[TCP]: Rewrite SACK block processing & sack_recv_cache use
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
108
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120 /* Adapt the MSS value used to make delayed ack decision to the
121 * real world.
122 */
123 static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
125 {
126 struct inet_connection_sock *icsk = inet_csk(sk);
127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 unsigned int len;
129
130 icsk->icsk_ack.last_seg_size = 0;
131
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
134 */
135 len = skb_shinfo(skb)->gso_size ?: skb->len;
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
141 *
142 * "len" is invariant segment length, including TCP header.
143 */
144 len += skb->data - skb_transport_header(skb);
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
150 */
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
156 */
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
159 if (len == lss) {
160 icsk->icsk_ack.rcv_mss = len;
161 return;
162 }
163 }
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175 if (quickacks==0)
176 quickacks=2;
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
226 }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
257
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290 struct tcp_sock *tp = tcp_sk(sk);
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
294
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299 truesize >>= 1;
300 window >>= 1;
301 }
302 return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk,
306 struct sk_buff *skb)
307 {
308 struct tcp_sock *tp = tcp_sk(sk);
309
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
322 incr = __tcp_grow_window(sk, skb);
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326 inet_csk(sk)->icsk_ack.quick |= 1;
327 }
328 }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338 /* Try to select rcvbuf so that 4 mss-sized segments
339 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 */
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349 * established state.
350 */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
355
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
360
361 tp->rcvq_space.space = tp->rcv_wnd;
362
363 maxwin = tcp_full_space(sk);
364
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
367
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
372 }
373
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387 struct tcp_sock *tp = tcp_sk(sk);
388 struct inet_connection_sock *icsk = inet_csk(sk);
389
390 icsk->icsk_ack.quick = 0;
391
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
398 }
399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401 }
402
403
404 /* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
449 * non-timestamp case, we do not smooth things out
450 * else with timestamps disabled convergence takes too
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
459 /* No previous measure. */
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
475 1);
476
477 new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
480 }
481
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483 {
484 struct tcp_sock *tp = tcp_sk(sk);
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489 }
490
491 /*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495 void tcp_rcv_space_adjust(struct sock *sk)
496 {
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
500
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
503
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
508
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511 space = max(tp->rcvq_space.space, space);
512
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
515
516 tp->rcvq_space.space = space;
517
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520 int new_clamp = space;
521
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
525 */
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
537
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
540 }
541 }
542 }
543
544 new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
547 }
548
549 /* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
558 */
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560 {
561 struct tcp_sock *tp = tcp_sk(sk);
562 struct inet_connection_sock *icsk = inet_csk(sk);
563 u32 now;
564
565 inet_csk_schedule_ack(sk);
566
567 tcp_measure_rcv_mss(sk, skb);
568
569 tcp_rcv_rtt_measure(tp);
570
571 now = tcp_time_stamp;
572
573 if (!icsk->icsk_ack.ato) {
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
576 */
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
579 } else {
580 int m = now - icsk->icsk_ack.lrcvtime;
581
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
590 /* Too long gap. Apparently sender failed to
591 * restart window, so that we send ACKs quickly.
592 */
593 tcp_incr_quickack(sk);
594 sk_stream_mem_reclaim(sk);
595 }
596 }
597 icsk->icsk_ack.lrcvtime = now;
598
599 TCP_ECN_check_ce(tp, skb);
600
601 if (skb->len >= 128)
602 tcp_grow_window(sk, skb);
603 }
604
605 static u32 tcp_rto_min(struct sock *sk)
606 {
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
609
610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
613 }
614
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625 {
626 struct tcp_sock *tp = tcp_sk(sk);
627 long m = mrtt; /* RTT */
628
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
632 * This is designed to be as fast as possible
633 * m stands for "measurement".
634 *
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
637 *
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
640 * too slowly, when it should be increased quickly, decrease too quickly
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
644 */
645 if (m == 0)
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
660 */
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 }
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
671 }
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
676 tp->mdev_max = tcp_rto_min(sk);
677 }
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683 tp->rtt_seq = tp->snd_nxt;
684 }
685 }
686
687 /* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
690 static inline void tcp_set_rto(struct sock *sk)
691 {
692 const struct tcp_sock *tp = tcp_sk(sk);
693 /* Old crap is replaced with new one. 8)
694 *
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
701 * ACKs in some circumstances.
702 */
703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
708 * with correct one. It is exactly, which we pretend to do.
709 */
710 }
711
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
715 static inline void tcp_bound_rto(struct sock *sk)
716 {
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719 }
720
721 /* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725 void tcp_update_metrics(struct sock *sk)
726 {
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
729
730 if (sysctl_tcp_nometrics_save)
731 return;
732
733 dst_confirm(dst);
734
735 if (dst && (dst->flags&DST_HOST)) {
736 const struct inet_connection_sock *icsk = inet_csk(sk);
737 int m;
738
739 if (icsk->icsk_backoff || !tp->srtt) {
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
743 */
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
747 }
748
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
760 }
761
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
765
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
770
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 }
777
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788 icsk->icsk_ca_state == TCP_CA_Open) {
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
798 */
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 }
812 }
813 }
814
815 /* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
823 */
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 {
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd) {
829 if (tp->mss_cache > 1460)
830 cwnd = 2;
831 else
832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833 }
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840 struct tcp_sock *tp = tcp_sk(sk);
841 const struct inet_connection_sock *icsk = inet_csk(sk);
842
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
846 tp->undo_marker = 0;
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
855
856 tcp_set_ca_state(sk, TCP_CA_CWR);
857 }
858 }
859
860 /*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866 /* RFC3517 uses different metric in lost marker => reset on change */
867 if (tcp_is_fack(tp))
868 tp->lost_skb_hint = NULL;
869 tp->rx_opt.sack_ok &= ~2;
870 }
871
872 /* Take a notice that peer is sending D-SACKs */
873 static void tcp_dsack_seen(struct tcp_sock *tp)
874 {
875 tp->rx_opt.sack_ok |= 4;
876 }
877
878 /* Initialize metrics on socket. */
879
880 static void tcp_init_metrics(struct sock *sk)
881 {
882 struct tcp_sock *tp = tcp_sk(sk);
883 struct dst_entry *dst = __sk_dst_get(sk);
884
885 if (dst == NULL)
886 goto reset;
887
888 dst_confirm(dst);
889
890 if (dst_metric_locked(dst, RTAX_CWND))
891 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
892 if (dst_metric(dst, RTAX_SSTHRESH)) {
893 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
894 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
895 tp->snd_ssthresh = tp->snd_cwnd_clamp;
896 }
897 if (dst_metric(dst, RTAX_REORDERING) &&
898 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
899 tcp_disable_fack(tp);
900 tp->reordering = dst_metric(dst, RTAX_REORDERING);
901 }
902
903 if (dst_metric(dst, RTAX_RTT) == 0)
904 goto reset;
905
906 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
907 goto reset;
908
909 /* Initial rtt is determined from SYN,SYN-ACK.
910 * The segment is small and rtt may appear much
911 * less than real one. Use per-dst memory
912 * to make it more realistic.
913 *
914 * A bit of theory. RTT is time passed after "normal" sized packet
915 * is sent until it is ACKed. In normal circumstances sending small
916 * packets force peer to delay ACKs and calculation is correct too.
917 * The algorithm is adaptive and, provided we follow specs, it
918 * NEVER underestimate RTT. BUT! If peer tries to make some clever
919 * tricks sort of "quick acks" for time long enough to decrease RTT
920 * to low value, and then abruptly stops to do it and starts to delay
921 * ACKs, wait for troubles.
922 */
923 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
924 tp->srtt = dst_metric(dst, RTAX_RTT);
925 tp->rtt_seq = tp->snd_nxt;
926 }
927 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
928 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
929 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930 }
931 tcp_set_rto(sk);
932 tcp_bound_rto(sk);
933 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
934 goto reset;
935 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
936 tp->snd_cwnd_stamp = tcp_time_stamp;
937 return;
938
939 reset:
940 /* Play conservative. If timestamps are not
941 * supported, TCP will fail to recalculate correct
942 * rtt, if initial rto is too small. FORGET ALL AND RESET!
943 */
944 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
945 tp->srtt = 0;
946 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
947 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
948 }
949 }
950
951 static void tcp_update_reordering(struct sock *sk, const int metric,
952 const int ts)
953 {
954 struct tcp_sock *tp = tcp_sk(sk);
955 if (metric > tp->reordering) {
956 tp->reordering = min(TCP_MAX_REORDERING, metric);
957
958 /* This exciting event is worth to be remembered. 8) */
959 if (ts)
960 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
961 else if (tcp_is_reno(tp))
962 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
963 else if (tcp_is_fack(tp))
964 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
965 else
966 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
967 #if FASTRETRANS_DEBUG > 1
968 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
969 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
970 tp->reordering,
971 tp->fackets_out,
972 tp->sacked_out,
973 tp->undo_marker ? tp->undo_retrans : 0);
974 #endif
975 tcp_disable_fack(tp);
976 }
977 }
978
979 /* This procedure tags the retransmission queue when SACKs arrive.
980 *
981 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
982 * Packets in queue with these bits set are counted in variables
983 * sacked_out, retrans_out and lost_out, correspondingly.
984 *
985 * Valid combinations are:
986 * Tag InFlight Description
987 * 0 1 - orig segment is in flight.
988 * S 0 - nothing flies, orig reached receiver.
989 * L 0 - nothing flies, orig lost by net.
990 * R 2 - both orig and retransmit are in flight.
991 * L|R 1 - orig is lost, retransmit is in flight.
992 * S|R 1 - orig reached receiver, retrans is still in flight.
993 * (L|S|R is logically valid, it could occur when L|R is sacked,
994 * but it is equivalent to plain S and code short-curcuits it to S.
995 * L|S is logically invalid, it would mean -1 packet in flight 8))
996 *
997 * These 6 states form finite state machine, controlled by the following events:
998 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
999 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1000 * 3. Loss detection event of one of three flavors:
1001 * A. Scoreboard estimator decided the packet is lost.
1002 * A'. Reno "three dupacks" marks head of queue lost.
1003 * A''. Its FACK modfication, head until snd.fack is lost.
1004 * B. SACK arrives sacking data transmitted after never retransmitted
1005 * hole was sent out.
1006 * C. SACK arrives sacking SND.NXT at the moment, when the
1007 * segment was retransmitted.
1008 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1009 *
1010 * It is pleasant to note, that state diagram turns out to be commutative,
1011 * so that we are allowed not to be bothered by order of our actions,
1012 * when multiple events arrive simultaneously. (see the function below).
1013 *
1014 * Reordering detection.
1015 * --------------------
1016 * Reordering metric is maximal distance, which a packet can be displaced
1017 * in packet stream. With SACKs we can estimate it:
1018 *
1019 * 1. SACK fills old hole and the corresponding segment was not
1020 * ever retransmitted -> reordering. Alas, we cannot use it
1021 * when segment was retransmitted.
1022 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1023 * for retransmitted and already SACKed segment -> reordering..
1024 * Both of these heuristics are not used in Loss state, when we cannot
1025 * account for retransmits accurately.
1026 *
1027 * SACK block validation.
1028 * ----------------------
1029 *
1030 * SACK block range validation checks that the received SACK block fits to
1031 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1032 * Note that SND.UNA is not included to the range though being valid because
1033 * it means that the receiver is rather inconsistent with itself reporting
1034 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1035 * perfectly valid, however, in light of RFC2018 which explicitly states
1036 * that "SACK block MUST reflect the newest segment. Even if the newest
1037 * segment is going to be discarded ...", not that it looks very clever
1038 * in case of head skb. Due to potentional receiver driven attacks, we
1039 * choose to avoid immediate execution of a walk in write queue due to
1040 * reneging and defer head skb's loss recovery to standard loss recovery
1041 * procedure that will eventually trigger (nothing forbids us doing this).
1042 *
1043 * Implements also blockage to start_seq wrap-around. Problem lies in the
1044 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1045 * there's no guarantee that it will be before snd_nxt (n). The problem
1046 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1047 * wrap (s_w):
1048 *
1049 * <- outs wnd -> <- wrapzone ->
1050 * u e n u_w e_w s n_w
1051 * | | | | | | |
1052 * |<------------+------+----- TCP seqno space --------------+---------->|
1053 * ...-- <2^31 ->| |<--------...
1054 * ...---- >2^31 ------>| |<--------...
1055 *
1056 * Current code wouldn't be vulnerable but it's better still to discard such
1057 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1058 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1059 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1060 * equal to the ideal case (infinite seqno space without wrap caused issues).
1061 *
1062 * With D-SACK the lower bound is extended to cover sequence space below
1063 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1064 * again, D-SACK block must not to go across snd_una (for the same reason as
1065 * for the normal SACK blocks, explained above). But there all simplicity
1066 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1067 * fully below undo_marker they do not affect behavior in anyway and can
1068 * therefore be safely ignored. In rare cases (which are more or less
1069 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1070 * fragmentation and packet reordering past skb's retransmission. To consider
1071 * them correctly, the acceptable range must be extended even more though
1072 * the exact amount is rather hard to quantify. However, tp->max_window can
1073 * be used as an exaggerated estimate.
1074 */
1075 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1076 u32 start_seq, u32 end_seq)
1077 {
1078 /* Too far in future, or reversed (interpretation is ambiguous) */
1079 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1080 return 0;
1081
1082 /* Nasty start_seq wrap-around check (see comments above) */
1083 if (!before(start_seq, tp->snd_nxt))
1084 return 0;
1085
1086 /* In outstanding window? ...This is valid exit for D-SACKs too.
1087 * start_seq == snd_una is non-sensical (see comments above)
1088 */
1089 if (after(start_seq, tp->snd_una))
1090 return 1;
1091
1092 if (!is_dsack || !tp->undo_marker)
1093 return 0;
1094
1095 /* ...Then it's D-SACK, and must reside below snd_una completely */
1096 if (!after(end_seq, tp->snd_una))
1097 return 0;
1098
1099 if (!before(start_seq, tp->undo_marker))
1100 return 1;
1101
1102 /* Too old */
1103 if (!after(end_seq, tp->undo_marker))
1104 return 0;
1105
1106 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1107 * start_seq < undo_marker and end_seq >= undo_marker.
1108 */
1109 return !before(start_seq, end_seq - tp->max_window);
1110 }
1111
1112 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1113 * Event "C". Later note: FACK people cheated me again 8), we have to account
1114 * for reordering! Ugly, but should help.
1115 *
1116 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1117 * less than what is now known to be received by the other end (derived from
1118 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1119 * retransmitted skbs to avoid some costly processing per ACKs.
1120 */
1121 static int tcp_mark_lost_retrans(struct sock *sk)
1122 {
1123 const struct inet_connection_sock *icsk = inet_csk(sk);
1124 struct tcp_sock *tp = tcp_sk(sk);
1125 struct sk_buff *skb;
1126 int flag = 0;
1127 int cnt = 0;
1128 u32 new_low_seq = tp->snd_nxt;
1129 u32 received_upto = TCP_SKB_CB(tp->highest_sack)->end_seq;
1130
1131 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1132 !after(received_upto, tp->lost_retrans_low) ||
1133 icsk->icsk_ca_state != TCP_CA_Recovery)
1134 return flag;
1135
1136 tcp_for_write_queue(skb, sk) {
1137 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1138
1139 if (skb == tcp_send_head(sk))
1140 break;
1141 if (cnt == tp->retrans_out)
1142 break;
1143 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1144 continue;
1145
1146 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1147 continue;
1148
1149 if (after(received_upto, ack_seq) &&
1150 (tcp_is_fack(tp) ||
1151 !before(received_upto,
1152 ack_seq + tp->reordering * tp->mss_cache))) {
1153 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1154 tp->retrans_out -= tcp_skb_pcount(skb);
1155
1156 /* clear lost hint */
1157 tp->retransmit_skb_hint = NULL;
1158
1159 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1160 tp->lost_out += tcp_skb_pcount(skb);
1161 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1162 flag |= FLAG_DATA_SACKED;
1163 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1164 }
1165 } else {
1166 if (before(ack_seq, new_low_seq))
1167 new_low_seq = ack_seq;
1168 cnt += tcp_skb_pcount(skb);
1169 }
1170 }
1171
1172 if (tp->retrans_out)
1173 tp->lost_retrans_low = new_low_seq;
1174
1175 return flag;
1176 }
1177
1178 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1179 struct tcp_sack_block_wire *sp, int num_sacks,
1180 u32 prior_snd_una)
1181 {
1182 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1183 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1184 int dup_sack = 0;
1185
1186 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1187 dup_sack = 1;
1188 tcp_dsack_seen(tp);
1189 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1190 } else if (num_sacks > 1) {
1191 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1192 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1193
1194 if (!after(end_seq_0, end_seq_1) &&
1195 !before(start_seq_0, start_seq_1)) {
1196 dup_sack = 1;
1197 tcp_dsack_seen(tp);
1198 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1199 }
1200 }
1201
1202 /* D-SACK for already forgotten data... Do dumb counting. */
1203 if (dup_sack &&
1204 !after(end_seq_0, prior_snd_una) &&
1205 after(end_seq_0, tp->undo_marker))
1206 tp->undo_retrans--;
1207
1208 return dup_sack;
1209 }
1210
1211 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1212 * the incoming SACK may not exactly match but we can find smaller MSS
1213 * aligned portion of it that matches. Therefore we might need to fragment
1214 * which may fail and creates some hassle (caller must handle error case
1215 * returns).
1216 */
1217 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1218 u32 start_seq, u32 end_seq)
1219 {
1220 int in_sack, err;
1221 unsigned int pkt_len;
1222
1223 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1224 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1225
1226 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1227 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1228
1229 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1230
1231 if (!in_sack)
1232 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1233 else
1234 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1235 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1236 if (err < 0)
1237 return err;
1238 }
1239
1240 return in_sack;
1241 }
1242
1243 static int tcp_sacktag_one(struct sk_buff *skb, struct tcp_sock *tp,
1244 int *reord, int dup_sack, int fack_count)
1245 {
1246 u8 sacked = TCP_SKB_CB(skb)->sacked;
1247 int flag = 0;
1248
1249 /* Account D-SACK for retransmitted packet. */
1250 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1251 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1252 tp->undo_retrans--;
1253 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una) &&
1254 (sacked & TCPCB_SACKED_ACKED))
1255 *reord = min(fack_count, *reord);
1256 }
1257
1258 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1259 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1260 return flag;
1261
1262 if (!(sacked & TCPCB_SACKED_ACKED)) {
1263 if (sacked & TCPCB_SACKED_RETRANS) {
1264 /* If the segment is not tagged as lost,
1265 * we do not clear RETRANS, believing
1266 * that retransmission is still in flight.
1267 */
1268 if (sacked & TCPCB_LOST) {
1269 TCP_SKB_CB(skb)->sacked &=
1270 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1271 tp->lost_out -= tcp_skb_pcount(skb);
1272 tp->retrans_out -= tcp_skb_pcount(skb);
1273
1274 /* clear lost hint */
1275 tp->retransmit_skb_hint = NULL;
1276 }
1277 } else {
1278 if (!(sacked & TCPCB_RETRANS)) {
1279 /* New sack for not retransmitted frame,
1280 * which was in hole. It is reordering.
1281 */
1282 if (before(TCP_SKB_CB(skb)->seq,
1283 tcp_highest_sack_seq(tp)))
1284 *reord = min(fack_count, *reord);
1285
1286 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1287 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1288 flag |= FLAG_ONLY_ORIG_SACKED;
1289 }
1290
1291 if (sacked & TCPCB_LOST) {
1292 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1293 tp->lost_out -= tcp_skb_pcount(skb);
1294
1295 /* clear lost hint */
1296 tp->retransmit_skb_hint = NULL;
1297 }
1298 }
1299
1300 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1301 flag |= FLAG_DATA_SACKED;
1302 tp->sacked_out += tcp_skb_pcount(skb);
1303
1304 fack_count += tcp_skb_pcount(skb);
1305
1306 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1307 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1308 before(TCP_SKB_CB(skb)->seq,
1309 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1310 tp->lost_cnt_hint += tcp_skb_pcount(skb);
1311
1312 if (fack_count > tp->fackets_out)
1313 tp->fackets_out = fack_count;
1314
1315 if (after(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1316 tp->highest_sack = skb;
1317
1318 } else {
1319 if (dup_sack && (sacked & TCPCB_RETRANS))
1320 *reord = min(fack_count, *reord);
1321 }
1322
1323 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1324 * frames and clear it. undo_retrans is decreased above, L|R frames
1325 * are accounted above as well.
1326 */
1327 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1328 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1329 tp->retrans_out -= tcp_skb_pcount(skb);
1330 tp->retransmit_skb_hint = NULL;
1331 }
1332
1333 return flag;
1334 }
1335
1336 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1337 struct tcp_sack_block *next_dup,
1338 u32 start_seq, u32 end_seq,
1339 int dup_sack_in, int *fack_count,
1340 int *reord, int *flag)
1341 {
1342 struct tcp_sock *tp = tcp_sk(sk);
1343
1344 tcp_for_write_queue_from(skb, sk) {
1345 int in_sack = 0;
1346 int dup_sack = dup_sack_in;
1347
1348 if (skb == tcp_send_head(sk))
1349 break;
1350
1351 /* queue is in-order => we can short-circuit the walk early */
1352 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1353 break;
1354
1355 if ((next_dup != NULL) &&
1356 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1357 in_sack = tcp_match_skb_to_sack(sk, skb,
1358 next_dup->start_seq,
1359 next_dup->end_seq);
1360 if (in_sack > 0)
1361 dup_sack = 1;
1362 }
1363
1364 if (in_sack <= 0)
1365 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1366 if (unlikely(in_sack < 0))
1367 break;
1368
1369 if (in_sack)
1370 *flag |= tcp_sacktag_one(skb, tp, reord, dup_sack, *fack_count);
1371
1372 *fack_count += tcp_skb_pcount(skb);
1373 }
1374 return skb;
1375 }
1376
1377 /* Avoid all extra work that is being done by sacktag while walking in
1378 * a normal way
1379 */
1380 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1381 u32 skip_to_seq)
1382 {
1383 tcp_for_write_queue_from(skb, sk) {
1384 if (skb == tcp_send_head(sk))
1385 break;
1386
1387 if (before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1388 break;
1389 }
1390 return skb;
1391 }
1392
1393 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1394 struct sock *sk,
1395 struct tcp_sack_block *next_dup,
1396 u32 skip_to_seq,
1397 int *fack_count, int *reord,
1398 int *flag)
1399 {
1400 if (next_dup == NULL)
1401 return skb;
1402
1403 if (before(next_dup->start_seq, skip_to_seq)) {
1404 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1405 tcp_sacktag_walk(skb, sk, NULL,
1406 next_dup->start_seq, next_dup->end_seq,
1407 1, fack_count, reord, flag);
1408 }
1409
1410 return skb;
1411 }
1412
1413 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1414 {
1415 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1416 }
1417
1418 static int
1419 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1420 {
1421 const struct inet_connection_sock *icsk = inet_csk(sk);
1422 struct tcp_sock *tp = tcp_sk(sk);
1423 unsigned char *ptr = (skb_transport_header(ack_skb) +
1424 TCP_SKB_CB(ack_skb)->sacked);
1425 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1426 struct tcp_sack_block sp[4];
1427 struct tcp_sack_block *cache;
1428 struct sk_buff *skb;
1429 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1430 int used_sacks;
1431 int reord = tp->packets_out;
1432 int flag = 0;
1433 int found_dup_sack = 0;
1434 int fack_count;
1435 int i, j;
1436 int first_sack_index;
1437
1438 if (!tp->sacked_out) {
1439 if (WARN_ON(tp->fackets_out))
1440 tp->fackets_out = 0;
1441 tp->highest_sack = tcp_write_queue_head(sk);
1442 }
1443
1444 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1445 num_sacks, prior_snd_una);
1446 if (found_dup_sack)
1447 flag |= FLAG_DSACKING_ACK;
1448
1449 /* Eliminate too old ACKs, but take into
1450 * account more or less fresh ones, they can
1451 * contain valid SACK info.
1452 */
1453 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1454 return 0;
1455
1456 if (!tp->packets_out)
1457 goto out;
1458
1459 used_sacks = 0;
1460 first_sack_index = 0;
1461 for (i = 0; i < num_sacks; i++) {
1462 int dup_sack = !i && found_dup_sack;
1463
1464 sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
1465 sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
1466
1467 if (!tcp_is_sackblock_valid(tp, dup_sack,
1468 sp[used_sacks].start_seq,
1469 sp[used_sacks].end_seq)) {
1470 if (dup_sack) {
1471 if (!tp->undo_marker)
1472 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1473 else
1474 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1475 } else {
1476 /* Don't count olds caused by ACK reordering */
1477 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1478 !after(sp[used_sacks].end_seq, tp->snd_una))
1479 continue;
1480 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1481 }
1482 if (i == 0)
1483 first_sack_index = -1;
1484 continue;
1485 }
1486
1487 /* Ignore very old stuff early */
1488 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1489 continue;
1490
1491 used_sacks++;
1492 }
1493
1494 /* order SACK blocks to allow in order walk of the retrans queue */
1495 for (i = used_sacks - 1; i > 0; i--) {
1496 for (j = 0; j < i; j++){
1497 if (after(sp[j].start_seq, sp[j+1].start_seq)) {
1498 struct tcp_sack_block tmp;
1499
1500 tmp = sp[j];
1501 sp[j] = sp[j+1];
1502 sp[j+1] = tmp;
1503
1504 /* Track where the first SACK block goes to */
1505 if (j == first_sack_index)
1506 first_sack_index = j+1;
1507 }
1508 }
1509 }
1510
1511 skb = tcp_write_queue_head(sk);
1512 fack_count = 0;
1513 i = 0;
1514
1515 if (!tp->sacked_out) {
1516 /* It's already past, so skip checking against it */
1517 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1518 } else {
1519 cache = tp->recv_sack_cache;
1520 /* Skip empty blocks in at head of the cache */
1521 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1522 !cache->end_seq)
1523 cache++;
1524 }
1525
1526 while (i < used_sacks) {
1527 u32 start_seq = sp[i].start_seq;
1528 u32 end_seq = sp[i].end_seq;
1529 int dup_sack = (found_dup_sack && (i == first_sack_index));
1530 struct tcp_sack_block *next_dup = NULL;
1531
1532 if (found_dup_sack && ((i + 1) == first_sack_index))
1533 next_dup = &sp[i + 1];
1534
1535 /* Event "B" in the comment above. */
1536 if (after(end_seq, tp->high_seq))
1537 flag |= FLAG_DATA_LOST;
1538
1539 /* Skip too early cached blocks */
1540 while (tcp_sack_cache_ok(tp, cache) &&
1541 !before(start_seq, cache->end_seq))
1542 cache++;
1543
1544 /* Can skip some work by looking recv_sack_cache? */
1545 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1546 after(end_seq, cache->start_seq)) {
1547
1548 /* Head todo? */
1549 if (before(start_seq, cache->start_seq)) {
1550 skb = tcp_sacktag_skip(skb, sk, start_seq);
1551 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq,
1552 cache->start_seq, dup_sack,
1553 &fack_count, &reord, &flag);
1554 }
1555
1556 /* Rest of the block already fully processed? */
1557 if (!after(end_seq, cache->end_seq)) {
1558 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, cache->end_seq,
1559 &fack_count, &reord, &flag);
1560 goto advance_sp;
1561 }
1562
1563 /* ...tail remains todo... */
1564 if (TCP_SKB_CB(tp->highest_sack)->end_seq == cache->end_seq) {
1565 /* ...but better entrypoint exists! Check that DSACKs are
1566 * properly accounted while skipping here
1567 */
1568 tcp_maybe_skipping_dsack(skb, sk, next_dup, cache->end_seq,
1569 &fack_count, &reord, &flag);
1570
1571 skb = tcp_write_queue_next(sk, tp->highest_sack);
1572 fack_count = tp->fackets_out;
1573 cache++;
1574 goto walk;
1575 }
1576
1577 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1578 /* Check overlap against next cached too (past this one already) */
1579 cache++;
1580 continue;
1581 }
1582
1583 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1584 skb = tcp_write_queue_next(sk, tp->highest_sack);
1585 fack_count = tp->fackets_out;
1586 }
1587 skb = tcp_sacktag_skip(skb, sk, start_seq);
1588
1589 walk:
1590 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1591 dup_sack, &fack_count, &reord, &flag);
1592
1593 advance_sp:
1594 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1595 * due to in-order walk
1596 */
1597 if (after(end_seq, tp->frto_highmark))
1598 flag &= ~FLAG_ONLY_ORIG_SACKED;
1599
1600 i++;
1601 }
1602
1603 /* Clear the head of the cache sack blocks so we can skip it next time */
1604 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1605 tp->recv_sack_cache[i].start_seq = 0;
1606 tp->recv_sack_cache[i].end_seq = 0;
1607 }
1608 for (j = 0; j < used_sacks; j++)
1609 tp->recv_sack_cache[i++] = sp[j];
1610
1611 flag |= tcp_mark_lost_retrans(sk);
1612
1613 tcp_verify_left_out(tp);
1614
1615 if ((reord < tp->fackets_out) &&
1616 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1617 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1618 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1619
1620 out:
1621
1622 #if FASTRETRANS_DEBUG > 0
1623 BUG_TRAP((int)tp->sacked_out >= 0);
1624 BUG_TRAP((int)tp->lost_out >= 0);
1625 BUG_TRAP((int)tp->retrans_out >= 0);
1626 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1627 #endif
1628 return flag;
1629 }
1630
1631 /* If we receive more dupacks than we expected counting segments
1632 * in assumption of absent reordering, interpret this as reordering.
1633 * The only another reason could be bug in receiver TCP.
1634 */
1635 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1636 {
1637 struct tcp_sock *tp = tcp_sk(sk);
1638 u32 holes;
1639
1640 holes = max(tp->lost_out, 1U);
1641 holes = min(holes, tp->packets_out);
1642
1643 if ((tp->sacked_out + holes) > tp->packets_out) {
1644 tp->sacked_out = tp->packets_out - holes;
1645 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1646 }
1647 }
1648
1649 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1650
1651 static void tcp_add_reno_sack(struct sock *sk)
1652 {
1653 struct tcp_sock *tp = tcp_sk(sk);
1654 tp->sacked_out++;
1655 tcp_check_reno_reordering(sk, 0);
1656 tcp_verify_left_out(tp);
1657 }
1658
1659 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1660
1661 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1662 {
1663 struct tcp_sock *tp = tcp_sk(sk);
1664
1665 if (acked > 0) {
1666 /* One ACK acked hole. The rest eat duplicate ACKs. */
1667 if (acked-1 >= tp->sacked_out)
1668 tp->sacked_out = 0;
1669 else
1670 tp->sacked_out -= acked-1;
1671 }
1672 tcp_check_reno_reordering(sk, acked);
1673 tcp_verify_left_out(tp);
1674 }
1675
1676 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1677 {
1678 tp->sacked_out = 0;
1679 }
1680
1681 /* F-RTO can only be used if TCP has never retransmitted anything other than
1682 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1683 */
1684 int tcp_use_frto(struct sock *sk)
1685 {
1686 const struct tcp_sock *tp = tcp_sk(sk);
1687 struct sk_buff *skb;
1688
1689 if (!sysctl_tcp_frto)
1690 return 0;
1691
1692 if (IsSackFrto())
1693 return 1;
1694
1695 /* Avoid expensive walking of rexmit queue if possible */
1696 if (tp->retrans_out > 1)
1697 return 0;
1698
1699 skb = tcp_write_queue_head(sk);
1700 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1701 tcp_for_write_queue_from(skb, sk) {
1702 if (skb == tcp_send_head(sk))
1703 break;
1704 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1705 return 0;
1706 /* Short-circuit when first non-SACKed skb has been checked */
1707 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1708 break;
1709 }
1710 return 1;
1711 }
1712
1713 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1714 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1715 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1716 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1717 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1718 * bits are handled if the Loss state is really to be entered (in
1719 * tcp_enter_frto_loss).
1720 *
1721 * Do like tcp_enter_loss() would; when RTO expires the second time it
1722 * does:
1723 * "Reduce ssthresh if it has not yet been made inside this window."
1724 */
1725 void tcp_enter_frto(struct sock *sk)
1726 {
1727 const struct inet_connection_sock *icsk = inet_csk(sk);
1728 struct tcp_sock *tp = tcp_sk(sk);
1729 struct sk_buff *skb;
1730
1731 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1732 tp->snd_una == tp->high_seq ||
1733 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1734 !icsk->icsk_retransmits)) {
1735 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1736 /* Our state is too optimistic in ssthresh() call because cwnd
1737 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1738 * recovery has not yet completed. Pattern would be this: RTO,
1739 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1740 * up here twice).
1741 * RFC4138 should be more specific on what to do, even though
1742 * RTO is quite unlikely to occur after the first Cumulative ACK
1743 * due to back-off and complexity of triggering events ...
1744 */
1745 if (tp->frto_counter) {
1746 u32 stored_cwnd;
1747 stored_cwnd = tp->snd_cwnd;
1748 tp->snd_cwnd = 2;
1749 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1750 tp->snd_cwnd = stored_cwnd;
1751 } else {
1752 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1753 }
1754 /* ... in theory, cong.control module could do "any tricks" in
1755 * ssthresh(), which means that ca_state, lost bits and lost_out
1756 * counter would have to be faked before the call occurs. We
1757 * consider that too expensive, unlikely and hacky, so modules
1758 * using these in ssthresh() must deal these incompatibility
1759 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1760 */
1761 tcp_ca_event(sk, CA_EVENT_FRTO);
1762 }
1763
1764 tp->undo_marker = tp->snd_una;
1765 tp->undo_retrans = 0;
1766
1767 skb = tcp_write_queue_head(sk);
1768 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1769 tp->undo_marker = 0;
1770 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1771 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1772 tp->retrans_out -= tcp_skb_pcount(skb);
1773 }
1774 tcp_verify_left_out(tp);
1775
1776 /* Too bad if TCP was application limited */
1777 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1778
1779 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1780 * The last condition is necessary at least in tp->frto_counter case.
1781 */
1782 if (IsSackFrto() && (tp->frto_counter ||
1783 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1784 after(tp->high_seq, tp->snd_una)) {
1785 tp->frto_highmark = tp->high_seq;
1786 } else {
1787 tp->frto_highmark = tp->snd_nxt;
1788 }
1789 tcp_set_ca_state(sk, TCP_CA_Disorder);
1790 tp->high_seq = tp->snd_nxt;
1791 tp->frto_counter = 1;
1792 }
1793
1794 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1795 * which indicates that we should follow the traditional RTO recovery,
1796 * i.e. mark everything lost and do go-back-N retransmission.
1797 */
1798 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1799 {
1800 struct tcp_sock *tp = tcp_sk(sk);
1801 struct sk_buff *skb;
1802
1803 tp->lost_out = 0;
1804 tp->retrans_out = 0;
1805 if (tcp_is_reno(tp))
1806 tcp_reset_reno_sack(tp);
1807
1808 tcp_for_write_queue(skb, sk) {
1809 if (skb == tcp_send_head(sk))
1810 break;
1811
1812 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1813 /*
1814 * Count the retransmission made on RTO correctly (only when
1815 * waiting for the first ACK and did not get it)...
1816 */
1817 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1818 /* For some reason this R-bit might get cleared? */
1819 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1820 tp->retrans_out += tcp_skb_pcount(skb);
1821 /* ...enter this if branch just for the first segment */
1822 flag |= FLAG_DATA_ACKED;
1823 } else {
1824 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1825 tp->undo_marker = 0;
1826 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1827 }
1828
1829 /* Don't lost mark skbs that were fwd transmitted after RTO */
1830 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1831 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1832 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1833 tp->lost_out += tcp_skb_pcount(skb);
1834 }
1835 }
1836 tcp_verify_left_out(tp);
1837
1838 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1839 tp->snd_cwnd_cnt = 0;
1840 tp->snd_cwnd_stamp = tcp_time_stamp;
1841 tp->frto_counter = 0;
1842 tp->bytes_acked = 0;
1843
1844 tp->reordering = min_t(unsigned int, tp->reordering,
1845 sysctl_tcp_reordering);
1846 tcp_set_ca_state(sk, TCP_CA_Loss);
1847 tp->high_seq = tp->frto_highmark;
1848 TCP_ECN_queue_cwr(tp);
1849
1850 tcp_clear_retrans_hints_partial(tp);
1851 }
1852
1853 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1854 {
1855 tp->retrans_out = 0;
1856 tp->lost_out = 0;
1857
1858 tp->undo_marker = 0;
1859 tp->undo_retrans = 0;
1860 }
1861
1862 void tcp_clear_retrans(struct tcp_sock *tp)
1863 {
1864 tcp_clear_retrans_partial(tp);
1865
1866 tp->fackets_out = 0;
1867 tp->sacked_out = 0;
1868 }
1869
1870 /* Enter Loss state. If "how" is not zero, forget all SACK information
1871 * and reset tags completely, otherwise preserve SACKs. If receiver
1872 * dropped its ofo queue, we will know this due to reneging detection.
1873 */
1874 void tcp_enter_loss(struct sock *sk, int how)
1875 {
1876 const struct inet_connection_sock *icsk = inet_csk(sk);
1877 struct tcp_sock *tp = tcp_sk(sk);
1878 struct sk_buff *skb;
1879
1880 /* Reduce ssthresh if it has not yet been made inside this window. */
1881 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1882 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1883 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1884 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1885 tcp_ca_event(sk, CA_EVENT_LOSS);
1886 }
1887 tp->snd_cwnd = 1;
1888 tp->snd_cwnd_cnt = 0;
1889 tp->snd_cwnd_stamp = tcp_time_stamp;
1890
1891 tp->bytes_acked = 0;
1892 tcp_clear_retrans_partial(tp);
1893
1894 if (tcp_is_reno(tp))
1895 tcp_reset_reno_sack(tp);
1896
1897 if (!how) {
1898 /* Push undo marker, if it was plain RTO and nothing
1899 * was retransmitted. */
1900 tp->undo_marker = tp->snd_una;
1901 tcp_clear_retrans_hints_partial(tp);
1902 } else {
1903 tp->sacked_out = 0;
1904 tp->fackets_out = 0;
1905 tcp_clear_all_retrans_hints(tp);
1906 }
1907
1908 tcp_for_write_queue(skb, sk) {
1909 if (skb == tcp_send_head(sk))
1910 break;
1911
1912 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1913 tp->undo_marker = 0;
1914 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1915 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1916 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1917 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1918 tp->lost_out += tcp_skb_pcount(skb);
1919 }
1920 }
1921 tcp_verify_left_out(tp);
1922
1923 tp->reordering = min_t(unsigned int, tp->reordering,
1924 sysctl_tcp_reordering);
1925 tcp_set_ca_state(sk, TCP_CA_Loss);
1926 tp->high_seq = tp->snd_nxt;
1927 TCP_ECN_queue_cwr(tp);
1928 /* Abort F-RTO algorithm if one is in progress */
1929 tp->frto_counter = 0;
1930 }
1931
1932 static int tcp_check_sack_reneging(struct sock *sk)
1933 {
1934 struct sk_buff *skb;
1935
1936 /* If ACK arrived pointing to a remembered SACK,
1937 * it means that our remembered SACKs do not reflect
1938 * real state of receiver i.e.
1939 * receiver _host_ is heavily congested (or buggy).
1940 * Do processing similar to RTO timeout.
1941 */
1942 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1943 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1944 struct inet_connection_sock *icsk = inet_csk(sk);
1945 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1946
1947 tcp_enter_loss(sk, 1);
1948 icsk->icsk_retransmits++;
1949 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1950 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1951 icsk->icsk_rto, TCP_RTO_MAX);
1952 return 1;
1953 }
1954 return 0;
1955 }
1956
1957 static inline int tcp_fackets_out(struct tcp_sock *tp)
1958 {
1959 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1960 }
1961
1962 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1963 * counter when SACK is enabled (without SACK, sacked_out is used for
1964 * that purpose).
1965 *
1966 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1967 * segments up to the highest received SACK block so far and holes in
1968 * between them.
1969 *
1970 * With reordering, holes may still be in flight, so RFC3517 recovery
1971 * uses pure sacked_out (total number of SACKed segments) even though
1972 * it violates the RFC that uses duplicate ACKs, often these are equal
1973 * but when e.g. out-of-window ACKs or packet duplication occurs,
1974 * they differ. Since neither occurs due to loss, TCP should really
1975 * ignore them.
1976 */
1977 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1978 {
1979 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1980 }
1981
1982 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1983 {
1984 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1985 }
1986
1987 static inline int tcp_head_timedout(struct sock *sk)
1988 {
1989 struct tcp_sock *tp = tcp_sk(sk);
1990
1991 return tp->packets_out &&
1992 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1993 }
1994
1995 /* Linux NewReno/SACK/FACK/ECN state machine.
1996 * --------------------------------------
1997 *
1998 * "Open" Normal state, no dubious events, fast path.
1999 * "Disorder" In all the respects it is "Open",
2000 * but requires a bit more attention. It is entered when
2001 * we see some SACKs or dupacks. It is split of "Open"
2002 * mainly to move some processing from fast path to slow one.
2003 * "CWR" CWND was reduced due to some Congestion Notification event.
2004 * It can be ECN, ICMP source quench, local device congestion.
2005 * "Recovery" CWND was reduced, we are fast-retransmitting.
2006 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2007 *
2008 * tcp_fastretrans_alert() is entered:
2009 * - each incoming ACK, if state is not "Open"
2010 * - when arrived ACK is unusual, namely:
2011 * * SACK
2012 * * Duplicate ACK.
2013 * * ECN ECE.
2014 *
2015 * Counting packets in flight is pretty simple.
2016 *
2017 * in_flight = packets_out - left_out + retrans_out
2018 *
2019 * packets_out is SND.NXT-SND.UNA counted in packets.
2020 *
2021 * retrans_out is number of retransmitted segments.
2022 *
2023 * left_out is number of segments left network, but not ACKed yet.
2024 *
2025 * left_out = sacked_out + lost_out
2026 *
2027 * sacked_out: Packets, which arrived to receiver out of order
2028 * and hence not ACKed. With SACKs this number is simply
2029 * amount of SACKed data. Even without SACKs
2030 * it is easy to give pretty reliable estimate of this number,
2031 * counting duplicate ACKs.
2032 *
2033 * lost_out: Packets lost by network. TCP has no explicit
2034 * "loss notification" feedback from network (for now).
2035 * It means that this number can be only _guessed_.
2036 * Actually, it is the heuristics to predict lossage that
2037 * distinguishes different algorithms.
2038 *
2039 * F.e. after RTO, when all the queue is considered as lost,
2040 * lost_out = packets_out and in_flight = retrans_out.
2041 *
2042 * Essentially, we have now two algorithms counting
2043 * lost packets.
2044 *
2045 * FACK: It is the simplest heuristics. As soon as we decided
2046 * that something is lost, we decide that _all_ not SACKed
2047 * packets until the most forward SACK are lost. I.e.
2048 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2049 * It is absolutely correct estimate, if network does not reorder
2050 * packets. And it loses any connection to reality when reordering
2051 * takes place. We use FACK by default until reordering
2052 * is suspected on the path to this destination.
2053 *
2054 * NewReno: when Recovery is entered, we assume that one segment
2055 * is lost (classic Reno). While we are in Recovery and
2056 * a partial ACK arrives, we assume that one more packet
2057 * is lost (NewReno). This heuristics are the same in NewReno
2058 * and SACK.
2059 *
2060 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2061 * deflation etc. CWND is real congestion window, never inflated, changes
2062 * only according to classic VJ rules.
2063 *
2064 * Really tricky (and requiring careful tuning) part of algorithm
2065 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2066 * The first determines the moment _when_ we should reduce CWND and,
2067 * hence, slow down forward transmission. In fact, it determines the moment
2068 * when we decide that hole is caused by loss, rather than by a reorder.
2069 *
2070 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2071 * holes, caused by lost packets.
2072 *
2073 * And the most logically complicated part of algorithm is undo
2074 * heuristics. We detect false retransmits due to both too early
2075 * fast retransmit (reordering) and underestimated RTO, analyzing
2076 * timestamps and D-SACKs. When we detect that some segments were
2077 * retransmitted by mistake and CWND reduction was wrong, we undo
2078 * window reduction and abort recovery phase. This logic is hidden
2079 * inside several functions named tcp_try_undo_<something>.
2080 */
2081
2082 /* This function decides, when we should leave Disordered state
2083 * and enter Recovery phase, reducing congestion window.
2084 *
2085 * Main question: may we further continue forward transmission
2086 * with the same cwnd?
2087 */
2088 static int tcp_time_to_recover(struct sock *sk)
2089 {
2090 struct tcp_sock *tp = tcp_sk(sk);
2091 __u32 packets_out;
2092
2093 /* Do not perform any recovery during F-RTO algorithm */
2094 if (tp->frto_counter)
2095 return 0;
2096
2097 /* Trick#1: The loss is proven. */
2098 if (tp->lost_out)
2099 return 1;
2100
2101 /* Not-A-Trick#2 : Classic rule... */
2102 if (tcp_dupack_heurestics(tp) > tp->reordering)
2103 return 1;
2104
2105 /* Trick#3 : when we use RFC2988 timer restart, fast
2106 * retransmit can be triggered by timeout of queue head.
2107 */
2108 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2109 return 1;
2110
2111 /* Trick#4: It is still not OK... But will it be useful to delay
2112 * recovery more?
2113 */
2114 packets_out = tp->packets_out;
2115 if (packets_out <= tp->reordering &&
2116 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2117 !tcp_may_send_now(sk)) {
2118 /* We have nothing to send. This connection is limited
2119 * either by receiver window or by application.
2120 */
2121 return 1;
2122 }
2123
2124 return 0;
2125 }
2126
2127 /* RFC: This is from the original, I doubt that this is necessary at all:
2128 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2129 * retransmitted past LOST markings in the first place? I'm not fully sure
2130 * about undo and end of connection cases, which can cause R without L?
2131 */
2132 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2133 struct sk_buff *skb)
2134 {
2135 if ((tp->retransmit_skb_hint != NULL) &&
2136 before(TCP_SKB_CB(skb)->seq,
2137 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2138 tp->retransmit_skb_hint = NULL;
2139 }
2140
2141 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2142 * is against sacked "cnt", otherwise it's against facked "cnt"
2143 */
2144 static void tcp_mark_head_lost(struct sock *sk, int packets, int fast_rexmit)
2145 {
2146 struct tcp_sock *tp = tcp_sk(sk);
2147 struct sk_buff *skb;
2148 int cnt;
2149
2150 BUG_TRAP(packets <= tp->packets_out);
2151 if (tp->lost_skb_hint) {
2152 skb = tp->lost_skb_hint;
2153 cnt = tp->lost_cnt_hint;
2154 } else {
2155 skb = tcp_write_queue_head(sk);
2156 cnt = 0;
2157 }
2158
2159 tcp_for_write_queue_from(skb, sk) {
2160 if (skb == tcp_send_head(sk))
2161 break;
2162 /* TODO: do this better */
2163 /* this is not the most efficient way to do this... */
2164 tp->lost_skb_hint = skb;
2165 tp->lost_cnt_hint = cnt;
2166
2167 if (tcp_is_fack(tp) ||
2168 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2169 cnt += tcp_skb_pcount(skb);
2170
2171 if (((!fast_rexmit || (tp->lost_out > 0)) && (cnt > packets)) ||
2172 after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2173 break;
2174 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2175 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2176 tp->lost_out += tcp_skb_pcount(skb);
2177 tcp_verify_retransmit_hint(tp, skb);
2178 }
2179 }
2180 tcp_verify_left_out(tp);
2181 }
2182
2183 /* Account newly detected lost packet(s) */
2184
2185 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2186 {
2187 struct tcp_sock *tp = tcp_sk(sk);
2188
2189 if (tcp_is_reno(tp)) {
2190 tcp_mark_head_lost(sk, 1, fast_rexmit);
2191 } else if (tcp_is_fack(tp)) {
2192 int lost = tp->fackets_out - tp->reordering;
2193 if (lost <= 0)
2194 lost = 1;
2195 tcp_mark_head_lost(sk, lost, fast_rexmit);
2196 } else {
2197 int sacked_upto = tp->sacked_out - tp->reordering;
2198 if (sacked_upto < 0)
2199 sacked_upto = 0;
2200 tcp_mark_head_lost(sk, sacked_upto, fast_rexmit);
2201 }
2202
2203 /* New heuristics: it is possible only after we switched
2204 * to restart timer each time when something is ACKed.
2205 * Hence, we can detect timed out packets during fast
2206 * retransmit without falling to slow start.
2207 */
2208 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2209 struct sk_buff *skb;
2210
2211 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2212 : tcp_write_queue_head(sk);
2213
2214 tcp_for_write_queue_from(skb, sk) {
2215 if (skb == tcp_send_head(sk))
2216 break;
2217 if (!tcp_skb_timedout(sk, skb))
2218 break;
2219
2220 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2221 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2222 tp->lost_out += tcp_skb_pcount(skb);
2223 tcp_verify_retransmit_hint(tp, skb);
2224 }
2225 }
2226
2227 tp->scoreboard_skb_hint = skb;
2228
2229 tcp_verify_left_out(tp);
2230 }
2231 }
2232
2233 /* CWND moderation, preventing bursts due to too big ACKs
2234 * in dubious situations.
2235 */
2236 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2237 {
2238 tp->snd_cwnd = min(tp->snd_cwnd,
2239 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2240 tp->snd_cwnd_stamp = tcp_time_stamp;
2241 }
2242
2243 /* Lower bound on congestion window is slow start threshold
2244 * unless congestion avoidance choice decides to overide it.
2245 */
2246 static inline u32 tcp_cwnd_min(const struct sock *sk)
2247 {
2248 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2249
2250 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2251 }
2252
2253 /* Decrease cwnd each second ack. */
2254 static void tcp_cwnd_down(struct sock *sk, int flag)
2255 {
2256 struct tcp_sock *tp = tcp_sk(sk);
2257 int decr = tp->snd_cwnd_cnt + 1;
2258
2259 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2260 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2261 tp->snd_cwnd_cnt = decr&1;
2262 decr >>= 1;
2263
2264 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2265 tp->snd_cwnd -= decr;
2266
2267 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2268 tp->snd_cwnd_stamp = tcp_time_stamp;
2269 }
2270 }
2271
2272 /* Nothing was retransmitted or returned timestamp is less
2273 * than timestamp of the first retransmission.
2274 */
2275 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2276 {
2277 return !tp->retrans_stamp ||
2278 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2279 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2280 }
2281
2282 /* Undo procedures. */
2283
2284 #if FASTRETRANS_DEBUG > 1
2285 static void DBGUNDO(struct sock *sk, const char *msg)
2286 {
2287 struct tcp_sock *tp = tcp_sk(sk);
2288 struct inet_sock *inet = inet_sk(sk);
2289
2290 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2291 msg,
2292 NIPQUAD(inet->daddr), ntohs(inet->dport),
2293 tp->snd_cwnd, tcp_left_out(tp),
2294 tp->snd_ssthresh, tp->prior_ssthresh,
2295 tp->packets_out);
2296 }
2297 #else
2298 #define DBGUNDO(x...) do { } while (0)
2299 #endif
2300
2301 static void tcp_undo_cwr(struct sock *sk, const int undo)
2302 {
2303 struct tcp_sock *tp = tcp_sk(sk);
2304
2305 if (tp->prior_ssthresh) {
2306 const struct inet_connection_sock *icsk = inet_csk(sk);
2307
2308 if (icsk->icsk_ca_ops->undo_cwnd)
2309 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2310 else
2311 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2312
2313 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2314 tp->snd_ssthresh = tp->prior_ssthresh;
2315 TCP_ECN_withdraw_cwr(tp);
2316 }
2317 } else {
2318 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2319 }
2320 tcp_moderate_cwnd(tp);
2321 tp->snd_cwnd_stamp = tcp_time_stamp;
2322
2323 /* There is something screwy going on with the retrans hints after
2324 an undo */
2325 tcp_clear_all_retrans_hints(tp);
2326 }
2327
2328 static inline int tcp_may_undo(struct tcp_sock *tp)
2329 {
2330 return tp->undo_marker &&
2331 (!tp->undo_retrans || tcp_packet_delayed(tp));
2332 }
2333
2334 /* People celebrate: "We love our President!" */
2335 static int tcp_try_undo_recovery(struct sock *sk)
2336 {
2337 struct tcp_sock *tp = tcp_sk(sk);
2338
2339 if (tcp_may_undo(tp)) {
2340 /* Happy end! We did not retransmit anything
2341 * or our original transmission succeeded.
2342 */
2343 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2344 tcp_undo_cwr(sk, 1);
2345 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2346 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2347 else
2348 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2349 tp->undo_marker = 0;
2350 }
2351 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2352 /* Hold old state until something *above* high_seq
2353 * is ACKed. For Reno it is MUST to prevent false
2354 * fast retransmits (RFC2582). SACK TCP is safe. */
2355 tcp_moderate_cwnd(tp);
2356 return 1;
2357 }
2358 tcp_set_ca_state(sk, TCP_CA_Open);
2359 return 0;
2360 }
2361
2362 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2363 static void tcp_try_undo_dsack(struct sock *sk)
2364 {
2365 struct tcp_sock *tp = tcp_sk(sk);
2366
2367 if (tp->undo_marker && !tp->undo_retrans) {
2368 DBGUNDO(sk, "D-SACK");
2369 tcp_undo_cwr(sk, 1);
2370 tp->undo_marker = 0;
2371 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2372 }
2373 }
2374
2375 /* Undo during fast recovery after partial ACK. */
2376
2377 static int tcp_try_undo_partial(struct sock *sk, int acked)
2378 {
2379 struct tcp_sock *tp = tcp_sk(sk);
2380 /* Partial ACK arrived. Force Hoe's retransmit. */
2381 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2382
2383 if (tcp_may_undo(tp)) {
2384 /* Plain luck! Hole if filled with delayed
2385 * packet, rather than with a retransmit.
2386 */
2387 if (tp->retrans_out == 0)
2388 tp->retrans_stamp = 0;
2389
2390 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2391
2392 DBGUNDO(sk, "Hoe");
2393 tcp_undo_cwr(sk, 0);
2394 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2395
2396 /* So... Do not make Hoe's retransmit yet.
2397 * If the first packet was delayed, the rest
2398 * ones are most probably delayed as well.
2399 */
2400 failed = 0;
2401 }
2402 return failed;
2403 }
2404
2405 /* Undo during loss recovery after partial ACK. */
2406 static int tcp_try_undo_loss(struct sock *sk)
2407 {
2408 struct tcp_sock *tp = tcp_sk(sk);
2409
2410 if (tcp_may_undo(tp)) {
2411 struct sk_buff *skb;
2412 tcp_for_write_queue(skb, sk) {
2413 if (skb == tcp_send_head(sk))
2414 break;
2415 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2416 }
2417
2418 tcp_clear_all_retrans_hints(tp);
2419
2420 DBGUNDO(sk, "partial loss");
2421 tp->lost_out = 0;
2422 tcp_undo_cwr(sk, 1);
2423 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2424 inet_csk(sk)->icsk_retransmits = 0;
2425 tp->undo_marker = 0;
2426 if (tcp_is_sack(tp))
2427 tcp_set_ca_state(sk, TCP_CA_Open);
2428 return 1;
2429 }
2430 return 0;
2431 }
2432
2433 static inline void tcp_complete_cwr(struct sock *sk)
2434 {
2435 struct tcp_sock *tp = tcp_sk(sk);
2436 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2437 tp->snd_cwnd_stamp = tcp_time_stamp;
2438 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2439 }
2440
2441 static void tcp_try_to_open(struct sock *sk, int flag)
2442 {
2443 struct tcp_sock *tp = tcp_sk(sk);
2444
2445 tcp_verify_left_out(tp);
2446
2447 if (tp->retrans_out == 0)
2448 tp->retrans_stamp = 0;
2449
2450 if (flag&FLAG_ECE)
2451 tcp_enter_cwr(sk, 1);
2452
2453 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2454 int state = TCP_CA_Open;
2455
2456 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2457 state = TCP_CA_Disorder;
2458
2459 if (inet_csk(sk)->icsk_ca_state != state) {
2460 tcp_set_ca_state(sk, state);
2461 tp->high_seq = tp->snd_nxt;
2462 }
2463 tcp_moderate_cwnd(tp);
2464 } else {
2465 tcp_cwnd_down(sk, flag);
2466 }
2467 }
2468
2469 static void tcp_mtup_probe_failed(struct sock *sk)
2470 {
2471 struct inet_connection_sock *icsk = inet_csk(sk);
2472
2473 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2474 icsk->icsk_mtup.probe_size = 0;
2475 }
2476
2477 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2478 {
2479 struct tcp_sock *tp = tcp_sk(sk);
2480 struct inet_connection_sock *icsk = inet_csk(sk);
2481
2482 /* FIXME: breaks with very large cwnd */
2483 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2484 tp->snd_cwnd = tp->snd_cwnd *
2485 tcp_mss_to_mtu(sk, tp->mss_cache) /
2486 icsk->icsk_mtup.probe_size;
2487 tp->snd_cwnd_cnt = 0;
2488 tp->snd_cwnd_stamp = tcp_time_stamp;
2489 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2490
2491 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2492 icsk->icsk_mtup.probe_size = 0;
2493 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2494 }
2495
2496
2497 /* Process an event, which can update packets-in-flight not trivially.
2498 * Main goal of this function is to calculate new estimate for left_out,
2499 * taking into account both packets sitting in receiver's buffer and
2500 * packets lost by network.
2501 *
2502 * Besides that it does CWND reduction, when packet loss is detected
2503 * and changes state of machine.
2504 *
2505 * It does _not_ decide what to send, it is made in function
2506 * tcp_xmit_retransmit_queue().
2507 */
2508 static void
2509 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2510 {
2511 struct inet_connection_sock *icsk = inet_csk(sk);
2512 struct tcp_sock *tp = tcp_sk(sk);
2513 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2514 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2515 (tcp_fackets_out(tp) > tp->reordering));
2516 int fast_rexmit = 0;
2517
2518 /* Some technical things:
2519 * 1. Reno does not count dupacks (sacked_out) automatically. */
2520 if (!tp->packets_out)
2521 tp->sacked_out = 0;
2522
2523 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2524 tp->fackets_out = 0;
2525
2526 /* Now state machine starts.
2527 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2528 if (flag&FLAG_ECE)
2529 tp->prior_ssthresh = 0;
2530
2531 /* B. In all the states check for reneging SACKs. */
2532 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2533 return;
2534
2535 /* C. Process data loss notification, provided it is valid. */
2536 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2537 before(tp->snd_una, tp->high_seq) &&
2538 icsk->icsk_ca_state != TCP_CA_Open &&
2539 tp->fackets_out > tp->reordering) {
2540 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, 0);
2541 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2542 }
2543
2544 /* D. Check consistency of the current state. */
2545 tcp_verify_left_out(tp);
2546
2547 /* E. Check state exit conditions. State can be terminated
2548 * when high_seq is ACKed. */
2549 if (icsk->icsk_ca_state == TCP_CA_Open) {
2550 BUG_TRAP(tp->retrans_out == 0);
2551 tp->retrans_stamp = 0;
2552 } else if (!before(tp->snd_una, tp->high_seq)) {
2553 switch (icsk->icsk_ca_state) {
2554 case TCP_CA_Loss:
2555 icsk->icsk_retransmits = 0;
2556 if (tcp_try_undo_recovery(sk))
2557 return;
2558 break;
2559
2560 case TCP_CA_CWR:
2561 /* CWR is to be held something *above* high_seq
2562 * is ACKed for CWR bit to reach receiver. */
2563 if (tp->snd_una != tp->high_seq) {
2564 tcp_complete_cwr(sk);
2565 tcp_set_ca_state(sk, TCP_CA_Open);
2566 }
2567 break;
2568
2569 case TCP_CA_Disorder:
2570 tcp_try_undo_dsack(sk);
2571 if (!tp->undo_marker ||
2572 /* For SACK case do not Open to allow to undo
2573 * catching for all duplicate ACKs. */
2574 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2575 tp->undo_marker = 0;
2576 tcp_set_ca_state(sk, TCP_CA_Open);
2577 }
2578 break;
2579
2580 case TCP_CA_Recovery:
2581 if (tcp_is_reno(tp))
2582 tcp_reset_reno_sack(tp);
2583 if (tcp_try_undo_recovery(sk))
2584 return;
2585 tcp_complete_cwr(sk);
2586 break;
2587 }
2588 }
2589
2590 /* F. Process state. */
2591 switch (icsk->icsk_ca_state) {
2592 case TCP_CA_Recovery:
2593 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2594 if (tcp_is_reno(tp) && is_dupack)
2595 tcp_add_reno_sack(sk);
2596 } else
2597 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2598 break;
2599 case TCP_CA_Loss:
2600 if (flag&FLAG_DATA_ACKED)
2601 icsk->icsk_retransmits = 0;
2602 if (!tcp_try_undo_loss(sk)) {
2603 tcp_moderate_cwnd(tp);
2604 tcp_xmit_retransmit_queue(sk);
2605 return;
2606 }
2607 if (icsk->icsk_ca_state != TCP_CA_Open)
2608 return;
2609 /* Loss is undone; fall through to processing in Open state. */
2610 default:
2611 if (tcp_is_reno(tp)) {
2612 if (flag & FLAG_SND_UNA_ADVANCED)
2613 tcp_reset_reno_sack(tp);
2614 if (is_dupack)
2615 tcp_add_reno_sack(sk);
2616 }
2617
2618 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2619 tcp_try_undo_dsack(sk);
2620
2621 if (!tcp_time_to_recover(sk)) {
2622 tcp_try_to_open(sk, flag);
2623 return;
2624 }
2625
2626 /* MTU probe failure: don't reduce cwnd */
2627 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2628 icsk->icsk_mtup.probe_size &&
2629 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2630 tcp_mtup_probe_failed(sk);
2631 /* Restores the reduction we did in tcp_mtup_probe() */
2632 tp->snd_cwnd++;
2633 tcp_simple_retransmit(sk);
2634 return;
2635 }
2636
2637 /* Otherwise enter Recovery state */
2638
2639 if (tcp_is_reno(tp))
2640 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2641 else
2642 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2643
2644 tp->high_seq = tp->snd_nxt;
2645 tp->prior_ssthresh = 0;
2646 tp->undo_marker = tp->snd_una;
2647 tp->undo_retrans = tp->retrans_out;
2648
2649 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2650 if (!(flag&FLAG_ECE))
2651 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2652 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2653 TCP_ECN_queue_cwr(tp);
2654 }
2655
2656 tp->bytes_acked = 0;
2657 tp->snd_cwnd_cnt = 0;
2658 tcp_set_ca_state(sk, TCP_CA_Recovery);
2659 fast_rexmit = 1;
2660 }
2661
2662 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2663 tcp_update_scoreboard(sk, fast_rexmit);
2664 tcp_cwnd_down(sk, flag);
2665 tcp_xmit_retransmit_queue(sk);
2666 }
2667
2668 /* Read draft-ietf-tcplw-high-performance before mucking
2669 * with this code. (Supersedes RFC1323)
2670 */
2671 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2672 {
2673 /* RTTM Rule: A TSecr value received in a segment is used to
2674 * update the averaged RTT measurement only if the segment
2675 * acknowledges some new data, i.e., only if it advances the
2676 * left edge of the send window.
2677 *
2678 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2679 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2680 *
2681 * Changed: reset backoff as soon as we see the first valid sample.
2682 * If we do not, we get strongly overestimated rto. With timestamps
2683 * samples are accepted even from very old segments: f.e., when rtt=1
2684 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2685 * answer arrives rto becomes 120 seconds! If at least one of segments
2686 * in window is lost... Voila. --ANK (010210)
2687 */
2688 struct tcp_sock *tp = tcp_sk(sk);
2689 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2690 tcp_rtt_estimator(sk, seq_rtt);
2691 tcp_set_rto(sk);
2692 inet_csk(sk)->icsk_backoff = 0;
2693 tcp_bound_rto(sk);
2694 }
2695
2696 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2697 {
2698 /* We don't have a timestamp. Can only use
2699 * packets that are not retransmitted to determine
2700 * rtt estimates. Also, we must not reset the
2701 * backoff for rto until we get a non-retransmitted
2702 * packet. This allows us to deal with a situation
2703 * where the network delay has increased suddenly.
2704 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2705 */
2706
2707 if (flag & FLAG_RETRANS_DATA_ACKED)
2708 return;
2709
2710 tcp_rtt_estimator(sk, seq_rtt);
2711 tcp_set_rto(sk);
2712 inet_csk(sk)->icsk_backoff = 0;
2713 tcp_bound_rto(sk);
2714 }
2715
2716 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2717 const s32 seq_rtt)
2718 {
2719 const struct tcp_sock *tp = tcp_sk(sk);
2720 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2721 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2722 tcp_ack_saw_tstamp(sk, flag);
2723 else if (seq_rtt >= 0)
2724 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2725 }
2726
2727 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2728 u32 in_flight, int good)
2729 {
2730 const struct inet_connection_sock *icsk = inet_csk(sk);
2731 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2732 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2733 }
2734
2735 /* Restart timer after forward progress on connection.
2736 * RFC2988 recommends to restart timer to now+rto.
2737 */
2738 static void tcp_rearm_rto(struct sock *sk)
2739 {
2740 struct tcp_sock *tp = tcp_sk(sk);
2741
2742 if (!tp->packets_out) {
2743 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2744 } else {
2745 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2746 }
2747 }
2748
2749 /* If we get here, the whole TSO packet has not been acked. */
2750 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2751 {
2752 struct tcp_sock *tp = tcp_sk(sk);
2753 u32 packets_acked;
2754
2755 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2756
2757 packets_acked = tcp_skb_pcount(skb);
2758 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2759 return 0;
2760 packets_acked -= tcp_skb_pcount(skb);
2761
2762 if (packets_acked) {
2763 BUG_ON(tcp_skb_pcount(skb) == 0);
2764 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2765 }
2766
2767 return packets_acked;
2768 }
2769
2770 /* Remove acknowledged frames from the retransmission queue. If our packet
2771 * is before the ack sequence we can discard it as it's confirmed to have
2772 * arrived at the other end.
2773 */
2774 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p,
2775 int prior_fackets)
2776 {
2777 struct tcp_sock *tp = tcp_sk(sk);
2778 const struct inet_connection_sock *icsk = inet_csk(sk);
2779 struct sk_buff *skb;
2780 u32 now = tcp_time_stamp;
2781 int fully_acked = 1;
2782 int flag = 0;
2783 int prior_packets = tp->packets_out;
2784 u32 cnt = 0;
2785 u32 reord = tp->packets_out;
2786 s32 seq_rtt = -1;
2787 s32 ca_seq_rtt = -1;
2788 ktime_t last_ackt = net_invalid_timestamp();
2789
2790 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2791 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2792 u32 end_seq;
2793 u32 packets_acked;
2794 u8 sacked = scb->sacked;
2795
2796 /* Determine how many packets and what bytes were acked, tso and else */
2797 if (after(scb->end_seq, tp->snd_una)) {
2798 if (tcp_skb_pcount(skb) == 1 ||
2799 !after(tp->snd_una, scb->seq))
2800 break;
2801
2802 packets_acked = tcp_tso_acked(sk, skb);
2803 if (!packets_acked)
2804 break;
2805
2806 fully_acked = 0;
2807 end_seq = tp->snd_una;
2808 } else {
2809 packets_acked = tcp_skb_pcount(skb);
2810 end_seq = scb->end_seq;
2811 }
2812
2813 /* MTU probing checks */
2814 if (fully_acked && icsk->icsk_mtup.probe_size &&
2815 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2816 tcp_mtup_probe_success(sk, skb);
2817 }
2818
2819 if (sacked) {
2820 if (sacked & TCPCB_RETRANS) {
2821 if (sacked & TCPCB_SACKED_RETRANS)
2822 tp->retrans_out -= packets_acked;
2823 flag |= FLAG_RETRANS_DATA_ACKED;
2824 ca_seq_rtt = -1;
2825 seq_rtt = -1;
2826 if ((flag & FLAG_DATA_ACKED) ||
2827 (packets_acked > 1))
2828 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2829 } else {
2830 ca_seq_rtt = now - scb->when;
2831 last_ackt = skb->tstamp;
2832 if (seq_rtt < 0) {
2833 seq_rtt = ca_seq_rtt;
2834 }
2835 if (!(sacked & TCPCB_SACKED_ACKED))
2836 reord = min(cnt, reord);
2837 }
2838
2839 if (sacked & TCPCB_SACKED_ACKED)
2840 tp->sacked_out -= packets_acked;
2841 if (sacked & TCPCB_LOST)
2842 tp->lost_out -= packets_acked;
2843
2844 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2845 !before(end_seq, tp->snd_up))
2846 tp->urg_mode = 0;
2847 } else {
2848 ca_seq_rtt = now - scb->when;
2849 last_ackt = skb->tstamp;
2850 if (seq_rtt < 0) {
2851 seq_rtt = ca_seq_rtt;
2852 }
2853 reord = min(cnt, reord);
2854 }
2855 tp->packets_out -= packets_acked;
2856 cnt += packets_acked;
2857
2858 /* Initial outgoing SYN's get put onto the write_queue
2859 * just like anything else we transmit. It is not
2860 * true data, and if we misinform our callers that
2861 * this ACK acks real data, we will erroneously exit
2862 * connection startup slow start one packet too
2863 * quickly. This is severely frowned upon behavior.
2864 */
2865 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2866 flag |= FLAG_DATA_ACKED;
2867 } else {
2868 flag |= FLAG_SYN_ACKED;
2869 tp->retrans_stamp = 0;
2870 }
2871
2872 if (!fully_acked)
2873 break;
2874
2875 tcp_unlink_write_queue(skb, sk);
2876 sk_stream_free_skb(sk, skb);
2877 tcp_clear_all_retrans_hints(tp);
2878 }
2879
2880 if (flag & FLAG_ACKED) {
2881 u32 pkts_acked = prior_packets - tp->packets_out;
2882 const struct tcp_congestion_ops *ca_ops
2883 = inet_csk(sk)->icsk_ca_ops;
2884
2885 tcp_ack_update_rtt(sk, flag, seq_rtt);
2886 tcp_rearm_rto(sk);
2887
2888 if (tcp_is_reno(tp)) {
2889 tcp_remove_reno_sacks(sk, pkts_acked);
2890 } else {
2891 /* Non-retransmitted hole got filled? That's reordering */
2892 if (reord < prior_fackets)
2893 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2894 }
2895
2896 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2897
2898 if (ca_ops->pkts_acked) {
2899 s32 rtt_us = -1;
2900
2901 /* Is the ACK triggering packet unambiguous? */
2902 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2903 /* High resolution needed and available? */
2904 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2905 !ktime_equal(last_ackt,
2906 net_invalid_timestamp()))
2907 rtt_us = ktime_us_delta(ktime_get_real(),
2908 last_ackt);
2909 else if (ca_seq_rtt > 0)
2910 rtt_us = jiffies_to_usecs(ca_seq_rtt);
2911 }
2912
2913 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2914 }
2915 }
2916
2917 #if FASTRETRANS_DEBUG > 0
2918 BUG_TRAP((int)tp->sacked_out >= 0);
2919 BUG_TRAP((int)tp->lost_out >= 0);
2920 BUG_TRAP((int)tp->retrans_out >= 0);
2921 if (!tp->packets_out && tcp_is_sack(tp)) {
2922 icsk = inet_csk(sk);
2923 if (tp->lost_out) {
2924 printk(KERN_DEBUG "Leak l=%u %d\n",
2925 tp->lost_out, icsk->icsk_ca_state);
2926 tp->lost_out = 0;
2927 }
2928 if (tp->sacked_out) {
2929 printk(KERN_DEBUG "Leak s=%u %d\n",
2930 tp->sacked_out, icsk->icsk_ca_state);
2931 tp->sacked_out = 0;
2932 }
2933 if (tp->retrans_out) {
2934 printk(KERN_DEBUG "Leak r=%u %d\n",
2935 tp->retrans_out, icsk->icsk_ca_state);
2936 tp->retrans_out = 0;
2937 }
2938 }
2939 #endif
2940 *seq_rtt_p = seq_rtt;
2941 return flag;
2942 }
2943
2944 static void tcp_ack_probe(struct sock *sk)
2945 {
2946 const struct tcp_sock *tp = tcp_sk(sk);
2947 struct inet_connection_sock *icsk = inet_csk(sk);
2948
2949 /* Was it a usable window open? */
2950
2951 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2952 tp->snd_una + tp->snd_wnd)) {
2953 icsk->icsk_backoff = 0;
2954 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2955 /* Socket must be waked up by subsequent tcp_data_snd_check().
2956 * This function is not for random using!
2957 */
2958 } else {
2959 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2960 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2961 TCP_RTO_MAX);
2962 }
2963 }
2964
2965 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2966 {
2967 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2968 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2969 }
2970
2971 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2972 {
2973 const struct tcp_sock *tp = tcp_sk(sk);
2974 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2975 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2976 }
2977
2978 /* Check that window update is acceptable.
2979 * The function assumes that snd_una<=ack<=snd_next.
2980 */
2981 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2982 const u32 ack_seq, const u32 nwin)
2983 {
2984 return (after(ack, tp->snd_una) ||
2985 after(ack_seq, tp->snd_wl1) ||
2986 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2987 }
2988
2989 /* Update our send window.
2990 *
2991 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2992 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2993 */
2994 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2995 u32 ack_seq)
2996 {
2997 struct tcp_sock *tp = tcp_sk(sk);
2998 int flag = 0;
2999 u32 nwin = ntohs(tcp_hdr(skb)->window);
3000
3001 if (likely(!tcp_hdr(skb)->syn))
3002 nwin <<= tp->rx_opt.snd_wscale;
3003
3004 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3005 flag |= FLAG_WIN_UPDATE;
3006 tcp_update_wl(tp, ack, ack_seq);
3007
3008 if (tp->snd_wnd != nwin) {
3009 tp->snd_wnd = nwin;
3010
3011 /* Note, it is the only place, where
3012 * fast path is recovered for sending TCP.
3013 */
3014 tp->pred_flags = 0;
3015 tcp_fast_path_check(sk);
3016
3017 if (nwin > tp->max_window) {
3018 tp->max_window = nwin;
3019 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3020 }
3021 }
3022 }
3023
3024 tp->snd_una = ack;
3025
3026 return flag;
3027 }
3028
3029 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3030 * continue in congestion avoidance.
3031 */
3032 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3033 {
3034 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3035 tp->snd_cwnd_cnt = 0;
3036 tp->bytes_acked = 0;
3037 TCP_ECN_queue_cwr(tp);
3038 tcp_moderate_cwnd(tp);
3039 }
3040
3041 /* A conservative spurious RTO response algorithm: reduce cwnd using
3042 * rate halving and continue in congestion avoidance.
3043 */
3044 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3045 {
3046 tcp_enter_cwr(sk, 0);
3047 }
3048
3049 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3050 {
3051 if (flag&FLAG_ECE)
3052 tcp_ratehalving_spur_to_response(sk);
3053 else
3054 tcp_undo_cwr(sk, 1);
3055 }
3056
3057 /* F-RTO spurious RTO detection algorithm (RFC4138)
3058 *
3059 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3060 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3061 * window (but not to or beyond highest sequence sent before RTO):
3062 * On First ACK, send two new segments out.
3063 * On Second ACK, RTO was likely spurious. Do spurious response (response
3064 * algorithm is not part of the F-RTO detection algorithm
3065 * given in RFC4138 but can be selected separately).
3066 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3067 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3068 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3069 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3070 *
3071 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3072 * original window even after we transmit two new data segments.
3073 *
3074 * SACK version:
3075 * on first step, wait until first cumulative ACK arrives, then move to
3076 * the second step. In second step, the next ACK decides.
3077 *
3078 * F-RTO is implemented (mainly) in four functions:
3079 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3080 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3081 * called when tcp_use_frto() showed green light
3082 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3083 * - tcp_enter_frto_loss() is called if there is not enough evidence
3084 * to prove that the RTO is indeed spurious. It transfers the control
3085 * from F-RTO to the conventional RTO recovery
3086 */
3087 static int tcp_process_frto(struct sock *sk, int flag)
3088 {
3089 struct tcp_sock *tp = tcp_sk(sk);
3090
3091 tcp_verify_left_out(tp);
3092
3093 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3094 if (flag&FLAG_DATA_ACKED)
3095 inet_csk(sk)->icsk_retransmits = 0;
3096
3097 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3098 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3099 tp->undo_marker = 0;
3100
3101 if (!before(tp->snd_una, tp->frto_highmark)) {
3102 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3103 return 1;
3104 }
3105
3106 if (!IsSackFrto() || tcp_is_reno(tp)) {
3107 /* RFC4138 shortcoming in step 2; should also have case c):
3108 * ACK isn't duplicate nor advances window, e.g., opposite dir
3109 * data, winupdate
3110 */
3111 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
3112 return 1;
3113
3114 if (!(flag&FLAG_DATA_ACKED)) {
3115 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3116 flag);
3117 return 1;
3118 }
3119 } else {
3120 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3121 /* Prevent sending of new data. */
3122 tp->snd_cwnd = min(tp->snd_cwnd,
3123 tcp_packets_in_flight(tp));
3124 return 1;
3125 }
3126
3127 if ((tp->frto_counter >= 2) &&
3128 (!(flag&FLAG_FORWARD_PROGRESS) ||
3129 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
3130 /* RFC4138 shortcoming (see comment above) */
3131 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
3132 return 1;
3133
3134 tcp_enter_frto_loss(sk, 3, flag);
3135 return 1;
3136 }
3137 }
3138
3139 if (tp->frto_counter == 1) {
3140 /* tcp_may_send_now needs to see updated state */
3141 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3142 tp->frto_counter = 2;
3143
3144 if (!tcp_may_send_now(sk))
3145 tcp_enter_frto_loss(sk, 2, flag);
3146
3147 return 1;
3148 } else {
3149 switch (sysctl_tcp_frto_response) {
3150 case 2:
3151 tcp_undo_spur_to_response(sk, flag);
3152 break;
3153 case 1:
3154 tcp_conservative_spur_to_response(tp);
3155 break;
3156 default:
3157 tcp_ratehalving_spur_to_response(sk);
3158 break;
3159 }
3160 tp->frto_counter = 0;
3161 tp->undo_marker = 0;
3162 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3163 }
3164 return 0;
3165 }
3166
3167 /* This routine deals with incoming acks, but not outgoing ones. */
3168 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3169 {
3170 struct inet_connection_sock *icsk = inet_csk(sk);
3171 struct tcp_sock *tp = tcp_sk(sk);
3172 u32 prior_snd_una = tp->snd_una;
3173 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3174 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3175 u32 prior_in_flight;
3176 u32 prior_fackets;
3177 s32 seq_rtt;
3178 int prior_packets;
3179 int frto_cwnd = 0;
3180
3181 /* If the ack is newer than sent or older than previous acks
3182 * then we can probably ignore it.
3183 */
3184 if (after(ack, tp->snd_nxt))
3185 goto uninteresting_ack;
3186
3187 if (before(ack, prior_snd_una))
3188 goto old_ack;
3189
3190 if (after(ack, prior_snd_una))
3191 flag |= FLAG_SND_UNA_ADVANCED;
3192
3193 if (sysctl_tcp_abc) {
3194 if (icsk->icsk_ca_state < TCP_CA_CWR)
3195 tp->bytes_acked += ack - prior_snd_una;
3196 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3197 /* we assume just one segment left network */
3198 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3199 }
3200
3201 prior_fackets = tp->fackets_out;
3202 prior_in_flight = tcp_packets_in_flight(tp);
3203
3204 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3205 /* Window is constant, pure forward advance.
3206 * No more checks are required.
3207 * Note, we use the fact that SND.UNA>=SND.WL2.
3208 */
3209 tcp_update_wl(tp, ack, ack_seq);
3210 tp->snd_una = ack;
3211 flag |= FLAG_WIN_UPDATE;
3212
3213 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3214
3215 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3216 } else {
3217 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3218 flag |= FLAG_DATA;
3219 else
3220 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3221
3222 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3223
3224 if (TCP_SKB_CB(skb)->sacked)
3225 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3226
3227 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3228 flag |= FLAG_ECE;
3229
3230 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3231 }
3232
3233 /* We passed data and got it acked, remove any soft error
3234 * log. Something worked...
3235 */
3236 sk->sk_err_soft = 0;
3237 tp->rcv_tstamp = tcp_time_stamp;
3238 prior_packets = tp->packets_out;
3239 if (!prior_packets)
3240 goto no_queue;
3241
3242 /* See if we can take anything off of the retransmit queue. */
3243 flag |= tcp_clean_rtx_queue(sk, &seq_rtt, prior_fackets);
3244
3245 if (tp->frto_counter)
3246 frto_cwnd = tcp_process_frto(sk, flag);
3247 /* Guarantee sacktag reordering detection against wrap-arounds */
3248 if (before(tp->frto_highmark, tp->snd_una))
3249 tp->frto_highmark = 0;
3250
3251 if (tcp_ack_is_dubious(sk, flag)) {
3252 /* Advance CWND, if state allows this. */
3253 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3254 tcp_may_raise_cwnd(sk, flag))
3255 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3256 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3257 } else {
3258 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3259 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3260 }
3261
3262 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3263 dst_confirm(sk->sk_dst_cache);
3264
3265 return 1;
3266
3267 no_queue:
3268 icsk->icsk_probes_out = 0;
3269
3270 /* If this ack opens up a zero window, clear backoff. It was
3271 * being used to time the probes, and is probably far higher than
3272 * it needs to be for normal retransmission.
3273 */
3274 if (tcp_send_head(sk))
3275 tcp_ack_probe(sk);
3276 return 1;
3277
3278 old_ack:
3279 if (TCP_SKB_CB(skb)->sacked)
3280 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3281
3282 uninteresting_ack:
3283 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3284 return 0;
3285 }
3286
3287
3288 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3289 * But, this can also be called on packets in the established flow when
3290 * the fast version below fails.
3291 */
3292 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3293 {
3294 unsigned char *ptr;
3295 struct tcphdr *th = tcp_hdr(skb);
3296 int length=(th->doff*4)-sizeof(struct tcphdr);
3297
3298 ptr = (unsigned char *)(th + 1);
3299 opt_rx->saw_tstamp = 0;
3300
3301 while (length > 0) {
3302 int opcode=*ptr++;
3303 int opsize;
3304
3305 switch (opcode) {
3306 case TCPOPT_EOL:
3307 return;
3308 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3309 length--;
3310 continue;
3311 default:
3312 opsize=*ptr++;
3313 if (opsize < 2) /* "silly options" */
3314 return;
3315 if (opsize > length)
3316 return; /* don't parse partial options */
3317 switch (opcode) {
3318 case TCPOPT_MSS:
3319 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3320 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3321 if (in_mss) {
3322 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3323 in_mss = opt_rx->user_mss;
3324 opt_rx->mss_clamp = in_mss;
3325 }
3326 }
3327 break;
3328 case TCPOPT_WINDOW:
3329 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3330 if (sysctl_tcp_window_scaling) {
3331 __u8 snd_wscale = *(__u8 *) ptr;
3332 opt_rx->wscale_ok = 1;
3333 if (snd_wscale > 14) {
3334 if (net_ratelimit())
3335 printk(KERN_INFO "tcp_parse_options: Illegal window "
3336 "scaling value %d >14 received.\n",
3337 snd_wscale);
3338 snd_wscale = 14;
3339 }
3340 opt_rx->snd_wscale = snd_wscale;
3341 }
3342 break;
3343 case TCPOPT_TIMESTAMP:
3344 if (opsize==TCPOLEN_TIMESTAMP) {
3345 if ((estab && opt_rx->tstamp_ok) ||
3346 (!estab && sysctl_tcp_timestamps)) {
3347 opt_rx->saw_tstamp = 1;
3348 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3349 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3350 }
3351 }
3352 break;
3353 case TCPOPT_SACK_PERM:
3354 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3355 if (sysctl_tcp_sack) {
3356 opt_rx->sack_ok = 1;
3357 tcp_sack_reset(opt_rx);
3358 }
3359 }
3360 break;
3361
3362 case TCPOPT_SACK:
3363 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3364 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3365 opt_rx->sack_ok) {
3366 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3367 }
3368 break;
3369 #ifdef CONFIG_TCP_MD5SIG
3370 case TCPOPT_MD5SIG:
3371 /*
3372 * The MD5 Hash has already been
3373 * checked (see tcp_v{4,6}_do_rcv()).
3374 */
3375 break;
3376 #endif
3377 }
3378
3379 ptr+=opsize-2;
3380 length-=opsize;
3381 }
3382 }
3383 }
3384
3385 /* Fast parse options. This hopes to only see timestamps.
3386 * If it is wrong it falls back on tcp_parse_options().
3387 */
3388 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3389 struct tcp_sock *tp)
3390 {
3391 if (th->doff == sizeof(struct tcphdr)>>2) {
3392 tp->rx_opt.saw_tstamp = 0;
3393 return 0;
3394 } else if (tp->rx_opt.tstamp_ok &&
3395 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3396 __be32 *ptr = (__be32 *)(th + 1);
3397 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3398 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3399 tp->rx_opt.saw_tstamp = 1;
3400 ++ptr;
3401 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3402 ++ptr;
3403 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3404 return 1;
3405 }
3406 }
3407 tcp_parse_options(skb, &tp->rx_opt, 1);
3408 return 1;
3409 }
3410
3411 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3412 {
3413 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3414 tp->rx_opt.ts_recent_stamp = get_seconds();
3415 }
3416
3417 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3418 {
3419 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3420 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3421 * extra check below makes sure this can only happen
3422 * for pure ACK frames. -DaveM
3423 *
3424 * Not only, also it occurs for expired timestamps.
3425 */
3426
3427 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3428 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3429 tcp_store_ts_recent(tp);
3430 }
3431 }
3432
3433 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3434 *
3435 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3436 * it can pass through stack. So, the following predicate verifies that
3437 * this segment is not used for anything but congestion avoidance or
3438 * fast retransmit. Moreover, we even are able to eliminate most of such
3439 * second order effects, if we apply some small "replay" window (~RTO)
3440 * to timestamp space.
3441 *
3442 * All these measures still do not guarantee that we reject wrapped ACKs
3443 * on networks with high bandwidth, when sequence space is recycled fastly,
3444 * but it guarantees that such events will be very rare and do not affect
3445 * connection seriously. This doesn't look nice, but alas, PAWS is really
3446 * buggy extension.
3447 *
3448 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3449 * states that events when retransmit arrives after original data are rare.
3450 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3451 * the biggest problem on large power networks even with minor reordering.
3452 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3453 * up to bandwidth of 18Gigabit/sec. 8) ]
3454 */
3455
3456 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3457 {
3458 struct tcp_sock *tp = tcp_sk(sk);
3459 struct tcphdr *th = tcp_hdr(skb);
3460 u32 seq = TCP_SKB_CB(skb)->seq;
3461 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3462
3463 return (/* 1. Pure ACK with correct sequence number. */
3464 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3465
3466 /* 2. ... and duplicate ACK. */
3467 ack == tp->snd_una &&
3468
3469 /* 3. ... and does not update window. */
3470 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3471
3472 /* 4. ... and sits in replay window. */
3473 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3474 }
3475
3476 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3477 {
3478 const struct tcp_sock *tp = tcp_sk(sk);
3479 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3480 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3481 !tcp_disordered_ack(sk, skb));
3482 }
3483
3484 /* Check segment sequence number for validity.
3485 *
3486 * Segment controls are considered valid, if the segment
3487 * fits to the window after truncation to the window. Acceptability
3488 * of data (and SYN, FIN, of course) is checked separately.
3489 * See tcp_data_queue(), for example.
3490 *
3491 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3492 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3493 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3494 * (borrowed from freebsd)
3495 */
3496
3497 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3498 {
3499 return !before(end_seq, tp->rcv_wup) &&
3500 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3501 }
3502
3503 /* When we get a reset we do this. */
3504 static void tcp_reset(struct sock *sk)
3505 {
3506 /* We want the right error as BSD sees it (and indeed as we do). */
3507 switch (sk->sk_state) {
3508 case TCP_SYN_SENT:
3509 sk->sk_err = ECONNREFUSED;
3510 break;
3511 case TCP_CLOSE_WAIT:
3512 sk->sk_err = EPIPE;
3513 break;
3514 case TCP_CLOSE:
3515 return;
3516 default:
3517 sk->sk_err = ECONNRESET;
3518 }
3519
3520 if (!sock_flag(sk, SOCK_DEAD))
3521 sk->sk_error_report(sk);
3522
3523 tcp_done(sk);
3524 }
3525
3526 /*
3527 * Process the FIN bit. This now behaves as it is supposed to work
3528 * and the FIN takes effect when it is validly part of sequence
3529 * space. Not before when we get holes.
3530 *
3531 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3532 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3533 * TIME-WAIT)
3534 *
3535 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3536 * close and we go into CLOSING (and later onto TIME-WAIT)
3537 *
3538 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3539 */
3540 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3541 {
3542 struct tcp_sock *tp = tcp_sk(sk);
3543
3544 inet_csk_schedule_ack(sk);
3545
3546 sk->sk_shutdown |= RCV_SHUTDOWN;
3547 sock_set_flag(sk, SOCK_DONE);
3548
3549 switch (sk->sk_state) {
3550 case TCP_SYN_RECV:
3551 case TCP_ESTABLISHED:
3552 /* Move to CLOSE_WAIT */
3553 tcp_set_state(sk, TCP_CLOSE_WAIT);
3554 inet_csk(sk)->icsk_ack.pingpong = 1;
3555 break;
3556
3557 case TCP_CLOSE_WAIT:
3558 case TCP_CLOSING:
3559 /* Received a retransmission of the FIN, do
3560 * nothing.
3561 */
3562 break;
3563 case TCP_LAST_ACK:
3564 /* RFC793: Remain in the LAST-ACK state. */
3565 break;
3566
3567 case TCP_FIN_WAIT1:
3568 /* This case occurs when a simultaneous close
3569 * happens, we must ack the received FIN and
3570 * enter the CLOSING state.
3571 */
3572 tcp_send_ack(sk);
3573 tcp_set_state(sk, TCP_CLOSING);
3574 break;
3575 case TCP_FIN_WAIT2:
3576 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3577 tcp_send_ack(sk);
3578 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3579 break;
3580 default:
3581 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3582 * cases we should never reach this piece of code.
3583 */
3584 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3585 __FUNCTION__, sk->sk_state);
3586 break;
3587 }
3588
3589 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3590 * Probably, we should reset in this case. For now drop them.
3591 */
3592 __skb_queue_purge(&tp->out_of_order_queue);
3593 if (tcp_is_sack(tp))
3594 tcp_sack_reset(&tp->rx_opt);
3595 sk_stream_mem_reclaim(sk);
3596
3597 if (!sock_flag(sk, SOCK_DEAD)) {
3598 sk->sk_state_change(sk);
3599
3600 /* Do not send POLL_HUP for half duplex close. */
3601 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3602 sk->sk_state == TCP_CLOSE)
3603 sk_wake_async(sk, 1, POLL_HUP);
3604 else
3605 sk_wake_async(sk, 1, POLL_IN);
3606 }
3607 }
3608
3609 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3610 {
3611 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3612 if (before(seq, sp->start_seq))
3613 sp->start_seq = seq;
3614 if (after(end_seq, sp->end_seq))
3615 sp->end_seq = end_seq;
3616 return 1;
3617 }
3618 return 0;
3619 }
3620
3621 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3622 {
3623 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3624 if (before(seq, tp->rcv_nxt))
3625 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3626 else
3627 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3628
3629 tp->rx_opt.dsack = 1;
3630 tp->duplicate_sack[0].start_seq = seq;
3631 tp->duplicate_sack[0].end_seq = end_seq;
3632 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3633 }
3634 }
3635
3636 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3637 {
3638 if (!tp->rx_opt.dsack)
3639 tcp_dsack_set(tp, seq, end_seq);
3640 else
3641 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3642 }
3643
3644 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3645 {
3646 struct tcp_sock *tp = tcp_sk(sk);
3647
3648 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3649 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3650 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3651 tcp_enter_quickack_mode(sk);
3652
3653 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3654 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3655
3656 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3657 end_seq = tp->rcv_nxt;
3658 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3659 }
3660 }
3661
3662 tcp_send_ack(sk);
3663 }
3664
3665 /* These routines update the SACK block as out-of-order packets arrive or
3666 * in-order packets close up the sequence space.
3667 */
3668 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3669 {
3670 int this_sack;
3671 struct tcp_sack_block *sp = &tp->selective_acks[0];
3672 struct tcp_sack_block *swalk = sp+1;
3673
3674 /* See if the recent change to the first SACK eats into
3675 * or hits the sequence space of other SACK blocks, if so coalesce.
3676 */
3677 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3678 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3679 int i;
3680
3681 /* Zap SWALK, by moving every further SACK up by one slot.
3682 * Decrease num_sacks.
3683 */
3684 tp->rx_opt.num_sacks--;
3685 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3686 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3687 sp[i] = sp[i+1];
3688 continue;
3689 }
3690 this_sack++, swalk++;
3691 }
3692 }
3693
3694 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3695 {
3696 __u32 tmp;
3697
3698 tmp = sack1->start_seq;
3699 sack1->start_seq = sack2->start_seq;
3700 sack2->start_seq = tmp;
3701
3702 tmp = sack1->end_seq;
3703 sack1->end_seq = sack2->end_seq;
3704 sack2->end_seq = tmp;
3705 }
3706
3707 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3708 {
3709 struct tcp_sock *tp = tcp_sk(sk);
3710 struct tcp_sack_block *sp = &tp->selective_acks[0];
3711 int cur_sacks = tp->rx_opt.num_sacks;
3712 int this_sack;
3713
3714 if (!cur_sacks)
3715 goto new_sack;
3716
3717 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3718 if (tcp_sack_extend(sp, seq, end_seq)) {
3719 /* Rotate this_sack to the first one. */
3720 for (; this_sack>0; this_sack--, sp--)
3721 tcp_sack_swap(sp, sp-1);
3722 if (cur_sacks > 1)
3723 tcp_sack_maybe_coalesce(tp);
3724 return;
3725 }
3726 }
3727
3728 /* Could not find an adjacent existing SACK, build a new one,
3729 * put it at the front, and shift everyone else down. We
3730 * always know there is at least one SACK present already here.
3731 *
3732 * If the sack array is full, forget about the last one.
3733 */
3734 if (this_sack >= 4) {
3735 this_sack--;
3736 tp->rx_opt.num_sacks--;
3737 sp--;
3738 }
3739 for (; this_sack > 0; this_sack--, sp--)
3740 *sp = *(sp-1);
3741
3742 new_sack:
3743 /* Build the new head SACK, and we're done. */
3744 sp->start_seq = seq;
3745 sp->end_seq = end_seq;
3746 tp->rx_opt.num_sacks++;
3747 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3748 }
3749
3750 /* RCV.NXT advances, some SACKs should be eaten. */
3751
3752 static void tcp_sack_remove(struct tcp_sock *tp)
3753 {
3754 struct tcp_sack_block *sp = &tp->selective_acks[0];
3755 int num_sacks = tp->rx_opt.num_sacks;
3756 int this_sack;
3757
3758 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3759 if (skb_queue_empty(&tp->out_of_order_queue)) {
3760 tp->rx_opt.num_sacks = 0;
3761 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3762 return;
3763 }
3764
3765 for (this_sack = 0; this_sack < num_sacks; ) {
3766 /* Check if the start of the sack is covered by RCV.NXT. */
3767 if (!before(tp->rcv_nxt, sp->start_seq)) {
3768 int i;
3769
3770 /* RCV.NXT must cover all the block! */
3771 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3772
3773 /* Zap this SACK, by moving forward any other SACKS. */
3774 for (i=this_sack+1; i < num_sacks; i++)
3775 tp->selective_acks[i-1] = tp->selective_acks[i];
3776 num_sacks--;
3777 continue;
3778 }
3779 this_sack++;
3780 sp++;
3781 }
3782 if (num_sacks != tp->rx_opt.num_sacks) {
3783 tp->rx_opt.num_sacks = num_sacks;
3784 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3785 }
3786 }
3787
3788 /* This one checks to see if we can put data from the
3789 * out_of_order queue into the receive_queue.
3790 */
3791 static void tcp_ofo_queue(struct sock *sk)
3792 {
3793 struct tcp_sock *tp = tcp_sk(sk);
3794 __u32 dsack_high = tp->rcv_nxt;
3795 struct sk_buff *skb;
3796
3797 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3798 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3799 break;
3800
3801 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3802 __u32 dsack = dsack_high;
3803 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3804 dsack_high = TCP_SKB_CB(skb)->end_seq;
3805 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3806 }
3807
3808 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3809 SOCK_DEBUG(sk, "ofo packet was already received \n");
3810 __skb_unlink(skb, &tp->out_of_order_queue);
3811 __kfree_skb(skb);
3812 continue;
3813 }
3814 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3815 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3816 TCP_SKB_CB(skb)->end_seq);
3817
3818 __skb_unlink(skb, &tp->out_of_order_queue);
3819 __skb_queue_tail(&sk->sk_receive_queue, skb);
3820 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3821 if (tcp_hdr(skb)->fin)
3822 tcp_fin(skb, sk, tcp_hdr(skb));
3823 }
3824 }
3825
3826 static int tcp_prune_queue(struct sock *sk);
3827
3828 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3829 {
3830 struct tcphdr *th = tcp_hdr(skb);
3831 struct tcp_sock *tp = tcp_sk(sk);
3832 int eaten = -1;
3833
3834 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3835 goto drop;
3836
3837 __skb_pull(skb, th->doff*4);
3838
3839 TCP_ECN_accept_cwr(tp, skb);
3840
3841 if (tp->rx_opt.dsack) {
3842 tp->rx_opt.dsack = 0;
3843 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3844 4 - tp->rx_opt.tstamp_ok);
3845 }
3846
3847 /* Queue data for delivery to the user.
3848 * Packets in sequence go to the receive queue.
3849 * Out of sequence packets to the out_of_order_queue.
3850 */
3851 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3852 if (tcp_receive_window(tp) == 0)
3853 goto out_of_window;
3854
3855 /* Ok. In sequence. In window. */
3856 if (tp->ucopy.task == current &&
3857 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3858 sock_owned_by_user(sk) && !tp->urg_data) {
3859 int chunk = min_t(unsigned int, skb->len,
3860 tp->ucopy.len);
3861
3862 __set_current_state(TASK_RUNNING);
3863
3864 local_bh_enable();
3865 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3866 tp->ucopy.len -= chunk;
3867 tp->copied_seq += chunk;
3868 eaten = (chunk == skb->len && !th->fin);
3869 tcp_rcv_space_adjust(sk);
3870 }
3871 local_bh_disable();
3872 }
3873
3874 if (eaten <= 0) {
3875 queue_and_out:
3876 if (eaten < 0 &&
3877 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3878 !sk_stream_rmem_schedule(sk, skb))) {
3879 if (tcp_prune_queue(sk) < 0 ||
3880 !sk_stream_rmem_schedule(sk, skb))
3881 goto drop;
3882 }
3883 sk_stream_set_owner_r(skb, sk);
3884 __skb_queue_tail(&sk->sk_receive_queue, skb);
3885 }
3886 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3887 if (skb->len)
3888 tcp_event_data_recv(sk, skb);
3889 if (th->fin)
3890 tcp_fin(skb, sk, th);
3891
3892 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3893 tcp_ofo_queue(sk);
3894
3895 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3896 * gap in queue is filled.
3897 */
3898 if (skb_queue_empty(&tp->out_of_order_queue))
3899 inet_csk(sk)->icsk_ack.pingpong = 0;
3900 }
3901
3902 if (tp->rx_opt.num_sacks)
3903 tcp_sack_remove(tp);
3904
3905 tcp_fast_path_check(sk);
3906
3907 if (eaten > 0)
3908 __kfree_skb(skb);
3909 else if (!sock_flag(sk, SOCK_DEAD))
3910 sk->sk_data_ready(sk, 0);
3911 return;
3912 }
3913
3914 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3915 /* A retransmit, 2nd most common case. Force an immediate ack. */
3916 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3917 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3918
3919 out_of_window:
3920 tcp_enter_quickack_mode(sk);
3921 inet_csk_schedule_ack(sk);
3922 drop:
3923 __kfree_skb(skb);
3924 return;
3925 }
3926
3927 /* Out of window. F.e. zero window probe. */
3928 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3929 goto out_of_window;
3930
3931 tcp_enter_quickack_mode(sk);
3932
3933 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3934 /* Partial packet, seq < rcv_next < end_seq */
3935 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3936 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3937 TCP_SKB_CB(skb)->end_seq);
3938
3939 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3940
3941 /* If window is closed, drop tail of packet. But after
3942 * remembering D-SACK for its head made in previous line.
3943 */
3944 if (!tcp_receive_window(tp))
3945 goto out_of_window;
3946 goto queue_and_out;
3947 }
3948
3949 TCP_ECN_check_ce(tp, skb);
3950
3951 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3952 !sk_stream_rmem_schedule(sk, skb)) {
3953 if (tcp_prune_queue(sk) < 0 ||
3954 !sk_stream_rmem_schedule(sk, skb))
3955 goto drop;
3956 }
3957
3958 /* Disable header prediction. */
3959 tp->pred_flags = 0;
3960 inet_csk_schedule_ack(sk);
3961
3962 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3963 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3964
3965 sk_stream_set_owner_r(skb, sk);
3966
3967 if (!skb_peek(&tp->out_of_order_queue)) {
3968 /* Initial out of order segment, build 1 SACK. */
3969 if (tcp_is_sack(tp)) {
3970 tp->rx_opt.num_sacks = 1;
3971 tp->rx_opt.dsack = 0;
3972 tp->rx_opt.eff_sacks = 1;
3973 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3974 tp->selective_acks[0].end_seq =
3975 TCP_SKB_CB(skb)->end_seq;
3976 }
3977 __skb_queue_head(&tp->out_of_order_queue,skb);
3978 } else {
3979 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3980 u32 seq = TCP_SKB_CB(skb)->seq;
3981 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3982
3983 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3984 __skb_append(skb1, skb, &tp->out_of_order_queue);
3985
3986 if (!tp->rx_opt.num_sacks ||
3987 tp->selective_acks[0].end_seq != seq)
3988 goto add_sack;
3989
3990 /* Common case: data arrive in order after hole. */
3991 tp->selective_acks[0].end_seq = end_seq;
3992 return;
3993 }
3994
3995 /* Find place to insert this segment. */
3996 do {
3997 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3998 break;
3999 } while ((skb1 = skb1->prev) !=
4000 (struct sk_buff*)&tp->out_of_order_queue);
4001
4002 /* Do skb overlap to previous one? */
4003 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
4004 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4005 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4006 /* All the bits are present. Drop. */
4007 __kfree_skb(skb);
4008 tcp_dsack_set(tp, seq, end_seq);
4009 goto add_sack;
4010 }
4011 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4012 /* Partial overlap. */
4013 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
4014 } else {
4015 skb1 = skb1->prev;
4016 }
4017 }
4018 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4019
4020 /* And clean segments covered by new one as whole. */
4021 while ((skb1 = skb->next) !=
4022 (struct sk_buff*)&tp->out_of_order_queue &&
4023 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4024 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4025 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
4026 break;
4027 }
4028 __skb_unlink(skb1, &tp->out_of_order_queue);
4029 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
4030 __kfree_skb(skb1);
4031 }
4032
4033 add_sack:
4034 if (tcp_is_sack(tp))
4035 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4036 }
4037 }
4038
4039 /* Collapse contiguous sequence of skbs head..tail with
4040 * sequence numbers start..end.
4041 * Segments with FIN/SYN are not collapsed (only because this
4042 * simplifies code)
4043 */
4044 static void
4045 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4046 struct sk_buff *head, struct sk_buff *tail,
4047 u32 start, u32 end)
4048 {
4049 struct sk_buff *skb;
4050
4051 /* First, check that queue is collapsible and find
4052 * the point where collapsing can be useful. */
4053 for (skb = head; skb != tail; ) {
4054 /* No new bits? It is possible on ofo queue. */
4055 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4056 struct sk_buff *next = skb->next;
4057 __skb_unlink(skb, list);
4058 __kfree_skb(skb);
4059 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4060 skb = next;
4061 continue;
4062 }
4063
4064 /* The first skb to collapse is:
4065 * - not SYN/FIN and
4066 * - bloated or contains data before "start" or
4067 * overlaps to the next one.
4068 */
4069 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4070 (tcp_win_from_space(skb->truesize) > skb->len ||
4071 before(TCP_SKB_CB(skb)->seq, start) ||
4072 (skb->next != tail &&
4073 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4074 break;
4075
4076 /* Decided to skip this, advance start seq. */
4077 start = TCP_SKB_CB(skb)->end_seq;
4078 skb = skb->next;
4079 }
4080 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4081 return;
4082
4083 while (before(start, end)) {
4084 struct sk_buff *nskb;
4085 unsigned int header = skb_headroom(skb);
4086 int copy = SKB_MAX_ORDER(header, 0);
4087
4088 /* Too big header? This can happen with IPv6. */
4089 if (copy < 0)
4090 return;
4091 if (end-start < copy)
4092 copy = end-start;
4093 nskb = alloc_skb(copy+header, GFP_ATOMIC);
4094 if (!nskb)
4095 return;
4096
4097 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4098 skb_set_network_header(nskb, (skb_network_header(skb) -
4099 skb->head));
4100 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4101 skb->head));
4102 skb_reserve(nskb, header);
4103 memcpy(nskb->head, skb->head, header);
4104 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4105 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4106 __skb_insert(nskb, skb->prev, skb, list);
4107 sk_stream_set_owner_r(nskb, sk);
4108
4109 /* Copy data, releasing collapsed skbs. */
4110 while (copy > 0) {
4111 int offset = start - TCP_SKB_CB(skb)->seq;
4112 int size = TCP_SKB_CB(skb)->end_seq - start;
4113
4114 BUG_ON(offset < 0);
4115 if (size > 0) {
4116 size = min(copy, size);
4117 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4118 BUG();
4119 TCP_SKB_CB(nskb)->end_seq += size;
4120 copy -= size;
4121 start += size;
4122 }
4123 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4124 struct sk_buff *next = skb->next;
4125 __skb_unlink(skb, list);
4126 __kfree_skb(skb);
4127 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4128 skb = next;
4129 if (skb == tail ||
4130 tcp_hdr(skb)->syn ||
4131 tcp_hdr(skb)->fin)
4132 return;
4133 }
4134 }
4135 }
4136 }
4137
4138 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4139 * and tcp_collapse() them until all the queue is collapsed.
4140 */
4141 static void tcp_collapse_ofo_queue(struct sock *sk)
4142 {
4143 struct tcp_sock *tp = tcp_sk(sk);
4144 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4145 struct sk_buff *head;
4146 u32 start, end;
4147
4148 if (skb == NULL)
4149 return;
4150
4151 start = TCP_SKB_CB(skb)->seq;
4152 end = TCP_SKB_CB(skb)->end_seq;
4153 head = skb;
4154
4155 for (;;) {
4156 skb = skb->next;
4157
4158 /* Segment is terminated when we see gap or when
4159 * we are at the end of all the queue. */
4160 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4161 after(TCP_SKB_CB(skb)->seq, end) ||
4162 before(TCP_SKB_CB(skb)->end_seq, start)) {
4163 tcp_collapse(sk, &tp->out_of_order_queue,
4164 head, skb, start, end);
4165 head = skb;
4166 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4167 break;
4168 /* Start new segment */
4169 start = TCP_SKB_CB(skb)->seq;
4170 end = TCP_SKB_CB(skb)->end_seq;
4171 } else {
4172 if (before(TCP_SKB_CB(skb)->seq, start))
4173 start = TCP_SKB_CB(skb)->seq;
4174 if (after(TCP_SKB_CB(skb)->end_seq, end))
4175 end = TCP_SKB_CB(skb)->end_seq;
4176 }
4177 }
4178 }
4179
4180 /* Reduce allocated memory if we can, trying to get
4181 * the socket within its memory limits again.
4182 *
4183 * Return less than zero if we should start dropping frames
4184 * until the socket owning process reads some of the data
4185 * to stabilize the situation.
4186 */
4187 static int tcp_prune_queue(struct sock *sk)
4188 {
4189 struct tcp_sock *tp = tcp_sk(sk);
4190
4191 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4192
4193 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4194
4195 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4196 tcp_clamp_window(sk);
4197 else if (tcp_memory_pressure)
4198 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4199
4200 tcp_collapse_ofo_queue(sk);
4201 tcp_collapse(sk, &sk->sk_receive_queue,
4202 sk->sk_receive_queue.next,
4203 (struct sk_buff*)&sk->sk_receive_queue,
4204 tp->copied_seq, tp->rcv_nxt);
4205 sk_stream_mem_reclaim(sk);
4206
4207 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4208 return 0;
4209
4210 /* Collapsing did not help, destructive actions follow.
4211 * This must not ever occur. */
4212
4213 /* First, purge the out_of_order queue. */
4214 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4215 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4216 __skb_queue_purge(&tp->out_of_order_queue);
4217
4218 /* Reset SACK state. A conforming SACK implementation will
4219 * do the same at a timeout based retransmit. When a connection
4220 * is in a sad state like this, we care only about integrity
4221 * of the connection not performance.
4222 */
4223 if (tcp_is_sack(tp))
4224 tcp_sack_reset(&tp->rx_opt);
4225 sk_stream_mem_reclaim(sk);
4226 }
4227
4228 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4229 return 0;
4230
4231 /* If we are really being abused, tell the caller to silently
4232 * drop receive data on the floor. It will get retransmitted
4233 * and hopefully then we'll have sufficient space.
4234 */
4235 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4236
4237 /* Massive buffer overcommit. */
4238 tp->pred_flags = 0;
4239 return -1;
4240 }
4241
4242
4243 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4244 * As additional protections, we do not touch cwnd in retransmission phases,
4245 * and if application hit its sndbuf limit recently.
4246 */
4247 void tcp_cwnd_application_limited(struct sock *sk)
4248 {
4249 struct tcp_sock *tp = tcp_sk(sk);
4250
4251 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4252 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4253 /* Limited by application or receiver window. */
4254 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4255 u32 win_used = max(tp->snd_cwnd_used, init_win);
4256 if (win_used < tp->snd_cwnd) {
4257 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4258 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4259 }
4260 tp->snd_cwnd_used = 0;
4261 }
4262 tp->snd_cwnd_stamp = tcp_time_stamp;
4263 }
4264
4265 static int tcp_should_expand_sndbuf(struct sock *sk)
4266 {
4267 struct tcp_sock *tp = tcp_sk(sk);
4268
4269 /* If the user specified a specific send buffer setting, do
4270 * not modify it.
4271 */
4272 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4273 return 0;
4274
4275 /* If we are under global TCP memory pressure, do not expand. */
4276 if (tcp_memory_pressure)
4277 return 0;
4278
4279 /* If we are under soft global TCP memory pressure, do not expand. */
4280 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4281 return 0;
4282
4283 /* If we filled the congestion window, do not expand. */
4284 if (tp->packets_out >= tp->snd_cwnd)
4285 return 0;
4286
4287 return 1;
4288 }
4289
4290 /* When incoming ACK allowed to free some skb from write_queue,
4291 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4292 * on the exit from tcp input handler.
4293 *
4294 * PROBLEM: sndbuf expansion does not work well with largesend.
4295 */
4296 static void tcp_new_space(struct sock *sk)
4297 {
4298 struct tcp_sock *tp = tcp_sk(sk);
4299
4300 if (tcp_should_expand_sndbuf(sk)) {
4301 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4302 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4303 demanded = max_t(unsigned int, tp->snd_cwnd,
4304 tp->reordering + 1);
4305 sndmem *= 2*demanded;
4306 if (sndmem > sk->sk_sndbuf)
4307 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4308 tp->snd_cwnd_stamp = tcp_time_stamp;
4309 }
4310
4311 sk->sk_write_space(sk);
4312 }
4313
4314 static void tcp_check_space(struct sock *sk)
4315 {
4316 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4317 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4318 if (sk->sk_socket &&
4319 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4320 tcp_new_space(sk);
4321 }
4322 }
4323
4324 static inline void tcp_data_snd_check(struct sock *sk)
4325 {
4326 tcp_push_pending_frames(sk);
4327 tcp_check_space(sk);
4328 }
4329
4330 /*
4331 * Check if sending an ack is needed.
4332 */
4333 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4334 {
4335 struct tcp_sock *tp = tcp_sk(sk);
4336
4337 /* More than one full frame received... */
4338 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4339 /* ... and right edge of window advances far enough.
4340 * (tcp_recvmsg() will send ACK otherwise). Or...
4341 */
4342 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4343 /* We ACK each frame or... */
4344 tcp_in_quickack_mode(sk) ||
4345 /* We have out of order data. */
4346 (ofo_possible &&
4347 skb_peek(&tp->out_of_order_queue))) {
4348 /* Then ack it now */
4349 tcp_send_ack(sk);
4350 } else {
4351 /* Else, send delayed ack. */
4352 tcp_send_delayed_ack(sk);
4353 }
4354 }
4355
4356 static inline void tcp_ack_snd_check(struct sock *sk)
4357 {
4358 if (!inet_csk_ack_scheduled(sk)) {
4359 /* We sent a data segment already. */
4360 return;
4361 }
4362 __tcp_ack_snd_check(sk, 1);
4363 }
4364
4365 /*
4366 * This routine is only called when we have urgent data
4367 * signaled. Its the 'slow' part of tcp_urg. It could be
4368 * moved inline now as tcp_urg is only called from one
4369 * place. We handle URGent data wrong. We have to - as
4370 * BSD still doesn't use the correction from RFC961.
4371 * For 1003.1g we should support a new option TCP_STDURG to permit
4372 * either form (or just set the sysctl tcp_stdurg).
4373 */
4374
4375 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4376 {
4377 struct tcp_sock *tp = tcp_sk(sk);
4378 u32 ptr = ntohs(th->urg_ptr);
4379
4380 if (ptr && !sysctl_tcp_stdurg)
4381 ptr--;
4382 ptr += ntohl(th->seq);
4383
4384 /* Ignore urgent data that we've already seen and read. */
4385 if (after(tp->copied_seq, ptr))
4386 return;
4387
4388 /* Do not replay urg ptr.
4389 *
4390 * NOTE: interesting situation not covered by specs.
4391 * Misbehaving sender may send urg ptr, pointing to segment,
4392 * which we already have in ofo queue. We are not able to fetch
4393 * such data and will stay in TCP_URG_NOTYET until will be eaten
4394 * by recvmsg(). Seems, we are not obliged to handle such wicked
4395 * situations. But it is worth to think about possibility of some
4396 * DoSes using some hypothetical application level deadlock.
4397 */
4398 if (before(ptr, tp->rcv_nxt))
4399 return;
4400
4401 /* Do we already have a newer (or duplicate) urgent pointer? */
4402 if (tp->urg_data && !after(ptr, tp->urg_seq))
4403 return;
4404
4405 /* Tell the world about our new urgent pointer. */
4406 sk_send_sigurg(sk);
4407
4408 /* We may be adding urgent data when the last byte read was
4409 * urgent. To do this requires some care. We cannot just ignore
4410 * tp->copied_seq since we would read the last urgent byte again
4411 * as data, nor can we alter copied_seq until this data arrives
4412 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4413 *
4414 * NOTE. Double Dutch. Rendering to plain English: author of comment
4415 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4416 * and expect that both A and B disappear from stream. This is _wrong_.
4417 * Though this happens in BSD with high probability, this is occasional.
4418 * Any application relying on this is buggy. Note also, that fix "works"
4419 * only in this artificial test. Insert some normal data between A and B and we will
4420 * decline of BSD again. Verdict: it is better to remove to trap
4421 * buggy users.
4422 */
4423 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4424 !sock_flag(sk, SOCK_URGINLINE) &&
4425 tp->copied_seq != tp->rcv_nxt) {
4426 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4427 tp->copied_seq++;
4428 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4429 __skb_unlink(skb, &sk->sk_receive_queue);
4430 __kfree_skb(skb);
4431 }
4432 }
4433
4434 tp->urg_data = TCP_URG_NOTYET;
4435 tp->urg_seq = ptr;
4436
4437 /* Disable header prediction. */
4438 tp->pred_flags = 0;
4439 }
4440
4441 /* This is the 'fast' part of urgent handling. */
4442 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4443 {
4444 struct tcp_sock *tp = tcp_sk(sk);
4445
4446 /* Check if we get a new urgent pointer - normally not. */
4447 if (th->urg)
4448 tcp_check_urg(sk,th);
4449
4450 /* Do we wait for any urgent data? - normally not... */
4451 if (tp->urg_data == TCP_URG_NOTYET) {
4452 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4453 th->syn;
4454
4455 /* Is the urgent pointer pointing into this packet? */
4456 if (ptr < skb->len) {
4457 u8 tmp;
4458 if (skb_copy_bits(skb, ptr, &tmp, 1))
4459 BUG();
4460 tp->urg_data = TCP_URG_VALID | tmp;
4461 if (!sock_flag(sk, SOCK_DEAD))
4462 sk->sk_data_ready(sk, 0);
4463 }
4464 }
4465 }
4466
4467 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4468 {
4469 struct tcp_sock *tp = tcp_sk(sk);
4470 int chunk = skb->len - hlen;
4471 int err;
4472
4473 local_bh_enable();
4474 if (skb_csum_unnecessary(skb))
4475 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4476 else
4477 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4478 tp->ucopy.iov);
4479
4480 if (!err) {
4481 tp->ucopy.len -= chunk;
4482 tp->copied_seq += chunk;
4483 tcp_rcv_space_adjust(sk);
4484 }
4485
4486 local_bh_disable();
4487 return err;
4488 }
4489
4490 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4491 {
4492 __sum16 result;
4493
4494 if (sock_owned_by_user(sk)) {
4495 local_bh_enable();
4496 result = __tcp_checksum_complete(skb);
4497 local_bh_disable();
4498 } else {
4499 result = __tcp_checksum_complete(skb);
4500 }
4501 return result;
4502 }
4503
4504 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4505 {
4506 return !skb_csum_unnecessary(skb) &&
4507 __tcp_checksum_complete_user(sk, skb);
4508 }
4509
4510 #ifdef CONFIG_NET_DMA
4511 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4512 {
4513 struct tcp_sock *tp = tcp_sk(sk);
4514 int chunk = skb->len - hlen;
4515 int dma_cookie;
4516 int copied_early = 0;
4517
4518 if (tp->ucopy.wakeup)
4519 return 0;
4520
4521 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4522 tp->ucopy.dma_chan = get_softnet_dma();
4523
4524 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4525
4526 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4527 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4528
4529 if (dma_cookie < 0)
4530 goto out;
4531
4532 tp->ucopy.dma_cookie = dma_cookie;
4533 copied_early = 1;
4534
4535 tp->ucopy.len -= chunk;
4536 tp->copied_seq += chunk;
4537 tcp_rcv_space_adjust(sk);
4538
4539 if ((tp->ucopy.len == 0) ||
4540 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4541 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4542 tp->ucopy.wakeup = 1;
4543 sk->sk_data_ready(sk, 0);
4544 }
4545 } else if (chunk > 0) {
4546 tp->ucopy.wakeup = 1;
4547 sk->sk_data_ready(sk, 0);
4548 }
4549 out:
4550 return copied_early;
4551 }
4552 #endif /* CONFIG_NET_DMA */
4553
4554 /*
4555 * TCP receive function for the ESTABLISHED state.
4556 *
4557 * It is split into a fast path and a slow path. The fast path is
4558 * disabled when:
4559 * - A zero window was announced from us - zero window probing
4560 * is only handled properly in the slow path.
4561 * - Out of order segments arrived.
4562 * - Urgent data is expected.
4563 * - There is no buffer space left
4564 * - Unexpected TCP flags/window values/header lengths are received
4565 * (detected by checking the TCP header against pred_flags)
4566 * - Data is sent in both directions. Fast path only supports pure senders
4567 * or pure receivers (this means either the sequence number or the ack
4568 * value must stay constant)
4569 * - Unexpected TCP option.
4570 *
4571 * When these conditions are not satisfied it drops into a standard
4572 * receive procedure patterned after RFC793 to handle all cases.
4573 * The first three cases are guaranteed by proper pred_flags setting,
4574 * the rest is checked inline. Fast processing is turned on in
4575 * tcp_data_queue when everything is OK.
4576 */
4577 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4578 struct tcphdr *th, unsigned len)
4579 {
4580 struct tcp_sock *tp = tcp_sk(sk);
4581
4582 /*
4583 * Header prediction.
4584 * The code loosely follows the one in the famous
4585 * "30 instruction TCP receive" Van Jacobson mail.
4586 *
4587 * Van's trick is to deposit buffers into socket queue
4588 * on a device interrupt, to call tcp_recv function
4589 * on the receive process context and checksum and copy
4590 * the buffer to user space. smart...
4591 *
4592 * Our current scheme is not silly either but we take the
4593 * extra cost of the net_bh soft interrupt processing...
4594 * We do checksum and copy also but from device to kernel.
4595 */
4596
4597 tp->rx_opt.saw_tstamp = 0;
4598
4599 /* pred_flags is 0xS?10 << 16 + snd_wnd
4600 * if header_prediction is to be made
4601 * 'S' will always be tp->tcp_header_len >> 2
4602 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4603 * turn it off (when there are holes in the receive
4604 * space for instance)
4605 * PSH flag is ignored.
4606 */
4607
4608 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4609 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4610 int tcp_header_len = tp->tcp_header_len;
4611
4612 /* Timestamp header prediction: tcp_header_len
4613 * is automatically equal to th->doff*4 due to pred_flags
4614 * match.
4615 */
4616
4617 /* Check timestamp */
4618 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4619 __be32 *ptr = (__be32 *)(th + 1);
4620
4621 /* No? Slow path! */
4622 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4623 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4624 goto slow_path;
4625
4626 tp->rx_opt.saw_tstamp = 1;
4627 ++ptr;
4628 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4629 ++ptr;
4630 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4631
4632 /* If PAWS failed, check it more carefully in slow path */
4633 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4634 goto slow_path;
4635
4636 /* DO NOT update ts_recent here, if checksum fails
4637 * and timestamp was corrupted part, it will result
4638 * in a hung connection since we will drop all
4639 * future packets due to the PAWS test.
4640 */
4641 }
4642
4643 if (len <= tcp_header_len) {
4644 /* Bulk data transfer: sender */
4645 if (len == tcp_header_len) {
4646 /* Predicted packet is in window by definition.
4647 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4648 * Hence, check seq<=rcv_wup reduces to:
4649 */
4650 if (tcp_header_len ==
4651 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4652 tp->rcv_nxt == tp->rcv_wup)
4653 tcp_store_ts_recent(tp);
4654
4655 /* We know that such packets are checksummed
4656 * on entry.
4657 */
4658 tcp_ack(sk, skb, 0);
4659 __kfree_skb(skb);
4660 tcp_data_snd_check(sk);
4661 return 0;
4662 } else { /* Header too small */
4663 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4664 goto discard;
4665 }
4666 } else {
4667 int eaten = 0;
4668 int copied_early = 0;
4669
4670 if (tp->copied_seq == tp->rcv_nxt &&
4671 len - tcp_header_len <= tp->ucopy.len) {
4672 #ifdef CONFIG_NET_DMA
4673 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4674 copied_early = 1;
4675 eaten = 1;
4676 }
4677 #endif
4678 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4679 __set_current_state(TASK_RUNNING);
4680
4681 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4682 eaten = 1;
4683 }
4684 if (eaten) {
4685 /* Predicted packet is in window by definition.
4686 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4687 * Hence, check seq<=rcv_wup reduces to:
4688 */
4689 if (tcp_header_len ==
4690 (sizeof(struct tcphdr) +
4691 TCPOLEN_TSTAMP_ALIGNED) &&
4692 tp->rcv_nxt == tp->rcv_wup)
4693 tcp_store_ts_recent(tp);
4694
4695 tcp_rcv_rtt_measure_ts(sk, skb);
4696
4697 __skb_pull(skb, tcp_header_len);
4698 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4699 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4700 }
4701 if (copied_early)
4702 tcp_cleanup_rbuf(sk, skb->len);
4703 }
4704 if (!eaten) {
4705 if (tcp_checksum_complete_user(sk, skb))
4706 goto csum_error;
4707
4708 /* Predicted packet is in window by definition.
4709 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4710 * Hence, check seq<=rcv_wup reduces to:
4711 */
4712 if (tcp_header_len ==
4713 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4714 tp->rcv_nxt == tp->rcv_wup)
4715 tcp_store_ts_recent(tp);
4716
4717 tcp_rcv_rtt_measure_ts(sk, skb);
4718
4719 if ((int)skb->truesize > sk->sk_forward_alloc)
4720 goto step5;
4721
4722 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4723
4724 /* Bulk data transfer: receiver */
4725 __skb_pull(skb,tcp_header_len);
4726 __skb_queue_tail(&sk->sk_receive_queue, skb);
4727 sk_stream_set_owner_r(skb, sk);
4728 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4729 }
4730
4731 tcp_event_data_recv(sk, skb);
4732
4733 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4734 /* Well, only one small jumplet in fast path... */
4735 tcp_ack(sk, skb, FLAG_DATA);
4736 tcp_data_snd_check(sk);
4737 if (!inet_csk_ack_scheduled(sk))
4738 goto no_ack;
4739 }
4740
4741 __tcp_ack_snd_check(sk, 0);
4742 no_ack:
4743 #ifdef CONFIG_NET_DMA
4744 if (copied_early)
4745 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4746 else
4747 #endif
4748 if (eaten)
4749 __kfree_skb(skb);
4750 else
4751 sk->sk_data_ready(sk, 0);
4752 return 0;
4753 }
4754 }
4755
4756 slow_path:
4757 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4758 goto csum_error;
4759
4760 /*
4761 * RFC1323: H1. Apply PAWS check first.
4762 */
4763 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4764 tcp_paws_discard(sk, skb)) {
4765 if (!th->rst) {
4766 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4767 tcp_send_dupack(sk, skb);
4768 goto discard;
4769 }
4770 /* Resets are accepted even if PAWS failed.
4771
4772 ts_recent update must be made after we are sure
4773 that the packet is in window.
4774 */
4775 }
4776
4777 /*
4778 * Standard slow path.
4779 */
4780
4781 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4782 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4783 * (RST) segments are validated by checking their SEQ-fields."
4784 * And page 69: "If an incoming segment is not acceptable,
4785 * an acknowledgment should be sent in reply (unless the RST bit
4786 * is set, if so drop the segment and return)".
4787 */
4788 if (!th->rst)
4789 tcp_send_dupack(sk, skb);
4790 goto discard;
4791 }
4792
4793 if (th->rst) {
4794 tcp_reset(sk);
4795 goto discard;
4796 }
4797
4798 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4799
4800 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4801 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4802 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4803 tcp_reset(sk);
4804 return 1;
4805 }
4806
4807 step5:
4808 if (th->ack)
4809 tcp_ack(sk, skb, FLAG_SLOWPATH);
4810
4811 tcp_rcv_rtt_measure_ts(sk, skb);
4812
4813 /* Process urgent data. */
4814 tcp_urg(sk, skb, th);
4815
4816 /* step 7: process the segment text */
4817 tcp_data_queue(sk, skb);
4818
4819 tcp_data_snd_check(sk);
4820 tcp_ack_snd_check(sk);
4821 return 0;
4822
4823 csum_error:
4824 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4825
4826 discard:
4827 __kfree_skb(skb);
4828 return 0;
4829 }
4830
4831 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4832 struct tcphdr *th, unsigned len)
4833 {
4834 struct tcp_sock *tp = tcp_sk(sk);
4835 struct inet_connection_sock *icsk = inet_csk(sk);
4836 int saved_clamp = tp->rx_opt.mss_clamp;
4837
4838 tcp_parse_options(skb, &tp->rx_opt, 0);
4839
4840 if (th->ack) {
4841 /* rfc793:
4842 * "If the state is SYN-SENT then
4843 * first check the ACK bit
4844 * If the ACK bit is set
4845 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4846 * a reset (unless the RST bit is set, if so drop
4847 * the segment and return)"
4848 *
4849 * We do not send data with SYN, so that RFC-correct
4850 * test reduces to:
4851 */
4852 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4853 goto reset_and_undo;
4854
4855 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4856 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4857 tcp_time_stamp)) {
4858 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4859 goto reset_and_undo;
4860 }
4861
4862 /* Now ACK is acceptable.
4863 *
4864 * "If the RST bit is set
4865 * If the ACK was acceptable then signal the user "error:
4866 * connection reset", drop the segment, enter CLOSED state,
4867 * delete TCB, and return."
4868 */
4869
4870 if (th->rst) {
4871 tcp_reset(sk);
4872 goto discard;
4873 }
4874
4875 /* rfc793:
4876 * "fifth, if neither of the SYN or RST bits is set then
4877 * drop the segment and return."
4878 *
4879 * See note below!
4880 * --ANK(990513)
4881 */
4882 if (!th->syn)
4883 goto discard_and_undo;
4884
4885 /* rfc793:
4886 * "If the SYN bit is on ...
4887 * are acceptable then ...
4888 * (our SYN has been ACKed), change the connection
4889 * state to ESTABLISHED..."
4890 */
4891
4892 TCP_ECN_rcv_synack(tp, th);
4893
4894 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4895 tcp_ack(sk, skb, FLAG_SLOWPATH);
4896
4897 /* Ok.. it's good. Set up sequence numbers and
4898 * move to established.
4899 */
4900 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4901 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4902
4903 /* RFC1323: The window in SYN & SYN/ACK segments is
4904 * never scaled.
4905 */
4906 tp->snd_wnd = ntohs(th->window);
4907 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4908
4909 if (!tp->rx_opt.wscale_ok) {
4910 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4911 tp->window_clamp = min(tp->window_clamp, 65535U);
4912 }
4913
4914 if (tp->rx_opt.saw_tstamp) {
4915 tp->rx_opt.tstamp_ok = 1;
4916 tp->tcp_header_len =
4917 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4918 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4919 tcp_store_ts_recent(tp);
4920 } else {
4921 tp->tcp_header_len = sizeof(struct tcphdr);
4922 }
4923
4924 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4925 tcp_enable_fack(tp);
4926
4927 tcp_mtup_init(sk);
4928 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4929 tcp_initialize_rcv_mss(sk);
4930
4931 /* Remember, tcp_poll() does not lock socket!
4932 * Change state from SYN-SENT only after copied_seq
4933 * is initialized. */
4934 tp->copied_seq = tp->rcv_nxt;
4935 smp_mb();
4936 tcp_set_state(sk, TCP_ESTABLISHED);
4937
4938 security_inet_conn_established(sk, skb);
4939
4940 /* Make sure socket is routed, for correct metrics. */
4941 icsk->icsk_af_ops->rebuild_header(sk);
4942
4943 tcp_init_metrics(sk);
4944
4945 tcp_init_congestion_control(sk);
4946
4947 /* Prevent spurious tcp_cwnd_restart() on first data
4948 * packet.
4949 */
4950 tp->lsndtime = tcp_time_stamp;
4951
4952 tcp_init_buffer_space(sk);
4953
4954 if (sock_flag(sk, SOCK_KEEPOPEN))
4955 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4956
4957 if (!tp->rx_opt.snd_wscale)
4958 __tcp_fast_path_on(tp, tp->snd_wnd);
4959 else
4960 tp->pred_flags = 0;
4961
4962 if (!sock_flag(sk, SOCK_DEAD)) {
4963 sk->sk_state_change(sk);
4964 sk_wake_async(sk, 0, POLL_OUT);
4965 }
4966
4967 if (sk->sk_write_pending ||
4968 icsk->icsk_accept_queue.rskq_defer_accept ||
4969 icsk->icsk_ack.pingpong) {
4970 /* Save one ACK. Data will be ready after
4971 * several ticks, if write_pending is set.
4972 *
4973 * It may be deleted, but with this feature tcpdumps
4974 * look so _wonderfully_ clever, that I was not able
4975 * to stand against the temptation 8) --ANK
4976 */
4977 inet_csk_schedule_ack(sk);
4978 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4979 icsk->icsk_ack.ato = TCP_ATO_MIN;
4980 tcp_incr_quickack(sk);
4981 tcp_enter_quickack_mode(sk);
4982 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4983 TCP_DELACK_MAX, TCP_RTO_MAX);
4984
4985 discard:
4986 __kfree_skb(skb);
4987 return 0;
4988 } else {
4989 tcp_send_ack(sk);
4990 }
4991 return -1;
4992 }
4993
4994 /* No ACK in the segment */
4995
4996 if (th->rst) {
4997 /* rfc793:
4998 * "If the RST bit is set
4999 *
5000 * Otherwise (no ACK) drop the segment and return."
5001 */
5002
5003 goto discard_and_undo;
5004 }
5005
5006 /* PAWS check. */
5007 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
5008 goto discard_and_undo;
5009
5010 if (th->syn) {
5011 /* We see SYN without ACK. It is attempt of
5012 * simultaneous connect with crossed SYNs.
5013 * Particularly, it can be connect to self.
5014 */
5015 tcp_set_state(sk, TCP_SYN_RECV);
5016
5017 if (tp->rx_opt.saw_tstamp) {
5018 tp->rx_opt.tstamp_ok = 1;
5019 tcp_store_ts_recent(tp);
5020 tp->tcp_header_len =
5021 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5022 } else {
5023 tp->tcp_header_len = sizeof(struct tcphdr);
5024 }
5025
5026 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5027 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5028
5029 /* RFC1323: The window in SYN & SYN/ACK segments is
5030 * never scaled.
5031 */
5032 tp->snd_wnd = ntohs(th->window);
5033 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5034 tp->max_window = tp->snd_wnd;
5035
5036 TCP_ECN_rcv_syn(tp, th);
5037
5038 tcp_mtup_init(sk);
5039 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5040 tcp_initialize_rcv_mss(sk);
5041
5042
5043 tcp_send_synack(sk);
5044 #if 0
5045 /* Note, we could accept data and URG from this segment.
5046 * There are no obstacles to make this.
5047 *
5048 * However, if we ignore data in ACKless segments sometimes,
5049 * we have no reasons to accept it sometimes.
5050 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5051 * is not flawless. So, discard packet for sanity.
5052 * Uncomment this return to process the data.
5053 */
5054 return -1;
5055 #else
5056 goto discard;
5057 #endif
5058 }
5059 /* "fifth, if neither of the SYN or RST bits is set then
5060 * drop the segment and return."
5061 */
5062
5063 discard_and_undo:
5064 tcp_clear_options(&tp->rx_opt);
5065 tp->rx_opt.mss_clamp = saved_clamp;
5066 goto discard;
5067
5068 reset_and_undo:
5069 tcp_clear_options(&tp->rx_opt);
5070 tp->rx_opt.mss_clamp = saved_clamp;
5071 return 1;
5072 }
5073
5074
5075 /*
5076 * This function implements the receiving procedure of RFC 793 for
5077 * all states except ESTABLISHED and TIME_WAIT.
5078 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5079 * address independent.
5080 */
5081
5082 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5083 struct tcphdr *th, unsigned len)
5084 {
5085 struct tcp_sock *tp = tcp_sk(sk);
5086 struct inet_connection_sock *icsk = inet_csk(sk);
5087 int queued = 0;
5088
5089 tp->rx_opt.saw_tstamp = 0;
5090
5091 switch (sk->sk_state) {
5092 case TCP_CLOSE:
5093 goto discard;
5094
5095 case TCP_LISTEN:
5096 if (th->ack)
5097 return 1;
5098
5099 if (th->rst)
5100 goto discard;
5101
5102 if (th->syn) {
5103 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5104 return 1;
5105
5106 /* Now we have several options: In theory there is
5107 * nothing else in the frame. KA9Q has an option to
5108 * send data with the syn, BSD accepts data with the
5109 * syn up to the [to be] advertised window and
5110 * Solaris 2.1 gives you a protocol error. For now
5111 * we just ignore it, that fits the spec precisely
5112 * and avoids incompatibilities. It would be nice in
5113 * future to drop through and process the data.
5114 *
5115 * Now that TTCP is starting to be used we ought to
5116 * queue this data.
5117 * But, this leaves one open to an easy denial of
5118 * service attack, and SYN cookies can't defend
5119 * against this problem. So, we drop the data
5120 * in the interest of security over speed unless
5121 * it's still in use.
5122 */
5123 kfree_skb(skb);
5124 return 0;
5125 }
5126 goto discard;
5127
5128 case TCP_SYN_SENT:
5129 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5130 if (queued >= 0)
5131 return queued;
5132
5133 /* Do step6 onward by hand. */
5134 tcp_urg(sk, skb, th);
5135 __kfree_skb(skb);
5136 tcp_data_snd_check(sk);
5137 return 0;
5138 }
5139
5140 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5141 tcp_paws_discard(sk, skb)) {
5142 if (!th->rst) {
5143 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5144 tcp_send_dupack(sk, skb);
5145 goto discard;
5146 }
5147 /* Reset is accepted even if it did not pass PAWS. */
5148 }
5149
5150 /* step 1: check sequence number */
5151 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5152 if (!th->rst)
5153 tcp_send_dupack(sk, skb);
5154 goto discard;
5155 }
5156
5157 /* step 2: check RST bit */
5158 if (th->rst) {
5159 tcp_reset(sk);
5160 goto discard;
5161 }
5162
5163 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5164
5165 /* step 3: check security and precedence [ignored] */
5166
5167 /* step 4:
5168 *
5169 * Check for a SYN in window.
5170 */
5171 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5172 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5173 tcp_reset(sk);
5174 return 1;
5175 }
5176
5177 /* step 5: check the ACK field */
5178 if (th->ack) {
5179 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5180
5181 switch (sk->sk_state) {
5182 case TCP_SYN_RECV:
5183 if (acceptable) {
5184 tp->copied_seq = tp->rcv_nxt;
5185 smp_mb();
5186 tcp_set_state(sk, TCP_ESTABLISHED);
5187 sk->sk_state_change(sk);
5188
5189 /* Note, that this wakeup is only for marginal
5190 * crossed SYN case. Passively open sockets
5191 * are not waked up, because sk->sk_sleep ==
5192 * NULL and sk->sk_socket == NULL.
5193 */
5194 if (sk->sk_socket) {
5195 sk_wake_async(sk,0,POLL_OUT);
5196 }
5197
5198 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5199 tp->snd_wnd = ntohs(th->window) <<
5200 tp->rx_opt.snd_wscale;
5201 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5202 TCP_SKB_CB(skb)->seq);
5203
5204 /* tcp_ack considers this ACK as duplicate
5205 * and does not calculate rtt.
5206 * Fix it at least with timestamps.
5207 */
5208 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5209 !tp->srtt)
5210 tcp_ack_saw_tstamp(sk, 0);
5211
5212 if (tp->rx_opt.tstamp_ok)
5213 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5214
5215 /* Make sure socket is routed, for
5216 * correct metrics.
5217 */
5218 icsk->icsk_af_ops->rebuild_header(sk);
5219
5220 tcp_init_metrics(sk);
5221
5222 tcp_init_congestion_control(sk);
5223
5224 /* Prevent spurious tcp_cwnd_restart() on
5225 * first data packet.
5226 */
5227 tp->lsndtime = tcp_time_stamp;
5228
5229 tcp_mtup_init(sk);
5230 tcp_initialize_rcv_mss(sk);
5231 tcp_init_buffer_space(sk);
5232 tcp_fast_path_on(tp);
5233 } else {
5234 return 1;
5235 }
5236 break;
5237
5238 case TCP_FIN_WAIT1:
5239 if (tp->snd_una == tp->write_seq) {
5240 tcp_set_state(sk, TCP_FIN_WAIT2);
5241 sk->sk_shutdown |= SEND_SHUTDOWN;
5242 dst_confirm(sk->sk_dst_cache);
5243
5244 if (!sock_flag(sk, SOCK_DEAD))
5245 /* Wake up lingering close() */
5246 sk->sk_state_change(sk);
5247 else {
5248 int tmo;
5249
5250 if (tp->linger2 < 0 ||
5251 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5252 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5253 tcp_done(sk);
5254 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5255 return 1;
5256 }
5257
5258 tmo = tcp_fin_time(sk);
5259 if (tmo > TCP_TIMEWAIT_LEN) {
5260 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5261 } else if (th->fin || sock_owned_by_user(sk)) {
5262 /* Bad case. We could lose such FIN otherwise.
5263 * It is not a big problem, but it looks confusing
5264 * and not so rare event. We still can lose it now,
5265 * if it spins in bh_lock_sock(), but it is really
5266 * marginal case.
5267 */
5268 inet_csk_reset_keepalive_timer(sk, tmo);
5269 } else {
5270 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5271 goto discard;
5272 }
5273 }
5274 }
5275 break;
5276
5277 case TCP_CLOSING:
5278 if (tp->snd_una == tp->write_seq) {
5279 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5280 goto discard;
5281 }
5282 break;
5283
5284 case TCP_LAST_ACK:
5285 if (tp->snd_una == tp->write_seq) {
5286 tcp_update_metrics(sk);
5287 tcp_done(sk);
5288 goto discard;
5289 }
5290 break;
5291 }
5292 } else
5293 goto discard;
5294
5295 /* step 6: check the URG bit */
5296 tcp_urg(sk, skb, th);
5297
5298 /* step 7: process the segment text */
5299 switch (sk->sk_state) {
5300 case TCP_CLOSE_WAIT:
5301 case TCP_CLOSING:
5302 case TCP_LAST_ACK:
5303 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5304 break;
5305 case TCP_FIN_WAIT1:
5306 case TCP_FIN_WAIT2:
5307 /* RFC 793 says to queue data in these states,
5308 * RFC 1122 says we MUST send a reset.
5309 * BSD 4.4 also does reset.
5310 */
5311 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5312 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5313 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5314 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5315 tcp_reset(sk);
5316 return 1;
5317 }
5318 }
5319 /* Fall through */
5320 case TCP_ESTABLISHED:
5321 tcp_data_queue(sk, skb);
5322 queued = 1;
5323 break;
5324 }
5325
5326 /* tcp_data could move socket to TIME-WAIT */
5327 if (sk->sk_state != TCP_CLOSE) {
5328 tcp_data_snd_check(sk);
5329 tcp_ack_snd_check(sk);
5330 }
5331
5332 if (!queued) {
5333 discard:
5334 __kfree_skb(skb);
5335 }
5336 return 0;
5337 }
5338
5339 EXPORT_SYMBOL(sysctl_tcp_ecn);
5340 EXPORT_SYMBOL(sysctl_tcp_reordering);
5341 EXPORT_SYMBOL(tcp_parse_options);
5342 EXPORT_SYMBOL(tcp_rcv_established);
5343 EXPORT_SYMBOL(tcp_rcv_state_process);
5344 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.144958 seconds and 6 git commands to generate.