[TCP] FRTO: Fake cwnd for ssthresh callback
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114
115 /* Adapt the MSS value used to make delayed ack decision to the
116 * real world.
117 */
118 static void tcp_measure_rcv_mss(struct sock *sk,
119 const struct sk_buff *skb)
120 {
121 struct inet_connection_sock *icsk = inet_csk(sk);
122 const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 unsigned int len;
124
125 icsk->icsk_ack.last_seg_size = 0;
126
127 /* skb->len may jitter because of SACKs, even if peer
128 * sends good full-sized frames.
129 */
130 len = skb_shinfo(skb)->gso_size ?: skb->len;
131 if (len >= icsk->icsk_ack.rcv_mss) {
132 icsk->icsk_ack.rcv_mss = len;
133 } else {
134 /* Otherwise, we make more careful check taking into account,
135 * that SACKs block is variable.
136 *
137 * "len" is invariant segment length, including TCP header.
138 */
139 len += skb->data - skb->h.raw;
140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 /* If PSH is not set, packet should be
142 * full sized, provided peer TCP is not badly broken.
143 * This observation (if it is correct 8)) allows
144 * to handle super-low mtu links fairly.
145 */
146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 /* Subtract also invariant (if peer is RFC compliant),
149 * tcp header plus fixed timestamp option length.
150 * Resulting "len" is MSS free of SACK jitter.
151 */
152 len -= tcp_sk(sk)->tcp_header_len;
153 icsk->icsk_ack.last_seg_size = len;
154 if (len == lss) {
155 icsk->icsk_ack.rcv_mss = len;
156 return;
157 }
158 }
159 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
160 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
161 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
162 }
163 }
164
165 static void tcp_incr_quickack(struct sock *sk)
166 {
167 struct inet_connection_sock *icsk = inet_csk(sk);
168 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
169
170 if (quickacks==0)
171 quickacks=2;
172 if (quickacks > icsk->icsk_ack.quick)
173 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
174 }
175
176 void tcp_enter_quickack_mode(struct sock *sk)
177 {
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 tcp_incr_quickack(sk);
180 icsk->icsk_ack.pingpong = 0;
181 icsk->icsk_ack.ato = TCP_ATO_MIN;
182 }
183
184 /* Send ACKs quickly, if "quick" count is not exhausted
185 * and the session is not interactive.
186 */
187
188 static inline int tcp_in_quickack_mode(const struct sock *sk)
189 {
190 const struct inet_connection_sock *icsk = inet_csk(sk);
191 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
192 }
193
194 /* Buffer size and advertised window tuning.
195 *
196 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197 */
198
199 static void tcp_fixup_sndbuf(struct sock *sk)
200 {
201 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
202 sizeof(struct sk_buff);
203
204 if (sk->sk_sndbuf < 3 * sndmem)
205 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206 }
207
208 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
209 *
210 * All tcp_full_space() is split to two parts: "network" buffer, allocated
211 * forward and advertised in receiver window (tp->rcv_wnd) and
212 * "application buffer", required to isolate scheduling/application
213 * latencies from network.
214 * window_clamp is maximal advertised window. It can be less than
215 * tcp_full_space(), in this case tcp_full_space() - window_clamp
216 * is reserved for "application" buffer. The less window_clamp is
217 * the smoother our behaviour from viewpoint of network, but the lower
218 * throughput and the higher sensitivity of the connection to losses. 8)
219 *
220 * rcv_ssthresh is more strict window_clamp used at "slow start"
221 * phase to predict further behaviour of this connection.
222 * It is used for two goals:
223 * - to enforce header prediction at sender, even when application
224 * requires some significant "application buffer". It is check #1.
225 * - to prevent pruning of receive queue because of misprediction
226 * of receiver window. Check #2.
227 *
228 * The scheme does not work when sender sends good segments opening
229 * window and then starts to feed us spaghetti. But it should work
230 * in common situations. Otherwise, we have to rely on queue collapsing.
231 */
232
233 /* Slow part of check#2. */
234 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
235 const struct sk_buff *skb)
236 {
237 /* Optimize this! */
238 int truesize = tcp_win_from_space(skb->truesize)/2;
239 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
240
241 while (tp->rcv_ssthresh <= window) {
242 if (truesize <= skb->len)
243 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
244
245 truesize >>= 1;
246 window >>= 1;
247 }
248 return 0;
249 }
250
251 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
252 struct sk_buff *skb)
253 {
254 /* Check #1 */
255 if (tp->rcv_ssthresh < tp->window_clamp &&
256 (int)tp->rcv_ssthresh < tcp_space(sk) &&
257 !tcp_memory_pressure) {
258 int incr;
259
260 /* Check #2. Increase window, if skb with such overhead
261 * will fit to rcvbuf in future.
262 */
263 if (tcp_win_from_space(skb->truesize) <= skb->len)
264 incr = 2*tp->advmss;
265 else
266 incr = __tcp_grow_window(sk, tp, skb);
267
268 if (incr) {
269 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
270 inet_csk(sk)->icsk_ack.quick |= 1;
271 }
272 }
273 }
274
275 /* 3. Tuning rcvbuf, when connection enters established state. */
276
277 static void tcp_fixup_rcvbuf(struct sock *sk)
278 {
279 struct tcp_sock *tp = tcp_sk(sk);
280 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
281
282 /* Try to select rcvbuf so that 4 mss-sized segments
283 * will fit to window and corresponding skbs will fit to our rcvbuf.
284 * (was 3; 4 is minimum to allow fast retransmit to work.)
285 */
286 while (tcp_win_from_space(rcvmem) < tp->advmss)
287 rcvmem += 128;
288 if (sk->sk_rcvbuf < 4 * rcvmem)
289 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290 }
291
292 /* 4. Try to fixup all. It is made immediately after connection enters
293 * established state.
294 */
295 static void tcp_init_buffer_space(struct sock *sk)
296 {
297 struct tcp_sock *tp = tcp_sk(sk);
298 int maxwin;
299
300 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
301 tcp_fixup_rcvbuf(sk);
302 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
303 tcp_fixup_sndbuf(sk);
304
305 tp->rcvq_space.space = tp->rcv_wnd;
306
307 maxwin = tcp_full_space(sk);
308
309 if (tp->window_clamp >= maxwin) {
310 tp->window_clamp = maxwin;
311
312 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
313 tp->window_clamp = max(maxwin -
314 (maxwin >> sysctl_tcp_app_win),
315 4 * tp->advmss);
316 }
317
318 /* Force reservation of one segment. */
319 if (sysctl_tcp_app_win &&
320 tp->window_clamp > 2 * tp->advmss &&
321 tp->window_clamp + tp->advmss > maxwin)
322 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
323
324 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
325 tp->snd_cwnd_stamp = tcp_time_stamp;
326 }
327
328 /* 5. Recalculate window clamp after socket hit its memory bounds. */
329 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
330 {
331 struct inet_connection_sock *icsk = inet_csk(sk);
332
333 icsk->icsk_ack.quick = 0;
334
335 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
336 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
337 !tcp_memory_pressure &&
338 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
339 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
340 sysctl_tcp_rmem[2]);
341 }
342 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
343 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
344 }
345
346
347 /* Initialize RCV_MSS value.
348 * RCV_MSS is an our guess about MSS used by the peer.
349 * We haven't any direct information about the MSS.
350 * It's better to underestimate the RCV_MSS rather than overestimate.
351 * Overestimations make us ACKing less frequently than needed.
352 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
353 */
354 void tcp_initialize_rcv_mss(struct sock *sk)
355 {
356 struct tcp_sock *tp = tcp_sk(sk);
357 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
358
359 hint = min(hint, tp->rcv_wnd/2);
360 hint = min(hint, TCP_MIN_RCVMSS);
361 hint = max(hint, TCP_MIN_MSS);
362
363 inet_csk(sk)->icsk_ack.rcv_mss = hint;
364 }
365
366 /* Receiver "autotuning" code.
367 *
368 * The algorithm for RTT estimation w/o timestamps is based on
369 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
370 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
371 *
372 * More detail on this code can be found at
373 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
374 * though this reference is out of date. A new paper
375 * is pending.
376 */
377 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
378 {
379 u32 new_sample = tp->rcv_rtt_est.rtt;
380 long m = sample;
381
382 if (m == 0)
383 m = 1;
384
385 if (new_sample != 0) {
386 /* If we sample in larger samples in the non-timestamp
387 * case, we could grossly overestimate the RTT especially
388 * with chatty applications or bulk transfer apps which
389 * are stalled on filesystem I/O.
390 *
391 * Also, since we are only going for a minimum in the
392 * non-timestamp case, we do not smooth things out
393 * else with timestamps disabled convergence takes too
394 * long.
395 */
396 if (!win_dep) {
397 m -= (new_sample >> 3);
398 new_sample += m;
399 } else if (m < new_sample)
400 new_sample = m << 3;
401 } else {
402 /* No previous measure. */
403 new_sample = m << 3;
404 }
405
406 if (tp->rcv_rtt_est.rtt != new_sample)
407 tp->rcv_rtt_est.rtt = new_sample;
408 }
409
410 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
411 {
412 if (tp->rcv_rtt_est.time == 0)
413 goto new_measure;
414 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
415 return;
416 tcp_rcv_rtt_update(tp,
417 jiffies - tp->rcv_rtt_est.time,
418 1);
419
420 new_measure:
421 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
422 tp->rcv_rtt_est.time = tcp_time_stamp;
423 }
424
425 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
426 {
427 struct tcp_sock *tp = tcp_sk(sk);
428 if (tp->rx_opt.rcv_tsecr &&
429 (TCP_SKB_CB(skb)->end_seq -
430 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
431 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
432 }
433
434 /*
435 * This function should be called every time data is copied to user space.
436 * It calculates the appropriate TCP receive buffer space.
437 */
438 void tcp_rcv_space_adjust(struct sock *sk)
439 {
440 struct tcp_sock *tp = tcp_sk(sk);
441 int time;
442 int space;
443
444 if (tp->rcvq_space.time == 0)
445 goto new_measure;
446
447 time = tcp_time_stamp - tp->rcvq_space.time;
448 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
449 tp->rcv_rtt_est.rtt == 0)
450 return;
451
452 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
453
454 space = max(tp->rcvq_space.space, space);
455
456 if (tp->rcvq_space.space != space) {
457 int rcvmem;
458
459 tp->rcvq_space.space = space;
460
461 if (sysctl_tcp_moderate_rcvbuf &&
462 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
463 int new_clamp = space;
464
465 /* Receive space grows, normalize in order to
466 * take into account packet headers and sk_buff
467 * structure overhead.
468 */
469 space /= tp->advmss;
470 if (!space)
471 space = 1;
472 rcvmem = (tp->advmss + MAX_TCP_HEADER +
473 16 + sizeof(struct sk_buff));
474 while (tcp_win_from_space(rcvmem) < tp->advmss)
475 rcvmem += 128;
476 space *= rcvmem;
477 space = min(space, sysctl_tcp_rmem[2]);
478 if (space > sk->sk_rcvbuf) {
479 sk->sk_rcvbuf = space;
480
481 /* Make the window clamp follow along. */
482 tp->window_clamp = new_clamp;
483 }
484 }
485 }
486
487 new_measure:
488 tp->rcvq_space.seq = tp->copied_seq;
489 tp->rcvq_space.time = tcp_time_stamp;
490 }
491
492 /* There is something which you must keep in mind when you analyze the
493 * behavior of the tp->ato delayed ack timeout interval. When a
494 * connection starts up, we want to ack as quickly as possible. The
495 * problem is that "good" TCP's do slow start at the beginning of data
496 * transmission. The means that until we send the first few ACK's the
497 * sender will sit on his end and only queue most of his data, because
498 * he can only send snd_cwnd unacked packets at any given time. For
499 * each ACK we send, he increments snd_cwnd and transmits more of his
500 * queue. -DaveM
501 */
502 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
503 {
504 struct inet_connection_sock *icsk = inet_csk(sk);
505 u32 now;
506
507 inet_csk_schedule_ack(sk);
508
509 tcp_measure_rcv_mss(sk, skb);
510
511 tcp_rcv_rtt_measure(tp);
512
513 now = tcp_time_stamp;
514
515 if (!icsk->icsk_ack.ato) {
516 /* The _first_ data packet received, initialize
517 * delayed ACK engine.
518 */
519 tcp_incr_quickack(sk);
520 icsk->icsk_ack.ato = TCP_ATO_MIN;
521 } else {
522 int m = now - icsk->icsk_ack.lrcvtime;
523
524 if (m <= TCP_ATO_MIN/2) {
525 /* The fastest case is the first. */
526 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
527 } else if (m < icsk->icsk_ack.ato) {
528 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
529 if (icsk->icsk_ack.ato > icsk->icsk_rto)
530 icsk->icsk_ack.ato = icsk->icsk_rto;
531 } else if (m > icsk->icsk_rto) {
532 /* Too long gap. Apparently sender failed to
533 * restart window, so that we send ACKs quickly.
534 */
535 tcp_incr_quickack(sk);
536 sk_stream_mem_reclaim(sk);
537 }
538 }
539 icsk->icsk_ack.lrcvtime = now;
540
541 TCP_ECN_check_ce(tp, skb);
542
543 if (skb->len >= 128)
544 tcp_grow_window(sk, tp, skb);
545 }
546
547 /* Called to compute a smoothed rtt estimate. The data fed to this
548 * routine either comes from timestamps, or from segments that were
549 * known _not_ to have been retransmitted [see Karn/Partridge
550 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
551 * piece by Van Jacobson.
552 * NOTE: the next three routines used to be one big routine.
553 * To save cycles in the RFC 1323 implementation it was better to break
554 * it up into three procedures. -- erics
555 */
556 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
557 {
558 struct tcp_sock *tp = tcp_sk(sk);
559 long m = mrtt; /* RTT */
560
561 /* The following amusing code comes from Jacobson's
562 * article in SIGCOMM '88. Note that rtt and mdev
563 * are scaled versions of rtt and mean deviation.
564 * This is designed to be as fast as possible
565 * m stands for "measurement".
566 *
567 * On a 1990 paper the rto value is changed to:
568 * RTO = rtt + 4 * mdev
569 *
570 * Funny. This algorithm seems to be very broken.
571 * These formulae increase RTO, when it should be decreased, increase
572 * too slowly, when it should be increased quickly, decrease too quickly
573 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
574 * does not matter how to _calculate_ it. Seems, it was trap
575 * that VJ failed to avoid. 8)
576 */
577 if(m == 0)
578 m = 1;
579 if (tp->srtt != 0) {
580 m -= (tp->srtt >> 3); /* m is now error in rtt est */
581 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
582 if (m < 0) {
583 m = -m; /* m is now abs(error) */
584 m -= (tp->mdev >> 2); /* similar update on mdev */
585 /* This is similar to one of Eifel findings.
586 * Eifel blocks mdev updates when rtt decreases.
587 * This solution is a bit different: we use finer gain
588 * for mdev in this case (alpha*beta).
589 * Like Eifel it also prevents growth of rto,
590 * but also it limits too fast rto decreases,
591 * happening in pure Eifel.
592 */
593 if (m > 0)
594 m >>= 3;
595 } else {
596 m -= (tp->mdev >> 2); /* similar update on mdev */
597 }
598 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
599 if (tp->mdev > tp->mdev_max) {
600 tp->mdev_max = tp->mdev;
601 if (tp->mdev_max > tp->rttvar)
602 tp->rttvar = tp->mdev_max;
603 }
604 if (after(tp->snd_una, tp->rtt_seq)) {
605 if (tp->mdev_max < tp->rttvar)
606 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
607 tp->rtt_seq = tp->snd_nxt;
608 tp->mdev_max = TCP_RTO_MIN;
609 }
610 } else {
611 /* no previous measure. */
612 tp->srtt = m<<3; /* take the measured time to be rtt */
613 tp->mdev = m<<1; /* make sure rto = 3*rtt */
614 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
615 tp->rtt_seq = tp->snd_nxt;
616 }
617 }
618
619 /* Calculate rto without backoff. This is the second half of Van Jacobson's
620 * routine referred to above.
621 */
622 static inline void tcp_set_rto(struct sock *sk)
623 {
624 const struct tcp_sock *tp = tcp_sk(sk);
625 /* Old crap is replaced with new one. 8)
626 *
627 * More seriously:
628 * 1. If rtt variance happened to be less 50msec, it is hallucination.
629 * It cannot be less due to utterly erratic ACK generation made
630 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
631 * to do with delayed acks, because at cwnd>2 true delack timeout
632 * is invisible. Actually, Linux-2.4 also generates erratic
633 * ACKs in some circumstances.
634 */
635 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
636
637 /* 2. Fixups made earlier cannot be right.
638 * If we do not estimate RTO correctly without them,
639 * all the algo is pure shit and should be replaced
640 * with correct one. It is exactly, which we pretend to do.
641 */
642 }
643
644 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
645 * guarantees that rto is higher.
646 */
647 static inline void tcp_bound_rto(struct sock *sk)
648 {
649 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
650 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
651 }
652
653 /* Save metrics learned by this TCP session.
654 This function is called only, when TCP finishes successfully
655 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
656 */
657 void tcp_update_metrics(struct sock *sk)
658 {
659 struct tcp_sock *tp = tcp_sk(sk);
660 struct dst_entry *dst = __sk_dst_get(sk);
661
662 if (sysctl_tcp_nometrics_save)
663 return;
664
665 dst_confirm(dst);
666
667 if (dst && (dst->flags&DST_HOST)) {
668 const struct inet_connection_sock *icsk = inet_csk(sk);
669 int m;
670
671 if (icsk->icsk_backoff || !tp->srtt) {
672 /* This session failed to estimate rtt. Why?
673 * Probably, no packets returned in time.
674 * Reset our results.
675 */
676 if (!(dst_metric_locked(dst, RTAX_RTT)))
677 dst->metrics[RTAX_RTT-1] = 0;
678 return;
679 }
680
681 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
682
683 /* If newly calculated rtt larger than stored one,
684 * store new one. Otherwise, use EWMA. Remember,
685 * rtt overestimation is always better than underestimation.
686 */
687 if (!(dst_metric_locked(dst, RTAX_RTT))) {
688 if (m <= 0)
689 dst->metrics[RTAX_RTT-1] = tp->srtt;
690 else
691 dst->metrics[RTAX_RTT-1] -= (m>>3);
692 }
693
694 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
695 if (m < 0)
696 m = -m;
697
698 /* Scale deviation to rttvar fixed point */
699 m >>= 1;
700 if (m < tp->mdev)
701 m = tp->mdev;
702
703 if (m >= dst_metric(dst, RTAX_RTTVAR))
704 dst->metrics[RTAX_RTTVAR-1] = m;
705 else
706 dst->metrics[RTAX_RTTVAR-1] -=
707 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
708 }
709
710 if (tp->snd_ssthresh >= 0xFFFF) {
711 /* Slow start still did not finish. */
712 if (dst_metric(dst, RTAX_SSTHRESH) &&
713 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
714 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
715 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
716 if (!dst_metric_locked(dst, RTAX_CWND) &&
717 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
718 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
719 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
720 icsk->icsk_ca_state == TCP_CA_Open) {
721 /* Cong. avoidance phase, cwnd is reliable. */
722 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
723 dst->metrics[RTAX_SSTHRESH-1] =
724 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
725 if (!dst_metric_locked(dst, RTAX_CWND))
726 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
727 } else {
728 /* Else slow start did not finish, cwnd is non-sense,
729 ssthresh may be also invalid.
730 */
731 if (!dst_metric_locked(dst, RTAX_CWND))
732 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
733 if (dst->metrics[RTAX_SSTHRESH-1] &&
734 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
735 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
736 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
737 }
738
739 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
740 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
741 tp->reordering != sysctl_tcp_reordering)
742 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
743 }
744 }
745 }
746
747 /* Numbers are taken from RFC2414. */
748 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
749 {
750 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
751
752 if (!cwnd) {
753 if (tp->mss_cache > 1460)
754 cwnd = 2;
755 else
756 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
757 }
758 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
759 }
760
761 /* Set slow start threshold and cwnd not falling to slow start */
762 void tcp_enter_cwr(struct sock *sk)
763 {
764 struct tcp_sock *tp = tcp_sk(sk);
765
766 tp->prior_ssthresh = 0;
767 tp->bytes_acked = 0;
768 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
769 tp->undo_marker = 0;
770 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
771 tp->snd_cwnd = min(tp->snd_cwnd,
772 tcp_packets_in_flight(tp) + 1U);
773 tp->snd_cwnd_cnt = 0;
774 tp->high_seq = tp->snd_nxt;
775 tp->snd_cwnd_stamp = tcp_time_stamp;
776 TCP_ECN_queue_cwr(tp);
777
778 tcp_set_ca_state(sk, TCP_CA_CWR);
779 }
780 }
781
782 /* Initialize metrics on socket. */
783
784 static void tcp_init_metrics(struct sock *sk)
785 {
786 struct tcp_sock *tp = tcp_sk(sk);
787 struct dst_entry *dst = __sk_dst_get(sk);
788
789 if (dst == NULL)
790 goto reset;
791
792 dst_confirm(dst);
793
794 if (dst_metric_locked(dst, RTAX_CWND))
795 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
796 if (dst_metric(dst, RTAX_SSTHRESH)) {
797 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
798 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
799 tp->snd_ssthresh = tp->snd_cwnd_clamp;
800 }
801 if (dst_metric(dst, RTAX_REORDERING) &&
802 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
803 tp->rx_opt.sack_ok &= ~2;
804 tp->reordering = dst_metric(dst, RTAX_REORDERING);
805 }
806
807 if (dst_metric(dst, RTAX_RTT) == 0)
808 goto reset;
809
810 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
811 goto reset;
812
813 /* Initial rtt is determined from SYN,SYN-ACK.
814 * The segment is small and rtt may appear much
815 * less than real one. Use per-dst memory
816 * to make it more realistic.
817 *
818 * A bit of theory. RTT is time passed after "normal" sized packet
819 * is sent until it is ACKed. In normal circumstances sending small
820 * packets force peer to delay ACKs and calculation is correct too.
821 * The algorithm is adaptive and, provided we follow specs, it
822 * NEVER underestimate RTT. BUT! If peer tries to make some clever
823 * tricks sort of "quick acks" for time long enough to decrease RTT
824 * to low value, and then abruptly stops to do it and starts to delay
825 * ACKs, wait for troubles.
826 */
827 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
828 tp->srtt = dst_metric(dst, RTAX_RTT);
829 tp->rtt_seq = tp->snd_nxt;
830 }
831 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
832 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
833 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
834 }
835 tcp_set_rto(sk);
836 tcp_bound_rto(sk);
837 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
838 goto reset;
839 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
840 tp->snd_cwnd_stamp = tcp_time_stamp;
841 return;
842
843 reset:
844 /* Play conservative. If timestamps are not
845 * supported, TCP will fail to recalculate correct
846 * rtt, if initial rto is too small. FORGET ALL AND RESET!
847 */
848 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
849 tp->srtt = 0;
850 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
851 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
852 }
853 }
854
855 static void tcp_update_reordering(struct sock *sk, const int metric,
856 const int ts)
857 {
858 struct tcp_sock *tp = tcp_sk(sk);
859 if (metric > tp->reordering) {
860 tp->reordering = min(TCP_MAX_REORDERING, metric);
861
862 /* This exciting event is worth to be remembered. 8) */
863 if (ts)
864 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
865 else if (IsReno(tp))
866 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
867 else if (IsFack(tp))
868 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
869 else
870 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
871 #if FASTRETRANS_DEBUG > 1
872 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
873 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
874 tp->reordering,
875 tp->fackets_out,
876 tp->sacked_out,
877 tp->undo_marker ? tp->undo_retrans : 0);
878 #endif
879 /* Disable FACK yet. */
880 tp->rx_opt.sack_ok &= ~2;
881 }
882 }
883
884 /* This procedure tags the retransmission queue when SACKs arrive.
885 *
886 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
887 * Packets in queue with these bits set are counted in variables
888 * sacked_out, retrans_out and lost_out, correspondingly.
889 *
890 * Valid combinations are:
891 * Tag InFlight Description
892 * 0 1 - orig segment is in flight.
893 * S 0 - nothing flies, orig reached receiver.
894 * L 0 - nothing flies, orig lost by net.
895 * R 2 - both orig and retransmit are in flight.
896 * L|R 1 - orig is lost, retransmit is in flight.
897 * S|R 1 - orig reached receiver, retrans is still in flight.
898 * (L|S|R is logically valid, it could occur when L|R is sacked,
899 * but it is equivalent to plain S and code short-curcuits it to S.
900 * L|S is logically invalid, it would mean -1 packet in flight 8))
901 *
902 * These 6 states form finite state machine, controlled by the following events:
903 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
904 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
905 * 3. Loss detection event of one of three flavors:
906 * A. Scoreboard estimator decided the packet is lost.
907 * A'. Reno "three dupacks" marks head of queue lost.
908 * A''. Its FACK modfication, head until snd.fack is lost.
909 * B. SACK arrives sacking data transmitted after never retransmitted
910 * hole was sent out.
911 * C. SACK arrives sacking SND.NXT at the moment, when the
912 * segment was retransmitted.
913 * 4. D-SACK added new rule: D-SACK changes any tag to S.
914 *
915 * It is pleasant to note, that state diagram turns out to be commutative,
916 * so that we are allowed not to be bothered by order of our actions,
917 * when multiple events arrive simultaneously. (see the function below).
918 *
919 * Reordering detection.
920 * --------------------
921 * Reordering metric is maximal distance, which a packet can be displaced
922 * in packet stream. With SACKs we can estimate it:
923 *
924 * 1. SACK fills old hole and the corresponding segment was not
925 * ever retransmitted -> reordering. Alas, we cannot use it
926 * when segment was retransmitted.
927 * 2. The last flaw is solved with D-SACK. D-SACK arrives
928 * for retransmitted and already SACKed segment -> reordering..
929 * Both of these heuristics are not used in Loss state, when we cannot
930 * account for retransmits accurately.
931 */
932 static int
933 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
934 {
935 const struct inet_connection_sock *icsk = inet_csk(sk);
936 struct tcp_sock *tp = tcp_sk(sk);
937 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
938 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
939 struct sk_buff *cached_skb;
940 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
941 int reord = tp->packets_out;
942 int prior_fackets;
943 u32 lost_retrans = 0;
944 int flag = 0;
945 int dup_sack = 0;
946 int cached_fack_count;
947 int i;
948 int first_sack_index;
949
950 if (!tp->sacked_out)
951 tp->fackets_out = 0;
952 prior_fackets = tp->fackets_out;
953
954 /* Check for D-SACK. */
955 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
956 dup_sack = 1;
957 tp->rx_opt.sack_ok |= 4;
958 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
959 } else if (num_sacks > 1 &&
960 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
961 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
962 dup_sack = 1;
963 tp->rx_opt.sack_ok |= 4;
964 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
965 }
966
967 /* D-SACK for already forgotten data...
968 * Do dumb counting. */
969 if (dup_sack &&
970 !after(ntohl(sp[0].end_seq), prior_snd_una) &&
971 after(ntohl(sp[0].end_seq), tp->undo_marker))
972 tp->undo_retrans--;
973
974 /* Eliminate too old ACKs, but take into
975 * account more or less fresh ones, they can
976 * contain valid SACK info.
977 */
978 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
979 return 0;
980
981 /* SACK fastpath:
982 * if the only SACK change is the increase of the end_seq of
983 * the first block then only apply that SACK block
984 * and use retrans queue hinting otherwise slowpath */
985 flag = 1;
986 for (i = 0; i < num_sacks; i++) {
987 __be32 start_seq = sp[i].start_seq;
988 __be32 end_seq = sp[i].end_seq;
989
990 if (i == 0) {
991 if (tp->recv_sack_cache[i].start_seq != start_seq)
992 flag = 0;
993 } else {
994 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
995 (tp->recv_sack_cache[i].end_seq != end_seq))
996 flag = 0;
997 }
998 tp->recv_sack_cache[i].start_seq = start_seq;
999 tp->recv_sack_cache[i].end_seq = end_seq;
1000 }
1001 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1002 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1003 tp->recv_sack_cache[i].start_seq = 0;
1004 tp->recv_sack_cache[i].end_seq = 0;
1005 }
1006
1007 first_sack_index = 0;
1008 if (flag)
1009 num_sacks = 1;
1010 else {
1011 int j;
1012 tp->fastpath_skb_hint = NULL;
1013
1014 /* order SACK blocks to allow in order walk of the retrans queue */
1015 for (i = num_sacks-1; i > 0; i--) {
1016 for (j = 0; j < i; j++){
1017 if (after(ntohl(sp[j].start_seq),
1018 ntohl(sp[j+1].start_seq))){
1019 struct tcp_sack_block_wire tmp;
1020
1021 tmp = sp[j];
1022 sp[j] = sp[j+1];
1023 sp[j+1] = tmp;
1024
1025 /* Track where the first SACK block goes to */
1026 if (j == first_sack_index)
1027 first_sack_index = j+1;
1028 }
1029
1030 }
1031 }
1032 }
1033
1034 /* clear flag as used for different purpose in following code */
1035 flag = 0;
1036
1037 /* Use SACK fastpath hint if valid */
1038 cached_skb = tp->fastpath_skb_hint;
1039 cached_fack_count = tp->fastpath_cnt_hint;
1040 if (!cached_skb) {
1041 cached_skb = sk->sk_write_queue.next;
1042 cached_fack_count = 0;
1043 }
1044
1045 for (i=0; i<num_sacks; i++, sp++) {
1046 struct sk_buff *skb;
1047 __u32 start_seq = ntohl(sp->start_seq);
1048 __u32 end_seq = ntohl(sp->end_seq);
1049 int fack_count;
1050
1051 skb = cached_skb;
1052 fack_count = cached_fack_count;
1053
1054 /* Event "B" in the comment above. */
1055 if (after(end_seq, tp->high_seq))
1056 flag |= FLAG_DATA_LOST;
1057
1058 sk_stream_for_retrans_queue_from(skb, sk) {
1059 int in_sack, pcount;
1060 u8 sacked;
1061
1062 cached_skb = skb;
1063 cached_fack_count = fack_count;
1064 if (i == first_sack_index) {
1065 tp->fastpath_skb_hint = skb;
1066 tp->fastpath_cnt_hint = fack_count;
1067 }
1068
1069 /* The retransmission queue is always in order, so
1070 * we can short-circuit the walk early.
1071 */
1072 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1073 break;
1074
1075 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1076 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1077
1078 pcount = tcp_skb_pcount(skb);
1079
1080 if (pcount > 1 && !in_sack &&
1081 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1082 unsigned int pkt_len;
1083
1084 in_sack = !after(start_seq,
1085 TCP_SKB_CB(skb)->seq);
1086
1087 if (!in_sack)
1088 pkt_len = (start_seq -
1089 TCP_SKB_CB(skb)->seq);
1090 else
1091 pkt_len = (end_seq -
1092 TCP_SKB_CB(skb)->seq);
1093 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1094 break;
1095 pcount = tcp_skb_pcount(skb);
1096 }
1097
1098 fack_count += pcount;
1099
1100 sacked = TCP_SKB_CB(skb)->sacked;
1101
1102 /* Account D-SACK for retransmitted packet. */
1103 if ((dup_sack && in_sack) &&
1104 (sacked & TCPCB_RETRANS) &&
1105 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1106 tp->undo_retrans--;
1107
1108 /* The frame is ACKed. */
1109 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1110 if (sacked&TCPCB_RETRANS) {
1111 if ((dup_sack && in_sack) &&
1112 (sacked&TCPCB_SACKED_ACKED))
1113 reord = min(fack_count, reord);
1114 } else {
1115 /* If it was in a hole, we detected reordering. */
1116 if (fack_count < prior_fackets &&
1117 !(sacked&TCPCB_SACKED_ACKED))
1118 reord = min(fack_count, reord);
1119 }
1120
1121 /* Nothing to do; acked frame is about to be dropped. */
1122 continue;
1123 }
1124
1125 if ((sacked&TCPCB_SACKED_RETRANS) &&
1126 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1127 (!lost_retrans || after(end_seq, lost_retrans)))
1128 lost_retrans = end_seq;
1129
1130 if (!in_sack)
1131 continue;
1132
1133 if (!(sacked&TCPCB_SACKED_ACKED)) {
1134 if (sacked & TCPCB_SACKED_RETRANS) {
1135 /* If the segment is not tagged as lost,
1136 * we do not clear RETRANS, believing
1137 * that retransmission is still in flight.
1138 */
1139 if (sacked & TCPCB_LOST) {
1140 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1141 tp->lost_out -= tcp_skb_pcount(skb);
1142 tp->retrans_out -= tcp_skb_pcount(skb);
1143
1144 /* clear lost hint */
1145 tp->retransmit_skb_hint = NULL;
1146 }
1147 } else {
1148 /* New sack for not retransmitted frame,
1149 * which was in hole. It is reordering.
1150 */
1151 if (!(sacked & TCPCB_RETRANS) &&
1152 fack_count < prior_fackets)
1153 reord = min(fack_count, reord);
1154
1155 if (sacked & TCPCB_LOST) {
1156 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1157 tp->lost_out -= tcp_skb_pcount(skb);
1158
1159 /* clear lost hint */
1160 tp->retransmit_skb_hint = NULL;
1161 }
1162 }
1163
1164 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1165 flag |= FLAG_DATA_SACKED;
1166 tp->sacked_out += tcp_skb_pcount(skb);
1167
1168 if (fack_count > tp->fackets_out)
1169 tp->fackets_out = fack_count;
1170 } else {
1171 if (dup_sack && (sacked&TCPCB_RETRANS))
1172 reord = min(fack_count, reord);
1173 }
1174
1175 /* D-SACK. We can detect redundant retransmission
1176 * in S|R and plain R frames and clear it.
1177 * undo_retrans is decreased above, L|R frames
1178 * are accounted above as well.
1179 */
1180 if (dup_sack &&
1181 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1182 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1183 tp->retrans_out -= tcp_skb_pcount(skb);
1184 tp->retransmit_skb_hint = NULL;
1185 }
1186 }
1187 }
1188
1189 /* Check for lost retransmit. This superb idea is
1190 * borrowed from "ratehalving". Event "C".
1191 * Later note: FACK people cheated me again 8),
1192 * we have to account for reordering! Ugly,
1193 * but should help.
1194 */
1195 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1196 struct sk_buff *skb;
1197
1198 sk_stream_for_retrans_queue(skb, sk) {
1199 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1200 break;
1201 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1202 continue;
1203 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1204 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1205 (IsFack(tp) ||
1206 !before(lost_retrans,
1207 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1208 tp->mss_cache))) {
1209 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1210 tp->retrans_out -= tcp_skb_pcount(skb);
1211
1212 /* clear lost hint */
1213 tp->retransmit_skb_hint = NULL;
1214
1215 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1216 tp->lost_out += tcp_skb_pcount(skb);
1217 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1218 flag |= FLAG_DATA_SACKED;
1219 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1220 }
1221 }
1222 }
1223 }
1224
1225 tp->left_out = tp->sacked_out + tp->lost_out;
1226
1227 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1228 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1229
1230 #if FASTRETRANS_DEBUG > 0
1231 BUG_TRAP((int)tp->sacked_out >= 0);
1232 BUG_TRAP((int)tp->lost_out >= 0);
1233 BUG_TRAP((int)tp->retrans_out >= 0);
1234 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1235 #endif
1236 return flag;
1237 }
1238
1239 /* F-RTO can only be used if these conditions are satisfied:
1240 * - there must be some unsent new data
1241 * - the advertised window should allow sending it
1242 * - TCP has never retransmitted anything other than head
1243 */
1244 int tcp_use_frto(struct sock *sk)
1245 {
1246 const struct tcp_sock *tp = tcp_sk(sk);
1247 struct sk_buff *skb;
1248
1249 if (!sysctl_tcp_frto || !sk->sk_send_head ||
1250 after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
1251 tp->snd_una + tp->snd_wnd))
1252 return 0;
1253
1254 /* Avoid expensive walking of rexmit queue if possible */
1255 if (tp->retrans_out > 1)
1256 return 0;
1257
1258 skb = skb_peek(&sk->sk_write_queue)->next; /* Skips head */
1259 sk_stream_for_retrans_queue_from(skb, sk) {
1260 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1261 return 0;
1262 /* Short-circuit when first non-SACKed skb has been checked */
1263 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1264 break;
1265 }
1266 return 1;
1267 }
1268
1269 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1270 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1271 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1272 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1273 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1274 * bits are handled if the Loss state is really to be entered (in
1275 * tcp_enter_frto_loss).
1276 *
1277 * Do like tcp_enter_loss() would; when RTO expires the second time it
1278 * does:
1279 * "Reduce ssthresh if it has not yet been made inside this window."
1280 */
1281 void tcp_enter_frto(struct sock *sk)
1282 {
1283 const struct inet_connection_sock *icsk = inet_csk(sk);
1284 struct tcp_sock *tp = tcp_sk(sk);
1285 struct sk_buff *skb;
1286
1287 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1288 tp->snd_una == tp->high_seq ||
1289 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1290 !icsk->icsk_retransmits)) {
1291 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1292 /* Our state is too optimistic in ssthresh() call because cwnd
1293 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1294 * recovery has not yet completed. Pattern would be this: RTO,
1295 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1296 * up here twice).
1297 * RFC4138 should be more specific on what to do, even though
1298 * RTO is quite unlikely to occur after the first Cumulative ACK
1299 * due to back-off and complexity of triggering events ...
1300 */
1301 if (tp->frto_counter) {
1302 u32 stored_cwnd;
1303 stored_cwnd = tp->snd_cwnd;
1304 tp->snd_cwnd = 2;
1305 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1306 tp->snd_cwnd = stored_cwnd;
1307 } else {
1308 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1309 }
1310 /* ... in theory, cong.control module could do "any tricks" in
1311 * ssthresh(), which means that ca_state, lost bits and lost_out
1312 * counter would have to be faked before the call occurs. We
1313 * consider that too expensive, unlikely and hacky, so modules
1314 * using these in ssthresh() must deal these incompatibility
1315 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1316 */
1317 tcp_ca_event(sk, CA_EVENT_FRTO);
1318 }
1319
1320 tp->undo_marker = tp->snd_una;
1321 tp->undo_retrans = 0;
1322
1323 skb = skb_peek(&sk->sk_write_queue);
1324 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1325 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1326 tp->retrans_out -= tcp_skb_pcount(skb);
1327 }
1328 tcp_sync_left_out(tp);
1329
1330 tcp_set_ca_state(sk, TCP_CA_Disorder);
1331 tp->high_seq = tp->snd_nxt;
1332 tp->frto_highmark = tp->snd_nxt;
1333 tp->frto_counter = 1;
1334 }
1335
1336 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1337 * which indicates that we should follow the traditional RTO recovery,
1338 * i.e. mark everything lost and do go-back-N retransmission.
1339 */
1340 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1341 {
1342 struct tcp_sock *tp = tcp_sk(sk);
1343 struct sk_buff *skb;
1344 int cnt = 0;
1345
1346 tp->sacked_out = 0;
1347 tp->lost_out = 0;
1348 tp->fackets_out = 0;
1349 tp->retrans_out = 0;
1350
1351 sk_stream_for_retrans_queue(skb, sk) {
1352 cnt += tcp_skb_pcount(skb);
1353 /*
1354 * Count the retransmission made on RTO correctly (only when
1355 * waiting for the first ACK and did not get it)...
1356 */
1357 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1358 tp->retrans_out += tcp_skb_pcount(skb);
1359 /* ...enter this if branch just for the first segment */
1360 flag |= FLAG_DATA_ACKED;
1361 } else {
1362 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1363 }
1364 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1365
1366 /* Do not mark those segments lost that were
1367 * forward transmitted after RTO
1368 */
1369 if (!after(TCP_SKB_CB(skb)->end_seq,
1370 tp->frto_highmark)) {
1371 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1372 tp->lost_out += tcp_skb_pcount(skb);
1373 }
1374 } else {
1375 tp->sacked_out += tcp_skb_pcount(skb);
1376 tp->fackets_out = cnt;
1377 }
1378 }
1379 tcp_sync_left_out(tp);
1380
1381 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1382 tp->snd_cwnd_cnt = 0;
1383 tp->snd_cwnd_stamp = tcp_time_stamp;
1384 tp->undo_marker = 0;
1385 tp->frto_counter = 0;
1386
1387 tp->reordering = min_t(unsigned int, tp->reordering,
1388 sysctl_tcp_reordering);
1389 tcp_set_ca_state(sk, TCP_CA_Loss);
1390 tp->high_seq = tp->frto_highmark;
1391 TCP_ECN_queue_cwr(tp);
1392
1393 clear_all_retrans_hints(tp);
1394 }
1395
1396 void tcp_clear_retrans(struct tcp_sock *tp)
1397 {
1398 tp->left_out = 0;
1399 tp->retrans_out = 0;
1400
1401 tp->fackets_out = 0;
1402 tp->sacked_out = 0;
1403 tp->lost_out = 0;
1404
1405 tp->undo_marker = 0;
1406 tp->undo_retrans = 0;
1407 }
1408
1409 /* Enter Loss state. If "how" is not zero, forget all SACK information
1410 * and reset tags completely, otherwise preserve SACKs. If receiver
1411 * dropped its ofo queue, we will know this due to reneging detection.
1412 */
1413 void tcp_enter_loss(struct sock *sk, int how)
1414 {
1415 const struct inet_connection_sock *icsk = inet_csk(sk);
1416 struct tcp_sock *tp = tcp_sk(sk);
1417 struct sk_buff *skb;
1418 int cnt = 0;
1419
1420 /* Reduce ssthresh if it has not yet been made inside this window. */
1421 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1422 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1423 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1424 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1425 tcp_ca_event(sk, CA_EVENT_LOSS);
1426 }
1427 tp->snd_cwnd = 1;
1428 tp->snd_cwnd_cnt = 0;
1429 tp->snd_cwnd_stamp = tcp_time_stamp;
1430
1431 tp->bytes_acked = 0;
1432 tcp_clear_retrans(tp);
1433
1434 /* Push undo marker, if it was plain RTO and nothing
1435 * was retransmitted. */
1436 if (!how)
1437 tp->undo_marker = tp->snd_una;
1438
1439 sk_stream_for_retrans_queue(skb, sk) {
1440 cnt += tcp_skb_pcount(skb);
1441 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1442 tp->undo_marker = 0;
1443 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1444 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1445 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1446 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1447 tp->lost_out += tcp_skb_pcount(skb);
1448 } else {
1449 tp->sacked_out += tcp_skb_pcount(skb);
1450 tp->fackets_out = cnt;
1451 }
1452 }
1453 tcp_sync_left_out(tp);
1454
1455 tp->reordering = min_t(unsigned int, tp->reordering,
1456 sysctl_tcp_reordering);
1457 tcp_set_ca_state(sk, TCP_CA_Loss);
1458 tp->high_seq = tp->snd_nxt;
1459 TCP_ECN_queue_cwr(tp);
1460
1461 clear_all_retrans_hints(tp);
1462 }
1463
1464 static int tcp_check_sack_reneging(struct sock *sk)
1465 {
1466 struct sk_buff *skb;
1467
1468 /* If ACK arrived pointing to a remembered SACK,
1469 * it means that our remembered SACKs do not reflect
1470 * real state of receiver i.e.
1471 * receiver _host_ is heavily congested (or buggy).
1472 * Do processing similar to RTO timeout.
1473 */
1474 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1475 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1476 struct inet_connection_sock *icsk = inet_csk(sk);
1477 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1478
1479 tcp_enter_loss(sk, 1);
1480 icsk->icsk_retransmits++;
1481 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1482 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1483 icsk->icsk_rto, TCP_RTO_MAX);
1484 return 1;
1485 }
1486 return 0;
1487 }
1488
1489 static inline int tcp_fackets_out(struct tcp_sock *tp)
1490 {
1491 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1492 }
1493
1494 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1495 {
1496 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1497 }
1498
1499 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1500 {
1501 return tp->packets_out &&
1502 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1503 }
1504
1505 /* Linux NewReno/SACK/FACK/ECN state machine.
1506 * --------------------------------------
1507 *
1508 * "Open" Normal state, no dubious events, fast path.
1509 * "Disorder" In all the respects it is "Open",
1510 * but requires a bit more attention. It is entered when
1511 * we see some SACKs or dupacks. It is split of "Open"
1512 * mainly to move some processing from fast path to slow one.
1513 * "CWR" CWND was reduced due to some Congestion Notification event.
1514 * It can be ECN, ICMP source quench, local device congestion.
1515 * "Recovery" CWND was reduced, we are fast-retransmitting.
1516 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1517 *
1518 * tcp_fastretrans_alert() is entered:
1519 * - each incoming ACK, if state is not "Open"
1520 * - when arrived ACK is unusual, namely:
1521 * * SACK
1522 * * Duplicate ACK.
1523 * * ECN ECE.
1524 *
1525 * Counting packets in flight is pretty simple.
1526 *
1527 * in_flight = packets_out - left_out + retrans_out
1528 *
1529 * packets_out is SND.NXT-SND.UNA counted in packets.
1530 *
1531 * retrans_out is number of retransmitted segments.
1532 *
1533 * left_out is number of segments left network, but not ACKed yet.
1534 *
1535 * left_out = sacked_out + lost_out
1536 *
1537 * sacked_out: Packets, which arrived to receiver out of order
1538 * and hence not ACKed. With SACKs this number is simply
1539 * amount of SACKed data. Even without SACKs
1540 * it is easy to give pretty reliable estimate of this number,
1541 * counting duplicate ACKs.
1542 *
1543 * lost_out: Packets lost by network. TCP has no explicit
1544 * "loss notification" feedback from network (for now).
1545 * It means that this number can be only _guessed_.
1546 * Actually, it is the heuristics to predict lossage that
1547 * distinguishes different algorithms.
1548 *
1549 * F.e. after RTO, when all the queue is considered as lost,
1550 * lost_out = packets_out and in_flight = retrans_out.
1551 *
1552 * Essentially, we have now two algorithms counting
1553 * lost packets.
1554 *
1555 * FACK: It is the simplest heuristics. As soon as we decided
1556 * that something is lost, we decide that _all_ not SACKed
1557 * packets until the most forward SACK are lost. I.e.
1558 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1559 * It is absolutely correct estimate, if network does not reorder
1560 * packets. And it loses any connection to reality when reordering
1561 * takes place. We use FACK by default until reordering
1562 * is suspected on the path to this destination.
1563 *
1564 * NewReno: when Recovery is entered, we assume that one segment
1565 * is lost (classic Reno). While we are in Recovery and
1566 * a partial ACK arrives, we assume that one more packet
1567 * is lost (NewReno). This heuristics are the same in NewReno
1568 * and SACK.
1569 *
1570 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1571 * deflation etc. CWND is real congestion window, never inflated, changes
1572 * only according to classic VJ rules.
1573 *
1574 * Really tricky (and requiring careful tuning) part of algorithm
1575 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1576 * The first determines the moment _when_ we should reduce CWND and,
1577 * hence, slow down forward transmission. In fact, it determines the moment
1578 * when we decide that hole is caused by loss, rather than by a reorder.
1579 *
1580 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1581 * holes, caused by lost packets.
1582 *
1583 * And the most logically complicated part of algorithm is undo
1584 * heuristics. We detect false retransmits due to both too early
1585 * fast retransmit (reordering) and underestimated RTO, analyzing
1586 * timestamps and D-SACKs. When we detect that some segments were
1587 * retransmitted by mistake and CWND reduction was wrong, we undo
1588 * window reduction and abort recovery phase. This logic is hidden
1589 * inside several functions named tcp_try_undo_<something>.
1590 */
1591
1592 /* This function decides, when we should leave Disordered state
1593 * and enter Recovery phase, reducing congestion window.
1594 *
1595 * Main question: may we further continue forward transmission
1596 * with the same cwnd?
1597 */
1598 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1599 {
1600 __u32 packets_out;
1601
1602 /* Do not perform any recovery during FRTO algorithm */
1603 if (tp->frto_counter)
1604 return 0;
1605
1606 /* Trick#1: The loss is proven. */
1607 if (tp->lost_out)
1608 return 1;
1609
1610 /* Not-A-Trick#2 : Classic rule... */
1611 if (tcp_fackets_out(tp) > tp->reordering)
1612 return 1;
1613
1614 /* Trick#3 : when we use RFC2988 timer restart, fast
1615 * retransmit can be triggered by timeout of queue head.
1616 */
1617 if (tcp_head_timedout(sk, tp))
1618 return 1;
1619
1620 /* Trick#4: It is still not OK... But will it be useful to delay
1621 * recovery more?
1622 */
1623 packets_out = tp->packets_out;
1624 if (packets_out <= tp->reordering &&
1625 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1626 !tcp_may_send_now(sk, tp)) {
1627 /* We have nothing to send. This connection is limited
1628 * either by receiver window or by application.
1629 */
1630 return 1;
1631 }
1632
1633 return 0;
1634 }
1635
1636 /* If we receive more dupacks than we expected counting segments
1637 * in assumption of absent reordering, interpret this as reordering.
1638 * The only another reason could be bug in receiver TCP.
1639 */
1640 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1641 {
1642 struct tcp_sock *tp = tcp_sk(sk);
1643 u32 holes;
1644
1645 holes = max(tp->lost_out, 1U);
1646 holes = min(holes, tp->packets_out);
1647
1648 if ((tp->sacked_out + holes) > tp->packets_out) {
1649 tp->sacked_out = tp->packets_out - holes;
1650 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1651 }
1652 }
1653
1654 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1655
1656 static void tcp_add_reno_sack(struct sock *sk)
1657 {
1658 struct tcp_sock *tp = tcp_sk(sk);
1659 tp->sacked_out++;
1660 tcp_check_reno_reordering(sk, 0);
1661 tcp_sync_left_out(tp);
1662 }
1663
1664 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1665
1666 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1667 {
1668 if (acked > 0) {
1669 /* One ACK acked hole. The rest eat duplicate ACKs. */
1670 if (acked-1 >= tp->sacked_out)
1671 tp->sacked_out = 0;
1672 else
1673 tp->sacked_out -= acked-1;
1674 }
1675 tcp_check_reno_reordering(sk, acked);
1676 tcp_sync_left_out(tp);
1677 }
1678
1679 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1680 {
1681 tp->sacked_out = 0;
1682 tp->left_out = tp->lost_out;
1683 }
1684
1685 /* Mark head of queue up as lost. */
1686 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1687 int packets, u32 high_seq)
1688 {
1689 struct sk_buff *skb;
1690 int cnt;
1691
1692 BUG_TRAP(packets <= tp->packets_out);
1693 if (tp->lost_skb_hint) {
1694 skb = tp->lost_skb_hint;
1695 cnt = tp->lost_cnt_hint;
1696 } else {
1697 skb = sk->sk_write_queue.next;
1698 cnt = 0;
1699 }
1700
1701 sk_stream_for_retrans_queue_from(skb, sk) {
1702 /* TODO: do this better */
1703 /* this is not the most efficient way to do this... */
1704 tp->lost_skb_hint = skb;
1705 tp->lost_cnt_hint = cnt;
1706 cnt += tcp_skb_pcount(skb);
1707 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1708 break;
1709 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1710 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1711 tp->lost_out += tcp_skb_pcount(skb);
1712
1713 /* clear xmit_retransmit_queue hints
1714 * if this is beyond hint */
1715 if(tp->retransmit_skb_hint != NULL &&
1716 before(TCP_SKB_CB(skb)->seq,
1717 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1718
1719 tp->retransmit_skb_hint = NULL;
1720 }
1721 }
1722 }
1723 tcp_sync_left_out(tp);
1724 }
1725
1726 /* Account newly detected lost packet(s) */
1727
1728 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1729 {
1730 if (IsFack(tp)) {
1731 int lost = tp->fackets_out - tp->reordering;
1732 if (lost <= 0)
1733 lost = 1;
1734 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1735 } else {
1736 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1737 }
1738
1739 /* New heuristics: it is possible only after we switched
1740 * to restart timer each time when something is ACKed.
1741 * Hence, we can detect timed out packets during fast
1742 * retransmit without falling to slow start.
1743 */
1744 if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1745 struct sk_buff *skb;
1746
1747 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1748 : sk->sk_write_queue.next;
1749
1750 sk_stream_for_retrans_queue_from(skb, sk) {
1751 if (!tcp_skb_timedout(sk, skb))
1752 break;
1753
1754 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1755 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1756 tp->lost_out += tcp_skb_pcount(skb);
1757
1758 /* clear xmit_retrans hint */
1759 if (tp->retransmit_skb_hint &&
1760 before(TCP_SKB_CB(skb)->seq,
1761 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1762
1763 tp->retransmit_skb_hint = NULL;
1764 }
1765 }
1766
1767 tp->scoreboard_skb_hint = skb;
1768
1769 tcp_sync_left_out(tp);
1770 }
1771 }
1772
1773 /* CWND moderation, preventing bursts due to too big ACKs
1774 * in dubious situations.
1775 */
1776 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1777 {
1778 tp->snd_cwnd = min(tp->snd_cwnd,
1779 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1780 tp->snd_cwnd_stamp = tcp_time_stamp;
1781 }
1782
1783 /* Lower bound on congestion window is slow start threshold
1784 * unless congestion avoidance choice decides to overide it.
1785 */
1786 static inline u32 tcp_cwnd_min(const struct sock *sk)
1787 {
1788 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1789
1790 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1791 }
1792
1793 /* Decrease cwnd each second ack. */
1794 static void tcp_cwnd_down(struct sock *sk)
1795 {
1796 struct tcp_sock *tp = tcp_sk(sk);
1797 int decr = tp->snd_cwnd_cnt + 1;
1798
1799 tp->snd_cwnd_cnt = decr&1;
1800 decr >>= 1;
1801
1802 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1803 tp->snd_cwnd -= decr;
1804
1805 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1806 tp->snd_cwnd_stamp = tcp_time_stamp;
1807 }
1808
1809 /* Nothing was retransmitted or returned timestamp is less
1810 * than timestamp of the first retransmission.
1811 */
1812 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1813 {
1814 return !tp->retrans_stamp ||
1815 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1816 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1817 }
1818
1819 /* Undo procedures. */
1820
1821 #if FASTRETRANS_DEBUG > 1
1822 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1823 {
1824 struct inet_sock *inet = inet_sk(sk);
1825 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1826 msg,
1827 NIPQUAD(inet->daddr), ntohs(inet->dport),
1828 tp->snd_cwnd, tp->left_out,
1829 tp->snd_ssthresh, tp->prior_ssthresh,
1830 tp->packets_out);
1831 }
1832 #else
1833 #define DBGUNDO(x...) do { } while (0)
1834 #endif
1835
1836 static void tcp_undo_cwr(struct sock *sk, const int undo)
1837 {
1838 struct tcp_sock *tp = tcp_sk(sk);
1839
1840 if (tp->prior_ssthresh) {
1841 const struct inet_connection_sock *icsk = inet_csk(sk);
1842
1843 if (icsk->icsk_ca_ops->undo_cwnd)
1844 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1845 else
1846 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1847
1848 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1849 tp->snd_ssthresh = tp->prior_ssthresh;
1850 TCP_ECN_withdraw_cwr(tp);
1851 }
1852 } else {
1853 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1854 }
1855 tcp_moderate_cwnd(tp);
1856 tp->snd_cwnd_stamp = tcp_time_stamp;
1857
1858 /* There is something screwy going on with the retrans hints after
1859 an undo */
1860 clear_all_retrans_hints(tp);
1861 }
1862
1863 static inline int tcp_may_undo(struct tcp_sock *tp)
1864 {
1865 return tp->undo_marker &&
1866 (!tp->undo_retrans || tcp_packet_delayed(tp));
1867 }
1868
1869 /* People celebrate: "We love our President!" */
1870 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1871 {
1872 if (tcp_may_undo(tp)) {
1873 /* Happy end! We did not retransmit anything
1874 * or our original transmission succeeded.
1875 */
1876 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1877 tcp_undo_cwr(sk, 1);
1878 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1879 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1880 else
1881 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1882 tp->undo_marker = 0;
1883 }
1884 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1885 /* Hold old state until something *above* high_seq
1886 * is ACKed. For Reno it is MUST to prevent false
1887 * fast retransmits (RFC2582). SACK TCP is safe. */
1888 tcp_moderate_cwnd(tp);
1889 return 1;
1890 }
1891 tcp_set_ca_state(sk, TCP_CA_Open);
1892 return 0;
1893 }
1894
1895 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1896 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1897 {
1898 if (tp->undo_marker && !tp->undo_retrans) {
1899 DBGUNDO(sk, tp, "D-SACK");
1900 tcp_undo_cwr(sk, 1);
1901 tp->undo_marker = 0;
1902 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1903 }
1904 }
1905
1906 /* Undo during fast recovery after partial ACK. */
1907
1908 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1909 int acked)
1910 {
1911 /* Partial ACK arrived. Force Hoe's retransmit. */
1912 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1913
1914 if (tcp_may_undo(tp)) {
1915 /* Plain luck! Hole if filled with delayed
1916 * packet, rather than with a retransmit.
1917 */
1918 if (tp->retrans_out == 0)
1919 tp->retrans_stamp = 0;
1920
1921 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1922
1923 DBGUNDO(sk, tp, "Hoe");
1924 tcp_undo_cwr(sk, 0);
1925 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1926
1927 /* So... Do not make Hoe's retransmit yet.
1928 * If the first packet was delayed, the rest
1929 * ones are most probably delayed as well.
1930 */
1931 failed = 0;
1932 }
1933 return failed;
1934 }
1935
1936 /* Undo during loss recovery after partial ACK. */
1937 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1938 {
1939 if (tcp_may_undo(tp)) {
1940 struct sk_buff *skb;
1941 sk_stream_for_retrans_queue(skb, sk) {
1942 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1943 }
1944
1945 clear_all_retrans_hints(tp);
1946
1947 DBGUNDO(sk, tp, "partial loss");
1948 tp->lost_out = 0;
1949 tp->left_out = tp->sacked_out;
1950 tcp_undo_cwr(sk, 1);
1951 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1952 inet_csk(sk)->icsk_retransmits = 0;
1953 tp->undo_marker = 0;
1954 if (!IsReno(tp))
1955 tcp_set_ca_state(sk, TCP_CA_Open);
1956 return 1;
1957 }
1958 return 0;
1959 }
1960
1961 static inline void tcp_complete_cwr(struct sock *sk)
1962 {
1963 struct tcp_sock *tp = tcp_sk(sk);
1964 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1965 tp->snd_cwnd_stamp = tcp_time_stamp;
1966 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1967 }
1968
1969 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1970 {
1971 tp->left_out = tp->sacked_out;
1972
1973 if (tp->retrans_out == 0)
1974 tp->retrans_stamp = 0;
1975
1976 if (flag&FLAG_ECE)
1977 tcp_enter_cwr(sk);
1978
1979 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1980 int state = TCP_CA_Open;
1981
1982 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1983 state = TCP_CA_Disorder;
1984
1985 if (inet_csk(sk)->icsk_ca_state != state) {
1986 tcp_set_ca_state(sk, state);
1987 tp->high_seq = tp->snd_nxt;
1988 }
1989 tcp_moderate_cwnd(tp);
1990 } else {
1991 tcp_cwnd_down(sk);
1992 }
1993 }
1994
1995 static void tcp_mtup_probe_failed(struct sock *sk)
1996 {
1997 struct inet_connection_sock *icsk = inet_csk(sk);
1998
1999 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2000 icsk->icsk_mtup.probe_size = 0;
2001 }
2002
2003 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2004 {
2005 struct tcp_sock *tp = tcp_sk(sk);
2006 struct inet_connection_sock *icsk = inet_csk(sk);
2007
2008 /* FIXME: breaks with very large cwnd */
2009 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2010 tp->snd_cwnd = tp->snd_cwnd *
2011 tcp_mss_to_mtu(sk, tp->mss_cache) /
2012 icsk->icsk_mtup.probe_size;
2013 tp->snd_cwnd_cnt = 0;
2014 tp->snd_cwnd_stamp = tcp_time_stamp;
2015 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2016
2017 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2018 icsk->icsk_mtup.probe_size = 0;
2019 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2020 }
2021
2022
2023 /* Process an event, which can update packets-in-flight not trivially.
2024 * Main goal of this function is to calculate new estimate for left_out,
2025 * taking into account both packets sitting in receiver's buffer and
2026 * packets lost by network.
2027 *
2028 * Besides that it does CWND reduction, when packet loss is detected
2029 * and changes state of machine.
2030 *
2031 * It does _not_ decide what to send, it is made in function
2032 * tcp_xmit_retransmit_queue().
2033 */
2034 static void
2035 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
2036 int prior_packets, int flag)
2037 {
2038 struct inet_connection_sock *icsk = inet_csk(sk);
2039 struct tcp_sock *tp = tcp_sk(sk);
2040 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
2041
2042 /* Some technical things:
2043 * 1. Reno does not count dupacks (sacked_out) automatically. */
2044 if (!tp->packets_out)
2045 tp->sacked_out = 0;
2046 /* 2. SACK counts snd_fack in packets inaccurately. */
2047 if (tp->sacked_out == 0)
2048 tp->fackets_out = 0;
2049
2050 /* Now state machine starts.
2051 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2052 if (flag&FLAG_ECE)
2053 tp->prior_ssthresh = 0;
2054
2055 /* B. In all the states check for reneging SACKs. */
2056 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2057 return;
2058
2059 /* C. Process data loss notification, provided it is valid. */
2060 if ((flag&FLAG_DATA_LOST) &&
2061 before(tp->snd_una, tp->high_seq) &&
2062 icsk->icsk_ca_state != TCP_CA_Open &&
2063 tp->fackets_out > tp->reordering) {
2064 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
2065 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2066 }
2067
2068 /* D. Synchronize left_out to current state. */
2069 tcp_sync_left_out(tp);
2070
2071 /* E. Check state exit conditions. State can be terminated
2072 * when high_seq is ACKed. */
2073 if (icsk->icsk_ca_state == TCP_CA_Open) {
2074 BUG_TRAP(tp->retrans_out == 0);
2075 tp->retrans_stamp = 0;
2076 } else if (!before(tp->snd_una, tp->high_seq)) {
2077 switch (icsk->icsk_ca_state) {
2078 case TCP_CA_Loss:
2079 icsk->icsk_retransmits = 0;
2080 if (tcp_try_undo_recovery(sk, tp))
2081 return;
2082 break;
2083
2084 case TCP_CA_CWR:
2085 /* CWR is to be held something *above* high_seq
2086 * is ACKed for CWR bit to reach receiver. */
2087 if (tp->snd_una != tp->high_seq) {
2088 tcp_complete_cwr(sk);
2089 tcp_set_ca_state(sk, TCP_CA_Open);
2090 }
2091 break;
2092
2093 case TCP_CA_Disorder:
2094 tcp_try_undo_dsack(sk, tp);
2095 if (!tp->undo_marker ||
2096 /* For SACK case do not Open to allow to undo
2097 * catching for all duplicate ACKs. */
2098 IsReno(tp) || tp->snd_una != tp->high_seq) {
2099 tp->undo_marker = 0;
2100 tcp_set_ca_state(sk, TCP_CA_Open);
2101 }
2102 break;
2103
2104 case TCP_CA_Recovery:
2105 if (IsReno(tp))
2106 tcp_reset_reno_sack(tp);
2107 if (tcp_try_undo_recovery(sk, tp))
2108 return;
2109 tcp_complete_cwr(sk);
2110 break;
2111 }
2112 }
2113
2114 /* F. Process state. */
2115 switch (icsk->icsk_ca_state) {
2116 case TCP_CA_Recovery:
2117 if (prior_snd_una == tp->snd_una) {
2118 if (IsReno(tp) && is_dupack)
2119 tcp_add_reno_sack(sk);
2120 } else {
2121 int acked = prior_packets - tp->packets_out;
2122 if (IsReno(tp))
2123 tcp_remove_reno_sacks(sk, tp, acked);
2124 is_dupack = tcp_try_undo_partial(sk, tp, acked);
2125 }
2126 break;
2127 case TCP_CA_Loss:
2128 if (flag&FLAG_DATA_ACKED)
2129 icsk->icsk_retransmits = 0;
2130 if (!tcp_try_undo_loss(sk, tp)) {
2131 tcp_moderate_cwnd(tp);
2132 tcp_xmit_retransmit_queue(sk);
2133 return;
2134 }
2135 if (icsk->icsk_ca_state != TCP_CA_Open)
2136 return;
2137 /* Loss is undone; fall through to processing in Open state. */
2138 default:
2139 if (IsReno(tp)) {
2140 if (tp->snd_una != prior_snd_una)
2141 tcp_reset_reno_sack(tp);
2142 if (is_dupack)
2143 tcp_add_reno_sack(sk);
2144 }
2145
2146 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2147 tcp_try_undo_dsack(sk, tp);
2148
2149 if (!tcp_time_to_recover(sk, tp)) {
2150 tcp_try_to_open(sk, tp, flag);
2151 return;
2152 }
2153
2154 /* MTU probe failure: don't reduce cwnd */
2155 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2156 icsk->icsk_mtup.probe_size &&
2157 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2158 tcp_mtup_probe_failed(sk);
2159 /* Restores the reduction we did in tcp_mtup_probe() */
2160 tp->snd_cwnd++;
2161 tcp_simple_retransmit(sk);
2162 return;
2163 }
2164
2165 /* Otherwise enter Recovery state */
2166
2167 if (IsReno(tp))
2168 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2169 else
2170 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2171
2172 tp->high_seq = tp->snd_nxt;
2173 tp->prior_ssthresh = 0;
2174 tp->undo_marker = tp->snd_una;
2175 tp->undo_retrans = tp->retrans_out;
2176
2177 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2178 if (!(flag&FLAG_ECE))
2179 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2180 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2181 TCP_ECN_queue_cwr(tp);
2182 }
2183
2184 tp->bytes_acked = 0;
2185 tp->snd_cwnd_cnt = 0;
2186 tcp_set_ca_state(sk, TCP_CA_Recovery);
2187 }
2188
2189 if (is_dupack || tcp_head_timedout(sk, tp))
2190 tcp_update_scoreboard(sk, tp);
2191 tcp_cwnd_down(sk);
2192 tcp_xmit_retransmit_queue(sk);
2193 }
2194
2195 /* Read draft-ietf-tcplw-high-performance before mucking
2196 * with this code. (Supersedes RFC1323)
2197 */
2198 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2199 {
2200 /* RTTM Rule: A TSecr value received in a segment is used to
2201 * update the averaged RTT measurement only if the segment
2202 * acknowledges some new data, i.e., only if it advances the
2203 * left edge of the send window.
2204 *
2205 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2206 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2207 *
2208 * Changed: reset backoff as soon as we see the first valid sample.
2209 * If we do not, we get strongly overestimated rto. With timestamps
2210 * samples are accepted even from very old segments: f.e., when rtt=1
2211 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2212 * answer arrives rto becomes 120 seconds! If at least one of segments
2213 * in window is lost... Voila. --ANK (010210)
2214 */
2215 struct tcp_sock *tp = tcp_sk(sk);
2216 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2217 tcp_rtt_estimator(sk, seq_rtt);
2218 tcp_set_rto(sk);
2219 inet_csk(sk)->icsk_backoff = 0;
2220 tcp_bound_rto(sk);
2221 }
2222
2223 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2224 {
2225 /* We don't have a timestamp. Can only use
2226 * packets that are not retransmitted to determine
2227 * rtt estimates. Also, we must not reset the
2228 * backoff for rto until we get a non-retransmitted
2229 * packet. This allows us to deal with a situation
2230 * where the network delay has increased suddenly.
2231 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2232 */
2233
2234 if (flag & FLAG_RETRANS_DATA_ACKED)
2235 return;
2236
2237 tcp_rtt_estimator(sk, seq_rtt);
2238 tcp_set_rto(sk);
2239 inet_csk(sk)->icsk_backoff = 0;
2240 tcp_bound_rto(sk);
2241 }
2242
2243 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2244 const s32 seq_rtt)
2245 {
2246 const struct tcp_sock *tp = tcp_sk(sk);
2247 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2248 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2249 tcp_ack_saw_tstamp(sk, flag);
2250 else if (seq_rtt >= 0)
2251 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2252 }
2253
2254 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2255 u32 in_flight, int good)
2256 {
2257 const struct inet_connection_sock *icsk = inet_csk(sk);
2258 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2259 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2260 }
2261
2262 /* Restart timer after forward progress on connection.
2263 * RFC2988 recommends to restart timer to now+rto.
2264 */
2265
2266 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2267 {
2268 if (!tp->packets_out) {
2269 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2270 } else {
2271 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2272 }
2273 }
2274
2275 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2276 __u32 now, __s32 *seq_rtt)
2277 {
2278 struct tcp_sock *tp = tcp_sk(sk);
2279 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2280 __u32 seq = tp->snd_una;
2281 __u32 packets_acked;
2282 int acked = 0;
2283
2284 /* If we get here, the whole TSO packet has not been
2285 * acked.
2286 */
2287 BUG_ON(!after(scb->end_seq, seq));
2288
2289 packets_acked = tcp_skb_pcount(skb);
2290 if (tcp_trim_head(sk, skb, seq - scb->seq))
2291 return 0;
2292 packets_acked -= tcp_skb_pcount(skb);
2293
2294 if (packets_acked) {
2295 __u8 sacked = scb->sacked;
2296
2297 acked |= FLAG_DATA_ACKED;
2298 if (sacked) {
2299 if (sacked & TCPCB_RETRANS) {
2300 if (sacked & TCPCB_SACKED_RETRANS)
2301 tp->retrans_out -= packets_acked;
2302 acked |= FLAG_RETRANS_DATA_ACKED;
2303 *seq_rtt = -1;
2304 } else if (*seq_rtt < 0)
2305 *seq_rtt = now - scb->when;
2306 if (sacked & TCPCB_SACKED_ACKED)
2307 tp->sacked_out -= packets_acked;
2308 if (sacked & TCPCB_LOST)
2309 tp->lost_out -= packets_acked;
2310 if (sacked & TCPCB_URG) {
2311 if (tp->urg_mode &&
2312 !before(seq, tp->snd_up))
2313 tp->urg_mode = 0;
2314 }
2315 } else if (*seq_rtt < 0)
2316 *seq_rtt = now - scb->when;
2317
2318 if (tp->fackets_out) {
2319 __u32 dval = min(tp->fackets_out, packets_acked);
2320 tp->fackets_out -= dval;
2321 }
2322 tp->packets_out -= packets_acked;
2323
2324 BUG_ON(tcp_skb_pcount(skb) == 0);
2325 BUG_ON(!before(scb->seq, scb->end_seq));
2326 }
2327
2328 return acked;
2329 }
2330
2331 static u32 tcp_usrtt(struct timeval *tv)
2332 {
2333 struct timeval now;
2334
2335 do_gettimeofday(&now);
2336 return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2337 }
2338
2339 /* Remove acknowledged frames from the retransmission queue. */
2340 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2341 {
2342 struct tcp_sock *tp = tcp_sk(sk);
2343 const struct inet_connection_sock *icsk = inet_csk(sk);
2344 struct sk_buff *skb;
2345 __u32 now = tcp_time_stamp;
2346 int acked = 0;
2347 __s32 seq_rtt = -1;
2348 u32 pkts_acked = 0;
2349 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2350 = icsk->icsk_ca_ops->rtt_sample;
2351 struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
2352
2353 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2354 skb != sk->sk_send_head) {
2355 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2356 __u8 sacked = scb->sacked;
2357
2358 /* If our packet is before the ack sequence we can
2359 * discard it as it's confirmed to have arrived at
2360 * the other end.
2361 */
2362 if (after(scb->end_seq, tp->snd_una)) {
2363 if (tcp_skb_pcount(skb) > 1 &&
2364 after(tp->snd_una, scb->seq))
2365 acked |= tcp_tso_acked(sk, skb,
2366 now, &seq_rtt);
2367 break;
2368 }
2369
2370 /* Initial outgoing SYN's get put onto the write_queue
2371 * just like anything else we transmit. It is not
2372 * true data, and if we misinform our callers that
2373 * this ACK acks real data, we will erroneously exit
2374 * connection startup slow start one packet too
2375 * quickly. This is severely frowned upon behavior.
2376 */
2377 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2378 acked |= FLAG_DATA_ACKED;
2379 ++pkts_acked;
2380 } else {
2381 acked |= FLAG_SYN_ACKED;
2382 tp->retrans_stamp = 0;
2383 }
2384
2385 /* MTU probing checks */
2386 if (icsk->icsk_mtup.probe_size) {
2387 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2388 tcp_mtup_probe_success(sk, skb);
2389 }
2390 }
2391
2392 if (sacked) {
2393 if (sacked & TCPCB_RETRANS) {
2394 if(sacked & TCPCB_SACKED_RETRANS)
2395 tp->retrans_out -= tcp_skb_pcount(skb);
2396 acked |= FLAG_RETRANS_DATA_ACKED;
2397 seq_rtt = -1;
2398 } else if (seq_rtt < 0) {
2399 seq_rtt = now - scb->when;
2400 skb_get_timestamp(skb, &tv);
2401 }
2402 if (sacked & TCPCB_SACKED_ACKED)
2403 tp->sacked_out -= tcp_skb_pcount(skb);
2404 if (sacked & TCPCB_LOST)
2405 tp->lost_out -= tcp_skb_pcount(skb);
2406 if (sacked & TCPCB_URG) {
2407 if (tp->urg_mode &&
2408 !before(scb->end_seq, tp->snd_up))
2409 tp->urg_mode = 0;
2410 }
2411 } else if (seq_rtt < 0) {
2412 seq_rtt = now - scb->when;
2413 skb_get_timestamp(skb, &tv);
2414 }
2415 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2416 tcp_packets_out_dec(tp, skb);
2417 __skb_unlink(skb, &sk->sk_write_queue);
2418 sk_stream_free_skb(sk, skb);
2419 clear_all_retrans_hints(tp);
2420 }
2421
2422 if (acked&FLAG_ACKED) {
2423 tcp_ack_update_rtt(sk, acked, seq_rtt);
2424 tcp_ack_packets_out(sk, tp);
2425 if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2426 (*rtt_sample)(sk, tcp_usrtt(&tv));
2427
2428 if (icsk->icsk_ca_ops->pkts_acked)
2429 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2430 }
2431
2432 #if FASTRETRANS_DEBUG > 0
2433 BUG_TRAP((int)tp->sacked_out >= 0);
2434 BUG_TRAP((int)tp->lost_out >= 0);
2435 BUG_TRAP((int)tp->retrans_out >= 0);
2436 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2437 const struct inet_connection_sock *icsk = inet_csk(sk);
2438 if (tp->lost_out) {
2439 printk(KERN_DEBUG "Leak l=%u %d\n",
2440 tp->lost_out, icsk->icsk_ca_state);
2441 tp->lost_out = 0;
2442 }
2443 if (tp->sacked_out) {
2444 printk(KERN_DEBUG "Leak s=%u %d\n",
2445 tp->sacked_out, icsk->icsk_ca_state);
2446 tp->sacked_out = 0;
2447 }
2448 if (tp->retrans_out) {
2449 printk(KERN_DEBUG "Leak r=%u %d\n",
2450 tp->retrans_out, icsk->icsk_ca_state);
2451 tp->retrans_out = 0;
2452 }
2453 }
2454 #endif
2455 *seq_rtt_p = seq_rtt;
2456 return acked;
2457 }
2458
2459 static void tcp_ack_probe(struct sock *sk)
2460 {
2461 const struct tcp_sock *tp = tcp_sk(sk);
2462 struct inet_connection_sock *icsk = inet_csk(sk);
2463
2464 /* Was it a usable window open? */
2465
2466 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2467 tp->snd_una + tp->snd_wnd)) {
2468 icsk->icsk_backoff = 0;
2469 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2470 /* Socket must be waked up by subsequent tcp_data_snd_check().
2471 * This function is not for random using!
2472 */
2473 } else {
2474 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2475 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2476 TCP_RTO_MAX);
2477 }
2478 }
2479
2480 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2481 {
2482 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2483 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2484 }
2485
2486 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2487 {
2488 const struct tcp_sock *tp = tcp_sk(sk);
2489 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2490 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2491 }
2492
2493 /* Check that window update is acceptable.
2494 * The function assumes that snd_una<=ack<=snd_next.
2495 */
2496 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2497 const u32 ack_seq, const u32 nwin)
2498 {
2499 return (after(ack, tp->snd_una) ||
2500 after(ack_seq, tp->snd_wl1) ||
2501 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2502 }
2503
2504 /* Update our send window.
2505 *
2506 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2507 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2508 */
2509 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2510 struct sk_buff *skb, u32 ack, u32 ack_seq)
2511 {
2512 int flag = 0;
2513 u32 nwin = ntohs(skb->h.th->window);
2514
2515 if (likely(!skb->h.th->syn))
2516 nwin <<= tp->rx_opt.snd_wscale;
2517
2518 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2519 flag |= FLAG_WIN_UPDATE;
2520 tcp_update_wl(tp, ack, ack_seq);
2521
2522 if (tp->snd_wnd != nwin) {
2523 tp->snd_wnd = nwin;
2524
2525 /* Note, it is the only place, where
2526 * fast path is recovered for sending TCP.
2527 */
2528 tp->pred_flags = 0;
2529 tcp_fast_path_check(sk, tp);
2530
2531 if (nwin > tp->max_window) {
2532 tp->max_window = nwin;
2533 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2534 }
2535 }
2536 }
2537
2538 tp->snd_una = ack;
2539
2540 return flag;
2541 }
2542
2543 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2544 * continue in congestion avoidance.
2545 */
2546 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2547 {
2548 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2549 tp->snd_cwnd_cnt = 0;
2550 tcp_moderate_cwnd(tp);
2551 }
2552
2553 /* F-RTO spurious RTO detection algorithm (RFC4138)
2554 *
2555 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2556 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2557 * window (but not to or beyond highest sequence sent before RTO):
2558 * On First ACK, send two new segments out.
2559 * On Second ACK, RTO was likely spurious. Do spurious response (response
2560 * algorithm is not part of the F-RTO detection algorithm
2561 * given in RFC4138 but can be selected separately).
2562 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2563 * and TCP falls back to conventional RTO recovery.
2564 *
2565 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2566 * original window even after we transmit two new data segments.
2567 *
2568 * F-RTO is implemented (mainly) in four functions:
2569 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2570 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2571 * called when tcp_use_frto() showed green light
2572 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2573 * - tcp_enter_frto_loss() is called if there is not enough evidence
2574 * to prove that the RTO is indeed spurious. It transfers the control
2575 * from F-RTO to the conventional RTO recovery
2576 */
2577 static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
2578 {
2579 struct tcp_sock *tp = tcp_sk(sk);
2580
2581 tcp_sync_left_out(tp);
2582
2583 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2584 if (flag&FLAG_DATA_ACKED)
2585 inet_csk(sk)->icsk_retransmits = 0;
2586
2587 if (!before(tp->snd_una, tp->frto_highmark)) {
2588 tcp_enter_frto_loss(sk, tp->frto_counter + 1, flag);
2589 return 1;
2590 }
2591
2592 /* RFC4138 shortcoming in step 2; should also have case c): ACK isn't
2593 * duplicate nor advances window, e.g., opposite dir data, winupdate
2594 */
2595 if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) &&
2596 !(flag&FLAG_FORWARD_PROGRESS))
2597 return 1;
2598
2599 if (!(flag&FLAG_DATA_ACKED)) {
2600 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), flag);
2601 return 1;
2602 }
2603
2604 if (tp->frto_counter == 1) {
2605 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2606 tp->frto_counter = 2;
2607 return 1;
2608 } else /* frto_counter == 2 */ {
2609 tcp_conservative_spur_to_response(tp);
2610 tp->frto_counter = 0;
2611 }
2612 return 0;
2613 }
2614
2615 /* This routine deals with incoming acks, but not outgoing ones. */
2616 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2617 {
2618 struct inet_connection_sock *icsk = inet_csk(sk);
2619 struct tcp_sock *tp = tcp_sk(sk);
2620 u32 prior_snd_una = tp->snd_una;
2621 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2622 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2623 u32 prior_in_flight;
2624 s32 seq_rtt;
2625 int prior_packets;
2626 int frto_cwnd = 0;
2627
2628 /* If the ack is newer than sent or older than previous acks
2629 * then we can probably ignore it.
2630 */
2631 if (after(ack, tp->snd_nxt))
2632 goto uninteresting_ack;
2633
2634 if (before(ack, prior_snd_una))
2635 goto old_ack;
2636
2637 if (sysctl_tcp_abc) {
2638 if (icsk->icsk_ca_state < TCP_CA_CWR)
2639 tp->bytes_acked += ack - prior_snd_una;
2640 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2641 /* we assume just one segment left network */
2642 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2643 }
2644
2645 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2646 /* Window is constant, pure forward advance.
2647 * No more checks are required.
2648 * Note, we use the fact that SND.UNA>=SND.WL2.
2649 */
2650 tcp_update_wl(tp, ack, ack_seq);
2651 tp->snd_una = ack;
2652 flag |= FLAG_WIN_UPDATE;
2653
2654 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2655
2656 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2657 } else {
2658 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2659 flag |= FLAG_DATA;
2660 else
2661 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2662
2663 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2664
2665 if (TCP_SKB_CB(skb)->sacked)
2666 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2667
2668 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2669 flag |= FLAG_ECE;
2670
2671 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2672 }
2673
2674 /* We passed data and got it acked, remove any soft error
2675 * log. Something worked...
2676 */
2677 sk->sk_err_soft = 0;
2678 tp->rcv_tstamp = tcp_time_stamp;
2679 prior_packets = tp->packets_out;
2680 if (!prior_packets)
2681 goto no_queue;
2682
2683 prior_in_flight = tcp_packets_in_flight(tp);
2684
2685 /* See if we can take anything off of the retransmit queue. */
2686 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2687
2688 if (tp->frto_counter)
2689 frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag);
2690
2691 if (tcp_ack_is_dubious(sk, flag)) {
2692 /* Advance CWND, if state allows this. */
2693 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2694 tcp_may_raise_cwnd(sk, flag))
2695 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2696 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2697 } else {
2698 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2699 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2700 }
2701
2702 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2703 dst_confirm(sk->sk_dst_cache);
2704
2705 return 1;
2706
2707 no_queue:
2708 icsk->icsk_probes_out = 0;
2709
2710 /* If this ack opens up a zero window, clear backoff. It was
2711 * being used to time the probes, and is probably far higher than
2712 * it needs to be for normal retransmission.
2713 */
2714 if (sk->sk_send_head)
2715 tcp_ack_probe(sk);
2716 return 1;
2717
2718 old_ack:
2719 if (TCP_SKB_CB(skb)->sacked)
2720 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2721
2722 uninteresting_ack:
2723 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2724 return 0;
2725 }
2726
2727
2728 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2729 * But, this can also be called on packets in the established flow when
2730 * the fast version below fails.
2731 */
2732 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2733 {
2734 unsigned char *ptr;
2735 struct tcphdr *th = skb->h.th;
2736 int length=(th->doff*4)-sizeof(struct tcphdr);
2737
2738 ptr = (unsigned char *)(th + 1);
2739 opt_rx->saw_tstamp = 0;
2740
2741 while(length>0) {
2742 int opcode=*ptr++;
2743 int opsize;
2744
2745 switch (opcode) {
2746 case TCPOPT_EOL:
2747 return;
2748 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2749 length--;
2750 continue;
2751 default:
2752 opsize=*ptr++;
2753 if (opsize < 2) /* "silly options" */
2754 return;
2755 if (opsize > length)
2756 return; /* don't parse partial options */
2757 switch(opcode) {
2758 case TCPOPT_MSS:
2759 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2760 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2761 if (in_mss) {
2762 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2763 in_mss = opt_rx->user_mss;
2764 opt_rx->mss_clamp = in_mss;
2765 }
2766 }
2767 break;
2768 case TCPOPT_WINDOW:
2769 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2770 if (sysctl_tcp_window_scaling) {
2771 __u8 snd_wscale = *(__u8 *) ptr;
2772 opt_rx->wscale_ok = 1;
2773 if (snd_wscale > 14) {
2774 if(net_ratelimit())
2775 printk(KERN_INFO "tcp_parse_options: Illegal window "
2776 "scaling value %d >14 received.\n",
2777 snd_wscale);
2778 snd_wscale = 14;
2779 }
2780 opt_rx->snd_wscale = snd_wscale;
2781 }
2782 break;
2783 case TCPOPT_TIMESTAMP:
2784 if(opsize==TCPOLEN_TIMESTAMP) {
2785 if ((estab && opt_rx->tstamp_ok) ||
2786 (!estab && sysctl_tcp_timestamps)) {
2787 opt_rx->saw_tstamp = 1;
2788 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2789 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2790 }
2791 }
2792 break;
2793 case TCPOPT_SACK_PERM:
2794 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2795 if (sysctl_tcp_sack) {
2796 opt_rx->sack_ok = 1;
2797 tcp_sack_reset(opt_rx);
2798 }
2799 }
2800 break;
2801
2802 case TCPOPT_SACK:
2803 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2804 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2805 opt_rx->sack_ok) {
2806 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2807 }
2808 #ifdef CONFIG_TCP_MD5SIG
2809 case TCPOPT_MD5SIG:
2810 /*
2811 * The MD5 Hash has already been
2812 * checked (see tcp_v{4,6}_do_rcv()).
2813 */
2814 break;
2815 #endif
2816 };
2817 ptr+=opsize-2;
2818 length-=opsize;
2819 };
2820 }
2821 }
2822
2823 /* Fast parse options. This hopes to only see timestamps.
2824 * If it is wrong it falls back on tcp_parse_options().
2825 */
2826 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2827 struct tcp_sock *tp)
2828 {
2829 if (th->doff == sizeof(struct tcphdr)>>2) {
2830 tp->rx_opt.saw_tstamp = 0;
2831 return 0;
2832 } else if (tp->rx_opt.tstamp_ok &&
2833 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2834 __be32 *ptr = (__be32 *)(th + 1);
2835 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2836 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2837 tp->rx_opt.saw_tstamp = 1;
2838 ++ptr;
2839 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2840 ++ptr;
2841 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2842 return 1;
2843 }
2844 }
2845 tcp_parse_options(skb, &tp->rx_opt, 1);
2846 return 1;
2847 }
2848
2849 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2850 {
2851 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2852 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2853 }
2854
2855 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2856 {
2857 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2858 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2859 * extra check below makes sure this can only happen
2860 * for pure ACK frames. -DaveM
2861 *
2862 * Not only, also it occurs for expired timestamps.
2863 */
2864
2865 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2866 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2867 tcp_store_ts_recent(tp);
2868 }
2869 }
2870
2871 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2872 *
2873 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2874 * it can pass through stack. So, the following predicate verifies that
2875 * this segment is not used for anything but congestion avoidance or
2876 * fast retransmit. Moreover, we even are able to eliminate most of such
2877 * second order effects, if we apply some small "replay" window (~RTO)
2878 * to timestamp space.
2879 *
2880 * All these measures still do not guarantee that we reject wrapped ACKs
2881 * on networks with high bandwidth, when sequence space is recycled fastly,
2882 * but it guarantees that such events will be very rare and do not affect
2883 * connection seriously. This doesn't look nice, but alas, PAWS is really
2884 * buggy extension.
2885 *
2886 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2887 * states that events when retransmit arrives after original data are rare.
2888 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2889 * the biggest problem on large power networks even with minor reordering.
2890 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2891 * up to bandwidth of 18Gigabit/sec. 8) ]
2892 */
2893
2894 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2895 {
2896 struct tcp_sock *tp = tcp_sk(sk);
2897 struct tcphdr *th = skb->h.th;
2898 u32 seq = TCP_SKB_CB(skb)->seq;
2899 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2900
2901 return (/* 1. Pure ACK with correct sequence number. */
2902 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2903
2904 /* 2. ... and duplicate ACK. */
2905 ack == tp->snd_una &&
2906
2907 /* 3. ... and does not update window. */
2908 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2909
2910 /* 4. ... and sits in replay window. */
2911 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2912 }
2913
2914 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2915 {
2916 const struct tcp_sock *tp = tcp_sk(sk);
2917 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2918 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2919 !tcp_disordered_ack(sk, skb));
2920 }
2921
2922 /* Check segment sequence number for validity.
2923 *
2924 * Segment controls are considered valid, if the segment
2925 * fits to the window after truncation to the window. Acceptability
2926 * of data (and SYN, FIN, of course) is checked separately.
2927 * See tcp_data_queue(), for example.
2928 *
2929 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2930 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2931 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2932 * (borrowed from freebsd)
2933 */
2934
2935 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2936 {
2937 return !before(end_seq, tp->rcv_wup) &&
2938 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2939 }
2940
2941 /* When we get a reset we do this. */
2942 static void tcp_reset(struct sock *sk)
2943 {
2944 /* We want the right error as BSD sees it (and indeed as we do). */
2945 switch (sk->sk_state) {
2946 case TCP_SYN_SENT:
2947 sk->sk_err = ECONNREFUSED;
2948 break;
2949 case TCP_CLOSE_WAIT:
2950 sk->sk_err = EPIPE;
2951 break;
2952 case TCP_CLOSE:
2953 return;
2954 default:
2955 sk->sk_err = ECONNRESET;
2956 }
2957
2958 if (!sock_flag(sk, SOCK_DEAD))
2959 sk->sk_error_report(sk);
2960
2961 tcp_done(sk);
2962 }
2963
2964 /*
2965 * Process the FIN bit. This now behaves as it is supposed to work
2966 * and the FIN takes effect when it is validly part of sequence
2967 * space. Not before when we get holes.
2968 *
2969 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2970 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2971 * TIME-WAIT)
2972 *
2973 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2974 * close and we go into CLOSING (and later onto TIME-WAIT)
2975 *
2976 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2977 */
2978 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2979 {
2980 struct tcp_sock *tp = tcp_sk(sk);
2981
2982 inet_csk_schedule_ack(sk);
2983
2984 sk->sk_shutdown |= RCV_SHUTDOWN;
2985 sock_set_flag(sk, SOCK_DONE);
2986
2987 switch (sk->sk_state) {
2988 case TCP_SYN_RECV:
2989 case TCP_ESTABLISHED:
2990 /* Move to CLOSE_WAIT */
2991 tcp_set_state(sk, TCP_CLOSE_WAIT);
2992 inet_csk(sk)->icsk_ack.pingpong = 1;
2993 break;
2994
2995 case TCP_CLOSE_WAIT:
2996 case TCP_CLOSING:
2997 /* Received a retransmission of the FIN, do
2998 * nothing.
2999 */
3000 break;
3001 case TCP_LAST_ACK:
3002 /* RFC793: Remain in the LAST-ACK state. */
3003 break;
3004
3005 case TCP_FIN_WAIT1:
3006 /* This case occurs when a simultaneous close
3007 * happens, we must ack the received FIN and
3008 * enter the CLOSING state.
3009 */
3010 tcp_send_ack(sk);
3011 tcp_set_state(sk, TCP_CLOSING);
3012 break;
3013 case TCP_FIN_WAIT2:
3014 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3015 tcp_send_ack(sk);
3016 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3017 break;
3018 default:
3019 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3020 * cases we should never reach this piece of code.
3021 */
3022 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3023 __FUNCTION__, sk->sk_state);
3024 break;
3025 };
3026
3027 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3028 * Probably, we should reset in this case. For now drop them.
3029 */
3030 __skb_queue_purge(&tp->out_of_order_queue);
3031 if (tp->rx_opt.sack_ok)
3032 tcp_sack_reset(&tp->rx_opt);
3033 sk_stream_mem_reclaim(sk);
3034
3035 if (!sock_flag(sk, SOCK_DEAD)) {
3036 sk->sk_state_change(sk);
3037
3038 /* Do not send POLL_HUP for half duplex close. */
3039 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3040 sk->sk_state == TCP_CLOSE)
3041 sk_wake_async(sk, 1, POLL_HUP);
3042 else
3043 sk_wake_async(sk, 1, POLL_IN);
3044 }
3045 }
3046
3047 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3048 {
3049 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3050 if (before(seq, sp->start_seq))
3051 sp->start_seq = seq;
3052 if (after(end_seq, sp->end_seq))
3053 sp->end_seq = end_seq;
3054 return 1;
3055 }
3056 return 0;
3057 }
3058
3059 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3060 {
3061 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3062 if (before(seq, tp->rcv_nxt))
3063 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3064 else
3065 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3066
3067 tp->rx_opt.dsack = 1;
3068 tp->duplicate_sack[0].start_seq = seq;
3069 tp->duplicate_sack[0].end_seq = end_seq;
3070 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3071 }
3072 }
3073
3074 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3075 {
3076 if (!tp->rx_opt.dsack)
3077 tcp_dsack_set(tp, seq, end_seq);
3078 else
3079 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3080 }
3081
3082 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3083 {
3084 struct tcp_sock *tp = tcp_sk(sk);
3085
3086 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3087 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3088 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3089 tcp_enter_quickack_mode(sk);
3090
3091 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3092 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3093
3094 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3095 end_seq = tp->rcv_nxt;
3096 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3097 }
3098 }
3099
3100 tcp_send_ack(sk);
3101 }
3102
3103 /* These routines update the SACK block as out-of-order packets arrive or
3104 * in-order packets close up the sequence space.
3105 */
3106 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3107 {
3108 int this_sack;
3109 struct tcp_sack_block *sp = &tp->selective_acks[0];
3110 struct tcp_sack_block *swalk = sp+1;
3111
3112 /* See if the recent change to the first SACK eats into
3113 * or hits the sequence space of other SACK blocks, if so coalesce.
3114 */
3115 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3116 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3117 int i;
3118
3119 /* Zap SWALK, by moving every further SACK up by one slot.
3120 * Decrease num_sacks.
3121 */
3122 tp->rx_opt.num_sacks--;
3123 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3124 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
3125 sp[i] = sp[i+1];
3126 continue;
3127 }
3128 this_sack++, swalk++;
3129 }
3130 }
3131
3132 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3133 {
3134 __u32 tmp;
3135
3136 tmp = sack1->start_seq;
3137 sack1->start_seq = sack2->start_seq;
3138 sack2->start_seq = tmp;
3139
3140 tmp = sack1->end_seq;
3141 sack1->end_seq = sack2->end_seq;
3142 sack2->end_seq = tmp;
3143 }
3144
3145 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3146 {
3147 struct tcp_sock *tp = tcp_sk(sk);
3148 struct tcp_sack_block *sp = &tp->selective_acks[0];
3149 int cur_sacks = tp->rx_opt.num_sacks;
3150 int this_sack;
3151
3152 if (!cur_sacks)
3153 goto new_sack;
3154
3155 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3156 if (tcp_sack_extend(sp, seq, end_seq)) {
3157 /* Rotate this_sack to the first one. */
3158 for (; this_sack>0; this_sack--, sp--)
3159 tcp_sack_swap(sp, sp-1);
3160 if (cur_sacks > 1)
3161 tcp_sack_maybe_coalesce(tp);
3162 return;
3163 }
3164 }
3165
3166 /* Could not find an adjacent existing SACK, build a new one,
3167 * put it at the front, and shift everyone else down. We
3168 * always know there is at least one SACK present already here.
3169 *
3170 * If the sack array is full, forget about the last one.
3171 */
3172 if (this_sack >= 4) {
3173 this_sack--;
3174 tp->rx_opt.num_sacks--;
3175 sp--;
3176 }
3177 for(; this_sack > 0; this_sack--, sp--)
3178 *sp = *(sp-1);
3179
3180 new_sack:
3181 /* Build the new head SACK, and we're done. */
3182 sp->start_seq = seq;
3183 sp->end_seq = end_seq;
3184 tp->rx_opt.num_sacks++;
3185 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3186 }
3187
3188 /* RCV.NXT advances, some SACKs should be eaten. */
3189
3190 static void tcp_sack_remove(struct tcp_sock *tp)
3191 {
3192 struct tcp_sack_block *sp = &tp->selective_acks[0];
3193 int num_sacks = tp->rx_opt.num_sacks;
3194 int this_sack;
3195
3196 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3197 if (skb_queue_empty(&tp->out_of_order_queue)) {
3198 tp->rx_opt.num_sacks = 0;
3199 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3200 return;
3201 }
3202
3203 for(this_sack = 0; this_sack < num_sacks; ) {
3204 /* Check if the start of the sack is covered by RCV.NXT. */
3205 if (!before(tp->rcv_nxt, sp->start_seq)) {
3206 int i;
3207
3208 /* RCV.NXT must cover all the block! */
3209 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3210
3211 /* Zap this SACK, by moving forward any other SACKS. */
3212 for (i=this_sack+1; i < num_sacks; i++)
3213 tp->selective_acks[i-1] = tp->selective_acks[i];
3214 num_sacks--;
3215 continue;
3216 }
3217 this_sack++;
3218 sp++;
3219 }
3220 if (num_sacks != tp->rx_opt.num_sacks) {
3221 tp->rx_opt.num_sacks = num_sacks;
3222 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3223 }
3224 }
3225
3226 /* This one checks to see if we can put data from the
3227 * out_of_order queue into the receive_queue.
3228 */
3229 static void tcp_ofo_queue(struct sock *sk)
3230 {
3231 struct tcp_sock *tp = tcp_sk(sk);
3232 __u32 dsack_high = tp->rcv_nxt;
3233 struct sk_buff *skb;
3234
3235 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3236 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3237 break;
3238
3239 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3240 __u32 dsack = dsack_high;
3241 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3242 dsack_high = TCP_SKB_CB(skb)->end_seq;
3243 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3244 }
3245
3246 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3247 SOCK_DEBUG(sk, "ofo packet was already received \n");
3248 __skb_unlink(skb, &tp->out_of_order_queue);
3249 __kfree_skb(skb);
3250 continue;
3251 }
3252 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3253 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3254 TCP_SKB_CB(skb)->end_seq);
3255
3256 __skb_unlink(skb, &tp->out_of_order_queue);
3257 __skb_queue_tail(&sk->sk_receive_queue, skb);
3258 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3259 if(skb->h.th->fin)
3260 tcp_fin(skb, sk, skb->h.th);
3261 }
3262 }
3263
3264 static int tcp_prune_queue(struct sock *sk);
3265
3266 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3267 {
3268 struct tcphdr *th = skb->h.th;
3269 struct tcp_sock *tp = tcp_sk(sk);
3270 int eaten = -1;
3271
3272 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3273 goto drop;
3274
3275 __skb_pull(skb, th->doff*4);
3276
3277 TCP_ECN_accept_cwr(tp, skb);
3278
3279 if (tp->rx_opt.dsack) {
3280 tp->rx_opt.dsack = 0;
3281 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3282 4 - tp->rx_opt.tstamp_ok);
3283 }
3284
3285 /* Queue data for delivery to the user.
3286 * Packets in sequence go to the receive queue.
3287 * Out of sequence packets to the out_of_order_queue.
3288 */
3289 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3290 if (tcp_receive_window(tp) == 0)
3291 goto out_of_window;
3292
3293 /* Ok. In sequence. In window. */
3294 if (tp->ucopy.task == current &&
3295 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3296 sock_owned_by_user(sk) && !tp->urg_data) {
3297 int chunk = min_t(unsigned int, skb->len,
3298 tp->ucopy.len);
3299
3300 __set_current_state(TASK_RUNNING);
3301
3302 local_bh_enable();
3303 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3304 tp->ucopy.len -= chunk;
3305 tp->copied_seq += chunk;
3306 eaten = (chunk == skb->len && !th->fin);
3307 tcp_rcv_space_adjust(sk);
3308 }
3309 local_bh_disable();
3310 }
3311
3312 if (eaten <= 0) {
3313 queue_and_out:
3314 if (eaten < 0 &&
3315 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3316 !sk_stream_rmem_schedule(sk, skb))) {
3317 if (tcp_prune_queue(sk) < 0 ||
3318 !sk_stream_rmem_schedule(sk, skb))
3319 goto drop;
3320 }
3321 sk_stream_set_owner_r(skb, sk);
3322 __skb_queue_tail(&sk->sk_receive_queue, skb);
3323 }
3324 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3325 if(skb->len)
3326 tcp_event_data_recv(sk, tp, skb);
3327 if(th->fin)
3328 tcp_fin(skb, sk, th);
3329
3330 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3331 tcp_ofo_queue(sk);
3332
3333 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3334 * gap in queue is filled.
3335 */
3336 if (skb_queue_empty(&tp->out_of_order_queue))
3337 inet_csk(sk)->icsk_ack.pingpong = 0;
3338 }
3339
3340 if (tp->rx_opt.num_sacks)
3341 tcp_sack_remove(tp);
3342
3343 tcp_fast_path_check(sk, tp);
3344
3345 if (eaten > 0)
3346 __kfree_skb(skb);
3347 else if (!sock_flag(sk, SOCK_DEAD))
3348 sk->sk_data_ready(sk, 0);
3349 return;
3350 }
3351
3352 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3353 /* A retransmit, 2nd most common case. Force an immediate ack. */
3354 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3355 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3356
3357 out_of_window:
3358 tcp_enter_quickack_mode(sk);
3359 inet_csk_schedule_ack(sk);
3360 drop:
3361 __kfree_skb(skb);
3362 return;
3363 }
3364
3365 /* Out of window. F.e. zero window probe. */
3366 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3367 goto out_of_window;
3368
3369 tcp_enter_quickack_mode(sk);
3370
3371 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3372 /* Partial packet, seq < rcv_next < end_seq */
3373 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3374 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3375 TCP_SKB_CB(skb)->end_seq);
3376
3377 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3378
3379 /* If window is closed, drop tail of packet. But after
3380 * remembering D-SACK for its head made in previous line.
3381 */
3382 if (!tcp_receive_window(tp))
3383 goto out_of_window;
3384 goto queue_and_out;
3385 }
3386
3387 TCP_ECN_check_ce(tp, skb);
3388
3389 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3390 !sk_stream_rmem_schedule(sk, skb)) {
3391 if (tcp_prune_queue(sk) < 0 ||
3392 !sk_stream_rmem_schedule(sk, skb))
3393 goto drop;
3394 }
3395
3396 /* Disable header prediction. */
3397 tp->pred_flags = 0;
3398 inet_csk_schedule_ack(sk);
3399
3400 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3401 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3402
3403 sk_stream_set_owner_r(skb, sk);
3404
3405 if (!skb_peek(&tp->out_of_order_queue)) {
3406 /* Initial out of order segment, build 1 SACK. */
3407 if (tp->rx_opt.sack_ok) {
3408 tp->rx_opt.num_sacks = 1;
3409 tp->rx_opt.dsack = 0;
3410 tp->rx_opt.eff_sacks = 1;
3411 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3412 tp->selective_acks[0].end_seq =
3413 TCP_SKB_CB(skb)->end_seq;
3414 }
3415 __skb_queue_head(&tp->out_of_order_queue,skb);
3416 } else {
3417 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3418 u32 seq = TCP_SKB_CB(skb)->seq;
3419 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3420
3421 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3422 __skb_append(skb1, skb, &tp->out_of_order_queue);
3423
3424 if (!tp->rx_opt.num_sacks ||
3425 tp->selective_acks[0].end_seq != seq)
3426 goto add_sack;
3427
3428 /* Common case: data arrive in order after hole. */
3429 tp->selective_acks[0].end_seq = end_seq;
3430 return;
3431 }
3432
3433 /* Find place to insert this segment. */
3434 do {
3435 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3436 break;
3437 } while ((skb1 = skb1->prev) !=
3438 (struct sk_buff*)&tp->out_of_order_queue);
3439
3440 /* Do skb overlap to previous one? */
3441 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3442 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3443 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3444 /* All the bits are present. Drop. */
3445 __kfree_skb(skb);
3446 tcp_dsack_set(tp, seq, end_seq);
3447 goto add_sack;
3448 }
3449 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3450 /* Partial overlap. */
3451 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3452 } else {
3453 skb1 = skb1->prev;
3454 }
3455 }
3456 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3457
3458 /* And clean segments covered by new one as whole. */
3459 while ((skb1 = skb->next) !=
3460 (struct sk_buff*)&tp->out_of_order_queue &&
3461 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3462 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3463 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3464 break;
3465 }
3466 __skb_unlink(skb1, &tp->out_of_order_queue);
3467 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3468 __kfree_skb(skb1);
3469 }
3470
3471 add_sack:
3472 if (tp->rx_opt.sack_ok)
3473 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3474 }
3475 }
3476
3477 /* Collapse contiguous sequence of skbs head..tail with
3478 * sequence numbers start..end.
3479 * Segments with FIN/SYN are not collapsed (only because this
3480 * simplifies code)
3481 */
3482 static void
3483 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3484 struct sk_buff *head, struct sk_buff *tail,
3485 u32 start, u32 end)
3486 {
3487 struct sk_buff *skb;
3488
3489 /* First, check that queue is collapsible and find
3490 * the point where collapsing can be useful. */
3491 for (skb = head; skb != tail; ) {
3492 /* No new bits? It is possible on ofo queue. */
3493 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3494 struct sk_buff *next = skb->next;
3495 __skb_unlink(skb, list);
3496 __kfree_skb(skb);
3497 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3498 skb = next;
3499 continue;
3500 }
3501
3502 /* The first skb to collapse is:
3503 * - not SYN/FIN and
3504 * - bloated or contains data before "start" or
3505 * overlaps to the next one.
3506 */
3507 if (!skb->h.th->syn && !skb->h.th->fin &&
3508 (tcp_win_from_space(skb->truesize) > skb->len ||
3509 before(TCP_SKB_CB(skb)->seq, start) ||
3510 (skb->next != tail &&
3511 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3512 break;
3513
3514 /* Decided to skip this, advance start seq. */
3515 start = TCP_SKB_CB(skb)->end_seq;
3516 skb = skb->next;
3517 }
3518 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3519 return;
3520
3521 while (before(start, end)) {
3522 struct sk_buff *nskb;
3523 int header = skb_headroom(skb);
3524 int copy = SKB_MAX_ORDER(header, 0);
3525
3526 /* Too big header? This can happen with IPv6. */
3527 if (copy < 0)
3528 return;
3529 if (end-start < copy)
3530 copy = end-start;
3531 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3532 if (!nskb)
3533 return;
3534 skb_reserve(nskb, header);
3535 memcpy(nskb->head, skb->head, header);
3536 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3537 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3538 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3539 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3540 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3541 __skb_insert(nskb, skb->prev, skb, list);
3542 sk_stream_set_owner_r(nskb, sk);
3543
3544 /* Copy data, releasing collapsed skbs. */
3545 while (copy > 0) {
3546 int offset = start - TCP_SKB_CB(skb)->seq;
3547 int size = TCP_SKB_CB(skb)->end_seq - start;
3548
3549 BUG_ON(offset < 0);
3550 if (size > 0) {
3551 size = min(copy, size);
3552 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3553 BUG();
3554 TCP_SKB_CB(nskb)->end_seq += size;
3555 copy -= size;
3556 start += size;
3557 }
3558 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3559 struct sk_buff *next = skb->next;
3560 __skb_unlink(skb, list);
3561 __kfree_skb(skb);
3562 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3563 skb = next;
3564 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3565 return;
3566 }
3567 }
3568 }
3569 }
3570
3571 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3572 * and tcp_collapse() them until all the queue is collapsed.
3573 */
3574 static void tcp_collapse_ofo_queue(struct sock *sk)
3575 {
3576 struct tcp_sock *tp = tcp_sk(sk);
3577 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3578 struct sk_buff *head;
3579 u32 start, end;
3580
3581 if (skb == NULL)
3582 return;
3583
3584 start = TCP_SKB_CB(skb)->seq;
3585 end = TCP_SKB_CB(skb)->end_seq;
3586 head = skb;
3587
3588 for (;;) {
3589 skb = skb->next;
3590
3591 /* Segment is terminated when we see gap or when
3592 * we are at the end of all the queue. */
3593 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3594 after(TCP_SKB_CB(skb)->seq, end) ||
3595 before(TCP_SKB_CB(skb)->end_seq, start)) {
3596 tcp_collapse(sk, &tp->out_of_order_queue,
3597 head, skb, start, end);
3598 head = skb;
3599 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3600 break;
3601 /* Start new segment */
3602 start = TCP_SKB_CB(skb)->seq;
3603 end = TCP_SKB_CB(skb)->end_seq;
3604 } else {
3605 if (before(TCP_SKB_CB(skb)->seq, start))
3606 start = TCP_SKB_CB(skb)->seq;
3607 if (after(TCP_SKB_CB(skb)->end_seq, end))
3608 end = TCP_SKB_CB(skb)->end_seq;
3609 }
3610 }
3611 }
3612
3613 /* Reduce allocated memory if we can, trying to get
3614 * the socket within its memory limits again.
3615 *
3616 * Return less than zero if we should start dropping frames
3617 * until the socket owning process reads some of the data
3618 * to stabilize the situation.
3619 */
3620 static int tcp_prune_queue(struct sock *sk)
3621 {
3622 struct tcp_sock *tp = tcp_sk(sk);
3623
3624 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3625
3626 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3627
3628 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3629 tcp_clamp_window(sk, tp);
3630 else if (tcp_memory_pressure)
3631 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3632
3633 tcp_collapse_ofo_queue(sk);
3634 tcp_collapse(sk, &sk->sk_receive_queue,
3635 sk->sk_receive_queue.next,
3636 (struct sk_buff*)&sk->sk_receive_queue,
3637 tp->copied_seq, tp->rcv_nxt);
3638 sk_stream_mem_reclaim(sk);
3639
3640 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3641 return 0;
3642
3643 /* Collapsing did not help, destructive actions follow.
3644 * This must not ever occur. */
3645
3646 /* First, purge the out_of_order queue. */
3647 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3648 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3649 __skb_queue_purge(&tp->out_of_order_queue);
3650
3651 /* Reset SACK state. A conforming SACK implementation will
3652 * do the same at a timeout based retransmit. When a connection
3653 * is in a sad state like this, we care only about integrity
3654 * of the connection not performance.
3655 */
3656 if (tp->rx_opt.sack_ok)
3657 tcp_sack_reset(&tp->rx_opt);
3658 sk_stream_mem_reclaim(sk);
3659 }
3660
3661 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3662 return 0;
3663
3664 /* If we are really being abused, tell the caller to silently
3665 * drop receive data on the floor. It will get retransmitted
3666 * and hopefully then we'll have sufficient space.
3667 */
3668 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3669
3670 /* Massive buffer overcommit. */
3671 tp->pred_flags = 0;
3672 return -1;
3673 }
3674
3675
3676 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3677 * As additional protections, we do not touch cwnd in retransmission phases,
3678 * and if application hit its sndbuf limit recently.
3679 */
3680 void tcp_cwnd_application_limited(struct sock *sk)
3681 {
3682 struct tcp_sock *tp = tcp_sk(sk);
3683
3684 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3685 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3686 /* Limited by application or receiver window. */
3687 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3688 u32 win_used = max(tp->snd_cwnd_used, init_win);
3689 if (win_used < tp->snd_cwnd) {
3690 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3691 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3692 }
3693 tp->snd_cwnd_used = 0;
3694 }
3695 tp->snd_cwnd_stamp = tcp_time_stamp;
3696 }
3697
3698 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3699 {
3700 /* If the user specified a specific send buffer setting, do
3701 * not modify it.
3702 */
3703 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3704 return 0;
3705
3706 /* If we are under global TCP memory pressure, do not expand. */
3707 if (tcp_memory_pressure)
3708 return 0;
3709
3710 /* If we are under soft global TCP memory pressure, do not expand. */
3711 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3712 return 0;
3713
3714 /* If we filled the congestion window, do not expand. */
3715 if (tp->packets_out >= tp->snd_cwnd)
3716 return 0;
3717
3718 return 1;
3719 }
3720
3721 /* When incoming ACK allowed to free some skb from write_queue,
3722 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3723 * on the exit from tcp input handler.
3724 *
3725 * PROBLEM: sndbuf expansion does not work well with largesend.
3726 */
3727 static void tcp_new_space(struct sock *sk)
3728 {
3729 struct tcp_sock *tp = tcp_sk(sk);
3730
3731 if (tcp_should_expand_sndbuf(sk, tp)) {
3732 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3733 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3734 demanded = max_t(unsigned int, tp->snd_cwnd,
3735 tp->reordering + 1);
3736 sndmem *= 2*demanded;
3737 if (sndmem > sk->sk_sndbuf)
3738 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3739 tp->snd_cwnd_stamp = tcp_time_stamp;
3740 }
3741
3742 sk->sk_write_space(sk);
3743 }
3744
3745 static void tcp_check_space(struct sock *sk)
3746 {
3747 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3748 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3749 if (sk->sk_socket &&
3750 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3751 tcp_new_space(sk);
3752 }
3753 }
3754
3755 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3756 {
3757 tcp_push_pending_frames(sk, tp);
3758 tcp_check_space(sk);
3759 }
3760
3761 /*
3762 * Check if sending an ack is needed.
3763 */
3764 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3765 {
3766 struct tcp_sock *tp = tcp_sk(sk);
3767
3768 /* More than one full frame received... */
3769 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3770 /* ... and right edge of window advances far enough.
3771 * (tcp_recvmsg() will send ACK otherwise). Or...
3772 */
3773 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3774 /* We ACK each frame or... */
3775 tcp_in_quickack_mode(sk) ||
3776 /* We have out of order data. */
3777 (ofo_possible &&
3778 skb_peek(&tp->out_of_order_queue))) {
3779 /* Then ack it now */
3780 tcp_send_ack(sk);
3781 } else {
3782 /* Else, send delayed ack. */
3783 tcp_send_delayed_ack(sk);
3784 }
3785 }
3786
3787 static inline void tcp_ack_snd_check(struct sock *sk)
3788 {
3789 if (!inet_csk_ack_scheduled(sk)) {
3790 /* We sent a data segment already. */
3791 return;
3792 }
3793 __tcp_ack_snd_check(sk, 1);
3794 }
3795
3796 /*
3797 * This routine is only called when we have urgent data
3798 * signaled. Its the 'slow' part of tcp_urg. It could be
3799 * moved inline now as tcp_urg is only called from one
3800 * place. We handle URGent data wrong. We have to - as
3801 * BSD still doesn't use the correction from RFC961.
3802 * For 1003.1g we should support a new option TCP_STDURG to permit
3803 * either form (or just set the sysctl tcp_stdurg).
3804 */
3805
3806 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3807 {
3808 struct tcp_sock *tp = tcp_sk(sk);
3809 u32 ptr = ntohs(th->urg_ptr);
3810
3811 if (ptr && !sysctl_tcp_stdurg)
3812 ptr--;
3813 ptr += ntohl(th->seq);
3814
3815 /* Ignore urgent data that we've already seen and read. */
3816 if (after(tp->copied_seq, ptr))
3817 return;
3818
3819 /* Do not replay urg ptr.
3820 *
3821 * NOTE: interesting situation not covered by specs.
3822 * Misbehaving sender may send urg ptr, pointing to segment,
3823 * which we already have in ofo queue. We are not able to fetch
3824 * such data and will stay in TCP_URG_NOTYET until will be eaten
3825 * by recvmsg(). Seems, we are not obliged to handle such wicked
3826 * situations. But it is worth to think about possibility of some
3827 * DoSes using some hypothetical application level deadlock.
3828 */
3829 if (before(ptr, tp->rcv_nxt))
3830 return;
3831
3832 /* Do we already have a newer (or duplicate) urgent pointer? */
3833 if (tp->urg_data && !after(ptr, tp->urg_seq))
3834 return;
3835
3836 /* Tell the world about our new urgent pointer. */
3837 sk_send_sigurg(sk);
3838
3839 /* We may be adding urgent data when the last byte read was
3840 * urgent. To do this requires some care. We cannot just ignore
3841 * tp->copied_seq since we would read the last urgent byte again
3842 * as data, nor can we alter copied_seq until this data arrives
3843 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3844 *
3845 * NOTE. Double Dutch. Rendering to plain English: author of comment
3846 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3847 * and expect that both A and B disappear from stream. This is _wrong_.
3848 * Though this happens in BSD with high probability, this is occasional.
3849 * Any application relying on this is buggy. Note also, that fix "works"
3850 * only in this artificial test. Insert some normal data between A and B and we will
3851 * decline of BSD again. Verdict: it is better to remove to trap
3852 * buggy users.
3853 */
3854 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3855 !sock_flag(sk, SOCK_URGINLINE) &&
3856 tp->copied_seq != tp->rcv_nxt) {
3857 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3858 tp->copied_seq++;
3859 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3860 __skb_unlink(skb, &sk->sk_receive_queue);
3861 __kfree_skb(skb);
3862 }
3863 }
3864
3865 tp->urg_data = TCP_URG_NOTYET;
3866 tp->urg_seq = ptr;
3867
3868 /* Disable header prediction. */
3869 tp->pred_flags = 0;
3870 }
3871
3872 /* This is the 'fast' part of urgent handling. */
3873 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3874 {
3875 struct tcp_sock *tp = tcp_sk(sk);
3876
3877 /* Check if we get a new urgent pointer - normally not. */
3878 if (th->urg)
3879 tcp_check_urg(sk,th);
3880
3881 /* Do we wait for any urgent data? - normally not... */
3882 if (tp->urg_data == TCP_URG_NOTYET) {
3883 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3884 th->syn;
3885
3886 /* Is the urgent pointer pointing into this packet? */
3887 if (ptr < skb->len) {
3888 u8 tmp;
3889 if (skb_copy_bits(skb, ptr, &tmp, 1))
3890 BUG();
3891 tp->urg_data = TCP_URG_VALID | tmp;
3892 if (!sock_flag(sk, SOCK_DEAD))
3893 sk->sk_data_ready(sk, 0);
3894 }
3895 }
3896 }
3897
3898 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3899 {
3900 struct tcp_sock *tp = tcp_sk(sk);
3901 int chunk = skb->len - hlen;
3902 int err;
3903
3904 local_bh_enable();
3905 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3906 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3907 else
3908 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3909 tp->ucopy.iov);
3910
3911 if (!err) {
3912 tp->ucopy.len -= chunk;
3913 tp->copied_seq += chunk;
3914 tcp_rcv_space_adjust(sk);
3915 }
3916
3917 local_bh_disable();
3918 return err;
3919 }
3920
3921 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3922 {
3923 __sum16 result;
3924
3925 if (sock_owned_by_user(sk)) {
3926 local_bh_enable();
3927 result = __tcp_checksum_complete(skb);
3928 local_bh_disable();
3929 } else {
3930 result = __tcp_checksum_complete(skb);
3931 }
3932 return result;
3933 }
3934
3935 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3936 {
3937 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3938 __tcp_checksum_complete_user(sk, skb);
3939 }
3940
3941 #ifdef CONFIG_NET_DMA
3942 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3943 {
3944 struct tcp_sock *tp = tcp_sk(sk);
3945 int chunk = skb->len - hlen;
3946 int dma_cookie;
3947 int copied_early = 0;
3948
3949 if (tp->ucopy.wakeup)
3950 return 0;
3951
3952 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
3953 tp->ucopy.dma_chan = get_softnet_dma();
3954
3955 if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
3956
3957 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
3958 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
3959
3960 if (dma_cookie < 0)
3961 goto out;
3962
3963 tp->ucopy.dma_cookie = dma_cookie;
3964 copied_early = 1;
3965
3966 tp->ucopy.len -= chunk;
3967 tp->copied_seq += chunk;
3968 tcp_rcv_space_adjust(sk);
3969
3970 if ((tp->ucopy.len == 0) ||
3971 (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
3972 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
3973 tp->ucopy.wakeup = 1;
3974 sk->sk_data_ready(sk, 0);
3975 }
3976 } else if (chunk > 0) {
3977 tp->ucopy.wakeup = 1;
3978 sk->sk_data_ready(sk, 0);
3979 }
3980 out:
3981 return copied_early;
3982 }
3983 #endif /* CONFIG_NET_DMA */
3984
3985 /*
3986 * TCP receive function for the ESTABLISHED state.
3987 *
3988 * It is split into a fast path and a slow path. The fast path is
3989 * disabled when:
3990 * - A zero window was announced from us - zero window probing
3991 * is only handled properly in the slow path.
3992 * - Out of order segments arrived.
3993 * - Urgent data is expected.
3994 * - There is no buffer space left
3995 * - Unexpected TCP flags/window values/header lengths are received
3996 * (detected by checking the TCP header against pred_flags)
3997 * - Data is sent in both directions. Fast path only supports pure senders
3998 * or pure receivers (this means either the sequence number or the ack
3999 * value must stay constant)
4000 * - Unexpected TCP option.
4001 *
4002 * When these conditions are not satisfied it drops into a standard
4003 * receive procedure patterned after RFC793 to handle all cases.
4004 * The first three cases are guaranteed by proper pred_flags setting,
4005 * the rest is checked inline. Fast processing is turned on in
4006 * tcp_data_queue when everything is OK.
4007 */
4008 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4009 struct tcphdr *th, unsigned len)
4010 {
4011 struct tcp_sock *tp = tcp_sk(sk);
4012
4013 /*
4014 * Header prediction.
4015 * The code loosely follows the one in the famous
4016 * "30 instruction TCP receive" Van Jacobson mail.
4017 *
4018 * Van's trick is to deposit buffers into socket queue
4019 * on a device interrupt, to call tcp_recv function
4020 * on the receive process context and checksum and copy
4021 * the buffer to user space. smart...
4022 *
4023 * Our current scheme is not silly either but we take the
4024 * extra cost of the net_bh soft interrupt processing...
4025 * We do checksum and copy also but from device to kernel.
4026 */
4027
4028 tp->rx_opt.saw_tstamp = 0;
4029
4030 /* pred_flags is 0xS?10 << 16 + snd_wnd
4031 * if header_prediction is to be made
4032 * 'S' will always be tp->tcp_header_len >> 2
4033 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4034 * turn it off (when there are holes in the receive
4035 * space for instance)
4036 * PSH flag is ignored.
4037 */
4038
4039 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4040 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4041 int tcp_header_len = tp->tcp_header_len;
4042
4043 /* Timestamp header prediction: tcp_header_len
4044 * is automatically equal to th->doff*4 due to pred_flags
4045 * match.
4046 */
4047
4048 /* Check timestamp */
4049 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4050 __be32 *ptr = (__be32 *)(th + 1);
4051
4052 /* No? Slow path! */
4053 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4054 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4055 goto slow_path;
4056
4057 tp->rx_opt.saw_tstamp = 1;
4058 ++ptr;
4059 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4060 ++ptr;
4061 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4062
4063 /* If PAWS failed, check it more carefully in slow path */
4064 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4065 goto slow_path;
4066
4067 /* DO NOT update ts_recent here, if checksum fails
4068 * and timestamp was corrupted part, it will result
4069 * in a hung connection since we will drop all
4070 * future packets due to the PAWS test.
4071 */
4072 }
4073
4074 if (len <= tcp_header_len) {
4075 /* Bulk data transfer: sender */
4076 if (len == tcp_header_len) {
4077 /* Predicted packet is in window by definition.
4078 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4079 * Hence, check seq<=rcv_wup reduces to:
4080 */
4081 if (tcp_header_len ==
4082 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4083 tp->rcv_nxt == tp->rcv_wup)
4084 tcp_store_ts_recent(tp);
4085
4086 /* We know that such packets are checksummed
4087 * on entry.
4088 */
4089 tcp_ack(sk, skb, 0);
4090 __kfree_skb(skb);
4091 tcp_data_snd_check(sk, tp);
4092 return 0;
4093 } else { /* Header too small */
4094 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4095 goto discard;
4096 }
4097 } else {
4098 int eaten = 0;
4099 int copied_early = 0;
4100
4101 if (tp->copied_seq == tp->rcv_nxt &&
4102 len - tcp_header_len <= tp->ucopy.len) {
4103 #ifdef CONFIG_NET_DMA
4104 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4105 copied_early = 1;
4106 eaten = 1;
4107 }
4108 #endif
4109 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4110 __set_current_state(TASK_RUNNING);
4111
4112 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4113 eaten = 1;
4114 }
4115 if (eaten) {
4116 /* Predicted packet is in window by definition.
4117 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4118 * Hence, check seq<=rcv_wup reduces to:
4119 */
4120 if (tcp_header_len ==
4121 (sizeof(struct tcphdr) +
4122 TCPOLEN_TSTAMP_ALIGNED) &&
4123 tp->rcv_nxt == tp->rcv_wup)
4124 tcp_store_ts_recent(tp);
4125
4126 tcp_rcv_rtt_measure_ts(sk, skb);
4127
4128 __skb_pull(skb, tcp_header_len);
4129 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4130 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4131 }
4132 if (copied_early)
4133 tcp_cleanup_rbuf(sk, skb->len);
4134 }
4135 if (!eaten) {
4136 if (tcp_checksum_complete_user(sk, skb))
4137 goto csum_error;
4138
4139 /* Predicted packet is in window by definition.
4140 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4141 * Hence, check seq<=rcv_wup reduces to:
4142 */
4143 if (tcp_header_len ==
4144 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4145 tp->rcv_nxt == tp->rcv_wup)
4146 tcp_store_ts_recent(tp);
4147
4148 tcp_rcv_rtt_measure_ts(sk, skb);
4149
4150 if ((int)skb->truesize > sk->sk_forward_alloc)
4151 goto step5;
4152
4153 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4154
4155 /* Bulk data transfer: receiver */
4156 __skb_pull(skb,tcp_header_len);
4157 __skb_queue_tail(&sk->sk_receive_queue, skb);
4158 sk_stream_set_owner_r(skb, sk);
4159 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4160 }
4161
4162 tcp_event_data_recv(sk, tp, skb);
4163
4164 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4165 /* Well, only one small jumplet in fast path... */
4166 tcp_ack(sk, skb, FLAG_DATA);
4167 tcp_data_snd_check(sk, tp);
4168 if (!inet_csk_ack_scheduled(sk))
4169 goto no_ack;
4170 }
4171
4172 __tcp_ack_snd_check(sk, 0);
4173 no_ack:
4174 #ifdef CONFIG_NET_DMA
4175 if (copied_early)
4176 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4177 else
4178 #endif
4179 if (eaten)
4180 __kfree_skb(skb);
4181 else
4182 sk->sk_data_ready(sk, 0);
4183 return 0;
4184 }
4185 }
4186
4187 slow_path:
4188 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4189 goto csum_error;
4190
4191 /*
4192 * RFC1323: H1. Apply PAWS check first.
4193 */
4194 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4195 tcp_paws_discard(sk, skb)) {
4196 if (!th->rst) {
4197 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4198 tcp_send_dupack(sk, skb);
4199 goto discard;
4200 }
4201 /* Resets are accepted even if PAWS failed.
4202
4203 ts_recent update must be made after we are sure
4204 that the packet is in window.
4205 */
4206 }
4207
4208 /*
4209 * Standard slow path.
4210 */
4211
4212 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4213 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4214 * (RST) segments are validated by checking their SEQ-fields."
4215 * And page 69: "If an incoming segment is not acceptable,
4216 * an acknowledgment should be sent in reply (unless the RST bit
4217 * is set, if so drop the segment and return)".
4218 */
4219 if (!th->rst)
4220 tcp_send_dupack(sk, skb);
4221 goto discard;
4222 }
4223
4224 if(th->rst) {
4225 tcp_reset(sk);
4226 goto discard;
4227 }
4228
4229 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4230
4231 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4232 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4233 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4234 tcp_reset(sk);
4235 return 1;
4236 }
4237
4238 step5:
4239 if(th->ack)
4240 tcp_ack(sk, skb, FLAG_SLOWPATH);
4241
4242 tcp_rcv_rtt_measure_ts(sk, skb);
4243
4244 /* Process urgent data. */
4245 tcp_urg(sk, skb, th);
4246
4247 /* step 7: process the segment text */
4248 tcp_data_queue(sk, skb);
4249
4250 tcp_data_snd_check(sk, tp);
4251 tcp_ack_snd_check(sk);
4252 return 0;
4253
4254 csum_error:
4255 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4256
4257 discard:
4258 __kfree_skb(skb);
4259 return 0;
4260 }
4261
4262 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4263 struct tcphdr *th, unsigned len)
4264 {
4265 struct tcp_sock *tp = tcp_sk(sk);
4266 struct inet_connection_sock *icsk = inet_csk(sk);
4267 int saved_clamp = tp->rx_opt.mss_clamp;
4268
4269 tcp_parse_options(skb, &tp->rx_opt, 0);
4270
4271 if (th->ack) {
4272 /* rfc793:
4273 * "If the state is SYN-SENT then
4274 * first check the ACK bit
4275 * If the ACK bit is set
4276 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4277 * a reset (unless the RST bit is set, if so drop
4278 * the segment and return)"
4279 *
4280 * We do not send data with SYN, so that RFC-correct
4281 * test reduces to:
4282 */
4283 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4284 goto reset_and_undo;
4285
4286 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4287 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4288 tcp_time_stamp)) {
4289 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4290 goto reset_and_undo;
4291 }
4292
4293 /* Now ACK is acceptable.
4294 *
4295 * "If the RST bit is set
4296 * If the ACK was acceptable then signal the user "error:
4297 * connection reset", drop the segment, enter CLOSED state,
4298 * delete TCB, and return."
4299 */
4300
4301 if (th->rst) {
4302 tcp_reset(sk);
4303 goto discard;
4304 }
4305
4306 /* rfc793:
4307 * "fifth, if neither of the SYN or RST bits is set then
4308 * drop the segment and return."
4309 *
4310 * See note below!
4311 * --ANK(990513)
4312 */
4313 if (!th->syn)
4314 goto discard_and_undo;
4315
4316 /* rfc793:
4317 * "If the SYN bit is on ...
4318 * are acceptable then ...
4319 * (our SYN has been ACKed), change the connection
4320 * state to ESTABLISHED..."
4321 */
4322
4323 TCP_ECN_rcv_synack(tp, th);
4324
4325 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4326 tcp_ack(sk, skb, FLAG_SLOWPATH);
4327
4328 /* Ok.. it's good. Set up sequence numbers and
4329 * move to established.
4330 */
4331 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4332 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4333
4334 /* RFC1323: The window in SYN & SYN/ACK segments is
4335 * never scaled.
4336 */
4337 tp->snd_wnd = ntohs(th->window);
4338 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4339
4340 if (!tp->rx_opt.wscale_ok) {
4341 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4342 tp->window_clamp = min(tp->window_clamp, 65535U);
4343 }
4344
4345 if (tp->rx_opt.saw_tstamp) {
4346 tp->rx_opt.tstamp_ok = 1;
4347 tp->tcp_header_len =
4348 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4349 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4350 tcp_store_ts_recent(tp);
4351 } else {
4352 tp->tcp_header_len = sizeof(struct tcphdr);
4353 }
4354
4355 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4356 tp->rx_opt.sack_ok |= 2;
4357
4358 tcp_mtup_init(sk);
4359 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4360 tcp_initialize_rcv_mss(sk);
4361
4362 /* Remember, tcp_poll() does not lock socket!
4363 * Change state from SYN-SENT only after copied_seq
4364 * is initialized. */
4365 tp->copied_seq = tp->rcv_nxt;
4366 smp_mb();
4367 tcp_set_state(sk, TCP_ESTABLISHED);
4368
4369 security_inet_conn_established(sk, skb);
4370
4371 /* Make sure socket is routed, for correct metrics. */
4372 icsk->icsk_af_ops->rebuild_header(sk);
4373
4374 tcp_init_metrics(sk);
4375
4376 tcp_init_congestion_control(sk);
4377
4378 /* Prevent spurious tcp_cwnd_restart() on first data
4379 * packet.
4380 */
4381 tp->lsndtime = tcp_time_stamp;
4382
4383 tcp_init_buffer_space(sk);
4384
4385 if (sock_flag(sk, SOCK_KEEPOPEN))
4386 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4387
4388 if (!tp->rx_opt.snd_wscale)
4389 __tcp_fast_path_on(tp, tp->snd_wnd);
4390 else
4391 tp->pred_flags = 0;
4392
4393 if (!sock_flag(sk, SOCK_DEAD)) {
4394 sk->sk_state_change(sk);
4395 sk_wake_async(sk, 0, POLL_OUT);
4396 }
4397
4398 if (sk->sk_write_pending ||
4399 icsk->icsk_accept_queue.rskq_defer_accept ||
4400 icsk->icsk_ack.pingpong) {
4401 /* Save one ACK. Data will be ready after
4402 * several ticks, if write_pending is set.
4403 *
4404 * It may be deleted, but with this feature tcpdumps
4405 * look so _wonderfully_ clever, that I was not able
4406 * to stand against the temptation 8) --ANK
4407 */
4408 inet_csk_schedule_ack(sk);
4409 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4410 icsk->icsk_ack.ato = TCP_ATO_MIN;
4411 tcp_incr_quickack(sk);
4412 tcp_enter_quickack_mode(sk);
4413 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4414 TCP_DELACK_MAX, TCP_RTO_MAX);
4415
4416 discard:
4417 __kfree_skb(skb);
4418 return 0;
4419 } else {
4420 tcp_send_ack(sk);
4421 }
4422 return -1;
4423 }
4424
4425 /* No ACK in the segment */
4426
4427 if (th->rst) {
4428 /* rfc793:
4429 * "If the RST bit is set
4430 *
4431 * Otherwise (no ACK) drop the segment and return."
4432 */
4433
4434 goto discard_and_undo;
4435 }
4436
4437 /* PAWS check. */
4438 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4439 goto discard_and_undo;
4440
4441 if (th->syn) {
4442 /* We see SYN without ACK. It is attempt of
4443 * simultaneous connect with crossed SYNs.
4444 * Particularly, it can be connect to self.
4445 */
4446 tcp_set_state(sk, TCP_SYN_RECV);
4447
4448 if (tp->rx_opt.saw_tstamp) {
4449 tp->rx_opt.tstamp_ok = 1;
4450 tcp_store_ts_recent(tp);
4451 tp->tcp_header_len =
4452 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4453 } else {
4454 tp->tcp_header_len = sizeof(struct tcphdr);
4455 }
4456
4457 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4458 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4459
4460 /* RFC1323: The window in SYN & SYN/ACK segments is
4461 * never scaled.
4462 */
4463 tp->snd_wnd = ntohs(th->window);
4464 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4465 tp->max_window = tp->snd_wnd;
4466
4467 TCP_ECN_rcv_syn(tp, th);
4468
4469 tcp_mtup_init(sk);
4470 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4471 tcp_initialize_rcv_mss(sk);
4472
4473
4474 tcp_send_synack(sk);
4475 #if 0
4476 /* Note, we could accept data and URG from this segment.
4477 * There are no obstacles to make this.
4478 *
4479 * However, if we ignore data in ACKless segments sometimes,
4480 * we have no reasons to accept it sometimes.
4481 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4482 * is not flawless. So, discard packet for sanity.
4483 * Uncomment this return to process the data.
4484 */
4485 return -1;
4486 #else
4487 goto discard;
4488 #endif
4489 }
4490 /* "fifth, if neither of the SYN or RST bits is set then
4491 * drop the segment and return."
4492 */
4493
4494 discard_and_undo:
4495 tcp_clear_options(&tp->rx_opt);
4496 tp->rx_opt.mss_clamp = saved_clamp;
4497 goto discard;
4498
4499 reset_and_undo:
4500 tcp_clear_options(&tp->rx_opt);
4501 tp->rx_opt.mss_clamp = saved_clamp;
4502 return 1;
4503 }
4504
4505
4506 /*
4507 * This function implements the receiving procedure of RFC 793 for
4508 * all states except ESTABLISHED and TIME_WAIT.
4509 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4510 * address independent.
4511 */
4512
4513 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4514 struct tcphdr *th, unsigned len)
4515 {
4516 struct tcp_sock *tp = tcp_sk(sk);
4517 struct inet_connection_sock *icsk = inet_csk(sk);
4518 int queued = 0;
4519
4520 tp->rx_opt.saw_tstamp = 0;
4521
4522 switch (sk->sk_state) {
4523 case TCP_CLOSE:
4524 goto discard;
4525
4526 case TCP_LISTEN:
4527 if(th->ack)
4528 return 1;
4529
4530 if(th->rst)
4531 goto discard;
4532
4533 if(th->syn) {
4534 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4535 return 1;
4536
4537 /* Now we have several options: In theory there is
4538 * nothing else in the frame. KA9Q has an option to
4539 * send data with the syn, BSD accepts data with the
4540 * syn up to the [to be] advertised window and
4541 * Solaris 2.1 gives you a protocol error. For now
4542 * we just ignore it, that fits the spec precisely
4543 * and avoids incompatibilities. It would be nice in
4544 * future to drop through and process the data.
4545 *
4546 * Now that TTCP is starting to be used we ought to
4547 * queue this data.
4548 * But, this leaves one open to an easy denial of
4549 * service attack, and SYN cookies can't defend
4550 * against this problem. So, we drop the data
4551 * in the interest of security over speed unless
4552 * it's still in use.
4553 */
4554 kfree_skb(skb);
4555 return 0;
4556 }
4557 goto discard;
4558
4559 case TCP_SYN_SENT:
4560 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4561 if (queued >= 0)
4562 return queued;
4563
4564 /* Do step6 onward by hand. */
4565 tcp_urg(sk, skb, th);
4566 __kfree_skb(skb);
4567 tcp_data_snd_check(sk, tp);
4568 return 0;
4569 }
4570
4571 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4572 tcp_paws_discard(sk, skb)) {
4573 if (!th->rst) {
4574 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4575 tcp_send_dupack(sk, skb);
4576 goto discard;
4577 }
4578 /* Reset is accepted even if it did not pass PAWS. */
4579 }
4580
4581 /* step 1: check sequence number */
4582 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4583 if (!th->rst)
4584 tcp_send_dupack(sk, skb);
4585 goto discard;
4586 }
4587
4588 /* step 2: check RST bit */
4589 if(th->rst) {
4590 tcp_reset(sk);
4591 goto discard;
4592 }
4593
4594 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4595
4596 /* step 3: check security and precedence [ignored] */
4597
4598 /* step 4:
4599 *
4600 * Check for a SYN in window.
4601 */
4602 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4603 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4604 tcp_reset(sk);
4605 return 1;
4606 }
4607
4608 /* step 5: check the ACK field */
4609 if (th->ack) {
4610 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4611
4612 switch(sk->sk_state) {
4613 case TCP_SYN_RECV:
4614 if (acceptable) {
4615 tp->copied_seq = tp->rcv_nxt;
4616 smp_mb();
4617 tcp_set_state(sk, TCP_ESTABLISHED);
4618 sk->sk_state_change(sk);
4619
4620 /* Note, that this wakeup is only for marginal
4621 * crossed SYN case. Passively open sockets
4622 * are not waked up, because sk->sk_sleep ==
4623 * NULL and sk->sk_socket == NULL.
4624 */
4625 if (sk->sk_socket) {
4626 sk_wake_async(sk,0,POLL_OUT);
4627 }
4628
4629 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4630 tp->snd_wnd = ntohs(th->window) <<
4631 tp->rx_opt.snd_wscale;
4632 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4633 TCP_SKB_CB(skb)->seq);
4634
4635 /* tcp_ack considers this ACK as duplicate
4636 * and does not calculate rtt.
4637 * Fix it at least with timestamps.
4638 */
4639 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4640 !tp->srtt)
4641 tcp_ack_saw_tstamp(sk, 0);
4642
4643 if (tp->rx_opt.tstamp_ok)
4644 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4645
4646 /* Make sure socket is routed, for
4647 * correct metrics.
4648 */
4649 icsk->icsk_af_ops->rebuild_header(sk);
4650
4651 tcp_init_metrics(sk);
4652
4653 tcp_init_congestion_control(sk);
4654
4655 /* Prevent spurious tcp_cwnd_restart() on
4656 * first data packet.
4657 */
4658 tp->lsndtime = tcp_time_stamp;
4659
4660 tcp_mtup_init(sk);
4661 tcp_initialize_rcv_mss(sk);
4662 tcp_init_buffer_space(sk);
4663 tcp_fast_path_on(tp);
4664 } else {
4665 return 1;
4666 }
4667 break;
4668
4669 case TCP_FIN_WAIT1:
4670 if (tp->snd_una == tp->write_seq) {
4671 tcp_set_state(sk, TCP_FIN_WAIT2);
4672 sk->sk_shutdown |= SEND_SHUTDOWN;
4673 dst_confirm(sk->sk_dst_cache);
4674
4675 if (!sock_flag(sk, SOCK_DEAD))
4676 /* Wake up lingering close() */
4677 sk->sk_state_change(sk);
4678 else {
4679 int tmo;
4680
4681 if (tp->linger2 < 0 ||
4682 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4683 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4684 tcp_done(sk);
4685 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4686 return 1;
4687 }
4688
4689 tmo = tcp_fin_time(sk);
4690 if (tmo > TCP_TIMEWAIT_LEN) {
4691 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4692 } else if (th->fin || sock_owned_by_user(sk)) {
4693 /* Bad case. We could lose such FIN otherwise.
4694 * It is not a big problem, but it looks confusing
4695 * and not so rare event. We still can lose it now,
4696 * if it spins in bh_lock_sock(), but it is really
4697 * marginal case.
4698 */
4699 inet_csk_reset_keepalive_timer(sk, tmo);
4700 } else {
4701 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4702 goto discard;
4703 }
4704 }
4705 }
4706 break;
4707
4708 case TCP_CLOSING:
4709 if (tp->snd_una == tp->write_seq) {
4710 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4711 goto discard;
4712 }
4713 break;
4714
4715 case TCP_LAST_ACK:
4716 if (tp->snd_una == tp->write_seq) {
4717 tcp_update_metrics(sk);
4718 tcp_done(sk);
4719 goto discard;
4720 }
4721 break;
4722 }
4723 } else
4724 goto discard;
4725
4726 /* step 6: check the URG bit */
4727 tcp_urg(sk, skb, th);
4728
4729 /* step 7: process the segment text */
4730 switch (sk->sk_state) {
4731 case TCP_CLOSE_WAIT:
4732 case TCP_CLOSING:
4733 case TCP_LAST_ACK:
4734 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4735 break;
4736 case TCP_FIN_WAIT1:
4737 case TCP_FIN_WAIT2:
4738 /* RFC 793 says to queue data in these states,
4739 * RFC 1122 says we MUST send a reset.
4740 * BSD 4.4 also does reset.
4741 */
4742 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4743 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4744 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4745 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4746 tcp_reset(sk);
4747 return 1;
4748 }
4749 }
4750 /* Fall through */
4751 case TCP_ESTABLISHED:
4752 tcp_data_queue(sk, skb);
4753 queued = 1;
4754 break;
4755 }
4756
4757 /* tcp_data could move socket to TIME-WAIT */
4758 if (sk->sk_state != TCP_CLOSE) {
4759 tcp_data_snd_check(sk, tp);
4760 tcp_ack_snd_check(sk);
4761 }
4762
4763 if (!queued) {
4764 discard:
4765 __kfree_skb(skb);
4766 }
4767 return 0;
4768 }
4769
4770 EXPORT_SYMBOL(sysctl_tcp_ecn);
4771 EXPORT_SYMBOL(sysctl_tcp_reordering);
4772 EXPORT_SYMBOL(tcp_parse_options);
4773 EXPORT_SYMBOL(tcp_rcv_established);
4774 EXPORT_SYMBOL(tcp_rcv_state_process);
4775 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.153883 seconds and 6 git commands to generate.