tcp: remove bad timeout logic in fast recovery
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96
97 int sysctl_tcp_thin_dupack __read_mostly;
98
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
101
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
115
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124 /* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
126 */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
132
133 icsk->icsk_ack.last_seg_size = 0;
134
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
137 */
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
144 *
145 * "len" is invariant segment length, including TCP header.
146 */
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
153 */
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
159 */
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
165 }
166 }
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 }
171 }
172
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
194 */
195
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
197 {
198 const struct inet_connection_sock *icsk = inet_csk(sk);
199
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222 if (!(tp->ecn_flags & TCP_ECN_OK))
223 return;
224
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
230 */
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 /* Better not delay acks, sender can have a very low cwnd */
237 tcp_enter_quickack_mode((struct sock *)tp);
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 }
240 /* fallinto */
241 default:
242 tp->ecn_flags |= TCP_ECN_SEEN;
243 }
244 }
245
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 return true;
262 return false;
263 }
264
265 /* Buffer size and advertised window tuning.
266 *
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268 */
269
270 static void tcp_fixup_sndbuf(struct sock *sk)
271 {
272 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
273
274 sndmem *= TCP_INIT_CWND;
275 if (sk->sk_sndbuf < sndmem)
276 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
277 }
278
279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
280 *
281 * All tcp_full_space() is split to two parts: "network" buffer, allocated
282 * forward and advertised in receiver window (tp->rcv_wnd) and
283 * "application buffer", required to isolate scheduling/application
284 * latencies from network.
285 * window_clamp is maximal advertised window. It can be less than
286 * tcp_full_space(), in this case tcp_full_space() - window_clamp
287 * is reserved for "application" buffer. The less window_clamp is
288 * the smoother our behaviour from viewpoint of network, but the lower
289 * throughput and the higher sensitivity of the connection to losses. 8)
290 *
291 * rcv_ssthresh is more strict window_clamp used at "slow start"
292 * phase to predict further behaviour of this connection.
293 * It is used for two goals:
294 * - to enforce header prediction at sender, even when application
295 * requires some significant "application buffer". It is check #1.
296 * - to prevent pruning of receive queue because of misprediction
297 * of receiver window. Check #2.
298 *
299 * The scheme does not work when sender sends good segments opening
300 * window and then starts to feed us spaghetti. But it should work
301 * in common situations. Otherwise, we have to rely on queue collapsing.
302 */
303
304 /* Slow part of check#2. */
305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
306 {
307 struct tcp_sock *tp = tcp_sk(sk);
308 /* Optimize this! */
309 int truesize = tcp_win_from_space(skb->truesize) >> 1;
310 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
311
312 while (tp->rcv_ssthresh <= window) {
313 if (truesize <= skb->len)
314 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
315
316 truesize >>= 1;
317 window >>= 1;
318 }
319 return 0;
320 }
321
322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
323 {
324 struct tcp_sock *tp = tcp_sk(sk);
325
326 /* Check #1 */
327 if (tp->rcv_ssthresh < tp->window_clamp &&
328 (int)tp->rcv_ssthresh < tcp_space(sk) &&
329 !sk_under_memory_pressure(sk)) {
330 int incr;
331
332 /* Check #2. Increase window, if skb with such overhead
333 * will fit to rcvbuf in future.
334 */
335 if (tcp_win_from_space(skb->truesize) <= skb->len)
336 incr = 2 * tp->advmss;
337 else
338 incr = __tcp_grow_window(sk, skb);
339
340 if (incr) {
341 incr = max_t(int, incr, 2 * skb->len);
342 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343 tp->window_clamp);
344 inet_csk(sk)->icsk_ack.quick |= 1;
345 }
346 }
347 }
348
349 /* 3. Tuning rcvbuf, when connection enters established state. */
350
351 static void tcp_fixup_rcvbuf(struct sock *sk)
352 {
353 u32 mss = tcp_sk(sk)->advmss;
354 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
355 int rcvmem;
356
357 /* Limit to 10 segments if mss <= 1460,
358 * or 14600/mss segments, with a minimum of two segments.
359 */
360 if (mss > 1460)
361 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
362
363 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER);
364
365 rcvmem *= icwnd;
366
367 if (sk->sk_rcvbuf < rcvmem)
368 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
369 }
370
371 /* 4. Try to fixup all. It is made immediately after connection enters
372 * established state.
373 */
374 void tcp_init_buffer_space(struct sock *sk)
375 {
376 struct tcp_sock *tp = tcp_sk(sk);
377 int maxwin;
378
379 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
380 tcp_fixup_rcvbuf(sk);
381 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
382 tcp_fixup_sndbuf(sk);
383
384 tp->rcvq_space.space = tp->rcv_wnd;
385
386 maxwin = tcp_full_space(sk);
387
388 if (tp->window_clamp >= maxwin) {
389 tp->window_clamp = maxwin;
390
391 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
392 tp->window_clamp = max(maxwin -
393 (maxwin >> sysctl_tcp_app_win),
394 4 * tp->advmss);
395 }
396
397 /* Force reservation of one segment. */
398 if (sysctl_tcp_app_win &&
399 tp->window_clamp > 2 * tp->advmss &&
400 tp->window_clamp + tp->advmss > maxwin)
401 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
402
403 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
404 tp->snd_cwnd_stamp = tcp_time_stamp;
405 }
406
407 /* 5. Recalculate window clamp after socket hit its memory bounds. */
408 static void tcp_clamp_window(struct sock *sk)
409 {
410 struct tcp_sock *tp = tcp_sk(sk);
411 struct inet_connection_sock *icsk = inet_csk(sk);
412
413 icsk->icsk_ack.quick = 0;
414
415 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
416 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
417 !sk_under_memory_pressure(sk) &&
418 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
419 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
420 sysctl_tcp_rmem[2]);
421 }
422 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
423 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
424 }
425
426 /* Initialize RCV_MSS value.
427 * RCV_MSS is an our guess about MSS used by the peer.
428 * We haven't any direct information about the MSS.
429 * It's better to underestimate the RCV_MSS rather than overestimate.
430 * Overestimations make us ACKing less frequently than needed.
431 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
432 */
433 void tcp_initialize_rcv_mss(struct sock *sk)
434 {
435 const struct tcp_sock *tp = tcp_sk(sk);
436 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
437
438 hint = min(hint, tp->rcv_wnd / 2);
439 hint = min(hint, TCP_MSS_DEFAULT);
440 hint = max(hint, TCP_MIN_MSS);
441
442 inet_csk(sk)->icsk_ack.rcv_mss = hint;
443 }
444 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
445
446 /* Receiver "autotuning" code.
447 *
448 * The algorithm for RTT estimation w/o timestamps is based on
449 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
450 * <http://public.lanl.gov/radiant/pubs.html#DRS>
451 *
452 * More detail on this code can be found at
453 * <http://staff.psc.edu/jheffner/>,
454 * though this reference is out of date. A new paper
455 * is pending.
456 */
457 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
458 {
459 u32 new_sample = tp->rcv_rtt_est.rtt;
460 long m = sample;
461
462 if (m == 0)
463 m = 1;
464
465 if (new_sample != 0) {
466 /* If we sample in larger samples in the non-timestamp
467 * case, we could grossly overestimate the RTT especially
468 * with chatty applications or bulk transfer apps which
469 * are stalled on filesystem I/O.
470 *
471 * Also, since we are only going for a minimum in the
472 * non-timestamp case, we do not smooth things out
473 * else with timestamps disabled convergence takes too
474 * long.
475 */
476 if (!win_dep) {
477 m -= (new_sample >> 3);
478 new_sample += m;
479 } else {
480 m <<= 3;
481 if (m < new_sample)
482 new_sample = m;
483 }
484 } else {
485 /* No previous measure. */
486 new_sample = m << 3;
487 }
488
489 if (tp->rcv_rtt_est.rtt != new_sample)
490 tp->rcv_rtt_est.rtt = new_sample;
491 }
492
493 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
494 {
495 if (tp->rcv_rtt_est.time == 0)
496 goto new_measure;
497 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
498 return;
499 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
500
501 new_measure:
502 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
503 tp->rcv_rtt_est.time = tcp_time_stamp;
504 }
505
506 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
507 const struct sk_buff *skb)
508 {
509 struct tcp_sock *tp = tcp_sk(sk);
510 if (tp->rx_opt.rcv_tsecr &&
511 (TCP_SKB_CB(skb)->end_seq -
512 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
513 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
514 }
515
516 /*
517 * This function should be called every time data is copied to user space.
518 * It calculates the appropriate TCP receive buffer space.
519 */
520 void tcp_rcv_space_adjust(struct sock *sk)
521 {
522 struct tcp_sock *tp = tcp_sk(sk);
523 int time;
524 int space;
525
526 if (tp->rcvq_space.time == 0)
527 goto new_measure;
528
529 time = tcp_time_stamp - tp->rcvq_space.time;
530 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
531 return;
532
533 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
534
535 space = max(tp->rcvq_space.space, space);
536
537 if (tp->rcvq_space.space != space) {
538 int rcvmem;
539
540 tp->rcvq_space.space = space;
541
542 if (sysctl_tcp_moderate_rcvbuf &&
543 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
544 int new_clamp = space;
545
546 /* Receive space grows, normalize in order to
547 * take into account packet headers and sk_buff
548 * structure overhead.
549 */
550 space /= tp->advmss;
551 if (!space)
552 space = 1;
553 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
554 while (tcp_win_from_space(rcvmem) < tp->advmss)
555 rcvmem += 128;
556 space *= rcvmem;
557 space = min(space, sysctl_tcp_rmem[2]);
558 if (space > sk->sk_rcvbuf) {
559 sk->sk_rcvbuf = space;
560
561 /* Make the window clamp follow along. */
562 tp->window_clamp = new_clamp;
563 }
564 }
565 }
566
567 new_measure:
568 tp->rcvq_space.seq = tp->copied_seq;
569 tp->rcvq_space.time = tcp_time_stamp;
570 }
571
572 /* There is something which you must keep in mind when you analyze the
573 * behavior of the tp->ato delayed ack timeout interval. When a
574 * connection starts up, we want to ack as quickly as possible. The
575 * problem is that "good" TCP's do slow start at the beginning of data
576 * transmission. The means that until we send the first few ACK's the
577 * sender will sit on his end and only queue most of his data, because
578 * he can only send snd_cwnd unacked packets at any given time. For
579 * each ACK we send, he increments snd_cwnd and transmits more of his
580 * queue. -DaveM
581 */
582 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
583 {
584 struct tcp_sock *tp = tcp_sk(sk);
585 struct inet_connection_sock *icsk = inet_csk(sk);
586 u32 now;
587
588 inet_csk_schedule_ack(sk);
589
590 tcp_measure_rcv_mss(sk, skb);
591
592 tcp_rcv_rtt_measure(tp);
593
594 now = tcp_time_stamp;
595
596 if (!icsk->icsk_ack.ato) {
597 /* The _first_ data packet received, initialize
598 * delayed ACK engine.
599 */
600 tcp_incr_quickack(sk);
601 icsk->icsk_ack.ato = TCP_ATO_MIN;
602 } else {
603 int m = now - icsk->icsk_ack.lrcvtime;
604
605 if (m <= TCP_ATO_MIN / 2) {
606 /* The fastest case is the first. */
607 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
608 } else if (m < icsk->icsk_ack.ato) {
609 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
610 if (icsk->icsk_ack.ato > icsk->icsk_rto)
611 icsk->icsk_ack.ato = icsk->icsk_rto;
612 } else if (m > icsk->icsk_rto) {
613 /* Too long gap. Apparently sender failed to
614 * restart window, so that we send ACKs quickly.
615 */
616 tcp_incr_quickack(sk);
617 sk_mem_reclaim(sk);
618 }
619 }
620 icsk->icsk_ack.lrcvtime = now;
621
622 TCP_ECN_check_ce(tp, skb);
623
624 if (skb->len >= 128)
625 tcp_grow_window(sk, skb);
626 }
627
628 /* Called to compute a smoothed rtt estimate. The data fed to this
629 * routine either comes from timestamps, or from segments that were
630 * known _not_ to have been retransmitted [see Karn/Partridge
631 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
632 * piece by Van Jacobson.
633 * NOTE: the next three routines used to be one big routine.
634 * To save cycles in the RFC 1323 implementation it was better to break
635 * it up into three procedures. -- erics
636 */
637 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
638 {
639 struct tcp_sock *tp = tcp_sk(sk);
640 long m = mrtt; /* RTT */
641
642 /* The following amusing code comes from Jacobson's
643 * article in SIGCOMM '88. Note that rtt and mdev
644 * are scaled versions of rtt and mean deviation.
645 * This is designed to be as fast as possible
646 * m stands for "measurement".
647 *
648 * On a 1990 paper the rto value is changed to:
649 * RTO = rtt + 4 * mdev
650 *
651 * Funny. This algorithm seems to be very broken.
652 * These formulae increase RTO, when it should be decreased, increase
653 * too slowly, when it should be increased quickly, decrease too quickly
654 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
655 * does not matter how to _calculate_ it. Seems, it was trap
656 * that VJ failed to avoid. 8)
657 */
658 if (m == 0)
659 m = 1;
660 if (tp->srtt != 0) {
661 m -= (tp->srtt >> 3); /* m is now error in rtt est */
662 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
663 if (m < 0) {
664 m = -m; /* m is now abs(error) */
665 m -= (tp->mdev >> 2); /* similar update on mdev */
666 /* This is similar to one of Eifel findings.
667 * Eifel blocks mdev updates when rtt decreases.
668 * This solution is a bit different: we use finer gain
669 * for mdev in this case (alpha*beta).
670 * Like Eifel it also prevents growth of rto,
671 * but also it limits too fast rto decreases,
672 * happening in pure Eifel.
673 */
674 if (m > 0)
675 m >>= 3;
676 } else {
677 m -= (tp->mdev >> 2); /* similar update on mdev */
678 }
679 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
680 if (tp->mdev > tp->mdev_max) {
681 tp->mdev_max = tp->mdev;
682 if (tp->mdev_max > tp->rttvar)
683 tp->rttvar = tp->mdev_max;
684 }
685 if (after(tp->snd_una, tp->rtt_seq)) {
686 if (tp->mdev_max < tp->rttvar)
687 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
688 tp->rtt_seq = tp->snd_nxt;
689 tp->mdev_max = tcp_rto_min(sk);
690 }
691 } else {
692 /* no previous measure. */
693 tp->srtt = m << 3; /* take the measured time to be rtt */
694 tp->mdev = m << 1; /* make sure rto = 3*rtt */
695 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
696 tp->rtt_seq = tp->snd_nxt;
697 }
698 }
699
700 /* Calculate rto without backoff. This is the second half of Van Jacobson's
701 * routine referred to above.
702 */
703 void tcp_set_rto(struct sock *sk)
704 {
705 const struct tcp_sock *tp = tcp_sk(sk);
706 /* Old crap is replaced with new one. 8)
707 *
708 * More seriously:
709 * 1. If rtt variance happened to be less 50msec, it is hallucination.
710 * It cannot be less due to utterly erratic ACK generation made
711 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
712 * to do with delayed acks, because at cwnd>2 true delack timeout
713 * is invisible. Actually, Linux-2.4 also generates erratic
714 * ACKs in some circumstances.
715 */
716 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
717
718 /* 2. Fixups made earlier cannot be right.
719 * If we do not estimate RTO correctly without them,
720 * all the algo is pure shit and should be replaced
721 * with correct one. It is exactly, which we pretend to do.
722 */
723
724 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
725 * guarantees that rto is higher.
726 */
727 tcp_bound_rto(sk);
728 }
729
730 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
731 {
732 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
733
734 if (!cwnd)
735 cwnd = TCP_INIT_CWND;
736 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
737 }
738
739 /*
740 * Packet counting of FACK is based on in-order assumptions, therefore TCP
741 * disables it when reordering is detected
742 */
743 void tcp_disable_fack(struct tcp_sock *tp)
744 {
745 /* RFC3517 uses different metric in lost marker => reset on change */
746 if (tcp_is_fack(tp))
747 tp->lost_skb_hint = NULL;
748 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
749 }
750
751 /* Take a notice that peer is sending D-SACKs */
752 static void tcp_dsack_seen(struct tcp_sock *tp)
753 {
754 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
755 }
756
757 static void tcp_update_reordering(struct sock *sk, const int metric,
758 const int ts)
759 {
760 struct tcp_sock *tp = tcp_sk(sk);
761 if (metric > tp->reordering) {
762 int mib_idx;
763
764 tp->reordering = min(TCP_MAX_REORDERING, metric);
765
766 /* This exciting event is worth to be remembered. 8) */
767 if (ts)
768 mib_idx = LINUX_MIB_TCPTSREORDER;
769 else if (tcp_is_reno(tp))
770 mib_idx = LINUX_MIB_TCPRENOREORDER;
771 else if (tcp_is_fack(tp))
772 mib_idx = LINUX_MIB_TCPFACKREORDER;
773 else
774 mib_idx = LINUX_MIB_TCPSACKREORDER;
775
776 NET_INC_STATS_BH(sock_net(sk), mib_idx);
777 #if FASTRETRANS_DEBUG > 1
778 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
779 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
780 tp->reordering,
781 tp->fackets_out,
782 tp->sacked_out,
783 tp->undo_marker ? tp->undo_retrans : 0);
784 #endif
785 tcp_disable_fack(tp);
786 }
787
788 if (metric > 0)
789 tcp_disable_early_retrans(tp);
790 }
791
792 /* This must be called before lost_out is incremented */
793 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
794 {
795 if ((tp->retransmit_skb_hint == NULL) ||
796 before(TCP_SKB_CB(skb)->seq,
797 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
798 tp->retransmit_skb_hint = skb;
799
800 if (!tp->lost_out ||
801 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
802 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
803 }
804
805 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
806 {
807 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
808 tcp_verify_retransmit_hint(tp, skb);
809
810 tp->lost_out += tcp_skb_pcount(skb);
811 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
812 }
813 }
814
815 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
816 struct sk_buff *skb)
817 {
818 tcp_verify_retransmit_hint(tp, skb);
819
820 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
821 tp->lost_out += tcp_skb_pcount(skb);
822 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
823 }
824 }
825
826 /* This procedure tags the retransmission queue when SACKs arrive.
827 *
828 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
829 * Packets in queue with these bits set are counted in variables
830 * sacked_out, retrans_out and lost_out, correspondingly.
831 *
832 * Valid combinations are:
833 * Tag InFlight Description
834 * 0 1 - orig segment is in flight.
835 * S 0 - nothing flies, orig reached receiver.
836 * L 0 - nothing flies, orig lost by net.
837 * R 2 - both orig and retransmit are in flight.
838 * L|R 1 - orig is lost, retransmit is in flight.
839 * S|R 1 - orig reached receiver, retrans is still in flight.
840 * (L|S|R is logically valid, it could occur when L|R is sacked,
841 * but it is equivalent to plain S and code short-curcuits it to S.
842 * L|S is logically invalid, it would mean -1 packet in flight 8))
843 *
844 * These 6 states form finite state machine, controlled by the following events:
845 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
846 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
847 * 3. Loss detection event of two flavors:
848 * A. Scoreboard estimator decided the packet is lost.
849 * A'. Reno "three dupacks" marks head of queue lost.
850 * A''. Its FACK modification, head until snd.fack is lost.
851 * B. SACK arrives sacking SND.NXT at the moment, when the
852 * segment was retransmitted.
853 * 4. D-SACK added new rule: D-SACK changes any tag to S.
854 *
855 * It is pleasant to note, that state diagram turns out to be commutative,
856 * so that we are allowed not to be bothered by order of our actions,
857 * when multiple events arrive simultaneously. (see the function below).
858 *
859 * Reordering detection.
860 * --------------------
861 * Reordering metric is maximal distance, which a packet can be displaced
862 * in packet stream. With SACKs we can estimate it:
863 *
864 * 1. SACK fills old hole and the corresponding segment was not
865 * ever retransmitted -> reordering. Alas, we cannot use it
866 * when segment was retransmitted.
867 * 2. The last flaw is solved with D-SACK. D-SACK arrives
868 * for retransmitted and already SACKed segment -> reordering..
869 * Both of these heuristics are not used in Loss state, when we cannot
870 * account for retransmits accurately.
871 *
872 * SACK block validation.
873 * ----------------------
874 *
875 * SACK block range validation checks that the received SACK block fits to
876 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
877 * Note that SND.UNA is not included to the range though being valid because
878 * it means that the receiver is rather inconsistent with itself reporting
879 * SACK reneging when it should advance SND.UNA. Such SACK block this is
880 * perfectly valid, however, in light of RFC2018 which explicitly states
881 * that "SACK block MUST reflect the newest segment. Even if the newest
882 * segment is going to be discarded ...", not that it looks very clever
883 * in case of head skb. Due to potentional receiver driven attacks, we
884 * choose to avoid immediate execution of a walk in write queue due to
885 * reneging and defer head skb's loss recovery to standard loss recovery
886 * procedure that will eventually trigger (nothing forbids us doing this).
887 *
888 * Implements also blockage to start_seq wrap-around. Problem lies in the
889 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
890 * there's no guarantee that it will be before snd_nxt (n). The problem
891 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
892 * wrap (s_w):
893 *
894 * <- outs wnd -> <- wrapzone ->
895 * u e n u_w e_w s n_w
896 * | | | | | | |
897 * |<------------+------+----- TCP seqno space --------------+---------->|
898 * ...-- <2^31 ->| |<--------...
899 * ...---- >2^31 ------>| |<--------...
900 *
901 * Current code wouldn't be vulnerable but it's better still to discard such
902 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
903 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
904 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
905 * equal to the ideal case (infinite seqno space without wrap caused issues).
906 *
907 * With D-SACK the lower bound is extended to cover sequence space below
908 * SND.UNA down to undo_marker, which is the last point of interest. Yet
909 * again, D-SACK block must not to go across snd_una (for the same reason as
910 * for the normal SACK blocks, explained above). But there all simplicity
911 * ends, TCP might receive valid D-SACKs below that. As long as they reside
912 * fully below undo_marker they do not affect behavior in anyway and can
913 * therefore be safely ignored. In rare cases (which are more or less
914 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
915 * fragmentation and packet reordering past skb's retransmission. To consider
916 * them correctly, the acceptable range must be extended even more though
917 * the exact amount is rather hard to quantify. However, tp->max_window can
918 * be used as an exaggerated estimate.
919 */
920 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
921 u32 start_seq, u32 end_seq)
922 {
923 /* Too far in future, or reversed (interpretation is ambiguous) */
924 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
925 return false;
926
927 /* Nasty start_seq wrap-around check (see comments above) */
928 if (!before(start_seq, tp->snd_nxt))
929 return false;
930
931 /* In outstanding window? ...This is valid exit for D-SACKs too.
932 * start_seq == snd_una is non-sensical (see comments above)
933 */
934 if (after(start_seq, tp->snd_una))
935 return true;
936
937 if (!is_dsack || !tp->undo_marker)
938 return false;
939
940 /* ...Then it's D-SACK, and must reside below snd_una completely */
941 if (after(end_seq, tp->snd_una))
942 return false;
943
944 if (!before(start_seq, tp->undo_marker))
945 return true;
946
947 /* Too old */
948 if (!after(end_seq, tp->undo_marker))
949 return false;
950
951 /* Undo_marker boundary crossing (overestimates a lot). Known already:
952 * start_seq < undo_marker and end_seq >= undo_marker.
953 */
954 return !before(start_seq, end_seq - tp->max_window);
955 }
956
957 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
958 * Event "B". Later note: FACK people cheated me again 8), we have to account
959 * for reordering! Ugly, but should help.
960 *
961 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
962 * less than what is now known to be received by the other end (derived from
963 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
964 * retransmitted skbs to avoid some costly processing per ACKs.
965 */
966 static void tcp_mark_lost_retrans(struct sock *sk)
967 {
968 const struct inet_connection_sock *icsk = inet_csk(sk);
969 struct tcp_sock *tp = tcp_sk(sk);
970 struct sk_buff *skb;
971 int cnt = 0;
972 u32 new_low_seq = tp->snd_nxt;
973 u32 received_upto = tcp_highest_sack_seq(tp);
974
975 if (!tcp_is_fack(tp) || !tp->retrans_out ||
976 !after(received_upto, tp->lost_retrans_low) ||
977 icsk->icsk_ca_state != TCP_CA_Recovery)
978 return;
979
980 tcp_for_write_queue(skb, sk) {
981 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
982
983 if (skb == tcp_send_head(sk))
984 break;
985 if (cnt == tp->retrans_out)
986 break;
987 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
988 continue;
989
990 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
991 continue;
992
993 /* TODO: We would like to get rid of tcp_is_fack(tp) only
994 * constraint here (see above) but figuring out that at
995 * least tp->reordering SACK blocks reside between ack_seq
996 * and received_upto is not easy task to do cheaply with
997 * the available datastructures.
998 *
999 * Whether FACK should check here for tp->reordering segs
1000 * in-between one could argue for either way (it would be
1001 * rather simple to implement as we could count fack_count
1002 * during the walk and do tp->fackets_out - fack_count).
1003 */
1004 if (after(received_upto, ack_seq)) {
1005 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1006 tp->retrans_out -= tcp_skb_pcount(skb);
1007
1008 tcp_skb_mark_lost_uncond_verify(tp, skb);
1009 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1010 } else {
1011 if (before(ack_seq, new_low_seq))
1012 new_low_seq = ack_seq;
1013 cnt += tcp_skb_pcount(skb);
1014 }
1015 }
1016
1017 if (tp->retrans_out)
1018 tp->lost_retrans_low = new_low_seq;
1019 }
1020
1021 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1022 struct tcp_sack_block_wire *sp, int num_sacks,
1023 u32 prior_snd_una)
1024 {
1025 struct tcp_sock *tp = tcp_sk(sk);
1026 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1027 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1028 bool dup_sack = false;
1029
1030 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1031 dup_sack = true;
1032 tcp_dsack_seen(tp);
1033 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1034 } else if (num_sacks > 1) {
1035 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1036 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1037
1038 if (!after(end_seq_0, end_seq_1) &&
1039 !before(start_seq_0, start_seq_1)) {
1040 dup_sack = true;
1041 tcp_dsack_seen(tp);
1042 NET_INC_STATS_BH(sock_net(sk),
1043 LINUX_MIB_TCPDSACKOFORECV);
1044 }
1045 }
1046
1047 /* D-SACK for already forgotten data... Do dumb counting. */
1048 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1049 !after(end_seq_0, prior_snd_una) &&
1050 after(end_seq_0, tp->undo_marker))
1051 tp->undo_retrans--;
1052
1053 return dup_sack;
1054 }
1055
1056 struct tcp_sacktag_state {
1057 int reord;
1058 int fack_count;
1059 int flag;
1060 };
1061
1062 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1063 * the incoming SACK may not exactly match but we can find smaller MSS
1064 * aligned portion of it that matches. Therefore we might need to fragment
1065 * which may fail and creates some hassle (caller must handle error case
1066 * returns).
1067 *
1068 * FIXME: this could be merged to shift decision code
1069 */
1070 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1071 u32 start_seq, u32 end_seq)
1072 {
1073 int err;
1074 bool in_sack;
1075 unsigned int pkt_len;
1076 unsigned int mss;
1077
1078 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1079 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1080
1081 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1082 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1083 mss = tcp_skb_mss(skb);
1084 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1085
1086 if (!in_sack) {
1087 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1088 if (pkt_len < mss)
1089 pkt_len = mss;
1090 } else {
1091 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1092 if (pkt_len < mss)
1093 return -EINVAL;
1094 }
1095
1096 /* Round if necessary so that SACKs cover only full MSSes
1097 * and/or the remaining small portion (if present)
1098 */
1099 if (pkt_len > mss) {
1100 unsigned int new_len = (pkt_len / mss) * mss;
1101 if (!in_sack && new_len < pkt_len) {
1102 new_len += mss;
1103 if (new_len > skb->len)
1104 return 0;
1105 }
1106 pkt_len = new_len;
1107 }
1108 err = tcp_fragment(sk, skb, pkt_len, mss);
1109 if (err < 0)
1110 return err;
1111 }
1112
1113 return in_sack;
1114 }
1115
1116 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1117 static u8 tcp_sacktag_one(struct sock *sk,
1118 struct tcp_sacktag_state *state, u8 sacked,
1119 u32 start_seq, u32 end_seq,
1120 bool dup_sack, int pcount)
1121 {
1122 struct tcp_sock *tp = tcp_sk(sk);
1123 int fack_count = state->fack_count;
1124
1125 /* Account D-SACK for retransmitted packet. */
1126 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1127 if (tp->undo_marker && tp->undo_retrans &&
1128 after(end_seq, tp->undo_marker))
1129 tp->undo_retrans--;
1130 if (sacked & TCPCB_SACKED_ACKED)
1131 state->reord = min(fack_count, state->reord);
1132 }
1133
1134 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1135 if (!after(end_seq, tp->snd_una))
1136 return sacked;
1137
1138 if (!(sacked & TCPCB_SACKED_ACKED)) {
1139 if (sacked & TCPCB_SACKED_RETRANS) {
1140 /* If the segment is not tagged as lost,
1141 * we do not clear RETRANS, believing
1142 * that retransmission is still in flight.
1143 */
1144 if (sacked & TCPCB_LOST) {
1145 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1146 tp->lost_out -= pcount;
1147 tp->retrans_out -= pcount;
1148 }
1149 } else {
1150 if (!(sacked & TCPCB_RETRANS)) {
1151 /* New sack for not retransmitted frame,
1152 * which was in hole. It is reordering.
1153 */
1154 if (before(start_seq,
1155 tcp_highest_sack_seq(tp)))
1156 state->reord = min(fack_count,
1157 state->reord);
1158 if (!after(end_seq, tp->high_seq))
1159 state->flag |= FLAG_ORIG_SACK_ACKED;
1160 }
1161
1162 if (sacked & TCPCB_LOST) {
1163 sacked &= ~TCPCB_LOST;
1164 tp->lost_out -= pcount;
1165 }
1166 }
1167
1168 sacked |= TCPCB_SACKED_ACKED;
1169 state->flag |= FLAG_DATA_SACKED;
1170 tp->sacked_out += pcount;
1171
1172 fack_count += pcount;
1173
1174 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1175 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1176 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1177 tp->lost_cnt_hint += pcount;
1178
1179 if (fack_count > tp->fackets_out)
1180 tp->fackets_out = fack_count;
1181 }
1182
1183 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1184 * frames and clear it. undo_retrans is decreased above, L|R frames
1185 * are accounted above as well.
1186 */
1187 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1188 sacked &= ~TCPCB_SACKED_RETRANS;
1189 tp->retrans_out -= pcount;
1190 }
1191
1192 return sacked;
1193 }
1194
1195 /* Shift newly-SACKed bytes from this skb to the immediately previous
1196 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1197 */
1198 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1199 struct tcp_sacktag_state *state,
1200 unsigned int pcount, int shifted, int mss,
1201 bool dup_sack)
1202 {
1203 struct tcp_sock *tp = tcp_sk(sk);
1204 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1205 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1206 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1207
1208 BUG_ON(!pcount);
1209
1210 /* Adjust counters and hints for the newly sacked sequence
1211 * range but discard the return value since prev is already
1212 * marked. We must tag the range first because the seq
1213 * advancement below implicitly advances
1214 * tcp_highest_sack_seq() when skb is highest_sack.
1215 */
1216 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1217 start_seq, end_seq, dup_sack, pcount);
1218
1219 if (skb == tp->lost_skb_hint)
1220 tp->lost_cnt_hint += pcount;
1221
1222 TCP_SKB_CB(prev)->end_seq += shifted;
1223 TCP_SKB_CB(skb)->seq += shifted;
1224
1225 skb_shinfo(prev)->gso_segs += pcount;
1226 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1227 skb_shinfo(skb)->gso_segs -= pcount;
1228
1229 /* When we're adding to gso_segs == 1, gso_size will be zero,
1230 * in theory this shouldn't be necessary but as long as DSACK
1231 * code can come after this skb later on it's better to keep
1232 * setting gso_size to something.
1233 */
1234 if (!skb_shinfo(prev)->gso_size) {
1235 skb_shinfo(prev)->gso_size = mss;
1236 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1237 }
1238
1239 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1240 if (skb_shinfo(skb)->gso_segs <= 1) {
1241 skb_shinfo(skb)->gso_size = 0;
1242 skb_shinfo(skb)->gso_type = 0;
1243 }
1244
1245 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1246 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1247
1248 if (skb->len > 0) {
1249 BUG_ON(!tcp_skb_pcount(skb));
1250 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1251 return false;
1252 }
1253
1254 /* Whole SKB was eaten :-) */
1255
1256 if (skb == tp->retransmit_skb_hint)
1257 tp->retransmit_skb_hint = prev;
1258 if (skb == tp->lost_skb_hint) {
1259 tp->lost_skb_hint = prev;
1260 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1261 }
1262
1263 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1264 if (skb == tcp_highest_sack(sk))
1265 tcp_advance_highest_sack(sk, skb);
1266
1267 tcp_unlink_write_queue(skb, sk);
1268 sk_wmem_free_skb(sk, skb);
1269
1270 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1271
1272 return true;
1273 }
1274
1275 /* I wish gso_size would have a bit more sane initialization than
1276 * something-or-zero which complicates things
1277 */
1278 static int tcp_skb_seglen(const struct sk_buff *skb)
1279 {
1280 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1281 }
1282
1283 /* Shifting pages past head area doesn't work */
1284 static int skb_can_shift(const struct sk_buff *skb)
1285 {
1286 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1287 }
1288
1289 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1290 * skb.
1291 */
1292 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1293 struct tcp_sacktag_state *state,
1294 u32 start_seq, u32 end_seq,
1295 bool dup_sack)
1296 {
1297 struct tcp_sock *tp = tcp_sk(sk);
1298 struct sk_buff *prev;
1299 int mss;
1300 int pcount = 0;
1301 int len;
1302 int in_sack;
1303
1304 if (!sk_can_gso(sk))
1305 goto fallback;
1306
1307 /* Normally R but no L won't result in plain S */
1308 if (!dup_sack &&
1309 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1310 goto fallback;
1311 if (!skb_can_shift(skb))
1312 goto fallback;
1313 /* This frame is about to be dropped (was ACKed). */
1314 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1315 goto fallback;
1316
1317 /* Can only happen with delayed DSACK + discard craziness */
1318 if (unlikely(skb == tcp_write_queue_head(sk)))
1319 goto fallback;
1320 prev = tcp_write_queue_prev(sk, skb);
1321
1322 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1323 goto fallback;
1324
1325 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1326 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1327
1328 if (in_sack) {
1329 len = skb->len;
1330 pcount = tcp_skb_pcount(skb);
1331 mss = tcp_skb_seglen(skb);
1332
1333 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1334 * drop this restriction as unnecessary
1335 */
1336 if (mss != tcp_skb_seglen(prev))
1337 goto fallback;
1338 } else {
1339 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1340 goto noop;
1341 /* CHECKME: This is non-MSS split case only?, this will
1342 * cause skipped skbs due to advancing loop btw, original
1343 * has that feature too
1344 */
1345 if (tcp_skb_pcount(skb) <= 1)
1346 goto noop;
1347
1348 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1349 if (!in_sack) {
1350 /* TODO: head merge to next could be attempted here
1351 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1352 * though it might not be worth of the additional hassle
1353 *
1354 * ...we can probably just fallback to what was done
1355 * previously. We could try merging non-SACKed ones
1356 * as well but it probably isn't going to buy off
1357 * because later SACKs might again split them, and
1358 * it would make skb timestamp tracking considerably
1359 * harder problem.
1360 */
1361 goto fallback;
1362 }
1363
1364 len = end_seq - TCP_SKB_CB(skb)->seq;
1365 BUG_ON(len < 0);
1366 BUG_ON(len > skb->len);
1367
1368 /* MSS boundaries should be honoured or else pcount will
1369 * severely break even though it makes things bit trickier.
1370 * Optimize common case to avoid most of the divides
1371 */
1372 mss = tcp_skb_mss(skb);
1373
1374 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1375 * drop this restriction as unnecessary
1376 */
1377 if (mss != tcp_skb_seglen(prev))
1378 goto fallback;
1379
1380 if (len == mss) {
1381 pcount = 1;
1382 } else if (len < mss) {
1383 goto noop;
1384 } else {
1385 pcount = len / mss;
1386 len = pcount * mss;
1387 }
1388 }
1389
1390 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1391 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1392 goto fallback;
1393
1394 if (!skb_shift(prev, skb, len))
1395 goto fallback;
1396 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1397 goto out;
1398
1399 /* Hole filled allows collapsing with the next as well, this is very
1400 * useful when hole on every nth skb pattern happens
1401 */
1402 if (prev == tcp_write_queue_tail(sk))
1403 goto out;
1404 skb = tcp_write_queue_next(sk, prev);
1405
1406 if (!skb_can_shift(skb) ||
1407 (skb == tcp_send_head(sk)) ||
1408 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1409 (mss != tcp_skb_seglen(skb)))
1410 goto out;
1411
1412 len = skb->len;
1413 if (skb_shift(prev, skb, len)) {
1414 pcount += tcp_skb_pcount(skb);
1415 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1416 }
1417
1418 out:
1419 state->fack_count += pcount;
1420 return prev;
1421
1422 noop:
1423 return skb;
1424
1425 fallback:
1426 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1427 return NULL;
1428 }
1429
1430 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1431 struct tcp_sack_block *next_dup,
1432 struct tcp_sacktag_state *state,
1433 u32 start_seq, u32 end_seq,
1434 bool dup_sack_in)
1435 {
1436 struct tcp_sock *tp = tcp_sk(sk);
1437 struct sk_buff *tmp;
1438
1439 tcp_for_write_queue_from(skb, sk) {
1440 int in_sack = 0;
1441 bool dup_sack = dup_sack_in;
1442
1443 if (skb == tcp_send_head(sk))
1444 break;
1445
1446 /* queue is in-order => we can short-circuit the walk early */
1447 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1448 break;
1449
1450 if ((next_dup != NULL) &&
1451 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1452 in_sack = tcp_match_skb_to_sack(sk, skb,
1453 next_dup->start_seq,
1454 next_dup->end_seq);
1455 if (in_sack > 0)
1456 dup_sack = true;
1457 }
1458
1459 /* skb reference here is a bit tricky to get right, since
1460 * shifting can eat and free both this skb and the next,
1461 * so not even _safe variant of the loop is enough.
1462 */
1463 if (in_sack <= 0) {
1464 tmp = tcp_shift_skb_data(sk, skb, state,
1465 start_seq, end_seq, dup_sack);
1466 if (tmp != NULL) {
1467 if (tmp != skb) {
1468 skb = tmp;
1469 continue;
1470 }
1471
1472 in_sack = 0;
1473 } else {
1474 in_sack = tcp_match_skb_to_sack(sk, skb,
1475 start_seq,
1476 end_seq);
1477 }
1478 }
1479
1480 if (unlikely(in_sack < 0))
1481 break;
1482
1483 if (in_sack) {
1484 TCP_SKB_CB(skb)->sacked =
1485 tcp_sacktag_one(sk,
1486 state,
1487 TCP_SKB_CB(skb)->sacked,
1488 TCP_SKB_CB(skb)->seq,
1489 TCP_SKB_CB(skb)->end_seq,
1490 dup_sack,
1491 tcp_skb_pcount(skb));
1492
1493 if (!before(TCP_SKB_CB(skb)->seq,
1494 tcp_highest_sack_seq(tp)))
1495 tcp_advance_highest_sack(sk, skb);
1496 }
1497
1498 state->fack_count += tcp_skb_pcount(skb);
1499 }
1500 return skb;
1501 }
1502
1503 /* Avoid all extra work that is being done by sacktag while walking in
1504 * a normal way
1505 */
1506 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1507 struct tcp_sacktag_state *state,
1508 u32 skip_to_seq)
1509 {
1510 tcp_for_write_queue_from(skb, sk) {
1511 if (skb == tcp_send_head(sk))
1512 break;
1513
1514 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1515 break;
1516
1517 state->fack_count += tcp_skb_pcount(skb);
1518 }
1519 return skb;
1520 }
1521
1522 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1523 struct sock *sk,
1524 struct tcp_sack_block *next_dup,
1525 struct tcp_sacktag_state *state,
1526 u32 skip_to_seq)
1527 {
1528 if (next_dup == NULL)
1529 return skb;
1530
1531 if (before(next_dup->start_seq, skip_to_seq)) {
1532 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1533 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1534 next_dup->start_seq, next_dup->end_seq,
1535 1);
1536 }
1537
1538 return skb;
1539 }
1540
1541 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1542 {
1543 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1544 }
1545
1546 static int
1547 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1548 u32 prior_snd_una)
1549 {
1550 struct tcp_sock *tp = tcp_sk(sk);
1551 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1552 TCP_SKB_CB(ack_skb)->sacked);
1553 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1554 struct tcp_sack_block sp[TCP_NUM_SACKS];
1555 struct tcp_sack_block *cache;
1556 struct tcp_sacktag_state state;
1557 struct sk_buff *skb;
1558 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1559 int used_sacks;
1560 bool found_dup_sack = false;
1561 int i, j;
1562 int first_sack_index;
1563
1564 state.flag = 0;
1565 state.reord = tp->packets_out;
1566
1567 if (!tp->sacked_out) {
1568 if (WARN_ON(tp->fackets_out))
1569 tp->fackets_out = 0;
1570 tcp_highest_sack_reset(sk);
1571 }
1572
1573 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1574 num_sacks, prior_snd_una);
1575 if (found_dup_sack)
1576 state.flag |= FLAG_DSACKING_ACK;
1577
1578 /* Eliminate too old ACKs, but take into
1579 * account more or less fresh ones, they can
1580 * contain valid SACK info.
1581 */
1582 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1583 return 0;
1584
1585 if (!tp->packets_out)
1586 goto out;
1587
1588 used_sacks = 0;
1589 first_sack_index = 0;
1590 for (i = 0; i < num_sacks; i++) {
1591 bool dup_sack = !i && found_dup_sack;
1592
1593 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1594 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1595
1596 if (!tcp_is_sackblock_valid(tp, dup_sack,
1597 sp[used_sacks].start_seq,
1598 sp[used_sacks].end_seq)) {
1599 int mib_idx;
1600
1601 if (dup_sack) {
1602 if (!tp->undo_marker)
1603 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1604 else
1605 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1606 } else {
1607 /* Don't count olds caused by ACK reordering */
1608 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1609 !after(sp[used_sacks].end_seq, tp->snd_una))
1610 continue;
1611 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1612 }
1613
1614 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1615 if (i == 0)
1616 first_sack_index = -1;
1617 continue;
1618 }
1619
1620 /* Ignore very old stuff early */
1621 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1622 continue;
1623
1624 used_sacks++;
1625 }
1626
1627 /* order SACK blocks to allow in order walk of the retrans queue */
1628 for (i = used_sacks - 1; i > 0; i--) {
1629 for (j = 0; j < i; j++) {
1630 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1631 swap(sp[j], sp[j + 1]);
1632
1633 /* Track where the first SACK block goes to */
1634 if (j == first_sack_index)
1635 first_sack_index = j + 1;
1636 }
1637 }
1638 }
1639
1640 skb = tcp_write_queue_head(sk);
1641 state.fack_count = 0;
1642 i = 0;
1643
1644 if (!tp->sacked_out) {
1645 /* It's already past, so skip checking against it */
1646 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1647 } else {
1648 cache = tp->recv_sack_cache;
1649 /* Skip empty blocks in at head of the cache */
1650 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1651 !cache->end_seq)
1652 cache++;
1653 }
1654
1655 while (i < used_sacks) {
1656 u32 start_seq = sp[i].start_seq;
1657 u32 end_seq = sp[i].end_seq;
1658 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1659 struct tcp_sack_block *next_dup = NULL;
1660
1661 if (found_dup_sack && ((i + 1) == first_sack_index))
1662 next_dup = &sp[i + 1];
1663
1664 /* Skip too early cached blocks */
1665 while (tcp_sack_cache_ok(tp, cache) &&
1666 !before(start_seq, cache->end_seq))
1667 cache++;
1668
1669 /* Can skip some work by looking recv_sack_cache? */
1670 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1671 after(end_seq, cache->start_seq)) {
1672
1673 /* Head todo? */
1674 if (before(start_seq, cache->start_seq)) {
1675 skb = tcp_sacktag_skip(skb, sk, &state,
1676 start_seq);
1677 skb = tcp_sacktag_walk(skb, sk, next_dup,
1678 &state,
1679 start_seq,
1680 cache->start_seq,
1681 dup_sack);
1682 }
1683
1684 /* Rest of the block already fully processed? */
1685 if (!after(end_seq, cache->end_seq))
1686 goto advance_sp;
1687
1688 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1689 &state,
1690 cache->end_seq);
1691
1692 /* ...tail remains todo... */
1693 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1694 /* ...but better entrypoint exists! */
1695 skb = tcp_highest_sack(sk);
1696 if (skb == NULL)
1697 break;
1698 state.fack_count = tp->fackets_out;
1699 cache++;
1700 goto walk;
1701 }
1702
1703 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1704 /* Check overlap against next cached too (past this one already) */
1705 cache++;
1706 continue;
1707 }
1708
1709 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1710 skb = tcp_highest_sack(sk);
1711 if (skb == NULL)
1712 break;
1713 state.fack_count = tp->fackets_out;
1714 }
1715 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1716
1717 walk:
1718 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1719 start_seq, end_seq, dup_sack);
1720
1721 advance_sp:
1722 i++;
1723 }
1724
1725 /* Clear the head of the cache sack blocks so we can skip it next time */
1726 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1727 tp->recv_sack_cache[i].start_seq = 0;
1728 tp->recv_sack_cache[i].end_seq = 0;
1729 }
1730 for (j = 0; j < used_sacks; j++)
1731 tp->recv_sack_cache[i++] = sp[j];
1732
1733 tcp_mark_lost_retrans(sk);
1734
1735 tcp_verify_left_out(tp);
1736
1737 if ((state.reord < tp->fackets_out) &&
1738 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1739 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1740
1741 out:
1742
1743 #if FASTRETRANS_DEBUG > 0
1744 WARN_ON((int)tp->sacked_out < 0);
1745 WARN_ON((int)tp->lost_out < 0);
1746 WARN_ON((int)tp->retrans_out < 0);
1747 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1748 #endif
1749 return state.flag;
1750 }
1751
1752 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1753 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1754 */
1755 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1756 {
1757 u32 holes;
1758
1759 holes = max(tp->lost_out, 1U);
1760 holes = min(holes, tp->packets_out);
1761
1762 if ((tp->sacked_out + holes) > tp->packets_out) {
1763 tp->sacked_out = tp->packets_out - holes;
1764 return true;
1765 }
1766 return false;
1767 }
1768
1769 /* If we receive more dupacks than we expected counting segments
1770 * in assumption of absent reordering, interpret this as reordering.
1771 * The only another reason could be bug in receiver TCP.
1772 */
1773 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1774 {
1775 struct tcp_sock *tp = tcp_sk(sk);
1776 if (tcp_limit_reno_sacked(tp))
1777 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1778 }
1779
1780 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1781
1782 static void tcp_add_reno_sack(struct sock *sk)
1783 {
1784 struct tcp_sock *tp = tcp_sk(sk);
1785 tp->sacked_out++;
1786 tcp_check_reno_reordering(sk, 0);
1787 tcp_verify_left_out(tp);
1788 }
1789
1790 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1791
1792 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1793 {
1794 struct tcp_sock *tp = tcp_sk(sk);
1795
1796 if (acked > 0) {
1797 /* One ACK acked hole. The rest eat duplicate ACKs. */
1798 if (acked - 1 >= tp->sacked_out)
1799 tp->sacked_out = 0;
1800 else
1801 tp->sacked_out -= acked - 1;
1802 }
1803 tcp_check_reno_reordering(sk, acked);
1804 tcp_verify_left_out(tp);
1805 }
1806
1807 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1808 {
1809 tp->sacked_out = 0;
1810 }
1811
1812 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1813 {
1814 tp->retrans_out = 0;
1815 tp->lost_out = 0;
1816
1817 tp->undo_marker = 0;
1818 tp->undo_retrans = 0;
1819 }
1820
1821 void tcp_clear_retrans(struct tcp_sock *tp)
1822 {
1823 tcp_clear_retrans_partial(tp);
1824
1825 tp->fackets_out = 0;
1826 tp->sacked_out = 0;
1827 }
1828
1829 /* Enter Loss state. If "how" is not zero, forget all SACK information
1830 * and reset tags completely, otherwise preserve SACKs. If receiver
1831 * dropped its ofo queue, we will know this due to reneging detection.
1832 */
1833 void tcp_enter_loss(struct sock *sk, int how)
1834 {
1835 const struct inet_connection_sock *icsk = inet_csk(sk);
1836 struct tcp_sock *tp = tcp_sk(sk);
1837 struct sk_buff *skb;
1838 bool new_recovery = false;
1839
1840 /* Reduce ssthresh if it has not yet been made inside this window. */
1841 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1842 !after(tp->high_seq, tp->snd_una) ||
1843 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1844 new_recovery = true;
1845 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1846 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1847 tcp_ca_event(sk, CA_EVENT_LOSS);
1848 }
1849 tp->snd_cwnd = 1;
1850 tp->snd_cwnd_cnt = 0;
1851 tp->snd_cwnd_stamp = tcp_time_stamp;
1852
1853 tcp_clear_retrans_partial(tp);
1854
1855 if (tcp_is_reno(tp))
1856 tcp_reset_reno_sack(tp);
1857
1858 tp->undo_marker = tp->snd_una;
1859 if (how) {
1860 tp->sacked_out = 0;
1861 tp->fackets_out = 0;
1862 }
1863 tcp_clear_all_retrans_hints(tp);
1864
1865 tcp_for_write_queue(skb, sk) {
1866 if (skb == tcp_send_head(sk))
1867 break;
1868
1869 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1870 tp->undo_marker = 0;
1871 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1872 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1873 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1874 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1875 tp->lost_out += tcp_skb_pcount(skb);
1876 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1877 }
1878 }
1879 tcp_verify_left_out(tp);
1880
1881 tp->reordering = min_t(unsigned int, tp->reordering,
1882 sysctl_tcp_reordering);
1883 tcp_set_ca_state(sk, TCP_CA_Loss);
1884 tp->high_seq = tp->snd_nxt;
1885 TCP_ECN_queue_cwr(tp);
1886
1887 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1888 * loss recovery is underway except recurring timeout(s) on
1889 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1890 */
1891 tp->frto = sysctl_tcp_frto &&
1892 (new_recovery || icsk->icsk_retransmits) &&
1893 !inet_csk(sk)->icsk_mtup.probe_size;
1894 }
1895
1896 /* If ACK arrived pointing to a remembered SACK, it means that our
1897 * remembered SACKs do not reflect real state of receiver i.e.
1898 * receiver _host_ is heavily congested (or buggy).
1899 *
1900 * Do processing similar to RTO timeout.
1901 */
1902 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1903 {
1904 if (flag & FLAG_SACK_RENEGING) {
1905 struct inet_connection_sock *icsk = inet_csk(sk);
1906 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1907
1908 tcp_enter_loss(sk, 1);
1909 icsk->icsk_retransmits++;
1910 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1911 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1912 icsk->icsk_rto, TCP_RTO_MAX);
1913 return true;
1914 }
1915 return false;
1916 }
1917
1918 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1919 {
1920 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1921 }
1922
1923 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1924 * counter when SACK is enabled (without SACK, sacked_out is used for
1925 * that purpose).
1926 *
1927 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1928 * segments up to the highest received SACK block so far and holes in
1929 * between them.
1930 *
1931 * With reordering, holes may still be in flight, so RFC3517 recovery
1932 * uses pure sacked_out (total number of SACKed segments) even though
1933 * it violates the RFC that uses duplicate ACKs, often these are equal
1934 * but when e.g. out-of-window ACKs or packet duplication occurs,
1935 * they differ. Since neither occurs due to loss, TCP should really
1936 * ignore them.
1937 */
1938 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1939 {
1940 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1941 }
1942
1943 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1944 {
1945 struct tcp_sock *tp = tcp_sk(sk);
1946 unsigned long delay;
1947
1948 /* Delay early retransmit and entering fast recovery for
1949 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1950 * available, or RTO is scheduled to fire first.
1951 */
1952 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
1953 (flag & FLAG_ECE) || !tp->srtt)
1954 return false;
1955
1956 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
1957 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
1958 return false;
1959
1960 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
1961 TCP_RTO_MAX);
1962 return true;
1963 }
1964
1965 /* Linux NewReno/SACK/FACK/ECN state machine.
1966 * --------------------------------------
1967 *
1968 * "Open" Normal state, no dubious events, fast path.
1969 * "Disorder" In all the respects it is "Open",
1970 * but requires a bit more attention. It is entered when
1971 * we see some SACKs or dupacks. It is split of "Open"
1972 * mainly to move some processing from fast path to slow one.
1973 * "CWR" CWND was reduced due to some Congestion Notification event.
1974 * It can be ECN, ICMP source quench, local device congestion.
1975 * "Recovery" CWND was reduced, we are fast-retransmitting.
1976 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1977 *
1978 * tcp_fastretrans_alert() is entered:
1979 * - each incoming ACK, if state is not "Open"
1980 * - when arrived ACK is unusual, namely:
1981 * * SACK
1982 * * Duplicate ACK.
1983 * * ECN ECE.
1984 *
1985 * Counting packets in flight is pretty simple.
1986 *
1987 * in_flight = packets_out - left_out + retrans_out
1988 *
1989 * packets_out is SND.NXT-SND.UNA counted in packets.
1990 *
1991 * retrans_out is number of retransmitted segments.
1992 *
1993 * left_out is number of segments left network, but not ACKed yet.
1994 *
1995 * left_out = sacked_out + lost_out
1996 *
1997 * sacked_out: Packets, which arrived to receiver out of order
1998 * and hence not ACKed. With SACKs this number is simply
1999 * amount of SACKed data. Even without SACKs
2000 * it is easy to give pretty reliable estimate of this number,
2001 * counting duplicate ACKs.
2002 *
2003 * lost_out: Packets lost by network. TCP has no explicit
2004 * "loss notification" feedback from network (for now).
2005 * It means that this number can be only _guessed_.
2006 * Actually, it is the heuristics to predict lossage that
2007 * distinguishes different algorithms.
2008 *
2009 * F.e. after RTO, when all the queue is considered as lost,
2010 * lost_out = packets_out and in_flight = retrans_out.
2011 *
2012 * Essentially, we have now two algorithms counting
2013 * lost packets.
2014 *
2015 * FACK: It is the simplest heuristics. As soon as we decided
2016 * that something is lost, we decide that _all_ not SACKed
2017 * packets until the most forward SACK are lost. I.e.
2018 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2019 * It is absolutely correct estimate, if network does not reorder
2020 * packets. And it loses any connection to reality when reordering
2021 * takes place. We use FACK by default until reordering
2022 * is suspected on the path to this destination.
2023 *
2024 * NewReno: when Recovery is entered, we assume that one segment
2025 * is lost (classic Reno). While we are in Recovery and
2026 * a partial ACK arrives, we assume that one more packet
2027 * is lost (NewReno). This heuristics are the same in NewReno
2028 * and SACK.
2029 *
2030 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2031 * deflation etc. CWND is real congestion window, never inflated, changes
2032 * only according to classic VJ rules.
2033 *
2034 * Really tricky (and requiring careful tuning) part of algorithm
2035 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2036 * The first determines the moment _when_ we should reduce CWND and,
2037 * hence, slow down forward transmission. In fact, it determines the moment
2038 * when we decide that hole is caused by loss, rather than by a reorder.
2039 *
2040 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2041 * holes, caused by lost packets.
2042 *
2043 * And the most logically complicated part of algorithm is undo
2044 * heuristics. We detect false retransmits due to both too early
2045 * fast retransmit (reordering) and underestimated RTO, analyzing
2046 * timestamps and D-SACKs. When we detect that some segments were
2047 * retransmitted by mistake and CWND reduction was wrong, we undo
2048 * window reduction and abort recovery phase. This logic is hidden
2049 * inside several functions named tcp_try_undo_<something>.
2050 */
2051
2052 /* This function decides, when we should leave Disordered state
2053 * and enter Recovery phase, reducing congestion window.
2054 *
2055 * Main question: may we further continue forward transmission
2056 * with the same cwnd?
2057 */
2058 static bool tcp_time_to_recover(struct sock *sk, int flag)
2059 {
2060 struct tcp_sock *tp = tcp_sk(sk);
2061 __u32 packets_out;
2062
2063 /* Trick#1: The loss is proven. */
2064 if (tp->lost_out)
2065 return true;
2066
2067 /* Not-A-Trick#2 : Classic rule... */
2068 if (tcp_dupack_heuristics(tp) > tp->reordering)
2069 return true;
2070
2071 /* Trick#4: It is still not OK... But will it be useful to delay
2072 * recovery more?
2073 */
2074 packets_out = tp->packets_out;
2075 if (packets_out <= tp->reordering &&
2076 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2077 !tcp_may_send_now(sk)) {
2078 /* We have nothing to send. This connection is limited
2079 * either by receiver window or by application.
2080 */
2081 return true;
2082 }
2083
2084 /* If a thin stream is detected, retransmit after first
2085 * received dupack. Employ only if SACK is supported in order
2086 * to avoid possible corner-case series of spurious retransmissions
2087 * Use only if there are no unsent data.
2088 */
2089 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2090 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2091 tcp_is_sack(tp) && !tcp_send_head(sk))
2092 return true;
2093
2094 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2095 * retransmissions due to small network reorderings, we implement
2096 * Mitigation A.3 in the RFC and delay the retransmission for a short
2097 * interval if appropriate.
2098 */
2099 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2100 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2101 !tcp_may_send_now(sk))
2102 return !tcp_pause_early_retransmit(sk, flag);
2103
2104 return false;
2105 }
2106
2107 /* Detect loss in event "A" above by marking head of queue up as lost.
2108 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2109 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2110 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2111 * the maximum SACKed segments to pass before reaching this limit.
2112 */
2113 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2114 {
2115 struct tcp_sock *tp = tcp_sk(sk);
2116 struct sk_buff *skb;
2117 int cnt, oldcnt;
2118 int err;
2119 unsigned int mss;
2120 /* Use SACK to deduce losses of new sequences sent during recovery */
2121 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2122
2123 WARN_ON(packets > tp->packets_out);
2124 if (tp->lost_skb_hint) {
2125 skb = tp->lost_skb_hint;
2126 cnt = tp->lost_cnt_hint;
2127 /* Head already handled? */
2128 if (mark_head && skb != tcp_write_queue_head(sk))
2129 return;
2130 } else {
2131 skb = tcp_write_queue_head(sk);
2132 cnt = 0;
2133 }
2134
2135 tcp_for_write_queue_from(skb, sk) {
2136 if (skb == tcp_send_head(sk))
2137 break;
2138 /* TODO: do this better */
2139 /* this is not the most efficient way to do this... */
2140 tp->lost_skb_hint = skb;
2141 tp->lost_cnt_hint = cnt;
2142
2143 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2144 break;
2145
2146 oldcnt = cnt;
2147 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2148 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2149 cnt += tcp_skb_pcount(skb);
2150
2151 if (cnt > packets) {
2152 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2153 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2154 (oldcnt >= packets))
2155 break;
2156
2157 mss = skb_shinfo(skb)->gso_size;
2158 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2159 if (err < 0)
2160 break;
2161 cnt = packets;
2162 }
2163
2164 tcp_skb_mark_lost(tp, skb);
2165
2166 if (mark_head)
2167 break;
2168 }
2169 tcp_verify_left_out(tp);
2170 }
2171
2172 /* Account newly detected lost packet(s) */
2173
2174 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2175 {
2176 struct tcp_sock *tp = tcp_sk(sk);
2177
2178 if (tcp_is_reno(tp)) {
2179 tcp_mark_head_lost(sk, 1, 1);
2180 } else if (tcp_is_fack(tp)) {
2181 int lost = tp->fackets_out - tp->reordering;
2182 if (lost <= 0)
2183 lost = 1;
2184 tcp_mark_head_lost(sk, lost, 0);
2185 } else {
2186 int sacked_upto = tp->sacked_out - tp->reordering;
2187 if (sacked_upto >= 0)
2188 tcp_mark_head_lost(sk, sacked_upto, 0);
2189 else if (fast_rexmit)
2190 tcp_mark_head_lost(sk, 1, 1);
2191 }
2192 }
2193
2194 /* CWND moderation, preventing bursts due to too big ACKs
2195 * in dubious situations.
2196 */
2197 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2198 {
2199 tp->snd_cwnd = min(tp->snd_cwnd,
2200 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2201 tp->snd_cwnd_stamp = tcp_time_stamp;
2202 }
2203
2204 /* Nothing was retransmitted or returned timestamp is less
2205 * than timestamp of the first retransmission.
2206 */
2207 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2208 {
2209 return !tp->retrans_stamp ||
2210 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2211 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2212 }
2213
2214 /* Undo procedures. */
2215
2216 #if FASTRETRANS_DEBUG > 1
2217 static void DBGUNDO(struct sock *sk, const char *msg)
2218 {
2219 struct tcp_sock *tp = tcp_sk(sk);
2220 struct inet_sock *inet = inet_sk(sk);
2221
2222 if (sk->sk_family == AF_INET) {
2223 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2224 msg,
2225 &inet->inet_daddr, ntohs(inet->inet_dport),
2226 tp->snd_cwnd, tcp_left_out(tp),
2227 tp->snd_ssthresh, tp->prior_ssthresh,
2228 tp->packets_out);
2229 }
2230 #if IS_ENABLED(CONFIG_IPV6)
2231 else if (sk->sk_family == AF_INET6) {
2232 struct ipv6_pinfo *np = inet6_sk(sk);
2233 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2234 msg,
2235 &np->daddr, ntohs(inet->inet_dport),
2236 tp->snd_cwnd, tcp_left_out(tp),
2237 tp->snd_ssthresh, tp->prior_ssthresh,
2238 tp->packets_out);
2239 }
2240 #endif
2241 }
2242 #else
2243 #define DBGUNDO(x...) do { } while (0)
2244 #endif
2245
2246 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2247 {
2248 struct tcp_sock *tp = tcp_sk(sk);
2249
2250 if (tp->prior_ssthresh) {
2251 const struct inet_connection_sock *icsk = inet_csk(sk);
2252
2253 if (icsk->icsk_ca_ops->undo_cwnd)
2254 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2255 else
2256 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2257
2258 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2259 tp->snd_ssthresh = tp->prior_ssthresh;
2260 TCP_ECN_withdraw_cwr(tp);
2261 }
2262 } else {
2263 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2264 }
2265 tp->snd_cwnd_stamp = tcp_time_stamp;
2266 }
2267
2268 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2269 {
2270 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2271 }
2272
2273 /* People celebrate: "We love our President!" */
2274 static bool tcp_try_undo_recovery(struct sock *sk)
2275 {
2276 struct tcp_sock *tp = tcp_sk(sk);
2277
2278 if (tcp_may_undo(tp)) {
2279 int mib_idx;
2280
2281 /* Happy end! We did not retransmit anything
2282 * or our original transmission succeeded.
2283 */
2284 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2285 tcp_undo_cwr(sk, true);
2286 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2287 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2288 else
2289 mib_idx = LINUX_MIB_TCPFULLUNDO;
2290
2291 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2292 tp->undo_marker = 0;
2293 }
2294 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2295 /* Hold old state until something *above* high_seq
2296 * is ACKed. For Reno it is MUST to prevent false
2297 * fast retransmits (RFC2582). SACK TCP is safe. */
2298 tcp_moderate_cwnd(tp);
2299 return true;
2300 }
2301 tcp_set_ca_state(sk, TCP_CA_Open);
2302 return false;
2303 }
2304
2305 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2306 static void tcp_try_undo_dsack(struct sock *sk)
2307 {
2308 struct tcp_sock *tp = tcp_sk(sk);
2309
2310 if (tp->undo_marker && !tp->undo_retrans) {
2311 DBGUNDO(sk, "D-SACK");
2312 tcp_undo_cwr(sk, true);
2313 tp->undo_marker = 0;
2314 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2315 }
2316 }
2317
2318 /* We can clear retrans_stamp when there are no retransmissions in the
2319 * window. It would seem that it is trivially available for us in
2320 * tp->retrans_out, however, that kind of assumptions doesn't consider
2321 * what will happen if errors occur when sending retransmission for the
2322 * second time. ...It could the that such segment has only
2323 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2324 * the head skb is enough except for some reneging corner cases that
2325 * are not worth the effort.
2326 *
2327 * Main reason for all this complexity is the fact that connection dying
2328 * time now depends on the validity of the retrans_stamp, in particular,
2329 * that successive retransmissions of a segment must not advance
2330 * retrans_stamp under any conditions.
2331 */
2332 static bool tcp_any_retrans_done(const struct sock *sk)
2333 {
2334 const struct tcp_sock *tp = tcp_sk(sk);
2335 struct sk_buff *skb;
2336
2337 if (tp->retrans_out)
2338 return true;
2339
2340 skb = tcp_write_queue_head(sk);
2341 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2342 return true;
2343
2344 return false;
2345 }
2346
2347 /* Undo during fast recovery after partial ACK. */
2348
2349 static int tcp_try_undo_partial(struct sock *sk, int acked)
2350 {
2351 struct tcp_sock *tp = tcp_sk(sk);
2352 /* Partial ACK arrived. Force Hoe's retransmit. */
2353 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2354
2355 if (tcp_may_undo(tp)) {
2356 /* Plain luck! Hole if filled with delayed
2357 * packet, rather than with a retransmit.
2358 */
2359 if (!tcp_any_retrans_done(sk))
2360 tp->retrans_stamp = 0;
2361
2362 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2363
2364 DBGUNDO(sk, "Hoe");
2365 tcp_undo_cwr(sk, false);
2366 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2367
2368 /* So... Do not make Hoe's retransmit yet.
2369 * If the first packet was delayed, the rest
2370 * ones are most probably delayed as well.
2371 */
2372 failed = 0;
2373 }
2374 return failed;
2375 }
2376
2377 /* Undo during loss recovery after partial ACK or using F-RTO. */
2378 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2379 {
2380 struct tcp_sock *tp = tcp_sk(sk);
2381
2382 if (frto_undo || tcp_may_undo(tp)) {
2383 struct sk_buff *skb;
2384 tcp_for_write_queue(skb, sk) {
2385 if (skb == tcp_send_head(sk))
2386 break;
2387 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2388 }
2389
2390 tcp_clear_all_retrans_hints(tp);
2391
2392 DBGUNDO(sk, "partial loss");
2393 tp->lost_out = 0;
2394 tcp_undo_cwr(sk, true);
2395 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2396 if (frto_undo)
2397 NET_INC_STATS_BH(sock_net(sk),
2398 LINUX_MIB_TCPSPURIOUSRTOS);
2399 inet_csk(sk)->icsk_retransmits = 0;
2400 tp->undo_marker = 0;
2401 if (frto_undo || tcp_is_sack(tp))
2402 tcp_set_ca_state(sk, TCP_CA_Open);
2403 return true;
2404 }
2405 return false;
2406 }
2407
2408 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2409 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2410 * It computes the number of packets to send (sndcnt) based on packets newly
2411 * delivered:
2412 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2413 * cwnd reductions across a full RTT.
2414 * 2) If packets in flight is lower than ssthresh (such as due to excess
2415 * losses and/or application stalls), do not perform any further cwnd
2416 * reductions, but instead slow start up to ssthresh.
2417 */
2418 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2419 {
2420 struct tcp_sock *tp = tcp_sk(sk);
2421
2422 tp->high_seq = tp->snd_nxt;
2423 tp->tlp_high_seq = 0;
2424 tp->snd_cwnd_cnt = 0;
2425 tp->prior_cwnd = tp->snd_cwnd;
2426 tp->prr_delivered = 0;
2427 tp->prr_out = 0;
2428 if (set_ssthresh)
2429 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2430 TCP_ECN_queue_cwr(tp);
2431 }
2432
2433 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2434 int fast_rexmit)
2435 {
2436 struct tcp_sock *tp = tcp_sk(sk);
2437 int sndcnt = 0;
2438 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2439
2440 tp->prr_delivered += newly_acked_sacked;
2441 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2442 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2443 tp->prior_cwnd - 1;
2444 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2445 } else {
2446 sndcnt = min_t(int, delta,
2447 max_t(int, tp->prr_delivered - tp->prr_out,
2448 newly_acked_sacked) + 1);
2449 }
2450
2451 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2452 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2453 }
2454
2455 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2456 {
2457 struct tcp_sock *tp = tcp_sk(sk);
2458
2459 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2460 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2461 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2462 tp->snd_cwnd = tp->snd_ssthresh;
2463 tp->snd_cwnd_stamp = tcp_time_stamp;
2464 }
2465 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2466 }
2467
2468 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2469 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2470 {
2471 struct tcp_sock *tp = tcp_sk(sk);
2472
2473 tp->prior_ssthresh = 0;
2474 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2475 tp->undo_marker = 0;
2476 tcp_init_cwnd_reduction(sk, set_ssthresh);
2477 tcp_set_ca_state(sk, TCP_CA_CWR);
2478 }
2479 }
2480
2481 static void tcp_try_keep_open(struct sock *sk)
2482 {
2483 struct tcp_sock *tp = tcp_sk(sk);
2484 int state = TCP_CA_Open;
2485
2486 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2487 state = TCP_CA_Disorder;
2488
2489 if (inet_csk(sk)->icsk_ca_state != state) {
2490 tcp_set_ca_state(sk, state);
2491 tp->high_seq = tp->snd_nxt;
2492 }
2493 }
2494
2495 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
2496 {
2497 struct tcp_sock *tp = tcp_sk(sk);
2498
2499 tcp_verify_left_out(tp);
2500
2501 if (!tcp_any_retrans_done(sk))
2502 tp->retrans_stamp = 0;
2503
2504 if (flag & FLAG_ECE)
2505 tcp_enter_cwr(sk, 1);
2506
2507 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2508 tcp_try_keep_open(sk);
2509 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2510 tcp_moderate_cwnd(tp);
2511 } else {
2512 tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
2513 }
2514 }
2515
2516 static void tcp_mtup_probe_failed(struct sock *sk)
2517 {
2518 struct inet_connection_sock *icsk = inet_csk(sk);
2519
2520 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2521 icsk->icsk_mtup.probe_size = 0;
2522 }
2523
2524 static void tcp_mtup_probe_success(struct sock *sk)
2525 {
2526 struct tcp_sock *tp = tcp_sk(sk);
2527 struct inet_connection_sock *icsk = inet_csk(sk);
2528
2529 /* FIXME: breaks with very large cwnd */
2530 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2531 tp->snd_cwnd = tp->snd_cwnd *
2532 tcp_mss_to_mtu(sk, tp->mss_cache) /
2533 icsk->icsk_mtup.probe_size;
2534 tp->snd_cwnd_cnt = 0;
2535 tp->snd_cwnd_stamp = tcp_time_stamp;
2536 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2537
2538 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2539 icsk->icsk_mtup.probe_size = 0;
2540 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2541 }
2542
2543 /* Do a simple retransmit without using the backoff mechanisms in
2544 * tcp_timer. This is used for path mtu discovery.
2545 * The socket is already locked here.
2546 */
2547 void tcp_simple_retransmit(struct sock *sk)
2548 {
2549 const struct inet_connection_sock *icsk = inet_csk(sk);
2550 struct tcp_sock *tp = tcp_sk(sk);
2551 struct sk_buff *skb;
2552 unsigned int mss = tcp_current_mss(sk);
2553 u32 prior_lost = tp->lost_out;
2554
2555 tcp_for_write_queue(skb, sk) {
2556 if (skb == tcp_send_head(sk))
2557 break;
2558 if (tcp_skb_seglen(skb) > mss &&
2559 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2560 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2561 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2562 tp->retrans_out -= tcp_skb_pcount(skb);
2563 }
2564 tcp_skb_mark_lost_uncond_verify(tp, skb);
2565 }
2566 }
2567
2568 tcp_clear_retrans_hints_partial(tp);
2569
2570 if (prior_lost == tp->lost_out)
2571 return;
2572
2573 if (tcp_is_reno(tp))
2574 tcp_limit_reno_sacked(tp);
2575
2576 tcp_verify_left_out(tp);
2577
2578 /* Don't muck with the congestion window here.
2579 * Reason is that we do not increase amount of _data_
2580 * in network, but units changed and effective
2581 * cwnd/ssthresh really reduced now.
2582 */
2583 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2584 tp->high_seq = tp->snd_nxt;
2585 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2586 tp->prior_ssthresh = 0;
2587 tp->undo_marker = 0;
2588 tcp_set_ca_state(sk, TCP_CA_Loss);
2589 }
2590 tcp_xmit_retransmit_queue(sk);
2591 }
2592 EXPORT_SYMBOL(tcp_simple_retransmit);
2593
2594 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2595 {
2596 struct tcp_sock *tp = tcp_sk(sk);
2597 int mib_idx;
2598
2599 if (tcp_is_reno(tp))
2600 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2601 else
2602 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2603
2604 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2605
2606 tp->prior_ssthresh = 0;
2607 tp->undo_marker = tp->snd_una;
2608 tp->undo_retrans = tp->retrans_out;
2609
2610 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2611 if (!ece_ack)
2612 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2613 tcp_init_cwnd_reduction(sk, true);
2614 }
2615 tcp_set_ca_state(sk, TCP_CA_Recovery);
2616 }
2617
2618 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2619 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2620 */
2621 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2622 {
2623 struct inet_connection_sock *icsk = inet_csk(sk);
2624 struct tcp_sock *tp = tcp_sk(sk);
2625 bool recovered = !before(tp->snd_una, tp->high_seq);
2626
2627 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2628 if (flag & FLAG_ORIG_SACK_ACKED) {
2629 /* Step 3.b. A timeout is spurious if not all data are
2630 * lost, i.e., never-retransmitted data are (s)acked.
2631 */
2632 tcp_try_undo_loss(sk, true);
2633 return;
2634 }
2635 if (after(tp->snd_nxt, tp->high_seq) &&
2636 (flag & FLAG_DATA_SACKED || is_dupack)) {
2637 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2638 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2639 tp->high_seq = tp->snd_nxt;
2640 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2641 TCP_NAGLE_OFF);
2642 if (after(tp->snd_nxt, tp->high_seq))
2643 return; /* Step 2.b */
2644 tp->frto = 0;
2645 }
2646 }
2647
2648 if (recovered) {
2649 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2650 icsk->icsk_retransmits = 0;
2651 tcp_try_undo_recovery(sk);
2652 return;
2653 }
2654 if (flag & FLAG_DATA_ACKED)
2655 icsk->icsk_retransmits = 0;
2656 if (tcp_is_reno(tp)) {
2657 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2658 * delivered. Lower inflight to clock out (re)tranmissions.
2659 */
2660 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2661 tcp_add_reno_sack(sk);
2662 else if (flag & FLAG_SND_UNA_ADVANCED)
2663 tcp_reset_reno_sack(tp);
2664 }
2665 if (tcp_try_undo_loss(sk, false))
2666 return;
2667 tcp_xmit_retransmit_queue(sk);
2668 }
2669
2670 /* Process an event, which can update packets-in-flight not trivially.
2671 * Main goal of this function is to calculate new estimate for left_out,
2672 * taking into account both packets sitting in receiver's buffer and
2673 * packets lost by network.
2674 *
2675 * Besides that it does CWND reduction, when packet loss is detected
2676 * and changes state of machine.
2677 *
2678 * It does _not_ decide what to send, it is made in function
2679 * tcp_xmit_retransmit_queue().
2680 */
2681 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2682 int prior_sacked, bool is_dupack,
2683 int flag)
2684 {
2685 struct inet_connection_sock *icsk = inet_csk(sk);
2686 struct tcp_sock *tp = tcp_sk(sk);
2687 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2688 (tcp_fackets_out(tp) > tp->reordering));
2689 int newly_acked_sacked = 0;
2690 int fast_rexmit = 0;
2691
2692 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2693 tp->sacked_out = 0;
2694 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2695 tp->fackets_out = 0;
2696
2697 /* Now state machine starts.
2698 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2699 if (flag & FLAG_ECE)
2700 tp->prior_ssthresh = 0;
2701
2702 /* B. In all the states check for reneging SACKs. */
2703 if (tcp_check_sack_reneging(sk, flag))
2704 return;
2705
2706 /* C. Check consistency of the current state. */
2707 tcp_verify_left_out(tp);
2708
2709 /* D. Check state exit conditions. State can be terminated
2710 * when high_seq is ACKed. */
2711 if (icsk->icsk_ca_state == TCP_CA_Open) {
2712 WARN_ON(tp->retrans_out != 0);
2713 tp->retrans_stamp = 0;
2714 } else if (!before(tp->snd_una, tp->high_seq)) {
2715 switch (icsk->icsk_ca_state) {
2716 case TCP_CA_CWR:
2717 /* CWR is to be held something *above* high_seq
2718 * is ACKed for CWR bit to reach receiver. */
2719 if (tp->snd_una != tp->high_seq) {
2720 tcp_end_cwnd_reduction(sk);
2721 tcp_set_ca_state(sk, TCP_CA_Open);
2722 }
2723 break;
2724
2725 case TCP_CA_Recovery:
2726 if (tcp_is_reno(tp))
2727 tcp_reset_reno_sack(tp);
2728 if (tcp_try_undo_recovery(sk))
2729 return;
2730 tcp_end_cwnd_reduction(sk);
2731 break;
2732 }
2733 }
2734
2735 /* E. Process state. */
2736 switch (icsk->icsk_ca_state) {
2737 case TCP_CA_Recovery:
2738 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2739 if (tcp_is_reno(tp) && is_dupack)
2740 tcp_add_reno_sack(sk);
2741 } else
2742 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2743 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2744 break;
2745 case TCP_CA_Loss:
2746 tcp_process_loss(sk, flag, is_dupack);
2747 if (icsk->icsk_ca_state != TCP_CA_Open)
2748 return;
2749 /* Fall through to processing in Open state. */
2750 default:
2751 if (tcp_is_reno(tp)) {
2752 if (flag & FLAG_SND_UNA_ADVANCED)
2753 tcp_reset_reno_sack(tp);
2754 if (is_dupack)
2755 tcp_add_reno_sack(sk);
2756 }
2757 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2758
2759 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2760 tcp_try_undo_dsack(sk);
2761
2762 if (!tcp_time_to_recover(sk, flag)) {
2763 tcp_try_to_open(sk, flag, newly_acked_sacked);
2764 return;
2765 }
2766
2767 /* MTU probe failure: don't reduce cwnd */
2768 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2769 icsk->icsk_mtup.probe_size &&
2770 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2771 tcp_mtup_probe_failed(sk);
2772 /* Restores the reduction we did in tcp_mtup_probe() */
2773 tp->snd_cwnd++;
2774 tcp_simple_retransmit(sk);
2775 return;
2776 }
2777
2778 /* Otherwise enter Recovery state */
2779 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2780 fast_rexmit = 1;
2781 }
2782
2783 if (do_lost)
2784 tcp_update_scoreboard(sk, fast_rexmit);
2785 tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
2786 tcp_xmit_retransmit_queue(sk);
2787 }
2788
2789 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
2790 {
2791 tcp_rtt_estimator(sk, seq_rtt);
2792 tcp_set_rto(sk);
2793 inet_csk(sk)->icsk_backoff = 0;
2794 }
2795 EXPORT_SYMBOL(tcp_valid_rtt_meas);
2796
2797 /* Read draft-ietf-tcplw-high-performance before mucking
2798 * with this code. (Supersedes RFC1323)
2799 */
2800 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2801 {
2802 /* RTTM Rule: A TSecr value received in a segment is used to
2803 * update the averaged RTT measurement only if the segment
2804 * acknowledges some new data, i.e., only if it advances the
2805 * left edge of the send window.
2806 *
2807 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2808 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2809 *
2810 * Changed: reset backoff as soon as we see the first valid sample.
2811 * If we do not, we get strongly overestimated rto. With timestamps
2812 * samples are accepted even from very old segments: f.e., when rtt=1
2813 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2814 * answer arrives rto becomes 120 seconds! If at least one of segments
2815 * in window is lost... Voila. --ANK (010210)
2816 */
2817 struct tcp_sock *tp = tcp_sk(sk);
2818
2819 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2820 }
2821
2822 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2823 {
2824 /* We don't have a timestamp. Can only use
2825 * packets that are not retransmitted to determine
2826 * rtt estimates. Also, we must not reset the
2827 * backoff for rto until we get a non-retransmitted
2828 * packet. This allows us to deal with a situation
2829 * where the network delay has increased suddenly.
2830 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2831 */
2832
2833 if (flag & FLAG_RETRANS_DATA_ACKED)
2834 return;
2835
2836 tcp_valid_rtt_meas(sk, seq_rtt);
2837 }
2838
2839 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2840 const s32 seq_rtt)
2841 {
2842 const struct tcp_sock *tp = tcp_sk(sk);
2843 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2844 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2845 tcp_ack_saw_tstamp(sk, flag);
2846 else if (seq_rtt >= 0)
2847 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2848 }
2849
2850 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2851 {
2852 const struct inet_connection_sock *icsk = inet_csk(sk);
2853 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2854 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2855 }
2856
2857 /* Restart timer after forward progress on connection.
2858 * RFC2988 recommends to restart timer to now+rto.
2859 */
2860 void tcp_rearm_rto(struct sock *sk)
2861 {
2862 const struct inet_connection_sock *icsk = inet_csk(sk);
2863 struct tcp_sock *tp = tcp_sk(sk);
2864
2865 /* If the retrans timer is currently being used by Fast Open
2866 * for SYN-ACK retrans purpose, stay put.
2867 */
2868 if (tp->fastopen_rsk)
2869 return;
2870
2871 if (!tp->packets_out) {
2872 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2873 } else {
2874 u32 rto = inet_csk(sk)->icsk_rto;
2875 /* Offset the time elapsed after installing regular RTO */
2876 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2877 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2878 struct sk_buff *skb = tcp_write_queue_head(sk);
2879 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2880 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2881 /* delta may not be positive if the socket is locked
2882 * when the retrans timer fires and is rescheduled.
2883 */
2884 if (delta > 0)
2885 rto = delta;
2886 }
2887 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2888 TCP_RTO_MAX);
2889 }
2890 }
2891
2892 /* This function is called when the delayed ER timer fires. TCP enters
2893 * fast recovery and performs fast-retransmit.
2894 */
2895 void tcp_resume_early_retransmit(struct sock *sk)
2896 {
2897 struct tcp_sock *tp = tcp_sk(sk);
2898
2899 tcp_rearm_rto(sk);
2900
2901 /* Stop if ER is disabled after the delayed ER timer is scheduled */
2902 if (!tp->do_early_retrans)
2903 return;
2904
2905 tcp_enter_recovery(sk, false);
2906 tcp_update_scoreboard(sk, 1);
2907 tcp_xmit_retransmit_queue(sk);
2908 }
2909
2910 /* If we get here, the whole TSO packet has not been acked. */
2911 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2912 {
2913 struct tcp_sock *tp = tcp_sk(sk);
2914 u32 packets_acked;
2915
2916 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2917
2918 packets_acked = tcp_skb_pcount(skb);
2919 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2920 return 0;
2921 packets_acked -= tcp_skb_pcount(skb);
2922
2923 if (packets_acked) {
2924 BUG_ON(tcp_skb_pcount(skb) == 0);
2925 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2926 }
2927
2928 return packets_acked;
2929 }
2930
2931 /* Remove acknowledged frames from the retransmission queue. If our packet
2932 * is before the ack sequence we can discard it as it's confirmed to have
2933 * arrived at the other end.
2934 */
2935 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
2936 u32 prior_snd_una)
2937 {
2938 struct tcp_sock *tp = tcp_sk(sk);
2939 const struct inet_connection_sock *icsk = inet_csk(sk);
2940 struct sk_buff *skb;
2941 u32 now = tcp_time_stamp;
2942 int fully_acked = true;
2943 int flag = 0;
2944 u32 pkts_acked = 0;
2945 u32 reord = tp->packets_out;
2946 u32 prior_sacked = tp->sacked_out;
2947 s32 seq_rtt = -1;
2948 s32 ca_seq_rtt = -1;
2949 ktime_t last_ackt = net_invalid_timestamp();
2950
2951 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2952 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2953 u32 acked_pcount;
2954 u8 sacked = scb->sacked;
2955
2956 /* Determine how many packets and what bytes were acked, tso and else */
2957 if (after(scb->end_seq, tp->snd_una)) {
2958 if (tcp_skb_pcount(skb) == 1 ||
2959 !after(tp->snd_una, scb->seq))
2960 break;
2961
2962 acked_pcount = tcp_tso_acked(sk, skb);
2963 if (!acked_pcount)
2964 break;
2965
2966 fully_acked = false;
2967 } else {
2968 acked_pcount = tcp_skb_pcount(skb);
2969 }
2970
2971 if (sacked & TCPCB_RETRANS) {
2972 if (sacked & TCPCB_SACKED_RETRANS)
2973 tp->retrans_out -= acked_pcount;
2974 flag |= FLAG_RETRANS_DATA_ACKED;
2975 ca_seq_rtt = -1;
2976 seq_rtt = -1;
2977 } else {
2978 ca_seq_rtt = now - scb->when;
2979 last_ackt = skb->tstamp;
2980 if (seq_rtt < 0) {
2981 seq_rtt = ca_seq_rtt;
2982 }
2983 if (!(sacked & TCPCB_SACKED_ACKED))
2984 reord = min(pkts_acked, reord);
2985 if (!after(scb->end_seq, tp->high_seq))
2986 flag |= FLAG_ORIG_SACK_ACKED;
2987 }
2988
2989 if (sacked & TCPCB_SACKED_ACKED)
2990 tp->sacked_out -= acked_pcount;
2991 if (sacked & TCPCB_LOST)
2992 tp->lost_out -= acked_pcount;
2993
2994 tp->packets_out -= acked_pcount;
2995 pkts_acked += acked_pcount;
2996
2997 /* Initial outgoing SYN's get put onto the write_queue
2998 * just like anything else we transmit. It is not
2999 * true data, and if we misinform our callers that
3000 * this ACK acks real data, we will erroneously exit
3001 * connection startup slow start one packet too
3002 * quickly. This is severely frowned upon behavior.
3003 */
3004 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3005 flag |= FLAG_DATA_ACKED;
3006 } else {
3007 flag |= FLAG_SYN_ACKED;
3008 tp->retrans_stamp = 0;
3009 }
3010
3011 if (!fully_acked)
3012 break;
3013
3014 tcp_unlink_write_queue(skb, sk);
3015 sk_wmem_free_skb(sk, skb);
3016 if (skb == tp->retransmit_skb_hint)
3017 tp->retransmit_skb_hint = NULL;
3018 if (skb == tp->lost_skb_hint)
3019 tp->lost_skb_hint = NULL;
3020 }
3021
3022 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3023 tp->snd_up = tp->snd_una;
3024
3025 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3026 flag |= FLAG_SACK_RENEGING;
3027
3028 if (flag & FLAG_ACKED) {
3029 const struct tcp_congestion_ops *ca_ops
3030 = inet_csk(sk)->icsk_ca_ops;
3031
3032 if (unlikely(icsk->icsk_mtup.probe_size &&
3033 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3034 tcp_mtup_probe_success(sk);
3035 }
3036
3037 tcp_ack_update_rtt(sk, flag, seq_rtt);
3038 tcp_rearm_rto(sk);
3039
3040 if (tcp_is_reno(tp)) {
3041 tcp_remove_reno_sacks(sk, pkts_acked);
3042 } else {
3043 int delta;
3044
3045 /* Non-retransmitted hole got filled? That's reordering */
3046 if (reord < prior_fackets)
3047 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3048
3049 delta = tcp_is_fack(tp) ? pkts_acked :
3050 prior_sacked - tp->sacked_out;
3051 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3052 }
3053
3054 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3055
3056 if (ca_ops->pkts_acked) {
3057 s32 rtt_us = -1;
3058
3059 /* Is the ACK triggering packet unambiguous? */
3060 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3061 /* High resolution needed and available? */
3062 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3063 !ktime_equal(last_ackt,
3064 net_invalid_timestamp()))
3065 rtt_us = ktime_us_delta(ktime_get_real(),
3066 last_ackt);
3067 else if (ca_seq_rtt >= 0)
3068 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3069 }
3070
3071 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3072 }
3073 }
3074
3075 #if FASTRETRANS_DEBUG > 0
3076 WARN_ON((int)tp->sacked_out < 0);
3077 WARN_ON((int)tp->lost_out < 0);
3078 WARN_ON((int)tp->retrans_out < 0);
3079 if (!tp->packets_out && tcp_is_sack(tp)) {
3080 icsk = inet_csk(sk);
3081 if (tp->lost_out) {
3082 pr_debug("Leak l=%u %d\n",
3083 tp->lost_out, icsk->icsk_ca_state);
3084 tp->lost_out = 0;
3085 }
3086 if (tp->sacked_out) {
3087 pr_debug("Leak s=%u %d\n",
3088 tp->sacked_out, icsk->icsk_ca_state);
3089 tp->sacked_out = 0;
3090 }
3091 if (tp->retrans_out) {
3092 pr_debug("Leak r=%u %d\n",
3093 tp->retrans_out, icsk->icsk_ca_state);
3094 tp->retrans_out = 0;
3095 }
3096 }
3097 #endif
3098 return flag;
3099 }
3100
3101 static void tcp_ack_probe(struct sock *sk)
3102 {
3103 const struct tcp_sock *tp = tcp_sk(sk);
3104 struct inet_connection_sock *icsk = inet_csk(sk);
3105
3106 /* Was it a usable window open? */
3107
3108 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3109 icsk->icsk_backoff = 0;
3110 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3111 /* Socket must be waked up by subsequent tcp_data_snd_check().
3112 * This function is not for random using!
3113 */
3114 } else {
3115 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3116 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3117 TCP_RTO_MAX);
3118 }
3119 }
3120
3121 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3122 {
3123 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3124 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3125 }
3126
3127 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3128 {
3129 const struct tcp_sock *tp = tcp_sk(sk);
3130 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3131 !tcp_in_cwnd_reduction(sk);
3132 }
3133
3134 /* Check that window update is acceptable.
3135 * The function assumes that snd_una<=ack<=snd_next.
3136 */
3137 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3138 const u32 ack, const u32 ack_seq,
3139 const u32 nwin)
3140 {
3141 return after(ack, tp->snd_una) ||
3142 after(ack_seq, tp->snd_wl1) ||
3143 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3144 }
3145
3146 /* Update our send window.
3147 *
3148 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3149 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3150 */
3151 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3152 u32 ack_seq)
3153 {
3154 struct tcp_sock *tp = tcp_sk(sk);
3155 int flag = 0;
3156 u32 nwin = ntohs(tcp_hdr(skb)->window);
3157
3158 if (likely(!tcp_hdr(skb)->syn))
3159 nwin <<= tp->rx_opt.snd_wscale;
3160
3161 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3162 flag |= FLAG_WIN_UPDATE;
3163 tcp_update_wl(tp, ack_seq);
3164
3165 if (tp->snd_wnd != nwin) {
3166 tp->snd_wnd = nwin;
3167
3168 /* Note, it is the only place, where
3169 * fast path is recovered for sending TCP.
3170 */
3171 tp->pred_flags = 0;
3172 tcp_fast_path_check(sk);
3173
3174 if (nwin > tp->max_window) {
3175 tp->max_window = nwin;
3176 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3177 }
3178 }
3179 }
3180
3181 tp->snd_una = ack;
3182
3183 return flag;
3184 }
3185
3186 /* RFC 5961 7 [ACK Throttling] */
3187 static void tcp_send_challenge_ack(struct sock *sk)
3188 {
3189 /* unprotected vars, we dont care of overwrites */
3190 static u32 challenge_timestamp;
3191 static unsigned int challenge_count;
3192 u32 now = jiffies / HZ;
3193
3194 if (now != challenge_timestamp) {
3195 challenge_timestamp = now;
3196 challenge_count = 0;
3197 }
3198 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3199 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3200 tcp_send_ack(sk);
3201 }
3202 }
3203
3204 static void tcp_store_ts_recent(struct tcp_sock *tp)
3205 {
3206 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3207 tp->rx_opt.ts_recent_stamp = get_seconds();
3208 }
3209
3210 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3211 {
3212 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3213 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3214 * extra check below makes sure this can only happen
3215 * for pure ACK frames. -DaveM
3216 *
3217 * Not only, also it occurs for expired timestamps.
3218 */
3219
3220 if (tcp_paws_check(&tp->rx_opt, 0))
3221 tcp_store_ts_recent(tp);
3222 }
3223 }
3224
3225 /* This routine deals with acks during a TLP episode.
3226 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3227 */
3228 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3229 {
3230 struct tcp_sock *tp = tcp_sk(sk);
3231 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3232 !(flag & (FLAG_SND_UNA_ADVANCED |
3233 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3234
3235 /* Mark the end of TLP episode on receiving TLP dupack or when
3236 * ack is after tlp_high_seq.
3237 */
3238 if (is_tlp_dupack) {
3239 tp->tlp_high_seq = 0;
3240 return;
3241 }
3242
3243 if (after(ack, tp->tlp_high_seq)) {
3244 tp->tlp_high_seq = 0;
3245 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3246 if (!(flag & FLAG_DSACKING_ACK)) {
3247 tcp_init_cwnd_reduction(sk, true);
3248 tcp_set_ca_state(sk, TCP_CA_CWR);
3249 tcp_end_cwnd_reduction(sk);
3250 tcp_set_ca_state(sk, TCP_CA_Open);
3251 NET_INC_STATS_BH(sock_net(sk),
3252 LINUX_MIB_TCPLOSSPROBERECOVERY);
3253 }
3254 }
3255 }
3256
3257 /* This routine deals with incoming acks, but not outgoing ones. */
3258 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3259 {
3260 struct inet_connection_sock *icsk = inet_csk(sk);
3261 struct tcp_sock *tp = tcp_sk(sk);
3262 u32 prior_snd_una = tp->snd_una;
3263 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3264 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3265 bool is_dupack = false;
3266 u32 prior_in_flight;
3267 u32 prior_fackets;
3268 int prior_packets;
3269 int prior_sacked = tp->sacked_out;
3270 int pkts_acked = 0;
3271
3272 /* If the ack is older than previous acks
3273 * then we can probably ignore it.
3274 */
3275 if (before(ack, prior_snd_una)) {
3276 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3277 if (before(ack, prior_snd_una - tp->max_window)) {
3278 tcp_send_challenge_ack(sk);
3279 return -1;
3280 }
3281 goto old_ack;
3282 }
3283
3284 /* If the ack includes data we haven't sent yet, discard
3285 * this segment (RFC793 Section 3.9).
3286 */
3287 if (after(ack, tp->snd_nxt))
3288 goto invalid_ack;
3289
3290 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3291 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3292 tcp_rearm_rto(sk);
3293
3294 if (after(ack, prior_snd_una))
3295 flag |= FLAG_SND_UNA_ADVANCED;
3296
3297 prior_fackets = tp->fackets_out;
3298 prior_in_flight = tcp_packets_in_flight(tp);
3299
3300 /* ts_recent update must be made after we are sure that the packet
3301 * is in window.
3302 */
3303 if (flag & FLAG_UPDATE_TS_RECENT)
3304 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3305
3306 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3307 /* Window is constant, pure forward advance.
3308 * No more checks are required.
3309 * Note, we use the fact that SND.UNA>=SND.WL2.
3310 */
3311 tcp_update_wl(tp, ack_seq);
3312 tp->snd_una = ack;
3313 flag |= FLAG_WIN_UPDATE;
3314
3315 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3316
3317 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3318 } else {
3319 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3320 flag |= FLAG_DATA;
3321 else
3322 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3323
3324 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3325
3326 if (TCP_SKB_CB(skb)->sacked)
3327 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3328
3329 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3330 flag |= FLAG_ECE;
3331
3332 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3333 }
3334
3335 /* We passed data and got it acked, remove any soft error
3336 * log. Something worked...
3337 */
3338 sk->sk_err_soft = 0;
3339 icsk->icsk_probes_out = 0;
3340 tp->rcv_tstamp = tcp_time_stamp;
3341 prior_packets = tp->packets_out;
3342 if (!prior_packets)
3343 goto no_queue;
3344
3345 /* See if we can take anything off of the retransmit queue. */
3346 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3347
3348 pkts_acked = prior_packets - tp->packets_out;
3349
3350 if (tcp_ack_is_dubious(sk, flag)) {
3351 /* Advance CWND, if state allows this. */
3352 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
3353 tcp_cong_avoid(sk, ack, prior_in_flight);
3354 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3355 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3356 is_dupack, flag);
3357 } else {
3358 if (flag & FLAG_DATA_ACKED)
3359 tcp_cong_avoid(sk, ack, prior_in_flight);
3360 }
3361
3362 if (tp->tlp_high_seq)
3363 tcp_process_tlp_ack(sk, ack, flag);
3364
3365 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3366 struct dst_entry *dst = __sk_dst_get(sk);
3367 if (dst)
3368 dst_confirm(dst);
3369 }
3370
3371 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3372 tcp_schedule_loss_probe(sk);
3373 return 1;
3374
3375 no_queue:
3376 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3377 if (flag & FLAG_DSACKING_ACK)
3378 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3379 is_dupack, flag);
3380 /* If this ack opens up a zero window, clear backoff. It was
3381 * being used to time the probes, and is probably far higher than
3382 * it needs to be for normal retransmission.
3383 */
3384 if (tcp_send_head(sk))
3385 tcp_ack_probe(sk);
3386
3387 if (tp->tlp_high_seq)
3388 tcp_process_tlp_ack(sk, ack, flag);
3389 return 1;
3390
3391 invalid_ack:
3392 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3393 return -1;
3394
3395 old_ack:
3396 /* If data was SACKed, tag it and see if we should send more data.
3397 * If data was DSACKed, see if we can undo a cwnd reduction.
3398 */
3399 if (TCP_SKB_CB(skb)->sacked) {
3400 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3401 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3402 is_dupack, flag);
3403 }
3404
3405 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3406 return 0;
3407 }
3408
3409 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3410 * But, this can also be called on packets in the established flow when
3411 * the fast version below fails.
3412 */
3413 void tcp_parse_options(const struct sk_buff *skb,
3414 struct tcp_options_received *opt_rx, int estab,
3415 struct tcp_fastopen_cookie *foc)
3416 {
3417 const unsigned char *ptr;
3418 const struct tcphdr *th = tcp_hdr(skb);
3419 int length = (th->doff * 4) - sizeof(struct tcphdr);
3420
3421 ptr = (const unsigned char *)(th + 1);
3422 opt_rx->saw_tstamp = 0;
3423
3424 while (length > 0) {
3425 int opcode = *ptr++;
3426 int opsize;
3427
3428 switch (opcode) {
3429 case TCPOPT_EOL:
3430 return;
3431 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3432 length--;
3433 continue;
3434 default:
3435 opsize = *ptr++;
3436 if (opsize < 2) /* "silly options" */
3437 return;
3438 if (opsize > length)
3439 return; /* don't parse partial options */
3440 switch (opcode) {
3441 case TCPOPT_MSS:
3442 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3443 u16 in_mss = get_unaligned_be16(ptr);
3444 if (in_mss) {
3445 if (opt_rx->user_mss &&
3446 opt_rx->user_mss < in_mss)
3447 in_mss = opt_rx->user_mss;
3448 opt_rx->mss_clamp = in_mss;
3449 }
3450 }
3451 break;
3452 case TCPOPT_WINDOW:
3453 if (opsize == TCPOLEN_WINDOW && th->syn &&
3454 !estab && sysctl_tcp_window_scaling) {
3455 __u8 snd_wscale = *(__u8 *)ptr;
3456 opt_rx->wscale_ok = 1;
3457 if (snd_wscale > 14) {
3458 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3459 __func__,
3460 snd_wscale);
3461 snd_wscale = 14;
3462 }
3463 opt_rx->snd_wscale = snd_wscale;
3464 }
3465 break;
3466 case TCPOPT_TIMESTAMP:
3467 if ((opsize == TCPOLEN_TIMESTAMP) &&
3468 ((estab && opt_rx->tstamp_ok) ||
3469 (!estab && sysctl_tcp_timestamps))) {
3470 opt_rx->saw_tstamp = 1;
3471 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3472 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3473 }
3474 break;
3475 case TCPOPT_SACK_PERM:
3476 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3477 !estab && sysctl_tcp_sack) {
3478 opt_rx->sack_ok = TCP_SACK_SEEN;
3479 tcp_sack_reset(opt_rx);
3480 }
3481 break;
3482
3483 case TCPOPT_SACK:
3484 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3485 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3486 opt_rx->sack_ok) {
3487 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3488 }
3489 break;
3490 #ifdef CONFIG_TCP_MD5SIG
3491 case TCPOPT_MD5SIG:
3492 /*
3493 * The MD5 Hash has already been
3494 * checked (see tcp_v{4,6}_do_rcv()).
3495 */
3496 break;
3497 #endif
3498 case TCPOPT_EXP:
3499 /* Fast Open option shares code 254 using a
3500 * 16 bits magic number. It's valid only in
3501 * SYN or SYN-ACK with an even size.
3502 */
3503 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3504 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3505 foc == NULL || !th->syn || (opsize & 1))
3506 break;
3507 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3508 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3509 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3510 memcpy(foc->val, ptr + 2, foc->len);
3511 else if (foc->len != 0)
3512 foc->len = -1;
3513 break;
3514
3515 }
3516 ptr += opsize-2;
3517 length -= opsize;
3518 }
3519 }
3520 }
3521 EXPORT_SYMBOL(tcp_parse_options);
3522
3523 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3524 {
3525 const __be32 *ptr = (const __be32 *)(th + 1);
3526
3527 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3528 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3529 tp->rx_opt.saw_tstamp = 1;
3530 ++ptr;
3531 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3532 ++ptr;
3533 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3534 return true;
3535 }
3536 return false;
3537 }
3538
3539 /* Fast parse options. This hopes to only see timestamps.
3540 * If it is wrong it falls back on tcp_parse_options().
3541 */
3542 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3543 const struct tcphdr *th, struct tcp_sock *tp)
3544 {
3545 /* In the spirit of fast parsing, compare doff directly to constant
3546 * values. Because equality is used, short doff can be ignored here.
3547 */
3548 if (th->doff == (sizeof(*th) / 4)) {
3549 tp->rx_opt.saw_tstamp = 0;
3550 return false;
3551 } else if (tp->rx_opt.tstamp_ok &&
3552 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3553 if (tcp_parse_aligned_timestamp(tp, th))
3554 return true;
3555 }
3556
3557 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3558 if (tp->rx_opt.saw_tstamp)
3559 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3560
3561 return true;
3562 }
3563
3564 #ifdef CONFIG_TCP_MD5SIG
3565 /*
3566 * Parse MD5 Signature option
3567 */
3568 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3569 {
3570 int length = (th->doff << 2) - sizeof(*th);
3571 const u8 *ptr = (const u8 *)(th + 1);
3572
3573 /* If the TCP option is too short, we can short cut */
3574 if (length < TCPOLEN_MD5SIG)
3575 return NULL;
3576
3577 while (length > 0) {
3578 int opcode = *ptr++;
3579 int opsize;
3580
3581 switch(opcode) {
3582 case TCPOPT_EOL:
3583 return NULL;
3584 case TCPOPT_NOP:
3585 length--;
3586 continue;
3587 default:
3588 opsize = *ptr++;
3589 if (opsize < 2 || opsize > length)
3590 return NULL;
3591 if (opcode == TCPOPT_MD5SIG)
3592 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3593 }
3594 ptr += opsize - 2;
3595 length -= opsize;
3596 }
3597 return NULL;
3598 }
3599 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3600 #endif
3601
3602 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3603 *
3604 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3605 * it can pass through stack. So, the following predicate verifies that
3606 * this segment is not used for anything but congestion avoidance or
3607 * fast retransmit. Moreover, we even are able to eliminate most of such
3608 * second order effects, if we apply some small "replay" window (~RTO)
3609 * to timestamp space.
3610 *
3611 * All these measures still do not guarantee that we reject wrapped ACKs
3612 * on networks with high bandwidth, when sequence space is recycled fastly,
3613 * but it guarantees that such events will be very rare and do not affect
3614 * connection seriously. This doesn't look nice, but alas, PAWS is really
3615 * buggy extension.
3616 *
3617 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3618 * states that events when retransmit arrives after original data are rare.
3619 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3620 * the biggest problem on large power networks even with minor reordering.
3621 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3622 * up to bandwidth of 18Gigabit/sec. 8) ]
3623 */
3624
3625 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3626 {
3627 const struct tcp_sock *tp = tcp_sk(sk);
3628 const struct tcphdr *th = tcp_hdr(skb);
3629 u32 seq = TCP_SKB_CB(skb)->seq;
3630 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3631
3632 return (/* 1. Pure ACK with correct sequence number. */
3633 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3634
3635 /* 2. ... and duplicate ACK. */
3636 ack == tp->snd_una &&
3637
3638 /* 3. ... and does not update window. */
3639 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3640
3641 /* 4. ... and sits in replay window. */
3642 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3643 }
3644
3645 static inline bool tcp_paws_discard(const struct sock *sk,
3646 const struct sk_buff *skb)
3647 {
3648 const struct tcp_sock *tp = tcp_sk(sk);
3649
3650 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3651 !tcp_disordered_ack(sk, skb);
3652 }
3653
3654 /* Check segment sequence number for validity.
3655 *
3656 * Segment controls are considered valid, if the segment
3657 * fits to the window after truncation to the window. Acceptability
3658 * of data (and SYN, FIN, of course) is checked separately.
3659 * See tcp_data_queue(), for example.
3660 *
3661 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3662 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3663 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3664 * (borrowed from freebsd)
3665 */
3666
3667 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3668 {
3669 return !before(end_seq, tp->rcv_wup) &&
3670 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3671 }
3672
3673 /* When we get a reset we do this. */
3674 void tcp_reset(struct sock *sk)
3675 {
3676 /* We want the right error as BSD sees it (and indeed as we do). */
3677 switch (sk->sk_state) {
3678 case TCP_SYN_SENT:
3679 sk->sk_err = ECONNREFUSED;
3680 break;
3681 case TCP_CLOSE_WAIT:
3682 sk->sk_err = EPIPE;
3683 break;
3684 case TCP_CLOSE:
3685 return;
3686 default:
3687 sk->sk_err = ECONNRESET;
3688 }
3689 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3690 smp_wmb();
3691
3692 if (!sock_flag(sk, SOCK_DEAD))
3693 sk->sk_error_report(sk);
3694
3695 tcp_done(sk);
3696 }
3697
3698 /*
3699 * Process the FIN bit. This now behaves as it is supposed to work
3700 * and the FIN takes effect when it is validly part of sequence
3701 * space. Not before when we get holes.
3702 *
3703 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3704 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3705 * TIME-WAIT)
3706 *
3707 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3708 * close and we go into CLOSING (and later onto TIME-WAIT)
3709 *
3710 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3711 */
3712 static void tcp_fin(struct sock *sk)
3713 {
3714 struct tcp_sock *tp = tcp_sk(sk);
3715
3716 inet_csk_schedule_ack(sk);
3717
3718 sk->sk_shutdown |= RCV_SHUTDOWN;
3719 sock_set_flag(sk, SOCK_DONE);
3720
3721 switch (sk->sk_state) {
3722 case TCP_SYN_RECV:
3723 case TCP_ESTABLISHED:
3724 /* Move to CLOSE_WAIT */
3725 tcp_set_state(sk, TCP_CLOSE_WAIT);
3726 inet_csk(sk)->icsk_ack.pingpong = 1;
3727 break;
3728
3729 case TCP_CLOSE_WAIT:
3730 case TCP_CLOSING:
3731 /* Received a retransmission of the FIN, do
3732 * nothing.
3733 */
3734 break;
3735 case TCP_LAST_ACK:
3736 /* RFC793: Remain in the LAST-ACK state. */
3737 break;
3738
3739 case TCP_FIN_WAIT1:
3740 /* This case occurs when a simultaneous close
3741 * happens, we must ack the received FIN and
3742 * enter the CLOSING state.
3743 */
3744 tcp_send_ack(sk);
3745 tcp_set_state(sk, TCP_CLOSING);
3746 break;
3747 case TCP_FIN_WAIT2:
3748 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3749 tcp_send_ack(sk);
3750 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3751 break;
3752 default:
3753 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3754 * cases we should never reach this piece of code.
3755 */
3756 pr_err("%s: Impossible, sk->sk_state=%d\n",
3757 __func__, sk->sk_state);
3758 break;
3759 }
3760
3761 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3762 * Probably, we should reset in this case. For now drop them.
3763 */
3764 __skb_queue_purge(&tp->out_of_order_queue);
3765 if (tcp_is_sack(tp))
3766 tcp_sack_reset(&tp->rx_opt);
3767 sk_mem_reclaim(sk);
3768
3769 if (!sock_flag(sk, SOCK_DEAD)) {
3770 sk->sk_state_change(sk);
3771
3772 /* Do not send POLL_HUP for half duplex close. */
3773 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3774 sk->sk_state == TCP_CLOSE)
3775 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3776 else
3777 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3778 }
3779 }
3780
3781 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3782 u32 end_seq)
3783 {
3784 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3785 if (before(seq, sp->start_seq))
3786 sp->start_seq = seq;
3787 if (after(end_seq, sp->end_seq))
3788 sp->end_seq = end_seq;
3789 return true;
3790 }
3791 return false;
3792 }
3793
3794 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3795 {
3796 struct tcp_sock *tp = tcp_sk(sk);
3797
3798 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3799 int mib_idx;
3800
3801 if (before(seq, tp->rcv_nxt))
3802 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3803 else
3804 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3805
3806 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3807
3808 tp->rx_opt.dsack = 1;
3809 tp->duplicate_sack[0].start_seq = seq;
3810 tp->duplicate_sack[0].end_seq = end_seq;
3811 }
3812 }
3813
3814 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3815 {
3816 struct tcp_sock *tp = tcp_sk(sk);
3817
3818 if (!tp->rx_opt.dsack)
3819 tcp_dsack_set(sk, seq, end_seq);
3820 else
3821 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3822 }
3823
3824 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3825 {
3826 struct tcp_sock *tp = tcp_sk(sk);
3827
3828 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3829 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3830 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3831 tcp_enter_quickack_mode(sk);
3832
3833 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3834 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3835
3836 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3837 end_seq = tp->rcv_nxt;
3838 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3839 }
3840 }
3841
3842 tcp_send_ack(sk);
3843 }
3844
3845 /* These routines update the SACK block as out-of-order packets arrive or
3846 * in-order packets close up the sequence space.
3847 */
3848 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3849 {
3850 int this_sack;
3851 struct tcp_sack_block *sp = &tp->selective_acks[0];
3852 struct tcp_sack_block *swalk = sp + 1;
3853
3854 /* See if the recent change to the first SACK eats into
3855 * or hits the sequence space of other SACK blocks, if so coalesce.
3856 */
3857 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3858 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3859 int i;
3860
3861 /* Zap SWALK, by moving every further SACK up by one slot.
3862 * Decrease num_sacks.
3863 */
3864 tp->rx_opt.num_sacks--;
3865 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3866 sp[i] = sp[i + 1];
3867 continue;
3868 }
3869 this_sack++, swalk++;
3870 }
3871 }
3872
3873 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3874 {
3875 struct tcp_sock *tp = tcp_sk(sk);
3876 struct tcp_sack_block *sp = &tp->selective_acks[0];
3877 int cur_sacks = tp->rx_opt.num_sacks;
3878 int this_sack;
3879
3880 if (!cur_sacks)
3881 goto new_sack;
3882
3883 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3884 if (tcp_sack_extend(sp, seq, end_seq)) {
3885 /* Rotate this_sack to the first one. */
3886 for (; this_sack > 0; this_sack--, sp--)
3887 swap(*sp, *(sp - 1));
3888 if (cur_sacks > 1)
3889 tcp_sack_maybe_coalesce(tp);
3890 return;
3891 }
3892 }
3893
3894 /* Could not find an adjacent existing SACK, build a new one,
3895 * put it at the front, and shift everyone else down. We
3896 * always know there is at least one SACK present already here.
3897 *
3898 * If the sack array is full, forget about the last one.
3899 */
3900 if (this_sack >= TCP_NUM_SACKS) {
3901 this_sack--;
3902 tp->rx_opt.num_sacks--;
3903 sp--;
3904 }
3905 for (; this_sack > 0; this_sack--, sp--)
3906 *sp = *(sp - 1);
3907
3908 new_sack:
3909 /* Build the new head SACK, and we're done. */
3910 sp->start_seq = seq;
3911 sp->end_seq = end_seq;
3912 tp->rx_opt.num_sacks++;
3913 }
3914
3915 /* RCV.NXT advances, some SACKs should be eaten. */
3916
3917 static void tcp_sack_remove(struct tcp_sock *tp)
3918 {
3919 struct tcp_sack_block *sp = &tp->selective_acks[0];
3920 int num_sacks = tp->rx_opt.num_sacks;
3921 int this_sack;
3922
3923 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3924 if (skb_queue_empty(&tp->out_of_order_queue)) {
3925 tp->rx_opt.num_sacks = 0;
3926 return;
3927 }
3928
3929 for (this_sack = 0; this_sack < num_sacks;) {
3930 /* Check if the start of the sack is covered by RCV.NXT. */
3931 if (!before(tp->rcv_nxt, sp->start_seq)) {
3932 int i;
3933
3934 /* RCV.NXT must cover all the block! */
3935 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3936
3937 /* Zap this SACK, by moving forward any other SACKS. */
3938 for (i=this_sack+1; i < num_sacks; i++)
3939 tp->selective_acks[i-1] = tp->selective_acks[i];
3940 num_sacks--;
3941 continue;
3942 }
3943 this_sack++;
3944 sp++;
3945 }
3946 tp->rx_opt.num_sacks = num_sacks;
3947 }
3948
3949 /* This one checks to see if we can put data from the
3950 * out_of_order queue into the receive_queue.
3951 */
3952 static void tcp_ofo_queue(struct sock *sk)
3953 {
3954 struct tcp_sock *tp = tcp_sk(sk);
3955 __u32 dsack_high = tp->rcv_nxt;
3956 struct sk_buff *skb;
3957
3958 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3959 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3960 break;
3961
3962 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3963 __u32 dsack = dsack_high;
3964 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3965 dsack_high = TCP_SKB_CB(skb)->end_seq;
3966 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
3967 }
3968
3969 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3970 SOCK_DEBUG(sk, "ofo packet was already received\n");
3971 __skb_unlink(skb, &tp->out_of_order_queue);
3972 __kfree_skb(skb);
3973 continue;
3974 }
3975 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3976 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3977 TCP_SKB_CB(skb)->end_seq);
3978
3979 __skb_unlink(skb, &tp->out_of_order_queue);
3980 __skb_queue_tail(&sk->sk_receive_queue, skb);
3981 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3982 if (tcp_hdr(skb)->fin)
3983 tcp_fin(sk);
3984 }
3985 }
3986
3987 static bool tcp_prune_ofo_queue(struct sock *sk);
3988 static int tcp_prune_queue(struct sock *sk);
3989
3990 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
3991 unsigned int size)
3992 {
3993 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3994 !sk_rmem_schedule(sk, skb, size)) {
3995
3996 if (tcp_prune_queue(sk) < 0)
3997 return -1;
3998
3999 if (!sk_rmem_schedule(sk, skb, size)) {
4000 if (!tcp_prune_ofo_queue(sk))
4001 return -1;
4002
4003 if (!sk_rmem_schedule(sk, skb, size))
4004 return -1;
4005 }
4006 }
4007 return 0;
4008 }
4009
4010 /**
4011 * tcp_try_coalesce - try to merge skb to prior one
4012 * @sk: socket
4013 * @to: prior buffer
4014 * @from: buffer to add in queue
4015 * @fragstolen: pointer to boolean
4016 *
4017 * Before queueing skb @from after @to, try to merge them
4018 * to reduce overall memory use and queue lengths, if cost is small.
4019 * Packets in ofo or receive queues can stay a long time.
4020 * Better try to coalesce them right now to avoid future collapses.
4021 * Returns true if caller should free @from instead of queueing it
4022 */
4023 static bool tcp_try_coalesce(struct sock *sk,
4024 struct sk_buff *to,
4025 struct sk_buff *from,
4026 bool *fragstolen)
4027 {
4028 int delta;
4029
4030 *fragstolen = false;
4031
4032 if (tcp_hdr(from)->fin)
4033 return false;
4034
4035 /* Its possible this segment overlaps with prior segment in queue */
4036 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4037 return false;
4038
4039 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4040 return false;
4041
4042 atomic_add(delta, &sk->sk_rmem_alloc);
4043 sk_mem_charge(sk, delta);
4044 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4045 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4046 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4047 return true;
4048 }
4049
4050 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4051 {
4052 struct tcp_sock *tp = tcp_sk(sk);
4053 struct sk_buff *skb1;
4054 u32 seq, end_seq;
4055
4056 TCP_ECN_check_ce(tp, skb);
4057
4058 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4059 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4060 __kfree_skb(skb);
4061 return;
4062 }
4063
4064 /* Disable header prediction. */
4065 tp->pred_flags = 0;
4066 inet_csk_schedule_ack(sk);
4067
4068 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4069 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4070 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4071
4072 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4073 if (!skb1) {
4074 /* Initial out of order segment, build 1 SACK. */
4075 if (tcp_is_sack(tp)) {
4076 tp->rx_opt.num_sacks = 1;
4077 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4078 tp->selective_acks[0].end_seq =
4079 TCP_SKB_CB(skb)->end_seq;
4080 }
4081 __skb_queue_head(&tp->out_of_order_queue, skb);
4082 goto end;
4083 }
4084
4085 seq = TCP_SKB_CB(skb)->seq;
4086 end_seq = TCP_SKB_CB(skb)->end_seq;
4087
4088 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4089 bool fragstolen;
4090
4091 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4092 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4093 } else {
4094 kfree_skb_partial(skb, fragstolen);
4095 skb = NULL;
4096 }
4097
4098 if (!tp->rx_opt.num_sacks ||
4099 tp->selective_acks[0].end_seq != seq)
4100 goto add_sack;
4101
4102 /* Common case: data arrive in order after hole. */
4103 tp->selective_acks[0].end_seq = end_seq;
4104 goto end;
4105 }
4106
4107 /* Find place to insert this segment. */
4108 while (1) {
4109 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4110 break;
4111 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4112 skb1 = NULL;
4113 break;
4114 }
4115 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4116 }
4117
4118 /* Do skb overlap to previous one? */
4119 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4120 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4121 /* All the bits are present. Drop. */
4122 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4123 __kfree_skb(skb);
4124 skb = NULL;
4125 tcp_dsack_set(sk, seq, end_seq);
4126 goto add_sack;
4127 }
4128 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4129 /* Partial overlap. */
4130 tcp_dsack_set(sk, seq,
4131 TCP_SKB_CB(skb1)->end_seq);
4132 } else {
4133 if (skb_queue_is_first(&tp->out_of_order_queue,
4134 skb1))
4135 skb1 = NULL;
4136 else
4137 skb1 = skb_queue_prev(
4138 &tp->out_of_order_queue,
4139 skb1);
4140 }
4141 }
4142 if (!skb1)
4143 __skb_queue_head(&tp->out_of_order_queue, skb);
4144 else
4145 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4146
4147 /* And clean segments covered by new one as whole. */
4148 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4149 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4150
4151 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4152 break;
4153 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4154 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4155 end_seq);
4156 break;
4157 }
4158 __skb_unlink(skb1, &tp->out_of_order_queue);
4159 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4160 TCP_SKB_CB(skb1)->end_seq);
4161 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4162 __kfree_skb(skb1);
4163 }
4164
4165 add_sack:
4166 if (tcp_is_sack(tp))
4167 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4168 end:
4169 if (skb)
4170 skb_set_owner_r(skb, sk);
4171 }
4172
4173 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4174 bool *fragstolen)
4175 {
4176 int eaten;
4177 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4178
4179 __skb_pull(skb, hdrlen);
4180 eaten = (tail &&
4181 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4182 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4183 if (!eaten) {
4184 __skb_queue_tail(&sk->sk_receive_queue, skb);
4185 skb_set_owner_r(skb, sk);
4186 }
4187 return eaten;
4188 }
4189
4190 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4191 {
4192 struct sk_buff *skb = NULL;
4193 struct tcphdr *th;
4194 bool fragstolen;
4195
4196 if (size == 0)
4197 return 0;
4198
4199 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4200 if (!skb)
4201 goto err;
4202
4203 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4204 goto err_free;
4205
4206 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4207 skb_reset_transport_header(skb);
4208 memset(th, 0, sizeof(*th));
4209
4210 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4211 goto err_free;
4212
4213 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4214 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4215 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4216
4217 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4218 WARN_ON_ONCE(fragstolen); /* should not happen */
4219 __kfree_skb(skb);
4220 }
4221 return size;
4222
4223 err_free:
4224 kfree_skb(skb);
4225 err:
4226 return -ENOMEM;
4227 }
4228
4229 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4230 {
4231 const struct tcphdr *th = tcp_hdr(skb);
4232 struct tcp_sock *tp = tcp_sk(sk);
4233 int eaten = -1;
4234 bool fragstolen = false;
4235
4236 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4237 goto drop;
4238
4239 skb_dst_drop(skb);
4240 __skb_pull(skb, th->doff * 4);
4241
4242 TCP_ECN_accept_cwr(tp, skb);
4243
4244 tp->rx_opt.dsack = 0;
4245
4246 /* Queue data for delivery to the user.
4247 * Packets in sequence go to the receive queue.
4248 * Out of sequence packets to the out_of_order_queue.
4249 */
4250 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4251 if (tcp_receive_window(tp) == 0)
4252 goto out_of_window;
4253
4254 /* Ok. In sequence. In window. */
4255 if (tp->ucopy.task == current &&
4256 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4257 sock_owned_by_user(sk) && !tp->urg_data) {
4258 int chunk = min_t(unsigned int, skb->len,
4259 tp->ucopy.len);
4260
4261 __set_current_state(TASK_RUNNING);
4262
4263 local_bh_enable();
4264 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4265 tp->ucopy.len -= chunk;
4266 tp->copied_seq += chunk;
4267 eaten = (chunk == skb->len);
4268 tcp_rcv_space_adjust(sk);
4269 }
4270 local_bh_disable();
4271 }
4272
4273 if (eaten <= 0) {
4274 queue_and_out:
4275 if (eaten < 0 &&
4276 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4277 goto drop;
4278
4279 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4280 }
4281 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4282 if (skb->len)
4283 tcp_event_data_recv(sk, skb);
4284 if (th->fin)
4285 tcp_fin(sk);
4286
4287 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4288 tcp_ofo_queue(sk);
4289
4290 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4291 * gap in queue is filled.
4292 */
4293 if (skb_queue_empty(&tp->out_of_order_queue))
4294 inet_csk(sk)->icsk_ack.pingpong = 0;
4295 }
4296
4297 if (tp->rx_opt.num_sacks)
4298 tcp_sack_remove(tp);
4299
4300 tcp_fast_path_check(sk);
4301
4302 if (eaten > 0)
4303 kfree_skb_partial(skb, fragstolen);
4304 if (!sock_flag(sk, SOCK_DEAD))
4305 sk->sk_data_ready(sk, 0);
4306 return;
4307 }
4308
4309 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4310 /* A retransmit, 2nd most common case. Force an immediate ack. */
4311 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4312 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4313
4314 out_of_window:
4315 tcp_enter_quickack_mode(sk);
4316 inet_csk_schedule_ack(sk);
4317 drop:
4318 __kfree_skb(skb);
4319 return;
4320 }
4321
4322 /* Out of window. F.e. zero window probe. */
4323 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4324 goto out_of_window;
4325
4326 tcp_enter_quickack_mode(sk);
4327
4328 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4329 /* Partial packet, seq < rcv_next < end_seq */
4330 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4331 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4332 TCP_SKB_CB(skb)->end_seq);
4333
4334 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4335
4336 /* If window is closed, drop tail of packet. But after
4337 * remembering D-SACK for its head made in previous line.
4338 */
4339 if (!tcp_receive_window(tp))
4340 goto out_of_window;
4341 goto queue_and_out;
4342 }
4343
4344 tcp_data_queue_ofo(sk, skb);
4345 }
4346
4347 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4348 struct sk_buff_head *list)
4349 {
4350 struct sk_buff *next = NULL;
4351
4352 if (!skb_queue_is_last(list, skb))
4353 next = skb_queue_next(list, skb);
4354
4355 __skb_unlink(skb, list);
4356 __kfree_skb(skb);
4357 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4358
4359 return next;
4360 }
4361
4362 /* Collapse contiguous sequence of skbs head..tail with
4363 * sequence numbers start..end.
4364 *
4365 * If tail is NULL, this means until the end of the list.
4366 *
4367 * Segments with FIN/SYN are not collapsed (only because this
4368 * simplifies code)
4369 */
4370 static void
4371 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4372 struct sk_buff *head, struct sk_buff *tail,
4373 u32 start, u32 end)
4374 {
4375 struct sk_buff *skb, *n;
4376 bool end_of_skbs;
4377
4378 /* First, check that queue is collapsible and find
4379 * the point where collapsing can be useful. */
4380 skb = head;
4381 restart:
4382 end_of_skbs = true;
4383 skb_queue_walk_from_safe(list, skb, n) {
4384 if (skb == tail)
4385 break;
4386 /* No new bits? It is possible on ofo queue. */
4387 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4388 skb = tcp_collapse_one(sk, skb, list);
4389 if (!skb)
4390 break;
4391 goto restart;
4392 }
4393
4394 /* The first skb to collapse is:
4395 * - not SYN/FIN and
4396 * - bloated or contains data before "start" or
4397 * overlaps to the next one.
4398 */
4399 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4400 (tcp_win_from_space(skb->truesize) > skb->len ||
4401 before(TCP_SKB_CB(skb)->seq, start))) {
4402 end_of_skbs = false;
4403 break;
4404 }
4405
4406 if (!skb_queue_is_last(list, skb)) {
4407 struct sk_buff *next = skb_queue_next(list, skb);
4408 if (next != tail &&
4409 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4410 end_of_skbs = false;
4411 break;
4412 }
4413 }
4414
4415 /* Decided to skip this, advance start seq. */
4416 start = TCP_SKB_CB(skb)->end_seq;
4417 }
4418 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4419 return;
4420
4421 while (before(start, end)) {
4422 struct sk_buff *nskb;
4423 unsigned int header = skb_headroom(skb);
4424 int copy = SKB_MAX_ORDER(header, 0);
4425
4426 /* Too big header? This can happen with IPv6. */
4427 if (copy < 0)
4428 return;
4429 if (end - start < copy)
4430 copy = end - start;
4431 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4432 if (!nskb)
4433 return;
4434
4435 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4436 skb_set_network_header(nskb, (skb_network_header(skb) -
4437 skb->head));
4438 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4439 skb->head));
4440 skb_reserve(nskb, header);
4441 memcpy(nskb->head, skb->head, header);
4442 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4443 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4444 __skb_queue_before(list, skb, nskb);
4445 skb_set_owner_r(nskb, sk);
4446
4447 /* Copy data, releasing collapsed skbs. */
4448 while (copy > 0) {
4449 int offset = start - TCP_SKB_CB(skb)->seq;
4450 int size = TCP_SKB_CB(skb)->end_seq - start;
4451
4452 BUG_ON(offset < 0);
4453 if (size > 0) {
4454 size = min(copy, size);
4455 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4456 BUG();
4457 TCP_SKB_CB(nskb)->end_seq += size;
4458 copy -= size;
4459 start += size;
4460 }
4461 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4462 skb = tcp_collapse_one(sk, skb, list);
4463 if (!skb ||
4464 skb == tail ||
4465 tcp_hdr(skb)->syn ||
4466 tcp_hdr(skb)->fin)
4467 return;
4468 }
4469 }
4470 }
4471 }
4472
4473 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4474 * and tcp_collapse() them until all the queue is collapsed.
4475 */
4476 static void tcp_collapse_ofo_queue(struct sock *sk)
4477 {
4478 struct tcp_sock *tp = tcp_sk(sk);
4479 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4480 struct sk_buff *head;
4481 u32 start, end;
4482
4483 if (skb == NULL)
4484 return;
4485
4486 start = TCP_SKB_CB(skb)->seq;
4487 end = TCP_SKB_CB(skb)->end_seq;
4488 head = skb;
4489
4490 for (;;) {
4491 struct sk_buff *next = NULL;
4492
4493 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4494 next = skb_queue_next(&tp->out_of_order_queue, skb);
4495 skb = next;
4496
4497 /* Segment is terminated when we see gap or when
4498 * we are at the end of all the queue. */
4499 if (!skb ||
4500 after(TCP_SKB_CB(skb)->seq, end) ||
4501 before(TCP_SKB_CB(skb)->end_seq, start)) {
4502 tcp_collapse(sk, &tp->out_of_order_queue,
4503 head, skb, start, end);
4504 head = skb;
4505 if (!skb)
4506 break;
4507 /* Start new segment */
4508 start = TCP_SKB_CB(skb)->seq;
4509 end = TCP_SKB_CB(skb)->end_seq;
4510 } else {
4511 if (before(TCP_SKB_CB(skb)->seq, start))
4512 start = TCP_SKB_CB(skb)->seq;
4513 if (after(TCP_SKB_CB(skb)->end_seq, end))
4514 end = TCP_SKB_CB(skb)->end_seq;
4515 }
4516 }
4517 }
4518
4519 /*
4520 * Purge the out-of-order queue.
4521 * Return true if queue was pruned.
4522 */
4523 static bool tcp_prune_ofo_queue(struct sock *sk)
4524 {
4525 struct tcp_sock *tp = tcp_sk(sk);
4526 bool res = false;
4527
4528 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4529 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4530 __skb_queue_purge(&tp->out_of_order_queue);
4531
4532 /* Reset SACK state. A conforming SACK implementation will
4533 * do the same at a timeout based retransmit. When a connection
4534 * is in a sad state like this, we care only about integrity
4535 * of the connection not performance.
4536 */
4537 if (tp->rx_opt.sack_ok)
4538 tcp_sack_reset(&tp->rx_opt);
4539 sk_mem_reclaim(sk);
4540 res = true;
4541 }
4542 return res;
4543 }
4544
4545 /* Reduce allocated memory if we can, trying to get
4546 * the socket within its memory limits again.
4547 *
4548 * Return less than zero if we should start dropping frames
4549 * until the socket owning process reads some of the data
4550 * to stabilize the situation.
4551 */
4552 static int tcp_prune_queue(struct sock *sk)
4553 {
4554 struct tcp_sock *tp = tcp_sk(sk);
4555
4556 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4557
4558 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4559
4560 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4561 tcp_clamp_window(sk);
4562 else if (sk_under_memory_pressure(sk))
4563 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4564
4565 tcp_collapse_ofo_queue(sk);
4566 if (!skb_queue_empty(&sk->sk_receive_queue))
4567 tcp_collapse(sk, &sk->sk_receive_queue,
4568 skb_peek(&sk->sk_receive_queue),
4569 NULL,
4570 tp->copied_seq, tp->rcv_nxt);
4571 sk_mem_reclaim(sk);
4572
4573 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4574 return 0;
4575
4576 /* Collapsing did not help, destructive actions follow.
4577 * This must not ever occur. */
4578
4579 tcp_prune_ofo_queue(sk);
4580
4581 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4582 return 0;
4583
4584 /* If we are really being abused, tell the caller to silently
4585 * drop receive data on the floor. It will get retransmitted
4586 * and hopefully then we'll have sufficient space.
4587 */
4588 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4589
4590 /* Massive buffer overcommit. */
4591 tp->pred_flags = 0;
4592 return -1;
4593 }
4594
4595 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4596 * As additional protections, we do not touch cwnd in retransmission phases,
4597 * and if application hit its sndbuf limit recently.
4598 */
4599 void tcp_cwnd_application_limited(struct sock *sk)
4600 {
4601 struct tcp_sock *tp = tcp_sk(sk);
4602
4603 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4604 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4605 /* Limited by application or receiver window. */
4606 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4607 u32 win_used = max(tp->snd_cwnd_used, init_win);
4608 if (win_used < tp->snd_cwnd) {
4609 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4610 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4611 }
4612 tp->snd_cwnd_used = 0;
4613 }
4614 tp->snd_cwnd_stamp = tcp_time_stamp;
4615 }
4616
4617 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4618 {
4619 const struct tcp_sock *tp = tcp_sk(sk);
4620
4621 /* If the user specified a specific send buffer setting, do
4622 * not modify it.
4623 */
4624 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4625 return false;
4626
4627 /* If we are under global TCP memory pressure, do not expand. */
4628 if (sk_under_memory_pressure(sk))
4629 return false;
4630
4631 /* If we are under soft global TCP memory pressure, do not expand. */
4632 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4633 return false;
4634
4635 /* If we filled the congestion window, do not expand. */
4636 if (tp->packets_out >= tp->snd_cwnd)
4637 return false;
4638
4639 return true;
4640 }
4641
4642 /* When incoming ACK allowed to free some skb from write_queue,
4643 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4644 * on the exit from tcp input handler.
4645 *
4646 * PROBLEM: sndbuf expansion does not work well with largesend.
4647 */
4648 static void tcp_new_space(struct sock *sk)
4649 {
4650 struct tcp_sock *tp = tcp_sk(sk);
4651
4652 if (tcp_should_expand_sndbuf(sk)) {
4653 int sndmem = SKB_TRUESIZE(max_t(u32,
4654 tp->rx_opt.mss_clamp,
4655 tp->mss_cache) +
4656 MAX_TCP_HEADER);
4657 int demanded = max_t(unsigned int, tp->snd_cwnd,
4658 tp->reordering + 1);
4659 sndmem *= 2 * demanded;
4660 if (sndmem > sk->sk_sndbuf)
4661 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4662 tp->snd_cwnd_stamp = tcp_time_stamp;
4663 }
4664
4665 sk->sk_write_space(sk);
4666 }
4667
4668 static void tcp_check_space(struct sock *sk)
4669 {
4670 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4671 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4672 if (sk->sk_socket &&
4673 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4674 tcp_new_space(sk);
4675 }
4676 }
4677
4678 static inline void tcp_data_snd_check(struct sock *sk)
4679 {
4680 tcp_push_pending_frames(sk);
4681 tcp_check_space(sk);
4682 }
4683
4684 /*
4685 * Check if sending an ack is needed.
4686 */
4687 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4688 {
4689 struct tcp_sock *tp = tcp_sk(sk);
4690
4691 /* More than one full frame received... */
4692 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4693 /* ... and right edge of window advances far enough.
4694 * (tcp_recvmsg() will send ACK otherwise). Or...
4695 */
4696 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4697 /* We ACK each frame or... */
4698 tcp_in_quickack_mode(sk) ||
4699 /* We have out of order data. */
4700 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4701 /* Then ack it now */
4702 tcp_send_ack(sk);
4703 } else {
4704 /* Else, send delayed ack. */
4705 tcp_send_delayed_ack(sk);
4706 }
4707 }
4708
4709 static inline void tcp_ack_snd_check(struct sock *sk)
4710 {
4711 if (!inet_csk_ack_scheduled(sk)) {
4712 /* We sent a data segment already. */
4713 return;
4714 }
4715 __tcp_ack_snd_check(sk, 1);
4716 }
4717
4718 /*
4719 * This routine is only called when we have urgent data
4720 * signaled. Its the 'slow' part of tcp_urg. It could be
4721 * moved inline now as tcp_urg is only called from one
4722 * place. We handle URGent data wrong. We have to - as
4723 * BSD still doesn't use the correction from RFC961.
4724 * For 1003.1g we should support a new option TCP_STDURG to permit
4725 * either form (or just set the sysctl tcp_stdurg).
4726 */
4727
4728 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4729 {
4730 struct tcp_sock *tp = tcp_sk(sk);
4731 u32 ptr = ntohs(th->urg_ptr);
4732
4733 if (ptr && !sysctl_tcp_stdurg)
4734 ptr--;
4735 ptr += ntohl(th->seq);
4736
4737 /* Ignore urgent data that we've already seen and read. */
4738 if (after(tp->copied_seq, ptr))
4739 return;
4740
4741 /* Do not replay urg ptr.
4742 *
4743 * NOTE: interesting situation not covered by specs.
4744 * Misbehaving sender may send urg ptr, pointing to segment,
4745 * which we already have in ofo queue. We are not able to fetch
4746 * such data and will stay in TCP_URG_NOTYET until will be eaten
4747 * by recvmsg(). Seems, we are not obliged to handle such wicked
4748 * situations. But it is worth to think about possibility of some
4749 * DoSes using some hypothetical application level deadlock.
4750 */
4751 if (before(ptr, tp->rcv_nxt))
4752 return;
4753
4754 /* Do we already have a newer (or duplicate) urgent pointer? */
4755 if (tp->urg_data && !after(ptr, tp->urg_seq))
4756 return;
4757
4758 /* Tell the world about our new urgent pointer. */
4759 sk_send_sigurg(sk);
4760
4761 /* We may be adding urgent data when the last byte read was
4762 * urgent. To do this requires some care. We cannot just ignore
4763 * tp->copied_seq since we would read the last urgent byte again
4764 * as data, nor can we alter copied_seq until this data arrives
4765 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4766 *
4767 * NOTE. Double Dutch. Rendering to plain English: author of comment
4768 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4769 * and expect that both A and B disappear from stream. This is _wrong_.
4770 * Though this happens in BSD with high probability, this is occasional.
4771 * Any application relying on this is buggy. Note also, that fix "works"
4772 * only in this artificial test. Insert some normal data between A and B and we will
4773 * decline of BSD again. Verdict: it is better to remove to trap
4774 * buggy users.
4775 */
4776 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4777 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4778 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4779 tp->copied_seq++;
4780 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4781 __skb_unlink(skb, &sk->sk_receive_queue);
4782 __kfree_skb(skb);
4783 }
4784 }
4785
4786 tp->urg_data = TCP_URG_NOTYET;
4787 tp->urg_seq = ptr;
4788
4789 /* Disable header prediction. */
4790 tp->pred_flags = 0;
4791 }
4792
4793 /* This is the 'fast' part of urgent handling. */
4794 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4795 {
4796 struct tcp_sock *tp = tcp_sk(sk);
4797
4798 /* Check if we get a new urgent pointer - normally not. */
4799 if (th->urg)
4800 tcp_check_urg(sk, th);
4801
4802 /* Do we wait for any urgent data? - normally not... */
4803 if (tp->urg_data == TCP_URG_NOTYET) {
4804 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4805 th->syn;
4806
4807 /* Is the urgent pointer pointing into this packet? */
4808 if (ptr < skb->len) {
4809 u8 tmp;
4810 if (skb_copy_bits(skb, ptr, &tmp, 1))
4811 BUG();
4812 tp->urg_data = TCP_URG_VALID | tmp;
4813 if (!sock_flag(sk, SOCK_DEAD))
4814 sk->sk_data_ready(sk, 0);
4815 }
4816 }
4817 }
4818
4819 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4820 {
4821 struct tcp_sock *tp = tcp_sk(sk);
4822 int chunk = skb->len - hlen;
4823 int err;
4824
4825 local_bh_enable();
4826 if (skb_csum_unnecessary(skb))
4827 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4828 else
4829 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4830 tp->ucopy.iov);
4831
4832 if (!err) {
4833 tp->ucopy.len -= chunk;
4834 tp->copied_seq += chunk;
4835 tcp_rcv_space_adjust(sk);
4836 }
4837
4838 local_bh_disable();
4839 return err;
4840 }
4841
4842 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4843 struct sk_buff *skb)
4844 {
4845 __sum16 result;
4846
4847 if (sock_owned_by_user(sk)) {
4848 local_bh_enable();
4849 result = __tcp_checksum_complete(skb);
4850 local_bh_disable();
4851 } else {
4852 result = __tcp_checksum_complete(skb);
4853 }
4854 return result;
4855 }
4856
4857 static inline bool tcp_checksum_complete_user(struct sock *sk,
4858 struct sk_buff *skb)
4859 {
4860 return !skb_csum_unnecessary(skb) &&
4861 __tcp_checksum_complete_user(sk, skb);
4862 }
4863
4864 #ifdef CONFIG_NET_DMA
4865 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4866 int hlen)
4867 {
4868 struct tcp_sock *tp = tcp_sk(sk);
4869 int chunk = skb->len - hlen;
4870 int dma_cookie;
4871 bool copied_early = false;
4872
4873 if (tp->ucopy.wakeup)
4874 return false;
4875
4876 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4877 tp->ucopy.dma_chan = net_dma_find_channel();
4878
4879 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4880
4881 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4882 skb, hlen,
4883 tp->ucopy.iov, chunk,
4884 tp->ucopy.pinned_list);
4885
4886 if (dma_cookie < 0)
4887 goto out;
4888
4889 tp->ucopy.dma_cookie = dma_cookie;
4890 copied_early = true;
4891
4892 tp->ucopy.len -= chunk;
4893 tp->copied_seq += chunk;
4894 tcp_rcv_space_adjust(sk);
4895
4896 if ((tp->ucopy.len == 0) ||
4897 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4898 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4899 tp->ucopy.wakeup = 1;
4900 sk->sk_data_ready(sk, 0);
4901 }
4902 } else if (chunk > 0) {
4903 tp->ucopy.wakeup = 1;
4904 sk->sk_data_ready(sk, 0);
4905 }
4906 out:
4907 return copied_early;
4908 }
4909 #endif /* CONFIG_NET_DMA */
4910
4911 /* Does PAWS and seqno based validation of an incoming segment, flags will
4912 * play significant role here.
4913 */
4914 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4915 const struct tcphdr *th, int syn_inerr)
4916 {
4917 struct tcp_sock *tp = tcp_sk(sk);
4918
4919 /* RFC1323: H1. Apply PAWS check first. */
4920 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4921 tcp_paws_discard(sk, skb)) {
4922 if (!th->rst) {
4923 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4924 tcp_send_dupack(sk, skb);
4925 goto discard;
4926 }
4927 /* Reset is accepted even if it did not pass PAWS. */
4928 }
4929
4930 /* Step 1: check sequence number */
4931 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4932 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4933 * (RST) segments are validated by checking their SEQ-fields."
4934 * And page 69: "If an incoming segment is not acceptable,
4935 * an acknowledgment should be sent in reply (unless the RST
4936 * bit is set, if so drop the segment and return)".
4937 */
4938 if (!th->rst) {
4939 if (th->syn)
4940 goto syn_challenge;
4941 tcp_send_dupack(sk, skb);
4942 }
4943 goto discard;
4944 }
4945
4946 /* Step 2: check RST bit */
4947 if (th->rst) {
4948 /* RFC 5961 3.2 :
4949 * If sequence number exactly matches RCV.NXT, then
4950 * RESET the connection
4951 * else
4952 * Send a challenge ACK
4953 */
4954 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
4955 tcp_reset(sk);
4956 else
4957 tcp_send_challenge_ack(sk);
4958 goto discard;
4959 }
4960
4961 /* step 3: check security and precedence [ignored] */
4962
4963 /* step 4: Check for a SYN
4964 * RFC 5691 4.2 : Send a challenge ack
4965 */
4966 if (th->syn) {
4967 syn_challenge:
4968 if (syn_inerr)
4969 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4970 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
4971 tcp_send_challenge_ack(sk);
4972 goto discard;
4973 }
4974
4975 return true;
4976
4977 discard:
4978 __kfree_skb(skb);
4979 return false;
4980 }
4981
4982 /*
4983 * TCP receive function for the ESTABLISHED state.
4984 *
4985 * It is split into a fast path and a slow path. The fast path is
4986 * disabled when:
4987 * - A zero window was announced from us - zero window probing
4988 * is only handled properly in the slow path.
4989 * - Out of order segments arrived.
4990 * - Urgent data is expected.
4991 * - There is no buffer space left
4992 * - Unexpected TCP flags/window values/header lengths are received
4993 * (detected by checking the TCP header against pred_flags)
4994 * - Data is sent in both directions. Fast path only supports pure senders
4995 * or pure receivers (this means either the sequence number or the ack
4996 * value must stay constant)
4997 * - Unexpected TCP option.
4998 *
4999 * When these conditions are not satisfied it drops into a standard
5000 * receive procedure patterned after RFC793 to handle all cases.
5001 * The first three cases are guaranteed by proper pred_flags setting,
5002 * the rest is checked inline. Fast processing is turned on in
5003 * tcp_data_queue when everything is OK.
5004 */
5005 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5006 const struct tcphdr *th, unsigned int len)
5007 {
5008 struct tcp_sock *tp = tcp_sk(sk);
5009
5010 if (unlikely(sk->sk_rx_dst == NULL))
5011 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5012 /*
5013 * Header prediction.
5014 * The code loosely follows the one in the famous
5015 * "30 instruction TCP receive" Van Jacobson mail.
5016 *
5017 * Van's trick is to deposit buffers into socket queue
5018 * on a device interrupt, to call tcp_recv function
5019 * on the receive process context and checksum and copy
5020 * the buffer to user space. smart...
5021 *
5022 * Our current scheme is not silly either but we take the
5023 * extra cost of the net_bh soft interrupt processing...
5024 * We do checksum and copy also but from device to kernel.
5025 */
5026
5027 tp->rx_opt.saw_tstamp = 0;
5028
5029 /* pred_flags is 0xS?10 << 16 + snd_wnd
5030 * if header_prediction is to be made
5031 * 'S' will always be tp->tcp_header_len >> 2
5032 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5033 * turn it off (when there are holes in the receive
5034 * space for instance)
5035 * PSH flag is ignored.
5036 */
5037
5038 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5039 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5040 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5041 int tcp_header_len = tp->tcp_header_len;
5042
5043 /* Timestamp header prediction: tcp_header_len
5044 * is automatically equal to th->doff*4 due to pred_flags
5045 * match.
5046 */
5047
5048 /* Check timestamp */
5049 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5050 /* No? Slow path! */
5051 if (!tcp_parse_aligned_timestamp(tp, th))
5052 goto slow_path;
5053
5054 /* If PAWS failed, check it more carefully in slow path */
5055 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5056 goto slow_path;
5057
5058 /* DO NOT update ts_recent here, if checksum fails
5059 * and timestamp was corrupted part, it will result
5060 * in a hung connection since we will drop all
5061 * future packets due to the PAWS test.
5062 */
5063 }
5064
5065 if (len <= tcp_header_len) {
5066 /* Bulk data transfer: sender */
5067 if (len == tcp_header_len) {
5068 /* Predicted packet is in window by definition.
5069 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5070 * Hence, check seq<=rcv_wup reduces to:
5071 */
5072 if (tcp_header_len ==
5073 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5074 tp->rcv_nxt == tp->rcv_wup)
5075 tcp_store_ts_recent(tp);
5076
5077 /* We know that such packets are checksummed
5078 * on entry.
5079 */
5080 tcp_ack(sk, skb, 0);
5081 __kfree_skb(skb);
5082 tcp_data_snd_check(sk);
5083 return 0;
5084 } else { /* Header too small */
5085 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5086 goto discard;
5087 }
5088 } else {
5089 int eaten = 0;
5090 int copied_early = 0;
5091 bool fragstolen = false;
5092
5093 if (tp->copied_seq == tp->rcv_nxt &&
5094 len - tcp_header_len <= tp->ucopy.len) {
5095 #ifdef CONFIG_NET_DMA
5096 if (tp->ucopy.task == current &&
5097 sock_owned_by_user(sk) &&
5098 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5099 copied_early = 1;
5100 eaten = 1;
5101 }
5102 #endif
5103 if (tp->ucopy.task == current &&
5104 sock_owned_by_user(sk) && !copied_early) {
5105 __set_current_state(TASK_RUNNING);
5106
5107 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5108 eaten = 1;
5109 }
5110 if (eaten) {
5111 /* Predicted packet is in window by definition.
5112 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5113 * Hence, check seq<=rcv_wup reduces to:
5114 */
5115 if (tcp_header_len ==
5116 (sizeof(struct tcphdr) +
5117 TCPOLEN_TSTAMP_ALIGNED) &&
5118 tp->rcv_nxt == tp->rcv_wup)
5119 tcp_store_ts_recent(tp);
5120
5121 tcp_rcv_rtt_measure_ts(sk, skb);
5122
5123 __skb_pull(skb, tcp_header_len);
5124 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5125 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5126 }
5127 if (copied_early)
5128 tcp_cleanup_rbuf(sk, skb->len);
5129 }
5130 if (!eaten) {
5131 if (tcp_checksum_complete_user(sk, skb))
5132 goto csum_error;
5133
5134 if ((int)skb->truesize > sk->sk_forward_alloc)
5135 goto step5;
5136
5137 /* Predicted packet is in window by definition.
5138 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5139 * Hence, check seq<=rcv_wup reduces to:
5140 */
5141 if (tcp_header_len ==
5142 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5143 tp->rcv_nxt == tp->rcv_wup)
5144 tcp_store_ts_recent(tp);
5145
5146 tcp_rcv_rtt_measure_ts(sk, skb);
5147
5148 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5149
5150 /* Bulk data transfer: receiver */
5151 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5152 &fragstolen);
5153 }
5154
5155 tcp_event_data_recv(sk, skb);
5156
5157 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5158 /* Well, only one small jumplet in fast path... */
5159 tcp_ack(sk, skb, FLAG_DATA);
5160 tcp_data_snd_check(sk);
5161 if (!inet_csk_ack_scheduled(sk))
5162 goto no_ack;
5163 }
5164
5165 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5166 __tcp_ack_snd_check(sk, 0);
5167 no_ack:
5168 #ifdef CONFIG_NET_DMA
5169 if (copied_early)
5170 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5171 else
5172 #endif
5173 if (eaten)
5174 kfree_skb_partial(skb, fragstolen);
5175 sk->sk_data_ready(sk, 0);
5176 return 0;
5177 }
5178 }
5179
5180 slow_path:
5181 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5182 goto csum_error;
5183
5184 if (!th->ack && !th->rst)
5185 goto discard;
5186
5187 /*
5188 * Standard slow path.
5189 */
5190
5191 if (!tcp_validate_incoming(sk, skb, th, 1))
5192 return 0;
5193
5194 step5:
5195 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5196 goto discard;
5197
5198 tcp_rcv_rtt_measure_ts(sk, skb);
5199
5200 /* Process urgent data. */
5201 tcp_urg(sk, skb, th);
5202
5203 /* step 7: process the segment text */
5204 tcp_data_queue(sk, skb);
5205
5206 tcp_data_snd_check(sk);
5207 tcp_ack_snd_check(sk);
5208 return 0;
5209
5210 csum_error:
5211 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5212 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5213
5214 discard:
5215 __kfree_skb(skb);
5216 return 0;
5217 }
5218 EXPORT_SYMBOL(tcp_rcv_established);
5219
5220 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5221 {
5222 struct tcp_sock *tp = tcp_sk(sk);
5223 struct inet_connection_sock *icsk = inet_csk(sk);
5224
5225 tcp_set_state(sk, TCP_ESTABLISHED);
5226
5227 if (skb != NULL) {
5228 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5229 security_inet_conn_established(sk, skb);
5230 }
5231
5232 /* Make sure socket is routed, for correct metrics. */
5233 icsk->icsk_af_ops->rebuild_header(sk);
5234
5235 tcp_init_metrics(sk);
5236
5237 tcp_init_congestion_control(sk);
5238
5239 /* Prevent spurious tcp_cwnd_restart() on first data
5240 * packet.
5241 */
5242 tp->lsndtime = tcp_time_stamp;
5243
5244 tcp_init_buffer_space(sk);
5245
5246 if (sock_flag(sk, SOCK_KEEPOPEN))
5247 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5248
5249 if (!tp->rx_opt.snd_wscale)
5250 __tcp_fast_path_on(tp, tp->snd_wnd);
5251 else
5252 tp->pred_flags = 0;
5253
5254 if (!sock_flag(sk, SOCK_DEAD)) {
5255 sk->sk_state_change(sk);
5256 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5257 }
5258 }
5259
5260 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5261 struct tcp_fastopen_cookie *cookie)
5262 {
5263 struct tcp_sock *tp = tcp_sk(sk);
5264 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5265 u16 mss = tp->rx_opt.mss_clamp;
5266 bool syn_drop;
5267
5268 if (mss == tp->rx_opt.user_mss) {
5269 struct tcp_options_received opt;
5270
5271 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5272 tcp_clear_options(&opt);
5273 opt.user_mss = opt.mss_clamp = 0;
5274 tcp_parse_options(synack, &opt, 0, NULL);
5275 mss = opt.mss_clamp;
5276 }
5277
5278 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5279 cookie->len = -1;
5280
5281 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5282 * the remote receives only the retransmitted (regular) SYNs: either
5283 * the original SYN-data or the corresponding SYN-ACK is lost.
5284 */
5285 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5286
5287 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5288
5289 if (data) { /* Retransmit unacked data in SYN */
5290 tcp_for_write_queue_from(data, sk) {
5291 if (data == tcp_send_head(sk) ||
5292 __tcp_retransmit_skb(sk, data))
5293 break;
5294 }
5295 tcp_rearm_rto(sk);
5296 return true;
5297 }
5298 tp->syn_data_acked = tp->syn_data;
5299 return false;
5300 }
5301
5302 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5303 const struct tcphdr *th, unsigned int len)
5304 {
5305 struct inet_connection_sock *icsk = inet_csk(sk);
5306 struct tcp_sock *tp = tcp_sk(sk);
5307 struct tcp_fastopen_cookie foc = { .len = -1 };
5308 int saved_clamp = tp->rx_opt.mss_clamp;
5309
5310 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5311 if (tp->rx_opt.saw_tstamp)
5312 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5313
5314 if (th->ack) {
5315 /* rfc793:
5316 * "If the state is SYN-SENT then
5317 * first check the ACK bit
5318 * If the ACK bit is set
5319 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5320 * a reset (unless the RST bit is set, if so drop
5321 * the segment and return)"
5322 */
5323 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5324 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5325 goto reset_and_undo;
5326
5327 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5328 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5329 tcp_time_stamp)) {
5330 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5331 goto reset_and_undo;
5332 }
5333
5334 /* Now ACK is acceptable.
5335 *
5336 * "If the RST bit is set
5337 * If the ACK was acceptable then signal the user "error:
5338 * connection reset", drop the segment, enter CLOSED state,
5339 * delete TCB, and return."
5340 */
5341
5342 if (th->rst) {
5343 tcp_reset(sk);
5344 goto discard;
5345 }
5346
5347 /* rfc793:
5348 * "fifth, if neither of the SYN or RST bits is set then
5349 * drop the segment and return."
5350 *
5351 * See note below!
5352 * --ANK(990513)
5353 */
5354 if (!th->syn)
5355 goto discard_and_undo;
5356
5357 /* rfc793:
5358 * "If the SYN bit is on ...
5359 * are acceptable then ...
5360 * (our SYN has been ACKed), change the connection
5361 * state to ESTABLISHED..."
5362 */
5363
5364 TCP_ECN_rcv_synack(tp, th);
5365
5366 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5367 tcp_ack(sk, skb, FLAG_SLOWPATH);
5368
5369 /* Ok.. it's good. Set up sequence numbers and
5370 * move to established.
5371 */
5372 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5373 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5374
5375 /* RFC1323: The window in SYN & SYN/ACK segments is
5376 * never scaled.
5377 */
5378 tp->snd_wnd = ntohs(th->window);
5379
5380 if (!tp->rx_opt.wscale_ok) {
5381 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5382 tp->window_clamp = min(tp->window_clamp, 65535U);
5383 }
5384
5385 if (tp->rx_opt.saw_tstamp) {
5386 tp->rx_opt.tstamp_ok = 1;
5387 tp->tcp_header_len =
5388 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5389 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5390 tcp_store_ts_recent(tp);
5391 } else {
5392 tp->tcp_header_len = sizeof(struct tcphdr);
5393 }
5394
5395 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5396 tcp_enable_fack(tp);
5397
5398 tcp_mtup_init(sk);
5399 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5400 tcp_initialize_rcv_mss(sk);
5401
5402 /* Remember, tcp_poll() does not lock socket!
5403 * Change state from SYN-SENT only after copied_seq
5404 * is initialized. */
5405 tp->copied_seq = tp->rcv_nxt;
5406
5407 smp_mb();
5408
5409 tcp_finish_connect(sk, skb);
5410
5411 if ((tp->syn_fastopen || tp->syn_data) &&
5412 tcp_rcv_fastopen_synack(sk, skb, &foc))
5413 return -1;
5414
5415 if (sk->sk_write_pending ||
5416 icsk->icsk_accept_queue.rskq_defer_accept ||
5417 icsk->icsk_ack.pingpong) {
5418 /* Save one ACK. Data will be ready after
5419 * several ticks, if write_pending is set.
5420 *
5421 * It may be deleted, but with this feature tcpdumps
5422 * look so _wonderfully_ clever, that I was not able
5423 * to stand against the temptation 8) --ANK
5424 */
5425 inet_csk_schedule_ack(sk);
5426 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5427 tcp_enter_quickack_mode(sk);
5428 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5429 TCP_DELACK_MAX, TCP_RTO_MAX);
5430
5431 discard:
5432 __kfree_skb(skb);
5433 return 0;
5434 } else {
5435 tcp_send_ack(sk);
5436 }
5437 return -1;
5438 }
5439
5440 /* No ACK in the segment */
5441
5442 if (th->rst) {
5443 /* rfc793:
5444 * "If the RST bit is set
5445 *
5446 * Otherwise (no ACK) drop the segment and return."
5447 */
5448
5449 goto discard_and_undo;
5450 }
5451
5452 /* PAWS check. */
5453 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5454 tcp_paws_reject(&tp->rx_opt, 0))
5455 goto discard_and_undo;
5456
5457 if (th->syn) {
5458 /* We see SYN without ACK. It is attempt of
5459 * simultaneous connect with crossed SYNs.
5460 * Particularly, it can be connect to self.
5461 */
5462 tcp_set_state(sk, TCP_SYN_RECV);
5463
5464 if (tp->rx_opt.saw_tstamp) {
5465 tp->rx_opt.tstamp_ok = 1;
5466 tcp_store_ts_recent(tp);
5467 tp->tcp_header_len =
5468 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5469 } else {
5470 tp->tcp_header_len = sizeof(struct tcphdr);
5471 }
5472
5473 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5474 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5475
5476 /* RFC1323: The window in SYN & SYN/ACK segments is
5477 * never scaled.
5478 */
5479 tp->snd_wnd = ntohs(th->window);
5480 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5481 tp->max_window = tp->snd_wnd;
5482
5483 TCP_ECN_rcv_syn(tp, th);
5484
5485 tcp_mtup_init(sk);
5486 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5487 tcp_initialize_rcv_mss(sk);
5488
5489 tcp_send_synack(sk);
5490 #if 0
5491 /* Note, we could accept data and URG from this segment.
5492 * There are no obstacles to make this (except that we must
5493 * either change tcp_recvmsg() to prevent it from returning data
5494 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5495 *
5496 * However, if we ignore data in ACKless segments sometimes,
5497 * we have no reasons to accept it sometimes.
5498 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5499 * is not flawless. So, discard packet for sanity.
5500 * Uncomment this return to process the data.
5501 */
5502 return -1;
5503 #else
5504 goto discard;
5505 #endif
5506 }
5507 /* "fifth, if neither of the SYN or RST bits is set then
5508 * drop the segment and return."
5509 */
5510
5511 discard_and_undo:
5512 tcp_clear_options(&tp->rx_opt);
5513 tp->rx_opt.mss_clamp = saved_clamp;
5514 goto discard;
5515
5516 reset_and_undo:
5517 tcp_clear_options(&tp->rx_opt);
5518 tp->rx_opt.mss_clamp = saved_clamp;
5519 return 1;
5520 }
5521
5522 /*
5523 * This function implements the receiving procedure of RFC 793 for
5524 * all states except ESTABLISHED and TIME_WAIT.
5525 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5526 * address independent.
5527 */
5528
5529 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5530 const struct tcphdr *th, unsigned int len)
5531 {
5532 struct tcp_sock *tp = tcp_sk(sk);
5533 struct inet_connection_sock *icsk = inet_csk(sk);
5534 struct request_sock *req;
5535 int queued = 0;
5536
5537 tp->rx_opt.saw_tstamp = 0;
5538
5539 switch (sk->sk_state) {
5540 case TCP_CLOSE:
5541 goto discard;
5542
5543 case TCP_LISTEN:
5544 if (th->ack)
5545 return 1;
5546
5547 if (th->rst)
5548 goto discard;
5549
5550 if (th->syn) {
5551 if (th->fin)
5552 goto discard;
5553 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5554 return 1;
5555
5556 /* Now we have several options: In theory there is
5557 * nothing else in the frame. KA9Q has an option to
5558 * send data with the syn, BSD accepts data with the
5559 * syn up to the [to be] advertised window and
5560 * Solaris 2.1 gives you a protocol error. For now
5561 * we just ignore it, that fits the spec precisely
5562 * and avoids incompatibilities. It would be nice in
5563 * future to drop through and process the data.
5564 *
5565 * Now that TTCP is starting to be used we ought to
5566 * queue this data.
5567 * But, this leaves one open to an easy denial of
5568 * service attack, and SYN cookies can't defend
5569 * against this problem. So, we drop the data
5570 * in the interest of security over speed unless
5571 * it's still in use.
5572 */
5573 kfree_skb(skb);
5574 return 0;
5575 }
5576 goto discard;
5577
5578 case TCP_SYN_SENT:
5579 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5580 if (queued >= 0)
5581 return queued;
5582
5583 /* Do step6 onward by hand. */
5584 tcp_urg(sk, skb, th);
5585 __kfree_skb(skb);
5586 tcp_data_snd_check(sk);
5587 return 0;
5588 }
5589
5590 req = tp->fastopen_rsk;
5591 if (req != NULL) {
5592 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5593 sk->sk_state != TCP_FIN_WAIT1);
5594
5595 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5596 goto discard;
5597 }
5598
5599 if (!th->ack && !th->rst)
5600 goto discard;
5601
5602 if (!tcp_validate_incoming(sk, skb, th, 0))
5603 return 0;
5604
5605 /* step 5: check the ACK field */
5606 if (true) {
5607 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5608 FLAG_UPDATE_TS_RECENT) > 0;
5609
5610 switch (sk->sk_state) {
5611 case TCP_SYN_RECV:
5612 if (acceptable) {
5613 /* Once we leave TCP_SYN_RECV, we no longer
5614 * need req so release it.
5615 */
5616 if (req) {
5617 tcp_synack_rtt_meas(sk, req);
5618 tp->total_retrans = req->num_retrans;
5619
5620 reqsk_fastopen_remove(sk, req, false);
5621 } else {
5622 /* Make sure socket is routed, for
5623 * correct metrics.
5624 */
5625 icsk->icsk_af_ops->rebuild_header(sk);
5626 tcp_init_congestion_control(sk);
5627
5628 tcp_mtup_init(sk);
5629 tcp_init_buffer_space(sk);
5630 tp->copied_seq = tp->rcv_nxt;
5631 }
5632 smp_mb();
5633 tcp_set_state(sk, TCP_ESTABLISHED);
5634 sk->sk_state_change(sk);
5635
5636 /* Note, that this wakeup is only for marginal
5637 * crossed SYN case. Passively open sockets
5638 * are not waked up, because sk->sk_sleep ==
5639 * NULL and sk->sk_socket == NULL.
5640 */
5641 if (sk->sk_socket)
5642 sk_wake_async(sk,
5643 SOCK_WAKE_IO, POLL_OUT);
5644
5645 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5646 tp->snd_wnd = ntohs(th->window) <<
5647 tp->rx_opt.snd_wscale;
5648 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5649
5650 if (tp->rx_opt.tstamp_ok)
5651 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5652
5653 if (req) {
5654 /* Re-arm the timer because data may
5655 * have been sent out. This is similar
5656 * to the regular data transmission case
5657 * when new data has just been ack'ed.
5658 *
5659 * (TFO) - we could try to be more
5660 * aggressive and retranmitting any data
5661 * sooner based on when they were sent
5662 * out.
5663 */
5664 tcp_rearm_rto(sk);
5665 } else
5666 tcp_init_metrics(sk);
5667
5668 /* Prevent spurious tcp_cwnd_restart() on
5669 * first data packet.
5670 */
5671 tp->lsndtime = tcp_time_stamp;
5672
5673 tcp_initialize_rcv_mss(sk);
5674 tcp_fast_path_on(tp);
5675 } else {
5676 return 1;
5677 }
5678 break;
5679
5680 case TCP_FIN_WAIT1:
5681 /* If we enter the TCP_FIN_WAIT1 state and we are a
5682 * Fast Open socket and this is the first acceptable
5683 * ACK we have received, this would have acknowledged
5684 * our SYNACK so stop the SYNACK timer.
5685 */
5686 if (req != NULL) {
5687 /* Return RST if ack_seq is invalid.
5688 * Note that RFC793 only says to generate a
5689 * DUPACK for it but for TCP Fast Open it seems
5690 * better to treat this case like TCP_SYN_RECV
5691 * above.
5692 */
5693 if (!acceptable)
5694 return 1;
5695 /* We no longer need the request sock. */
5696 reqsk_fastopen_remove(sk, req, false);
5697 tcp_rearm_rto(sk);
5698 }
5699 if (tp->snd_una == tp->write_seq) {
5700 struct dst_entry *dst;
5701
5702 tcp_set_state(sk, TCP_FIN_WAIT2);
5703 sk->sk_shutdown |= SEND_SHUTDOWN;
5704
5705 dst = __sk_dst_get(sk);
5706 if (dst)
5707 dst_confirm(dst);
5708
5709 if (!sock_flag(sk, SOCK_DEAD))
5710 /* Wake up lingering close() */
5711 sk->sk_state_change(sk);
5712 else {
5713 int tmo;
5714
5715 if (tp->linger2 < 0 ||
5716 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5717 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5718 tcp_done(sk);
5719 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5720 return 1;
5721 }
5722
5723 tmo = tcp_fin_time(sk);
5724 if (tmo > TCP_TIMEWAIT_LEN) {
5725 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5726 } else if (th->fin || sock_owned_by_user(sk)) {
5727 /* Bad case. We could lose such FIN otherwise.
5728 * It is not a big problem, but it looks confusing
5729 * and not so rare event. We still can lose it now,
5730 * if it spins in bh_lock_sock(), but it is really
5731 * marginal case.
5732 */
5733 inet_csk_reset_keepalive_timer(sk, tmo);
5734 } else {
5735 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5736 goto discard;
5737 }
5738 }
5739 }
5740 break;
5741
5742 case TCP_CLOSING:
5743 if (tp->snd_una == tp->write_seq) {
5744 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5745 goto discard;
5746 }
5747 break;
5748
5749 case TCP_LAST_ACK:
5750 if (tp->snd_una == tp->write_seq) {
5751 tcp_update_metrics(sk);
5752 tcp_done(sk);
5753 goto discard;
5754 }
5755 break;
5756 }
5757 }
5758
5759 /* step 6: check the URG bit */
5760 tcp_urg(sk, skb, th);
5761
5762 /* step 7: process the segment text */
5763 switch (sk->sk_state) {
5764 case TCP_CLOSE_WAIT:
5765 case TCP_CLOSING:
5766 case TCP_LAST_ACK:
5767 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5768 break;
5769 case TCP_FIN_WAIT1:
5770 case TCP_FIN_WAIT2:
5771 /* RFC 793 says to queue data in these states,
5772 * RFC 1122 says we MUST send a reset.
5773 * BSD 4.4 also does reset.
5774 */
5775 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5776 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5777 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5778 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5779 tcp_reset(sk);
5780 return 1;
5781 }
5782 }
5783 /* Fall through */
5784 case TCP_ESTABLISHED:
5785 tcp_data_queue(sk, skb);
5786 queued = 1;
5787 break;
5788 }
5789
5790 /* tcp_data could move socket to TIME-WAIT */
5791 if (sk->sk_state != TCP_CLOSE) {
5792 tcp_data_snd_check(sk);
5793 tcp_ack_snd_check(sk);
5794 }
5795
5796 if (!queued) {
5797 discard:
5798 __kfree_skb(skb);
5799 }
5800 return 0;
5801 }
5802 EXPORT_SYMBOL(tcp_rcv_state_process);
This page took 0.150822 seconds and 6 git commands to generate.