Merge branch 'slab/next' into slab/for-linus
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_frto_response __read_mostly;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 2;
102
103 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
104 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
105 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
106 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
107 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
108 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
109 #define FLAG_ECE 0x40 /* ECE in this ACK */
110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
115 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
116 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
117
118 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
121 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
122 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
123
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126
127 /* Adapt the MSS value used to make delayed ack decision to the
128 * real world.
129 */
130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131 {
132 struct inet_connection_sock *icsk = inet_csk(sk);
133 const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 unsigned int len;
135
136 icsk->icsk_ack.last_seg_size = 0;
137
138 /* skb->len may jitter because of SACKs, even if peer
139 * sends good full-sized frames.
140 */
141 len = skb_shinfo(skb)->gso_size ? : skb->len;
142 if (len >= icsk->icsk_ack.rcv_mss) {
143 icsk->icsk_ack.rcv_mss = len;
144 } else {
145 /* Otherwise, we make more careful check taking into account,
146 * that SACKs block is variable.
147 *
148 * "len" is invariant segment length, including TCP header.
149 */
150 len += skb->data - skb_transport_header(skb);
151 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152 /* If PSH is not set, packet should be
153 * full sized, provided peer TCP is not badly broken.
154 * This observation (if it is correct 8)) allows
155 * to handle super-low mtu links fairly.
156 */
157 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159 /* Subtract also invariant (if peer is RFC compliant),
160 * tcp header plus fixed timestamp option length.
161 * Resulting "len" is MSS free of SACK jitter.
162 */
163 len -= tcp_sk(sk)->tcp_header_len;
164 icsk->icsk_ack.last_seg_size = len;
165 if (len == lss) {
166 icsk->icsk_ack.rcv_mss = len;
167 return;
168 }
169 }
170 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 }
174 }
175
176 static void tcp_incr_quickack(struct sock *sk)
177 {
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
180
181 if (quickacks == 0)
182 quickacks = 2;
183 if (quickacks > icsk->icsk_ack.quick)
184 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 }
186
187 static void tcp_enter_quickack_mode(struct sock *sk)
188 {
189 struct inet_connection_sock *icsk = inet_csk(sk);
190 tcp_incr_quickack(sk);
191 icsk->icsk_ack.pingpong = 0;
192 icsk->icsk_ack.ato = TCP_ATO_MIN;
193 }
194
195 /* Send ACKs quickly, if "quick" count is not exhausted
196 * and the session is not interactive.
197 */
198
199 static inline bool tcp_in_quickack_mode(const struct sock *sk)
200 {
201 const struct inet_connection_sock *icsk = inet_csk(sk);
202
203 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
204 }
205
206 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
207 {
208 if (tp->ecn_flags & TCP_ECN_OK)
209 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210 }
211
212 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
213 {
214 if (tcp_hdr(skb)->cwr)
215 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216 }
217
218 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
219 {
220 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221 }
222
223 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
224 {
225 if (!(tp->ecn_flags & TCP_ECN_OK))
226 return;
227
228 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
229 case INET_ECN_NOT_ECT:
230 /* Funny extension: if ECT is not set on a segment,
231 * and we already seen ECT on a previous segment,
232 * it is probably a retransmit.
233 */
234 if (tp->ecn_flags & TCP_ECN_SEEN)
235 tcp_enter_quickack_mode((struct sock *)tp);
236 break;
237 case INET_ECN_CE:
238 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
239 /* Better not delay acks, sender can have a very low cwnd */
240 tcp_enter_quickack_mode((struct sock *)tp);
241 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
242 }
243 /* fallinto */
244 default:
245 tp->ecn_flags |= TCP_ECN_SEEN;
246 }
247 }
248
249 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
250 {
251 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
252 tp->ecn_flags &= ~TCP_ECN_OK;
253 }
254
255 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
256 {
257 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
258 tp->ecn_flags &= ~TCP_ECN_OK;
259 }
260
261 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
262 {
263 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
264 return true;
265 return false;
266 }
267
268 /* Buffer size and advertised window tuning.
269 *
270 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
271 */
272
273 static void tcp_fixup_sndbuf(struct sock *sk)
274 {
275 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
276
277 sndmem *= TCP_INIT_CWND;
278 if (sk->sk_sndbuf < sndmem)
279 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
280 }
281
282 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
283 *
284 * All tcp_full_space() is split to two parts: "network" buffer, allocated
285 * forward and advertised in receiver window (tp->rcv_wnd) and
286 * "application buffer", required to isolate scheduling/application
287 * latencies from network.
288 * window_clamp is maximal advertised window. It can be less than
289 * tcp_full_space(), in this case tcp_full_space() - window_clamp
290 * is reserved for "application" buffer. The less window_clamp is
291 * the smoother our behaviour from viewpoint of network, but the lower
292 * throughput and the higher sensitivity of the connection to losses. 8)
293 *
294 * rcv_ssthresh is more strict window_clamp used at "slow start"
295 * phase to predict further behaviour of this connection.
296 * It is used for two goals:
297 * - to enforce header prediction at sender, even when application
298 * requires some significant "application buffer". It is check #1.
299 * - to prevent pruning of receive queue because of misprediction
300 * of receiver window. Check #2.
301 *
302 * The scheme does not work when sender sends good segments opening
303 * window and then starts to feed us spaghetti. But it should work
304 * in common situations. Otherwise, we have to rely on queue collapsing.
305 */
306
307 /* Slow part of check#2. */
308 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
309 {
310 struct tcp_sock *tp = tcp_sk(sk);
311 /* Optimize this! */
312 int truesize = tcp_win_from_space(skb->truesize) >> 1;
313 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
314
315 while (tp->rcv_ssthresh <= window) {
316 if (truesize <= skb->len)
317 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
318
319 truesize >>= 1;
320 window >>= 1;
321 }
322 return 0;
323 }
324
325 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
326 {
327 struct tcp_sock *tp = tcp_sk(sk);
328
329 /* Check #1 */
330 if (tp->rcv_ssthresh < tp->window_clamp &&
331 (int)tp->rcv_ssthresh < tcp_space(sk) &&
332 !sk_under_memory_pressure(sk)) {
333 int incr;
334
335 /* Check #2. Increase window, if skb with such overhead
336 * will fit to rcvbuf in future.
337 */
338 if (tcp_win_from_space(skb->truesize) <= skb->len)
339 incr = 2 * tp->advmss;
340 else
341 incr = __tcp_grow_window(sk, skb);
342
343 if (incr) {
344 incr = max_t(int, incr, 2 * skb->len);
345 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
346 tp->window_clamp);
347 inet_csk(sk)->icsk_ack.quick |= 1;
348 }
349 }
350 }
351
352 /* 3. Tuning rcvbuf, when connection enters established state. */
353
354 static void tcp_fixup_rcvbuf(struct sock *sk)
355 {
356 u32 mss = tcp_sk(sk)->advmss;
357 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
358 int rcvmem;
359
360 /* Limit to 10 segments if mss <= 1460,
361 * or 14600/mss segments, with a minimum of two segments.
362 */
363 if (mss > 1460)
364 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
365
366 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
367 while (tcp_win_from_space(rcvmem) < mss)
368 rcvmem += 128;
369
370 rcvmem *= icwnd;
371
372 if (sk->sk_rcvbuf < rcvmem)
373 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
374 }
375
376 /* 4. Try to fixup all. It is made immediately after connection enters
377 * established state.
378 */
379 void tcp_init_buffer_space(struct sock *sk)
380 {
381 struct tcp_sock *tp = tcp_sk(sk);
382 int maxwin;
383
384 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
385 tcp_fixup_rcvbuf(sk);
386 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
387 tcp_fixup_sndbuf(sk);
388
389 tp->rcvq_space.space = tp->rcv_wnd;
390
391 maxwin = tcp_full_space(sk);
392
393 if (tp->window_clamp >= maxwin) {
394 tp->window_clamp = maxwin;
395
396 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
397 tp->window_clamp = max(maxwin -
398 (maxwin >> sysctl_tcp_app_win),
399 4 * tp->advmss);
400 }
401
402 /* Force reservation of one segment. */
403 if (sysctl_tcp_app_win &&
404 tp->window_clamp > 2 * tp->advmss &&
405 tp->window_clamp + tp->advmss > maxwin)
406 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
407
408 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
409 tp->snd_cwnd_stamp = tcp_time_stamp;
410 }
411
412 /* 5. Recalculate window clamp after socket hit its memory bounds. */
413 static void tcp_clamp_window(struct sock *sk)
414 {
415 struct tcp_sock *tp = tcp_sk(sk);
416 struct inet_connection_sock *icsk = inet_csk(sk);
417
418 icsk->icsk_ack.quick = 0;
419
420 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
421 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
422 !sk_under_memory_pressure(sk) &&
423 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
424 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
425 sysctl_tcp_rmem[2]);
426 }
427 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
428 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
429 }
430
431 /* Initialize RCV_MSS value.
432 * RCV_MSS is an our guess about MSS used by the peer.
433 * We haven't any direct information about the MSS.
434 * It's better to underestimate the RCV_MSS rather than overestimate.
435 * Overestimations make us ACKing less frequently than needed.
436 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
437 */
438 void tcp_initialize_rcv_mss(struct sock *sk)
439 {
440 const struct tcp_sock *tp = tcp_sk(sk);
441 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
442
443 hint = min(hint, tp->rcv_wnd / 2);
444 hint = min(hint, TCP_MSS_DEFAULT);
445 hint = max(hint, TCP_MIN_MSS);
446
447 inet_csk(sk)->icsk_ack.rcv_mss = hint;
448 }
449 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
450
451 /* Receiver "autotuning" code.
452 *
453 * The algorithm for RTT estimation w/o timestamps is based on
454 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
455 * <http://public.lanl.gov/radiant/pubs.html#DRS>
456 *
457 * More detail on this code can be found at
458 * <http://staff.psc.edu/jheffner/>,
459 * though this reference is out of date. A new paper
460 * is pending.
461 */
462 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
463 {
464 u32 new_sample = tp->rcv_rtt_est.rtt;
465 long m = sample;
466
467 if (m == 0)
468 m = 1;
469
470 if (new_sample != 0) {
471 /* If we sample in larger samples in the non-timestamp
472 * case, we could grossly overestimate the RTT especially
473 * with chatty applications or bulk transfer apps which
474 * are stalled on filesystem I/O.
475 *
476 * Also, since we are only going for a minimum in the
477 * non-timestamp case, we do not smooth things out
478 * else with timestamps disabled convergence takes too
479 * long.
480 */
481 if (!win_dep) {
482 m -= (new_sample >> 3);
483 new_sample += m;
484 } else {
485 m <<= 3;
486 if (m < new_sample)
487 new_sample = m;
488 }
489 } else {
490 /* No previous measure. */
491 new_sample = m << 3;
492 }
493
494 if (tp->rcv_rtt_est.rtt != new_sample)
495 tp->rcv_rtt_est.rtt = new_sample;
496 }
497
498 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
499 {
500 if (tp->rcv_rtt_est.time == 0)
501 goto new_measure;
502 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
503 return;
504 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
505
506 new_measure:
507 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
508 tp->rcv_rtt_est.time = tcp_time_stamp;
509 }
510
511 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
512 const struct sk_buff *skb)
513 {
514 struct tcp_sock *tp = tcp_sk(sk);
515 if (tp->rx_opt.rcv_tsecr &&
516 (TCP_SKB_CB(skb)->end_seq -
517 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
518 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
519 }
520
521 /*
522 * This function should be called every time data is copied to user space.
523 * It calculates the appropriate TCP receive buffer space.
524 */
525 void tcp_rcv_space_adjust(struct sock *sk)
526 {
527 struct tcp_sock *tp = tcp_sk(sk);
528 int time;
529 int space;
530
531 if (tp->rcvq_space.time == 0)
532 goto new_measure;
533
534 time = tcp_time_stamp - tp->rcvq_space.time;
535 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
536 return;
537
538 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
539
540 space = max(tp->rcvq_space.space, space);
541
542 if (tp->rcvq_space.space != space) {
543 int rcvmem;
544
545 tp->rcvq_space.space = space;
546
547 if (sysctl_tcp_moderate_rcvbuf &&
548 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
549 int new_clamp = space;
550
551 /* Receive space grows, normalize in order to
552 * take into account packet headers and sk_buff
553 * structure overhead.
554 */
555 space /= tp->advmss;
556 if (!space)
557 space = 1;
558 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
559 while (tcp_win_from_space(rcvmem) < tp->advmss)
560 rcvmem += 128;
561 space *= rcvmem;
562 space = min(space, sysctl_tcp_rmem[2]);
563 if (space > sk->sk_rcvbuf) {
564 sk->sk_rcvbuf = space;
565
566 /* Make the window clamp follow along. */
567 tp->window_clamp = new_clamp;
568 }
569 }
570 }
571
572 new_measure:
573 tp->rcvq_space.seq = tp->copied_seq;
574 tp->rcvq_space.time = tcp_time_stamp;
575 }
576
577 /* There is something which you must keep in mind when you analyze the
578 * behavior of the tp->ato delayed ack timeout interval. When a
579 * connection starts up, we want to ack as quickly as possible. The
580 * problem is that "good" TCP's do slow start at the beginning of data
581 * transmission. The means that until we send the first few ACK's the
582 * sender will sit on his end and only queue most of his data, because
583 * he can only send snd_cwnd unacked packets at any given time. For
584 * each ACK we send, he increments snd_cwnd and transmits more of his
585 * queue. -DaveM
586 */
587 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
588 {
589 struct tcp_sock *tp = tcp_sk(sk);
590 struct inet_connection_sock *icsk = inet_csk(sk);
591 u32 now;
592
593 inet_csk_schedule_ack(sk);
594
595 tcp_measure_rcv_mss(sk, skb);
596
597 tcp_rcv_rtt_measure(tp);
598
599 now = tcp_time_stamp;
600
601 if (!icsk->icsk_ack.ato) {
602 /* The _first_ data packet received, initialize
603 * delayed ACK engine.
604 */
605 tcp_incr_quickack(sk);
606 icsk->icsk_ack.ato = TCP_ATO_MIN;
607 } else {
608 int m = now - icsk->icsk_ack.lrcvtime;
609
610 if (m <= TCP_ATO_MIN / 2) {
611 /* The fastest case is the first. */
612 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
613 } else if (m < icsk->icsk_ack.ato) {
614 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
615 if (icsk->icsk_ack.ato > icsk->icsk_rto)
616 icsk->icsk_ack.ato = icsk->icsk_rto;
617 } else if (m > icsk->icsk_rto) {
618 /* Too long gap. Apparently sender failed to
619 * restart window, so that we send ACKs quickly.
620 */
621 tcp_incr_quickack(sk);
622 sk_mem_reclaim(sk);
623 }
624 }
625 icsk->icsk_ack.lrcvtime = now;
626
627 TCP_ECN_check_ce(tp, skb);
628
629 if (skb->len >= 128)
630 tcp_grow_window(sk, skb);
631 }
632
633 /* Called to compute a smoothed rtt estimate. The data fed to this
634 * routine either comes from timestamps, or from segments that were
635 * known _not_ to have been retransmitted [see Karn/Partridge
636 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
637 * piece by Van Jacobson.
638 * NOTE: the next three routines used to be one big routine.
639 * To save cycles in the RFC 1323 implementation it was better to break
640 * it up into three procedures. -- erics
641 */
642 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
643 {
644 struct tcp_sock *tp = tcp_sk(sk);
645 long m = mrtt; /* RTT */
646
647 /* The following amusing code comes from Jacobson's
648 * article in SIGCOMM '88. Note that rtt and mdev
649 * are scaled versions of rtt and mean deviation.
650 * This is designed to be as fast as possible
651 * m stands for "measurement".
652 *
653 * On a 1990 paper the rto value is changed to:
654 * RTO = rtt + 4 * mdev
655 *
656 * Funny. This algorithm seems to be very broken.
657 * These formulae increase RTO, when it should be decreased, increase
658 * too slowly, when it should be increased quickly, decrease too quickly
659 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
660 * does not matter how to _calculate_ it. Seems, it was trap
661 * that VJ failed to avoid. 8)
662 */
663 if (m == 0)
664 m = 1;
665 if (tp->srtt != 0) {
666 m -= (tp->srtt >> 3); /* m is now error in rtt est */
667 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
668 if (m < 0) {
669 m = -m; /* m is now abs(error) */
670 m -= (tp->mdev >> 2); /* similar update on mdev */
671 /* This is similar to one of Eifel findings.
672 * Eifel blocks mdev updates when rtt decreases.
673 * This solution is a bit different: we use finer gain
674 * for mdev in this case (alpha*beta).
675 * Like Eifel it also prevents growth of rto,
676 * but also it limits too fast rto decreases,
677 * happening in pure Eifel.
678 */
679 if (m > 0)
680 m >>= 3;
681 } else {
682 m -= (tp->mdev >> 2); /* similar update on mdev */
683 }
684 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
685 if (tp->mdev > tp->mdev_max) {
686 tp->mdev_max = tp->mdev;
687 if (tp->mdev_max > tp->rttvar)
688 tp->rttvar = tp->mdev_max;
689 }
690 if (after(tp->snd_una, tp->rtt_seq)) {
691 if (tp->mdev_max < tp->rttvar)
692 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
693 tp->rtt_seq = tp->snd_nxt;
694 tp->mdev_max = tcp_rto_min(sk);
695 }
696 } else {
697 /* no previous measure. */
698 tp->srtt = m << 3; /* take the measured time to be rtt */
699 tp->mdev = m << 1; /* make sure rto = 3*rtt */
700 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
701 tp->rtt_seq = tp->snd_nxt;
702 }
703 }
704
705 /* Calculate rto without backoff. This is the second half of Van Jacobson's
706 * routine referred to above.
707 */
708 void tcp_set_rto(struct sock *sk)
709 {
710 const struct tcp_sock *tp = tcp_sk(sk);
711 /* Old crap is replaced with new one. 8)
712 *
713 * More seriously:
714 * 1. If rtt variance happened to be less 50msec, it is hallucination.
715 * It cannot be less due to utterly erratic ACK generation made
716 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
717 * to do with delayed acks, because at cwnd>2 true delack timeout
718 * is invisible. Actually, Linux-2.4 also generates erratic
719 * ACKs in some circumstances.
720 */
721 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
722
723 /* 2. Fixups made earlier cannot be right.
724 * If we do not estimate RTO correctly without them,
725 * all the algo is pure shit and should be replaced
726 * with correct one. It is exactly, which we pretend to do.
727 */
728
729 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
730 * guarantees that rto is higher.
731 */
732 tcp_bound_rto(sk);
733 }
734
735 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
736 {
737 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
738
739 if (!cwnd)
740 cwnd = TCP_INIT_CWND;
741 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
742 }
743
744 /*
745 * Packet counting of FACK is based on in-order assumptions, therefore TCP
746 * disables it when reordering is detected
747 */
748 void tcp_disable_fack(struct tcp_sock *tp)
749 {
750 /* RFC3517 uses different metric in lost marker => reset on change */
751 if (tcp_is_fack(tp))
752 tp->lost_skb_hint = NULL;
753 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
754 }
755
756 /* Take a notice that peer is sending D-SACKs */
757 static void tcp_dsack_seen(struct tcp_sock *tp)
758 {
759 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
760 }
761
762 static void tcp_update_reordering(struct sock *sk, const int metric,
763 const int ts)
764 {
765 struct tcp_sock *tp = tcp_sk(sk);
766 if (metric > tp->reordering) {
767 int mib_idx;
768
769 tp->reordering = min(TCP_MAX_REORDERING, metric);
770
771 /* This exciting event is worth to be remembered. 8) */
772 if (ts)
773 mib_idx = LINUX_MIB_TCPTSREORDER;
774 else if (tcp_is_reno(tp))
775 mib_idx = LINUX_MIB_TCPRENOREORDER;
776 else if (tcp_is_fack(tp))
777 mib_idx = LINUX_MIB_TCPFACKREORDER;
778 else
779 mib_idx = LINUX_MIB_TCPSACKREORDER;
780
781 NET_INC_STATS_BH(sock_net(sk), mib_idx);
782 #if FASTRETRANS_DEBUG > 1
783 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
784 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
785 tp->reordering,
786 tp->fackets_out,
787 tp->sacked_out,
788 tp->undo_marker ? tp->undo_retrans : 0);
789 #endif
790 tcp_disable_fack(tp);
791 }
792
793 if (metric > 0)
794 tcp_disable_early_retrans(tp);
795 }
796
797 /* This must be called before lost_out is incremented */
798 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
799 {
800 if ((tp->retransmit_skb_hint == NULL) ||
801 before(TCP_SKB_CB(skb)->seq,
802 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
803 tp->retransmit_skb_hint = skb;
804
805 if (!tp->lost_out ||
806 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
807 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
808 }
809
810 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
811 {
812 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
813 tcp_verify_retransmit_hint(tp, skb);
814
815 tp->lost_out += tcp_skb_pcount(skb);
816 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
817 }
818 }
819
820 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
821 struct sk_buff *skb)
822 {
823 tcp_verify_retransmit_hint(tp, skb);
824
825 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
826 tp->lost_out += tcp_skb_pcount(skb);
827 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
828 }
829 }
830
831 /* This procedure tags the retransmission queue when SACKs arrive.
832 *
833 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
834 * Packets in queue with these bits set are counted in variables
835 * sacked_out, retrans_out and lost_out, correspondingly.
836 *
837 * Valid combinations are:
838 * Tag InFlight Description
839 * 0 1 - orig segment is in flight.
840 * S 0 - nothing flies, orig reached receiver.
841 * L 0 - nothing flies, orig lost by net.
842 * R 2 - both orig and retransmit are in flight.
843 * L|R 1 - orig is lost, retransmit is in flight.
844 * S|R 1 - orig reached receiver, retrans is still in flight.
845 * (L|S|R is logically valid, it could occur when L|R is sacked,
846 * but it is equivalent to plain S and code short-curcuits it to S.
847 * L|S is logically invalid, it would mean -1 packet in flight 8))
848 *
849 * These 6 states form finite state machine, controlled by the following events:
850 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
851 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
852 * 3. Loss detection event of two flavors:
853 * A. Scoreboard estimator decided the packet is lost.
854 * A'. Reno "three dupacks" marks head of queue lost.
855 * A''. Its FACK modification, head until snd.fack is lost.
856 * B. SACK arrives sacking SND.NXT at the moment, when the
857 * segment was retransmitted.
858 * 4. D-SACK added new rule: D-SACK changes any tag to S.
859 *
860 * It is pleasant to note, that state diagram turns out to be commutative,
861 * so that we are allowed not to be bothered by order of our actions,
862 * when multiple events arrive simultaneously. (see the function below).
863 *
864 * Reordering detection.
865 * --------------------
866 * Reordering metric is maximal distance, which a packet can be displaced
867 * in packet stream. With SACKs we can estimate it:
868 *
869 * 1. SACK fills old hole and the corresponding segment was not
870 * ever retransmitted -> reordering. Alas, we cannot use it
871 * when segment was retransmitted.
872 * 2. The last flaw is solved with D-SACK. D-SACK arrives
873 * for retransmitted and already SACKed segment -> reordering..
874 * Both of these heuristics are not used in Loss state, when we cannot
875 * account for retransmits accurately.
876 *
877 * SACK block validation.
878 * ----------------------
879 *
880 * SACK block range validation checks that the received SACK block fits to
881 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
882 * Note that SND.UNA is not included to the range though being valid because
883 * it means that the receiver is rather inconsistent with itself reporting
884 * SACK reneging when it should advance SND.UNA. Such SACK block this is
885 * perfectly valid, however, in light of RFC2018 which explicitly states
886 * that "SACK block MUST reflect the newest segment. Even if the newest
887 * segment is going to be discarded ...", not that it looks very clever
888 * in case of head skb. Due to potentional receiver driven attacks, we
889 * choose to avoid immediate execution of a walk in write queue due to
890 * reneging and defer head skb's loss recovery to standard loss recovery
891 * procedure that will eventually trigger (nothing forbids us doing this).
892 *
893 * Implements also blockage to start_seq wrap-around. Problem lies in the
894 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
895 * there's no guarantee that it will be before snd_nxt (n). The problem
896 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
897 * wrap (s_w):
898 *
899 * <- outs wnd -> <- wrapzone ->
900 * u e n u_w e_w s n_w
901 * | | | | | | |
902 * |<------------+------+----- TCP seqno space --------------+---------->|
903 * ...-- <2^31 ->| |<--------...
904 * ...---- >2^31 ------>| |<--------...
905 *
906 * Current code wouldn't be vulnerable but it's better still to discard such
907 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
908 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
909 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
910 * equal to the ideal case (infinite seqno space without wrap caused issues).
911 *
912 * With D-SACK the lower bound is extended to cover sequence space below
913 * SND.UNA down to undo_marker, which is the last point of interest. Yet
914 * again, D-SACK block must not to go across snd_una (for the same reason as
915 * for the normal SACK blocks, explained above). But there all simplicity
916 * ends, TCP might receive valid D-SACKs below that. As long as they reside
917 * fully below undo_marker they do not affect behavior in anyway and can
918 * therefore be safely ignored. In rare cases (which are more or less
919 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
920 * fragmentation and packet reordering past skb's retransmission. To consider
921 * them correctly, the acceptable range must be extended even more though
922 * the exact amount is rather hard to quantify. However, tp->max_window can
923 * be used as an exaggerated estimate.
924 */
925 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
926 u32 start_seq, u32 end_seq)
927 {
928 /* Too far in future, or reversed (interpretation is ambiguous) */
929 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
930 return false;
931
932 /* Nasty start_seq wrap-around check (see comments above) */
933 if (!before(start_seq, tp->snd_nxt))
934 return false;
935
936 /* In outstanding window? ...This is valid exit for D-SACKs too.
937 * start_seq == snd_una is non-sensical (see comments above)
938 */
939 if (after(start_seq, tp->snd_una))
940 return true;
941
942 if (!is_dsack || !tp->undo_marker)
943 return false;
944
945 /* ...Then it's D-SACK, and must reside below snd_una completely */
946 if (after(end_seq, tp->snd_una))
947 return false;
948
949 if (!before(start_seq, tp->undo_marker))
950 return true;
951
952 /* Too old */
953 if (!after(end_seq, tp->undo_marker))
954 return false;
955
956 /* Undo_marker boundary crossing (overestimates a lot). Known already:
957 * start_seq < undo_marker and end_seq >= undo_marker.
958 */
959 return !before(start_seq, end_seq - tp->max_window);
960 }
961
962 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
963 * Event "B". Later note: FACK people cheated me again 8), we have to account
964 * for reordering! Ugly, but should help.
965 *
966 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
967 * less than what is now known to be received by the other end (derived from
968 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
969 * retransmitted skbs to avoid some costly processing per ACKs.
970 */
971 static void tcp_mark_lost_retrans(struct sock *sk)
972 {
973 const struct inet_connection_sock *icsk = inet_csk(sk);
974 struct tcp_sock *tp = tcp_sk(sk);
975 struct sk_buff *skb;
976 int cnt = 0;
977 u32 new_low_seq = tp->snd_nxt;
978 u32 received_upto = tcp_highest_sack_seq(tp);
979
980 if (!tcp_is_fack(tp) || !tp->retrans_out ||
981 !after(received_upto, tp->lost_retrans_low) ||
982 icsk->icsk_ca_state != TCP_CA_Recovery)
983 return;
984
985 tcp_for_write_queue(skb, sk) {
986 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
987
988 if (skb == tcp_send_head(sk))
989 break;
990 if (cnt == tp->retrans_out)
991 break;
992 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
993 continue;
994
995 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
996 continue;
997
998 /* TODO: We would like to get rid of tcp_is_fack(tp) only
999 * constraint here (see above) but figuring out that at
1000 * least tp->reordering SACK blocks reside between ack_seq
1001 * and received_upto is not easy task to do cheaply with
1002 * the available datastructures.
1003 *
1004 * Whether FACK should check here for tp->reordering segs
1005 * in-between one could argue for either way (it would be
1006 * rather simple to implement as we could count fack_count
1007 * during the walk and do tp->fackets_out - fack_count).
1008 */
1009 if (after(received_upto, ack_seq)) {
1010 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1011 tp->retrans_out -= tcp_skb_pcount(skb);
1012
1013 tcp_skb_mark_lost_uncond_verify(tp, skb);
1014 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1015 } else {
1016 if (before(ack_seq, new_low_seq))
1017 new_low_seq = ack_seq;
1018 cnt += tcp_skb_pcount(skb);
1019 }
1020 }
1021
1022 if (tp->retrans_out)
1023 tp->lost_retrans_low = new_low_seq;
1024 }
1025
1026 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1027 struct tcp_sack_block_wire *sp, int num_sacks,
1028 u32 prior_snd_una)
1029 {
1030 struct tcp_sock *tp = tcp_sk(sk);
1031 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1032 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1033 bool dup_sack = false;
1034
1035 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1036 dup_sack = true;
1037 tcp_dsack_seen(tp);
1038 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1039 } else if (num_sacks > 1) {
1040 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1041 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1042
1043 if (!after(end_seq_0, end_seq_1) &&
1044 !before(start_seq_0, start_seq_1)) {
1045 dup_sack = true;
1046 tcp_dsack_seen(tp);
1047 NET_INC_STATS_BH(sock_net(sk),
1048 LINUX_MIB_TCPDSACKOFORECV);
1049 }
1050 }
1051
1052 /* D-SACK for already forgotten data... Do dumb counting. */
1053 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1054 !after(end_seq_0, prior_snd_una) &&
1055 after(end_seq_0, tp->undo_marker))
1056 tp->undo_retrans--;
1057
1058 return dup_sack;
1059 }
1060
1061 struct tcp_sacktag_state {
1062 int reord;
1063 int fack_count;
1064 int flag;
1065 };
1066
1067 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1068 * the incoming SACK may not exactly match but we can find smaller MSS
1069 * aligned portion of it that matches. Therefore we might need to fragment
1070 * which may fail and creates some hassle (caller must handle error case
1071 * returns).
1072 *
1073 * FIXME: this could be merged to shift decision code
1074 */
1075 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1076 u32 start_seq, u32 end_seq)
1077 {
1078 int err;
1079 bool in_sack;
1080 unsigned int pkt_len;
1081 unsigned int mss;
1082
1083 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1084 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1085
1086 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1087 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1088 mss = tcp_skb_mss(skb);
1089 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1090
1091 if (!in_sack) {
1092 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1093 if (pkt_len < mss)
1094 pkt_len = mss;
1095 } else {
1096 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1097 if (pkt_len < mss)
1098 return -EINVAL;
1099 }
1100
1101 /* Round if necessary so that SACKs cover only full MSSes
1102 * and/or the remaining small portion (if present)
1103 */
1104 if (pkt_len > mss) {
1105 unsigned int new_len = (pkt_len / mss) * mss;
1106 if (!in_sack && new_len < pkt_len) {
1107 new_len += mss;
1108 if (new_len > skb->len)
1109 return 0;
1110 }
1111 pkt_len = new_len;
1112 }
1113 err = tcp_fragment(sk, skb, pkt_len, mss);
1114 if (err < 0)
1115 return err;
1116 }
1117
1118 return in_sack;
1119 }
1120
1121 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1122 static u8 tcp_sacktag_one(struct sock *sk,
1123 struct tcp_sacktag_state *state, u8 sacked,
1124 u32 start_seq, u32 end_seq,
1125 bool dup_sack, int pcount)
1126 {
1127 struct tcp_sock *tp = tcp_sk(sk);
1128 int fack_count = state->fack_count;
1129
1130 /* Account D-SACK for retransmitted packet. */
1131 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1132 if (tp->undo_marker && tp->undo_retrans &&
1133 after(end_seq, tp->undo_marker))
1134 tp->undo_retrans--;
1135 if (sacked & TCPCB_SACKED_ACKED)
1136 state->reord = min(fack_count, state->reord);
1137 }
1138
1139 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1140 if (!after(end_seq, tp->snd_una))
1141 return sacked;
1142
1143 if (!(sacked & TCPCB_SACKED_ACKED)) {
1144 if (sacked & TCPCB_SACKED_RETRANS) {
1145 /* If the segment is not tagged as lost,
1146 * we do not clear RETRANS, believing
1147 * that retransmission is still in flight.
1148 */
1149 if (sacked & TCPCB_LOST) {
1150 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1151 tp->lost_out -= pcount;
1152 tp->retrans_out -= pcount;
1153 }
1154 } else {
1155 if (!(sacked & TCPCB_RETRANS)) {
1156 /* New sack for not retransmitted frame,
1157 * which was in hole. It is reordering.
1158 */
1159 if (before(start_seq,
1160 tcp_highest_sack_seq(tp)))
1161 state->reord = min(fack_count,
1162 state->reord);
1163
1164 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1165 if (!after(end_seq, tp->frto_highmark))
1166 state->flag |= FLAG_ONLY_ORIG_SACKED;
1167 }
1168
1169 if (sacked & TCPCB_LOST) {
1170 sacked &= ~TCPCB_LOST;
1171 tp->lost_out -= pcount;
1172 }
1173 }
1174
1175 sacked |= TCPCB_SACKED_ACKED;
1176 state->flag |= FLAG_DATA_SACKED;
1177 tp->sacked_out += pcount;
1178
1179 fack_count += pcount;
1180
1181 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1182 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1183 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1184 tp->lost_cnt_hint += pcount;
1185
1186 if (fack_count > tp->fackets_out)
1187 tp->fackets_out = fack_count;
1188 }
1189
1190 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1191 * frames and clear it. undo_retrans is decreased above, L|R frames
1192 * are accounted above as well.
1193 */
1194 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1195 sacked &= ~TCPCB_SACKED_RETRANS;
1196 tp->retrans_out -= pcount;
1197 }
1198
1199 return sacked;
1200 }
1201
1202 /* Shift newly-SACKed bytes from this skb to the immediately previous
1203 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1204 */
1205 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1206 struct tcp_sacktag_state *state,
1207 unsigned int pcount, int shifted, int mss,
1208 bool dup_sack)
1209 {
1210 struct tcp_sock *tp = tcp_sk(sk);
1211 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1212 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1213 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1214
1215 BUG_ON(!pcount);
1216
1217 /* Adjust counters and hints for the newly sacked sequence
1218 * range but discard the return value since prev is already
1219 * marked. We must tag the range first because the seq
1220 * advancement below implicitly advances
1221 * tcp_highest_sack_seq() when skb is highest_sack.
1222 */
1223 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1224 start_seq, end_seq, dup_sack, pcount);
1225
1226 if (skb == tp->lost_skb_hint)
1227 tp->lost_cnt_hint += pcount;
1228
1229 TCP_SKB_CB(prev)->end_seq += shifted;
1230 TCP_SKB_CB(skb)->seq += shifted;
1231
1232 skb_shinfo(prev)->gso_segs += pcount;
1233 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1234 skb_shinfo(skb)->gso_segs -= pcount;
1235
1236 /* When we're adding to gso_segs == 1, gso_size will be zero,
1237 * in theory this shouldn't be necessary but as long as DSACK
1238 * code can come after this skb later on it's better to keep
1239 * setting gso_size to something.
1240 */
1241 if (!skb_shinfo(prev)->gso_size) {
1242 skb_shinfo(prev)->gso_size = mss;
1243 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1244 }
1245
1246 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1247 if (skb_shinfo(skb)->gso_segs <= 1) {
1248 skb_shinfo(skb)->gso_size = 0;
1249 skb_shinfo(skb)->gso_type = 0;
1250 }
1251
1252 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1253 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1254
1255 if (skb->len > 0) {
1256 BUG_ON(!tcp_skb_pcount(skb));
1257 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1258 return false;
1259 }
1260
1261 /* Whole SKB was eaten :-) */
1262
1263 if (skb == tp->retransmit_skb_hint)
1264 tp->retransmit_skb_hint = prev;
1265 if (skb == tp->scoreboard_skb_hint)
1266 tp->scoreboard_skb_hint = prev;
1267 if (skb == tp->lost_skb_hint) {
1268 tp->lost_skb_hint = prev;
1269 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1270 }
1271
1272 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1273 if (skb == tcp_highest_sack(sk))
1274 tcp_advance_highest_sack(sk, skb);
1275
1276 tcp_unlink_write_queue(skb, sk);
1277 sk_wmem_free_skb(sk, skb);
1278
1279 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1280
1281 return true;
1282 }
1283
1284 /* I wish gso_size would have a bit more sane initialization than
1285 * something-or-zero which complicates things
1286 */
1287 static int tcp_skb_seglen(const struct sk_buff *skb)
1288 {
1289 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1290 }
1291
1292 /* Shifting pages past head area doesn't work */
1293 static int skb_can_shift(const struct sk_buff *skb)
1294 {
1295 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1296 }
1297
1298 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1299 * skb.
1300 */
1301 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1302 struct tcp_sacktag_state *state,
1303 u32 start_seq, u32 end_seq,
1304 bool dup_sack)
1305 {
1306 struct tcp_sock *tp = tcp_sk(sk);
1307 struct sk_buff *prev;
1308 int mss;
1309 int pcount = 0;
1310 int len;
1311 int in_sack;
1312
1313 if (!sk_can_gso(sk))
1314 goto fallback;
1315
1316 /* Normally R but no L won't result in plain S */
1317 if (!dup_sack &&
1318 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1319 goto fallback;
1320 if (!skb_can_shift(skb))
1321 goto fallback;
1322 /* This frame is about to be dropped (was ACKed). */
1323 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1324 goto fallback;
1325
1326 /* Can only happen with delayed DSACK + discard craziness */
1327 if (unlikely(skb == tcp_write_queue_head(sk)))
1328 goto fallback;
1329 prev = tcp_write_queue_prev(sk, skb);
1330
1331 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1332 goto fallback;
1333
1334 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1335 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1336
1337 if (in_sack) {
1338 len = skb->len;
1339 pcount = tcp_skb_pcount(skb);
1340 mss = tcp_skb_seglen(skb);
1341
1342 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1343 * drop this restriction as unnecessary
1344 */
1345 if (mss != tcp_skb_seglen(prev))
1346 goto fallback;
1347 } else {
1348 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1349 goto noop;
1350 /* CHECKME: This is non-MSS split case only?, this will
1351 * cause skipped skbs due to advancing loop btw, original
1352 * has that feature too
1353 */
1354 if (tcp_skb_pcount(skb) <= 1)
1355 goto noop;
1356
1357 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1358 if (!in_sack) {
1359 /* TODO: head merge to next could be attempted here
1360 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1361 * though it might not be worth of the additional hassle
1362 *
1363 * ...we can probably just fallback to what was done
1364 * previously. We could try merging non-SACKed ones
1365 * as well but it probably isn't going to buy off
1366 * because later SACKs might again split them, and
1367 * it would make skb timestamp tracking considerably
1368 * harder problem.
1369 */
1370 goto fallback;
1371 }
1372
1373 len = end_seq - TCP_SKB_CB(skb)->seq;
1374 BUG_ON(len < 0);
1375 BUG_ON(len > skb->len);
1376
1377 /* MSS boundaries should be honoured or else pcount will
1378 * severely break even though it makes things bit trickier.
1379 * Optimize common case to avoid most of the divides
1380 */
1381 mss = tcp_skb_mss(skb);
1382
1383 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1384 * drop this restriction as unnecessary
1385 */
1386 if (mss != tcp_skb_seglen(prev))
1387 goto fallback;
1388
1389 if (len == mss) {
1390 pcount = 1;
1391 } else if (len < mss) {
1392 goto noop;
1393 } else {
1394 pcount = len / mss;
1395 len = pcount * mss;
1396 }
1397 }
1398
1399 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1400 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1401 goto fallback;
1402
1403 if (!skb_shift(prev, skb, len))
1404 goto fallback;
1405 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1406 goto out;
1407
1408 /* Hole filled allows collapsing with the next as well, this is very
1409 * useful when hole on every nth skb pattern happens
1410 */
1411 if (prev == tcp_write_queue_tail(sk))
1412 goto out;
1413 skb = tcp_write_queue_next(sk, prev);
1414
1415 if (!skb_can_shift(skb) ||
1416 (skb == tcp_send_head(sk)) ||
1417 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1418 (mss != tcp_skb_seglen(skb)))
1419 goto out;
1420
1421 len = skb->len;
1422 if (skb_shift(prev, skb, len)) {
1423 pcount += tcp_skb_pcount(skb);
1424 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1425 }
1426
1427 out:
1428 state->fack_count += pcount;
1429 return prev;
1430
1431 noop:
1432 return skb;
1433
1434 fallback:
1435 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1436 return NULL;
1437 }
1438
1439 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1440 struct tcp_sack_block *next_dup,
1441 struct tcp_sacktag_state *state,
1442 u32 start_seq, u32 end_seq,
1443 bool dup_sack_in)
1444 {
1445 struct tcp_sock *tp = tcp_sk(sk);
1446 struct sk_buff *tmp;
1447
1448 tcp_for_write_queue_from(skb, sk) {
1449 int in_sack = 0;
1450 bool dup_sack = dup_sack_in;
1451
1452 if (skb == tcp_send_head(sk))
1453 break;
1454
1455 /* queue is in-order => we can short-circuit the walk early */
1456 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1457 break;
1458
1459 if ((next_dup != NULL) &&
1460 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1461 in_sack = tcp_match_skb_to_sack(sk, skb,
1462 next_dup->start_seq,
1463 next_dup->end_seq);
1464 if (in_sack > 0)
1465 dup_sack = true;
1466 }
1467
1468 /* skb reference here is a bit tricky to get right, since
1469 * shifting can eat and free both this skb and the next,
1470 * so not even _safe variant of the loop is enough.
1471 */
1472 if (in_sack <= 0) {
1473 tmp = tcp_shift_skb_data(sk, skb, state,
1474 start_seq, end_seq, dup_sack);
1475 if (tmp != NULL) {
1476 if (tmp != skb) {
1477 skb = tmp;
1478 continue;
1479 }
1480
1481 in_sack = 0;
1482 } else {
1483 in_sack = tcp_match_skb_to_sack(sk, skb,
1484 start_seq,
1485 end_seq);
1486 }
1487 }
1488
1489 if (unlikely(in_sack < 0))
1490 break;
1491
1492 if (in_sack) {
1493 TCP_SKB_CB(skb)->sacked =
1494 tcp_sacktag_one(sk,
1495 state,
1496 TCP_SKB_CB(skb)->sacked,
1497 TCP_SKB_CB(skb)->seq,
1498 TCP_SKB_CB(skb)->end_seq,
1499 dup_sack,
1500 tcp_skb_pcount(skb));
1501
1502 if (!before(TCP_SKB_CB(skb)->seq,
1503 tcp_highest_sack_seq(tp)))
1504 tcp_advance_highest_sack(sk, skb);
1505 }
1506
1507 state->fack_count += tcp_skb_pcount(skb);
1508 }
1509 return skb;
1510 }
1511
1512 /* Avoid all extra work that is being done by sacktag while walking in
1513 * a normal way
1514 */
1515 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1516 struct tcp_sacktag_state *state,
1517 u32 skip_to_seq)
1518 {
1519 tcp_for_write_queue_from(skb, sk) {
1520 if (skb == tcp_send_head(sk))
1521 break;
1522
1523 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1524 break;
1525
1526 state->fack_count += tcp_skb_pcount(skb);
1527 }
1528 return skb;
1529 }
1530
1531 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1532 struct sock *sk,
1533 struct tcp_sack_block *next_dup,
1534 struct tcp_sacktag_state *state,
1535 u32 skip_to_seq)
1536 {
1537 if (next_dup == NULL)
1538 return skb;
1539
1540 if (before(next_dup->start_seq, skip_to_seq)) {
1541 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1542 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1543 next_dup->start_seq, next_dup->end_seq,
1544 1);
1545 }
1546
1547 return skb;
1548 }
1549
1550 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1551 {
1552 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1553 }
1554
1555 static int
1556 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1557 u32 prior_snd_una)
1558 {
1559 const struct inet_connection_sock *icsk = inet_csk(sk);
1560 struct tcp_sock *tp = tcp_sk(sk);
1561 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1562 TCP_SKB_CB(ack_skb)->sacked);
1563 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1564 struct tcp_sack_block sp[TCP_NUM_SACKS];
1565 struct tcp_sack_block *cache;
1566 struct tcp_sacktag_state state;
1567 struct sk_buff *skb;
1568 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1569 int used_sacks;
1570 bool found_dup_sack = false;
1571 int i, j;
1572 int first_sack_index;
1573
1574 state.flag = 0;
1575 state.reord = tp->packets_out;
1576
1577 if (!tp->sacked_out) {
1578 if (WARN_ON(tp->fackets_out))
1579 tp->fackets_out = 0;
1580 tcp_highest_sack_reset(sk);
1581 }
1582
1583 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1584 num_sacks, prior_snd_una);
1585 if (found_dup_sack)
1586 state.flag |= FLAG_DSACKING_ACK;
1587
1588 /* Eliminate too old ACKs, but take into
1589 * account more or less fresh ones, they can
1590 * contain valid SACK info.
1591 */
1592 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1593 return 0;
1594
1595 if (!tp->packets_out)
1596 goto out;
1597
1598 used_sacks = 0;
1599 first_sack_index = 0;
1600 for (i = 0; i < num_sacks; i++) {
1601 bool dup_sack = !i && found_dup_sack;
1602
1603 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1604 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1605
1606 if (!tcp_is_sackblock_valid(tp, dup_sack,
1607 sp[used_sacks].start_seq,
1608 sp[used_sacks].end_seq)) {
1609 int mib_idx;
1610
1611 if (dup_sack) {
1612 if (!tp->undo_marker)
1613 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1614 else
1615 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1616 } else {
1617 /* Don't count olds caused by ACK reordering */
1618 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1619 !after(sp[used_sacks].end_seq, tp->snd_una))
1620 continue;
1621 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1622 }
1623
1624 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1625 if (i == 0)
1626 first_sack_index = -1;
1627 continue;
1628 }
1629
1630 /* Ignore very old stuff early */
1631 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1632 continue;
1633
1634 used_sacks++;
1635 }
1636
1637 /* order SACK blocks to allow in order walk of the retrans queue */
1638 for (i = used_sacks - 1; i > 0; i--) {
1639 for (j = 0; j < i; j++) {
1640 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1641 swap(sp[j], sp[j + 1]);
1642
1643 /* Track where the first SACK block goes to */
1644 if (j == first_sack_index)
1645 first_sack_index = j + 1;
1646 }
1647 }
1648 }
1649
1650 skb = tcp_write_queue_head(sk);
1651 state.fack_count = 0;
1652 i = 0;
1653
1654 if (!tp->sacked_out) {
1655 /* It's already past, so skip checking against it */
1656 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1657 } else {
1658 cache = tp->recv_sack_cache;
1659 /* Skip empty blocks in at head of the cache */
1660 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1661 !cache->end_seq)
1662 cache++;
1663 }
1664
1665 while (i < used_sacks) {
1666 u32 start_seq = sp[i].start_seq;
1667 u32 end_seq = sp[i].end_seq;
1668 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1669 struct tcp_sack_block *next_dup = NULL;
1670
1671 if (found_dup_sack && ((i + 1) == first_sack_index))
1672 next_dup = &sp[i + 1];
1673
1674 /* Skip too early cached blocks */
1675 while (tcp_sack_cache_ok(tp, cache) &&
1676 !before(start_seq, cache->end_seq))
1677 cache++;
1678
1679 /* Can skip some work by looking recv_sack_cache? */
1680 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1681 after(end_seq, cache->start_seq)) {
1682
1683 /* Head todo? */
1684 if (before(start_seq, cache->start_seq)) {
1685 skb = tcp_sacktag_skip(skb, sk, &state,
1686 start_seq);
1687 skb = tcp_sacktag_walk(skb, sk, next_dup,
1688 &state,
1689 start_seq,
1690 cache->start_seq,
1691 dup_sack);
1692 }
1693
1694 /* Rest of the block already fully processed? */
1695 if (!after(end_seq, cache->end_seq))
1696 goto advance_sp;
1697
1698 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1699 &state,
1700 cache->end_seq);
1701
1702 /* ...tail remains todo... */
1703 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1704 /* ...but better entrypoint exists! */
1705 skb = tcp_highest_sack(sk);
1706 if (skb == NULL)
1707 break;
1708 state.fack_count = tp->fackets_out;
1709 cache++;
1710 goto walk;
1711 }
1712
1713 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1714 /* Check overlap against next cached too (past this one already) */
1715 cache++;
1716 continue;
1717 }
1718
1719 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1720 skb = tcp_highest_sack(sk);
1721 if (skb == NULL)
1722 break;
1723 state.fack_count = tp->fackets_out;
1724 }
1725 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1726
1727 walk:
1728 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1729 start_seq, end_seq, dup_sack);
1730
1731 advance_sp:
1732 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1733 * due to in-order walk
1734 */
1735 if (after(end_seq, tp->frto_highmark))
1736 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1737
1738 i++;
1739 }
1740
1741 /* Clear the head of the cache sack blocks so we can skip it next time */
1742 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1743 tp->recv_sack_cache[i].start_seq = 0;
1744 tp->recv_sack_cache[i].end_seq = 0;
1745 }
1746 for (j = 0; j < used_sacks; j++)
1747 tp->recv_sack_cache[i++] = sp[j];
1748
1749 tcp_mark_lost_retrans(sk);
1750
1751 tcp_verify_left_out(tp);
1752
1753 if ((state.reord < tp->fackets_out) &&
1754 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1755 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1756 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1757
1758 out:
1759
1760 #if FASTRETRANS_DEBUG > 0
1761 WARN_ON((int)tp->sacked_out < 0);
1762 WARN_ON((int)tp->lost_out < 0);
1763 WARN_ON((int)tp->retrans_out < 0);
1764 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1765 #endif
1766 return state.flag;
1767 }
1768
1769 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1770 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1771 */
1772 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1773 {
1774 u32 holes;
1775
1776 holes = max(tp->lost_out, 1U);
1777 holes = min(holes, tp->packets_out);
1778
1779 if ((tp->sacked_out + holes) > tp->packets_out) {
1780 tp->sacked_out = tp->packets_out - holes;
1781 return true;
1782 }
1783 return false;
1784 }
1785
1786 /* If we receive more dupacks than we expected counting segments
1787 * in assumption of absent reordering, interpret this as reordering.
1788 * The only another reason could be bug in receiver TCP.
1789 */
1790 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1791 {
1792 struct tcp_sock *tp = tcp_sk(sk);
1793 if (tcp_limit_reno_sacked(tp))
1794 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1795 }
1796
1797 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1798
1799 static void tcp_add_reno_sack(struct sock *sk)
1800 {
1801 struct tcp_sock *tp = tcp_sk(sk);
1802 tp->sacked_out++;
1803 tcp_check_reno_reordering(sk, 0);
1804 tcp_verify_left_out(tp);
1805 }
1806
1807 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1808
1809 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1810 {
1811 struct tcp_sock *tp = tcp_sk(sk);
1812
1813 if (acked > 0) {
1814 /* One ACK acked hole. The rest eat duplicate ACKs. */
1815 if (acked - 1 >= tp->sacked_out)
1816 tp->sacked_out = 0;
1817 else
1818 tp->sacked_out -= acked - 1;
1819 }
1820 tcp_check_reno_reordering(sk, acked);
1821 tcp_verify_left_out(tp);
1822 }
1823
1824 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1825 {
1826 tp->sacked_out = 0;
1827 }
1828
1829 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1830 {
1831 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1832 }
1833
1834 /* F-RTO can only be used if TCP has never retransmitted anything other than
1835 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1836 */
1837 bool tcp_use_frto(struct sock *sk)
1838 {
1839 const struct tcp_sock *tp = tcp_sk(sk);
1840 const struct inet_connection_sock *icsk = inet_csk(sk);
1841 struct sk_buff *skb;
1842
1843 if (!sysctl_tcp_frto)
1844 return false;
1845
1846 /* MTU probe and F-RTO won't really play nicely along currently */
1847 if (icsk->icsk_mtup.probe_size)
1848 return false;
1849
1850 if (tcp_is_sackfrto(tp))
1851 return true;
1852
1853 /* Avoid expensive walking of rexmit queue if possible */
1854 if (tp->retrans_out > 1)
1855 return false;
1856
1857 skb = tcp_write_queue_head(sk);
1858 if (tcp_skb_is_last(sk, skb))
1859 return true;
1860 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1861 tcp_for_write_queue_from(skb, sk) {
1862 if (skb == tcp_send_head(sk))
1863 break;
1864 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1865 return false;
1866 /* Short-circuit when first non-SACKed skb has been checked */
1867 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1868 break;
1869 }
1870 return true;
1871 }
1872
1873 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1874 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1875 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1876 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1877 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1878 * bits are handled if the Loss state is really to be entered (in
1879 * tcp_enter_frto_loss).
1880 *
1881 * Do like tcp_enter_loss() would; when RTO expires the second time it
1882 * does:
1883 * "Reduce ssthresh if it has not yet been made inside this window."
1884 */
1885 void tcp_enter_frto(struct sock *sk)
1886 {
1887 const struct inet_connection_sock *icsk = inet_csk(sk);
1888 struct tcp_sock *tp = tcp_sk(sk);
1889 struct sk_buff *skb;
1890
1891 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1892 tp->snd_una == tp->high_seq ||
1893 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1894 !icsk->icsk_retransmits)) {
1895 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1896 /* Our state is too optimistic in ssthresh() call because cwnd
1897 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1898 * recovery has not yet completed. Pattern would be this: RTO,
1899 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1900 * up here twice).
1901 * RFC4138 should be more specific on what to do, even though
1902 * RTO is quite unlikely to occur after the first Cumulative ACK
1903 * due to back-off and complexity of triggering events ...
1904 */
1905 if (tp->frto_counter) {
1906 u32 stored_cwnd;
1907 stored_cwnd = tp->snd_cwnd;
1908 tp->snd_cwnd = 2;
1909 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1910 tp->snd_cwnd = stored_cwnd;
1911 } else {
1912 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1913 }
1914 /* ... in theory, cong.control module could do "any tricks" in
1915 * ssthresh(), which means that ca_state, lost bits and lost_out
1916 * counter would have to be faked before the call occurs. We
1917 * consider that too expensive, unlikely and hacky, so modules
1918 * using these in ssthresh() must deal these incompatibility
1919 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1920 */
1921 tcp_ca_event(sk, CA_EVENT_FRTO);
1922 }
1923
1924 tp->undo_marker = tp->snd_una;
1925 tp->undo_retrans = 0;
1926
1927 skb = tcp_write_queue_head(sk);
1928 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1929 tp->undo_marker = 0;
1930 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1931 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1932 tp->retrans_out -= tcp_skb_pcount(skb);
1933 }
1934 tcp_verify_left_out(tp);
1935
1936 /* Too bad if TCP was application limited */
1937 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1938
1939 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1940 * The last condition is necessary at least in tp->frto_counter case.
1941 */
1942 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1943 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1944 after(tp->high_seq, tp->snd_una)) {
1945 tp->frto_highmark = tp->high_seq;
1946 } else {
1947 tp->frto_highmark = tp->snd_nxt;
1948 }
1949 tcp_set_ca_state(sk, TCP_CA_Disorder);
1950 tp->high_seq = tp->snd_nxt;
1951 tp->frto_counter = 1;
1952 }
1953
1954 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1955 * which indicates that we should follow the traditional RTO recovery,
1956 * i.e. mark everything lost and do go-back-N retransmission.
1957 */
1958 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1959 {
1960 struct tcp_sock *tp = tcp_sk(sk);
1961 struct sk_buff *skb;
1962
1963 tp->lost_out = 0;
1964 tp->retrans_out = 0;
1965 if (tcp_is_reno(tp))
1966 tcp_reset_reno_sack(tp);
1967
1968 tcp_for_write_queue(skb, sk) {
1969 if (skb == tcp_send_head(sk))
1970 break;
1971
1972 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1973 /*
1974 * Count the retransmission made on RTO correctly (only when
1975 * waiting for the first ACK and did not get it)...
1976 */
1977 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1978 /* For some reason this R-bit might get cleared? */
1979 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1980 tp->retrans_out += tcp_skb_pcount(skb);
1981 /* ...enter this if branch just for the first segment */
1982 flag |= FLAG_DATA_ACKED;
1983 } else {
1984 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1985 tp->undo_marker = 0;
1986 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1987 }
1988
1989 /* Marking forward transmissions that were made after RTO lost
1990 * can cause unnecessary retransmissions in some scenarios,
1991 * SACK blocks will mitigate that in some but not in all cases.
1992 * We used to not mark them but it was causing break-ups with
1993 * receivers that do only in-order receival.
1994 *
1995 * TODO: we could detect presence of such receiver and select
1996 * different behavior per flow.
1997 */
1998 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1999 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2000 tp->lost_out += tcp_skb_pcount(skb);
2001 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2002 }
2003 }
2004 tcp_verify_left_out(tp);
2005
2006 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2007 tp->snd_cwnd_cnt = 0;
2008 tp->snd_cwnd_stamp = tcp_time_stamp;
2009 tp->frto_counter = 0;
2010
2011 tp->reordering = min_t(unsigned int, tp->reordering,
2012 sysctl_tcp_reordering);
2013 tcp_set_ca_state(sk, TCP_CA_Loss);
2014 tp->high_seq = tp->snd_nxt;
2015 TCP_ECN_queue_cwr(tp);
2016
2017 tcp_clear_all_retrans_hints(tp);
2018 }
2019
2020 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2021 {
2022 tp->retrans_out = 0;
2023 tp->lost_out = 0;
2024
2025 tp->undo_marker = 0;
2026 tp->undo_retrans = 0;
2027 }
2028
2029 void tcp_clear_retrans(struct tcp_sock *tp)
2030 {
2031 tcp_clear_retrans_partial(tp);
2032
2033 tp->fackets_out = 0;
2034 tp->sacked_out = 0;
2035 }
2036
2037 /* Enter Loss state. If "how" is not zero, forget all SACK information
2038 * and reset tags completely, otherwise preserve SACKs. If receiver
2039 * dropped its ofo queue, we will know this due to reneging detection.
2040 */
2041 void tcp_enter_loss(struct sock *sk, int how)
2042 {
2043 const struct inet_connection_sock *icsk = inet_csk(sk);
2044 struct tcp_sock *tp = tcp_sk(sk);
2045 struct sk_buff *skb;
2046
2047 /* Reduce ssthresh if it has not yet been made inside this window. */
2048 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2049 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2050 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2051 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2052 tcp_ca_event(sk, CA_EVENT_LOSS);
2053 }
2054 tp->snd_cwnd = 1;
2055 tp->snd_cwnd_cnt = 0;
2056 tp->snd_cwnd_stamp = tcp_time_stamp;
2057
2058 tcp_clear_retrans_partial(tp);
2059
2060 if (tcp_is_reno(tp))
2061 tcp_reset_reno_sack(tp);
2062
2063 tp->undo_marker = tp->snd_una;
2064 if (how) {
2065 tp->sacked_out = 0;
2066 tp->fackets_out = 0;
2067 }
2068 tcp_clear_all_retrans_hints(tp);
2069
2070 tcp_for_write_queue(skb, sk) {
2071 if (skb == tcp_send_head(sk))
2072 break;
2073
2074 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2075 tp->undo_marker = 0;
2076 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2077 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2078 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2079 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2080 tp->lost_out += tcp_skb_pcount(skb);
2081 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2082 }
2083 }
2084 tcp_verify_left_out(tp);
2085
2086 tp->reordering = min_t(unsigned int, tp->reordering,
2087 sysctl_tcp_reordering);
2088 tcp_set_ca_state(sk, TCP_CA_Loss);
2089 tp->high_seq = tp->snd_nxt;
2090 TCP_ECN_queue_cwr(tp);
2091 /* Abort F-RTO algorithm if one is in progress */
2092 tp->frto_counter = 0;
2093 }
2094
2095 /* If ACK arrived pointing to a remembered SACK, it means that our
2096 * remembered SACKs do not reflect real state of receiver i.e.
2097 * receiver _host_ is heavily congested (or buggy).
2098 *
2099 * Do processing similar to RTO timeout.
2100 */
2101 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2102 {
2103 if (flag & FLAG_SACK_RENEGING) {
2104 struct inet_connection_sock *icsk = inet_csk(sk);
2105 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2106
2107 tcp_enter_loss(sk, 1);
2108 icsk->icsk_retransmits++;
2109 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2110 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2111 icsk->icsk_rto, TCP_RTO_MAX);
2112 return true;
2113 }
2114 return false;
2115 }
2116
2117 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2118 {
2119 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2120 }
2121
2122 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2123 * counter when SACK is enabled (without SACK, sacked_out is used for
2124 * that purpose).
2125 *
2126 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2127 * segments up to the highest received SACK block so far and holes in
2128 * between them.
2129 *
2130 * With reordering, holes may still be in flight, so RFC3517 recovery
2131 * uses pure sacked_out (total number of SACKed segments) even though
2132 * it violates the RFC that uses duplicate ACKs, often these are equal
2133 * but when e.g. out-of-window ACKs or packet duplication occurs,
2134 * they differ. Since neither occurs due to loss, TCP should really
2135 * ignore them.
2136 */
2137 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2138 {
2139 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2140 }
2141
2142 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2143 {
2144 struct tcp_sock *tp = tcp_sk(sk);
2145 unsigned long delay;
2146
2147 /* Delay early retransmit and entering fast recovery for
2148 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2149 * available, or RTO is scheduled to fire first.
2150 */
2151 if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2152 return false;
2153
2154 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2155 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2156 return false;
2157
2158 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2159 tp->early_retrans_delayed = 1;
2160 return true;
2161 }
2162
2163 static inline int tcp_skb_timedout(const struct sock *sk,
2164 const struct sk_buff *skb)
2165 {
2166 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2167 }
2168
2169 static inline int tcp_head_timedout(const struct sock *sk)
2170 {
2171 const struct tcp_sock *tp = tcp_sk(sk);
2172
2173 return tp->packets_out &&
2174 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2175 }
2176
2177 /* Linux NewReno/SACK/FACK/ECN state machine.
2178 * --------------------------------------
2179 *
2180 * "Open" Normal state, no dubious events, fast path.
2181 * "Disorder" In all the respects it is "Open",
2182 * but requires a bit more attention. It is entered when
2183 * we see some SACKs or dupacks. It is split of "Open"
2184 * mainly to move some processing from fast path to slow one.
2185 * "CWR" CWND was reduced due to some Congestion Notification event.
2186 * It can be ECN, ICMP source quench, local device congestion.
2187 * "Recovery" CWND was reduced, we are fast-retransmitting.
2188 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2189 *
2190 * tcp_fastretrans_alert() is entered:
2191 * - each incoming ACK, if state is not "Open"
2192 * - when arrived ACK is unusual, namely:
2193 * * SACK
2194 * * Duplicate ACK.
2195 * * ECN ECE.
2196 *
2197 * Counting packets in flight is pretty simple.
2198 *
2199 * in_flight = packets_out - left_out + retrans_out
2200 *
2201 * packets_out is SND.NXT-SND.UNA counted in packets.
2202 *
2203 * retrans_out is number of retransmitted segments.
2204 *
2205 * left_out is number of segments left network, but not ACKed yet.
2206 *
2207 * left_out = sacked_out + lost_out
2208 *
2209 * sacked_out: Packets, which arrived to receiver out of order
2210 * and hence not ACKed. With SACKs this number is simply
2211 * amount of SACKed data. Even without SACKs
2212 * it is easy to give pretty reliable estimate of this number,
2213 * counting duplicate ACKs.
2214 *
2215 * lost_out: Packets lost by network. TCP has no explicit
2216 * "loss notification" feedback from network (for now).
2217 * It means that this number can be only _guessed_.
2218 * Actually, it is the heuristics to predict lossage that
2219 * distinguishes different algorithms.
2220 *
2221 * F.e. after RTO, when all the queue is considered as lost,
2222 * lost_out = packets_out and in_flight = retrans_out.
2223 *
2224 * Essentially, we have now two algorithms counting
2225 * lost packets.
2226 *
2227 * FACK: It is the simplest heuristics. As soon as we decided
2228 * that something is lost, we decide that _all_ not SACKed
2229 * packets until the most forward SACK are lost. I.e.
2230 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2231 * It is absolutely correct estimate, if network does not reorder
2232 * packets. And it loses any connection to reality when reordering
2233 * takes place. We use FACK by default until reordering
2234 * is suspected on the path to this destination.
2235 *
2236 * NewReno: when Recovery is entered, we assume that one segment
2237 * is lost (classic Reno). While we are in Recovery and
2238 * a partial ACK arrives, we assume that one more packet
2239 * is lost (NewReno). This heuristics are the same in NewReno
2240 * and SACK.
2241 *
2242 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2243 * deflation etc. CWND is real congestion window, never inflated, changes
2244 * only according to classic VJ rules.
2245 *
2246 * Really tricky (and requiring careful tuning) part of algorithm
2247 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2248 * The first determines the moment _when_ we should reduce CWND and,
2249 * hence, slow down forward transmission. In fact, it determines the moment
2250 * when we decide that hole is caused by loss, rather than by a reorder.
2251 *
2252 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2253 * holes, caused by lost packets.
2254 *
2255 * And the most logically complicated part of algorithm is undo
2256 * heuristics. We detect false retransmits due to both too early
2257 * fast retransmit (reordering) and underestimated RTO, analyzing
2258 * timestamps and D-SACKs. When we detect that some segments were
2259 * retransmitted by mistake and CWND reduction was wrong, we undo
2260 * window reduction and abort recovery phase. This logic is hidden
2261 * inside several functions named tcp_try_undo_<something>.
2262 */
2263
2264 /* This function decides, when we should leave Disordered state
2265 * and enter Recovery phase, reducing congestion window.
2266 *
2267 * Main question: may we further continue forward transmission
2268 * with the same cwnd?
2269 */
2270 static bool tcp_time_to_recover(struct sock *sk, int flag)
2271 {
2272 struct tcp_sock *tp = tcp_sk(sk);
2273 __u32 packets_out;
2274
2275 /* Do not perform any recovery during F-RTO algorithm */
2276 if (tp->frto_counter)
2277 return false;
2278
2279 /* Trick#1: The loss is proven. */
2280 if (tp->lost_out)
2281 return true;
2282
2283 /* Not-A-Trick#2 : Classic rule... */
2284 if (tcp_dupack_heuristics(tp) > tp->reordering)
2285 return true;
2286
2287 /* Trick#3 : when we use RFC2988 timer restart, fast
2288 * retransmit can be triggered by timeout of queue head.
2289 */
2290 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2291 return true;
2292
2293 /* Trick#4: It is still not OK... But will it be useful to delay
2294 * recovery more?
2295 */
2296 packets_out = tp->packets_out;
2297 if (packets_out <= tp->reordering &&
2298 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2299 !tcp_may_send_now(sk)) {
2300 /* We have nothing to send. This connection is limited
2301 * either by receiver window or by application.
2302 */
2303 return true;
2304 }
2305
2306 /* If a thin stream is detected, retransmit after first
2307 * received dupack. Employ only if SACK is supported in order
2308 * to avoid possible corner-case series of spurious retransmissions
2309 * Use only if there are no unsent data.
2310 */
2311 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2312 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2313 tcp_is_sack(tp) && !tcp_send_head(sk))
2314 return true;
2315
2316 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2317 * retransmissions due to small network reorderings, we implement
2318 * Mitigation A.3 in the RFC and delay the retransmission for a short
2319 * interval if appropriate.
2320 */
2321 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2322 (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2323 !tcp_may_send_now(sk))
2324 return !tcp_pause_early_retransmit(sk, flag);
2325
2326 return false;
2327 }
2328
2329 /* New heuristics: it is possible only after we switched to restart timer
2330 * each time when something is ACKed. Hence, we can detect timed out packets
2331 * during fast retransmit without falling to slow start.
2332 *
2333 * Usefulness of this as is very questionable, since we should know which of
2334 * the segments is the next to timeout which is relatively expensive to find
2335 * in general case unless we add some data structure just for that. The
2336 * current approach certainly won't find the right one too often and when it
2337 * finally does find _something_ it usually marks large part of the window
2338 * right away (because a retransmission with a larger timestamp blocks the
2339 * loop from advancing). -ij
2340 */
2341 static void tcp_timeout_skbs(struct sock *sk)
2342 {
2343 struct tcp_sock *tp = tcp_sk(sk);
2344 struct sk_buff *skb;
2345
2346 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2347 return;
2348
2349 skb = tp->scoreboard_skb_hint;
2350 if (tp->scoreboard_skb_hint == NULL)
2351 skb = tcp_write_queue_head(sk);
2352
2353 tcp_for_write_queue_from(skb, sk) {
2354 if (skb == tcp_send_head(sk))
2355 break;
2356 if (!tcp_skb_timedout(sk, skb))
2357 break;
2358
2359 tcp_skb_mark_lost(tp, skb);
2360 }
2361
2362 tp->scoreboard_skb_hint = skb;
2363
2364 tcp_verify_left_out(tp);
2365 }
2366
2367 /* Detect loss in event "A" above by marking head of queue up as lost.
2368 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2369 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2370 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2371 * the maximum SACKed segments to pass before reaching this limit.
2372 */
2373 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2374 {
2375 struct tcp_sock *tp = tcp_sk(sk);
2376 struct sk_buff *skb;
2377 int cnt, oldcnt;
2378 int err;
2379 unsigned int mss;
2380 /* Use SACK to deduce losses of new sequences sent during recovery */
2381 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2382
2383 WARN_ON(packets > tp->packets_out);
2384 if (tp->lost_skb_hint) {
2385 skb = tp->lost_skb_hint;
2386 cnt = tp->lost_cnt_hint;
2387 /* Head already handled? */
2388 if (mark_head && skb != tcp_write_queue_head(sk))
2389 return;
2390 } else {
2391 skb = tcp_write_queue_head(sk);
2392 cnt = 0;
2393 }
2394
2395 tcp_for_write_queue_from(skb, sk) {
2396 if (skb == tcp_send_head(sk))
2397 break;
2398 /* TODO: do this better */
2399 /* this is not the most efficient way to do this... */
2400 tp->lost_skb_hint = skb;
2401 tp->lost_cnt_hint = cnt;
2402
2403 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2404 break;
2405
2406 oldcnt = cnt;
2407 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2408 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2409 cnt += tcp_skb_pcount(skb);
2410
2411 if (cnt > packets) {
2412 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2413 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2414 (oldcnt >= packets))
2415 break;
2416
2417 mss = skb_shinfo(skb)->gso_size;
2418 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2419 if (err < 0)
2420 break;
2421 cnt = packets;
2422 }
2423
2424 tcp_skb_mark_lost(tp, skb);
2425
2426 if (mark_head)
2427 break;
2428 }
2429 tcp_verify_left_out(tp);
2430 }
2431
2432 /* Account newly detected lost packet(s) */
2433
2434 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2435 {
2436 struct tcp_sock *tp = tcp_sk(sk);
2437
2438 if (tcp_is_reno(tp)) {
2439 tcp_mark_head_lost(sk, 1, 1);
2440 } else if (tcp_is_fack(tp)) {
2441 int lost = tp->fackets_out - tp->reordering;
2442 if (lost <= 0)
2443 lost = 1;
2444 tcp_mark_head_lost(sk, lost, 0);
2445 } else {
2446 int sacked_upto = tp->sacked_out - tp->reordering;
2447 if (sacked_upto >= 0)
2448 tcp_mark_head_lost(sk, sacked_upto, 0);
2449 else if (fast_rexmit)
2450 tcp_mark_head_lost(sk, 1, 1);
2451 }
2452
2453 tcp_timeout_skbs(sk);
2454 }
2455
2456 /* CWND moderation, preventing bursts due to too big ACKs
2457 * in dubious situations.
2458 */
2459 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2460 {
2461 tp->snd_cwnd = min(tp->snd_cwnd,
2462 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2463 tp->snd_cwnd_stamp = tcp_time_stamp;
2464 }
2465
2466 /* Nothing was retransmitted or returned timestamp is less
2467 * than timestamp of the first retransmission.
2468 */
2469 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2470 {
2471 return !tp->retrans_stamp ||
2472 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2473 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2474 }
2475
2476 /* Undo procedures. */
2477
2478 #if FASTRETRANS_DEBUG > 1
2479 static void DBGUNDO(struct sock *sk, const char *msg)
2480 {
2481 struct tcp_sock *tp = tcp_sk(sk);
2482 struct inet_sock *inet = inet_sk(sk);
2483
2484 if (sk->sk_family == AF_INET) {
2485 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2486 msg,
2487 &inet->inet_daddr, ntohs(inet->inet_dport),
2488 tp->snd_cwnd, tcp_left_out(tp),
2489 tp->snd_ssthresh, tp->prior_ssthresh,
2490 tp->packets_out);
2491 }
2492 #if IS_ENABLED(CONFIG_IPV6)
2493 else if (sk->sk_family == AF_INET6) {
2494 struct ipv6_pinfo *np = inet6_sk(sk);
2495 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2496 msg,
2497 &np->daddr, ntohs(inet->inet_dport),
2498 tp->snd_cwnd, tcp_left_out(tp),
2499 tp->snd_ssthresh, tp->prior_ssthresh,
2500 tp->packets_out);
2501 }
2502 #endif
2503 }
2504 #else
2505 #define DBGUNDO(x...) do { } while (0)
2506 #endif
2507
2508 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2509 {
2510 struct tcp_sock *tp = tcp_sk(sk);
2511
2512 if (tp->prior_ssthresh) {
2513 const struct inet_connection_sock *icsk = inet_csk(sk);
2514
2515 if (icsk->icsk_ca_ops->undo_cwnd)
2516 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2517 else
2518 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2519
2520 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2521 tp->snd_ssthresh = tp->prior_ssthresh;
2522 TCP_ECN_withdraw_cwr(tp);
2523 }
2524 } else {
2525 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2526 }
2527 tp->snd_cwnd_stamp = tcp_time_stamp;
2528 }
2529
2530 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2531 {
2532 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2533 }
2534
2535 /* People celebrate: "We love our President!" */
2536 static bool tcp_try_undo_recovery(struct sock *sk)
2537 {
2538 struct tcp_sock *tp = tcp_sk(sk);
2539
2540 if (tcp_may_undo(tp)) {
2541 int mib_idx;
2542
2543 /* Happy end! We did not retransmit anything
2544 * or our original transmission succeeded.
2545 */
2546 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2547 tcp_undo_cwr(sk, true);
2548 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2549 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2550 else
2551 mib_idx = LINUX_MIB_TCPFULLUNDO;
2552
2553 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2554 tp->undo_marker = 0;
2555 }
2556 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2557 /* Hold old state until something *above* high_seq
2558 * is ACKed. For Reno it is MUST to prevent false
2559 * fast retransmits (RFC2582). SACK TCP is safe. */
2560 tcp_moderate_cwnd(tp);
2561 return true;
2562 }
2563 tcp_set_ca_state(sk, TCP_CA_Open);
2564 return false;
2565 }
2566
2567 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2568 static void tcp_try_undo_dsack(struct sock *sk)
2569 {
2570 struct tcp_sock *tp = tcp_sk(sk);
2571
2572 if (tp->undo_marker && !tp->undo_retrans) {
2573 DBGUNDO(sk, "D-SACK");
2574 tcp_undo_cwr(sk, true);
2575 tp->undo_marker = 0;
2576 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2577 }
2578 }
2579
2580 /* We can clear retrans_stamp when there are no retransmissions in the
2581 * window. It would seem that it is trivially available for us in
2582 * tp->retrans_out, however, that kind of assumptions doesn't consider
2583 * what will happen if errors occur when sending retransmission for the
2584 * second time. ...It could the that such segment has only
2585 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2586 * the head skb is enough except for some reneging corner cases that
2587 * are not worth the effort.
2588 *
2589 * Main reason for all this complexity is the fact that connection dying
2590 * time now depends on the validity of the retrans_stamp, in particular,
2591 * that successive retransmissions of a segment must not advance
2592 * retrans_stamp under any conditions.
2593 */
2594 static bool tcp_any_retrans_done(const struct sock *sk)
2595 {
2596 const struct tcp_sock *tp = tcp_sk(sk);
2597 struct sk_buff *skb;
2598
2599 if (tp->retrans_out)
2600 return true;
2601
2602 skb = tcp_write_queue_head(sk);
2603 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2604 return true;
2605
2606 return false;
2607 }
2608
2609 /* Undo during fast recovery after partial ACK. */
2610
2611 static int tcp_try_undo_partial(struct sock *sk, int acked)
2612 {
2613 struct tcp_sock *tp = tcp_sk(sk);
2614 /* Partial ACK arrived. Force Hoe's retransmit. */
2615 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2616
2617 if (tcp_may_undo(tp)) {
2618 /* Plain luck! Hole if filled with delayed
2619 * packet, rather than with a retransmit.
2620 */
2621 if (!tcp_any_retrans_done(sk))
2622 tp->retrans_stamp = 0;
2623
2624 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2625
2626 DBGUNDO(sk, "Hoe");
2627 tcp_undo_cwr(sk, false);
2628 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2629
2630 /* So... Do not make Hoe's retransmit yet.
2631 * If the first packet was delayed, the rest
2632 * ones are most probably delayed as well.
2633 */
2634 failed = 0;
2635 }
2636 return failed;
2637 }
2638
2639 /* Undo during loss recovery after partial ACK. */
2640 static bool tcp_try_undo_loss(struct sock *sk)
2641 {
2642 struct tcp_sock *tp = tcp_sk(sk);
2643
2644 if (tcp_may_undo(tp)) {
2645 struct sk_buff *skb;
2646 tcp_for_write_queue(skb, sk) {
2647 if (skb == tcp_send_head(sk))
2648 break;
2649 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2650 }
2651
2652 tcp_clear_all_retrans_hints(tp);
2653
2654 DBGUNDO(sk, "partial loss");
2655 tp->lost_out = 0;
2656 tcp_undo_cwr(sk, true);
2657 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2658 inet_csk(sk)->icsk_retransmits = 0;
2659 tp->undo_marker = 0;
2660 if (tcp_is_sack(tp))
2661 tcp_set_ca_state(sk, TCP_CA_Open);
2662 return true;
2663 }
2664 return false;
2665 }
2666
2667 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2668 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2669 * It computes the number of packets to send (sndcnt) based on packets newly
2670 * delivered:
2671 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2672 * cwnd reductions across a full RTT.
2673 * 2) If packets in flight is lower than ssthresh (such as due to excess
2674 * losses and/or application stalls), do not perform any further cwnd
2675 * reductions, but instead slow start up to ssthresh.
2676 */
2677 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2678 {
2679 struct tcp_sock *tp = tcp_sk(sk);
2680
2681 tp->high_seq = tp->snd_nxt;
2682 tp->snd_cwnd_cnt = 0;
2683 tp->prior_cwnd = tp->snd_cwnd;
2684 tp->prr_delivered = 0;
2685 tp->prr_out = 0;
2686 if (set_ssthresh)
2687 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2688 TCP_ECN_queue_cwr(tp);
2689 }
2690
2691 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2692 int fast_rexmit)
2693 {
2694 struct tcp_sock *tp = tcp_sk(sk);
2695 int sndcnt = 0;
2696 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2697
2698 tp->prr_delivered += newly_acked_sacked;
2699 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2700 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2701 tp->prior_cwnd - 1;
2702 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2703 } else {
2704 sndcnt = min_t(int, delta,
2705 max_t(int, tp->prr_delivered - tp->prr_out,
2706 newly_acked_sacked) + 1);
2707 }
2708
2709 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2710 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2711 }
2712
2713 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2714 {
2715 struct tcp_sock *tp = tcp_sk(sk);
2716
2717 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2718 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2719 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2720 tp->snd_cwnd = tp->snd_ssthresh;
2721 tp->snd_cwnd_stamp = tcp_time_stamp;
2722 }
2723 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2724 }
2725
2726 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2727 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2728 {
2729 struct tcp_sock *tp = tcp_sk(sk);
2730
2731 tp->prior_ssthresh = 0;
2732 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2733 tp->undo_marker = 0;
2734 tcp_init_cwnd_reduction(sk, set_ssthresh);
2735 tcp_set_ca_state(sk, TCP_CA_CWR);
2736 }
2737 }
2738
2739 static void tcp_try_keep_open(struct sock *sk)
2740 {
2741 struct tcp_sock *tp = tcp_sk(sk);
2742 int state = TCP_CA_Open;
2743
2744 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2745 state = TCP_CA_Disorder;
2746
2747 if (inet_csk(sk)->icsk_ca_state != state) {
2748 tcp_set_ca_state(sk, state);
2749 tp->high_seq = tp->snd_nxt;
2750 }
2751 }
2752
2753 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
2754 {
2755 struct tcp_sock *tp = tcp_sk(sk);
2756
2757 tcp_verify_left_out(tp);
2758
2759 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2760 tp->retrans_stamp = 0;
2761
2762 if (flag & FLAG_ECE)
2763 tcp_enter_cwr(sk, 1);
2764
2765 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2766 tcp_try_keep_open(sk);
2767 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2768 tcp_moderate_cwnd(tp);
2769 } else {
2770 tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
2771 }
2772 }
2773
2774 static void tcp_mtup_probe_failed(struct sock *sk)
2775 {
2776 struct inet_connection_sock *icsk = inet_csk(sk);
2777
2778 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2779 icsk->icsk_mtup.probe_size = 0;
2780 }
2781
2782 static void tcp_mtup_probe_success(struct sock *sk)
2783 {
2784 struct tcp_sock *tp = tcp_sk(sk);
2785 struct inet_connection_sock *icsk = inet_csk(sk);
2786
2787 /* FIXME: breaks with very large cwnd */
2788 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2789 tp->snd_cwnd = tp->snd_cwnd *
2790 tcp_mss_to_mtu(sk, tp->mss_cache) /
2791 icsk->icsk_mtup.probe_size;
2792 tp->snd_cwnd_cnt = 0;
2793 tp->snd_cwnd_stamp = tcp_time_stamp;
2794 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2795
2796 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2797 icsk->icsk_mtup.probe_size = 0;
2798 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2799 }
2800
2801 /* Do a simple retransmit without using the backoff mechanisms in
2802 * tcp_timer. This is used for path mtu discovery.
2803 * The socket is already locked here.
2804 */
2805 void tcp_simple_retransmit(struct sock *sk)
2806 {
2807 const struct inet_connection_sock *icsk = inet_csk(sk);
2808 struct tcp_sock *tp = tcp_sk(sk);
2809 struct sk_buff *skb;
2810 unsigned int mss = tcp_current_mss(sk);
2811 u32 prior_lost = tp->lost_out;
2812
2813 tcp_for_write_queue(skb, sk) {
2814 if (skb == tcp_send_head(sk))
2815 break;
2816 if (tcp_skb_seglen(skb) > mss &&
2817 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2818 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2819 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2820 tp->retrans_out -= tcp_skb_pcount(skb);
2821 }
2822 tcp_skb_mark_lost_uncond_verify(tp, skb);
2823 }
2824 }
2825
2826 tcp_clear_retrans_hints_partial(tp);
2827
2828 if (prior_lost == tp->lost_out)
2829 return;
2830
2831 if (tcp_is_reno(tp))
2832 tcp_limit_reno_sacked(tp);
2833
2834 tcp_verify_left_out(tp);
2835
2836 /* Don't muck with the congestion window here.
2837 * Reason is that we do not increase amount of _data_
2838 * in network, but units changed and effective
2839 * cwnd/ssthresh really reduced now.
2840 */
2841 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2842 tp->high_seq = tp->snd_nxt;
2843 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2844 tp->prior_ssthresh = 0;
2845 tp->undo_marker = 0;
2846 tcp_set_ca_state(sk, TCP_CA_Loss);
2847 }
2848 tcp_xmit_retransmit_queue(sk);
2849 }
2850 EXPORT_SYMBOL(tcp_simple_retransmit);
2851
2852 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2853 {
2854 struct tcp_sock *tp = tcp_sk(sk);
2855 int mib_idx;
2856
2857 if (tcp_is_reno(tp))
2858 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2859 else
2860 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2861
2862 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2863
2864 tp->prior_ssthresh = 0;
2865 tp->undo_marker = tp->snd_una;
2866 tp->undo_retrans = tp->retrans_out;
2867
2868 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2869 if (!ece_ack)
2870 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2871 tcp_init_cwnd_reduction(sk, true);
2872 }
2873 tcp_set_ca_state(sk, TCP_CA_Recovery);
2874 }
2875
2876 /* Process an event, which can update packets-in-flight not trivially.
2877 * Main goal of this function is to calculate new estimate for left_out,
2878 * taking into account both packets sitting in receiver's buffer and
2879 * packets lost by network.
2880 *
2881 * Besides that it does CWND reduction, when packet loss is detected
2882 * and changes state of machine.
2883 *
2884 * It does _not_ decide what to send, it is made in function
2885 * tcp_xmit_retransmit_queue().
2886 */
2887 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2888 int prior_sacked, bool is_dupack,
2889 int flag)
2890 {
2891 struct inet_connection_sock *icsk = inet_csk(sk);
2892 struct tcp_sock *tp = tcp_sk(sk);
2893 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2894 (tcp_fackets_out(tp) > tp->reordering));
2895 int newly_acked_sacked = 0;
2896 int fast_rexmit = 0;
2897
2898 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2899 tp->sacked_out = 0;
2900 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2901 tp->fackets_out = 0;
2902
2903 /* Now state machine starts.
2904 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2905 if (flag & FLAG_ECE)
2906 tp->prior_ssthresh = 0;
2907
2908 /* B. In all the states check for reneging SACKs. */
2909 if (tcp_check_sack_reneging(sk, flag))
2910 return;
2911
2912 /* C. Check consistency of the current state. */
2913 tcp_verify_left_out(tp);
2914
2915 /* D. Check state exit conditions. State can be terminated
2916 * when high_seq is ACKed. */
2917 if (icsk->icsk_ca_state == TCP_CA_Open) {
2918 WARN_ON(tp->retrans_out != 0);
2919 tp->retrans_stamp = 0;
2920 } else if (!before(tp->snd_una, tp->high_seq)) {
2921 switch (icsk->icsk_ca_state) {
2922 case TCP_CA_Loss:
2923 icsk->icsk_retransmits = 0;
2924 if (tcp_try_undo_recovery(sk))
2925 return;
2926 break;
2927
2928 case TCP_CA_CWR:
2929 /* CWR is to be held something *above* high_seq
2930 * is ACKed for CWR bit to reach receiver. */
2931 if (tp->snd_una != tp->high_seq) {
2932 tcp_end_cwnd_reduction(sk);
2933 tcp_set_ca_state(sk, TCP_CA_Open);
2934 }
2935 break;
2936
2937 case TCP_CA_Recovery:
2938 if (tcp_is_reno(tp))
2939 tcp_reset_reno_sack(tp);
2940 if (tcp_try_undo_recovery(sk))
2941 return;
2942 tcp_end_cwnd_reduction(sk);
2943 break;
2944 }
2945 }
2946
2947 /* E. Process state. */
2948 switch (icsk->icsk_ca_state) {
2949 case TCP_CA_Recovery:
2950 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2951 if (tcp_is_reno(tp) && is_dupack)
2952 tcp_add_reno_sack(sk);
2953 } else
2954 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2955 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2956 break;
2957 case TCP_CA_Loss:
2958 if (flag & FLAG_DATA_ACKED)
2959 icsk->icsk_retransmits = 0;
2960 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2961 tcp_reset_reno_sack(tp);
2962 if (!tcp_try_undo_loss(sk)) {
2963 tcp_moderate_cwnd(tp);
2964 tcp_xmit_retransmit_queue(sk);
2965 return;
2966 }
2967 if (icsk->icsk_ca_state != TCP_CA_Open)
2968 return;
2969 /* Loss is undone; fall through to processing in Open state. */
2970 default:
2971 if (tcp_is_reno(tp)) {
2972 if (flag & FLAG_SND_UNA_ADVANCED)
2973 tcp_reset_reno_sack(tp);
2974 if (is_dupack)
2975 tcp_add_reno_sack(sk);
2976 }
2977 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2978
2979 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2980 tcp_try_undo_dsack(sk);
2981
2982 if (!tcp_time_to_recover(sk, flag)) {
2983 tcp_try_to_open(sk, flag, newly_acked_sacked);
2984 return;
2985 }
2986
2987 /* MTU probe failure: don't reduce cwnd */
2988 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2989 icsk->icsk_mtup.probe_size &&
2990 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2991 tcp_mtup_probe_failed(sk);
2992 /* Restores the reduction we did in tcp_mtup_probe() */
2993 tp->snd_cwnd++;
2994 tcp_simple_retransmit(sk);
2995 return;
2996 }
2997
2998 /* Otherwise enter Recovery state */
2999 tcp_enter_recovery(sk, (flag & FLAG_ECE));
3000 fast_rexmit = 1;
3001 }
3002
3003 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3004 tcp_update_scoreboard(sk, fast_rexmit);
3005 tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
3006 tcp_xmit_retransmit_queue(sk);
3007 }
3008
3009 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3010 {
3011 tcp_rtt_estimator(sk, seq_rtt);
3012 tcp_set_rto(sk);
3013 inet_csk(sk)->icsk_backoff = 0;
3014 }
3015 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3016
3017 /* Read draft-ietf-tcplw-high-performance before mucking
3018 * with this code. (Supersedes RFC1323)
3019 */
3020 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3021 {
3022 /* RTTM Rule: A TSecr value received in a segment is used to
3023 * update the averaged RTT measurement only if the segment
3024 * acknowledges some new data, i.e., only if it advances the
3025 * left edge of the send window.
3026 *
3027 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3028 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3029 *
3030 * Changed: reset backoff as soon as we see the first valid sample.
3031 * If we do not, we get strongly overestimated rto. With timestamps
3032 * samples are accepted even from very old segments: f.e., when rtt=1
3033 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3034 * answer arrives rto becomes 120 seconds! If at least one of segments
3035 * in window is lost... Voila. --ANK (010210)
3036 */
3037 struct tcp_sock *tp = tcp_sk(sk);
3038
3039 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3040 }
3041
3042 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3043 {
3044 /* We don't have a timestamp. Can only use
3045 * packets that are not retransmitted to determine
3046 * rtt estimates. Also, we must not reset the
3047 * backoff for rto until we get a non-retransmitted
3048 * packet. This allows us to deal with a situation
3049 * where the network delay has increased suddenly.
3050 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3051 */
3052
3053 if (flag & FLAG_RETRANS_DATA_ACKED)
3054 return;
3055
3056 tcp_valid_rtt_meas(sk, seq_rtt);
3057 }
3058
3059 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3060 const s32 seq_rtt)
3061 {
3062 const struct tcp_sock *tp = tcp_sk(sk);
3063 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3064 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3065 tcp_ack_saw_tstamp(sk, flag);
3066 else if (seq_rtt >= 0)
3067 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3068 }
3069
3070 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3071 {
3072 const struct inet_connection_sock *icsk = inet_csk(sk);
3073 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3074 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3075 }
3076
3077 /* Restart timer after forward progress on connection.
3078 * RFC2988 recommends to restart timer to now+rto.
3079 */
3080 void tcp_rearm_rto(struct sock *sk)
3081 {
3082 struct tcp_sock *tp = tcp_sk(sk);
3083
3084 /* If the retrans timer is currently being used by Fast Open
3085 * for SYN-ACK retrans purpose, stay put.
3086 */
3087 if (tp->fastopen_rsk)
3088 return;
3089
3090 if (!tp->packets_out) {
3091 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3092 } else {
3093 u32 rto = inet_csk(sk)->icsk_rto;
3094 /* Offset the time elapsed after installing regular RTO */
3095 if (tp->early_retrans_delayed) {
3096 struct sk_buff *skb = tcp_write_queue_head(sk);
3097 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3098 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3099 /* delta may not be positive if the socket is locked
3100 * when the delayed ER timer fires and is rescheduled.
3101 */
3102 if (delta > 0)
3103 rto = delta;
3104 }
3105 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3106 TCP_RTO_MAX);
3107 }
3108 tp->early_retrans_delayed = 0;
3109 }
3110
3111 /* This function is called when the delayed ER timer fires. TCP enters
3112 * fast recovery and performs fast-retransmit.
3113 */
3114 void tcp_resume_early_retransmit(struct sock *sk)
3115 {
3116 struct tcp_sock *tp = tcp_sk(sk);
3117
3118 tcp_rearm_rto(sk);
3119
3120 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3121 if (!tp->do_early_retrans)
3122 return;
3123
3124 tcp_enter_recovery(sk, false);
3125 tcp_update_scoreboard(sk, 1);
3126 tcp_xmit_retransmit_queue(sk);
3127 }
3128
3129 /* If we get here, the whole TSO packet has not been acked. */
3130 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3131 {
3132 struct tcp_sock *tp = tcp_sk(sk);
3133 u32 packets_acked;
3134
3135 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3136
3137 packets_acked = tcp_skb_pcount(skb);
3138 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3139 return 0;
3140 packets_acked -= tcp_skb_pcount(skb);
3141
3142 if (packets_acked) {
3143 BUG_ON(tcp_skb_pcount(skb) == 0);
3144 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3145 }
3146
3147 return packets_acked;
3148 }
3149
3150 /* Remove acknowledged frames from the retransmission queue. If our packet
3151 * is before the ack sequence we can discard it as it's confirmed to have
3152 * arrived at the other end.
3153 */
3154 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3155 u32 prior_snd_una)
3156 {
3157 struct tcp_sock *tp = tcp_sk(sk);
3158 const struct inet_connection_sock *icsk = inet_csk(sk);
3159 struct sk_buff *skb;
3160 u32 now = tcp_time_stamp;
3161 int fully_acked = true;
3162 int flag = 0;
3163 u32 pkts_acked = 0;
3164 u32 reord = tp->packets_out;
3165 u32 prior_sacked = tp->sacked_out;
3166 s32 seq_rtt = -1;
3167 s32 ca_seq_rtt = -1;
3168 ktime_t last_ackt = net_invalid_timestamp();
3169
3170 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3171 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3172 u32 acked_pcount;
3173 u8 sacked = scb->sacked;
3174
3175 /* Determine how many packets and what bytes were acked, tso and else */
3176 if (after(scb->end_seq, tp->snd_una)) {
3177 if (tcp_skb_pcount(skb) == 1 ||
3178 !after(tp->snd_una, scb->seq))
3179 break;
3180
3181 acked_pcount = tcp_tso_acked(sk, skb);
3182 if (!acked_pcount)
3183 break;
3184
3185 fully_acked = false;
3186 } else {
3187 acked_pcount = tcp_skb_pcount(skb);
3188 }
3189
3190 if (sacked & TCPCB_RETRANS) {
3191 if (sacked & TCPCB_SACKED_RETRANS)
3192 tp->retrans_out -= acked_pcount;
3193 flag |= FLAG_RETRANS_DATA_ACKED;
3194 ca_seq_rtt = -1;
3195 seq_rtt = -1;
3196 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3197 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3198 } else {
3199 ca_seq_rtt = now - scb->when;
3200 last_ackt = skb->tstamp;
3201 if (seq_rtt < 0) {
3202 seq_rtt = ca_seq_rtt;
3203 }
3204 if (!(sacked & TCPCB_SACKED_ACKED))
3205 reord = min(pkts_acked, reord);
3206 }
3207
3208 if (sacked & TCPCB_SACKED_ACKED)
3209 tp->sacked_out -= acked_pcount;
3210 if (sacked & TCPCB_LOST)
3211 tp->lost_out -= acked_pcount;
3212
3213 tp->packets_out -= acked_pcount;
3214 pkts_acked += acked_pcount;
3215
3216 /* Initial outgoing SYN's get put onto the write_queue
3217 * just like anything else we transmit. It is not
3218 * true data, and if we misinform our callers that
3219 * this ACK acks real data, we will erroneously exit
3220 * connection startup slow start one packet too
3221 * quickly. This is severely frowned upon behavior.
3222 */
3223 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3224 flag |= FLAG_DATA_ACKED;
3225 } else {
3226 flag |= FLAG_SYN_ACKED;
3227 tp->retrans_stamp = 0;
3228 }
3229
3230 if (!fully_acked)
3231 break;
3232
3233 tcp_unlink_write_queue(skb, sk);
3234 sk_wmem_free_skb(sk, skb);
3235 tp->scoreboard_skb_hint = NULL;
3236 if (skb == tp->retransmit_skb_hint)
3237 tp->retransmit_skb_hint = NULL;
3238 if (skb == tp->lost_skb_hint)
3239 tp->lost_skb_hint = NULL;
3240 }
3241
3242 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3243 tp->snd_up = tp->snd_una;
3244
3245 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3246 flag |= FLAG_SACK_RENEGING;
3247
3248 if (flag & FLAG_ACKED) {
3249 const struct tcp_congestion_ops *ca_ops
3250 = inet_csk(sk)->icsk_ca_ops;
3251
3252 if (unlikely(icsk->icsk_mtup.probe_size &&
3253 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3254 tcp_mtup_probe_success(sk);
3255 }
3256
3257 tcp_ack_update_rtt(sk, flag, seq_rtt);
3258 tcp_rearm_rto(sk);
3259
3260 if (tcp_is_reno(tp)) {
3261 tcp_remove_reno_sacks(sk, pkts_acked);
3262 } else {
3263 int delta;
3264
3265 /* Non-retransmitted hole got filled? That's reordering */
3266 if (reord < prior_fackets)
3267 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3268
3269 delta = tcp_is_fack(tp) ? pkts_acked :
3270 prior_sacked - tp->sacked_out;
3271 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3272 }
3273
3274 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3275
3276 if (ca_ops->pkts_acked) {
3277 s32 rtt_us = -1;
3278
3279 /* Is the ACK triggering packet unambiguous? */
3280 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3281 /* High resolution needed and available? */
3282 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3283 !ktime_equal(last_ackt,
3284 net_invalid_timestamp()))
3285 rtt_us = ktime_us_delta(ktime_get_real(),
3286 last_ackt);
3287 else if (ca_seq_rtt >= 0)
3288 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3289 }
3290
3291 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3292 }
3293 }
3294
3295 #if FASTRETRANS_DEBUG > 0
3296 WARN_ON((int)tp->sacked_out < 0);
3297 WARN_ON((int)tp->lost_out < 0);
3298 WARN_ON((int)tp->retrans_out < 0);
3299 if (!tp->packets_out && tcp_is_sack(tp)) {
3300 icsk = inet_csk(sk);
3301 if (tp->lost_out) {
3302 pr_debug("Leak l=%u %d\n",
3303 tp->lost_out, icsk->icsk_ca_state);
3304 tp->lost_out = 0;
3305 }
3306 if (tp->sacked_out) {
3307 pr_debug("Leak s=%u %d\n",
3308 tp->sacked_out, icsk->icsk_ca_state);
3309 tp->sacked_out = 0;
3310 }
3311 if (tp->retrans_out) {
3312 pr_debug("Leak r=%u %d\n",
3313 tp->retrans_out, icsk->icsk_ca_state);
3314 tp->retrans_out = 0;
3315 }
3316 }
3317 #endif
3318 return flag;
3319 }
3320
3321 static void tcp_ack_probe(struct sock *sk)
3322 {
3323 const struct tcp_sock *tp = tcp_sk(sk);
3324 struct inet_connection_sock *icsk = inet_csk(sk);
3325
3326 /* Was it a usable window open? */
3327
3328 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3329 icsk->icsk_backoff = 0;
3330 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3331 /* Socket must be waked up by subsequent tcp_data_snd_check().
3332 * This function is not for random using!
3333 */
3334 } else {
3335 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3336 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3337 TCP_RTO_MAX);
3338 }
3339 }
3340
3341 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3342 {
3343 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3344 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3345 }
3346
3347 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3348 {
3349 const struct tcp_sock *tp = tcp_sk(sk);
3350 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3351 !tcp_in_cwnd_reduction(sk);
3352 }
3353
3354 /* Check that window update is acceptable.
3355 * The function assumes that snd_una<=ack<=snd_next.
3356 */
3357 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3358 const u32 ack, const u32 ack_seq,
3359 const u32 nwin)
3360 {
3361 return after(ack, tp->snd_una) ||
3362 after(ack_seq, tp->snd_wl1) ||
3363 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3364 }
3365
3366 /* Update our send window.
3367 *
3368 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3369 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3370 */
3371 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3372 u32 ack_seq)
3373 {
3374 struct tcp_sock *tp = tcp_sk(sk);
3375 int flag = 0;
3376 u32 nwin = ntohs(tcp_hdr(skb)->window);
3377
3378 if (likely(!tcp_hdr(skb)->syn))
3379 nwin <<= tp->rx_opt.snd_wscale;
3380
3381 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3382 flag |= FLAG_WIN_UPDATE;
3383 tcp_update_wl(tp, ack_seq);
3384
3385 if (tp->snd_wnd != nwin) {
3386 tp->snd_wnd = nwin;
3387
3388 /* Note, it is the only place, where
3389 * fast path is recovered for sending TCP.
3390 */
3391 tp->pred_flags = 0;
3392 tcp_fast_path_check(sk);
3393
3394 if (nwin > tp->max_window) {
3395 tp->max_window = nwin;
3396 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3397 }
3398 }
3399 }
3400
3401 tp->snd_una = ack;
3402
3403 return flag;
3404 }
3405
3406 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3407 * continue in congestion avoidance.
3408 */
3409 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3410 {
3411 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3412 tp->snd_cwnd_cnt = 0;
3413 TCP_ECN_queue_cwr(tp);
3414 tcp_moderate_cwnd(tp);
3415 }
3416
3417 /* A conservative spurious RTO response algorithm: reduce cwnd using
3418 * PRR and continue in congestion avoidance.
3419 */
3420 static void tcp_cwr_spur_to_response(struct sock *sk)
3421 {
3422 tcp_enter_cwr(sk, 0);
3423 }
3424
3425 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3426 {
3427 if (flag & FLAG_ECE)
3428 tcp_cwr_spur_to_response(sk);
3429 else
3430 tcp_undo_cwr(sk, true);
3431 }
3432
3433 /* F-RTO spurious RTO detection algorithm (RFC4138)
3434 *
3435 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3436 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3437 * window (but not to or beyond highest sequence sent before RTO):
3438 * On First ACK, send two new segments out.
3439 * On Second ACK, RTO was likely spurious. Do spurious response (response
3440 * algorithm is not part of the F-RTO detection algorithm
3441 * given in RFC4138 but can be selected separately).
3442 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3443 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3444 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3445 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3446 *
3447 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3448 * original window even after we transmit two new data segments.
3449 *
3450 * SACK version:
3451 * on first step, wait until first cumulative ACK arrives, then move to
3452 * the second step. In second step, the next ACK decides.
3453 *
3454 * F-RTO is implemented (mainly) in four functions:
3455 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3456 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3457 * called when tcp_use_frto() showed green light
3458 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3459 * - tcp_enter_frto_loss() is called if there is not enough evidence
3460 * to prove that the RTO is indeed spurious. It transfers the control
3461 * from F-RTO to the conventional RTO recovery
3462 */
3463 static bool tcp_process_frto(struct sock *sk, int flag)
3464 {
3465 struct tcp_sock *tp = tcp_sk(sk);
3466
3467 tcp_verify_left_out(tp);
3468
3469 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3470 if (flag & FLAG_DATA_ACKED)
3471 inet_csk(sk)->icsk_retransmits = 0;
3472
3473 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3474 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3475 tp->undo_marker = 0;
3476
3477 if (!before(tp->snd_una, tp->frto_highmark)) {
3478 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3479 return true;
3480 }
3481
3482 if (!tcp_is_sackfrto(tp)) {
3483 /* RFC4138 shortcoming in step 2; should also have case c):
3484 * ACK isn't duplicate nor advances window, e.g., opposite dir
3485 * data, winupdate
3486 */
3487 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3488 return true;
3489
3490 if (!(flag & FLAG_DATA_ACKED)) {
3491 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3492 flag);
3493 return true;
3494 }
3495 } else {
3496 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3497 if (!tcp_packets_in_flight(tp)) {
3498 tcp_enter_frto_loss(sk, 2, flag);
3499 return true;
3500 }
3501
3502 /* Prevent sending of new data. */
3503 tp->snd_cwnd = min(tp->snd_cwnd,
3504 tcp_packets_in_flight(tp));
3505 return true;
3506 }
3507
3508 if ((tp->frto_counter >= 2) &&
3509 (!(flag & FLAG_FORWARD_PROGRESS) ||
3510 ((flag & FLAG_DATA_SACKED) &&
3511 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3512 /* RFC4138 shortcoming (see comment above) */
3513 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3514 (flag & FLAG_NOT_DUP))
3515 return true;
3516
3517 tcp_enter_frto_loss(sk, 3, flag);
3518 return true;
3519 }
3520 }
3521
3522 if (tp->frto_counter == 1) {
3523 /* tcp_may_send_now needs to see updated state */
3524 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3525 tp->frto_counter = 2;
3526
3527 if (!tcp_may_send_now(sk))
3528 tcp_enter_frto_loss(sk, 2, flag);
3529
3530 return true;
3531 } else {
3532 switch (sysctl_tcp_frto_response) {
3533 case 2:
3534 tcp_undo_spur_to_response(sk, flag);
3535 break;
3536 case 1:
3537 tcp_conservative_spur_to_response(tp);
3538 break;
3539 default:
3540 tcp_cwr_spur_to_response(sk);
3541 break;
3542 }
3543 tp->frto_counter = 0;
3544 tp->undo_marker = 0;
3545 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3546 }
3547 return false;
3548 }
3549
3550 /* RFC 5961 7 [ACK Throttling] */
3551 static void tcp_send_challenge_ack(struct sock *sk)
3552 {
3553 /* unprotected vars, we dont care of overwrites */
3554 static u32 challenge_timestamp;
3555 static unsigned int challenge_count;
3556 u32 now = jiffies / HZ;
3557
3558 if (now != challenge_timestamp) {
3559 challenge_timestamp = now;
3560 challenge_count = 0;
3561 }
3562 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3563 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3564 tcp_send_ack(sk);
3565 }
3566 }
3567
3568 static void tcp_store_ts_recent(struct tcp_sock *tp)
3569 {
3570 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3571 tp->rx_opt.ts_recent_stamp = get_seconds();
3572 }
3573
3574 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3575 {
3576 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3577 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3578 * extra check below makes sure this can only happen
3579 * for pure ACK frames. -DaveM
3580 *
3581 * Not only, also it occurs for expired timestamps.
3582 */
3583
3584 if (tcp_paws_check(&tp->rx_opt, 0))
3585 tcp_store_ts_recent(tp);
3586 }
3587 }
3588
3589 /* This routine deals with incoming acks, but not outgoing ones. */
3590 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3591 {
3592 struct inet_connection_sock *icsk = inet_csk(sk);
3593 struct tcp_sock *tp = tcp_sk(sk);
3594 u32 prior_snd_una = tp->snd_una;
3595 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3596 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3597 bool is_dupack = false;
3598 u32 prior_in_flight;
3599 u32 prior_fackets;
3600 int prior_packets;
3601 int prior_sacked = tp->sacked_out;
3602 int pkts_acked = 0;
3603 bool frto_cwnd = false;
3604
3605 /* If the ack is older than previous acks
3606 * then we can probably ignore it.
3607 */
3608 if (before(ack, prior_snd_una)) {
3609 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3610 if (before(ack, prior_snd_una - tp->max_window)) {
3611 tcp_send_challenge_ack(sk);
3612 return -1;
3613 }
3614 goto old_ack;
3615 }
3616
3617 /* If the ack includes data we haven't sent yet, discard
3618 * this segment (RFC793 Section 3.9).
3619 */
3620 if (after(ack, tp->snd_nxt))
3621 goto invalid_ack;
3622
3623 if (tp->early_retrans_delayed)
3624 tcp_rearm_rto(sk);
3625
3626 if (after(ack, prior_snd_una))
3627 flag |= FLAG_SND_UNA_ADVANCED;
3628
3629 prior_fackets = tp->fackets_out;
3630 prior_in_flight = tcp_packets_in_flight(tp);
3631
3632 /* ts_recent update must be made after we are sure that the packet
3633 * is in window.
3634 */
3635 if (flag & FLAG_UPDATE_TS_RECENT)
3636 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3637
3638 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3639 /* Window is constant, pure forward advance.
3640 * No more checks are required.
3641 * Note, we use the fact that SND.UNA>=SND.WL2.
3642 */
3643 tcp_update_wl(tp, ack_seq);
3644 tp->snd_una = ack;
3645 flag |= FLAG_WIN_UPDATE;
3646
3647 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3648
3649 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3650 } else {
3651 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3652 flag |= FLAG_DATA;
3653 else
3654 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3655
3656 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3657
3658 if (TCP_SKB_CB(skb)->sacked)
3659 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3660
3661 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3662 flag |= FLAG_ECE;
3663
3664 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3665 }
3666
3667 /* We passed data and got it acked, remove any soft error
3668 * log. Something worked...
3669 */
3670 sk->sk_err_soft = 0;
3671 icsk->icsk_probes_out = 0;
3672 tp->rcv_tstamp = tcp_time_stamp;
3673 prior_packets = tp->packets_out;
3674 if (!prior_packets)
3675 goto no_queue;
3676
3677 /* See if we can take anything off of the retransmit queue. */
3678 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3679
3680 pkts_acked = prior_packets - tp->packets_out;
3681
3682 if (tp->frto_counter)
3683 frto_cwnd = tcp_process_frto(sk, flag);
3684 /* Guarantee sacktag reordering detection against wrap-arounds */
3685 if (before(tp->frto_highmark, tp->snd_una))
3686 tp->frto_highmark = 0;
3687
3688 if (tcp_ack_is_dubious(sk, flag)) {
3689 /* Advance CWND, if state allows this. */
3690 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3691 tcp_may_raise_cwnd(sk, flag))
3692 tcp_cong_avoid(sk, ack, prior_in_flight);
3693 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3694 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3695 is_dupack, flag);
3696 } else {
3697 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3698 tcp_cong_avoid(sk, ack, prior_in_flight);
3699 }
3700
3701 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3702 struct dst_entry *dst = __sk_dst_get(sk);
3703 if (dst)
3704 dst_confirm(dst);
3705 }
3706 return 1;
3707
3708 no_queue:
3709 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3710 if (flag & FLAG_DSACKING_ACK)
3711 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3712 is_dupack, flag);
3713 /* If this ack opens up a zero window, clear backoff. It was
3714 * being used to time the probes, and is probably far higher than
3715 * it needs to be for normal retransmission.
3716 */
3717 if (tcp_send_head(sk))
3718 tcp_ack_probe(sk);
3719 return 1;
3720
3721 invalid_ack:
3722 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3723 return -1;
3724
3725 old_ack:
3726 /* If data was SACKed, tag it and see if we should send more data.
3727 * If data was DSACKed, see if we can undo a cwnd reduction.
3728 */
3729 if (TCP_SKB_CB(skb)->sacked) {
3730 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3731 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3732 is_dupack, flag);
3733 }
3734
3735 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3736 return 0;
3737 }
3738
3739 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3740 * But, this can also be called on packets in the established flow when
3741 * the fast version below fails.
3742 */
3743 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3744 const u8 **hvpp, int estab,
3745 struct tcp_fastopen_cookie *foc)
3746 {
3747 const unsigned char *ptr;
3748 const struct tcphdr *th = tcp_hdr(skb);
3749 int length = (th->doff * 4) - sizeof(struct tcphdr);
3750
3751 ptr = (const unsigned char *)(th + 1);
3752 opt_rx->saw_tstamp = 0;
3753
3754 while (length > 0) {
3755 int opcode = *ptr++;
3756 int opsize;
3757
3758 switch (opcode) {
3759 case TCPOPT_EOL:
3760 return;
3761 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3762 length--;
3763 continue;
3764 default:
3765 opsize = *ptr++;
3766 if (opsize < 2) /* "silly options" */
3767 return;
3768 if (opsize > length)
3769 return; /* don't parse partial options */
3770 switch (opcode) {
3771 case TCPOPT_MSS:
3772 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3773 u16 in_mss = get_unaligned_be16(ptr);
3774 if (in_mss) {
3775 if (opt_rx->user_mss &&
3776 opt_rx->user_mss < in_mss)
3777 in_mss = opt_rx->user_mss;
3778 opt_rx->mss_clamp = in_mss;
3779 }
3780 }
3781 break;
3782 case TCPOPT_WINDOW:
3783 if (opsize == TCPOLEN_WINDOW && th->syn &&
3784 !estab && sysctl_tcp_window_scaling) {
3785 __u8 snd_wscale = *(__u8 *)ptr;
3786 opt_rx->wscale_ok = 1;
3787 if (snd_wscale > 14) {
3788 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3789 __func__,
3790 snd_wscale);
3791 snd_wscale = 14;
3792 }
3793 opt_rx->snd_wscale = snd_wscale;
3794 }
3795 break;
3796 case TCPOPT_TIMESTAMP:
3797 if ((opsize == TCPOLEN_TIMESTAMP) &&
3798 ((estab && opt_rx->tstamp_ok) ||
3799 (!estab && sysctl_tcp_timestamps))) {
3800 opt_rx->saw_tstamp = 1;
3801 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3802 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3803 }
3804 break;
3805 case TCPOPT_SACK_PERM:
3806 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3807 !estab && sysctl_tcp_sack) {
3808 opt_rx->sack_ok = TCP_SACK_SEEN;
3809 tcp_sack_reset(opt_rx);
3810 }
3811 break;
3812
3813 case TCPOPT_SACK:
3814 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3815 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3816 opt_rx->sack_ok) {
3817 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3818 }
3819 break;
3820 #ifdef CONFIG_TCP_MD5SIG
3821 case TCPOPT_MD5SIG:
3822 /*
3823 * The MD5 Hash has already been
3824 * checked (see tcp_v{4,6}_do_rcv()).
3825 */
3826 break;
3827 #endif
3828 case TCPOPT_COOKIE:
3829 /* This option is variable length.
3830 */
3831 switch (opsize) {
3832 case TCPOLEN_COOKIE_BASE:
3833 /* not yet implemented */
3834 break;
3835 case TCPOLEN_COOKIE_PAIR:
3836 /* not yet implemented */
3837 break;
3838 case TCPOLEN_COOKIE_MIN+0:
3839 case TCPOLEN_COOKIE_MIN+2:
3840 case TCPOLEN_COOKIE_MIN+4:
3841 case TCPOLEN_COOKIE_MIN+6:
3842 case TCPOLEN_COOKIE_MAX:
3843 /* 16-bit multiple */
3844 opt_rx->cookie_plus = opsize;
3845 *hvpp = ptr;
3846 break;
3847 default:
3848 /* ignore option */
3849 break;
3850 }
3851 break;
3852
3853 case TCPOPT_EXP:
3854 /* Fast Open option shares code 254 using a
3855 * 16 bits magic number. It's valid only in
3856 * SYN or SYN-ACK with an even size.
3857 */
3858 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3859 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3860 foc == NULL || !th->syn || (opsize & 1))
3861 break;
3862 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3863 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3864 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3865 memcpy(foc->val, ptr + 2, foc->len);
3866 else if (foc->len != 0)
3867 foc->len = -1;
3868 break;
3869
3870 }
3871 ptr += opsize-2;
3872 length -= opsize;
3873 }
3874 }
3875 }
3876 EXPORT_SYMBOL(tcp_parse_options);
3877
3878 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3879 {
3880 const __be32 *ptr = (const __be32 *)(th + 1);
3881
3882 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3883 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3884 tp->rx_opt.saw_tstamp = 1;
3885 ++ptr;
3886 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3887 ++ptr;
3888 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3889 return true;
3890 }
3891 return false;
3892 }
3893
3894 /* Fast parse options. This hopes to only see timestamps.
3895 * If it is wrong it falls back on tcp_parse_options().
3896 */
3897 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3898 const struct tcphdr *th,
3899 struct tcp_sock *tp, const u8 **hvpp)
3900 {
3901 /* In the spirit of fast parsing, compare doff directly to constant
3902 * values. Because equality is used, short doff can be ignored here.
3903 */
3904 if (th->doff == (sizeof(*th) / 4)) {
3905 tp->rx_opt.saw_tstamp = 0;
3906 return false;
3907 } else if (tp->rx_opt.tstamp_ok &&
3908 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3909 if (tcp_parse_aligned_timestamp(tp, th))
3910 return true;
3911 }
3912
3913 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL);
3914 if (tp->rx_opt.saw_tstamp)
3915 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3916
3917 return true;
3918 }
3919
3920 #ifdef CONFIG_TCP_MD5SIG
3921 /*
3922 * Parse MD5 Signature option
3923 */
3924 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3925 {
3926 int length = (th->doff << 2) - sizeof(*th);
3927 const u8 *ptr = (const u8 *)(th + 1);
3928
3929 /* If the TCP option is too short, we can short cut */
3930 if (length < TCPOLEN_MD5SIG)
3931 return NULL;
3932
3933 while (length > 0) {
3934 int opcode = *ptr++;
3935 int opsize;
3936
3937 switch(opcode) {
3938 case TCPOPT_EOL:
3939 return NULL;
3940 case TCPOPT_NOP:
3941 length--;
3942 continue;
3943 default:
3944 opsize = *ptr++;
3945 if (opsize < 2 || opsize > length)
3946 return NULL;
3947 if (opcode == TCPOPT_MD5SIG)
3948 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3949 }
3950 ptr += opsize - 2;
3951 length -= opsize;
3952 }
3953 return NULL;
3954 }
3955 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3956 #endif
3957
3958 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3959 *
3960 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3961 * it can pass through stack. So, the following predicate verifies that
3962 * this segment is not used for anything but congestion avoidance or
3963 * fast retransmit. Moreover, we even are able to eliminate most of such
3964 * second order effects, if we apply some small "replay" window (~RTO)
3965 * to timestamp space.
3966 *
3967 * All these measures still do not guarantee that we reject wrapped ACKs
3968 * on networks with high bandwidth, when sequence space is recycled fastly,
3969 * but it guarantees that such events will be very rare and do not affect
3970 * connection seriously. This doesn't look nice, but alas, PAWS is really
3971 * buggy extension.
3972 *
3973 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3974 * states that events when retransmit arrives after original data are rare.
3975 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3976 * the biggest problem on large power networks even with minor reordering.
3977 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3978 * up to bandwidth of 18Gigabit/sec. 8) ]
3979 */
3980
3981 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3982 {
3983 const struct tcp_sock *tp = tcp_sk(sk);
3984 const struct tcphdr *th = tcp_hdr(skb);
3985 u32 seq = TCP_SKB_CB(skb)->seq;
3986 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3987
3988 return (/* 1. Pure ACK with correct sequence number. */
3989 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3990
3991 /* 2. ... and duplicate ACK. */
3992 ack == tp->snd_una &&
3993
3994 /* 3. ... and does not update window. */
3995 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3996
3997 /* 4. ... and sits in replay window. */
3998 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3999 }
4000
4001 static inline bool tcp_paws_discard(const struct sock *sk,
4002 const struct sk_buff *skb)
4003 {
4004 const struct tcp_sock *tp = tcp_sk(sk);
4005
4006 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4007 !tcp_disordered_ack(sk, skb);
4008 }
4009
4010 /* Check segment sequence number for validity.
4011 *
4012 * Segment controls are considered valid, if the segment
4013 * fits to the window after truncation to the window. Acceptability
4014 * of data (and SYN, FIN, of course) is checked separately.
4015 * See tcp_data_queue(), for example.
4016 *
4017 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4018 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4019 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4020 * (borrowed from freebsd)
4021 */
4022
4023 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4024 {
4025 return !before(end_seq, tp->rcv_wup) &&
4026 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4027 }
4028
4029 /* When we get a reset we do this. */
4030 void tcp_reset(struct sock *sk)
4031 {
4032 /* We want the right error as BSD sees it (and indeed as we do). */
4033 switch (sk->sk_state) {
4034 case TCP_SYN_SENT:
4035 sk->sk_err = ECONNREFUSED;
4036 break;
4037 case TCP_CLOSE_WAIT:
4038 sk->sk_err = EPIPE;
4039 break;
4040 case TCP_CLOSE:
4041 return;
4042 default:
4043 sk->sk_err = ECONNRESET;
4044 }
4045 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4046 smp_wmb();
4047
4048 if (!sock_flag(sk, SOCK_DEAD))
4049 sk->sk_error_report(sk);
4050
4051 tcp_done(sk);
4052 }
4053
4054 /*
4055 * Process the FIN bit. This now behaves as it is supposed to work
4056 * and the FIN takes effect when it is validly part of sequence
4057 * space. Not before when we get holes.
4058 *
4059 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4060 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4061 * TIME-WAIT)
4062 *
4063 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4064 * close and we go into CLOSING (and later onto TIME-WAIT)
4065 *
4066 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4067 */
4068 static void tcp_fin(struct sock *sk)
4069 {
4070 struct tcp_sock *tp = tcp_sk(sk);
4071
4072 inet_csk_schedule_ack(sk);
4073
4074 sk->sk_shutdown |= RCV_SHUTDOWN;
4075 sock_set_flag(sk, SOCK_DONE);
4076
4077 switch (sk->sk_state) {
4078 case TCP_SYN_RECV:
4079 case TCP_ESTABLISHED:
4080 /* Move to CLOSE_WAIT */
4081 tcp_set_state(sk, TCP_CLOSE_WAIT);
4082 inet_csk(sk)->icsk_ack.pingpong = 1;
4083 break;
4084
4085 case TCP_CLOSE_WAIT:
4086 case TCP_CLOSING:
4087 /* Received a retransmission of the FIN, do
4088 * nothing.
4089 */
4090 break;
4091 case TCP_LAST_ACK:
4092 /* RFC793: Remain in the LAST-ACK state. */
4093 break;
4094
4095 case TCP_FIN_WAIT1:
4096 /* This case occurs when a simultaneous close
4097 * happens, we must ack the received FIN and
4098 * enter the CLOSING state.
4099 */
4100 tcp_send_ack(sk);
4101 tcp_set_state(sk, TCP_CLOSING);
4102 break;
4103 case TCP_FIN_WAIT2:
4104 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4105 tcp_send_ack(sk);
4106 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4107 break;
4108 default:
4109 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4110 * cases we should never reach this piece of code.
4111 */
4112 pr_err("%s: Impossible, sk->sk_state=%d\n",
4113 __func__, sk->sk_state);
4114 break;
4115 }
4116
4117 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4118 * Probably, we should reset in this case. For now drop them.
4119 */
4120 __skb_queue_purge(&tp->out_of_order_queue);
4121 if (tcp_is_sack(tp))
4122 tcp_sack_reset(&tp->rx_opt);
4123 sk_mem_reclaim(sk);
4124
4125 if (!sock_flag(sk, SOCK_DEAD)) {
4126 sk->sk_state_change(sk);
4127
4128 /* Do not send POLL_HUP for half duplex close. */
4129 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4130 sk->sk_state == TCP_CLOSE)
4131 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4132 else
4133 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4134 }
4135 }
4136
4137 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4138 u32 end_seq)
4139 {
4140 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4141 if (before(seq, sp->start_seq))
4142 sp->start_seq = seq;
4143 if (after(end_seq, sp->end_seq))
4144 sp->end_seq = end_seq;
4145 return true;
4146 }
4147 return false;
4148 }
4149
4150 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4151 {
4152 struct tcp_sock *tp = tcp_sk(sk);
4153
4154 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4155 int mib_idx;
4156
4157 if (before(seq, tp->rcv_nxt))
4158 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4159 else
4160 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4161
4162 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4163
4164 tp->rx_opt.dsack = 1;
4165 tp->duplicate_sack[0].start_seq = seq;
4166 tp->duplicate_sack[0].end_seq = end_seq;
4167 }
4168 }
4169
4170 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4171 {
4172 struct tcp_sock *tp = tcp_sk(sk);
4173
4174 if (!tp->rx_opt.dsack)
4175 tcp_dsack_set(sk, seq, end_seq);
4176 else
4177 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4178 }
4179
4180 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4181 {
4182 struct tcp_sock *tp = tcp_sk(sk);
4183
4184 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4185 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4186 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4187 tcp_enter_quickack_mode(sk);
4188
4189 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4190 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4191
4192 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4193 end_seq = tp->rcv_nxt;
4194 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4195 }
4196 }
4197
4198 tcp_send_ack(sk);
4199 }
4200
4201 /* These routines update the SACK block as out-of-order packets arrive or
4202 * in-order packets close up the sequence space.
4203 */
4204 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4205 {
4206 int this_sack;
4207 struct tcp_sack_block *sp = &tp->selective_acks[0];
4208 struct tcp_sack_block *swalk = sp + 1;
4209
4210 /* See if the recent change to the first SACK eats into
4211 * or hits the sequence space of other SACK blocks, if so coalesce.
4212 */
4213 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4214 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4215 int i;
4216
4217 /* Zap SWALK, by moving every further SACK up by one slot.
4218 * Decrease num_sacks.
4219 */
4220 tp->rx_opt.num_sacks--;
4221 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4222 sp[i] = sp[i + 1];
4223 continue;
4224 }
4225 this_sack++, swalk++;
4226 }
4227 }
4228
4229 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4230 {
4231 struct tcp_sock *tp = tcp_sk(sk);
4232 struct tcp_sack_block *sp = &tp->selective_acks[0];
4233 int cur_sacks = tp->rx_opt.num_sacks;
4234 int this_sack;
4235
4236 if (!cur_sacks)
4237 goto new_sack;
4238
4239 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4240 if (tcp_sack_extend(sp, seq, end_seq)) {
4241 /* Rotate this_sack to the first one. */
4242 for (; this_sack > 0; this_sack--, sp--)
4243 swap(*sp, *(sp - 1));
4244 if (cur_sacks > 1)
4245 tcp_sack_maybe_coalesce(tp);
4246 return;
4247 }
4248 }
4249
4250 /* Could not find an adjacent existing SACK, build a new one,
4251 * put it at the front, and shift everyone else down. We
4252 * always know there is at least one SACK present already here.
4253 *
4254 * If the sack array is full, forget about the last one.
4255 */
4256 if (this_sack >= TCP_NUM_SACKS) {
4257 this_sack--;
4258 tp->rx_opt.num_sacks--;
4259 sp--;
4260 }
4261 for (; this_sack > 0; this_sack--, sp--)
4262 *sp = *(sp - 1);
4263
4264 new_sack:
4265 /* Build the new head SACK, and we're done. */
4266 sp->start_seq = seq;
4267 sp->end_seq = end_seq;
4268 tp->rx_opt.num_sacks++;
4269 }
4270
4271 /* RCV.NXT advances, some SACKs should be eaten. */
4272
4273 static void tcp_sack_remove(struct tcp_sock *tp)
4274 {
4275 struct tcp_sack_block *sp = &tp->selective_acks[0];
4276 int num_sacks = tp->rx_opt.num_sacks;
4277 int this_sack;
4278
4279 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4280 if (skb_queue_empty(&tp->out_of_order_queue)) {
4281 tp->rx_opt.num_sacks = 0;
4282 return;
4283 }
4284
4285 for (this_sack = 0; this_sack < num_sacks;) {
4286 /* Check if the start of the sack is covered by RCV.NXT. */
4287 if (!before(tp->rcv_nxt, sp->start_seq)) {
4288 int i;
4289
4290 /* RCV.NXT must cover all the block! */
4291 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4292
4293 /* Zap this SACK, by moving forward any other SACKS. */
4294 for (i=this_sack+1; i < num_sacks; i++)
4295 tp->selective_acks[i-1] = tp->selective_acks[i];
4296 num_sacks--;
4297 continue;
4298 }
4299 this_sack++;
4300 sp++;
4301 }
4302 tp->rx_opt.num_sacks = num_sacks;
4303 }
4304
4305 /* This one checks to see if we can put data from the
4306 * out_of_order queue into the receive_queue.
4307 */
4308 static void tcp_ofo_queue(struct sock *sk)
4309 {
4310 struct tcp_sock *tp = tcp_sk(sk);
4311 __u32 dsack_high = tp->rcv_nxt;
4312 struct sk_buff *skb;
4313
4314 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4315 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4316 break;
4317
4318 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4319 __u32 dsack = dsack_high;
4320 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4321 dsack_high = TCP_SKB_CB(skb)->end_seq;
4322 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4323 }
4324
4325 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4326 SOCK_DEBUG(sk, "ofo packet was already received\n");
4327 __skb_unlink(skb, &tp->out_of_order_queue);
4328 __kfree_skb(skb);
4329 continue;
4330 }
4331 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4332 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4333 TCP_SKB_CB(skb)->end_seq);
4334
4335 __skb_unlink(skb, &tp->out_of_order_queue);
4336 __skb_queue_tail(&sk->sk_receive_queue, skb);
4337 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4338 if (tcp_hdr(skb)->fin)
4339 tcp_fin(sk);
4340 }
4341 }
4342
4343 static bool tcp_prune_ofo_queue(struct sock *sk);
4344 static int tcp_prune_queue(struct sock *sk);
4345
4346 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4347 unsigned int size)
4348 {
4349 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4350 !sk_rmem_schedule(sk, skb, size)) {
4351
4352 if (tcp_prune_queue(sk) < 0)
4353 return -1;
4354
4355 if (!sk_rmem_schedule(sk, skb, size)) {
4356 if (!tcp_prune_ofo_queue(sk))
4357 return -1;
4358
4359 if (!sk_rmem_schedule(sk, skb, size))
4360 return -1;
4361 }
4362 }
4363 return 0;
4364 }
4365
4366 /**
4367 * tcp_try_coalesce - try to merge skb to prior one
4368 * @sk: socket
4369 * @to: prior buffer
4370 * @from: buffer to add in queue
4371 * @fragstolen: pointer to boolean
4372 *
4373 * Before queueing skb @from after @to, try to merge them
4374 * to reduce overall memory use and queue lengths, if cost is small.
4375 * Packets in ofo or receive queues can stay a long time.
4376 * Better try to coalesce them right now to avoid future collapses.
4377 * Returns true if caller should free @from instead of queueing it
4378 */
4379 static bool tcp_try_coalesce(struct sock *sk,
4380 struct sk_buff *to,
4381 struct sk_buff *from,
4382 bool *fragstolen)
4383 {
4384 int delta;
4385
4386 *fragstolen = false;
4387
4388 if (tcp_hdr(from)->fin)
4389 return false;
4390
4391 /* Its possible this segment overlaps with prior segment in queue */
4392 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4393 return false;
4394
4395 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4396 return false;
4397
4398 atomic_add(delta, &sk->sk_rmem_alloc);
4399 sk_mem_charge(sk, delta);
4400 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4401 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4402 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4403 return true;
4404 }
4405
4406 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4407 {
4408 struct tcp_sock *tp = tcp_sk(sk);
4409 struct sk_buff *skb1;
4410 u32 seq, end_seq;
4411
4412 TCP_ECN_check_ce(tp, skb);
4413
4414 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4415 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4416 __kfree_skb(skb);
4417 return;
4418 }
4419
4420 /* Disable header prediction. */
4421 tp->pred_flags = 0;
4422 inet_csk_schedule_ack(sk);
4423
4424 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4425 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4426 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4427
4428 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4429 if (!skb1) {
4430 /* Initial out of order segment, build 1 SACK. */
4431 if (tcp_is_sack(tp)) {
4432 tp->rx_opt.num_sacks = 1;
4433 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4434 tp->selective_acks[0].end_seq =
4435 TCP_SKB_CB(skb)->end_seq;
4436 }
4437 __skb_queue_head(&tp->out_of_order_queue, skb);
4438 goto end;
4439 }
4440
4441 seq = TCP_SKB_CB(skb)->seq;
4442 end_seq = TCP_SKB_CB(skb)->end_seq;
4443
4444 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4445 bool fragstolen;
4446
4447 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4448 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4449 } else {
4450 kfree_skb_partial(skb, fragstolen);
4451 skb = NULL;
4452 }
4453
4454 if (!tp->rx_opt.num_sacks ||
4455 tp->selective_acks[0].end_seq != seq)
4456 goto add_sack;
4457
4458 /* Common case: data arrive in order after hole. */
4459 tp->selective_acks[0].end_seq = end_seq;
4460 goto end;
4461 }
4462
4463 /* Find place to insert this segment. */
4464 while (1) {
4465 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4466 break;
4467 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4468 skb1 = NULL;
4469 break;
4470 }
4471 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4472 }
4473
4474 /* Do skb overlap to previous one? */
4475 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4476 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4477 /* All the bits are present. Drop. */
4478 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4479 __kfree_skb(skb);
4480 skb = NULL;
4481 tcp_dsack_set(sk, seq, end_seq);
4482 goto add_sack;
4483 }
4484 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4485 /* Partial overlap. */
4486 tcp_dsack_set(sk, seq,
4487 TCP_SKB_CB(skb1)->end_seq);
4488 } else {
4489 if (skb_queue_is_first(&tp->out_of_order_queue,
4490 skb1))
4491 skb1 = NULL;
4492 else
4493 skb1 = skb_queue_prev(
4494 &tp->out_of_order_queue,
4495 skb1);
4496 }
4497 }
4498 if (!skb1)
4499 __skb_queue_head(&tp->out_of_order_queue, skb);
4500 else
4501 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4502
4503 /* And clean segments covered by new one as whole. */
4504 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4505 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4506
4507 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4508 break;
4509 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4510 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4511 end_seq);
4512 break;
4513 }
4514 __skb_unlink(skb1, &tp->out_of_order_queue);
4515 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4516 TCP_SKB_CB(skb1)->end_seq);
4517 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4518 __kfree_skb(skb1);
4519 }
4520
4521 add_sack:
4522 if (tcp_is_sack(tp))
4523 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4524 end:
4525 if (skb)
4526 skb_set_owner_r(skb, sk);
4527 }
4528
4529 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4530 bool *fragstolen)
4531 {
4532 int eaten;
4533 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4534
4535 __skb_pull(skb, hdrlen);
4536 eaten = (tail &&
4537 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4538 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4539 if (!eaten) {
4540 __skb_queue_tail(&sk->sk_receive_queue, skb);
4541 skb_set_owner_r(skb, sk);
4542 }
4543 return eaten;
4544 }
4545
4546 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4547 {
4548 struct sk_buff *skb = NULL;
4549 struct tcphdr *th;
4550 bool fragstolen;
4551
4552 if (size == 0)
4553 return 0;
4554
4555 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4556 if (!skb)
4557 goto err;
4558
4559 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4560 goto err_free;
4561
4562 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4563 skb_reset_transport_header(skb);
4564 memset(th, 0, sizeof(*th));
4565
4566 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4567 goto err_free;
4568
4569 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4570 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4571 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4572
4573 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4574 WARN_ON_ONCE(fragstolen); /* should not happen */
4575 __kfree_skb(skb);
4576 }
4577 return size;
4578
4579 err_free:
4580 kfree_skb(skb);
4581 err:
4582 return -ENOMEM;
4583 }
4584
4585 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4586 {
4587 const struct tcphdr *th = tcp_hdr(skb);
4588 struct tcp_sock *tp = tcp_sk(sk);
4589 int eaten = -1;
4590 bool fragstolen = false;
4591
4592 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4593 goto drop;
4594
4595 skb_dst_drop(skb);
4596 __skb_pull(skb, th->doff * 4);
4597
4598 TCP_ECN_accept_cwr(tp, skb);
4599
4600 tp->rx_opt.dsack = 0;
4601
4602 /* Queue data for delivery to the user.
4603 * Packets in sequence go to the receive queue.
4604 * Out of sequence packets to the out_of_order_queue.
4605 */
4606 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4607 if (tcp_receive_window(tp) == 0)
4608 goto out_of_window;
4609
4610 /* Ok. In sequence. In window. */
4611 if (tp->ucopy.task == current &&
4612 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4613 sock_owned_by_user(sk) && !tp->urg_data) {
4614 int chunk = min_t(unsigned int, skb->len,
4615 tp->ucopy.len);
4616
4617 __set_current_state(TASK_RUNNING);
4618
4619 local_bh_enable();
4620 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4621 tp->ucopy.len -= chunk;
4622 tp->copied_seq += chunk;
4623 eaten = (chunk == skb->len);
4624 tcp_rcv_space_adjust(sk);
4625 }
4626 local_bh_disable();
4627 }
4628
4629 if (eaten <= 0) {
4630 queue_and_out:
4631 if (eaten < 0 &&
4632 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4633 goto drop;
4634
4635 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4636 }
4637 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4638 if (skb->len)
4639 tcp_event_data_recv(sk, skb);
4640 if (th->fin)
4641 tcp_fin(sk);
4642
4643 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4644 tcp_ofo_queue(sk);
4645
4646 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4647 * gap in queue is filled.
4648 */
4649 if (skb_queue_empty(&tp->out_of_order_queue))
4650 inet_csk(sk)->icsk_ack.pingpong = 0;
4651 }
4652
4653 if (tp->rx_opt.num_sacks)
4654 tcp_sack_remove(tp);
4655
4656 tcp_fast_path_check(sk);
4657
4658 if (eaten > 0)
4659 kfree_skb_partial(skb, fragstolen);
4660 if (!sock_flag(sk, SOCK_DEAD))
4661 sk->sk_data_ready(sk, 0);
4662 return;
4663 }
4664
4665 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4666 /* A retransmit, 2nd most common case. Force an immediate ack. */
4667 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4668 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4669
4670 out_of_window:
4671 tcp_enter_quickack_mode(sk);
4672 inet_csk_schedule_ack(sk);
4673 drop:
4674 __kfree_skb(skb);
4675 return;
4676 }
4677
4678 /* Out of window. F.e. zero window probe. */
4679 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4680 goto out_of_window;
4681
4682 tcp_enter_quickack_mode(sk);
4683
4684 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4685 /* Partial packet, seq < rcv_next < end_seq */
4686 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4687 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4688 TCP_SKB_CB(skb)->end_seq);
4689
4690 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4691
4692 /* If window is closed, drop tail of packet. But after
4693 * remembering D-SACK for its head made in previous line.
4694 */
4695 if (!tcp_receive_window(tp))
4696 goto out_of_window;
4697 goto queue_and_out;
4698 }
4699
4700 tcp_data_queue_ofo(sk, skb);
4701 }
4702
4703 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4704 struct sk_buff_head *list)
4705 {
4706 struct sk_buff *next = NULL;
4707
4708 if (!skb_queue_is_last(list, skb))
4709 next = skb_queue_next(list, skb);
4710
4711 __skb_unlink(skb, list);
4712 __kfree_skb(skb);
4713 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4714
4715 return next;
4716 }
4717
4718 /* Collapse contiguous sequence of skbs head..tail with
4719 * sequence numbers start..end.
4720 *
4721 * If tail is NULL, this means until the end of the list.
4722 *
4723 * Segments with FIN/SYN are not collapsed (only because this
4724 * simplifies code)
4725 */
4726 static void
4727 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4728 struct sk_buff *head, struct sk_buff *tail,
4729 u32 start, u32 end)
4730 {
4731 struct sk_buff *skb, *n;
4732 bool end_of_skbs;
4733
4734 /* First, check that queue is collapsible and find
4735 * the point where collapsing can be useful. */
4736 skb = head;
4737 restart:
4738 end_of_skbs = true;
4739 skb_queue_walk_from_safe(list, skb, n) {
4740 if (skb == tail)
4741 break;
4742 /* No new bits? It is possible on ofo queue. */
4743 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4744 skb = tcp_collapse_one(sk, skb, list);
4745 if (!skb)
4746 break;
4747 goto restart;
4748 }
4749
4750 /* The first skb to collapse is:
4751 * - not SYN/FIN and
4752 * - bloated or contains data before "start" or
4753 * overlaps to the next one.
4754 */
4755 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4756 (tcp_win_from_space(skb->truesize) > skb->len ||
4757 before(TCP_SKB_CB(skb)->seq, start))) {
4758 end_of_skbs = false;
4759 break;
4760 }
4761
4762 if (!skb_queue_is_last(list, skb)) {
4763 struct sk_buff *next = skb_queue_next(list, skb);
4764 if (next != tail &&
4765 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4766 end_of_skbs = false;
4767 break;
4768 }
4769 }
4770
4771 /* Decided to skip this, advance start seq. */
4772 start = TCP_SKB_CB(skb)->end_seq;
4773 }
4774 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4775 return;
4776
4777 while (before(start, end)) {
4778 struct sk_buff *nskb;
4779 unsigned int header = skb_headroom(skb);
4780 int copy = SKB_MAX_ORDER(header, 0);
4781
4782 /* Too big header? This can happen with IPv6. */
4783 if (copy < 0)
4784 return;
4785 if (end - start < copy)
4786 copy = end - start;
4787 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4788 if (!nskb)
4789 return;
4790
4791 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4792 skb_set_network_header(nskb, (skb_network_header(skb) -
4793 skb->head));
4794 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4795 skb->head));
4796 skb_reserve(nskb, header);
4797 memcpy(nskb->head, skb->head, header);
4798 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4799 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4800 __skb_queue_before(list, skb, nskb);
4801 skb_set_owner_r(nskb, sk);
4802
4803 /* Copy data, releasing collapsed skbs. */
4804 while (copy > 0) {
4805 int offset = start - TCP_SKB_CB(skb)->seq;
4806 int size = TCP_SKB_CB(skb)->end_seq - start;
4807
4808 BUG_ON(offset < 0);
4809 if (size > 0) {
4810 size = min(copy, size);
4811 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4812 BUG();
4813 TCP_SKB_CB(nskb)->end_seq += size;
4814 copy -= size;
4815 start += size;
4816 }
4817 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4818 skb = tcp_collapse_one(sk, skb, list);
4819 if (!skb ||
4820 skb == tail ||
4821 tcp_hdr(skb)->syn ||
4822 tcp_hdr(skb)->fin)
4823 return;
4824 }
4825 }
4826 }
4827 }
4828
4829 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4830 * and tcp_collapse() them until all the queue is collapsed.
4831 */
4832 static void tcp_collapse_ofo_queue(struct sock *sk)
4833 {
4834 struct tcp_sock *tp = tcp_sk(sk);
4835 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4836 struct sk_buff *head;
4837 u32 start, end;
4838
4839 if (skb == NULL)
4840 return;
4841
4842 start = TCP_SKB_CB(skb)->seq;
4843 end = TCP_SKB_CB(skb)->end_seq;
4844 head = skb;
4845
4846 for (;;) {
4847 struct sk_buff *next = NULL;
4848
4849 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4850 next = skb_queue_next(&tp->out_of_order_queue, skb);
4851 skb = next;
4852
4853 /* Segment is terminated when we see gap or when
4854 * we are at the end of all the queue. */
4855 if (!skb ||
4856 after(TCP_SKB_CB(skb)->seq, end) ||
4857 before(TCP_SKB_CB(skb)->end_seq, start)) {
4858 tcp_collapse(sk, &tp->out_of_order_queue,
4859 head, skb, start, end);
4860 head = skb;
4861 if (!skb)
4862 break;
4863 /* Start new segment */
4864 start = TCP_SKB_CB(skb)->seq;
4865 end = TCP_SKB_CB(skb)->end_seq;
4866 } else {
4867 if (before(TCP_SKB_CB(skb)->seq, start))
4868 start = TCP_SKB_CB(skb)->seq;
4869 if (after(TCP_SKB_CB(skb)->end_seq, end))
4870 end = TCP_SKB_CB(skb)->end_seq;
4871 }
4872 }
4873 }
4874
4875 /*
4876 * Purge the out-of-order queue.
4877 * Return true if queue was pruned.
4878 */
4879 static bool tcp_prune_ofo_queue(struct sock *sk)
4880 {
4881 struct tcp_sock *tp = tcp_sk(sk);
4882 bool res = false;
4883
4884 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4885 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4886 __skb_queue_purge(&tp->out_of_order_queue);
4887
4888 /* Reset SACK state. A conforming SACK implementation will
4889 * do the same at a timeout based retransmit. When a connection
4890 * is in a sad state like this, we care only about integrity
4891 * of the connection not performance.
4892 */
4893 if (tp->rx_opt.sack_ok)
4894 tcp_sack_reset(&tp->rx_opt);
4895 sk_mem_reclaim(sk);
4896 res = true;
4897 }
4898 return res;
4899 }
4900
4901 /* Reduce allocated memory if we can, trying to get
4902 * the socket within its memory limits again.
4903 *
4904 * Return less than zero if we should start dropping frames
4905 * until the socket owning process reads some of the data
4906 * to stabilize the situation.
4907 */
4908 static int tcp_prune_queue(struct sock *sk)
4909 {
4910 struct tcp_sock *tp = tcp_sk(sk);
4911
4912 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4913
4914 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4915
4916 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4917 tcp_clamp_window(sk);
4918 else if (sk_under_memory_pressure(sk))
4919 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4920
4921 tcp_collapse_ofo_queue(sk);
4922 if (!skb_queue_empty(&sk->sk_receive_queue))
4923 tcp_collapse(sk, &sk->sk_receive_queue,
4924 skb_peek(&sk->sk_receive_queue),
4925 NULL,
4926 tp->copied_seq, tp->rcv_nxt);
4927 sk_mem_reclaim(sk);
4928
4929 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4930 return 0;
4931
4932 /* Collapsing did not help, destructive actions follow.
4933 * This must not ever occur. */
4934
4935 tcp_prune_ofo_queue(sk);
4936
4937 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4938 return 0;
4939
4940 /* If we are really being abused, tell the caller to silently
4941 * drop receive data on the floor. It will get retransmitted
4942 * and hopefully then we'll have sufficient space.
4943 */
4944 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4945
4946 /* Massive buffer overcommit. */
4947 tp->pred_flags = 0;
4948 return -1;
4949 }
4950
4951 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4952 * As additional protections, we do not touch cwnd in retransmission phases,
4953 * and if application hit its sndbuf limit recently.
4954 */
4955 void tcp_cwnd_application_limited(struct sock *sk)
4956 {
4957 struct tcp_sock *tp = tcp_sk(sk);
4958
4959 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4960 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4961 /* Limited by application or receiver window. */
4962 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4963 u32 win_used = max(tp->snd_cwnd_used, init_win);
4964 if (win_used < tp->snd_cwnd) {
4965 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4966 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4967 }
4968 tp->snd_cwnd_used = 0;
4969 }
4970 tp->snd_cwnd_stamp = tcp_time_stamp;
4971 }
4972
4973 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4974 {
4975 const struct tcp_sock *tp = tcp_sk(sk);
4976
4977 /* If the user specified a specific send buffer setting, do
4978 * not modify it.
4979 */
4980 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4981 return false;
4982
4983 /* If we are under global TCP memory pressure, do not expand. */
4984 if (sk_under_memory_pressure(sk))
4985 return false;
4986
4987 /* If we are under soft global TCP memory pressure, do not expand. */
4988 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4989 return false;
4990
4991 /* If we filled the congestion window, do not expand. */
4992 if (tp->packets_out >= tp->snd_cwnd)
4993 return false;
4994
4995 return true;
4996 }
4997
4998 /* When incoming ACK allowed to free some skb from write_queue,
4999 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5000 * on the exit from tcp input handler.
5001 *
5002 * PROBLEM: sndbuf expansion does not work well with largesend.
5003 */
5004 static void tcp_new_space(struct sock *sk)
5005 {
5006 struct tcp_sock *tp = tcp_sk(sk);
5007
5008 if (tcp_should_expand_sndbuf(sk)) {
5009 int sndmem = SKB_TRUESIZE(max_t(u32,
5010 tp->rx_opt.mss_clamp,
5011 tp->mss_cache) +
5012 MAX_TCP_HEADER);
5013 int demanded = max_t(unsigned int, tp->snd_cwnd,
5014 tp->reordering + 1);
5015 sndmem *= 2 * demanded;
5016 if (sndmem > sk->sk_sndbuf)
5017 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5018 tp->snd_cwnd_stamp = tcp_time_stamp;
5019 }
5020
5021 sk->sk_write_space(sk);
5022 }
5023
5024 static void tcp_check_space(struct sock *sk)
5025 {
5026 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5027 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5028 if (sk->sk_socket &&
5029 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5030 tcp_new_space(sk);
5031 }
5032 }
5033
5034 static inline void tcp_data_snd_check(struct sock *sk)
5035 {
5036 tcp_push_pending_frames(sk);
5037 tcp_check_space(sk);
5038 }
5039
5040 /*
5041 * Check if sending an ack is needed.
5042 */
5043 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5044 {
5045 struct tcp_sock *tp = tcp_sk(sk);
5046
5047 /* More than one full frame received... */
5048 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5049 /* ... and right edge of window advances far enough.
5050 * (tcp_recvmsg() will send ACK otherwise). Or...
5051 */
5052 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5053 /* We ACK each frame or... */
5054 tcp_in_quickack_mode(sk) ||
5055 /* We have out of order data. */
5056 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5057 /* Then ack it now */
5058 tcp_send_ack(sk);
5059 } else {
5060 /* Else, send delayed ack. */
5061 tcp_send_delayed_ack(sk);
5062 }
5063 }
5064
5065 static inline void tcp_ack_snd_check(struct sock *sk)
5066 {
5067 if (!inet_csk_ack_scheduled(sk)) {
5068 /* We sent a data segment already. */
5069 return;
5070 }
5071 __tcp_ack_snd_check(sk, 1);
5072 }
5073
5074 /*
5075 * This routine is only called when we have urgent data
5076 * signaled. Its the 'slow' part of tcp_urg. It could be
5077 * moved inline now as tcp_urg is only called from one
5078 * place. We handle URGent data wrong. We have to - as
5079 * BSD still doesn't use the correction from RFC961.
5080 * For 1003.1g we should support a new option TCP_STDURG to permit
5081 * either form (or just set the sysctl tcp_stdurg).
5082 */
5083
5084 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5085 {
5086 struct tcp_sock *tp = tcp_sk(sk);
5087 u32 ptr = ntohs(th->urg_ptr);
5088
5089 if (ptr && !sysctl_tcp_stdurg)
5090 ptr--;
5091 ptr += ntohl(th->seq);
5092
5093 /* Ignore urgent data that we've already seen and read. */
5094 if (after(tp->copied_seq, ptr))
5095 return;
5096
5097 /* Do not replay urg ptr.
5098 *
5099 * NOTE: interesting situation not covered by specs.
5100 * Misbehaving sender may send urg ptr, pointing to segment,
5101 * which we already have in ofo queue. We are not able to fetch
5102 * such data and will stay in TCP_URG_NOTYET until will be eaten
5103 * by recvmsg(). Seems, we are not obliged to handle such wicked
5104 * situations. But it is worth to think about possibility of some
5105 * DoSes using some hypothetical application level deadlock.
5106 */
5107 if (before(ptr, tp->rcv_nxt))
5108 return;
5109
5110 /* Do we already have a newer (or duplicate) urgent pointer? */
5111 if (tp->urg_data && !after(ptr, tp->urg_seq))
5112 return;
5113
5114 /* Tell the world about our new urgent pointer. */
5115 sk_send_sigurg(sk);
5116
5117 /* We may be adding urgent data when the last byte read was
5118 * urgent. To do this requires some care. We cannot just ignore
5119 * tp->copied_seq since we would read the last urgent byte again
5120 * as data, nor can we alter copied_seq until this data arrives
5121 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5122 *
5123 * NOTE. Double Dutch. Rendering to plain English: author of comment
5124 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5125 * and expect that both A and B disappear from stream. This is _wrong_.
5126 * Though this happens in BSD with high probability, this is occasional.
5127 * Any application relying on this is buggy. Note also, that fix "works"
5128 * only in this artificial test. Insert some normal data between A and B and we will
5129 * decline of BSD again. Verdict: it is better to remove to trap
5130 * buggy users.
5131 */
5132 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5133 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5134 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5135 tp->copied_seq++;
5136 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5137 __skb_unlink(skb, &sk->sk_receive_queue);
5138 __kfree_skb(skb);
5139 }
5140 }
5141
5142 tp->urg_data = TCP_URG_NOTYET;
5143 tp->urg_seq = ptr;
5144
5145 /* Disable header prediction. */
5146 tp->pred_flags = 0;
5147 }
5148
5149 /* This is the 'fast' part of urgent handling. */
5150 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5151 {
5152 struct tcp_sock *tp = tcp_sk(sk);
5153
5154 /* Check if we get a new urgent pointer - normally not. */
5155 if (th->urg)
5156 tcp_check_urg(sk, th);
5157
5158 /* Do we wait for any urgent data? - normally not... */
5159 if (tp->urg_data == TCP_URG_NOTYET) {
5160 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5161 th->syn;
5162
5163 /* Is the urgent pointer pointing into this packet? */
5164 if (ptr < skb->len) {
5165 u8 tmp;
5166 if (skb_copy_bits(skb, ptr, &tmp, 1))
5167 BUG();
5168 tp->urg_data = TCP_URG_VALID | tmp;
5169 if (!sock_flag(sk, SOCK_DEAD))
5170 sk->sk_data_ready(sk, 0);
5171 }
5172 }
5173 }
5174
5175 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5176 {
5177 struct tcp_sock *tp = tcp_sk(sk);
5178 int chunk = skb->len - hlen;
5179 int err;
5180
5181 local_bh_enable();
5182 if (skb_csum_unnecessary(skb))
5183 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5184 else
5185 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5186 tp->ucopy.iov);
5187
5188 if (!err) {
5189 tp->ucopy.len -= chunk;
5190 tp->copied_seq += chunk;
5191 tcp_rcv_space_adjust(sk);
5192 }
5193
5194 local_bh_disable();
5195 return err;
5196 }
5197
5198 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5199 struct sk_buff *skb)
5200 {
5201 __sum16 result;
5202
5203 if (sock_owned_by_user(sk)) {
5204 local_bh_enable();
5205 result = __tcp_checksum_complete(skb);
5206 local_bh_disable();
5207 } else {
5208 result = __tcp_checksum_complete(skb);
5209 }
5210 return result;
5211 }
5212
5213 static inline bool tcp_checksum_complete_user(struct sock *sk,
5214 struct sk_buff *skb)
5215 {
5216 return !skb_csum_unnecessary(skb) &&
5217 __tcp_checksum_complete_user(sk, skb);
5218 }
5219
5220 #ifdef CONFIG_NET_DMA
5221 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5222 int hlen)
5223 {
5224 struct tcp_sock *tp = tcp_sk(sk);
5225 int chunk = skb->len - hlen;
5226 int dma_cookie;
5227 bool copied_early = false;
5228
5229 if (tp->ucopy.wakeup)
5230 return false;
5231
5232 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5233 tp->ucopy.dma_chan = net_dma_find_channel();
5234
5235 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5236
5237 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5238 skb, hlen,
5239 tp->ucopy.iov, chunk,
5240 tp->ucopy.pinned_list);
5241
5242 if (dma_cookie < 0)
5243 goto out;
5244
5245 tp->ucopy.dma_cookie = dma_cookie;
5246 copied_early = true;
5247
5248 tp->ucopy.len -= chunk;
5249 tp->copied_seq += chunk;
5250 tcp_rcv_space_adjust(sk);
5251
5252 if ((tp->ucopy.len == 0) ||
5253 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5254 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5255 tp->ucopy.wakeup = 1;
5256 sk->sk_data_ready(sk, 0);
5257 }
5258 } else if (chunk > 0) {
5259 tp->ucopy.wakeup = 1;
5260 sk->sk_data_ready(sk, 0);
5261 }
5262 out:
5263 return copied_early;
5264 }
5265 #endif /* CONFIG_NET_DMA */
5266
5267 /* Does PAWS and seqno based validation of an incoming segment, flags will
5268 * play significant role here.
5269 */
5270 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5271 const struct tcphdr *th, int syn_inerr)
5272 {
5273 const u8 *hash_location;
5274 struct tcp_sock *tp = tcp_sk(sk);
5275
5276 /* RFC1323: H1. Apply PAWS check first. */
5277 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5278 tp->rx_opt.saw_tstamp &&
5279 tcp_paws_discard(sk, skb)) {
5280 if (!th->rst) {
5281 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5282 tcp_send_dupack(sk, skb);
5283 goto discard;
5284 }
5285 /* Reset is accepted even if it did not pass PAWS. */
5286 }
5287
5288 /* Step 1: check sequence number */
5289 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5290 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5291 * (RST) segments are validated by checking their SEQ-fields."
5292 * And page 69: "If an incoming segment is not acceptable,
5293 * an acknowledgment should be sent in reply (unless the RST
5294 * bit is set, if so drop the segment and return)".
5295 */
5296 if (!th->rst) {
5297 if (th->syn)
5298 goto syn_challenge;
5299 tcp_send_dupack(sk, skb);
5300 }
5301 goto discard;
5302 }
5303
5304 /* Step 2: check RST bit */
5305 if (th->rst) {
5306 /* RFC 5961 3.2 :
5307 * If sequence number exactly matches RCV.NXT, then
5308 * RESET the connection
5309 * else
5310 * Send a challenge ACK
5311 */
5312 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5313 tcp_reset(sk);
5314 else
5315 tcp_send_challenge_ack(sk);
5316 goto discard;
5317 }
5318
5319 /* step 3: check security and precedence [ignored] */
5320
5321 /* step 4: Check for a SYN
5322 * RFC 5691 4.2 : Send a challenge ack
5323 */
5324 if (th->syn) {
5325 syn_challenge:
5326 if (syn_inerr)
5327 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5328 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5329 tcp_send_challenge_ack(sk);
5330 goto discard;
5331 }
5332
5333 return true;
5334
5335 discard:
5336 __kfree_skb(skb);
5337 return false;
5338 }
5339
5340 /*
5341 * TCP receive function for the ESTABLISHED state.
5342 *
5343 * It is split into a fast path and a slow path. The fast path is
5344 * disabled when:
5345 * - A zero window was announced from us - zero window probing
5346 * is only handled properly in the slow path.
5347 * - Out of order segments arrived.
5348 * - Urgent data is expected.
5349 * - There is no buffer space left
5350 * - Unexpected TCP flags/window values/header lengths are received
5351 * (detected by checking the TCP header against pred_flags)
5352 * - Data is sent in both directions. Fast path only supports pure senders
5353 * or pure receivers (this means either the sequence number or the ack
5354 * value must stay constant)
5355 * - Unexpected TCP option.
5356 *
5357 * When these conditions are not satisfied it drops into a standard
5358 * receive procedure patterned after RFC793 to handle all cases.
5359 * The first three cases are guaranteed by proper pred_flags setting,
5360 * the rest is checked inline. Fast processing is turned on in
5361 * tcp_data_queue when everything is OK.
5362 */
5363 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5364 const struct tcphdr *th, unsigned int len)
5365 {
5366 struct tcp_sock *tp = tcp_sk(sk);
5367
5368 if (unlikely(sk->sk_rx_dst == NULL))
5369 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5370 /*
5371 * Header prediction.
5372 * The code loosely follows the one in the famous
5373 * "30 instruction TCP receive" Van Jacobson mail.
5374 *
5375 * Van's trick is to deposit buffers into socket queue
5376 * on a device interrupt, to call tcp_recv function
5377 * on the receive process context and checksum and copy
5378 * the buffer to user space. smart...
5379 *
5380 * Our current scheme is not silly either but we take the
5381 * extra cost of the net_bh soft interrupt processing...
5382 * We do checksum and copy also but from device to kernel.
5383 */
5384
5385 tp->rx_opt.saw_tstamp = 0;
5386
5387 /* pred_flags is 0xS?10 << 16 + snd_wnd
5388 * if header_prediction is to be made
5389 * 'S' will always be tp->tcp_header_len >> 2
5390 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5391 * turn it off (when there are holes in the receive
5392 * space for instance)
5393 * PSH flag is ignored.
5394 */
5395
5396 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5397 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5398 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5399 int tcp_header_len = tp->tcp_header_len;
5400
5401 /* Timestamp header prediction: tcp_header_len
5402 * is automatically equal to th->doff*4 due to pred_flags
5403 * match.
5404 */
5405
5406 /* Check timestamp */
5407 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5408 /* No? Slow path! */
5409 if (!tcp_parse_aligned_timestamp(tp, th))
5410 goto slow_path;
5411
5412 /* If PAWS failed, check it more carefully in slow path */
5413 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5414 goto slow_path;
5415
5416 /* DO NOT update ts_recent here, if checksum fails
5417 * and timestamp was corrupted part, it will result
5418 * in a hung connection since we will drop all
5419 * future packets due to the PAWS test.
5420 */
5421 }
5422
5423 if (len <= tcp_header_len) {
5424 /* Bulk data transfer: sender */
5425 if (len == tcp_header_len) {
5426 /* Predicted packet is in window by definition.
5427 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5428 * Hence, check seq<=rcv_wup reduces to:
5429 */
5430 if (tcp_header_len ==
5431 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5432 tp->rcv_nxt == tp->rcv_wup)
5433 tcp_store_ts_recent(tp);
5434
5435 /* We know that such packets are checksummed
5436 * on entry.
5437 */
5438 tcp_ack(sk, skb, 0);
5439 __kfree_skb(skb);
5440 tcp_data_snd_check(sk);
5441 return 0;
5442 } else { /* Header too small */
5443 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5444 goto discard;
5445 }
5446 } else {
5447 int eaten = 0;
5448 int copied_early = 0;
5449 bool fragstolen = false;
5450
5451 if (tp->copied_seq == tp->rcv_nxt &&
5452 len - tcp_header_len <= tp->ucopy.len) {
5453 #ifdef CONFIG_NET_DMA
5454 if (tp->ucopy.task == current &&
5455 sock_owned_by_user(sk) &&
5456 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5457 copied_early = 1;
5458 eaten = 1;
5459 }
5460 #endif
5461 if (tp->ucopy.task == current &&
5462 sock_owned_by_user(sk) && !copied_early) {
5463 __set_current_state(TASK_RUNNING);
5464
5465 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5466 eaten = 1;
5467 }
5468 if (eaten) {
5469 /* Predicted packet is in window by definition.
5470 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5471 * Hence, check seq<=rcv_wup reduces to:
5472 */
5473 if (tcp_header_len ==
5474 (sizeof(struct tcphdr) +
5475 TCPOLEN_TSTAMP_ALIGNED) &&
5476 tp->rcv_nxt == tp->rcv_wup)
5477 tcp_store_ts_recent(tp);
5478
5479 tcp_rcv_rtt_measure_ts(sk, skb);
5480
5481 __skb_pull(skb, tcp_header_len);
5482 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5483 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5484 }
5485 if (copied_early)
5486 tcp_cleanup_rbuf(sk, skb->len);
5487 }
5488 if (!eaten) {
5489 if (tcp_checksum_complete_user(sk, skb))
5490 goto csum_error;
5491
5492 if ((int)skb->truesize > sk->sk_forward_alloc)
5493 goto step5;
5494
5495 /* Predicted packet is in window by definition.
5496 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5497 * Hence, check seq<=rcv_wup reduces to:
5498 */
5499 if (tcp_header_len ==
5500 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5501 tp->rcv_nxt == tp->rcv_wup)
5502 tcp_store_ts_recent(tp);
5503
5504 tcp_rcv_rtt_measure_ts(sk, skb);
5505
5506 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5507
5508 /* Bulk data transfer: receiver */
5509 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5510 &fragstolen);
5511 }
5512
5513 tcp_event_data_recv(sk, skb);
5514
5515 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5516 /* Well, only one small jumplet in fast path... */
5517 tcp_ack(sk, skb, FLAG_DATA);
5518 tcp_data_snd_check(sk);
5519 if (!inet_csk_ack_scheduled(sk))
5520 goto no_ack;
5521 }
5522
5523 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5524 __tcp_ack_snd_check(sk, 0);
5525 no_ack:
5526 #ifdef CONFIG_NET_DMA
5527 if (copied_early)
5528 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5529 else
5530 #endif
5531 if (eaten)
5532 kfree_skb_partial(skb, fragstolen);
5533 sk->sk_data_ready(sk, 0);
5534 return 0;
5535 }
5536 }
5537
5538 slow_path:
5539 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5540 goto csum_error;
5541
5542 if (!th->ack && !th->rst)
5543 goto discard;
5544
5545 /*
5546 * Standard slow path.
5547 */
5548
5549 if (!tcp_validate_incoming(sk, skb, th, 1))
5550 return 0;
5551
5552 step5:
5553 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5554 goto discard;
5555
5556 tcp_rcv_rtt_measure_ts(sk, skb);
5557
5558 /* Process urgent data. */
5559 tcp_urg(sk, skb, th);
5560
5561 /* step 7: process the segment text */
5562 tcp_data_queue(sk, skb);
5563
5564 tcp_data_snd_check(sk);
5565 tcp_ack_snd_check(sk);
5566 return 0;
5567
5568 csum_error:
5569 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5570
5571 discard:
5572 __kfree_skb(skb);
5573 return 0;
5574 }
5575 EXPORT_SYMBOL(tcp_rcv_established);
5576
5577 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5578 {
5579 struct tcp_sock *tp = tcp_sk(sk);
5580 struct inet_connection_sock *icsk = inet_csk(sk);
5581
5582 tcp_set_state(sk, TCP_ESTABLISHED);
5583
5584 if (skb != NULL) {
5585 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5586 security_inet_conn_established(sk, skb);
5587 }
5588
5589 /* Make sure socket is routed, for correct metrics. */
5590 icsk->icsk_af_ops->rebuild_header(sk);
5591
5592 tcp_init_metrics(sk);
5593
5594 tcp_init_congestion_control(sk);
5595
5596 /* Prevent spurious tcp_cwnd_restart() on first data
5597 * packet.
5598 */
5599 tp->lsndtime = tcp_time_stamp;
5600
5601 tcp_init_buffer_space(sk);
5602
5603 if (sock_flag(sk, SOCK_KEEPOPEN))
5604 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5605
5606 if (!tp->rx_opt.snd_wscale)
5607 __tcp_fast_path_on(tp, tp->snd_wnd);
5608 else
5609 tp->pred_flags = 0;
5610
5611 if (!sock_flag(sk, SOCK_DEAD)) {
5612 sk->sk_state_change(sk);
5613 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5614 }
5615 }
5616
5617 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5618 struct tcp_fastopen_cookie *cookie)
5619 {
5620 struct tcp_sock *tp = tcp_sk(sk);
5621 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5622 u16 mss = tp->rx_opt.mss_clamp;
5623 bool syn_drop;
5624
5625 if (mss == tp->rx_opt.user_mss) {
5626 struct tcp_options_received opt;
5627 const u8 *hash_location;
5628
5629 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5630 tcp_clear_options(&opt);
5631 opt.user_mss = opt.mss_clamp = 0;
5632 tcp_parse_options(synack, &opt, &hash_location, 0, NULL);
5633 mss = opt.mss_clamp;
5634 }
5635
5636 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5637 cookie->len = -1;
5638
5639 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5640 * the remote receives only the retransmitted (regular) SYNs: either
5641 * the original SYN-data or the corresponding SYN-ACK is lost.
5642 */
5643 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5644
5645 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5646
5647 if (data) { /* Retransmit unacked data in SYN */
5648 tcp_for_write_queue_from(data, sk) {
5649 if (data == tcp_send_head(sk) ||
5650 __tcp_retransmit_skb(sk, data))
5651 break;
5652 }
5653 tcp_rearm_rto(sk);
5654 return true;
5655 }
5656 tp->syn_data_acked = tp->syn_data;
5657 return false;
5658 }
5659
5660 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5661 const struct tcphdr *th, unsigned int len)
5662 {
5663 const u8 *hash_location;
5664 struct inet_connection_sock *icsk = inet_csk(sk);
5665 struct tcp_sock *tp = tcp_sk(sk);
5666 struct tcp_cookie_values *cvp = tp->cookie_values;
5667 struct tcp_fastopen_cookie foc = { .len = -1 };
5668 int saved_clamp = tp->rx_opt.mss_clamp;
5669
5670 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, &foc);
5671 if (tp->rx_opt.saw_tstamp)
5672 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5673
5674 if (th->ack) {
5675 /* rfc793:
5676 * "If the state is SYN-SENT then
5677 * first check the ACK bit
5678 * If the ACK bit is set
5679 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5680 * a reset (unless the RST bit is set, if so drop
5681 * the segment and return)"
5682 */
5683 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5684 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5685 goto reset_and_undo;
5686
5687 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5688 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5689 tcp_time_stamp)) {
5690 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5691 goto reset_and_undo;
5692 }
5693
5694 /* Now ACK is acceptable.
5695 *
5696 * "If the RST bit is set
5697 * If the ACK was acceptable then signal the user "error:
5698 * connection reset", drop the segment, enter CLOSED state,
5699 * delete TCB, and return."
5700 */
5701
5702 if (th->rst) {
5703 tcp_reset(sk);
5704 goto discard;
5705 }
5706
5707 /* rfc793:
5708 * "fifth, if neither of the SYN or RST bits is set then
5709 * drop the segment and return."
5710 *
5711 * See note below!
5712 * --ANK(990513)
5713 */
5714 if (!th->syn)
5715 goto discard_and_undo;
5716
5717 /* rfc793:
5718 * "If the SYN bit is on ...
5719 * are acceptable then ...
5720 * (our SYN has been ACKed), change the connection
5721 * state to ESTABLISHED..."
5722 */
5723
5724 TCP_ECN_rcv_synack(tp, th);
5725
5726 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5727 tcp_ack(sk, skb, FLAG_SLOWPATH);
5728
5729 /* Ok.. it's good. Set up sequence numbers and
5730 * move to established.
5731 */
5732 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5733 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5734
5735 /* RFC1323: The window in SYN & SYN/ACK segments is
5736 * never scaled.
5737 */
5738 tp->snd_wnd = ntohs(th->window);
5739
5740 if (!tp->rx_opt.wscale_ok) {
5741 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5742 tp->window_clamp = min(tp->window_clamp, 65535U);
5743 }
5744
5745 if (tp->rx_opt.saw_tstamp) {
5746 tp->rx_opt.tstamp_ok = 1;
5747 tp->tcp_header_len =
5748 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5749 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5750 tcp_store_ts_recent(tp);
5751 } else {
5752 tp->tcp_header_len = sizeof(struct tcphdr);
5753 }
5754
5755 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5756 tcp_enable_fack(tp);
5757
5758 tcp_mtup_init(sk);
5759 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5760 tcp_initialize_rcv_mss(sk);
5761
5762 /* Remember, tcp_poll() does not lock socket!
5763 * Change state from SYN-SENT only after copied_seq
5764 * is initialized. */
5765 tp->copied_seq = tp->rcv_nxt;
5766
5767 if (cvp != NULL &&
5768 cvp->cookie_pair_size > 0 &&
5769 tp->rx_opt.cookie_plus > 0) {
5770 int cookie_size = tp->rx_opt.cookie_plus
5771 - TCPOLEN_COOKIE_BASE;
5772 int cookie_pair_size = cookie_size
5773 + cvp->cookie_desired;
5774
5775 /* A cookie extension option was sent and returned.
5776 * Note that each incoming SYNACK replaces the
5777 * Responder cookie. The initial exchange is most
5778 * fragile, as protection against spoofing relies
5779 * entirely upon the sequence and timestamp (above).
5780 * This replacement strategy allows the correct pair to
5781 * pass through, while any others will be filtered via
5782 * Responder verification later.
5783 */
5784 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5785 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5786 hash_location, cookie_size);
5787 cvp->cookie_pair_size = cookie_pair_size;
5788 }
5789 }
5790
5791 smp_mb();
5792
5793 tcp_finish_connect(sk, skb);
5794
5795 if ((tp->syn_fastopen || tp->syn_data) &&
5796 tcp_rcv_fastopen_synack(sk, skb, &foc))
5797 return -1;
5798
5799 if (sk->sk_write_pending ||
5800 icsk->icsk_accept_queue.rskq_defer_accept ||
5801 icsk->icsk_ack.pingpong) {
5802 /* Save one ACK. Data will be ready after
5803 * several ticks, if write_pending is set.
5804 *
5805 * It may be deleted, but with this feature tcpdumps
5806 * look so _wonderfully_ clever, that I was not able
5807 * to stand against the temptation 8) --ANK
5808 */
5809 inet_csk_schedule_ack(sk);
5810 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5811 tcp_enter_quickack_mode(sk);
5812 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5813 TCP_DELACK_MAX, TCP_RTO_MAX);
5814
5815 discard:
5816 __kfree_skb(skb);
5817 return 0;
5818 } else {
5819 tcp_send_ack(sk);
5820 }
5821 return -1;
5822 }
5823
5824 /* No ACK in the segment */
5825
5826 if (th->rst) {
5827 /* rfc793:
5828 * "If the RST bit is set
5829 *
5830 * Otherwise (no ACK) drop the segment and return."
5831 */
5832
5833 goto discard_and_undo;
5834 }
5835
5836 /* PAWS check. */
5837 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5838 tcp_paws_reject(&tp->rx_opt, 0))
5839 goto discard_and_undo;
5840
5841 if (th->syn) {
5842 /* We see SYN without ACK. It is attempt of
5843 * simultaneous connect with crossed SYNs.
5844 * Particularly, it can be connect to self.
5845 */
5846 tcp_set_state(sk, TCP_SYN_RECV);
5847
5848 if (tp->rx_opt.saw_tstamp) {
5849 tp->rx_opt.tstamp_ok = 1;
5850 tcp_store_ts_recent(tp);
5851 tp->tcp_header_len =
5852 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5853 } else {
5854 tp->tcp_header_len = sizeof(struct tcphdr);
5855 }
5856
5857 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5858 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5859
5860 /* RFC1323: The window in SYN & SYN/ACK segments is
5861 * never scaled.
5862 */
5863 tp->snd_wnd = ntohs(th->window);
5864 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5865 tp->max_window = tp->snd_wnd;
5866
5867 TCP_ECN_rcv_syn(tp, th);
5868
5869 tcp_mtup_init(sk);
5870 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5871 tcp_initialize_rcv_mss(sk);
5872
5873 tcp_send_synack(sk);
5874 #if 0
5875 /* Note, we could accept data and URG from this segment.
5876 * There are no obstacles to make this (except that we must
5877 * either change tcp_recvmsg() to prevent it from returning data
5878 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5879 *
5880 * However, if we ignore data in ACKless segments sometimes,
5881 * we have no reasons to accept it sometimes.
5882 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5883 * is not flawless. So, discard packet for sanity.
5884 * Uncomment this return to process the data.
5885 */
5886 return -1;
5887 #else
5888 goto discard;
5889 #endif
5890 }
5891 /* "fifth, if neither of the SYN or RST bits is set then
5892 * drop the segment and return."
5893 */
5894
5895 discard_and_undo:
5896 tcp_clear_options(&tp->rx_opt);
5897 tp->rx_opt.mss_clamp = saved_clamp;
5898 goto discard;
5899
5900 reset_and_undo:
5901 tcp_clear_options(&tp->rx_opt);
5902 tp->rx_opt.mss_clamp = saved_clamp;
5903 return 1;
5904 }
5905
5906 /*
5907 * This function implements the receiving procedure of RFC 793 for
5908 * all states except ESTABLISHED and TIME_WAIT.
5909 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5910 * address independent.
5911 */
5912
5913 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5914 const struct tcphdr *th, unsigned int len)
5915 {
5916 struct tcp_sock *tp = tcp_sk(sk);
5917 struct inet_connection_sock *icsk = inet_csk(sk);
5918 struct request_sock *req;
5919 int queued = 0;
5920
5921 tp->rx_opt.saw_tstamp = 0;
5922
5923 switch (sk->sk_state) {
5924 case TCP_CLOSE:
5925 goto discard;
5926
5927 case TCP_LISTEN:
5928 if (th->ack)
5929 return 1;
5930
5931 if (th->rst)
5932 goto discard;
5933
5934 if (th->syn) {
5935 if (th->fin)
5936 goto discard;
5937 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5938 return 1;
5939
5940 /* Now we have several options: In theory there is
5941 * nothing else in the frame. KA9Q has an option to
5942 * send data with the syn, BSD accepts data with the
5943 * syn up to the [to be] advertised window and
5944 * Solaris 2.1 gives you a protocol error. For now
5945 * we just ignore it, that fits the spec precisely
5946 * and avoids incompatibilities. It would be nice in
5947 * future to drop through and process the data.
5948 *
5949 * Now that TTCP is starting to be used we ought to
5950 * queue this data.
5951 * But, this leaves one open to an easy denial of
5952 * service attack, and SYN cookies can't defend
5953 * against this problem. So, we drop the data
5954 * in the interest of security over speed unless
5955 * it's still in use.
5956 */
5957 kfree_skb(skb);
5958 return 0;
5959 }
5960 goto discard;
5961
5962 case TCP_SYN_SENT:
5963 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5964 if (queued >= 0)
5965 return queued;
5966
5967 /* Do step6 onward by hand. */
5968 tcp_urg(sk, skb, th);
5969 __kfree_skb(skb);
5970 tcp_data_snd_check(sk);
5971 return 0;
5972 }
5973
5974 req = tp->fastopen_rsk;
5975 if (req != NULL) {
5976 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5977 sk->sk_state != TCP_FIN_WAIT1);
5978
5979 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5980 goto discard;
5981 }
5982
5983 if (!th->ack && !th->rst)
5984 goto discard;
5985
5986 if (!tcp_validate_incoming(sk, skb, th, 0))
5987 return 0;
5988
5989 /* step 5: check the ACK field */
5990 if (true) {
5991 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5992 FLAG_UPDATE_TS_RECENT) > 0;
5993
5994 switch (sk->sk_state) {
5995 case TCP_SYN_RECV:
5996 if (acceptable) {
5997 /* Once we leave TCP_SYN_RECV, we no longer
5998 * need req so release it.
5999 */
6000 if (req) {
6001 tcp_synack_rtt_meas(sk, req);
6002 tp->total_retrans = req->num_retrans;
6003
6004 reqsk_fastopen_remove(sk, req, false);
6005 } else {
6006 /* Make sure socket is routed, for
6007 * correct metrics.
6008 */
6009 icsk->icsk_af_ops->rebuild_header(sk);
6010 tcp_init_congestion_control(sk);
6011
6012 tcp_mtup_init(sk);
6013 tcp_init_buffer_space(sk);
6014 tp->copied_seq = tp->rcv_nxt;
6015 }
6016 smp_mb();
6017 tcp_set_state(sk, TCP_ESTABLISHED);
6018 sk->sk_state_change(sk);
6019
6020 /* Note, that this wakeup is only for marginal
6021 * crossed SYN case. Passively open sockets
6022 * are not waked up, because sk->sk_sleep ==
6023 * NULL and sk->sk_socket == NULL.
6024 */
6025 if (sk->sk_socket)
6026 sk_wake_async(sk,
6027 SOCK_WAKE_IO, POLL_OUT);
6028
6029 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6030 tp->snd_wnd = ntohs(th->window) <<
6031 tp->rx_opt.snd_wscale;
6032 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6033
6034 if (tp->rx_opt.tstamp_ok)
6035 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6036
6037 if (req) {
6038 /* Re-arm the timer because data may
6039 * have been sent out. This is similar
6040 * to the regular data transmission case
6041 * when new data has just been ack'ed.
6042 *
6043 * (TFO) - we could try to be more
6044 * aggressive and retranmitting any data
6045 * sooner based on when they were sent
6046 * out.
6047 */
6048 tcp_rearm_rto(sk);
6049 } else
6050 tcp_init_metrics(sk);
6051
6052 /* Prevent spurious tcp_cwnd_restart() on
6053 * first data packet.
6054 */
6055 tp->lsndtime = tcp_time_stamp;
6056
6057 tcp_initialize_rcv_mss(sk);
6058 tcp_fast_path_on(tp);
6059 } else {
6060 return 1;
6061 }
6062 break;
6063
6064 case TCP_FIN_WAIT1:
6065 /* If we enter the TCP_FIN_WAIT1 state and we are a
6066 * Fast Open socket and this is the first acceptable
6067 * ACK we have received, this would have acknowledged
6068 * our SYNACK so stop the SYNACK timer.
6069 */
6070 if (req != NULL) {
6071 /* Return RST if ack_seq is invalid.
6072 * Note that RFC793 only says to generate a
6073 * DUPACK for it but for TCP Fast Open it seems
6074 * better to treat this case like TCP_SYN_RECV
6075 * above.
6076 */
6077 if (!acceptable)
6078 return 1;
6079 /* We no longer need the request sock. */
6080 reqsk_fastopen_remove(sk, req, false);
6081 tcp_rearm_rto(sk);
6082 }
6083 if (tp->snd_una == tp->write_seq) {
6084 struct dst_entry *dst;
6085
6086 tcp_set_state(sk, TCP_FIN_WAIT2);
6087 sk->sk_shutdown |= SEND_SHUTDOWN;
6088
6089 dst = __sk_dst_get(sk);
6090 if (dst)
6091 dst_confirm(dst);
6092
6093 if (!sock_flag(sk, SOCK_DEAD))
6094 /* Wake up lingering close() */
6095 sk->sk_state_change(sk);
6096 else {
6097 int tmo;
6098
6099 if (tp->linger2 < 0 ||
6100 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6101 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6102 tcp_done(sk);
6103 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6104 return 1;
6105 }
6106
6107 tmo = tcp_fin_time(sk);
6108 if (tmo > TCP_TIMEWAIT_LEN) {
6109 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6110 } else if (th->fin || sock_owned_by_user(sk)) {
6111 /* Bad case. We could lose such FIN otherwise.
6112 * It is not a big problem, but it looks confusing
6113 * and not so rare event. We still can lose it now,
6114 * if it spins in bh_lock_sock(), but it is really
6115 * marginal case.
6116 */
6117 inet_csk_reset_keepalive_timer(sk, tmo);
6118 } else {
6119 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6120 goto discard;
6121 }
6122 }
6123 }
6124 break;
6125
6126 case TCP_CLOSING:
6127 if (tp->snd_una == tp->write_seq) {
6128 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6129 goto discard;
6130 }
6131 break;
6132
6133 case TCP_LAST_ACK:
6134 if (tp->snd_una == tp->write_seq) {
6135 tcp_update_metrics(sk);
6136 tcp_done(sk);
6137 goto discard;
6138 }
6139 break;
6140 }
6141 }
6142
6143 /* step 6: check the URG bit */
6144 tcp_urg(sk, skb, th);
6145
6146 /* step 7: process the segment text */
6147 switch (sk->sk_state) {
6148 case TCP_CLOSE_WAIT:
6149 case TCP_CLOSING:
6150 case TCP_LAST_ACK:
6151 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6152 break;
6153 case TCP_FIN_WAIT1:
6154 case TCP_FIN_WAIT2:
6155 /* RFC 793 says to queue data in these states,
6156 * RFC 1122 says we MUST send a reset.
6157 * BSD 4.4 also does reset.
6158 */
6159 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6160 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6161 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6162 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6163 tcp_reset(sk);
6164 return 1;
6165 }
6166 }
6167 /* Fall through */
6168 case TCP_ESTABLISHED:
6169 tcp_data_queue(sk, skb);
6170 queued = 1;
6171 break;
6172 }
6173
6174 /* tcp_data could move socket to TIME-WAIT */
6175 if (sk->sk_state != TCP_CLOSE) {
6176 tcp_data_snd_check(sk);
6177 tcp_ack_snd_check(sk);
6178 }
6179
6180 if (!queued) {
6181 discard:
6182 __kfree_skb(skb);
6183 }
6184 return 0;
6185 }
6186 EXPORT_SYMBOL(tcp_rcv_state_process);
This page took 0.16976 seconds and 6 git commands to generate.