[TCP]: Remove superflucious FLAG_DATA_SACKED
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
108
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120 /* Adapt the MSS value used to make delayed ack decision to the
121 * real world.
122 */
123 static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
125 {
126 struct inet_connection_sock *icsk = inet_csk(sk);
127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 unsigned int len;
129
130 icsk->icsk_ack.last_seg_size = 0;
131
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
134 */
135 len = skb_shinfo(skb)->gso_size ?: skb->len;
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
141 *
142 * "len" is invariant segment length, including TCP header.
143 */
144 len += skb->data - skb_transport_header(skb);
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
150 */
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
156 */
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
159 if (len == lss) {
160 icsk->icsk_ack.rcv_mss = len;
161 return;
162 }
163 }
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175 if (quickacks==0)
176 quickacks=2;
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
226 }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
257
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290 struct tcp_sock *tp = tcp_sk(sk);
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
294
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299 truesize >>= 1;
300 window >>= 1;
301 }
302 return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk,
306 struct sk_buff *skb)
307 {
308 struct tcp_sock *tp = tcp_sk(sk);
309
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
322 incr = __tcp_grow_window(sk, skb);
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326 inet_csk(sk)->icsk_ack.quick |= 1;
327 }
328 }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338 /* Try to select rcvbuf so that 4 mss-sized segments
339 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 */
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349 * established state.
350 */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
355
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
360
361 tp->rcvq_space.space = tp->rcv_wnd;
362
363 maxwin = tcp_full_space(sk);
364
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
367
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
372 }
373
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387 struct tcp_sock *tp = tcp_sk(sk);
388 struct inet_connection_sock *icsk = inet_csk(sk);
389
390 icsk->icsk_ack.quick = 0;
391
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
398 }
399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401 }
402
403
404 /* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
449 * non-timestamp case, we do not smooth things out
450 * else with timestamps disabled convergence takes too
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
459 /* No previous measure. */
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
475 1);
476
477 new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
480 }
481
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483 {
484 struct tcp_sock *tp = tcp_sk(sk);
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489 }
490
491 /*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495 void tcp_rcv_space_adjust(struct sock *sk)
496 {
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
500
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
503
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
508
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511 space = max(tp->rcvq_space.space, space);
512
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
515
516 tp->rcvq_space.space = space;
517
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520 int new_clamp = space;
521
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
525 */
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
537
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
540 }
541 }
542 }
543
544 new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
547 }
548
549 /* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
558 */
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560 {
561 struct tcp_sock *tp = tcp_sk(sk);
562 struct inet_connection_sock *icsk = inet_csk(sk);
563 u32 now;
564
565 inet_csk_schedule_ack(sk);
566
567 tcp_measure_rcv_mss(sk, skb);
568
569 tcp_rcv_rtt_measure(tp);
570
571 now = tcp_time_stamp;
572
573 if (!icsk->icsk_ack.ato) {
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
576 */
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
579 } else {
580 int m = now - icsk->icsk_ack.lrcvtime;
581
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
590 /* Too long gap. Apparently sender failed to
591 * restart window, so that we send ACKs quickly.
592 */
593 tcp_incr_quickack(sk);
594 sk_stream_mem_reclaim(sk);
595 }
596 }
597 icsk->icsk_ack.lrcvtime = now;
598
599 TCP_ECN_check_ce(tp, skb);
600
601 if (skb->len >= 128)
602 tcp_grow_window(sk, skb);
603 }
604
605 static u32 tcp_rto_min(struct sock *sk)
606 {
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
609
610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
613 }
614
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625 {
626 struct tcp_sock *tp = tcp_sk(sk);
627 long m = mrtt; /* RTT */
628
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
632 * This is designed to be as fast as possible
633 * m stands for "measurement".
634 *
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
637 *
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
640 * too slowly, when it should be increased quickly, decrease too quickly
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
644 */
645 if (m == 0)
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
660 */
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 }
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
671 }
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
676 tp->mdev_max = tcp_rto_min(sk);
677 }
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683 tp->rtt_seq = tp->snd_nxt;
684 }
685 }
686
687 /* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
690 static inline void tcp_set_rto(struct sock *sk)
691 {
692 const struct tcp_sock *tp = tcp_sk(sk);
693 /* Old crap is replaced with new one. 8)
694 *
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
701 * ACKs in some circumstances.
702 */
703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
708 * with correct one. It is exactly, which we pretend to do.
709 */
710 }
711
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
715 static inline void tcp_bound_rto(struct sock *sk)
716 {
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719 }
720
721 /* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725 void tcp_update_metrics(struct sock *sk)
726 {
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
729
730 if (sysctl_tcp_nometrics_save)
731 return;
732
733 dst_confirm(dst);
734
735 if (dst && (dst->flags&DST_HOST)) {
736 const struct inet_connection_sock *icsk = inet_csk(sk);
737 int m;
738
739 if (icsk->icsk_backoff || !tp->srtt) {
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
743 */
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
747 }
748
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
760 }
761
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
765
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
770
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 }
777
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788 icsk->icsk_ca_state == TCP_CA_Open) {
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
798 */
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 }
812 }
813 }
814
815 /* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
823 */
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 {
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd) {
829 if (tp->mss_cache > 1460)
830 cwnd = 2;
831 else
832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833 }
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840 struct tcp_sock *tp = tcp_sk(sk);
841 const struct inet_connection_sock *icsk = inet_csk(sk);
842
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
846 tp->undo_marker = 0;
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
855
856 tcp_set_ca_state(sk, TCP_CA_CWR);
857 }
858 }
859
860 /*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866 /* RFC3517 uses different metric in lost marker => reset on change */
867 if (tcp_is_fack(tp))
868 tp->lost_skb_hint = NULL;
869 tp->rx_opt.sack_ok &= ~2;
870 }
871
872 /* Take a notice that peer is sending D-SACKs */
873 static void tcp_dsack_seen(struct tcp_sock *tp)
874 {
875 tp->rx_opt.sack_ok |= 4;
876 }
877
878 /* Initialize metrics on socket. */
879
880 static void tcp_init_metrics(struct sock *sk)
881 {
882 struct tcp_sock *tp = tcp_sk(sk);
883 struct dst_entry *dst = __sk_dst_get(sk);
884
885 if (dst == NULL)
886 goto reset;
887
888 dst_confirm(dst);
889
890 if (dst_metric_locked(dst, RTAX_CWND))
891 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
892 if (dst_metric(dst, RTAX_SSTHRESH)) {
893 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
894 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
895 tp->snd_ssthresh = tp->snd_cwnd_clamp;
896 }
897 if (dst_metric(dst, RTAX_REORDERING) &&
898 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
899 tcp_disable_fack(tp);
900 tp->reordering = dst_metric(dst, RTAX_REORDERING);
901 }
902
903 if (dst_metric(dst, RTAX_RTT) == 0)
904 goto reset;
905
906 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
907 goto reset;
908
909 /* Initial rtt is determined from SYN,SYN-ACK.
910 * The segment is small and rtt may appear much
911 * less than real one. Use per-dst memory
912 * to make it more realistic.
913 *
914 * A bit of theory. RTT is time passed after "normal" sized packet
915 * is sent until it is ACKed. In normal circumstances sending small
916 * packets force peer to delay ACKs and calculation is correct too.
917 * The algorithm is adaptive and, provided we follow specs, it
918 * NEVER underestimate RTT. BUT! If peer tries to make some clever
919 * tricks sort of "quick acks" for time long enough to decrease RTT
920 * to low value, and then abruptly stops to do it and starts to delay
921 * ACKs, wait for troubles.
922 */
923 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
924 tp->srtt = dst_metric(dst, RTAX_RTT);
925 tp->rtt_seq = tp->snd_nxt;
926 }
927 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
928 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
929 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930 }
931 tcp_set_rto(sk);
932 tcp_bound_rto(sk);
933 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
934 goto reset;
935 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
936 tp->snd_cwnd_stamp = tcp_time_stamp;
937 return;
938
939 reset:
940 /* Play conservative. If timestamps are not
941 * supported, TCP will fail to recalculate correct
942 * rtt, if initial rto is too small. FORGET ALL AND RESET!
943 */
944 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
945 tp->srtt = 0;
946 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
947 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
948 }
949 }
950
951 static void tcp_update_reordering(struct sock *sk, const int metric,
952 const int ts)
953 {
954 struct tcp_sock *tp = tcp_sk(sk);
955 if (metric > tp->reordering) {
956 tp->reordering = min(TCP_MAX_REORDERING, metric);
957
958 /* This exciting event is worth to be remembered. 8) */
959 if (ts)
960 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
961 else if (tcp_is_reno(tp))
962 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
963 else if (tcp_is_fack(tp))
964 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
965 else
966 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
967 #if FASTRETRANS_DEBUG > 1
968 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
969 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
970 tp->reordering,
971 tp->fackets_out,
972 tp->sacked_out,
973 tp->undo_marker ? tp->undo_retrans : 0);
974 #endif
975 tcp_disable_fack(tp);
976 }
977 }
978
979 /* This procedure tags the retransmission queue when SACKs arrive.
980 *
981 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
982 * Packets in queue with these bits set are counted in variables
983 * sacked_out, retrans_out and lost_out, correspondingly.
984 *
985 * Valid combinations are:
986 * Tag InFlight Description
987 * 0 1 - orig segment is in flight.
988 * S 0 - nothing flies, orig reached receiver.
989 * L 0 - nothing flies, orig lost by net.
990 * R 2 - both orig and retransmit are in flight.
991 * L|R 1 - orig is lost, retransmit is in flight.
992 * S|R 1 - orig reached receiver, retrans is still in flight.
993 * (L|S|R is logically valid, it could occur when L|R is sacked,
994 * but it is equivalent to plain S and code short-curcuits it to S.
995 * L|S is logically invalid, it would mean -1 packet in flight 8))
996 *
997 * These 6 states form finite state machine, controlled by the following events:
998 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
999 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1000 * 3. Loss detection event of one of three flavors:
1001 * A. Scoreboard estimator decided the packet is lost.
1002 * A'. Reno "three dupacks" marks head of queue lost.
1003 * A''. Its FACK modfication, head until snd.fack is lost.
1004 * B. SACK arrives sacking data transmitted after never retransmitted
1005 * hole was sent out.
1006 * C. SACK arrives sacking SND.NXT at the moment, when the
1007 * segment was retransmitted.
1008 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1009 *
1010 * It is pleasant to note, that state diagram turns out to be commutative,
1011 * so that we are allowed not to be bothered by order of our actions,
1012 * when multiple events arrive simultaneously. (see the function below).
1013 *
1014 * Reordering detection.
1015 * --------------------
1016 * Reordering metric is maximal distance, which a packet can be displaced
1017 * in packet stream. With SACKs we can estimate it:
1018 *
1019 * 1. SACK fills old hole and the corresponding segment was not
1020 * ever retransmitted -> reordering. Alas, we cannot use it
1021 * when segment was retransmitted.
1022 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1023 * for retransmitted and already SACKed segment -> reordering..
1024 * Both of these heuristics are not used in Loss state, when we cannot
1025 * account for retransmits accurately.
1026 *
1027 * SACK block validation.
1028 * ----------------------
1029 *
1030 * SACK block range validation checks that the received SACK block fits to
1031 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1032 * Note that SND.UNA is not included to the range though being valid because
1033 * it means that the receiver is rather inconsistent with itself reporting
1034 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1035 * perfectly valid, however, in light of RFC2018 which explicitly states
1036 * that "SACK block MUST reflect the newest segment. Even if the newest
1037 * segment is going to be discarded ...", not that it looks very clever
1038 * in case of head skb. Due to potentional receiver driven attacks, we
1039 * choose to avoid immediate execution of a walk in write queue due to
1040 * reneging and defer head skb's loss recovery to standard loss recovery
1041 * procedure that will eventually trigger (nothing forbids us doing this).
1042 *
1043 * Implements also blockage to start_seq wrap-around. Problem lies in the
1044 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1045 * there's no guarantee that it will be before snd_nxt (n). The problem
1046 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1047 * wrap (s_w):
1048 *
1049 * <- outs wnd -> <- wrapzone ->
1050 * u e n u_w e_w s n_w
1051 * | | | | | | |
1052 * |<------------+------+----- TCP seqno space --------------+---------->|
1053 * ...-- <2^31 ->| |<--------...
1054 * ...---- >2^31 ------>| |<--------...
1055 *
1056 * Current code wouldn't be vulnerable but it's better still to discard such
1057 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1058 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1059 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1060 * equal to the ideal case (infinite seqno space without wrap caused issues).
1061 *
1062 * With D-SACK the lower bound is extended to cover sequence space below
1063 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1064 * again, D-SACK block must not to go across snd_una (for the same reason as
1065 * for the normal SACK blocks, explained above). But there all simplicity
1066 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1067 * fully below undo_marker they do not affect behavior in anyway and can
1068 * therefore be safely ignored. In rare cases (which are more or less
1069 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1070 * fragmentation and packet reordering past skb's retransmission. To consider
1071 * them correctly, the acceptable range must be extended even more though
1072 * the exact amount is rather hard to quantify. However, tp->max_window can
1073 * be used as an exaggerated estimate.
1074 */
1075 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1076 u32 start_seq, u32 end_seq)
1077 {
1078 /* Too far in future, or reversed (interpretation is ambiguous) */
1079 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1080 return 0;
1081
1082 /* Nasty start_seq wrap-around check (see comments above) */
1083 if (!before(start_seq, tp->snd_nxt))
1084 return 0;
1085
1086 /* In outstanding window? ...This is valid exit for D-SACKs too.
1087 * start_seq == snd_una is non-sensical (see comments above)
1088 */
1089 if (after(start_seq, tp->snd_una))
1090 return 1;
1091
1092 if (!is_dsack || !tp->undo_marker)
1093 return 0;
1094
1095 /* ...Then it's D-SACK, and must reside below snd_una completely */
1096 if (!after(end_seq, tp->snd_una))
1097 return 0;
1098
1099 if (!before(start_seq, tp->undo_marker))
1100 return 1;
1101
1102 /* Too old */
1103 if (!after(end_seq, tp->undo_marker))
1104 return 0;
1105
1106 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1107 * start_seq < undo_marker and end_seq >= undo_marker.
1108 */
1109 return !before(start_seq, end_seq - tp->max_window);
1110 }
1111
1112 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1113 * Event "C". Later note: FACK people cheated me again 8), we have to account
1114 * for reordering! Ugly, but should help.
1115 *
1116 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1117 * less than what is now known to be received by the other end (derived from
1118 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1119 * retransmitted skbs to avoid some costly processing per ACKs.
1120 */
1121 static void tcp_mark_lost_retrans(struct sock *sk)
1122 {
1123 const struct inet_connection_sock *icsk = inet_csk(sk);
1124 struct tcp_sock *tp = tcp_sk(sk);
1125 struct sk_buff *skb;
1126 int cnt = 0;
1127 u32 new_low_seq = tp->snd_nxt;
1128 u32 received_upto = TCP_SKB_CB(tp->highest_sack)->end_seq;
1129
1130 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1131 !after(received_upto, tp->lost_retrans_low) ||
1132 icsk->icsk_ca_state != TCP_CA_Recovery)
1133 return;
1134
1135 tcp_for_write_queue(skb, sk) {
1136 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1137
1138 if (skb == tcp_send_head(sk))
1139 break;
1140 if (cnt == tp->retrans_out)
1141 break;
1142 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1143 continue;
1144
1145 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1146 continue;
1147
1148 if (after(received_upto, ack_seq) &&
1149 (tcp_is_fack(tp) ||
1150 !before(received_upto,
1151 ack_seq + tp->reordering * tp->mss_cache))) {
1152 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1153 tp->retrans_out -= tcp_skb_pcount(skb);
1154
1155 /* clear lost hint */
1156 tp->retransmit_skb_hint = NULL;
1157
1158 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1159 tp->lost_out += tcp_skb_pcount(skb);
1160 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1161 }
1162 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1163 } else {
1164 if (before(ack_seq, new_low_seq))
1165 new_low_seq = ack_seq;
1166 cnt += tcp_skb_pcount(skb);
1167 }
1168 }
1169
1170 if (tp->retrans_out)
1171 tp->lost_retrans_low = new_low_seq;
1172 }
1173
1174 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1175 struct tcp_sack_block_wire *sp, int num_sacks,
1176 u32 prior_snd_una)
1177 {
1178 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1179 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1180 int dup_sack = 0;
1181
1182 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1183 dup_sack = 1;
1184 tcp_dsack_seen(tp);
1185 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1186 } else if (num_sacks > 1) {
1187 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1188 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1189
1190 if (!after(end_seq_0, end_seq_1) &&
1191 !before(start_seq_0, start_seq_1)) {
1192 dup_sack = 1;
1193 tcp_dsack_seen(tp);
1194 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1195 }
1196 }
1197
1198 /* D-SACK for already forgotten data... Do dumb counting. */
1199 if (dup_sack &&
1200 !after(end_seq_0, prior_snd_una) &&
1201 after(end_seq_0, tp->undo_marker))
1202 tp->undo_retrans--;
1203
1204 return dup_sack;
1205 }
1206
1207 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1208 * the incoming SACK may not exactly match but we can find smaller MSS
1209 * aligned portion of it that matches. Therefore we might need to fragment
1210 * which may fail and creates some hassle (caller must handle error case
1211 * returns).
1212 */
1213 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1214 u32 start_seq, u32 end_seq)
1215 {
1216 int in_sack, err;
1217 unsigned int pkt_len;
1218
1219 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1220 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1221
1222 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1223 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1224
1225 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1226
1227 if (!in_sack)
1228 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1229 else
1230 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1231 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1232 if (err < 0)
1233 return err;
1234 }
1235
1236 return in_sack;
1237 }
1238
1239 static int tcp_sacktag_one(struct sk_buff *skb, struct tcp_sock *tp,
1240 int *reord, int dup_sack, int fack_count)
1241 {
1242 u8 sacked = TCP_SKB_CB(skb)->sacked;
1243 int flag = 0;
1244
1245 /* Account D-SACK for retransmitted packet. */
1246 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1247 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1248 tp->undo_retrans--;
1249 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una) &&
1250 (sacked & TCPCB_SACKED_ACKED))
1251 *reord = min(fack_count, *reord);
1252 }
1253
1254 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1255 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1256 return flag;
1257
1258 if (!(sacked & TCPCB_SACKED_ACKED)) {
1259 if (sacked & TCPCB_SACKED_RETRANS) {
1260 /* If the segment is not tagged as lost,
1261 * we do not clear RETRANS, believing
1262 * that retransmission is still in flight.
1263 */
1264 if (sacked & TCPCB_LOST) {
1265 TCP_SKB_CB(skb)->sacked &=
1266 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1267 tp->lost_out -= tcp_skb_pcount(skb);
1268 tp->retrans_out -= tcp_skb_pcount(skb);
1269
1270 /* clear lost hint */
1271 tp->retransmit_skb_hint = NULL;
1272 }
1273 } else {
1274 if (!(sacked & TCPCB_RETRANS)) {
1275 /* New sack for not retransmitted frame,
1276 * which was in hole. It is reordering.
1277 */
1278 if (before(TCP_SKB_CB(skb)->seq,
1279 tcp_highest_sack_seq(tp)))
1280 *reord = min(fack_count, *reord);
1281
1282 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1283 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1284 flag |= FLAG_ONLY_ORIG_SACKED;
1285 }
1286
1287 if (sacked & TCPCB_LOST) {
1288 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1289 tp->lost_out -= tcp_skb_pcount(skb);
1290
1291 /* clear lost hint */
1292 tp->retransmit_skb_hint = NULL;
1293 }
1294 }
1295
1296 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1297 flag |= FLAG_DATA_SACKED;
1298 tp->sacked_out += tcp_skb_pcount(skb);
1299
1300 fack_count += tcp_skb_pcount(skb);
1301
1302 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1303 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1304 before(TCP_SKB_CB(skb)->seq,
1305 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1306 tp->lost_cnt_hint += tcp_skb_pcount(skb);
1307
1308 if (fack_count > tp->fackets_out)
1309 tp->fackets_out = fack_count;
1310
1311 if (after(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1312 tp->highest_sack = skb;
1313
1314 } else {
1315 if (dup_sack && (sacked & TCPCB_RETRANS))
1316 *reord = min(fack_count, *reord);
1317 }
1318
1319 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1320 * frames and clear it. undo_retrans is decreased above, L|R frames
1321 * are accounted above as well.
1322 */
1323 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1324 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1325 tp->retrans_out -= tcp_skb_pcount(skb);
1326 tp->retransmit_skb_hint = NULL;
1327 }
1328
1329 return flag;
1330 }
1331
1332 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1333 struct tcp_sack_block *next_dup,
1334 u32 start_seq, u32 end_seq,
1335 int dup_sack_in, int *fack_count,
1336 int *reord, int *flag)
1337 {
1338 struct tcp_sock *tp = tcp_sk(sk);
1339
1340 tcp_for_write_queue_from(skb, sk) {
1341 int in_sack = 0;
1342 int dup_sack = dup_sack_in;
1343
1344 if (skb == tcp_send_head(sk))
1345 break;
1346
1347 /* queue is in-order => we can short-circuit the walk early */
1348 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1349 break;
1350
1351 if ((next_dup != NULL) &&
1352 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1353 in_sack = tcp_match_skb_to_sack(sk, skb,
1354 next_dup->start_seq,
1355 next_dup->end_seq);
1356 if (in_sack > 0)
1357 dup_sack = 1;
1358 }
1359
1360 if (in_sack <= 0)
1361 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1362 if (unlikely(in_sack < 0))
1363 break;
1364
1365 if (in_sack)
1366 *flag |= tcp_sacktag_one(skb, tp, reord, dup_sack, *fack_count);
1367
1368 *fack_count += tcp_skb_pcount(skb);
1369 }
1370 return skb;
1371 }
1372
1373 /* Avoid all extra work that is being done by sacktag while walking in
1374 * a normal way
1375 */
1376 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1377 u32 skip_to_seq)
1378 {
1379 tcp_for_write_queue_from(skb, sk) {
1380 if (skb == tcp_send_head(sk))
1381 break;
1382
1383 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1384 break;
1385 }
1386 return skb;
1387 }
1388
1389 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1390 struct sock *sk,
1391 struct tcp_sack_block *next_dup,
1392 u32 skip_to_seq,
1393 int *fack_count, int *reord,
1394 int *flag)
1395 {
1396 if (next_dup == NULL)
1397 return skb;
1398
1399 if (before(next_dup->start_seq, skip_to_seq)) {
1400 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1401 tcp_sacktag_walk(skb, sk, NULL,
1402 next_dup->start_seq, next_dup->end_seq,
1403 1, fack_count, reord, flag);
1404 }
1405
1406 return skb;
1407 }
1408
1409 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1410 {
1411 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1412 }
1413
1414 static int
1415 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1416 {
1417 const struct inet_connection_sock *icsk = inet_csk(sk);
1418 struct tcp_sock *tp = tcp_sk(sk);
1419 unsigned char *ptr = (skb_transport_header(ack_skb) +
1420 TCP_SKB_CB(ack_skb)->sacked);
1421 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1422 struct tcp_sack_block sp[4];
1423 struct tcp_sack_block *cache;
1424 struct sk_buff *skb;
1425 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1426 int used_sacks;
1427 int reord = tp->packets_out;
1428 int flag = 0;
1429 int found_dup_sack = 0;
1430 int fack_count;
1431 int i, j;
1432 int first_sack_index;
1433
1434 if (!tp->sacked_out) {
1435 if (WARN_ON(tp->fackets_out))
1436 tp->fackets_out = 0;
1437 tp->highest_sack = tcp_write_queue_head(sk);
1438 }
1439
1440 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1441 num_sacks, prior_snd_una);
1442 if (found_dup_sack)
1443 flag |= FLAG_DSACKING_ACK;
1444
1445 /* Eliminate too old ACKs, but take into
1446 * account more or less fresh ones, they can
1447 * contain valid SACK info.
1448 */
1449 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1450 return 0;
1451
1452 if (!tp->packets_out)
1453 goto out;
1454
1455 used_sacks = 0;
1456 first_sack_index = 0;
1457 for (i = 0; i < num_sacks; i++) {
1458 int dup_sack = !i && found_dup_sack;
1459
1460 sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
1461 sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
1462
1463 if (!tcp_is_sackblock_valid(tp, dup_sack,
1464 sp[used_sacks].start_seq,
1465 sp[used_sacks].end_seq)) {
1466 if (dup_sack) {
1467 if (!tp->undo_marker)
1468 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1469 else
1470 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1471 } else {
1472 /* Don't count olds caused by ACK reordering */
1473 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1474 !after(sp[used_sacks].end_seq, tp->snd_una))
1475 continue;
1476 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1477 }
1478 if (i == 0)
1479 first_sack_index = -1;
1480 continue;
1481 }
1482
1483 /* Ignore very old stuff early */
1484 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1485 continue;
1486
1487 used_sacks++;
1488 }
1489
1490 /* order SACK blocks to allow in order walk of the retrans queue */
1491 for (i = used_sacks - 1; i > 0; i--) {
1492 for (j = 0; j < i; j++){
1493 if (after(sp[j].start_seq, sp[j+1].start_seq)) {
1494 struct tcp_sack_block tmp;
1495
1496 tmp = sp[j];
1497 sp[j] = sp[j+1];
1498 sp[j+1] = tmp;
1499
1500 /* Track where the first SACK block goes to */
1501 if (j == first_sack_index)
1502 first_sack_index = j+1;
1503 }
1504 }
1505 }
1506
1507 skb = tcp_write_queue_head(sk);
1508 fack_count = 0;
1509 i = 0;
1510
1511 if (!tp->sacked_out) {
1512 /* It's already past, so skip checking against it */
1513 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1514 } else {
1515 cache = tp->recv_sack_cache;
1516 /* Skip empty blocks in at head of the cache */
1517 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1518 !cache->end_seq)
1519 cache++;
1520 }
1521
1522 while (i < used_sacks) {
1523 u32 start_seq = sp[i].start_seq;
1524 u32 end_seq = sp[i].end_seq;
1525 int dup_sack = (found_dup_sack && (i == first_sack_index));
1526 struct tcp_sack_block *next_dup = NULL;
1527
1528 if (found_dup_sack && ((i + 1) == first_sack_index))
1529 next_dup = &sp[i + 1];
1530
1531 /* Event "B" in the comment above. */
1532 if (after(end_seq, tp->high_seq))
1533 flag |= FLAG_DATA_LOST;
1534
1535 /* Skip too early cached blocks */
1536 while (tcp_sack_cache_ok(tp, cache) &&
1537 !before(start_seq, cache->end_seq))
1538 cache++;
1539
1540 /* Can skip some work by looking recv_sack_cache? */
1541 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1542 after(end_seq, cache->start_seq)) {
1543
1544 /* Head todo? */
1545 if (before(start_seq, cache->start_seq)) {
1546 skb = tcp_sacktag_skip(skb, sk, start_seq);
1547 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq,
1548 cache->start_seq, dup_sack,
1549 &fack_count, &reord, &flag);
1550 }
1551
1552 /* Rest of the block already fully processed? */
1553 if (!after(end_seq, cache->end_seq))
1554 goto advance_sp;
1555
1556 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, cache->end_seq,
1557 &fack_count, &reord, &flag);
1558
1559 /* ...tail remains todo... */
1560 if (TCP_SKB_CB(tp->highest_sack)->end_seq == cache->end_seq) {
1561 /* ...but better entrypoint exists! */
1562 skb = tcp_write_queue_next(sk, tp->highest_sack);
1563 fack_count = tp->fackets_out;
1564 cache++;
1565 goto walk;
1566 }
1567
1568 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1569 /* Check overlap against next cached too (past this one already) */
1570 cache++;
1571 continue;
1572 }
1573
1574 if (tp->sacked_out && !before(start_seq, tcp_highest_sack_seq(tp))) {
1575 skb = tcp_write_queue_next(sk, tp->highest_sack);
1576 fack_count = tp->fackets_out;
1577 }
1578 skb = tcp_sacktag_skip(skb, sk, start_seq);
1579
1580 walk:
1581 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1582 dup_sack, &fack_count, &reord, &flag);
1583
1584 advance_sp:
1585 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1586 * due to in-order walk
1587 */
1588 if (after(end_seq, tp->frto_highmark))
1589 flag &= ~FLAG_ONLY_ORIG_SACKED;
1590
1591 i++;
1592 }
1593
1594 /* Clear the head of the cache sack blocks so we can skip it next time */
1595 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1596 tp->recv_sack_cache[i].start_seq = 0;
1597 tp->recv_sack_cache[i].end_seq = 0;
1598 }
1599 for (j = 0; j < used_sacks; j++)
1600 tp->recv_sack_cache[i++] = sp[j];
1601
1602 tcp_mark_lost_retrans(sk);
1603
1604 tcp_verify_left_out(tp);
1605
1606 if ((reord < tp->fackets_out) &&
1607 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1608 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1609 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1610
1611 out:
1612
1613 #if FASTRETRANS_DEBUG > 0
1614 BUG_TRAP((int)tp->sacked_out >= 0);
1615 BUG_TRAP((int)tp->lost_out >= 0);
1616 BUG_TRAP((int)tp->retrans_out >= 0);
1617 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1618 #endif
1619 return flag;
1620 }
1621
1622 /* If we receive more dupacks than we expected counting segments
1623 * in assumption of absent reordering, interpret this as reordering.
1624 * The only another reason could be bug in receiver TCP.
1625 */
1626 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1627 {
1628 struct tcp_sock *tp = tcp_sk(sk);
1629 u32 holes;
1630
1631 holes = max(tp->lost_out, 1U);
1632 holes = min(holes, tp->packets_out);
1633
1634 if ((tp->sacked_out + holes) > tp->packets_out) {
1635 tp->sacked_out = tp->packets_out - holes;
1636 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1637 }
1638 }
1639
1640 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1641
1642 static void tcp_add_reno_sack(struct sock *sk)
1643 {
1644 struct tcp_sock *tp = tcp_sk(sk);
1645 tp->sacked_out++;
1646 tcp_check_reno_reordering(sk, 0);
1647 tcp_verify_left_out(tp);
1648 }
1649
1650 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1651
1652 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1653 {
1654 struct tcp_sock *tp = tcp_sk(sk);
1655
1656 if (acked > 0) {
1657 /* One ACK acked hole. The rest eat duplicate ACKs. */
1658 if (acked-1 >= tp->sacked_out)
1659 tp->sacked_out = 0;
1660 else
1661 tp->sacked_out -= acked-1;
1662 }
1663 tcp_check_reno_reordering(sk, acked);
1664 tcp_verify_left_out(tp);
1665 }
1666
1667 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1668 {
1669 tp->sacked_out = 0;
1670 }
1671
1672 /* F-RTO can only be used if TCP has never retransmitted anything other than
1673 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1674 */
1675 int tcp_use_frto(struct sock *sk)
1676 {
1677 const struct tcp_sock *tp = tcp_sk(sk);
1678 struct sk_buff *skb;
1679
1680 if (!sysctl_tcp_frto)
1681 return 0;
1682
1683 if (IsSackFrto())
1684 return 1;
1685
1686 /* Avoid expensive walking of rexmit queue if possible */
1687 if (tp->retrans_out > 1)
1688 return 0;
1689
1690 skb = tcp_write_queue_head(sk);
1691 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1692 tcp_for_write_queue_from(skb, sk) {
1693 if (skb == tcp_send_head(sk))
1694 break;
1695 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1696 return 0;
1697 /* Short-circuit when first non-SACKed skb has been checked */
1698 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1699 break;
1700 }
1701 return 1;
1702 }
1703
1704 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1705 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1706 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1707 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1708 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1709 * bits are handled if the Loss state is really to be entered (in
1710 * tcp_enter_frto_loss).
1711 *
1712 * Do like tcp_enter_loss() would; when RTO expires the second time it
1713 * does:
1714 * "Reduce ssthresh if it has not yet been made inside this window."
1715 */
1716 void tcp_enter_frto(struct sock *sk)
1717 {
1718 const struct inet_connection_sock *icsk = inet_csk(sk);
1719 struct tcp_sock *tp = tcp_sk(sk);
1720 struct sk_buff *skb;
1721
1722 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1723 tp->snd_una == tp->high_seq ||
1724 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1725 !icsk->icsk_retransmits)) {
1726 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1727 /* Our state is too optimistic in ssthresh() call because cwnd
1728 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1729 * recovery has not yet completed. Pattern would be this: RTO,
1730 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1731 * up here twice).
1732 * RFC4138 should be more specific on what to do, even though
1733 * RTO is quite unlikely to occur after the first Cumulative ACK
1734 * due to back-off and complexity of triggering events ...
1735 */
1736 if (tp->frto_counter) {
1737 u32 stored_cwnd;
1738 stored_cwnd = tp->snd_cwnd;
1739 tp->snd_cwnd = 2;
1740 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1741 tp->snd_cwnd = stored_cwnd;
1742 } else {
1743 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1744 }
1745 /* ... in theory, cong.control module could do "any tricks" in
1746 * ssthresh(), which means that ca_state, lost bits and lost_out
1747 * counter would have to be faked before the call occurs. We
1748 * consider that too expensive, unlikely and hacky, so modules
1749 * using these in ssthresh() must deal these incompatibility
1750 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1751 */
1752 tcp_ca_event(sk, CA_EVENT_FRTO);
1753 }
1754
1755 tp->undo_marker = tp->snd_una;
1756 tp->undo_retrans = 0;
1757
1758 skb = tcp_write_queue_head(sk);
1759 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1760 tp->undo_marker = 0;
1761 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1762 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1763 tp->retrans_out -= tcp_skb_pcount(skb);
1764 }
1765 tcp_verify_left_out(tp);
1766
1767 /* Too bad if TCP was application limited */
1768 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1769
1770 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1771 * The last condition is necessary at least in tp->frto_counter case.
1772 */
1773 if (IsSackFrto() && (tp->frto_counter ||
1774 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1775 after(tp->high_seq, tp->snd_una)) {
1776 tp->frto_highmark = tp->high_seq;
1777 } else {
1778 tp->frto_highmark = tp->snd_nxt;
1779 }
1780 tcp_set_ca_state(sk, TCP_CA_Disorder);
1781 tp->high_seq = tp->snd_nxt;
1782 tp->frto_counter = 1;
1783 }
1784
1785 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1786 * which indicates that we should follow the traditional RTO recovery,
1787 * i.e. mark everything lost and do go-back-N retransmission.
1788 */
1789 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1790 {
1791 struct tcp_sock *tp = tcp_sk(sk);
1792 struct sk_buff *skb;
1793
1794 tp->lost_out = 0;
1795 tp->retrans_out = 0;
1796 if (tcp_is_reno(tp))
1797 tcp_reset_reno_sack(tp);
1798
1799 tcp_for_write_queue(skb, sk) {
1800 if (skb == tcp_send_head(sk))
1801 break;
1802
1803 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1804 /*
1805 * Count the retransmission made on RTO correctly (only when
1806 * waiting for the first ACK and did not get it)...
1807 */
1808 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1809 /* For some reason this R-bit might get cleared? */
1810 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1811 tp->retrans_out += tcp_skb_pcount(skb);
1812 /* ...enter this if branch just for the first segment */
1813 flag |= FLAG_DATA_ACKED;
1814 } else {
1815 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1816 tp->undo_marker = 0;
1817 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1818 }
1819
1820 /* Don't lost mark skbs that were fwd transmitted after RTO */
1821 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1822 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1823 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1824 tp->lost_out += tcp_skb_pcount(skb);
1825 }
1826 }
1827 tcp_verify_left_out(tp);
1828
1829 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1830 tp->snd_cwnd_cnt = 0;
1831 tp->snd_cwnd_stamp = tcp_time_stamp;
1832 tp->frto_counter = 0;
1833 tp->bytes_acked = 0;
1834
1835 tp->reordering = min_t(unsigned int, tp->reordering,
1836 sysctl_tcp_reordering);
1837 tcp_set_ca_state(sk, TCP_CA_Loss);
1838 tp->high_seq = tp->frto_highmark;
1839 TCP_ECN_queue_cwr(tp);
1840
1841 tcp_clear_retrans_hints_partial(tp);
1842 }
1843
1844 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1845 {
1846 tp->retrans_out = 0;
1847 tp->lost_out = 0;
1848
1849 tp->undo_marker = 0;
1850 tp->undo_retrans = 0;
1851 }
1852
1853 void tcp_clear_retrans(struct tcp_sock *tp)
1854 {
1855 tcp_clear_retrans_partial(tp);
1856
1857 tp->fackets_out = 0;
1858 tp->sacked_out = 0;
1859 }
1860
1861 /* Enter Loss state. If "how" is not zero, forget all SACK information
1862 * and reset tags completely, otherwise preserve SACKs. If receiver
1863 * dropped its ofo queue, we will know this due to reneging detection.
1864 */
1865 void tcp_enter_loss(struct sock *sk, int how)
1866 {
1867 const struct inet_connection_sock *icsk = inet_csk(sk);
1868 struct tcp_sock *tp = tcp_sk(sk);
1869 struct sk_buff *skb;
1870
1871 /* Reduce ssthresh if it has not yet been made inside this window. */
1872 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1873 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1874 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1875 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1876 tcp_ca_event(sk, CA_EVENT_LOSS);
1877 }
1878 tp->snd_cwnd = 1;
1879 tp->snd_cwnd_cnt = 0;
1880 tp->snd_cwnd_stamp = tcp_time_stamp;
1881
1882 tp->bytes_acked = 0;
1883 tcp_clear_retrans_partial(tp);
1884
1885 if (tcp_is_reno(tp))
1886 tcp_reset_reno_sack(tp);
1887
1888 if (!how) {
1889 /* Push undo marker, if it was plain RTO and nothing
1890 * was retransmitted. */
1891 tp->undo_marker = tp->snd_una;
1892 tcp_clear_retrans_hints_partial(tp);
1893 } else {
1894 tp->sacked_out = 0;
1895 tp->fackets_out = 0;
1896 tcp_clear_all_retrans_hints(tp);
1897 }
1898
1899 tcp_for_write_queue(skb, sk) {
1900 if (skb == tcp_send_head(sk))
1901 break;
1902
1903 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1904 tp->undo_marker = 0;
1905 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1906 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1907 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1908 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1909 tp->lost_out += tcp_skb_pcount(skb);
1910 }
1911 }
1912 tcp_verify_left_out(tp);
1913
1914 tp->reordering = min_t(unsigned int, tp->reordering,
1915 sysctl_tcp_reordering);
1916 tcp_set_ca_state(sk, TCP_CA_Loss);
1917 tp->high_seq = tp->snd_nxt;
1918 TCP_ECN_queue_cwr(tp);
1919 /* Abort F-RTO algorithm if one is in progress */
1920 tp->frto_counter = 0;
1921 }
1922
1923 static int tcp_check_sack_reneging(struct sock *sk)
1924 {
1925 struct sk_buff *skb;
1926
1927 /* If ACK arrived pointing to a remembered SACK,
1928 * it means that our remembered SACKs do not reflect
1929 * real state of receiver i.e.
1930 * receiver _host_ is heavily congested (or buggy).
1931 * Do processing similar to RTO timeout.
1932 */
1933 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1934 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1935 struct inet_connection_sock *icsk = inet_csk(sk);
1936 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1937
1938 tcp_enter_loss(sk, 1);
1939 icsk->icsk_retransmits++;
1940 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1941 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1942 icsk->icsk_rto, TCP_RTO_MAX);
1943 return 1;
1944 }
1945 return 0;
1946 }
1947
1948 static inline int tcp_fackets_out(struct tcp_sock *tp)
1949 {
1950 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1951 }
1952
1953 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1954 * counter when SACK is enabled (without SACK, sacked_out is used for
1955 * that purpose).
1956 *
1957 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1958 * segments up to the highest received SACK block so far and holes in
1959 * between them.
1960 *
1961 * With reordering, holes may still be in flight, so RFC3517 recovery
1962 * uses pure sacked_out (total number of SACKed segments) even though
1963 * it violates the RFC that uses duplicate ACKs, often these are equal
1964 * but when e.g. out-of-window ACKs or packet duplication occurs,
1965 * they differ. Since neither occurs due to loss, TCP should really
1966 * ignore them.
1967 */
1968 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1969 {
1970 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1971 }
1972
1973 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1974 {
1975 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1976 }
1977
1978 static inline int tcp_head_timedout(struct sock *sk)
1979 {
1980 struct tcp_sock *tp = tcp_sk(sk);
1981
1982 return tp->packets_out &&
1983 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1984 }
1985
1986 /* Linux NewReno/SACK/FACK/ECN state machine.
1987 * --------------------------------------
1988 *
1989 * "Open" Normal state, no dubious events, fast path.
1990 * "Disorder" In all the respects it is "Open",
1991 * but requires a bit more attention. It is entered when
1992 * we see some SACKs or dupacks. It is split of "Open"
1993 * mainly to move some processing from fast path to slow one.
1994 * "CWR" CWND was reduced due to some Congestion Notification event.
1995 * It can be ECN, ICMP source quench, local device congestion.
1996 * "Recovery" CWND was reduced, we are fast-retransmitting.
1997 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1998 *
1999 * tcp_fastretrans_alert() is entered:
2000 * - each incoming ACK, if state is not "Open"
2001 * - when arrived ACK is unusual, namely:
2002 * * SACK
2003 * * Duplicate ACK.
2004 * * ECN ECE.
2005 *
2006 * Counting packets in flight is pretty simple.
2007 *
2008 * in_flight = packets_out - left_out + retrans_out
2009 *
2010 * packets_out is SND.NXT-SND.UNA counted in packets.
2011 *
2012 * retrans_out is number of retransmitted segments.
2013 *
2014 * left_out is number of segments left network, but not ACKed yet.
2015 *
2016 * left_out = sacked_out + lost_out
2017 *
2018 * sacked_out: Packets, which arrived to receiver out of order
2019 * and hence not ACKed. With SACKs this number is simply
2020 * amount of SACKed data. Even without SACKs
2021 * it is easy to give pretty reliable estimate of this number,
2022 * counting duplicate ACKs.
2023 *
2024 * lost_out: Packets lost by network. TCP has no explicit
2025 * "loss notification" feedback from network (for now).
2026 * It means that this number can be only _guessed_.
2027 * Actually, it is the heuristics to predict lossage that
2028 * distinguishes different algorithms.
2029 *
2030 * F.e. after RTO, when all the queue is considered as lost,
2031 * lost_out = packets_out and in_flight = retrans_out.
2032 *
2033 * Essentially, we have now two algorithms counting
2034 * lost packets.
2035 *
2036 * FACK: It is the simplest heuristics. As soon as we decided
2037 * that something is lost, we decide that _all_ not SACKed
2038 * packets until the most forward SACK are lost. I.e.
2039 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2040 * It is absolutely correct estimate, if network does not reorder
2041 * packets. And it loses any connection to reality when reordering
2042 * takes place. We use FACK by default until reordering
2043 * is suspected on the path to this destination.
2044 *
2045 * NewReno: when Recovery is entered, we assume that one segment
2046 * is lost (classic Reno). While we are in Recovery and
2047 * a partial ACK arrives, we assume that one more packet
2048 * is lost (NewReno). This heuristics are the same in NewReno
2049 * and SACK.
2050 *
2051 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2052 * deflation etc. CWND is real congestion window, never inflated, changes
2053 * only according to classic VJ rules.
2054 *
2055 * Really tricky (and requiring careful tuning) part of algorithm
2056 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2057 * The first determines the moment _when_ we should reduce CWND and,
2058 * hence, slow down forward transmission. In fact, it determines the moment
2059 * when we decide that hole is caused by loss, rather than by a reorder.
2060 *
2061 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2062 * holes, caused by lost packets.
2063 *
2064 * And the most logically complicated part of algorithm is undo
2065 * heuristics. We detect false retransmits due to both too early
2066 * fast retransmit (reordering) and underestimated RTO, analyzing
2067 * timestamps and D-SACKs. When we detect that some segments were
2068 * retransmitted by mistake and CWND reduction was wrong, we undo
2069 * window reduction and abort recovery phase. This logic is hidden
2070 * inside several functions named tcp_try_undo_<something>.
2071 */
2072
2073 /* This function decides, when we should leave Disordered state
2074 * and enter Recovery phase, reducing congestion window.
2075 *
2076 * Main question: may we further continue forward transmission
2077 * with the same cwnd?
2078 */
2079 static int tcp_time_to_recover(struct sock *sk)
2080 {
2081 struct tcp_sock *tp = tcp_sk(sk);
2082 __u32 packets_out;
2083
2084 /* Do not perform any recovery during F-RTO algorithm */
2085 if (tp->frto_counter)
2086 return 0;
2087
2088 /* Trick#1: The loss is proven. */
2089 if (tp->lost_out)
2090 return 1;
2091
2092 /* Not-A-Trick#2 : Classic rule... */
2093 if (tcp_dupack_heurestics(tp) > tp->reordering)
2094 return 1;
2095
2096 /* Trick#3 : when we use RFC2988 timer restart, fast
2097 * retransmit can be triggered by timeout of queue head.
2098 */
2099 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2100 return 1;
2101
2102 /* Trick#4: It is still not OK... But will it be useful to delay
2103 * recovery more?
2104 */
2105 packets_out = tp->packets_out;
2106 if (packets_out <= tp->reordering &&
2107 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2108 !tcp_may_send_now(sk)) {
2109 /* We have nothing to send. This connection is limited
2110 * either by receiver window or by application.
2111 */
2112 return 1;
2113 }
2114
2115 return 0;
2116 }
2117
2118 /* RFC: This is from the original, I doubt that this is necessary at all:
2119 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2120 * retransmitted past LOST markings in the first place? I'm not fully sure
2121 * about undo and end of connection cases, which can cause R without L?
2122 */
2123 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2124 struct sk_buff *skb)
2125 {
2126 if ((tp->retransmit_skb_hint != NULL) &&
2127 before(TCP_SKB_CB(skb)->seq,
2128 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2129 tp->retransmit_skb_hint = NULL;
2130 }
2131
2132 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2133 * is against sacked "cnt", otherwise it's against facked "cnt"
2134 */
2135 static void tcp_mark_head_lost(struct sock *sk, int packets, int fast_rexmit)
2136 {
2137 struct tcp_sock *tp = tcp_sk(sk);
2138 struct sk_buff *skb;
2139 int cnt;
2140
2141 BUG_TRAP(packets <= tp->packets_out);
2142 if (tp->lost_skb_hint) {
2143 skb = tp->lost_skb_hint;
2144 cnt = tp->lost_cnt_hint;
2145 } else {
2146 skb = tcp_write_queue_head(sk);
2147 cnt = 0;
2148 }
2149
2150 tcp_for_write_queue_from(skb, sk) {
2151 if (skb == tcp_send_head(sk))
2152 break;
2153 /* TODO: do this better */
2154 /* this is not the most efficient way to do this... */
2155 tp->lost_skb_hint = skb;
2156 tp->lost_cnt_hint = cnt;
2157
2158 if (tcp_is_fack(tp) ||
2159 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2160 cnt += tcp_skb_pcount(skb);
2161
2162 if (((!fast_rexmit || (tp->lost_out > 0)) && (cnt > packets)) ||
2163 after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2164 break;
2165 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2166 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2167 tp->lost_out += tcp_skb_pcount(skb);
2168 tcp_verify_retransmit_hint(tp, skb);
2169 }
2170 }
2171 tcp_verify_left_out(tp);
2172 }
2173
2174 /* Account newly detected lost packet(s) */
2175
2176 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2177 {
2178 struct tcp_sock *tp = tcp_sk(sk);
2179
2180 if (tcp_is_reno(tp)) {
2181 tcp_mark_head_lost(sk, 1, fast_rexmit);
2182 } else if (tcp_is_fack(tp)) {
2183 int lost = tp->fackets_out - tp->reordering;
2184 if (lost <= 0)
2185 lost = 1;
2186 tcp_mark_head_lost(sk, lost, fast_rexmit);
2187 } else {
2188 int sacked_upto = tp->sacked_out - tp->reordering;
2189 if (sacked_upto < 0)
2190 sacked_upto = 0;
2191 tcp_mark_head_lost(sk, sacked_upto, fast_rexmit);
2192 }
2193
2194 /* New heuristics: it is possible only after we switched
2195 * to restart timer each time when something is ACKed.
2196 * Hence, we can detect timed out packets during fast
2197 * retransmit without falling to slow start.
2198 */
2199 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2200 struct sk_buff *skb;
2201
2202 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2203 : tcp_write_queue_head(sk);
2204
2205 tcp_for_write_queue_from(skb, sk) {
2206 if (skb == tcp_send_head(sk))
2207 break;
2208 if (!tcp_skb_timedout(sk, skb))
2209 break;
2210
2211 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2212 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2213 tp->lost_out += tcp_skb_pcount(skb);
2214 tcp_verify_retransmit_hint(tp, skb);
2215 }
2216 }
2217
2218 tp->scoreboard_skb_hint = skb;
2219
2220 tcp_verify_left_out(tp);
2221 }
2222 }
2223
2224 /* CWND moderation, preventing bursts due to too big ACKs
2225 * in dubious situations.
2226 */
2227 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2228 {
2229 tp->snd_cwnd = min(tp->snd_cwnd,
2230 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2231 tp->snd_cwnd_stamp = tcp_time_stamp;
2232 }
2233
2234 /* Lower bound on congestion window is slow start threshold
2235 * unless congestion avoidance choice decides to overide it.
2236 */
2237 static inline u32 tcp_cwnd_min(const struct sock *sk)
2238 {
2239 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2240
2241 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2242 }
2243
2244 /* Decrease cwnd each second ack. */
2245 static void tcp_cwnd_down(struct sock *sk, int flag)
2246 {
2247 struct tcp_sock *tp = tcp_sk(sk);
2248 int decr = tp->snd_cwnd_cnt + 1;
2249
2250 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2251 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2252 tp->snd_cwnd_cnt = decr&1;
2253 decr >>= 1;
2254
2255 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2256 tp->snd_cwnd -= decr;
2257
2258 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2259 tp->snd_cwnd_stamp = tcp_time_stamp;
2260 }
2261 }
2262
2263 /* Nothing was retransmitted or returned timestamp is less
2264 * than timestamp of the first retransmission.
2265 */
2266 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2267 {
2268 return !tp->retrans_stamp ||
2269 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2270 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2271 }
2272
2273 /* Undo procedures. */
2274
2275 #if FASTRETRANS_DEBUG > 1
2276 static void DBGUNDO(struct sock *sk, const char *msg)
2277 {
2278 struct tcp_sock *tp = tcp_sk(sk);
2279 struct inet_sock *inet = inet_sk(sk);
2280
2281 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2282 msg,
2283 NIPQUAD(inet->daddr), ntohs(inet->dport),
2284 tp->snd_cwnd, tcp_left_out(tp),
2285 tp->snd_ssthresh, tp->prior_ssthresh,
2286 tp->packets_out);
2287 }
2288 #else
2289 #define DBGUNDO(x...) do { } while (0)
2290 #endif
2291
2292 static void tcp_undo_cwr(struct sock *sk, const int undo)
2293 {
2294 struct tcp_sock *tp = tcp_sk(sk);
2295
2296 if (tp->prior_ssthresh) {
2297 const struct inet_connection_sock *icsk = inet_csk(sk);
2298
2299 if (icsk->icsk_ca_ops->undo_cwnd)
2300 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2301 else
2302 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2303
2304 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2305 tp->snd_ssthresh = tp->prior_ssthresh;
2306 TCP_ECN_withdraw_cwr(tp);
2307 }
2308 } else {
2309 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2310 }
2311 tcp_moderate_cwnd(tp);
2312 tp->snd_cwnd_stamp = tcp_time_stamp;
2313
2314 /* There is something screwy going on with the retrans hints after
2315 an undo */
2316 tcp_clear_all_retrans_hints(tp);
2317 }
2318
2319 static inline int tcp_may_undo(struct tcp_sock *tp)
2320 {
2321 return tp->undo_marker &&
2322 (!tp->undo_retrans || tcp_packet_delayed(tp));
2323 }
2324
2325 /* People celebrate: "We love our President!" */
2326 static int tcp_try_undo_recovery(struct sock *sk)
2327 {
2328 struct tcp_sock *tp = tcp_sk(sk);
2329
2330 if (tcp_may_undo(tp)) {
2331 /* Happy end! We did not retransmit anything
2332 * or our original transmission succeeded.
2333 */
2334 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2335 tcp_undo_cwr(sk, 1);
2336 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2337 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2338 else
2339 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2340 tp->undo_marker = 0;
2341 }
2342 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2343 /* Hold old state until something *above* high_seq
2344 * is ACKed. For Reno it is MUST to prevent false
2345 * fast retransmits (RFC2582). SACK TCP is safe. */
2346 tcp_moderate_cwnd(tp);
2347 return 1;
2348 }
2349 tcp_set_ca_state(sk, TCP_CA_Open);
2350 return 0;
2351 }
2352
2353 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2354 static void tcp_try_undo_dsack(struct sock *sk)
2355 {
2356 struct tcp_sock *tp = tcp_sk(sk);
2357
2358 if (tp->undo_marker && !tp->undo_retrans) {
2359 DBGUNDO(sk, "D-SACK");
2360 tcp_undo_cwr(sk, 1);
2361 tp->undo_marker = 0;
2362 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2363 }
2364 }
2365
2366 /* Undo during fast recovery after partial ACK. */
2367
2368 static int tcp_try_undo_partial(struct sock *sk, int acked)
2369 {
2370 struct tcp_sock *tp = tcp_sk(sk);
2371 /* Partial ACK arrived. Force Hoe's retransmit. */
2372 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2373
2374 if (tcp_may_undo(tp)) {
2375 /* Plain luck! Hole if filled with delayed
2376 * packet, rather than with a retransmit.
2377 */
2378 if (tp->retrans_out == 0)
2379 tp->retrans_stamp = 0;
2380
2381 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2382
2383 DBGUNDO(sk, "Hoe");
2384 tcp_undo_cwr(sk, 0);
2385 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2386
2387 /* So... Do not make Hoe's retransmit yet.
2388 * If the first packet was delayed, the rest
2389 * ones are most probably delayed as well.
2390 */
2391 failed = 0;
2392 }
2393 return failed;
2394 }
2395
2396 /* Undo during loss recovery after partial ACK. */
2397 static int tcp_try_undo_loss(struct sock *sk)
2398 {
2399 struct tcp_sock *tp = tcp_sk(sk);
2400
2401 if (tcp_may_undo(tp)) {
2402 struct sk_buff *skb;
2403 tcp_for_write_queue(skb, sk) {
2404 if (skb == tcp_send_head(sk))
2405 break;
2406 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2407 }
2408
2409 tcp_clear_all_retrans_hints(tp);
2410
2411 DBGUNDO(sk, "partial loss");
2412 tp->lost_out = 0;
2413 tcp_undo_cwr(sk, 1);
2414 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2415 inet_csk(sk)->icsk_retransmits = 0;
2416 tp->undo_marker = 0;
2417 if (tcp_is_sack(tp))
2418 tcp_set_ca_state(sk, TCP_CA_Open);
2419 return 1;
2420 }
2421 return 0;
2422 }
2423
2424 static inline void tcp_complete_cwr(struct sock *sk)
2425 {
2426 struct tcp_sock *tp = tcp_sk(sk);
2427 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2428 tp->snd_cwnd_stamp = tcp_time_stamp;
2429 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2430 }
2431
2432 static void tcp_try_to_open(struct sock *sk, int flag)
2433 {
2434 struct tcp_sock *tp = tcp_sk(sk);
2435
2436 tcp_verify_left_out(tp);
2437
2438 if (tp->retrans_out == 0)
2439 tp->retrans_stamp = 0;
2440
2441 if (flag&FLAG_ECE)
2442 tcp_enter_cwr(sk, 1);
2443
2444 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2445 int state = TCP_CA_Open;
2446
2447 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2448 state = TCP_CA_Disorder;
2449
2450 if (inet_csk(sk)->icsk_ca_state != state) {
2451 tcp_set_ca_state(sk, state);
2452 tp->high_seq = tp->snd_nxt;
2453 }
2454 tcp_moderate_cwnd(tp);
2455 } else {
2456 tcp_cwnd_down(sk, flag);
2457 }
2458 }
2459
2460 static void tcp_mtup_probe_failed(struct sock *sk)
2461 {
2462 struct inet_connection_sock *icsk = inet_csk(sk);
2463
2464 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2465 icsk->icsk_mtup.probe_size = 0;
2466 }
2467
2468 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2469 {
2470 struct tcp_sock *tp = tcp_sk(sk);
2471 struct inet_connection_sock *icsk = inet_csk(sk);
2472
2473 /* FIXME: breaks with very large cwnd */
2474 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2475 tp->snd_cwnd = tp->snd_cwnd *
2476 tcp_mss_to_mtu(sk, tp->mss_cache) /
2477 icsk->icsk_mtup.probe_size;
2478 tp->snd_cwnd_cnt = 0;
2479 tp->snd_cwnd_stamp = tcp_time_stamp;
2480 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2481
2482 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2483 icsk->icsk_mtup.probe_size = 0;
2484 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2485 }
2486
2487
2488 /* Process an event, which can update packets-in-flight not trivially.
2489 * Main goal of this function is to calculate new estimate for left_out,
2490 * taking into account both packets sitting in receiver's buffer and
2491 * packets lost by network.
2492 *
2493 * Besides that it does CWND reduction, when packet loss is detected
2494 * and changes state of machine.
2495 *
2496 * It does _not_ decide what to send, it is made in function
2497 * tcp_xmit_retransmit_queue().
2498 */
2499 static void
2500 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2501 {
2502 struct inet_connection_sock *icsk = inet_csk(sk);
2503 struct tcp_sock *tp = tcp_sk(sk);
2504 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2505 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2506 (tcp_fackets_out(tp) > tp->reordering));
2507 int fast_rexmit = 0;
2508
2509 /* Some technical things:
2510 * 1. Reno does not count dupacks (sacked_out) automatically. */
2511 if (!tp->packets_out)
2512 tp->sacked_out = 0;
2513
2514 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2515 tp->fackets_out = 0;
2516
2517 /* Now state machine starts.
2518 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2519 if (flag&FLAG_ECE)
2520 tp->prior_ssthresh = 0;
2521
2522 /* B. In all the states check for reneging SACKs. */
2523 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2524 return;
2525
2526 /* C. Process data loss notification, provided it is valid. */
2527 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2528 before(tp->snd_una, tp->high_seq) &&
2529 icsk->icsk_ca_state != TCP_CA_Open &&
2530 tp->fackets_out > tp->reordering) {
2531 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, 0);
2532 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2533 }
2534
2535 /* D. Check consistency of the current state. */
2536 tcp_verify_left_out(tp);
2537
2538 /* E. Check state exit conditions. State can be terminated
2539 * when high_seq is ACKed. */
2540 if (icsk->icsk_ca_state == TCP_CA_Open) {
2541 BUG_TRAP(tp->retrans_out == 0);
2542 tp->retrans_stamp = 0;
2543 } else if (!before(tp->snd_una, tp->high_seq)) {
2544 switch (icsk->icsk_ca_state) {
2545 case TCP_CA_Loss:
2546 icsk->icsk_retransmits = 0;
2547 if (tcp_try_undo_recovery(sk))
2548 return;
2549 break;
2550
2551 case TCP_CA_CWR:
2552 /* CWR is to be held something *above* high_seq
2553 * is ACKed for CWR bit to reach receiver. */
2554 if (tp->snd_una != tp->high_seq) {
2555 tcp_complete_cwr(sk);
2556 tcp_set_ca_state(sk, TCP_CA_Open);
2557 }
2558 break;
2559
2560 case TCP_CA_Disorder:
2561 tcp_try_undo_dsack(sk);
2562 if (!tp->undo_marker ||
2563 /* For SACK case do not Open to allow to undo
2564 * catching for all duplicate ACKs. */
2565 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2566 tp->undo_marker = 0;
2567 tcp_set_ca_state(sk, TCP_CA_Open);
2568 }
2569 break;
2570
2571 case TCP_CA_Recovery:
2572 if (tcp_is_reno(tp))
2573 tcp_reset_reno_sack(tp);
2574 if (tcp_try_undo_recovery(sk))
2575 return;
2576 tcp_complete_cwr(sk);
2577 break;
2578 }
2579 }
2580
2581 /* F. Process state. */
2582 switch (icsk->icsk_ca_state) {
2583 case TCP_CA_Recovery:
2584 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2585 if (tcp_is_reno(tp) && is_dupack)
2586 tcp_add_reno_sack(sk);
2587 } else
2588 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2589 break;
2590 case TCP_CA_Loss:
2591 if (flag&FLAG_DATA_ACKED)
2592 icsk->icsk_retransmits = 0;
2593 if (!tcp_try_undo_loss(sk)) {
2594 tcp_moderate_cwnd(tp);
2595 tcp_xmit_retransmit_queue(sk);
2596 return;
2597 }
2598 if (icsk->icsk_ca_state != TCP_CA_Open)
2599 return;
2600 /* Loss is undone; fall through to processing in Open state. */
2601 default:
2602 if (tcp_is_reno(tp)) {
2603 if (flag & FLAG_SND_UNA_ADVANCED)
2604 tcp_reset_reno_sack(tp);
2605 if (is_dupack)
2606 tcp_add_reno_sack(sk);
2607 }
2608
2609 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2610 tcp_try_undo_dsack(sk);
2611
2612 if (!tcp_time_to_recover(sk)) {
2613 tcp_try_to_open(sk, flag);
2614 return;
2615 }
2616
2617 /* MTU probe failure: don't reduce cwnd */
2618 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2619 icsk->icsk_mtup.probe_size &&
2620 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2621 tcp_mtup_probe_failed(sk);
2622 /* Restores the reduction we did in tcp_mtup_probe() */
2623 tp->snd_cwnd++;
2624 tcp_simple_retransmit(sk);
2625 return;
2626 }
2627
2628 /* Otherwise enter Recovery state */
2629
2630 if (tcp_is_reno(tp))
2631 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2632 else
2633 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2634
2635 tp->high_seq = tp->snd_nxt;
2636 tp->prior_ssthresh = 0;
2637 tp->undo_marker = tp->snd_una;
2638 tp->undo_retrans = tp->retrans_out;
2639
2640 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2641 if (!(flag&FLAG_ECE))
2642 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2643 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2644 TCP_ECN_queue_cwr(tp);
2645 }
2646
2647 tp->bytes_acked = 0;
2648 tp->snd_cwnd_cnt = 0;
2649 tcp_set_ca_state(sk, TCP_CA_Recovery);
2650 fast_rexmit = 1;
2651 }
2652
2653 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2654 tcp_update_scoreboard(sk, fast_rexmit);
2655 tcp_cwnd_down(sk, flag);
2656 tcp_xmit_retransmit_queue(sk);
2657 }
2658
2659 /* Read draft-ietf-tcplw-high-performance before mucking
2660 * with this code. (Supersedes RFC1323)
2661 */
2662 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2663 {
2664 /* RTTM Rule: A TSecr value received in a segment is used to
2665 * update the averaged RTT measurement only if the segment
2666 * acknowledges some new data, i.e., only if it advances the
2667 * left edge of the send window.
2668 *
2669 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2670 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2671 *
2672 * Changed: reset backoff as soon as we see the first valid sample.
2673 * If we do not, we get strongly overestimated rto. With timestamps
2674 * samples are accepted even from very old segments: f.e., when rtt=1
2675 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2676 * answer arrives rto becomes 120 seconds! If at least one of segments
2677 * in window is lost... Voila. --ANK (010210)
2678 */
2679 struct tcp_sock *tp = tcp_sk(sk);
2680 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2681 tcp_rtt_estimator(sk, seq_rtt);
2682 tcp_set_rto(sk);
2683 inet_csk(sk)->icsk_backoff = 0;
2684 tcp_bound_rto(sk);
2685 }
2686
2687 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2688 {
2689 /* We don't have a timestamp. Can only use
2690 * packets that are not retransmitted to determine
2691 * rtt estimates. Also, we must not reset the
2692 * backoff for rto until we get a non-retransmitted
2693 * packet. This allows us to deal with a situation
2694 * where the network delay has increased suddenly.
2695 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2696 */
2697
2698 if (flag & FLAG_RETRANS_DATA_ACKED)
2699 return;
2700
2701 tcp_rtt_estimator(sk, seq_rtt);
2702 tcp_set_rto(sk);
2703 inet_csk(sk)->icsk_backoff = 0;
2704 tcp_bound_rto(sk);
2705 }
2706
2707 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2708 const s32 seq_rtt)
2709 {
2710 const struct tcp_sock *tp = tcp_sk(sk);
2711 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2712 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2713 tcp_ack_saw_tstamp(sk, flag);
2714 else if (seq_rtt >= 0)
2715 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2716 }
2717
2718 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2719 u32 in_flight, int good)
2720 {
2721 const struct inet_connection_sock *icsk = inet_csk(sk);
2722 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2723 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2724 }
2725
2726 /* Restart timer after forward progress on connection.
2727 * RFC2988 recommends to restart timer to now+rto.
2728 */
2729 static void tcp_rearm_rto(struct sock *sk)
2730 {
2731 struct tcp_sock *tp = tcp_sk(sk);
2732
2733 if (!tp->packets_out) {
2734 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2735 } else {
2736 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2737 }
2738 }
2739
2740 /* If we get here, the whole TSO packet has not been acked. */
2741 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2742 {
2743 struct tcp_sock *tp = tcp_sk(sk);
2744 u32 packets_acked;
2745
2746 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2747
2748 packets_acked = tcp_skb_pcount(skb);
2749 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2750 return 0;
2751 packets_acked -= tcp_skb_pcount(skb);
2752
2753 if (packets_acked) {
2754 BUG_ON(tcp_skb_pcount(skb) == 0);
2755 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2756 }
2757
2758 return packets_acked;
2759 }
2760
2761 /* Remove acknowledged frames from the retransmission queue. If our packet
2762 * is before the ack sequence we can discard it as it's confirmed to have
2763 * arrived at the other end.
2764 */
2765 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p,
2766 int prior_fackets)
2767 {
2768 struct tcp_sock *tp = tcp_sk(sk);
2769 const struct inet_connection_sock *icsk = inet_csk(sk);
2770 struct sk_buff *skb;
2771 u32 now = tcp_time_stamp;
2772 int fully_acked = 1;
2773 int flag = 0;
2774 int prior_packets = tp->packets_out;
2775 u32 cnt = 0;
2776 u32 reord = tp->packets_out;
2777 s32 seq_rtt = -1;
2778 s32 ca_seq_rtt = -1;
2779 ktime_t last_ackt = net_invalid_timestamp();
2780
2781 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2782 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2783 u32 end_seq;
2784 u32 packets_acked;
2785 u8 sacked = scb->sacked;
2786
2787 /* Determine how many packets and what bytes were acked, tso and else */
2788 if (after(scb->end_seq, tp->snd_una)) {
2789 if (tcp_skb_pcount(skb) == 1 ||
2790 !after(tp->snd_una, scb->seq))
2791 break;
2792
2793 packets_acked = tcp_tso_acked(sk, skb);
2794 if (!packets_acked)
2795 break;
2796
2797 fully_acked = 0;
2798 end_seq = tp->snd_una;
2799 } else {
2800 packets_acked = tcp_skb_pcount(skb);
2801 end_seq = scb->end_seq;
2802 }
2803
2804 /* MTU probing checks */
2805 if (fully_acked && icsk->icsk_mtup.probe_size &&
2806 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2807 tcp_mtup_probe_success(sk, skb);
2808 }
2809
2810 if (sacked) {
2811 if (sacked & TCPCB_RETRANS) {
2812 if (sacked & TCPCB_SACKED_RETRANS)
2813 tp->retrans_out -= packets_acked;
2814 flag |= FLAG_RETRANS_DATA_ACKED;
2815 ca_seq_rtt = -1;
2816 seq_rtt = -1;
2817 if ((flag & FLAG_DATA_ACKED) ||
2818 (packets_acked > 1))
2819 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2820 } else {
2821 ca_seq_rtt = now - scb->when;
2822 last_ackt = skb->tstamp;
2823 if (seq_rtt < 0) {
2824 seq_rtt = ca_seq_rtt;
2825 }
2826 if (!(sacked & TCPCB_SACKED_ACKED))
2827 reord = min(cnt, reord);
2828 }
2829
2830 if (sacked & TCPCB_SACKED_ACKED)
2831 tp->sacked_out -= packets_acked;
2832 if (sacked & TCPCB_LOST)
2833 tp->lost_out -= packets_acked;
2834
2835 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2836 !before(end_seq, tp->snd_up))
2837 tp->urg_mode = 0;
2838 } else {
2839 ca_seq_rtt = now - scb->when;
2840 last_ackt = skb->tstamp;
2841 if (seq_rtt < 0) {
2842 seq_rtt = ca_seq_rtt;
2843 }
2844 reord = min(cnt, reord);
2845 }
2846 tp->packets_out -= packets_acked;
2847 cnt += packets_acked;
2848
2849 /* Initial outgoing SYN's get put onto the write_queue
2850 * just like anything else we transmit. It is not
2851 * true data, and if we misinform our callers that
2852 * this ACK acks real data, we will erroneously exit
2853 * connection startup slow start one packet too
2854 * quickly. This is severely frowned upon behavior.
2855 */
2856 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2857 flag |= FLAG_DATA_ACKED;
2858 } else {
2859 flag |= FLAG_SYN_ACKED;
2860 tp->retrans_stamp = 0;
2861 }
2862
2863 if (!fully_acked)
2864 break;
2865
2866 tcp_unlink_write_queue(skb, sk);
2867 sk_stream_free_skb(sk, skb);
2868 tcp_clear_all_retrans_hints(tp);
2869 }
2870
2871 if (flag & FLAG_ACKED) {
2872 u32 pkts_acked = prior_packets - tp->packets_out;
2873 const struct tcp_congestion_ops *ca_ops
2874 = inet_csk(sk)->icsk_ca_ops;
2875
2876 tcp_ack_update_rtt(sk, flag, seq_rtt);
2877 tcp_rearm_rto(sk);
2878
2879 if (tcp_is_reno(tp)) {
2880 tcp_remove_reno_sacks(sk, pkts_acked);
2881 } else {
2882 /* Non-retransmitted hole got filled? That's reordering */
2883 if (reord < prior_fackets)
2884 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2885 }
2886
2887 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2888
2889 if (ca_ops->pkts_acked) {
2890 s32 rtt_us = -1;
2891
2892 /* Is the ACK triggering packet unambiguous? */
2893 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2894 /* High resolution needed and available? */
2895 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2896 !ktime_equal(last_ackt,
2897 net_invalid_timestamp()))
2898 rtt_us = ktime_us_delta(ktime_get_real(),
2899 last_ackt);
2900 else if (ca_seq_rtt > 0)
2901 rtt_us = jiffies_to_usecs(ca_seq_rtt);
2902 }
2903
2904 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2905 }
2906 }
2907
2908 #if FASTRETRANS_DEBUG > 0
2909 BUG_TRAP((int)tp->sacked_out >= 0);
2910 BUG_TRAP((int)tp->lost_out >= 0);
2911 BUG_TRAP((int)tp->retrans_out >= 0);
2912 if (!tp->packets_out && tcp_is_sack(tp)) {
2913 icsk = inet_csk(sk);
2914 if (tp->lost_out) {
2915 printk(KERN_DEBUG "Leak l=%u %d\n",
2916 tp->lost_out, icsk->icsk_ca_state);
2917 tp->lost_out = 0;
2918 }
2919 if (tp->sacked_out) {
2920 printk(KERN_DEBUG "Leak s=%u %d\n",
2921 tp->sacked_out, icsk->icsk_ca_state);
2922 tp->sacked_out = 0;
2923 }
2924 if (tp->retrans_out) {
2925 printk(KERN_DEBUG "Leak r=%u %d\n",
2926 tp->retrans_out, icsk->icsk_ca_state);
2927 tp->retrans_out = 0;
2928 }
2929 }
2930 #endif
2931 *seq_rtt_p = seq_rtt;
2932 return flag;
2933 }
2934
2935 static void tcp_ack_probe(struct sock *sk)
2936 {
2937 const struct tcp_sock *tp = tcp_sk(sk);
2938 struct inet_connection_sock *icsk = inet_csk(sk);
2939
2940 /* Was it a usable window open? */
2941
2942 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2943 tp->snd_una + tp->snd_wnd)) {
2944 icsk->icsk_backoff = 0;
2945 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2946 /* Socket must be waked up by subsequent tcp_data_snd_check().
2947 * This function is not for random using!
2948 */
2949 } else {
2950 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2951 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2952 TCP_RTO_MAX);
2953 }
2954 }
2955
2956 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2957 {
2958 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2959 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2960 }
2961
2962 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2963 {
2964 const struct tcp_sock *tp = tcp_sk(sk);
2965 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2966 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2967 }
2968
2969 /* Check that window update is acceptable.
2970 * The function assumes that snd_una<=ack<=snd_next.
2971 */
2972 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2973 const u32 ack_seq, const u32 nwin)
2974 {
2975 return (after(ack, tp->snd_una) ||
2976 after(ack_seq, tp->snd_wl1) ||
2977 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2978 }
2979
2980 /* Update our send window.
2981 *
2982 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2983 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2984 */
2985 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2986 u32 ack_seq)
2987 {
2988 struct tcp_sock *tp = tcp_sk(sk);
2989 int flag = 0;
2990 u32 nwin = ntohs(tcp_hdr(skb)->window);
2991
2992 if (likely(!tcp_hdr(skb)->syn))
2993 nwin <<= tp->rx_opt.snd_wscale;
2994
2995 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2996 flag |= FLAG_WIN_UPDATE;
2997 tcp_update_wl(tp, ack, ack_seq);
2998
2999 if (tp->snd_wnd != nwin) {
3000 tp->snd_wnd = nwin;
3001
3002 /* Note, it is the only place, where
3003 * fast path is recovered for sending TCP.
3004 */
3005 tp->pred_flags = 0;
3006 tcp_fast_path_check(sk);
3007
3008 if (nwin > tp->max_window) {
3009 tp->max_window = nwin;
3010 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3011 }
3012 }
3013 }
3014
3015 tp->snd_una = ack;
3016
3017 return flag;
3018 }
3019
3020 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3021 * continue in congestion avoidance.
3022 */
3023 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3024 {
3025 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3026 tp->snd_cwnd_cnt = 0;
3027 tp->bytes_acked = 0;
3028 TCP_ECN_queue_cwr(tp);
3029 tcp_moderate_cwnd(tp);
3030 }
3031
3032 /* A conservative spurious RTO response algorithm: reduce cwnd using
3033 * rate halving and continue in congestion avoidance.
3034 */
3035 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3036 {
3037 tcp_enter_cwr(sk, 0);
3038 }
3039
3040 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3041 {
3042 if (flag&FLAG_ECE)
3043 tcp_ratehalving_spur_to_response(sk);
3044 else
3045 tcp_undo_cwr(sk, 1);
3046 }
3047
3048 /* F-RTO spurious RTO detection algorithm (RFC4138)
3049 *
3050 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3051 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3052 * window (but not to or beyond highest sequence sent before RTO):
3053 * On First ACK, send two new segments out.
3054 * On Second ACK, RTO was likely spurious. Do spurious response (response
3055 * algorithm is not part of the F-RTO detection algorithm
3056 * given in RFC4138 but can be selected separately).
3057 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3058 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3059 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3060 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3061 *
3062 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3063 * original window even after we transmit two new data segments.
3064 *
3065 * SACK version:
3066 * on first step, wait until first cumulative ACK arrives, then move to
3067 * the second step. In second step, the next ACK decides.
3068 *
3069 * F-RTO is implemented (mainly) in four functions:
3070 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3071 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3072 * called when tcp_use_frto() showed green light
3073 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3074 * - tcp_enter_frto_loss() is called if there is not enough evidence
3075 * to prove that the RTO is indeed spurious. It transfers the control
3076 * from F-RTO to the conventional RTO recovery
3077 */
3078 static int tcp_process_frto(struct sock *sk, int flag)
3079 {
3080 struct tcp_sock *tp = tcp_sk(sk);
3081
3082 tcp_verify_left_out(tp);
3083
3084 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3085 if (flag&FLAG_DATA_ACKED)
3086 inet_csk(sk)->icsk_retransmits = 0;
3087
3088 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3089 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3090 tp->undo_marker = 0;
3091
3092 if (!before(tp->snd_una, tp->frto_highmark)) {
3093 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3094 return 1;
3095 }
3096
3097 if (!IsSackFrto() || tcp_is_reno(tp)) {
3098 /* RFC4138 shortcoming in step 2; should also have case c):
3099 * ACK isn't duplicate nor advances window, e.g., opposite dir
3100 * data, winupdate
3101 */
3102 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
3103 return 1;
3104
3105 if (!(flag&FLAG_DATA_ACKED)) {
3106 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3107 flag);
3108 return 1;
3109 }
3110 } else {
3111 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3112 /* Prevent sending of new data. */
3113 tp->snd_cwnd = min(tp->snd_cwnd,
3114 tcp_packets_in_flight(tp));
3115 return 1;
3116 }
3117
3118 if ((tp->frto_counter >= 2) &&
3119 (!(flag&FLAG_FORWARD_PROGRESS) ||
3120 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
3121 /* RFC4138 shortcoming (see comment above) */
3122 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
3123 return 1;
3124
3125 tcp_enter_frto_loss(sk, 3, flag);
3126 return 1;
3127 }
3128 }
3129
3130 if (tp->frto_counter == 1) {
3131 /* tcp_may_send_now needs to see updated state */
3132 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3133 tp->frto_counter = 2;
3134
3135 if (!tcp_may_send_now(sk))
3136 tcp_enter_frto_loss(sk, 2, flag);
3137
3138 return 1;
3139 } else {
3140 switch (sysctl_tcp_frto_response) {
3141 case 2:
3142 tcp_undo_spur_to_response(sk, flag);
3143 break;
3144 case 1:
3145 tcp_conservative_spur_to_response(tp);
3146 break;
3147 default:
3148 tcp_ratehalving_spur_to_response(sk);
3149 break;
3150 }
3151 tp->frto_counter = 0;
3152 tp->undo_marker = 0;
3153 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3154 }
3155 return 0;
3156 }
3157
3158 /* This routine deals with incoming acks, but not outgoing ones. */
3159 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3160 {
3161 struct inet_connection_sock *icsk = inet_csk(sk);
3162 struct tcp_sock *tp = tcp_sk(sk);
3163 u32 prior_snd_una = tp->snd_una;
3164 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3165 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3166 u32 prior_in_flight;
3167 u32 prior_fackets;
3168 s32 seq_rtt;
3169 int prior_packets;
3170 int frto_cwnd = 0;
3171
3172 /* If the ack is newer than sent or older than previous acks
3173 * then we can probably ignore it.
3174 */
3175 if (after(ack, tp->snd_nxt))
3176 goto uninteresting_ack;
3177
3178 if (before(ack, prior_snd_una))
3179 goto old_ack;
3180
3181 if (after(ack, prior_snd_una))
3182 flag |= FLAG_SND_UNA_ADVANCED;
3183
3184 if (sysctl_tcp_abc) {
3185 if (icsk->icsk_ca_state < TCP_CA_CWR)
3186 tp->bytes_acked += ack - prior_snd_una;
3187 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3188 /* we assume just one segment left network */
3189 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3190 }
3191
3192 prior_fackets = tp->fackets_out;
3193 prior_in_flight = tcp_packets_in_flight(tp);
3194
3195 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3196 /* Window is constant, pure forward advance.
3197 * No more checks are required.
3198 * Note, we use the fact that SND.UNA>=SND.WL2.
3199 */
3200 tcp_update_wl(tp, ack, ack_seq);
3201 tp->snd_una = ack;
3202 flag |= FLAG_WIN_UPDATE;
3203
3204 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3205
3206 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3207 } else {
3208 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3209 flag |= FLAG_DATA;
3210 else
3211 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3212
3213 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3214
3215 if (TCP_SKB_CB(skb)->sacked)
3216 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3217
3218 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3219 flag |= FLAG_ECE;
3220
3221 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3222 }
3223
3224 /* We passed data and got it acked, remove any soft error
3225 * log. Something worked...
3226 */
3227 sk->sk_err_soft = 0;
3228 tp->rcv_tstamp = tcp_time_stamp;
3229 prior_packets = tp->packets_out;
3230 if (!prior_packets)
3231 goto no_queue;
3232
3233 /* See if we can take anything off of the retransmit queue. */
3234 flag |= tcp_clean_rtx_queue(sk, &seq_rtt, prior_fackets);
3235
3236 if (tp->frto_counter)
3237 frto_cwnd = tcp_process_frto(sk, flag);
3238 /* Guarantee sacktag reordering detection against wrap-arounds */
3239 if (before(tp->frto_highmark, tp->snd_una))
3240 tp->frto_highmark = 0;
3241
3242 if (tcp_ack_is_dubious(sk, flag)) {
3243 /* Advance CWND, if state allows this. */
3244 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3245 tcp_may_raise_cwnd(sk, flag))
3246 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3247 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3248 } else {
3249 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3250 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3251 }
3252
3253 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3254 dst_confirm(sk->sk_dst_cache);
3255
3256 return 1;
3257
3258 no_queue:
3259 icsk->icsk_probes_out = 0;
3260
3261 /* If this ack opens up a zero window, clear backoff. It was
3262 * being used to time the probes, and is probably far higher than
3263 * it needs to be for normal retransmission.
3264 */
3265 if (tcp_send_head(sk))
3266 tcp_ack_probe(sk);
3267 return 1;
3268
3269 old_ack:
3270 if (TCP_SKB_CB(skb)->sacked)
3271 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3272
3273 uninteresting_ack:
3274 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3275 return 0;
3276 }
3277
3278
3279 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3280 * But, this can also be called on packets in the established flow when
3281 * the fast version below fails.
3282 */
3283 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3284 {
3285 unsigned char *ptr;
3286 struct tcphdr *th = tcp_hdr(skb);
3287 int length=(th->doff*4)-sizeof(struct tcphdr);
3288
3289 ptr = (unsigned char *)(th + 1);
3290 opt_rx->saw_tstamp = 0;
3291
3292 while (length > 0) {
3293 int opcode=*ptr++;
3294 int opsize;
3295
3296 switch (opcode) {
3297 case TCPOPT_EOL:
3298 return;
3299 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3300 length--;
3301 continue;
3302 default:
3303 opsize=*ptr++;
3304 if (opsize < 2) /* "silly options" */
3305 return;
3306 if (opsize > length)
3307 return; /* don't parse partial options */
3308 switch (opcode) {
3309 case TCPOPT_MSS:
3310 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3311 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3312 if (in_mss) {
3313 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3314 in_mss = opt_rx->user_mss;
3315 opt_rx->mss_clamp = in_mss;
3316 }
3317 }
3318 break;
3319 case TCPOPT_WINDOW:
3320 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3321 if (sysctl_tcp_window_scaling) {
3322 __u8 snd_wscale = *(__u8 *) ptr;
3323 opt_rx->wscale_ok = 1;
3324 if (snd_wscale > 14) {
3325 if (net_ratelimit())
3326 printk(KERN_INFO "tcp_parse_options: Illegal window "
3327 "scaling value %d >14 received.\n",
3328 snd_wscale);
3329 snd_wscale = 14;
3330 }
3331 opt_rx->snd_wscale = snd_wscale;
3332 }
3333 break;
3334 case TCPOPT_TIMESTAMP:
3335 if (opsize==TCPOLEN_TIMESTAMP) {
3336 if ((estab && opt_rx->tstamp_ok) ||
3337 (!estab && sysctl_tcp_timestamps)) {
3338 opt_rx->saw_tstamp = 1;
3339 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3340 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3341 }
3342 }
3343 break;
3344 case TCPOPT_SACK_PERM:
3345 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3346 if (sysctl_tcp_sack) {
3347 opt_rx->sack_ok = 1;
3348 tcp_sack_reset(opt_rx);
3349 }
3350 }
3351 break;
3352
3353 case TCPOPT_SACK:
3354 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3355 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3356 opt_rx->sack_ok) {
3357 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3358 }
3359 break;
3360 #ifdef CONFIG_TCP_MD5SIG
3361 case TCPOPT_MD5SIG:
3362 /*
3363 * The MD5 Hash has already been
3364 * checked (see tcp_v{4,6}_do_rcv()).
3365 */
3366 break;
3367 #endif
3368 }
3369
3370 ptr+=opsize-2;
3371 length-=opsize;
3372 }
3373 }
3374 }
3375
3376 /* Fast parse options. This hopes to only see timestamps.
3377 * If it is wrong it falls back on tcp_parse_options().
3378 */
3379 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3380 struct tcp_sock *tp)
3381 {
3382 if (th->doff == sizeof(struct tcphdr)>>2) {
3383 tp->rx_opt.saw_tstamp = 0;
3384 return 0;
3385 } else if (tp->rx_opt.tstamp_ok &&
3386 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3387 __be32 *ptr = (__be32 *)(th + 1);
3388 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3389 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3390 tp->rx_opt.saw_tstamp = 1;
3391 ++ptr;
3392 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3393 ++ptr;
3394 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3395 return 1;
3396 }
3397 }
3398 tcp_parse_options(skb, &tp->rx_opt, 1);
3399 return 1;
3400 }
3401
3402 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3403 {
3404 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3405 tp->rx_opt.ts_recent_stamp = get_seconds();
3406 }
3407
3408 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3409 {
3410 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3411 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3412 * extra check below makes sure this can only happen
3413 * for pure ACK frames. -DaveM
3414 *
3415 * Not only, also it occurs for expired timestamps.
3416 */
3417
3418 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3419 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3420 tcp_store_ts_recent(tp);
3421 }
3422 }
3423
3424 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3425 *
3426 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3427 * it can pass through stack. So, the following predicate verifies that
3428 * this segment is not used for anything but congestion avoidance or
3429 * fast retransmit. Moreover, we even are able to eliminate most of such
3430 * second order effects, if we apply some small "replay" window (~RTO)
3431 * to timestamp space.
3432 *
3433 * All these measures still do not guarantee that we reject wrapped ACKs
3434 * on networks with high bandwidth, when sequence space is recycled fastly,
3435 * but it guarantees that such events will be very rare and do not affect
3436 * connection seriously. This doesn't look nice, but alas, PAWS is really
3437 * buggy extension.
3438 *
3439 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3440 * states that events when retransmit arrives after original data are rare.
3441 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3442 * the biggest problem on large power networks even with minor reordering.
3443 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3444 * up to bandwidth of 18Gigabit/sec. 8) ]
3445 */
3446
3447 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3448 {
3449 struct tcp_sock *tp = tcp_sk(sk);
3450 struct tcphdr *th = tcp_hdr(skb);
3451 u32 seq = TCP_SKB_CB(skb)->seq;
3452 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3453
3454 return (/* 1. Pure ACK with correct sequence number. */
3455 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3456
3457 /* 2. ... and duplicate ACK. */
3458 ack == tp->snd_una &&
3459
3460 /* 3. ... and does not update window. */
3461 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3462
3463 /* 4. ... and sits in replay window. */
3464 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3465 }
3466
3467 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3468 {
3469 const struct tcp_sock *tp = tcp_sk(sk);
3470 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3471 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3472 !tcp_disordered_ack(sk, skb));
3473 }
3474
3475 /* Check segment sequence number for validity.
3476 *
3477 * Segment controls are considered valid, if the segment
3478 * fits to the window after truncation to the window. Acceptability
3479 * of data (and SYN, FIN, of course) is checked separately.
3480 * See tcp_data_queue(), for example.
3481 *
3482 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3483 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3484 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3485 * (borrowed from freebsd)
3486 */
3487
3488 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3489 {
3490 return !before(end_seq, tp->rcv_wup) &&
3491 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3492 }
3493
3494 /* When we get a reset we do this. */
3495 static void tcp_reset(struct sock *sk)
3496 {
3497 /* We want the right error as BSD sees it (and indeed as we do). */
3498 switch (sk->sk_state) {
3499 case TCP_SYN_SENT:
3500 sk->sk_err = ECONNREFUSED;
3501 break;
3502 case TCP_CLOSE_WAIT:
3503 sk->sk_err = EPIPE;
3504 break;
3505 case TCP_CLOSE:
3506 return;
3507 default:
3508 sk->sk_err = ECONNRESET;
3509 }
3510
3511 if (!sock_flag(sk, SOCK_DEAD))
3512 sk->sk_error_report(sk);
3513
3514 tcp_done(sk);
3515 }
3516
3517 /*
3518 * Process the FIN bit. This now behaves as it is supposed to work
3519 * and the FIN takes effect when it is validly part of sequence
3520 * space. Not before when we get holes.
3521 *
3522 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3523 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3524 * TIME-WAIT)
3525 *
3526 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3527 * close and we go into CLOSING (and later onto TIME-WAIT)
3528 *
3529 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3530 */
3531 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3532 {
3533 struct tcp_sock *tp = tcp_sk(sk);
3534
3535 inet_csk_schedule_ack(sk);
3536
3537 sk->sk_shutdown |= RCV_SHUTDOWN;
3538 sock_set_flag(sk, SOCK_DONE);
3539
3540 switch (sk->sk_state) {
3541 case TCP_SYN_RECV:
3542 case TCP_ESTABLISHED:
3543 /* Move to CLOSE_WAIT */
3544 tcp_set_state(sk, TCP_CLOSE_WAIT);
3545 inet_csk(sk)->icsk_ack.pingpong = 1;
3546 break;
3547
3548 case TCP_CLOSE_WAIT:
3549 case TCP_CLOSING:
3550 /* Received a retransmission of the FIN, do
3551 * nothing.
3552 */
3553 break;
3554 case TCP_LAST_ACK:
3555 /* RFC793: Remain in the LAST-ACK state. */
3556 break;
3557
3558 case TCP_FIN_WAIT1:
3559 /* This case occurs when a simultaneous close
3560 * happens, we must ack the received FIN and
3561 * enter the CLOSING state.
3562 */
3563 tcp_send_ack(sk);
3564 tcp_set_state(sk, TCP_CLOSING);
3565 break;
3566 case TCP_FIN_WAIT2:
3567 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3568 tcp_send_ack(sk);
3569 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3570 break;
3571 default:
3572 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3573 * cases we should never reach this piece of code.
3574 */
3575 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3576 __FUNCTION__, sk->sk_state);
3577 break;
3578 }
3579
3580 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3581 * Probably, we should reset in this case. For now drop them.
3582 */
3583 __skb_queue_purge(&tp->out_of_order_queue);
3584 if (tcp_is_sack(tp))
3585 tcp_sack_reset(&tp->rx_opt);
3586 sk_stream_mem_reclaim(sk);
3587
3588 if (!sock_flag(sk, SOCK_DEAD)) {
3589 sk->sk_state_change(sk);
3590
3591 /* Do not send POLL_HUP for half duplex close. */
3592 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3593 sk->sk_state == TCP_CLOSE)
3594 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3595 else
3596 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3597 }
3598 }
3599
3600 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3601 {
3602 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3603 if (before(seq, sp->start_seq))
3604 sp->start_seq = seq;
3605 if (after(end_seq, sp->end_seq))
3606 sp->end_seq = end_seq;
3607 return 1;
3608 }
3609 return 0;
3610 }
3611
3612 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3613 {
3614 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3615 if (before(seq, tp->rcv_nxt))
3616 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3617 else
3618 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3619
3620 tp->rx_opt.dsack = 1;
3621 tp->duplicate_sack[0].start_seq = seq;
3622 tp->duplicate_sack[0].end_seq = end_seq;
3623 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3624 }
3625 }
3626
3627 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3628 {
3629 if (!tp->rx_opt.dsack)
3630 tcp_dsack_set(tp, seq, end_seq);
3631 else
3632 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3633 }
3634
3635 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3636 {
3637 struct tcp_sock *tp = tcp_sk(sk);
3638
3639 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3640 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3641 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3642 tcp_enter_quickack_mode(sk);
3643
3644 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3645 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3646
3647 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3648 end_seq = tp->rcv_nxt;
3649 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3650 }
3651 }
3652
3653 tcp_send_ack(sk);
3654 }
3655
3656 /* These routines update the SACK block as out-of-order packets arrive or
3657 * in-order packets close up the sequence space.
3658 */
3659 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3660 {
3661 int this_sack;
3662 struct tcp_sack_block *sp = &tp->selective_acks[0];
3663 struct tcp_sack_block *swalk = sp+1;
3664
3665 /* See if the recent change to the first SACK eats into
3666 * or hits the sequence space of other SACK blocks, if so coalesce.
3667 */
3668 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3669 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3670 int i;
3671
3672 /* Zap SWALK, by moving every further SACK up by one slot.
3673 * Decrease num_sacks.
3674 */
3675 tp->rx_opt.num_sacks--;
3676 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3677 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3678 sp[i] = sp[i+1];
3679 continue;
3680 }
3681 this_sack++, swalk++;
3682 }
3683 }
3684
3685 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3686 {
3687 __u32 tmp;
3688
3689 tmp = sack1->start_seq;
3690 sack1->start_seq = sack2->start_seq;
3691 sack2->start_seq = tmp;
3692
3693 tmp = sack1->end_seq;
3694 sack1->end_seq = sack2->end_seq;
3695 sack2->end_seq = tmp;
3696 }
3697
3698 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3699 {
3700 struct tcp_sock *tp = tcp_sk(sk);
3701 struct tcp_sack_block *sp = &tp->selective_acks[0];
3702 int cur_sacks = tp->rx_opt.num_sacks;
3703 int this_sack;
3704
3705 if (!cur_sacks)
3706 goto new_sack;
3707
3708 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3709 if (tcp_sack_extend(sp, seq, end_seq)) {
3710 /* Rotate this_sack to the first one. */
3711 for (; this_sack>0; this_sack--, sp--)
3712 tcp_sack_swap(sp, sp-1);
3713 if (cur_sacks > 1)
3714 tcp_sack_maybe_coalesce(tp);
3715 return;
3716 }
3717 }
3718
3719 /* Could not find an adjacent existing SACK, build a new one,
3720 * put it at the front, and shift everyone else down. We
3721 * always know there is at least one SACK present already here.
3722 *
3723 * If the sack array is full, forget about the last one.
3724 */
3725 if (this_sack >= 4) {
3726 this_sack--;
3727 tp->rx_opt.num_sacks--;
3728 sp--;
3729 }
3730 for (; this_sack > 0; this_sack--, sp--)
3731 *sp = *(sp-1);
3732
3733 new_sack:
3734 /* Build the new head SACK, and we're done. */
3735 sp->start_seq = seq;
3736 sp->end_seq = end_seq;
3737 tp->rx_opt.num_sacks++;
3738 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3739 }
3740
3741 /* RCV.NXT advances, some SACKs should be eaten. */
3742
3743 static void tcp_sack_remove(struct tcp_sock *tp)
3744 {
3745 struct tcp_sack_block *sp = &tp->selective_acks[0];
3746 int num_sacks = tp->rx_opt.num_sacks;
3747 int this_sack;
3748
3749 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3750 if (skb_queue_empty(&tp->out_of_order_queue)) {
3751 tp->rx_opt.num_sacks = 0;
3752 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3753 return;
3754 }
3755
3756 for (this_sack = 0; this_sack < num_sacks; ) {
3757 /* Check if the start of the sack is covered by RCV.NXT. */
3758 if (!before(tp->rcv_nxt, sp->start_seq)) {
3759 int i;
3760
3761 /* RCV.NXT must cover all the block! */
3762 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3763
3764 /* Zap this SACK, by moving forward any other SACKS. */
3765 for (i=this_sack+1; i < num_sacks; i++)
3766 tp->selective_acks[i-1] = tp->selective_acks[i];
3767 num_sacks--;
3768 continue;
3769 }
3770 this_sack++;
3771 sp++;
3772 }
3773 if (num_sacks != tp->rx_opt.num_sacks) {
3774 tp->rx_opt.num_sacks = num_sacks;
3775 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3776 }
3777 }
3778
3779 /* This one checks to see if we can put data from the
3780 * out_of_order queue into the receive_queue.
3781 */
3782 static void tcp_ofo_queue(struct sock *sk)
3783 {
3784 struct tcp_sock *tp = tcp_sk(sk);
3785 __u32 dsack_high = tp->rcv_nxt;
3786 struct sk_buff *skb;
3787
3788 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3789 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3790 break;
3791
3792 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3793 __u32 dsack = dsack_high;
3794 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3795 dsack_high = TCP_SKB_CB(skb)->end_seq;
3796 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3797 }
3798
3799 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3800 SOCK_DEBUG(sk, "ofo packet was already received \n");
3801 __skb_unlink(skb, &tp->out_of_order_queue);
3802 __kfree_skb(skb);
3803 continue;
3804 }
3805 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3806 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3807 TCP_SKB_CB(skb)->end_seq);
3808
3809 __skb_unlink(skb, &tp->out_of_order_queue);
3810 __skb_queue_tail(&sk->sk_receive_queue, skb);
3811 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3812 if (tcp_hdr(skb)->fin)
3813 tcp_fin(skb, sk, tcp_hdr(skb));
3814 }
3815 }
3816
3817 static int tcp_prune_queue(struct sock *sk);
3818
3819 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3820 {
3821 struct tcphdr *th = tcp_hdr(skb);
3822 struct tcp_sock *tp = tcp_sk(sk);
3823 int eaten = -1;
3824
3825 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3826 goto drop;
3827
3828 __skb_pull(skb, th->doff*4);
3829
3830 TCP_ECN_accept_cwr(tp, skb);
3831
3832 if (tp->rx_opt.dsack) {
3833 tp->rx_opt.dsack = 0;
3834 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3835 4 - tp->rx_opt.tstamp_ok);
3836 }
3837
3838 /* Queue data for delivery to the user.
3839 * Packets in sequence go to the receive queue.
3840 * Out of sequence packets to the out_of_order_queue.
3841 */
3842 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3843 if (tcp_receive_window(tp) == 0)
3844 goto out_of_window;
3845
3846 /* Ok. In sequence. In window. */
3847 if (tp->ucopy.task == current &&
3848 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3849 sock_owned_by_user(sk) && !tp->urg_data) {
3850 int chunk = min_t(unsigned int, skb->len,
3851 tp->ucopy.len);
3852
3853 __set_current_state(TASK_RUNNING);
3854
3855 local_bh_enable();
3856 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3857 tp->ucopy.len -= chunk;
3858 tp->copied_seq += chunk;
3859 eaten = (chunk == skb->len && !th->fin);
3860 tcp_rcv_space_adjust(sk);
3861 }
3862 local_bh_disable();
3863 }
3864
3865 if (eaten <= 0) {
3866 queue_and_out:
3867 if (eaten < 0 &&
3868 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3869 !sk_stream_rmem_schedule(sk, skb))) {
3870 if (tcp_prune_queue(sk) < 0 ||
3871 !sk_stream_rmem_schedule(sk, skb))
3872 goto drop;
3873 }
3874 sk_stream_set_owner_r(skb, sk);
3875 __skb_queue_tail(&sk->sk_receive_queue, skb);
3876 }
3877 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3878 if (skb->len)
3879 tcp_event_data_recv(sk, skb);
3880 if (th->fin)
3881 tcp_fin(skb, sk, th);
3882
3883 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3884 tcp_ofo_queue(sk);
3885
3886 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3887 * gap in queue is filled.
3888 */
3889 if (skb_queue_empty(&tp->out_of_order_queue))
3890 inet_csk(sk)->icsk_ack.pingpong = 0;
3891 }
3892
3893 if (tp->rx_opt.num_sacks)
3894 tcp_sack_remove(tp);
3895
3896 tcp_fast_path_check(sk);
3897
3898 if (eaten > 0)
3899 __kfree_skb(skb);
3900 else if (!sock_flag(sk, SOCK_DEAD))
3901 sk->sk_data_ready(sk, 0);
3902 return;
3903 }
3904
3905 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3906 /* A retransmit, 2nd most common case. Force an immediate ack. */
3907 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3908 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3909
3910 out_of_window:
3911 tcp_enter_quickack_mode(sk);
3912 inet_csk_schedule_ack(sk);
3913 drop:
3914 __kfree_skb(skb);
3915 return;
3916 }
3917
3918 /* Out of window. F.e. zero window probe. */
3919 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3920 goto out_of_window;
3921
3922 tcp_enter_quickack_mode(sk);
3923
3924 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3925 /* Partial packet, seq < rcv_next < end_seq */
3926 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3927 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3928 TCP_SKB_CB(skb)->end_seq);
3929
3930 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3931
3932 /* If window is closed, drop tail of packet. But after
3933 * remembering D-SACK for its head made in previous line.
3934 */
3935 if (!tcp_receive_window(tp))
3936 goto out_of_window;
3937 goto queue_and_out;
3938 }
3939
3940 TCP_ECN_check_ce(tp, skb);
3941
3942 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3943 !sk_stream_rmem_schedule(sk, skb)) {
3944 if (tcp_prune_queue(sk) < 0 ||
3945 !sk_stream_rmem_schedule(sk, skb))
3946 goto drop;
3947 }
3948
3949 /* Disable header prediction. */
3950 tp->pred_flags = 0;
3951 inet_csk_schedule_ack(sk);
3952
3953 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3954 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3955
3956 sk_stream_set_owner_r(skb, sk);
3957
3958 if (!skb_peek(&tp->out_of_order_queue)) {
3959 /* Initial out of order segment, build 1 SACK. */
3960 if (tcp_is_sack(tp)) {
3961 tp->rx_opt.num_sacks = 1;
3962 tp->rx_opt.dsack = 0;
3963 tp->rx_opt.eff_sacks = 1;
3964 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3965 tp->selective_acks[0].end_seq =
3966 TCP_SKB_CB(skb)->end_seq;
3967 }
3968 __skb_queue_head(&tp->out_of_order_queue,skb);
3969 } else {
3970 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3971 u32 seq = TCP_SKB_CB(skb)->seq;
3972 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3973
3974 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3975 __skb_append(skb1, skb, &tp->out_of_order_queue);
3976
3977 if (!tp->rx_opt.num_sacks ||
3978 tp->selective_acks[0].end_seq != seq)
3979 goto add_sack;
3980
3981 /* Common case: data arrive in order after hole. */
3982 tp->selective_acks[0].end_seq = end_seq;
3983 return;
3984 }
3985
3986 /* Find place to insert this segment. */
3987 do {
3988 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3989 break;
3990 } while ((skb1 = skb1->prev) !=
3991 (struct sk_buff*)&tp->out_of_order_queue);
3992
3993 /* Do skb overlap to previous one? */
3994 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3995 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3996 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3997 /* All the bits are present. Drop. */
3998 __kfree_skb(skb);
3999 tcp_dsack_set(tp, seq, end_seq);
4000 goto add_sack;
4001 }
4002 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4003 /* Partial overlap. */
4004 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
4005 } else {
4006 skb1 = skb1->prev;
4007 }
4008 }
4009 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4010
4011 /* And clean segments covered by new one as whole. */
4012 while ((skb1 = skb->next) !=
4013 (struct sk_buff*)&tp->out_of_order_queue &&
4014 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4015 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4016 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
4017 break;
4018 }
4019 __skb_unlink(skb1, &tp->out_of_order_queue);
4020 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
4021 __kfree_skb(skb1);
4022 }
4023
4024 add_sack:
4025 if (tcp_is_sack(tp))
4026 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4027 }
4028 }
4029
4030 /* Collapse contiguous sequence of skbs head..tail with
4031 * sequence numbers start..end.
4032 * Segments with FIN/SYN are not collapsed (only because this
4033 * simplifies code)
4034 */
4035 static void
4036 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4037 struct sk_buff *head, struct sk_buff *tail,
4038 u32 start, u32 end)
4039 {
4040 struct sk_buff *skb;
4041
4042 /* First, check that queue is collapsible and find
4043 * the point where collapsing can be useful. */
4044 for (skb = head; skb != tail; ) {
4045 /* No new bits? It is possible on ofo queue. */
4046 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4047 struct sk_buff *next = skb->next;
4048 __skb_unlink(skb, list);
4049 __kfree_skb(skb);
4050 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4051 skb = next;
4052 continue;
4053 }
4054
4055 /* The first skb to collapse is:
4056 * - not SYN/FIN and
4057 * - bloated or contains data before "start" or
4058 * overlaps to the next one.
4059 */
4060 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4061 (tcp_win_from_space(skb->truesize) > skb->len ||
4062 before(TCP_SKB_CB(skb)->seq, start) ||
4063 (skb->next != tail &&
4064 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4065 break;
4066
4067 /* Decided to skip this, advance start seq. */
4068 start = TCP_SKB_CB(skb)->end_seq;
4069 skb = skb->next;
4070 }
4071 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4072 return;
4073
4074 while (before(start, end)) {
4075 struct sk_buff *nskb;
4076 unsigned int header = skb_headroom(skb);
4077 int copy = SKB_MAX_ORDER(header, 0);
4078
4079 /* Too big header? This can happen with IPv6. */
4080 if (copy < 0)
4081 return;
4082 if (end-start < copy)
4083 copy = end-start;
4084 nskb = alloc_skb(copy+header, GFP_ATOMIC);
4085 if (!nskb)
4086 return;
4087
4088 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4089 skb_set_network_header(nskb, (skb_network_header(skb) -
4090 skb->head));
4091 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4092 skb->head));
4093 skb_reserve(nskb, header);
4094 memcpy(nskb->head, skb->head, header);
4095 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4096 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4097 __skb_insert(nskb, skb->prev, skb, list);
4098 sk_stream_set_owner_r(nskb, sk);
4099
4100 /* Copy data, releasing collapsed skbs. */
4101 while (copy > 0) {
4102 int offset = start - TCP_SKB_CB(skb)->seq;
4103 int size = TCP_SKB_CB(skb)->end_seq - start;
4104
4105 BUG_ON(offset < 0);
4106 if (size > 0) {
4107 size = min(copy, size);
4108 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4109 BUG();
4110 TCP_SKB_CB(nskb)->end_seq += size;
4111 copy -= size;
4112 start += size;
4113 }
4114 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4115 struct sk_buff *next = skb->next;
4116 __skb_unlink(skb, list);
4117 __kfree_skb(skb);
4118 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4119 skb = next;
4120 if (skb == tail ||
4121 tcp_hdr(skb)->syn ||
4122 tcp_hdr(skb)->fin)
4123 return;
4124 }
4125 }
4126 }
4127 }
4128
4129 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4130 * and tcp_collapse() them until all the queue is collapsed.
4131 */
4132 static void tcp_collapse_ofo_queue(struct sock *sk)
4133 {
4134 struct tcp_sock *tp = tcp_sk(sk);
4135 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4136 struct sk_buff *head;
4137 u32 start, end;
4138
4139 if (skb == NULL)
4140 return;
4141
4142 start = TCP_SKB_CB(skb)->seq;
4143 end = TCP_SKB_CB(skb)->end_seq;
4144 head = skb;
4145
4146 for (;;) {
4147 skb = skb->next;
4148
4149 /* Segment is terminated when we see gap or when
4150 * we are at the end of all the queue. */
4151 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4152 after(TCP_SKB_CB(skb)->seq, end) ||
4153 before(TCP_SKB_CB(skb)->end_seq, start)) {
4154 tcp_collapse(sk, &tp->out_of_order_queue,
4155 head, skb, start, end);
4156 head = skb;
4157 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4158 break;
4159 /* Start new segment */
4160 start = TCP_SKB_CB(skb)->seq;
4161 end = TCP_SKB_CB(skb)->end_seq;
4162 } else {
4163 if (before(TCP_SKB_CB(skb)->seq, start))
4164 start = TCP_SKB_CB(skb)->seq;
4165 if (after(TCP_SKB_CB(skb)->end_seq, end))
4166 end = TCP_SKB_CB(skb)->end_seq;
4167 }
4168 }
4169 }
4170
4171 /* Reduce allocated memory if we can, trying to get
4172 * the socket within its memory limits again.
4173 *
4174 * Return less than zero if we should start dropping frames
4175 * until the socket owning process reads some of the data
4176 * to stabilize the situation.
4177 */
4178 static int tcp_prune_queue(struct sock *sk)
4179 {
4180 struct tcp_sock *tp = tcp_sk(sk);
4181
4182 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4183
4184 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4185
4186 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4187 tcp_clamp_window(sk);
4188 else if (tcp_memory_pressure)
4189 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4190
4191 tcp_collapse_ofo_queue(sk);
4192 tcp_collapse(sk, &sk->sk_receive_queue,
4193 sk->sk_receive_queue.next,
4194 (struct sk_buff*)&sk->sk_receive_queue,
4195 tp->copied_seq, tp->rcv_nxt);
4196 sk_stream_mem_reclaim(sk);
4197
4198 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4199 return 0;
4200
4201 /* Collapsing did not help, destructive actions follow.
4202 * This must not ever occur. */
4203
4204 /* First, purge the out_of_order queue. */
4205 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4206 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4207 __skb_queue_purge(&tp->out_of_order_queue);
4208
4209 /* Reset SACK state. A conforming SACK implementation will
4210 * do the same at a timeout based retransmit. When a connection
4211 * is in a sad state like this, we care only about integrity
4212 * of the connection not performance.
4213 */
4214 if (tcp_is_sack(tp))
4215 tcp_sack_reset(&tp->rx_opt);
4216 sk_stream_mem_reclaim(sk);
4217 }
4218
4219 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4220 return 0;
4221
4222 /* If we are really being abused, tell the caller to silently
4223 * drop receive data on the floor. It will get retransmitted
4224 * and hopefully then we'll have sufficient space.
4225 */
4226 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4227
4228 /* Massive buffer overcommit. */
4229 tp->pred_flags = 0;
4230 return -1;
4231 }
4232
4233
4234 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4235 * As additional protections, we do not touch cwnd in retransmission phases,
4236 * and if application hit its sndbuf limit recently.
4237 */
4238 void tcp_cwnd_application_limited(struct sock *sk)
4239 {
4240 struct tcp_sock *tp = tcp_sk(sk);
4241
4242 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4243 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4244 /* Limited by application or receiver window. */
4245 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4246 u32 win_used = max(tp->snd_cwnd_used, init_win);
4247 if (win_used < tp->snd_cwnd) {
4248 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4249 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4250 }
4251 tp->snd_cwnd_used = 0;
4252 }
4253 tp->snd_cwnd_stamp = tcp_time_stamp;
4254 }
4255
4256 static int tcp_should_expand_sndbuf(struct sock *sk)
4257 {
4258 struct tcp_sock *tp = tcp_sk(sk);
4259
4260 /* If the user specified a specific send buffer setting, do
4261 * not modify it.
4262 */
4263 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4264 return 0;
4265
4266 /* If we are under global TCP memory pressure, do not expand. */
4267 if (tcp_memory_pressure)
4268 return 0;
4269
4270 /* If we are under soft global TCP memory pressure, do not expand. */
4271 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4272 return 0;
4273
4274 /* If we filled the congestion window, do not expand. */
4275 if (tp->packets_out >= tp->snd_cwnd)
4276 return 0;
4277
4278 return 1;
4279 }
4280
4281 /* When incoming ACK allowed to free some skb from write_queue,
4282 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4283 * on the exit from tcp input handler.
4284 *
4285 * PROBLEM: sndbuf expansion does not work well with largesend.
4286 */
4287 static void tcp_new_space(struct sock *sk)
4288 {
4289 struct tcp_sock *tp = tcp_sk(sk);
4290
4291 if (tcp_should_expand_sndbuf(sk)) {
4292 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4293 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4294 demanded = max_t(unsigned int, tp->snd_cwnd,
4295 tp->reordering + 1);
4296 sndmem *= 2*demanded;
4297 if (sndmem > sk->sk_sndbuf)
4298 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4299 tp->snd_cwnd_stamp = tcp_time_stamp;
4300 }
4301
4302 sk->sk_write_space(sk);
4303 }
4304
4305 static void tcp_check_space(struct sock *sk)
4306 {
4307 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4308 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4309 if (sk->sk_socket &&
4310 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4311 tcp_new_space(sk);
4312 }
4313 }
4314
4315 static inline void tcp_data_snd_check(struct sock *sk)
4316 {
4317 tcp_push_pending_frames(sk);
4318 tcp_check_space(sk);
4319 }
4320
4321 /*
4322 * Check if sending an ack is needed.
4323 */
4324 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4325 {
4326 struct tcp_sock *tp = tcp_sk(sk);
4327
4328 /* More than one full frame received... */
4329 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4330 /* ... and right edge of window advances far enough.
4331 * (tcp_recvmsg() will send ACK otherwise). Or...
4332 */
4333 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4334 /* We ACK each frame or... */
4335 tcp_in_quickack_mode(sk) ||
4336 /* We have out of order data. */
4337 (ofo_possible &&
4338 skb_peek(&tp->out_of_order_queue))) {
4339 /* Then ack it now */
4340 tcp_send_ack(sk);
4341 } else {
4342 /* Else, send delayed ack. */
4343 tcp_send_delayed_ack(sk);
4344 }
4345 }
4346
4347 static inline void tcp_ack_snd_check(struct sock *sk)
4348 {
4349 if (!inet_csk_ack_scheduled(sk)) {
4350 /* We sent a data segment already. */
4351 return;
4352 }
4353 __tcp_ack_snd_check(sk, 1);
4354 }
4355
4356 /*
4357 * This routine is only called when we have urgent data
4358 * signaled. Its the 'slow' part of tcp_urg. It could be
4359 * moved inline now as tcp_urg is only called from one
4360 * place. We handle URGent data wrong. We have to - as
4361 * BSD still doesn't use the correction from RFC961.
4362 * For 1003.1g we should support a new option TCP_STDURG to permit
4363 * either form (or just set the sysctl tcp_stdurg).
4364 */
4365
4366 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4367 {
4368 struct tcp_sock *tp = tcp_sk(sk);
4369 u32 ptr = ntohs(th->urg_ptr);
4370
4371 if (ptr && !sysctl_tcp_stdurg)
4372 ptr--;
4373 ptr += ntohl(th->seq);
4374
4375 /* Ignore urgent data that we've already seen and read. */
4376 if (after(tp->copied_seq, ptr))
4377 return;
4378
4379 /* Do not replay urg ptr.
4380 *
4381 * NOTE: interesting situation not covered by specs.
4382 * Misbehaving sender may send urg ptr, pointing to segment,
4383 * which we already have in ofo queue. We are not able to fetch
4384 * such data and will stay in TCP_URG_NOTYET until will be eaten
4385 * by recvmsg(). Seems, we are not obliged to handle such wicked
4386 * situations. But it is worth to think about possibility of some
4387 * DoSes using some hypothetical application level deadlock.
4388 */
4389 if (before(ptr, tp->rcv_nxt))
4390 return;
4391
4392 /* Do we already have a newer (or duplicate) urgent pointer? */
4393 if (tp->urg_data && !after(ptr, tp->urg_seq))
4394 return;
4395
4396 /* Tell the world about our new urgent pointer. */
4397 sk_send_sigurg(sk);
4398
4399 /* We may be adding urgent data when the last byte read was
4400 * urgent. To do this requires some care. We cannot just ignore
4401 * tp->copied_seq since we would read the last urgent byte again
4402 * as data, nor can we alter copied_seq until this data arrives
4403 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4404 *
4405 * NOTE. Double Dutch. Rendering to plain English: author of comment
4406 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4407 * and expect that both A and B disappear from stream. This is _wrong_.
4408 * Though this happens in BSD with high probability, this is occasional.
4409 * Any application relying on this is buggy. Note also, that fix "works"
4410 * only in this artificial test. Insert some normal data between A and B and we will
4411 * decline of BSD again. Verdict: it is better to remove to trap
4412 * buggy users.
4413 */
4414 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4415 !sock_flag(sk, SOCK_URGINLINE) &&
4416 tp->copied_seq != tp->rcv_nxt) {
4417 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4418 tp->copied_seq++;
4419 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4420 __skb_unlink(skb, &sk->sk_receive_queue);
4421 __kfree_skb(skb);
4422 }
4423 }
4424
4425 tp->urg_data = TCP_URG_NOTYET;
4426 tp->urg_seq = ptr;
4427
4428 /* Disable header prediction. */
4429 tp->pred_flags = 0;
4430 }
4431
4432 /* This is the 'fast' part of urgent handling. */
4433 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4434 {
4435 struct tcp_sock *tp = tcp_sk(sk);
4436
4437 /* Check if we get a new urgent pointer - normally not. */
4438 if (th->urg)
4439 tcp_check_urg(sk,th);
4440
4441 /* Do we wait for any urgent data? - normally not... */
4442 if (tp->urg_data == TCP_URG_NOTYET) {
4443 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4444 th->syn;
4445
4446 /* Is the urgent pointer pointing into this packet? */
4447 if (ptr < skb->len) {
4448 u8 tmp;
4449 if (skb_copy_bits(skb, ptr, &tmp, 1))
4450 BUG();
4451 tp->urg_data = TCP_URG_VALID | tmp;
4452 if (!sock_flag(sk, SOCK_DEAD))
4453 sk->sk_data_ready(sk, 0);
4454 }
4455 }
4456 }
4457
4458 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4459 {
4460 struct tcp_sock *tp = tcp_sk(sk);
4461 int chunk = skb->len - hlen;
4462 int err;
4463
4464 local_bh_enable();
4465 if (skb_csum_unnecessary(skb))
4466 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4467 else
4468 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4469 tp->ucopy.iov);
4470
4471 if (!err) {
4472 tp->ucopy.len -= chunk;
4473 tp->copied_seq += chunk;
4474 tcp_rcv_space_adjust(sk);
4475 }
4476
4477 local_bh_disable();
4478 return err;
4479 }
4480
4481 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4482 {
4483 __sum16 result;
4484
4485 if (sock_owned_by_user(sk)) {
4486 local_bh_enable();
4487 result = __tcp_checksum_complete(skb);
4488 local_bh_disable();
4489 } else {
4490 result = __tcp_checksum_complete(skb);
4491 }
4492 return result;
4493 }
4494
4495 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4496 {
4497 return !skb_csum_unnecessary(skb) &&
4498 __tcp_checksum_complete_user(sk, skb);
4499 }
4500
4501 #ifdef CONFIG_NET_DMA
4502 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4503 {
4504 struct tcp_sock *tp = tcp_sk(sk);
4505 int chunk = skb->len - hlen;
4506 int dma_cookie;
4507 int copied_early = 0;
4508
4509 if (tp->ucopy.wakeup)
4510 return 0;
4511
4512 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4513 tp->ucopy.dma_chan = get_softnet_dma();
4514
4515 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4516
4517 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4518 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4519
4520 if (dma_cookie < 0)
4521 goto out;
4522
4523 tp->ucopy.dma_cookie = dma_cookie;
4524 copied_early = 1;
4525
4526 tp->ucopy.len -= chunk;
4527 tp->copied_seq += chunk;
4528 tcp_rcv_space_adjust(sk);
4529
4530 if ((tp->ucopy.len == 0) ||
4531 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4532 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4533 tp->ucopy.wakeup = 1;
4534 sk->sk_data_ready(sk, 0);
4535 }
4536 } else if (chunk > 0) {
4537 tp->ucopy.wakeup = 1;
4538 sk->sk_data_ready(sk, 0);
4539 }
4540 out:
4541 return copied_early;
4542 }
4543 #endif /* CONFIG_NET_DMA */
4544
4545 /*
4546 * TCP receive function for the ESTABLISHED state.
4547 *
4548 * It is split into a fast path and a slow path. The fast path is
4549 * disabled when:
4550 * - A zero window was announced from us - zero window probing
4551 * is only handled properly in the slow path.
4552 * - Out of order segments arrived.
4553 * - Urgent data is expected.
4554 * - There is no buffer space left
4555 * - Unexpected TCP flags/window values/header lengths are received
4556 * (detected by checking the TCP header against pred_flags)
4557 * - Data is sent in both directions. Fast path only supports pure senders
4558 * or pure receivers (this means either the sequence number or the ack
4559 * value must stay constant)
4560 * - Unexpected TCP option.
4561 *
4562 * When these conditions are not satisfied it drops into a standard
4563 * receive procedure patterned after RFC793 to handle all cases.
4564 * The first three cases are guaranteed by proper pred_flags setting,
4565 * the rest is checked inline. Fast processing is turned on in
4566 * tcp_data_queue when everything is OK.
4567 */
4568 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4569 struct tcphdr *th, unsigned len)
4570 {
4571 struct tcp_sock *tp = tcp_sk(sk);
4572
4573 /*
4574 * Header prediction.
4575 * The code loosely follows the one in the famous
4576 * "30 instruction TCP receive" Van Jacobson mail.
4577 *
4578 * Van's trick is to deposit buffers into socket queue
4579 * on a device interrupt, to call tcp_recv function
4580 * on the receive process context and checksum and copy
4581 * the buffer to user space. smart...
4582 *
4583 * Our current scheme is not silly either but we take the
4584 * extra cost of the net_bh soft interrupt processing...
4585 * We do checksum and copy also but from device to kernel.
4586 */
4587
4588 tp->rx_opt.saw_tstamp = 0;
4589
4590 /* pred_flags is 0xS?10 << 16 + snd_wnd
4591 * if header_prediction is to be made
4592 * 'S' will always be tp->tcp_header_len >> 2
4593 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4594 * turn it off (when there are holes in the receive
4595 * space for instance)
4596 * PSH flag is ignored.
4597 */
4598
4599 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4600 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4601 int tcp_header_len = tp->tcp_header_len;
4602
4603 /* Timestamp header prediction: tcp_header_len
4604 * is automatically equal to th->doff*4 due to pred_flags
4605 * match.
4606 */
4607
4608 /* Check timestamp */
4609 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4610 __be32 *ptr = (__be32 *)(th + 1);
4611
4612 /* No? Slow path! */
4613 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4614 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4615 goto slow_path;
4616
4617 tp->rx_opt.saw_tstamp = 1;
4618 ++ptr;
4619 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4620 ++ptr;
4621 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4622
4623 /* If PAWS failed, check it more carefully in slow path */
4624 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4625 goto slow_path;
4626
4627 /* DO NOT update ts_recent here, if checksum fails
4628 * and timestamp was corrupted part, it will result
4629 * in a hung connection since we will drop all
4630 * future packets due to the PAWS test.
4631 */
4632 }
4633
4634 if (len <= tcp_header_len) {
4635 /* Bulk data transfer: sender */
4636 if (len == tcp_header_len) {
4637 /* Predicted packet is in window by definition.
4638 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4639 * Hence, check seq<=rcv_wup reduces to:
4640 */
4641 if (tcp_header_len ==
4642 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4643 tp->rcv_nxt == tp->rcv_wup)
4644 tcp_store_ts_recent(tp);
4645
4646 /* We know that such packets are checksummed
4647 * on entry.
4648 */
4649 tcp_ack(sk, skb, 0);
4650 __kfree_skb(skb);
4651 tcp_data_snd_check(sk);
4652 return 0;
4653 } else { /* Header too small */
4654 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4655 goto discard;
4656 }
4657 } else {
4658 int eaten = 0;
4659 int copied_early = 0;
4660
4661 if (tp->copied_seq == tp->rcv_nxt &&
4662 len - tcp_header_len <= tp->ucopy.len) {
4663 #ifdef CONFIG_NET_DMA
4664 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4665 copied_early = 1;
4666 eaten = 1;
4667 }
4668 #endif
4669 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4670 __set_current_state(TASK_RUNNING);
4671
4672 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4673 eaten = 1;
4674 }
4675 if (eaten) {
4676 /* Predicted packet is in window by definition.
4677 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4678 * Hence, check seq<=rcv_wup reduces to:
4679 */
4680 if (tcp_header_len ==
4681 (sizeof(struct tcphdr) +
4682 TCPOLEN_TSTAMP_ALIGNED) &&
4683 tp->rcv_nxt == tp->rcv_wup)
4684 tcp_store_ts_recent(tp);
4685
4686 tcp_rcv_rtt_measure_ts(sk, skb);
4687
4688 __skb_pull(skb, tcp_header_len);
4689 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4690 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4691 }
4692 if (copied_early)
4693 tcp_cleanup_rbuf(sk, skb->len);
4694 }
4695 if (!eaten) {
4696 if (tcp_checksum_complete_user(sk, skb))
4697 goto csum_error;
4698
4699 /* Predicted packet is in window by definition.
4700 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4701 * Hence, check seq<=rcv_wup reduces to:
4702 */
4703 if (tcp_header_len ==
4704 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4705 tp->rcv_nxt == tp->rcv_wup)
4706 tcp_store_ts_recent(tp);
4707
4708 tcp_rcv_rtt_measure_ts(sk, skb);
4709
4710 if ((int)skb->truesize > sk->sk_forward_alloc)
4711 goto step5;
4712
4713 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4714
4715 /* Bulk data transfer: receiver */
4716 __skb_pull(skb,tcp_header_len);
4717 __skb_queue_tail(&sk->sk_receive_queue, skb);
4718 sk_stream_set_owner_r(skb, sk);
4719 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4720 }
4721
4722 tcp_event_data_recv(sk, skb);
4723
4724 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4725 /* Well, only one small jumplet in fast path... */
4726 tcp_ack(sk, skb, FLAG_DATA);
4727 tcp_data_snd_check(sk);
4728 if (!inet_csk_ack_scheduled(sk))
4729 goto no_ack;
4730 }
4731
4732 __tcp_ack_snd_check(sk, 0);
4733 no_ack:
4734 #ifdef CONFIG_NET_DMA
4735 if (copied_early)
4736 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4737 else
4738 #endif
4739 if (eaten)
4740 __kfree_skb(skb);
4741 else
4742 sk->sk_data_ready(sk, 0);
4743 return 0;
4744 }
4745 }
4746
4747 slow_path:
4748 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4749 goto csum_error;
4750
4751 /*
4752 * RFC1323: H1. Apply PAWS check first.
4753 */
4754 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4755 tcp_paws_discard(sk, skb)) {
4756 if (!th->rst) {
4757 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4758 tcp_send_dupack(sk, skb);
4759 goto discard;
4760 }
4761 /* Resets are accepted even if PAWS failed.
4762
4763 ts_recent update must be made after we are sure
4764 that the packet is in window.
4765 */
4766 }
4767
4768 /*
4769 * Standard slow path.
4770 */
4771
4772 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4773 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4774 * (RST) segments are validated by checking their SEQ-fields."
4775 * And page 69: "If an incoming segment is not acceptable,
4776 * an acknowledgment should be sent in reply (unless the RST bit
4777 * is set, if so drop the segment and return)".
4778 */
4779 if (!th->rst)
4780 tcp_send_dupack(sk, skb);
4781 goto discard;
4782 }
4783
4784 if (th->rst) {
4785 tcp_reset(sk);
4786 goto discard;
4787 }
4788
4789 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4790
4791 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4792 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4793 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4794 tcp_reset(sk);
4795 return 1;
4796 }
4797
4798 step5:
4799 if (th->ack)
4800 tcp_ack(sk, skb, FLAG_SLOWPATH);
4801
4802 tcp_rcv_rtt_measure_ts(sk, skb);
4803
4804 /* Process urgent data. */
4805 tcp_urg(sk, skb, th);
4806
4807 /* step 7: process the segment text */
4808 tcp_data_queue(sk, skb);
4809
4810 tcp_data_snd_check(sk);
4811 tcp_ack_snd_check(sk);
4812 return 0;
4813
4814 csum_error:
4815 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4816
4817 discard:
4818 __kfree_skb(skb);
4819 return 0;
4820 }
4821
4822 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4823 struct tcphdr *th, unsigned len)
4824 {
4825 struct tcp_sock *tp = tcp_sk(sk);
4826 struct inet_connection_sock *icsk = inet_csk(sk);
4827 int saved_clamp = tp->rx_opt.mss_clamp;
4828
4829 tcp_parse_options(skb, &tp->rx_opt, 0);
4830
4831 if (th->ack) {
4832 /* rfc793:
4833 * "If the state is SYN-SENT then
4834 * first check the ACK bit
4835 * If the ACK bit is set
4836 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4837 * a reset (unless the RST bit is set, if so drop
4838 * the segment and return)"
4839 *
4840 * We do not send data with SYN, so that RFC-correct
4841 * test reduces to:
4842 */
4843 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4844 goto reset_and_undo;
4845
4846 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4847 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4848 tcp_time_stamp)) {
4849 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4850 goto reset_and_undo;
4851 }
4852
4853 /* Now ACK is acceptable.
4854 *
4855 * "If the RST bit is set
4856 * If the ACK was acceptable then signal the user "error:
4857 * connection reset", drop the segment, enter CLOSED state,
4858 * delete TCB, and return."
4859 */
4860
4861 if (th->rst) {
4862 tcp_reset(sk);
4863 goto discard;
4864 }
4865
4866 /* rfc793:
4867 * "fifth, if neither of the SYN or RST bits is set then
4868 * drop the segment and return."
4869 *
4870 * See note below!
4871 * --ANK(990513)
4872 */
4873 if (!th->syn)
4874 goto discard_and_undo;
4875
4876 /* rfc793:
4877 * "If the SYN bit is on ...
4878 * are acceptable then ...
4879 * (our SYN has been ACKed), change the connection
4880 * state to ESTABLISHED..."
4881 */
4882
4883 TCP_ECN_rcv_synack(tp, th);
4884
4885 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4886 tcp_ack(sk, skb, FLAG_SLOWPATH);
4887
4888 /* Ok.. it's good. Set up sequence numbers and
4889 * move to established.
4890 */
4891 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4892 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4893
4894 /* RFC1323: The window in SYN & SYN/ACK segments is
4895 * never scaled.
4896 */
4897 tp->snd_wnd = ntohs(th->window);
4898 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4899
4900 if (!tp->rx_opt.wscale_ok) {
4901 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4902 tp->window_clamp = min(tp->window_clamp, 65535U);
4903 }
4904
4905 if (tp->rx_opt.saw_tstamp) {
4906 tp->rx_opt.tstamp_ok = 1;
4907 tp->tcp_header_len =
4908 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4909 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4910 tcp_store_ts_recent(tp);
4911 } else {
4912 tp->tcp_header_len = sizeof(struct tcphdr);
4913 }
4914
4915 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4916 tcp_enable_fack(tp);
4917
4918 tcp_mtup_init(sk);
4919 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4920 tcp_initialize_rcv_mss(sk);
4921
4922 /* Remember, tcp_poll() does not lock socket!
4923 * Change state from SYN-SENT only after copied_seq
4924 * is initialized. */
4925 tp->copied_seq = tp->rcv_nxt;
4926 smp_mb();
4927 tcp_set_state(sk, TCP_ESTABLISHED);
4928
4929 security_inet_conn_established(sk, skb);
4930
4931 /* Make sure socket is routed, for correct metrics. */
4932 icsk->icsk_af_ops->rebuild_header(sk);
4933
4934 tcp_init_metrics(sk);
4935
4936 tcp_init_congestion_control(sk);
4937
4938 /* Prevent spurious tcp_cwnd_restart() on first data
4939 * packet.
4940 */
4941 tp->lsndtime = tcp_time_stamp;
4942
4943 tcp_init_buffer_space(sk);
4944
4945 if (sock_flag(sk, SOCK_KEEPOPEN))
4946 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4947
4948 if (!tp->rx_opt.snd_wscale)
4949 __tcp_fast_path_on(tp, tp->snd_wnd);
4950 else
4951 tp->pred_flags = 0;
4952
4953 if (!sock_flag(sk, SOCK_DEAD)) {
4954 sk->sk_state_change(sk);
4955 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
4956 }
4957
4958 if (sk->sk_write_pending ||
4959 icsk->icsk_accept_queue.rskq_defer_accept ||
4960 icsk->icsk_ack.pingpong) {
4961 /* Save one ACK. Data will be ready after
4962 * several ticks, if write_pending is set.
4963 *
4964 * It may be deleted, but with this feature tcpdumps
4965 * look so _wonderfully_ clever, that I was not able
4966 * to stand against the temptation 8) --ANK
4967 */
4968 inet_csk_schedule_ack(sk);
4969 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4970 icsk->icsk_ack.ato = TCP_ATO_MIN;
4971 tcp_incr_quickack(sk);
4972 tcp_enter_quickack_mode(sk);
4973 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4974 TCP_DELACK_MAX, TCP_RTO_MAX);
4975
4976 discard:
4977 __kfree_skb(skb);
4978 return 0;
4979 } else {
4980 tcp_send_ack(sk);
4981 }
4982 return -1;
4983 }
4984
4985 /* No ACK in the segment */
4986
4987 if (th->rst) {
4988 /* rfc793:
4989 * "If the RST bit is set
4990 *
4991 * Otherwise (no ACK) drop the segment and return."
4992 */
4993
4994 goto discard_and_undo;
4995 }
4996
4997 /* PAWS check. */
4998 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4999 goto discard_and_undo;
5000
5001 if (th->syn) {
5002 /* We see SYN without ACK. It is attempt of
5003 * simultaneous connect with crossed SYNs.
5004 * Particularly, it can be connect to self.
5005 */
5006 tcp_set_state(sk, TCP_SYN_RECV);
5007
5008 if (tp->rx_opt.saw_tstamp) {
5009 tp->rx_opt.tstamp_ok = 1;
5010 tcp_store_ts_recent(tp);
5011 tp->tcp_header_len =
5012 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5013 } else {
5014 tp->tcp_header_len = sizeof(struct tcphdr);
5015 }
5016
5017 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5018 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5019
5020 /* RFC1323: The window in SYN & SYN/ACK segments is
5021 * never scaled.
5022 */
5023 tp->snd_wnd = ntohs(th->window);
5024 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5025 tp->max_window = tp->snd_wnd;
5026
5027 TCP_ECN_rcv_syn(tp, th);
5028
5029 tcp_mtup_init(sk);
5030 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5031 tcp_initialize_rcv_mss(sk);
5032
5033
5034 tcp_send_synack(sk);
5035 #if 0
5036 /* Note, we could accept data and URG from this segment.
5037 * There are no obstacles to make this.
5038 *
5039 * However, if we ignore data in ACKless segments sometimes,
5040 * we have no reasons to accept it sometimes.
5041 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5042 * is not flawless. So, discard packet for sanity.
5043 * Uncomment this return to process the data.
5044 */
5045 return -1;
5046 #else
5047 goto discard;
5048 #endif
5049 }
5050 /* "fifth, if neither of the SYN or RST bits is set then
5051 * drop the segment and return."
5052 */
5053
5054 discard_and_undo:
5055 tcp_clear_options(&tp->rx_opt);
5056 tp->rx_opt.mss_clamp = saved_clamp;
5057 goto discard;
5058
5059 reset_and_undo:
5060 tcp_clear_options(&tp->rx_opt);
5061 tp->rx_opt.mss_clamp = saved_clamp;
5062 return 1;
5063 }
5064
5065
5066 /*
5067 * This function implements the receiving procedure of RFC 793 for
5068 * all states except ESTABLISHED and TIME_WAIT.
5069 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5070 * address independent.
5071 */
5072
5073 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5074 struct tcphdr *th, unsigned len)
5075 {
5076 struct tcp_sock *tp = tcp_sk(sk);
5077 struct inet_connection_sock *icsk = inet_csk(sk);
5078 int queued = 0;
5079
5080 tp->rx_opt.saw_tstamp = 0;
5081
5082 switch (sk->sk_state) {
5083 case TCP_CLOSE:
5084 goto discard;
5085
5086 case TCP_LISTEN:
5087 if (th->ack)
5088 return 1;
5089
5090 if (th->rst)
5091 goto discard;
5092
5093 if (th->syn) {
5094 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5095 return 1;
5096
5097 /* Now we have several options: In theory there is
5098 * nothing else in the frame. KA9Q has an option to
5099 * send data with the syn, BSD accepts data with the
5100 * syn up to the [to be] advertised window and
5101 * Solaris 2.1 gives you a protocol error. For now
5102 * we just ignore it, that fits the spec precisely
5103 * and avoids incompatibilities. It would be nice in
5104 * future to drop through and process the data.
5105 *
5106 * Now that TTCP is starting to be used we ought to
5107 * queue this data.
5108 * But, this leaves one open to an easy denial of
5109 * service attack, and SYN cookies can't defend
5110 * against this problem. So, we drop the data
5111 * in the interest of security over speed unless
5112 * it's still in use.
5113 */
5114 kfree_skb(skb);
5115 return 0;
5116 }
5117 goto discard;
5118
5119 case TCP_SYN_SENT:
5120 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5121 if (queued >= 0)
5122 return queued;
5123
5124 /* Do step6 onward by hand. */
5125 tcp_urg(sk, skb, th);
5126 __kfree_skb(skb);
5127 tcp_data_snd_check(sk);
5128 return 0;
5129 }
5130
5131 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5132 tcp_paws_discard(sk, skb)) {
5133 if (!th->rst) {
5134 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5135 tcp_send_dupack(sk, skb);
5136 goto discard;
5137 }
5138 /* Reset is accepted even if it did not pass PAWS. */
5139 }
5140
5141 /* step 1: check sequence number */
5142 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5143 if (!th->rst)
5144 tcp_send_dupack(sk, skb);
5145 goto discard;
5146 }
5147
5148 /* step 2: check RST bit */
5149 if (th->rst) {
5150 tcp_reset(sk);
5151 goto discard;
5152 }
5153
5154 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5155
5156 /* step 3: check security and precedence [ignored] */
5157
5158 /* step 4:
5159 *
5160 * Check for a SYN in window.
5161 */
5162 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5163 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5164 tcp_reset(sk);
5165 return 1;
5166 }
5167
5168 /* step 5: check the ACK field */
5169 if (th->ack) {
5170 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5171
5172 switch (sk->sk_state) {
5173 case TCP_SYN_RECV:
5174 if (acceptable) {
5175 tp->copied_seq = tp->rcv_nxt;
5176 smp_mb();
5177 tcp_set_state(sk, TCP_ESTABLISHED);
5178 sk->sk_state_change(sk);
5179
5180 /* Note, that this wakeup is only for marginal
5181 * crossed SYN case. Passively open sockets
5182 * are not waked up, because sk->sk_sleep ==
5183 * NULL and sk->sk_socket == NULL.
5184 */
5185 if (sk->sk_socket)
5186 sk_wake_async(sk,
5187 SOCK_WAKE_IO, POLL_OUT);
5188
5189 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5190 tp->snd_wnd = ntohs(th->window) <<
5191 tp->rx_opt.snd_wscale;
5192 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5193 TCP_SKB_CB(skb)->seq);
5194
5195 /* tcp_ack considers this ACK as duplicate
5196 * and does not calculate rtt.
5197 * Fix it at least with timestamps.
5198 */
5199 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5200 !tp->srtt)
5201 tcp_ack_saw_tstamp(sk, 0);
5202
5203 if (tp->rx_opt.tstamp_ok)
5204 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5205
5206 /* Make sure socket is routed, for
5207 * correct metrics.
5208 */
5209 icsk->icsk_af_ops->rebuild_header(sk);
5210
5211 tcp_init_metrics(sk);
5212
5213 tcp_init_congestion_control(sk);
5214
5215 /* Prevent spurious tcp_cwnd_restart() on
5216 * first data packet.
5217 */
5218 tp->lsndtime = tcp_time_stamp;
5219
5220 tcp_mtup_init(sk);
5221 tcp_initialize_rcv_mss(sk);
5222 tcp_init_buffer_space(sk);
5223 tcp_fast_path_on(tp);
5224 } else {
5225 return 1;
5226 }
5227 break;
5228
5229 case TCP_FIN_WAIT1:
5230 if (tp->snd_una == tp->write_seq) {
5231 tcp_set_state(sk, TCP_FIN_WAIT2);
5232 sk->sk_shutdown |= SEND_SHUTDOWN;
5233 dst_confirm(sk->sk_dst_cache);
5234
5235 if (!sock_flag(sk, SOCK_DEAD))
5236 /* Wake up lingering close() */
5237 sk->sk_state_change(sk);
5238 else {
5239 int tmo;
5240
5241 if (tp->linger2 < 0 ||
5242 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5243 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5244 tcp_done(sk);
5245 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5246 return 1;
5247 }
5248
5249 tmo = tcp_fin_time(sk);
5250 if (tmo > TCP_TIMEWAIT_LEN) {
5251 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5252 } else if (th->fin || sock_owned_by_user(sk)) {
5253 /* Bad case. We could lose such FIN otherwise.
5254 * It is not a big problem, but it looks confusing
5255 * and not so rare event. We still can lose it now,
5256 * if it spins in bh_lock_sock(), but it is really
5257 * marginal case.
5258 */
5259 inet_csk_reset_keepalive_timer(sk, tmo);
5260 } else {
5261 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5262 goto discard;
5263 }
5264 }
5265 }
5266 break;
5267
5268 case TCP_CLOSING:
5269 if (tp->snd_una == tp->write_seq) {
5270 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5271 goto discard;
5272 }
5273 break;
5274
5275 case TCP_LAST_ACK:
5276 if (tp->snd_una == tp->write_seq) {
5277 tcp_update_metrics(sk);
5278 tcp_done(sk);
5279 goto discard;
5280 }
5281 break;
5282 }
5283 } else
5284 goto discard;
5285
5286 /* step 6: check the URG bit */
5287 tcp_urg(sk, skb, th);
5288
5289 /* step 7: process the segment text */
5290 switch (sk->sk_state) {
5291 case TCP_CLOSE_WAIT:
5292 case TCP_CLOSING:
5293 case TCP_LAST_ACK:
5294 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5295 break;
5296 case TCP_FIN_WAIT1:
5297 case TCP_FIN_WAIT2:
5298 /* RFC 793 says to queue data in these states,
5299 * RFC 1122 says we MUST send a reset.
5300 * BSD 4.4 also does reset.
5301 */
5302 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5303 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5304 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5305 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5306 tcp_reset(sk);
5307 return 1;
5308 }
5309 }
5310 /* Fall through */
5311 case TCP_ESTABLISHED:
5312 tcp_data_queue(sk, skb);
5313 queued = 1;
5314 break;
5315 }
5316
5317 /* tcp_data could move socket to TIME-WAIT */
5318 if (sk->sk_state != TCP_CLOSE) {
5319 tcp_data_snd_check(sk);
5320 tcp_ack_snd_check(sk);
5321 }
5322
5323 if (!queued) {
5324 discard:
5325 __kfree_skb(skb);
5326 }
5327 return 0;
5328 }
5329
5330 EXPORT_SYMBOL(sysctl_tcp_ecn);
5331 EXPORT_SYMBOL(sysctl_tcp_reordering);
5332 EXPORT_SYMBOL(tcp_parse_options);
5333 EXPORT_SYMBOL(tcp_rcv_established);
5334 EXPORT_SYMBOL(tcp_rcv_state_process);
5335 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.292817 seconds and 6 git commands to generate.