = net_tx_rndhash();
6276 tcp_openreq_init_rwin(req, sk, dst);
6277 if (!want_cookie) {
6278 tcp_reqsk_record_syn(sk, req, skb);
6279 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6280 }
6281 if (fastopen_sk) {
6282 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6283 &foc, false);
6284 /* Add the child socket directly into the accept queue */
6285 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6286 sk->sk_data_ready(sk);
6287 bh_unlock_sock(fastopen_sk);
6288 sock_put(fastopen_sk);
6289 } else {
6290 tcp_rsk(req)->tfo_listener = false;
6291 if (!want_cookie)
6292 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6293 af_ops->send_synack(sk, dst, &fl, req,
6294 &foc, !want_cookie);
6295 if (want_cookie)
6296 goto drop_and_free;
6297 }
6298 reqsk_put(req);
6299 return 0;
6300
6301 drop_and_release:
6302 dst_release(dst);
6303 drop_and_free:
6304 reqsk_free(req);
6305 drop:
6306 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6307 return 0;
6308 }
6309 EXPORT_SYMBOL(tcp_conn_request);
This page took 0.303546 seconds and 6 git commands to generate.