[TCP] FRTO: Consecutive RTOs keep prior_ssthresh and ssthresh
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114
115 /* Adapt the MSS value used to make delayed ack decision to the
116 * real world.
117 */
118 static void tcp_measure_rcv_mss(struct sock *sk,
119 const struct sk_buff *skb)
120 {
121 struct inet_connection_sock *icsk = inet_csk(sk);
122 const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 unsigned int len;
124
125 icsk->icsk_ack.last_seg_size = 0;
126
127 /* skb->len may jitter because of SACKs, even if peer
128 * sends good full-sized frames.
129 */
130 len = skb_shinfo(skb)->gso_size ?: skb->len;
131 if (len >= icsk->icsk_ack.rcv_mss) {
132 icsk->icsk_ack.rcv_mss = len;
133 } else {
134 /* Otherwise, we make more careful check taking into account,
135 * that SACKs block is variable.
136 *
137 * "len" is invariant segment length, including TCP header.
138 */
139 len += skb->data - skb->h.raw;
140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 /* If PSH is not set, packet should be
142 * full sized, provided peer TCP is not badly broken.
143 * This observation (if it is correct 8)) allows
144 * to handle super-low mtu links fairly.
145 */
146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 /* Subtract also invariant (if peer is RFC compliant),
149 * tcp header plus fixed timestamp option length.
150 * Resulting "len" is MSS free of SACK jitter.
151 */
152 len -= tcp_sk(sk)->tcp_header_len;
153 icsk->icsk_ack.last_seg_size = len;
154 if (len == lss) {
155 icsk->icsk_ack.rcv_mss = len;
156 return;
157 }
158 }
159 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
160 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
161 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
162 }
163 }
164
165 static void tcp_incr_quickack(struct sock *sk)
166 {
167 struct inet_connection_sock *icsk = inet_csk(sk);
168 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
169
170 if (quickacks==0)
171 quickacks=2;
172 if (quickacks > icsk->icsk_ack.quick)
173 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
174 }
175
176 void tcp_enter_quickack_mode(struct sock *sk)
177 {
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 tcp_incr_quickack(sk);
180 icsk->icsk_ack.pingpong = 0;
181 icsk->icsk_ack.ato = TCP_ATO_MIN;
182 }
183
184 /* Send ACKs quickly, if "quick" count is not exhausted
185 * and the session is not interactive.
186 */
187
188 static inline int tcp_in_quickack_mode(const struct sock *sk)
189 {
190 const struct inet_connection_sock *icsk = inet_csk(sk);
191 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
192 }
193
194 /* Buffer size and advertised window tuning.
195 *
196 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197 */
198
199 static void tcp_fixup_sndbuf(struct sock *sk)
200 {
201 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
202 sizeof(struct sk_buff);
203
204 if (sk->sk_sndbuf < 3 * sndmem)
205 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206 }
207
208 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
209 *
210 * All tcp_full_space() is split to two parts: "network" buffer, allocated
211 * forward and advertised in receiver window (tp->rcv_wnd) and
212 * "application buffer", required to isolate scheduling/application
213 * latencies from network.
214 * window_clamp is maximal advertised window. It can be less than
215 * tcp_full_space(), in this case tcp_full_space() - window_clamp
216 * is reserved for "application" buffer. The less window_clamp is
217 * the smoother our behaviour from viewpoint of network, but the lower
218 * throughput and the higher sensitivity of the connection to losses. 8)
219 *
220 * rcv_ssthresh is more strict window_clamp used at "slow start"
221 * phase to predict further behaviour of this connection.
222 * It is used for two goals:
223 * - to enforce header prediction at sender, even when application
224 * requires some significant "application buffer". It is check #1.
225 * - to prevent pruning of receive queue because of misprediction
226 * of receiver window. Check #2.
227 *
228 * The scheme does not work when sender sends good segments opening
229 * window and then starts to feed us spaghetti. But it should work
230 * in common situations. Otherwise, we have to rely on queue collapsing.
231 */
232
233 /* Slow part of check#2. */
234 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
235 const struct sk_buff *skb)
236 {
237 /* Optimize this! */
238 int truesize = tcp_win_from_space(skb->truesize)/2;
239 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
240
241 while (tp->rcv_ssthresh <= window) {
242 if (truesize <= skb->len)
243 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
244
245 truesize >>= 1;
246 window >>= 1;
247 }
248 return 0;
249 }
250
251 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
252 struct sk_buff *skb)
253 {
254 /* Check #1 */
255 if (tp->rcv_ssthresh < tp->window_clamp &&
256 (int)tp->rcv_ssthresh < tcp_space(sk) &&
257 !tcp_memory_pressure) {
258 int incr;
259
260 /* Check #2. Increase window, if skb with such overhead
261 * will fit to rcvbuf in future.
262 */
263 if (tcp_win_from_space(skb->truesize) <= skb->len)
264 incr = 2*tp->advmss;
265 else
266 incr = __tcp_grow_window(sk, tp, skb);
267
268 if (incr) {
269 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
270 inet_csk(sk)->icsk_ack.quick |= 1;
271 }
272 }
273 }
274
275 /* 3. Tuning rcvbuf, when connection enters established state. */
276
277 static void tcp_fixup_rcvbuf(struct sock *sk)
278 {
279 struct tcp_sock *tp = tcp_sk(sk);
280 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
281
282 /* Try to select rcvbuf so that 4 mss-sized segments
283 * will fit to window and corresponding skbs will fit to our rcvbuf.
284 * (was 3; 4 is minimum to allow fast retransmit to work.)
285 */
286 while (tcp_win_from_space(rcvmem) < tp->advmss)
287 rcvmem += 128;
288 if (sk->sk_rcvbuf < 4 * rcvmem)
289 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290 }
291
292 /* 4. Try to fixup all. It is made immediately after connection enters
293 * established state.
294 */
295 static void tcp_init_buffer_space(struct sock *sk)
296 {
297 struct tcp_sock *tp = tcp_sk(sk);
298 int maxwin;
299
300 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
301 tcp_fixup_rcvbuf(sk);
302 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
303 tcp_fixup_sndbuf(sk);
304
305 tp->rcvq_space.space = tp->rcv_wnd;
306
307 maxwin = tcp_full_space(sk);
308
309 if (tp->window_clamp >= maxwin) {
310 tp->window_clamp = maxwin;
311
312 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
313 tp->window_clamp = max(maxwin -
314 (maxwin >> sysctl_tcp_app_win),
315 4 * tp->advmss);
316 }
317
318 /* Force reservation of one segment. */
319 if (sysctl_tcp_app_win &&
320 tp->window_clamp > 2 * tp->advmss &&
321 tp->window_clamp + tp->advmss > maxwin)
322 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
323
324 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
325 tp->snd_cwnd_stamp = tcp_time_stamp;
326 }
327
328 /* 5. Recalculate window clamp after socket hit its memory bounds. */
329 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
330 {
331 struct inet_connection_sock *icsk = inet_csk(sk);
332
333 icsk->icsk_ack.quick = 0;
334
335 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
336 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
337 !tcp_memory_pressure &&
338 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
339 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
340 sysctl_tcp_rmem[2]);
341 }
342 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
343 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
344 }
345
346
347 /* Initialize RCV_MSS value.
348 * RCV_MSS is an our guess about MSS used by the peer.
349 * We haven't any direct information about the MSS.
350 * It's better to underestimate the RCV_MSS rather than overestimate.
351 * Overestimations make us ACKing less frequently than needed.
352 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
353 */
354 void tcp_initialize_rcv_mss(struct sock *sk)
355 {
356 struct tcp_sock *tp = tcp_sk(sk);
357 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
358
359 hint = min(hint, tp->rcv_wnd/2);
360 hint = min(hint, TCP_MIN_RCVMSS);
361 hint = max(hint, TCP_MIN_MSS);
362
363 inet_csk(sk)->icsk_ack.rcv_mss = hint;
364 }
365
366 /* Receiver "autotuning" code.
367 *
368 * The algorithm for RTT estimation w/o timestamps is based on
369 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
370 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
371 *
372 * More detail on this code can be found at
373 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
374 * though this reference is out of date. A new paper
375 * is pending.
376 */
377 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
378 {
379 u32 new_sample = tp->rcv_rtt_est.rtt;
380 long m = sample;
381
382 if (m == 0)
383 m = 1;
384
385 if (new_sample != 0) {
386 /* If we sample in larger samples in the non-timestamp
387 * case, we could grossly overestimate the RTT especially
388 * with chatty applications or bulk transfer apps which
389 * are stalled on filesystem I/O.
390 *
391 * Also, since we are only going for a minimum in the
392 * non-timestamp case, we do not smooth things out
393 * else with timestamps disabled convergence takes too
394 * long.
395 */
396 if (!win_dep) {
397 m -= (new_sample >> 3);
398 new_sample += m;
399 } else if (m < new_sample)
400 new_sample = m << 3;
401 } else {
402 /* No previous measure. */
403 new_sample = m << 3;
404 }
405
406 if (tp->rcv_rtt_est.rtt != new_sample)
407 tp->rcv_rtt_est.rtt = new_sample;
408 }
409
410 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
411 {
412 if (tp->rcv_rtt_est.time == 0)
413 goto new_measure;
414 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
415 return;
416 tcp_rcv_rtt_update(tp,
417 jiffies - tp->rcv_rtt_est.time,
418 1);
419
420 new_measure:
421 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
422 tp->rcv_rtt_est.time = tcp_time_stamp;
423 }
424
425 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
426 {
427 struct tcp_sock *tp = tcp_sk(sk);
428 if (tp->rx_opt.rcv_tsecr &&
429 (TCP_SKB_CB(skb)->end_seq -
430 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
431 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
432 }
433
434 /*
435 * This function should be called every time data is copied to user space.
436 * It calculates the appropriate TCP receive buffer space.
437 */
438 void tcp_rcv_space_adjust(struct sock *sk)
439 {
440 struct tcp_sock *tp = tcp_sk(sk);
441 int time;
442 int space;
443
444 if (tp->rcvq_space.time == 0)
445 goto new_measure;
446
447 time = tcp_time_stamp - tp->rcvq_space.time;
448 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
449 tp->rcv_rtt_est.rtt == 0)
450 return;
451
452 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
453
454 space = max(tp->rcvq_space.space, space);
455
456 if (tp->rcvq_space.space != space) {
457 int rcvmem;
458
459 tp->rcvq_space.space = space;
460
461 if (sysctl_tcp_moderate_rcvbuf &&
462 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
463 int new_clamp = space;
464
465 /* Receive space grows, normalize in order to
466 * take into account packet headers and sk_buff
467 * structure overhead.
468 */
469 space /= tp->advmss;
470 if (!space)
471 space = 1;
472 rcvmem = (tp->advmss + MAX_TCP_HEADER +
473 16 + sizeof(struct sk_buff));
474 while (tcp_win_from_space(rcvmem) < tp->advmss)
475 rcvmem += 128;
476 space *= rcvmem;
477 space = min(space, sysctl_tcp_rmem[2]);
478 if (space > sk->sk_rcvbuf) {
479 sk->sk_rcvbuf = space;
480
481 /* Make the window clamp follow along. */
482 tp->window_clamp = new_clamp;
483 }
484 }
485 }
486
487 new_measure:
488 tp->rcvq_space.seq = tp->copied_seq;
489 tp->rcvq_space.time = tcp_time_stamp;
490 }
491
492 /* There is something which you must keep in mind when you analyze the
493 * behavior of the tp->ato delayed ack timeout interval. When a
494 * connection starts up, we want to ack as quickly as possible. The
495 * problem is that "good" TCP's do slow start at the beginning of data
496 * transmission. The means that until we send the first few ACK's the
497 * sender will sit on his end and only queue most of his data, because
498 * he can only send snd_cwnd unacked packets at any given time. For
499 * each ACK we send, he increments snd_cwnd and transmits more of his
500 * queue. -DaveM
501 */
502 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
503 {
504 struct inet_connection_sock *icsk = inet_csk(sk);
505 u32 now;
506
507 inet_csk_schedule_ack(sk);
508
509 tcp_measure_rcv_mss(sk, skb);
510
511 tcp_rcv_rtt_measure(tp);
512
513 now = tcp_time_stamp;
514
515 if (!icsk->icsk_ack.ato) {
516 /* The _first_ data packet received, initialize
517 * delayed ACK engine.
518 */
519 tcp_incr_quickack(sk);
520 icsk->icsk_ack.ato = TCP_ATO_MIN;
521 } else {
522 int m = now - icsk->icsk_ack.lrcvtime;
523
524 if (m <= TCP_ATO_MIN/2) {
525 /* The fastest case is the first. */
526 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
527 } else if (m < icsk->icsk_ack.ato) {
528 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
529 if (icsk->icsk_ack.ato > icsk->icsk_rto)
530 icsk->icsk_ack.ato = icsk->icsk_rto;
531 } else if (m > icsk->icsk_rto) {
532 /* Too long gap. Apparently sender failed to
533 * restart window, so that we send ACKs quickly.
534 */
535 tcp_incr_quickack(sk);
536 sk_stream_mem_reclaim(sk);
537 }
538 }
539 icsk->icsk_ack.lrcvtime = now;
540
541 TCP_ECN_check_ce(tp, skb);
542
543 if (skb->len >= 128)
544 tcp_grow_window(sk, tp, skb);
545 }
546
547 /* Called to compute a smoothed rtt estimate. The data fed to this
548 * routine either comes from timestamps, or from segments that were
549 * known _not_ to have been retransmitted [see Karn/Partridge
550 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
551 * piece by Van Jacobson.
552 * NOTE: the next three routines used to be one big routine.
553 * To save cycles in the RFC 1323 implementation it was better to break
554 * it up into three procedures. -- erics
555 */
556 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
557 {
558 struct tcp_sock *tp = tcp_sk(sk);
559 long m = mrtt; /* RTT */
560
561 /* The following amusing code comes from Jacobson's
562 * article in SIGCOMM '88. Note that rtt and mdev
563 * are scaled versions of rtt and mean deviation.
564 * This is designed to be as fast as possible
565 * m stands for "measurement".
566 *
567 * On a 1990 paper the rto value is changed to:
568 * RTO = rtt + 4 * mdev
569 *
570 * Funny. This algorithm seems to be very broken.
571 * These formulae increase RTO, when it should be decreased, increase
572 * too slowly, when it should be increased quickly, decrease too quickly
573 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
574 * does not matter how to _calculate_ it. Seems, it was trap
575 * that VJ failed to avoid. 8)
576 */
577 if(m == 0)
578 m = 1;
579 if (tp->srtt != 0) {
580 m -= (tp->srtt >> 3); /* m is now error in rtt est */
581 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
582 if (m < 0) {
583 m = -m; /* m is now abs(error) */
584 m -= (tp->mdev >> 2); /* similar update on mdev */
585 /* This is similar to one of Eifel findings.
586 * Eifel blocks mdev updates when rtt decreases.
587 * This solution is a bit different: we use finer gain
588 * for mdev in this case (alpha*beta).
589 * Like Eifel it also prevents growth of rto,
590 * but also it limits too fast rto decreases,
591 * happening in pure Eifel.
592 */
593 if (m > 0)
594 m >>= 3;
595 } else {
596 m -= (tp->mdev >> 2); /* similar update on mdev */
597 }
598 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
599 if (tp->mdev > tp->mdev_max) {
600 tp->mdev_max = tp->mdev;
601 if (tp->mdev_max > tp->rttvar)
602 tp->rttvar = tp->mdev_max;
603 }
604 if (after(tp->snd_una, tp->rtt_seq)) {
605 if (tp->mdev_max < tp->rttvar)
606 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
607 tp->rtt_seq = tp->snd_nxt;
608 tp->mdev_max = TCP_RTO_MIN;
609 }
610 } else {
611 /* no previous measure. */
612 tp->srtt = m<<3; /* take the measured time to be rtt */
613 tp->mdev = m<<1; /* make sure rto = 3*rtt */
614 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
615 tp->rtt_seq = tp->snd_nxt;
616 }
617 }
618
619 /* Calculate rto without backoff. This is the second half of Van Jacobson's
620 * routine referred to above.
621 */
622 static inline void tcp_set_rto(struct sock *sk)
623 {
624 const struct tcp_sock *tp = tcp_sk(sk);
625 /* Old crap is replaced with new one. 8)
626 *
627 * More seriously:
628 * 1. If rtt variance happened to be less 50msec, it is hallucination.
629 * It cannot be less due to utterly erratic ACK generation made
630 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
631 * to do with delayed acks, because at cwnd>2 true delack timeout
632 * is invisible. Actually, Linux-2.4 also generates erratic
633 * ACKs in some circumstances.
634 */
635 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
636
637 /* 2. Fixups made earlier cannot be right.
638 * If we do not estimate RTO correctly without them,
639 * all the algo is pure shit and should be replaced
640 * with correct one. It is exactly, which we pretend to do.
641 */
642 }
643
644 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
645 * guarantees that rto is higher.
646 */
647 static inline void tcp_bound_rto(struct sock *sk)
648 {
649 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
650 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
651 }
652
653 /* Save metrics learned by this TCP session.
654 This function is called only, when TCP finishes successfully
655 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
656 */
657 void tcp_update_metrics(struct sock *sk)
658 {
659 struct tcp_sock *tp = tcp_sk(sk);
660 struct dst_entry *dst = __sk_dst_get(sk);
661
662 if (sysctl_tcp_nometrics_save)
663 return;
664
665 dst_confirm(dst);
666
667 if (dst && (dst->flags&DST_HOST)) {
668 const struct inet_connection_sock *icsk = inet_csk(sk);
669 int m;
670
671 if (icsk->icsk_backoff || !tp->srtt) {
672 /* This session failed to estimate rtt. Why?
673 * Probably, no packets returned in time.
674 * Reset our results.
675 */
676 if (!(dst_metric_locked(dst, RTAX_RTT)))
677 dst->metrics[RTAX_RTT-1] = 0;
678 return;
679 }
680
681 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
682
683 /* If newly calculated rtt larger than stored one,
684 * store new one. Otherwise, use EWMA. Remember,
685 * rtt overestimation is always better than underestimation.
686 */
687 if (!(dst_metric_locked(dst, RTAX_RTT))) {
688 if (m <= 0)
689 dst->metrics[RTAX_RTT-1] = tp->srtt;
690 else
691 dst->metrics[RTAX_RTT-1] -= (m>>3);
692 }
693
694 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
695 if (m < 0)
696 m = -m;
697
698 /* Scale deviation to rttvar fixed point */
699 m >>= 1;
700 if (m < tp->mdev)
701 m = tp->mdev;
702
703 if (m >= dst_metric(dst, RTAX_RTTVAR))
704 dst->metrics[RTAX_RTTVAR-1] = m;
705 else
706 dst->metrics[RTAX_RTTVAR-1] -=
707 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
708 }
709
710 if (tp->snd_ssthresh >= 0xFFFF) {
711 /* Slow start still did not finish. */
712 if (dst_metric(dst, RTAX_SSTHRESH) &&
713 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
714 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
715 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
716 if (!dst_metric_locked(dst, RTAX_CWND) &&
717 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
718 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
719 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
720 icsk->icsk_ca_state == TCP_CA_Open) {
721 /* Cong. avoidance phase, cwnd is reliable. */
722 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
723 dst->metrics[RTAX_SSTHRESH-1] =
724 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
725 if (!dst_metric_locked(dst, RTAX_CWND))
726 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
727 } else {
728 /* Else slow start did not finish, cwnd is non-sense,
729 ssthresh may be also invalid.
730 */
731 if (!dst_metric_locked(dst, RTAX_CWND))
732 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
733 if (dst->metrics[RTAX_SSTHRESH-1] &&
734 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
735 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
736 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
737 }
738
739 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
740 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
741 tp->reordering != sysctl_tcp_reordering)
742 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
743 }
744 }
745 }
746
747 /* Numbers are taken from RFC2414. */
748 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
749 {
750 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
751
752 if (!cwnd) {
753 if (tp->mss_cache > 1460)
754 cwnd = 2;
755 else
756 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
757 }
758 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
759 }
760
761 /* Set slow start threshold and cwnd not falling to slow start */
762 void tcp_enter_cwr(struct sock *sk)
763 {
764 struct tcp_sock *tp = tcp_sk(sk);
765
766 tp->prior_ssthresh = 0;
767 tp->bytes_acked = 0;
768 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
769 tp->undo_marker = 0;
770 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
771 tp->snd_cwnd = min(tp->snd_cwnd,
772 tcp_packets_in_flight(tp) + 1U);
773 tp->snd_cwnd_cnt = 0;
774 tp->high_seq = tp->snd_nxt;
775 tp->snd_cwnd_stamp = tcp_time_stamp;
776 TCP_ECN_queue_cwr(tp);
777
778 tcp_set_ca_state(sk, TCP_CA_CWR);
779 }
780 }
781
782 /* Initialize metrics on socket. */
783
784 static void tcp_init_metrics(struct sock *sk)
785 {
786 struct tcp_sock *tp = tcp_sk(sk);
787 struct dst_entry *dst = __sk_dst_get(sk);
788
789 if (dst == NULL)
790 goto reset;
791
792 dst_confirm(dst);
793
794 if (dst_metric_locked(dst, RTAX_CWND))
795 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
796 if (dst_metric(dst, RTAX_SSTHRESH)) {
797 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
798 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
799 tp->snd_ssthresh = tp->snd_cwnd_clamp;
800 }
801 if (dst_metric(dst, RTAX_REORDERING) &&
802 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
803 tp->rx_opt.sack_ok &= ~2;
804 tp->reordering = dst_metric(dst, RTAX_REORDERING);
805 }
806
807 if (dst_metric(dst, RTAX_RTT) == 0)
808 goto reset;
809
810 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
811 goto reset;
812
813 /* Initial rtt is determined from SYN,SYN-ACK.
814 * The segment is small and rtt may appear much
815 * less than real one. Use per-dst memory
816 * to make it more realistic.
817 *
818 * A bit of theory. RTT is time passed after "normal" sized packet
819 * is sent until it is ACKed. In normal circumstances sending small
820 * packets force peer to delay ACKs and calculation is correct too.
821 * The algorithm is adaptive and, provided we follow specs, it
822 * NEVER underestimate RTT. BUT! If peer tries to make some clever
823 * tricks sort of "quick acks" for time long enough to decrease RTT
824 * to low value, and then abruptly stops to do it and starts to delay
825 * ACKs, wait for troubles.
826 */
827 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
828 tp->srtt = dst_metric(dst, RTAX_RTT);
829 tp->rtt_seq = tp->snd_nxt;
830 }
831 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
832 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
833 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
834 }
835 tcp_set_rto(sk);
836 tcp_bound_rto(sk);
837 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
838 goto reset;
839 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
840 tp->snd_cwnd_stamp = tcp_time_stamp;
841 return;
842
843 reset:
844 /* Play conservative. If timestamps are not
845 * supported, TCP will fail to recalculate correct
846 * rtt, if initial rto is too small. FORGET ALL AND RESET!
847 */
848 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
849 tp->srtt = 0;
850 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
851 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
852 }
853 }
854
855 static void tcp_update_reordering(struct sock *sk, const int metric,
856 const int ts)
857 {
858 struct tcp_sock *tp = tcp_sk(sk);
859 if (metric > tp->reordering) {
860 tp->reordering = min(TCP_MAX_REORDERING, metric);
861
862 /* This exciting event is worth to be remembered. 8) */
863 if (ts)
864 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
865 else if (IsReno(tp))
866 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
867 else if (IsFack(tp))
868 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
869 else
870 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
871 #if FASTRETRANS_DEBUG > 1
872 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
873 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
874 tp->reordering,
875 tp->fackets_out,
876 tp->sacked_out,
877 tp->undo_marker ? tp->undo_retrans : 0);
878 #endif
879 /* Disable FACK yet. */
880 tp->rx_opt.sack_ok &= ~2;
881 }
882 }
883
884 /* This procedure tags the retransmission queue when SACKs arrive.
885 *
886 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
887 * Packets in queue with these bits set are counted in variables
888 * sacked_out, retrans_out and lost_out, correspondingly.
889 *
890 * Valid combinations are:
891 * Tag InFlight Description
892 * 0 1 - orig segment is in flight.
893 * S 0 - nothing flies, orig reached receiver.
894 * L 0 - nothing flies, orig lost by net.
895 * R 2 - both orig and retransmit are in flight.
896 * L|R 1 - orig is lost, retransmit is in flight.
897 * S|R 1 - orig reached receiver, retrans is still in flight.
898 * (L|S|R is logically valid, it could occur when L|R is sacked,
899 * but it is equivalent to plain S and code short-curcuits it to S.
900 * L|S is logically invalid, it would mean -1 packet in flight 8))
901 *
902 * These 6 states form finite state machine, controlled by the following events:
903 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
904 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
905 * 3. Loss detection event of one of three flavors:
906 * A. Scoreboard estimator decided the packet is lost.
907 * A'. Reno "three dupacks" marks head of queue lost.
908 * A''. Its FACK modfication, head until snd.fack is lost.
909 * B. SACK arrives sacking data transmitted after never retransmitted
910 * hole was sent out.
911 * C. SACK arrives sacking SND.NXT at the moment, when the
912 * segment was retransmitted.
913 * 4. D-SACK added new rule: D-SACK changes any tag to S.
914 *
915 * It is pleasant to note, that state diagram turns out to be commutative,
916 * so that we are allowed not to be bothered by order of our actions,
917 * when multiple events arrive simultaneously. (see the function below).
918 *
919 * Reordering detection.
920 * --------------------
921 * Reordering metric is maximal distance, which a packet can be displaced
922 * in packet stream. With SACKs we can estimate it:
923 *
924 * 1. SACK fills old hole and the corresponding segment was not
925 * ever retransmitted -> reordering. Alas, we cannot use it
926 * when segment was retransmitted.
927 * 2. The last flaw is solved with D-SACK. D-SACK arrives
928 * for retransmitted and already SACKed segment -> reordering..
929 * Both of these heuristics are not used in Loss state, when we cannot
930 * account for retransmits accurately.
931 */
932 static int
933 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
934 {
935 const struct inet_connection_sock *icsk = inet_csk(sk);
936 struct tcp_sock *tp = tcp_sk(sk);
937 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
938 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
939 struct sk_buff *cached_skb;
940 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
941 int reord = tp->packets_out;
942 int prior_fackets;
943 u32 lost_retrans = 0;
944 int flag = 0;
945 int dup_sack = 0;
946 int cached_fack_count;
947 int i;
948 int first_sack_index;
949
950 if (!tp->sacked_out)
951 tp->fackets_out = 0;
952 prior_fackets = tp->fackets_out;
953
954 /* Check for D-SACK. */
955 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
956 dup_sack = 1;
957 tp->rx_opt.sack_ok |= 4;
958 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
959 } else if (num_sacks > 1 &&
960 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
961 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
962 dup_sack = 1;
963 tp->rx_opt.sack_ok |= 4;
964 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
965 }
966
967 /* D-SACK for already forgotten data...
968 * Do dumb counting. */
969 if (dup_sack &&
970 !after(ntohl(sp[0].end_seq), prior_snd_una) &&
971 after(ntohl(sp[0].end_seq), tp->undo_marker))
972 tp->undo_retrans--;
973
974 /* Eliminate too old ACKs, but take into
975 * account more or less fresh ones, they can
976 * contain valid SACK info.
977 */
978 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
979 return 0;
980
981 /* SACK fastpath:
982 * if the only SACK change is the increase of the end_seq of
983 * the first block then only apply that SACK block
984 * and use retrans queue hinting otherwise slowpath */
985 flag = 1;
986 for (i = 0; i < num_sacks; i++) {
987 __be32 start_seq = sp[i].start_seq;
988 __be32 end_seq = sp[i].end_seq;
989
990 if (i == 0) {
991 if (tp->recv_sack_cache[i].start_seq != start_seq)
992 flag = 0;
993 } else {
994 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
995 (tp->recv_sack_cache[i].end_seq != end_seq))
996 flag = 0;
997 }
998 tp->recv_sack_cache[i].start_seq = start_seq;
999 tp->recv_sack_cache[i].end_seq = end_seq;
1000 }
1001 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1002 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1003 tp->recv_sack_cache[i].start_seq = 0;
1004 tp->recv_sack_cache[i].end_seq = 0;
1005 }
1006
1007 first_sack_index = 0;
1008 if (flag)
1009 num_sacks = 1;
1010 else {
1011 int j;
1012 tp->fastpath_skb_hint = NULL;
1013
1014 /* order SACK blocks to allow in order walk of the retrans queue */
1015 for (i = num_sacks-1; i > 0; i--) {
1016 for (j = 0; j < i; j++){
1017 if (after(ntohl(sp[j].start_seq),
1018 ntohl(sp[j+1].start_seq))){
1019 struct tcp_sack_block_wire tmp;
1020
1021 tmp = sp[j];
1022 sp[j] = sp[j+1];
1023 sp[j+1] = tmp;
1024
1025 /* Track where the first SACK block goes to */
1026 if (j == first_sack_index)
1027 first_sack_index = j+1;
1028 }
1029
1030 }
1031 }
1032 }
1033
1034 /* clear flag as used for different purpose in following code */
1035 flag = 0;
1036
1037 /* Use SACK fastpath hint if valid */
1038 cached_skb = tp->fastpath_skb_hint;
1039 cached_fack_count = tp->fastpath_cnt_hint;
1040 if (!cached_skb) {
1041 cached_skb = sk->sk_write_queue.next;
1042 cached_fack_count = 0;
1043 }
1044
1045 for (i=0; i<num_sacks; i++, sp++) {
1046 struct sk_buff *skb;
1047 __u32 start_seq = ntohl(sp->start_seq);
1048 __u32 end_seq = ntohl(sp->end_seq);
1049 int fack_count;
1050
1051 skb = cached_skb;
1052 fack_count = cached_fack_count;
1053
1054 /* Event "B" in the comment above. */
1055 if (after(end_seq, tp->high_seq))
1056 flag |= FLAG_DATA_LOST;
1057
1058 sk_stream_for_retrans_queue_from(skb, sk) {
1059 int in_sack, pcount;
1060 u8 sacked;
1061
1062 cached_skb = skb;
1063 cached_fack_count = fack_count;
1064 if (i == first_sack_index) {
1065 tp->fastpath_skb_hint = skb;
1066 tp->fastpath_cnt_hint = fack_count;
1067 }
1068
1069 /* The retransmission queue is always in order, so
1070 * we can short-circuit the walk early.
1071 */
1072 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1073 break;
1074
1075 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1076 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1077
1078 pcount = tcp_skb_pcount(skb);
1079
1080 if (pcount > 1 && !in_sack &&
1081 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1082 unsigned int pkt_len;
1083
1084 in_sack = !after(start_seq,
1085 TCP_SKB_CB(skb)->seq);
1086
1087 if (!in_sack)
1088 pkt_len = (start_seq -
1089 TCP_SKB_CB(skb)->seq);
1090 else
1091 pkt_len = (end_seq -
1092 TCP_SKB_CB(skb)->seq);
1093 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1094 break;
1095 pcount = tcp_skb_pcount(skb);
1096 }
1097
1098 fack_count += pcount;
1099
1100 sacked = TCP_SKB_CB(skb)->sacked;
1101
1102 /* Account D-SACK for retransmitted packet. */
1103 if ((dup_sack && in_sack) &&
1104 (sacked & TCPCB_RETRANS) &&
1105 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1106 tp->undo_retrans--;
1107
1108 /* The frame is ACKed. */
1109 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1110 if (sacked&TCPCB_RETRANS) {
1111 if ((dup_sack && in_sack) &&
1112 (sacked&TCPCB_SACKED_ACKED))
1113 reord = min(fack_count, reord);
1114 } else {
1115 /* If it was in a hole, we detected reordering. */
1116 if (fack_count < prior_fackets &&
1117 !(sacked&TCPCB_SACKED_ACKED))
1118 reord = min(fack_count, reord);
1119 }
1120
1121 /* Nothing to do; acked frame is about to be dropped. */
1122 continue;
1123 }
1124
1125 if ((sacked&TCPCB_SACKED_RETRANS) &&
1126 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1127 (!lost_retrans || after(end_seq, lost_retrans)))
1128 lost_retrans = end_seq;
1129
1130 if (!in_sack)
1131 continue;
1132
1133 if (!(sacked&TCPCB_SACKED_ACKED)) {
1134 if (sacked & TCPCB_SACKED_RETRANS) {
1135 /* If the segment is not tagged as lost,
1136 * we do not clear RETRANS, believing
1137 * that retransmission is still in flight.
1138 */
1139 if (sacked & TCPCB_LOST) {
1140 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1141 tp->lost_out -= tcp_skb_pcount(skb);
1142 tp->retrans_out -= tcp_skb_pcount(skb);
1143
1144 /* clear lost hint */
1145 tp->retransmit_skb_hint = NULL;
1146 }
1147 } else {
1148 /* New sack for not retransmitted frame,
1149 * which was in hole. It is reordering.
1150 */
1151 if (!(sacked & TCPCB_RETRANS) &&
1152 fack_count < prior_fackets)
1153 reord = min(fack_count, reord);
1154
1155 if (sacked & TCPCB_LOST) {
1156 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1157 tp->lost_out -= tcp_skb_pcount(skb);
1158
1159 /* clear lost hint */
1160 tp->retransmit_skb_hint = NULL;
1161 }
1162 }
1163
1164 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1165 flag |= FLAG_DATA_SACKED;
1166 tp->sacked_out += tcp_skb_pcount(skb);
1167
1168 if (fack_count > tp->fackets_out)
1169 tp->fackets_out = fack_count;
1170 } else {
1171 if (dup_sack && (sacked&TCPCB_RETRANS))
1172 reord = min(fack_count, reord);
1173 }
1174
1175 /* D-SACK. We can detect redundant retransmission
1176 * in S|R and plain R frames and clear it.
1177 * undo_retrans is decreased above, L|R frames
1178 * are accounted above as well.
1179 */
1180 if (dup_sack &&
1181 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1182 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1183 tp->retrans_out -= tcp_skb_pcount(skb);
1184 tp->retransmit_skb_hint = NULL;
1185 }
1186 }
1187 }
1188
1189 /* Check for lost retransmit. This superb idea is
1190 * borrowed from "ratehalving". Event "C".
1191 * Later note: FACK people cheated me again 8),
1192 * we have to account for reordering! Ugly,
1193 * but should help.
1194 */
1195 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1196 struct sk_buff *skb;
1197
1198 sk_stream_for_retrans_queue(skb, sk) {
1199 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1200 break;
1201 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1202 continue;
1203 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1204 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1205 (IsFack(tp) ||
1206 !before(lost_retrans,
1207 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1208 tp->mss_cache))) {
1209 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1210 tp->retrans_out -= tcp_skb_pcount(skb);
1211
1212 /* clear lost hint */
1213 tp->retransmit_skb_hint = NULL;
1214
1215 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1216 tp->lost_out += tcp_skb_pcount(skb);
1217 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1218 flag |= FLAG_DATA_SACKED;
1219 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1220 }
1221 }
1222 }
1223 }
1224
1225 tp->left_out = tp->sacked_out + tp->lost_out;
1226
1227 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1228 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1229
1230 #if FASTRETRANS_DEBUG > 0
1231 BUG_TRAP((int)tp->sacked_out >= 0);
1232 BUG_TRAP((int)tp->lost_out >= 0);
1233 BUG_TRAP((int)tp->retrans_out >= 0);
1234 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1235 #endif
1236 return flag;
1237 }
1238
1239 /* F-RTO can only be used if these conditions are satisfied:
1240 * - there must be some unsent new data
1241 * - the advertised window should allow sending it
1242 */
1243 int tcp_use_frto(const struct sock *sk)
1244 {
1245 const struct tcp_sock *tp = tcp_sk(sk);
1246
1247 return (sysctl_tcp_frto && sk->sk_send_head &&
1248 !after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
1249 tp->snd_una + tp->snd_wnd));
1250 }
1251
1252 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1253 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1254 * the RTO was spurious.
1255 *
1256 * Do like tcp_enter_loss() would; when RTO expires the second time it
1257 * does:
1258 * "Reduce ssthresh if it has not yet been made inside this window."
1259 */
1260 void tcp_enter_frto(struct sock *sk)
1261 {
1262 const struct inet_connection_sock *icsk = inet_csk(sk);
1263 struct tcp_sock *tp = tcp_sk(sk);
1264 struct sk_buff *skb;
1265
1266 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1267 tp->snd_una == tp->high_seq ||
1268 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1269 !icsk->icsk_retransmits)) {
1270 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1271 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1272 tcp_ca_event(sk, CA_EVENT_FRTO);
1273 }
1274
1275 /* Have to clear retransmission markers here to keep the bookkeeping
1276 * in shape, even though we are not yet in Loss state.
1277 * If something was really lost, it is eventually caught up
1278 * in tcp_enter_frto_loss.
1279 */
1280 tp->retrans_out = 0;
1281 tp->undo_marker = tp->snd_una;
1282 tp->undo_retrans = 0;
1283
1284 sk_stream_for_retrans_queue(skb, sk) {
1285 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1286 }
1287 tcp_sync_left_out(tp);
1288
1289 tcp_set_ca_state(sk, TCP_CA_Open);
1290 tp->frto_highmark = tp->snd_nxt;
1291 tp->frto_counter = 1;
1292 }
1293
1294 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1295 * which indicates that we should follow the traditional RTO recovery,
1296 * i.e. mark everything lost and do go-back-N retransmission.
1297 */
1298 static void tcp_enter_frto_loss(struct sock *sk)
1299 {
1300 struct tcp_sock *tp = tcp_sk(sk);
1301 struct sk_buff *skb;
1302 int cnt = 0;
1303
1304 tp->sacked_out = 0;
1305 tp->lost_out = 0;
1306 tp->fackets_out = 0;
1307
1308 sk_stream_for_retrans_queue(skb, sk) {
1309 cnt += tcp_skb_pcount(skb);
1310 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1311 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1312
1313 /* Do not mark those segments lost that were
1314 * forward transmitted after RTO
1315 */
1316 if (!after(TCP_SKB_CB(skb)->end_seq,
1317 tp->frto_highmark)) {
1318 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1319 tp->lost_out += tcp_skb_pcount(skb);
1320 }
1321 } else {
1322 tp->sacked_out += tcp_skb_pcount(skb);
1323 tp->fackets_out = cnt;
1324 }
1325 }
1326 tcp_sync_left_out(tp);
1327
1328 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1329 tp->snd_cwnd_cnt = 0;
1330 tp->snd_cwnd_stamp = tcp_time_stamp;
1331 tp->undo_marker = 0;
1332 tp->frto_counter = 0;
1333
1334 tp->reordering = min_t(unsigned int, tp->reordering,
1335 sysctl_tcp_reordering);
1336 tcp_set_ca_state(sk, TCP_CA_Loss);
1337 tp->high_seq = tp->frto_highmark;
1338 TCP_ECN_queue_cwr(tp);
1339
1340 clear_all_retrans_hints(tp);
1341 }
1342
1343 void tcp_clear_retrans(struct tcp_sock *tp)
1344 {
1345 tp->left_out = 0;
1346 tp->retrans_out = 0;
1347
1348 tp->fackets_out = 0;
1349 tp->sacked_out = 0;
1350 tp->lost_out = 0;
1351
1352 tp->undo_marker = 0;
1353 tp->undo_retrans = 0;
1354 }
1355
1356 /* Enter Loss state. If "how" is not zero, forget all SACK information
1357 * and reset tags completely, otherwise preserve SACKs. If receiver
1358 * dropped its ofo queue, we will know this due to reneging detection.
1359 */
1360 void tcp_enter_loss(struct sock *sk, int how)
1361 {
1362 const struct inet_connection_sock *icsk = inet_csk(sk);
1363 struct tcp_sock *tp = tcp_sk(sk);
1364 struct sk_buff *skb;
1365 int cnt = 0;
1366
1367 /* Reduce ssthresh if it has not yet been made inside this window. */
1368 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1369 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1370 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1371 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1372 tcp_ca_event(sk, CA_EVENT_LOSS);
1373 }
1374 tp->snd_cwnd = 1;
1375 tp->snd_cwnd_cnt = 0;
1376 tp->snd_cwnd_stamp = tcp_time_stamp;
1377
1378 tp->bytes_acked = 0;
1379 tcp_clear_retrans(tp);
1380
1381 /* Push undo marker, if it was plain RTO and nothing
1382 * was retransmitted. */
1383 if (!how)
1384 tp->undo_marker = tp->snd_una;
1385
1386 sk_stream_for_retrans_queue(skb, sk) {
1387 cnt += tcp_skb_pcount(skb);
1388 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1389 tp->undo_marker = 0;
1390 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1391 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1392 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1393 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1394 tp->lost_out += tcp_skb_pcount(skb);
1395 } else {
1396 tp->sacked_out += tcp_skb_pcount(skb);
1397 tp->fackets_out = cnt;
1398 }
1399 }
1400 tcp_sync_left_out(tp);
1401
1402 tp->reordering = min_t(unsigned int, tp->reordering,
1403 sysctl_tcp_reordering);
1404 tcp_set_ca_state(sk, TCP_CA_Loss);
1405 tp->high_seq = tp->snd_nxt;
1406 TCP_ECN_queue_cwr(tp);
1407
1408 clear_all_retrans_hints(tp);
1409 }
1410
1411 static int tcp_check_sack_reneging(struct sock *sk)
1412 {
1413 struct sk_buff *skb;
1414
1415 /* If ACK arrived pointing to a remembered SACK,
1416 * it means that our remembered SACKs do not reflect
1417 * real state of receiver i.e.
1418 * receiver _host_ is heavily congested (or buggy).
1419 * Do processing similar to RTO timeout.
1420 */
1421 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1422 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1423 struct inet_connection_sock *icsk = inet_csk(sk);
1424 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1425
1426 tcp_enter_loss(sk, 1);
1427 icsk->icsk_retransmits++;
1428 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1429 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1430 icsk->icsk_rto, TCP_RTO_MAX);
1431 return 1;
1432 }
1433 return 0;
1434 }
1435
1436 static inline int tcp_fackets_out(struct tcp_sock *tp)
1437 {
1438 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1439 }
1440
1441 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1442 {
1443 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1444 }
1445
1446 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1447 {
1448 return tp->packets_out &&
1449 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1450 }
1451
1452 /* Linux NewReno/SACK/FACK/ECN state machine.
1453 * --------------------------------------
1454 *
1455 * "Open" Normal state, no dubious events, fast path.
1456 * "Disorder" In all the respects it is "Open",
1457 * but requires a bit more attention. It is entered when
1458 * we see some SACKs or dupacks. It is split of "Open"
1459 * mainly to move some processing from fast path to slow one.
1460 * "CWR" CWND was reduced due to some Congestion Notification event.
1461 * It can be ECN, ICMP source quench, local device congestion.
1462 * "Recovery" CWND was reduced, we are fast-retransmitting.
1463 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1464 *
1465 * tcp_fastretrans_alert() is entered:
1466 * - each incoming ACK, if state is not "Open"
1467 * - when arrived ACK is unusual, namely:
1468 * * SACK
1469 * * Duplicate ACK.
1470 * * ECN ECE.
1471 *
1472 * Counting packets in flight is pretty simple.
1473 *
1474 * in_flight = packets_out - left_out + retrans_out
1475 *
1476 * packets_out is SND.NXT-SND.UNA counted in packets.
1477 *
1478 * retrans_out is number of retransmitted segments.
1479 *
1480 * left_out is number of segments left network, but not ACKed yet.
1481 *
1482 * left_out = sacked_out + lost_out
1483 *
1484 * sacked_out: Packets, which arrived to receiver out of order
1485 * and hence not ACKed. With SACKs this number is simply
1486 * amount of SACKed data. Even without SACKs
1487 * it is easy to give pretty reliable estimate of this number,
1488 * counting duplicate ACKs.
1489 *
1490 * lost_out: Packets lost by network. TCP has no explicit
1491 * "loss notification" feedback from network (for now).
1492 * It means that this number can be only _guessed_.
1493 * Actually, it is the heuristics to predict lossage that
1494 * distinguishes different algorithms.
1495 *
1496 * F.e. after RTO, when all the queue is considered as lost,
1497 * lost_out = packets_out and in_flight = retrans_out.
1498 *
1499 * Essentially, we have now two algorithms counting
1500 * lost packets.
1501 *
1502 * FACK: It is the simplest heuristics. As soon as we decided
1503 * that something is lost, we decide that _all_ not SACKed
1504 * packets until the most forward SACK are lost. I.e.
1505 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1506 * It is absolutely correct estimate, if network does not reorder
1507 * packets. And it loses any connection to reality when reordering
1508 * takes place. We use FACK by default until reordering
1509 * is suspected on the path to this destination.
1510 *
1511 * NewReno: when Recovery is entered, we assume that one segment
1512 * is lost (classic Reno). While we are in Recovery and
1513 * a partial ACK arrives, we assume that one more packet
1514 * is lost (NewReno). This heuristics are the same in NewReno
1515 * and SACK.
1516 *
1517 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1518 * deflation etc. CWND is real congestion window, never inflated, changes
1519 * only according to classic VJ rules.
1520 *
1521 * Really tricky (and requiring careful tuning) part of algorithm
1522 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1523 * The first determines the moment _when_ we should reduce CWND and,
1524 * hence, slow down forward transmission. In fact, it determines the moment
1525 * when we decide that hole is caused by loss, rather than by a reorder.
1526 *
1527 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1528 * holes, caused by lost packets.
1529 *
1530 * And the most logically complicated part of algorithm is undo
1531 * heuristics. We detect false retransmits due to both too early
1532 * fast retransmit (reordering) and underestimated RTO, analyzing
1533 * timestamps and D-SACKs. When we detect that some segments were
1534 * retransmitted by mistake and CWND reduction was wrong, we undo
1535 * window reduction and abort recovery phase. This logic is hidden
1536 * inside several functions named tcp_try_undo_<something>.
1537 */
1538
1539 /* This function decides, when we should leave Disordered state
1540 * and enter Recovery phase, reducing congestion window.
1541 *
1542 * Main question: may we further continue forward transmission
1543 * with the same cwnd?
1544 */
1545 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1546 {
1547 __u32 packets_out;
1548
1549 /* Trick#1: The loss is proven. */
1550 if (tp->lost_out)
1551 return 1;
1552
1553 /* Not-A-Trick#2 : Classic rule... */
1554 if (tcp_fackets_out(tp) > tp->reordering)
1555 return 1;
1556
1557 /* Trick#3 : when we use RFC2988 timer restart, fast
1558 * retransmit can be triggered by timeout of queue head.
1559 */
1560 if (tcp_head_timedout(sk, tp))
1561 return 1;
1562
1563 /* Trick#4: It is still not OK... But will it be useful to delay
1564 * recovery more?
1565 */
1566 packets_out = tp->packets_out;
1567 if (packets_out <= tp->reordering &&
1568 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1569 !tcp_may_send_now(sk, tp)) {
1570 /* We have nothing to send. This connection is limited
1571 * either by receiver window or by application.
1572 */
1573 return 1;
1574 }
1575
1576 return 0;
1577 }
1578
1579 /* If we receive more dupacks than we expected counting segments
1580 * in assumption of absent reordering, interpret this as reordering.
1581 * The only another reason could be bug in receiver TCP.
1582 */
1583 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1584 {
1585 struct tcp_sock *tp = tcp_sk(sk);
1586 u32 holes;
1587
1588 holes = max(tp->lost_out, 1U);
1589 holes = min(holes, tp->packets_out);
1590
1591 if ((tp->sacked_out + holes) > tp->packets_out) {
1592 tp->sacked_out = tp->packets_out - holes;
1593 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1594 }
1595 }
1596
1597 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1598
1599 static void tcp_add_reno_sack(struct sock *sk)
1600 {
1601 struct tcp_sock *tp = tcp_sk(sk);
1602 tp->sacked_out++;
1603 tcp_check_reno_reordering(sk, 0);
1604 tcp_sync_left_out(tp);
1605 }
1606
1607 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1608
1609 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1610 {
1611 if (acked > 0) {
1612 /* One ACK acked hole. The rest eat duplicate ACKs. */
1613 if (acked-1 >= tp->sacked_out)
1614 tp->sacked_out = 0;
1615 else
1616 tp->sacked_out -= acked-1;
1617 }
1618 tcp_check_reno_reordering(sk, acked);
1619 tcp_sync_left_out(tp);
1620 }
1621
1622 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1623 {
1624 tp->sacked_out = 0;
1625 tp->left_out = tp->lost_out;
1626 }
1627
1628 /* Mark head of queue up as lost. */
1629 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1630 int packets, u32 high_seq)
1631 {
1632 struct sk_buff *skb;
1633 int cnt;
1634
1635 BUG_TRAP(packets <= tp->packets_out);
1636 if (tp->lost_skb_hint) {
1637 skb = tp->lost_skb_hint;
1638 cnt = tp->lost_cnt_hint;
1639 } else {
1640 skb = sk->sk_write_queue.next;
1641 cnt = 0;
1642 }
1643
1644 sk_stream_for_retrans_queue_from(skb, sk) {
1645 /* TODO: do this better */
1646 /* this is not the most efficient way to do this... */
1647 tp->lost_skb_hint = skb;
1648 tp->lost_cnt_hint = cnt;
1649 cnt += tcp_skb_pcount(skb);
1650 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1651 break;
1652 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1653 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1654 tp->lost_out += tcp_skb_pcount(skb);
1655
1656 /* clear xmit_retransmit_queue hints
1657 * if this is beyond hint */
1658 if(tp->retransmit_skb_hint != NULL &&
1659 before(TCP_SKB_CB(skb)->seq,
1660 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1661
1662 tp->retransmit_skb_hint = NULL;
1663 }
1664 }
1665 }
1666 tcp_sync_left_out(tp);
1667 }
1668
1669 /* Account newly detected lost packet(s) */
1670
1671 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1672 {
1673 if (IsFack(tp)) {
1674 int lost = tp->fackets_out - tp->reordering;
1675 if (lost <= 0)
1676 lost = 1;
1677 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1678 } else {
1679 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1680 }
1681
1682 /* New heuristics: it is possible only after we switched
1683 * to restart timer each time when something is ACKed.
1684 * Hence, we can detect timed out packets during fast
1685 * retransmit without falling to slow start.
1686 */
1687 if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1688 struct sk_buff *skb;
1689
1690 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1691 : sk->sk_write_queue.next;
1692
1693 sk_stream_for_retrans_queue_from(skb, sk) {
1694 if (!tcp_skb_timedout(sk, skb))
1695 break;
1696
1697 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1698 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1699 tp->lost_out += tcp_skb_pcount(skb);
1700
1701 /* clear xmit_retrans hint */
1702 if (tp->retransmit_skb_hint &&
1703 before(TCP_SKB_CB(skb)->seq,
1704 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1705
1706 tp->retransmit_skb_hint = NULL;
1707 }
1708 }
1709
1710 tp->scoreboard_skb_hint = skb;
1711
1712 tcp_sync_left_out(tp);
1713 }
1714 }
1715
1716 /* CWND moderation, preventing bursts due to too big ACKs
1717 * in dubious situations.
1718 */
1719 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1720 {
1721 tp->snd_cwnd = min(tp->snd_cwnd,
1722 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1723 tp->snd_cwnd_stamp = tcp_time_stamp;
1724 }
1725
1726 /* Lower bound on congestion window is slow start threshold
1727 * unless congestion avoidance choice decides to overide it.
1728 */
1729 static inline u32 tcp_cwnd_min(const struct sock *sk)
1730 {
1731 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1732
1733 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1734 }
1735
1736 /* Decrease cwnd each second ack. */
1737 static void tcp_cwnd_down(struct sock *sk)
1738 {
1739 struct tcp_sock *tp = tcp_sk(sk);
1740 int decr = tp->snd_cwnd_cnt + 1;
1741
1742 tp->snd_cwnd_cnt = decr&1;
1743 decr >>= 1;
1744
1745 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1746 tp->snd_cwnd -= decr;
1747
1748 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1749 tp->snd_cwnd_stamp = tcp_time_stamp;
1750 }
1751
1752 /* Nothing was retransmitted or returned timestamp is less
1753 * than timestamp of the first retransmission.
1754 */
1755 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1756 {
1757 return !tp->retrans_stamp ||
1758 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1759 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1760 }
1761
1762 /* Undo procedures. */
1763
1764 #if FASTRETRANS_DEBUG > 1
1765 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1766 {
1767 struct inet_sock *inet = inet_sk(sk);
1768 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1769 msg,
1770 NIPQUAD(inet->daddr), ntohs(inet->dport),
1771 tp->snd_cwnd, tp->left_out,
1772 tp->snd_ssthresh, tp->prior_ssthresh,
1773 tp->packets_out);
1774 }
1775 #else
1776 #define DBGUNDO(x...) do { } while (0)
1777 #endif
1778
1779 static void tcp_undo_cwr(struct sock *sk, const int undo)
1780 {
1781 struct tcp_sock *tp = tcp_sk(sk);
1782
1783 if (tp->prior_ssthresh) {
1784 const struct inet_connection_sock *icsk = inet_csk(sk);
1785
1786 if (icsk->icsk_ca_ops->undo_cwnd)
1787 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1788 else
1789 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1790
1791 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1792 tp->snd_ssthresh = tp->prior_ssthresh;
1793 TCP_ECN_withdraw_cwr(tp);
1794 }
1795 } else {
1796 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1797 }
1798 tcp_moderate_cwnd(tp);
1799 tp->snd_cwnd_stamp = tcp_time_stamp;
1800
1801 /* There is something screwy going on with the retrans hints after
1802 an undo */
1803 clear_all_retrans_hints(tp);
1804 }
1805
1806 static inline int tcp_may_undo(struct tcp_sock *tp)
1807 {
1808 return tp->undo_marker &&
1809 (!tp->undo_retrans || tcp_packet_delayed(tp));
1810 }
1811
1812 /* People celebrate: "We love our President!" */
1813 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1814 {
1815 if (tcp_may_undo(tp)) {
1816 /* Happy end! We did not retransmit anything
1817 * or our original transmission succeeded.
1818 */
1819 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1820 tcp_undo_cwr(sk, 1);
1821 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1822 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1823 else
1824 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1825 tp->undo_marker = 0;
1826 }
1827 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1828 /* Hold old state until something *above* high_seq
1829 * is ACKed. For Reno it is MUST to prevent false
1830 * fast retransmits (RFC2582). SACK TCP is safe. */
1831 tcp_moderate_cwnd(tp);
1832 return 1;
1833 }
1834 tcp_set_ca_state(sk, TCP_CA_Open);
1835 return 0;
1836 }
1837
1838 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1839 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1840 {
1841 if (tp->undo_marker && !tp->undo_retrans) {
1842 DBGUNDO(sk, tp, "D-SACK");
1843 tcp_undo_cwr(sk, 1);
1844 tp->undo_marker = 0;
1845 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1846 }
1847 }
1848
1849 /* Undo during fast recovery after partial ACK. */
1850
1851 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1852 int acked)
1853 {
1854 /* Partial ACK arrived. Force Hoe's retransmit. */
1855 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1856
1857 if (tcp_may_undo(tp)) {
1858 /* Plain luck! Hole if filled with delayed
1859 * packet, rather than with a retransmit.
1860 */
1861 if (tp->retrans_out == 0)
1862 tp->retrans_stamp = 0;
1863
1864 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1865
1866 DBGUNDO(sk, tp, "Hoe");
1867 tcp_undo_cwr(sk, 0);
1868 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1869
1870 /* So... Do not make Hoe's retransmit yet.
1871 * If the first packet was delayed, the rest
1872 * ones are most probably delayed as well.
1873 */
1874 failed = 0;
1875 }
1876 return failed;
1877 }
1878
1879 /* Undo during loss recovery after partial ACK. */
1880 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1881 {
1882 if (tcp_may_undo(tp)) {
1883 struct sk_buff *skb;
1884 sk_stream_for_retrans_queue(skb, sk) {
1885 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1886 }
1887
1888 clear_all_retrans_hints(tp);
1889
1890 DBGUNDO(sk, tp, "partial loss");
1891 tp->lost_out = 0;
1892 tp->left_out = tp->sacked_out;
1893 tcp_undo_cwr(sk, 1);
1894 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1895 inet_csk(sk)->icsk_retransmits = 0;
1896 tp->undo_marker = 0;
1897 if (!IsReno(tp))
1898 tcp_set_ca_state(sk, TCP_CA_Open);
1899 return 1;
1900 }
1901 return 0;
1902 }
1903
1904 static inline void tcp_complete_cwr(struct sock *sk)
1905 {
1906 struct tcp_sock *tp = tcp_sk(sk);
1907 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1908 tp->snd_cwnd_stamp = tcp_time_stamp;
1909 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1910 }
1911
1912 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1913 {
1914 tp->left_out = tp->sacked_out;
1915
1916 if (tp->retrans_out == 0)
1917 tp->retrans_stamp = 0;
1918
1919 if (flag&FLAG_ECE)
1920 tcp_enter_cwr(sk);
1921
1922 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1923 int state = TCP_CA_Open;
1924
1925 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1926 state = TCP_CA_Disorder;
1927
1928 if (inet_csk(sk)->icsk_ca_state != state) {
1929 tcp_set_ca_state(sk, state);
1930 tp->high_seq = tp->snd_nxt;
1931 }
1932 tcp_moderate_cwnd(tp);
1933 } else {
1934 tcp_cwnd_down(sk);
1935 }
1936 }
1937
1938 static void tcp_mtup_probe_failed(struct sock *sk)
1939 {
1940 struct inet_connection_sock *icsk = inet_csk(sk);
1941
1942 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1943 icsk->icsk_mtup.probe_size = 0;
1944 }
1945
1946 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1947 {
1948 struct tcp_sock *tp = tcp_sk(sk);
1949 struct inet_connection_sock *icsk = inet_csk(sk);
1950
1951 /* FIXME: breaks with very large cwnd */
1952 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1953 tp->snd_cwnd = tp->snd_cwnd *
1954 tcp_mss_to_mtu(sk, tp->mss_cache) /
1955 icsk->icsk_mtup.probe_size;
1956 tp->snd_cwnd_cnt = 0;
1957 tp->snd_cwnd_stamp = tcp_time_stamp;
1958 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1959
1960 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1961 icsk->icsk_mtup.probe_size = 0;
1962 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1963 }
1964
1965
1966 /* Process an event, which can update packets-in-flight not trivially.
1967 * Main goal of this function is to calculate new estimate for left_out,
1968 * taking into account both packets sitting in receiver's buffer and
1969 * packets lost by network.
1970 *
1971 * Besides that it does CWND reduction, when packet loss is detected
1972 * and changes state of machine.
1973 *
1974 * It does _not_ decide what to send, it is made in function
1975 * tcp_xmit_retransmit_queue().
1976 */
1977 static void
1978 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1979 int prior_packets, int flag)
1980 {
1981 struct inet_connection_sock *icsk = inet_csk(sk);
1982 struct tcp_sock *tp = tcp_sk(sk);
1983 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1984
1985 /* Some technical things:
1986 * 1. Reno does not count dupacks (sacked_out) automatically. */
1987 if (!tp->packets_out)
1988 tp->sacked_out = 0;
1989 /* 2. SACK counts snd_fack in packets inaccurately. */
1990 if (tp->sacked_out == 0)
1991 tp->fackets_out = 0;
1992
1993 /* Now state machine starts.
1994 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1995 if (flag&FLAG_ECE)
1996 tp->prior_ssthresh = 0;
1997
1998 /* B. In all the states check for reneging SACKs. */
1999 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2000 return;
2001
2002 /* C. Process data loss notification, provided it is valid. */
2003 if ((flag&FLAG_DATA_LOST) &&
2004 before(tp->snd_una, tp->high_seq) &&
2005 icsk->icsk_ca_state != TCP_CA_Open &&
2006 tp->fackets_out > tp->reordering) {
2007 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
2008 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2009 }
2010
2011 /* D. Synchronize left_out to current state. */
2012 tcp_sync_left_out(tp);
2013
2014 /* E. Check state exit conditions. State can be terminated
2015 * when high_seq is ACKed. */
2016 if (icsk->icsk_ca_state == TCP_CA_Open) {
2017 if (!sysctl_tcp_frto)
2018 BUG_TRAP(tp->retrans_out == 0);
2019 tp->retrans_stamp = 0;
2020 } else if (!before(tp->snd_una, tp->high_seq)) {
2021 switch (icsk->icsk_ca_state) {
2022 case TCP_CA_Loss:
2023 icsk->icsk_retransmits = 0;
2024 if (tcp_try_undo_recovery(sk, tp))
2025 return;
2026 break;
2027
2028 case TCP_CA_CWR:
2029 /* CWR is to be held something *above* high_seq
2030 * is ACKed for CWR bit to reach receiver. */
2031 if (tp->snd_una != tp->high_seq) {
2032 tcp_complete_cwr(sk);
2033 tcp_set_ca_state(sk, TCP_CA_Open);
2034 }
2035 break;
2036
2037 case TCP_CA_Disorder:
2038 tcp_try_undo_dsack(sk, tp);
2039 if (!tp->undo_marker ||
2040 /* For SACK case do not Open to allow to undo
2041 * catching for all duplicate ACKs. */
2042 IsReno(tp) || tp->snd_una != tp->high_seq) {
2043 tp->undo_marker = 0;
2044 tcp_set_ca_state(sk, TCP_CA_Open);
2045 }
2046 break;
2047
2048 case TCP_CA_Recovery:
2049 if (IsReno(tp))
2050 tcp_reset_reno_sack(tp);
2051 if (tcp_try_undo_recovery(sk, tp))
2052 return;
2053 tcp_complete_cwr(sk);
2054 break;
2055 }
2056 }
2057
2058 /* F. Process state. */
2059 switch (icsk->icsk_ca_state) {
2060 case TCP_CA_Recovery:
2061 if (prior_snd_una == tp->snd_una) {
2062 if (IsReno(tp) && is_dupack)
2063 tcp_add_reno_sack(sk);
2064 } else {
2065 int acked = prior_packets - tp->packets_out;
2066 if (IsReno(tp))
2067 tcp_remove_reno_sacks(sk, tp, acked);
2068 is_dupack = tcp_try_undo_partial(sk, tp, acked);
2069 }
2070 break;
2071 case TCP_CA_Loss:
2072 if (flag&FLAG_DATA_ACKED)
2073 icsk->icsk_retransmits = 0;
2074 if (!tcp_try_undo_loss(sk, tp)) {
2075 tcp_moderate_cwnd(tp);
2076 tcp_xmit_retransmit_queue(sk);
2077 return;
2078 }
2079 if (icsk->icsk_ca_state != TCP_CA_Open)
2080 return;
2081 /* Loss is undone; fall through to processing in Open state. */
2082 default:
2083 if (IsReno(tp)) {
2084 if (tp->snd_una != prior_snd_una)
2085 tcp_reset_reno_sack(tp);
2086 if (is_dupack)
2087 tcp_add_reno_sack(sk);
2088 }
2089
2090 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2091 tcp_try_undo_dsack(sk, tp);
2092
2093 if (!tcp_time_to_recover(sk, tp)) {
2094 tcp_try_to_open(sk, tp, flag);
2095 return;
2096 }
2097
2098 /* MTU probe failure: don't reduce cwnd */
2099 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2100 icsk->icsk_mtup.probe_size &&
2101 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2102 tcp_mtup_probe_failed(sk);
2103 /* Restores the reduction we did in tcp_mtup_probe() */
2104 tp->snd_cwnd++;
2105 tcp_simple_retransmit(sk);
2106 return;
2107 }
2108
2109 /* Otherwise enter Recovery state */
2110
2111 if (IsReno(tp))
2112 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2113 else
2114 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2115
2116 tp->high_seq = tp->snd_nxt;
2117 tp->prior_ssthresh = 0;
2118 tp->undo_marker = tp->snd_una;
2119 tp->undo_retrans = tp->retrans_out;
2120
2121 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2122 if (!(flag&FLAG_ECE))
2123 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2124 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2125 TCP_ECN_queue_cwr(tp);
2126 }
2127
2128 tp->bytes_acked = 0;
2129 tp->snd_cwnd_cnt = 0;
2130 tcp_set_ca_state(sk, TCP_CA_Recovery);
2131 }
2132
2133 if (is_dupack || tcp_head_timedout(sk, tp))
2134 tcp_update_scoreboard(sk, tp);
2135 tcp_cwnd_down(sk);
2136 tcp_xmit_retransmit_queue(sk);
2137 }
2138
2139 /* Read draft-ietf-tcplw-high-performance before mucking
2140 * with this code. (Supersedes RFC1323)
2141 */
2142 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2143 {
2144 /* RTTM Rule: A TSecr value received in a segment is used to
2145 * update the averaged RTT measurement only if the segment
2146 * acknowledges some new data, i.e., only if it advances the
2147 * left edge of the send window.
2148 *
2149 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2150 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2151 *
2152 * Changed: reset backoff as soon as we see the first valid sample.
2153 * If we do not, we get strongly overestimated rto. With timestamps
2154 * samples are accepted even from very old segments: f.e., when rtt=1
2155 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2156 * answer arrives rto becomes 120 seconds! If at least one of segments
2157 * in window is lost... Voila. --ANK (010210)
2158 */
2159 struct tcp_sock *tp = tcp_sk(sk);
2160 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2161 tcp_rtt_estimator(sk, seq_rtt);
2162 tcp_set_rto(sk);
2163 inet_csk(sk)->icsk_backoff = 0;
2164 tcp_bound_rto(sk);
2165 }
2166
2167 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2168 {
2169 /* We don't have a timestamp. Can only use
2170 * packets that are not retransmitted to determine
2171 * rtt estimates. Also, we must not reset the
2172 * backoff for rto until we get a non-retransmitted
2173 * packet. This allows us to deal with a situation
2174 * where the network delay has increased suddenly.
2175 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2176 */
2177
2178 if (flag & FLAG_RETRANS_DATA_ACKED)
2179 return;
2180
2181 tcp_rtt_estimator(sk, seq_rtt);
2182 tcp_set_rto(sk);
2183 inet_csk(sk)->icsk_backoff = 0;
2184 tcp_bound_rto(sk);
2185 }
2186
2187 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2188 const s32 seq_rtt)
2189 {
2190 const struct tcp_sock *tp = tcp_sk(sk);
2191 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2192 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2193 tcp_ack_saw_tstamp(sk, flag);
2194 else if (seq_rtt >= 0)
2195 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2196 }
2197
2198 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2199 u32 in_flight, int good)
2200 {
2201 const struct inet_connection_sock *icsk = inet_csk(sk);
2202 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2203 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2204 }
2205
2206 /* Restart timer after forward progress on connection.
2207 * RFC2988 recommends to restart timer to now+rto.
2208 */
2209
2210 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2211 {
2212 if (!tp->packets_out) {
2213 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2214 } else {
2215 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2216 }
2217 }
2218
2219 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2220 __u32 now, __s32 *seq_rtt)
2221 {
2222 struct tcp_sock *tp = tcp_sk(sk);
2223 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2224 __u32 seq = tp->snd_una;
2225 __u32 packets_acked;
2226 int acked = 0;
2227
2228 /* If we get here, the whole TSO packet has not been
2229 * acked.
2230 */
2231 BUG_ON(!after(scb->end_seq, seq));
2232
2233 packets_acked = tcp_skb_pcount(skb);
2234 if (tcp_trim_head(sk, skb, seq - scb->seq))
2235 return 0;
2236 packets_acked -= tcp_skb_pcount(skb);
2237
2238 if (packets_acked) {
2239 __u8 sacked = scb->sacked;
2240
2241 acked |= FLAG_DATA_ACKED;
2242 if (sacked) {
2243 if (sacked & TCPCB_RETRANS) {
2244 if (sacked & TCPCB_SACKED_RETRANS)
2245 tp->retrans_out -= packets_acked;
2246 acked |= FLAG_RETRANS_DATA_ACKED;
2247 *seq_rtt = -1;
2248 } else if (*seq_rtt < 0)
2249 *seq_rtt = now - scb->when;
2250 if (sacked & TCPCB_SACKED_ACKED)
2251 tp->sacked_out -= packets_acked;
2252 if (sacked & TCPCB_LOST)
2253 tp->lost_out -= packets_acked;
2254 if (sacked & TCPCB_URG) {
2255 if (tp->urg_mode &&
2256 !before(seq, tp->snd_up))
2257 tp->urg_mode = 0;
2258 }
2259 } else if (*seq_rtt < 0)
2260 *seq_rtt = now - scb->when;
2261
2262 if (tp->fackets_out) {
2263 __u32 dval = min(tp->fackets_out, packets_acked);
2264 tp->fackets_out -= dval;
2265 }
2266 tp->packets_out -= packets_acked;
2267
2268 BUG_ON(tcp_skb_pcount(skb) == 0);
2269 BUG_ON(!before(scb->seq, scb->end_seq));
2270 }
2271
2272 return acked;
2273 }
2274
2275 static u32 tcp_usrtt(struct timeval *tv)
2276 {
2277 struct timeval now;
2278
2279 do_gettimeofday(&now);
2280 return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2281 }
2282
2283 /* Remove acknowledged frames from the retransmission queue. */
2284 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2285 {
2286 struct tcp_sock *tp = tcp_sk(sk);
2287 const struct inet_connection_sock *icsk = inet_csk(sk);
2288 struct sk_buff *skb;
2289 __u32 now = tcp_time_stamp;
2290 int acked = 0;
2291 __s32 seq_rtt = -1;
2292 u32 pkts_acked = 0;
2293 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2294 = icsk->icsk_ca_ops->rtt_sample;
2295 struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
2296
2297 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2298 skb != sk->sk_send_head) {
2299 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2300 __u8 sacked = scb->sacked;
2301
2302 /* If our packet is before the ack sequence we can
2303 * discard it as it's confirmed to have arrived at
2304 * the other end.
2305 */
2306 if (after(scb->end_seq, tp->snd_una)) {
2307 if (tcp_skb_pcount(skb) > 1 &&
2308 after(tp->snd_una, scb->seq))
2309 acked |= tcp_tso_acked(sk, skb,
2310 now, &seq_rtt);
2311 break;
2312 }
2313
2314 /* Initial outgoing SYN's get put onto the write_queue
2315 * just like anything else we transmit. It is not
2316 * true data, and if we misinform our callers that
2317 * this ACK acks real data, we will erroneously exit
2318 * connection startup slow start one packet too
2319 * quickly. This is severely frowned upon behavior.
2320 */
2321 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2322 acked |= FLAG_DATA_ACKED;
2323 ++pkts_acked;
2324 } else {
2325 acked |= FLAG_SYN_ACKED;
2326 tp->retrans_stamp = 0;
2327 }
2328
2329 /* MTU probing checks */
2330 if (icsk->icsk_mtup.probe_size) {
2331 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2332 tcp_mtup_probe_success(sk, skb);
2333 }
2334 }
2335
2336 if (sacked) {
2337 if (sacked & TCPCB_RETRANS) {
2338 if(sacked & TCPCB_SACKED_RETRANS)
2339 tp->retrans_out -= tcp_skb_pcount(skb);
2340 acked |= FLAG_RETRANS_DATA_ACKED;
2341 seq_rtt = -1;
2342 } else if (seq_rtt < 0) {
2343 seq_rtt = now - scb->when;
2344 skb_get_timestamp(skb, &tv);
2345 }
2346 if (sacked & TCPCB_SACKED_ACKED)
2347 tp->sacked_out -= tcp_skb_pcount(skb);
2348 if (sacked & TCPCB_LOST)
2349 tp->lost_out -= tcp_skb_pcount(skb);
2350 if (sacked & TCPCB_URG) {
2351 if (tp->urg_mode &&
2352 !before(scb->end_seq, tp->snd_up))
2353 tp->urg_mode = 0;
2354 }
2355 } else if (seq_rtt < 0) {
2356 seq_rtt = now - scb->when;
2357 skb_get_timestamp(skb, &tv);
2358 }
2359 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2360 tcp_packets_out_dec(tp, skb);
2361 __skb_unlink(skb, &sk->sk_write_queue);
2362 sk_stream_free_skb(sk, skb);
2363 clear_all_retrans_hints(tp);
2364 }
2365
2366 if (acked&FLAG_ACKED) {
2367 tcp_ack_update_rtt(sk, acked, seq_rtt);
2368 tcp_ack_packets_out(sk, tp);
2369 if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2370 (*rtt_sample)(sk, tcp_usrtt(&tv));
2371
2372 if (icsk->icsk_ca_ops->pkts_acked)
2373 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2374 }
2375
2376 #if FASTRETRANS_DEBUG > 0
2377 BUG_TRAP((int)tp->sacked_out >= 0);
2378 BUG_TRAP((int)tp->lost_out >= 0);
2379 BUG_TRAP((int)tp->retrans_out >= 0);
2380 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2381 const struct inet_connection_sock *icsk = inet_csk(sk);
2382 if (tp->lost_out) {
2383 printk(KERN_DEBUG "Leak l=%u %d\n",
2384 tp->lost_out, icsk->icsk_ca_state);
2385 tp->lost_out = 0;
2386 }
2387 if (tp->sacked_out) {
2388 printk(KERN_DEBUG "Leak s=%u %d\n",
2389 tp->sacked_out, icsk->icsk_ca_state);
2390 tp->sacked_out = 0;
2391 }
2392 if (tp->retrans_out) {
2393 printk(KERN_DEBUG "Leak r=%u %d\n",
2394 tp->retrans_out, icsk->icsk_ca_state);
2395 tp->retrans_out = 0;
2396 }
2397 }
2398 #endif
2399 *seq_rtt_p = seq_rtt;
2400 return acked;
2401 }
2402
2403 static void tcp_ack_probe(struct sock *sk)
2404 {
2405 const struct tcp_sock *tp = tcp_sk(sk);
2406 struct inet_connection_sock *icsk = inet_csk(sk);
2407
2408 /* Was it a usable window open? */
2409
2410 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2411 tp->snd_una + tp->snd_wnd)) {
2412 icsk->icsk_backoff = 0;
2413 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2414 /* Socket must be waked up by subsequent tcp_data_snd_check().
2415 * This function is not for random using!
2416 */
2417 } else {
2418 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2419 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2420 TCP_RTO_MAX);
2421 }
2422 }
2423
2424 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2425 {
2426 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2427 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2428 }
2429
2430 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2431 {
2432 const struct tcp_sock *tp = tcp_sk(sk);
2433 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2434 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2435 }
2436
2437 /* Check that window update is acceptable.
2438 * The function assumes that snd_una<=ack<=snd_next.
2439 */
2440 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2441 const u32 ack_seq, const u32 nwin)
2442 {
2443 return (after(ack, tp->snd_una) ||
2444 after(ack_seq, tp->snd_wl1) ||
2445 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2446 }
2447
2448 /* Update our send window.
2449 *
2450 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2451 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2452 */
2453 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2454 struct sk_buff *skb, u32 ack, u32 ack_seq)
2455 {
2456 int flag = 0;
2457 u32 nwin = ntohs(skb->h.th->window);
2458
2459 if (likely(!skb->h.th->syn))
2460 nwin <<= tp->rx_opt.snd_wscale;
2461
2462 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2463 flag |= FLAG_WIN_UPDATE;
2464 tcp_update_wl(tp, ack, ack_seq);
2465
2466 if (tp->snd_wnd != nwin) {
2467 tp->snd_wnd = nwin;
2468
2469 /* Note, it is the only place, where
2470 * fast path is recovered for sending TCP.
2471 */
2472 tp->pred_flags = 0;
2473 tcp_fast_path_check(sk, tp);
2474
2475 if (nwin > tp->max_window) {
2476 tp->max_window = nwin;
2477 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2478 }
2479 }
2480 }
2481
2482 tp->snd_una = ack;
2483
2484 return flag;
2485 }
2486
2487 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2488 * continue in congestion avoidance.
2489 */
2490 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2491 {
2492 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2493 tcp_moderate_cwnd(tp);
2494 }
2495
2496 /* F-RTO spurious RTO detection algorithm (RFC4138)
2497 *
2498 * F-RTO affects during two new ACKs following RTO. State (ACK number) is kept
2499 * in frto_counter. When ACK advances window (but not to or beyond highest
2500 * sequence sent before RTO):
2501 * On First ACK, send two new segments out.
2502 * On Second ACK, RTO was likely spurious. Do spurious response (response
2503 * algorithm is not part of the F-RTO detection algorithm
2504 * given in RFC4138 but can be selected separately).
2505 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2506 * and TCP falls back to conventional RTO recovery.
2507 *
2508 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2509 * original window even after we transmit two new data segments.
2510 *
2511 * F-RTO is implemented (mainly) in four functions:
2512 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2513 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2514 * called when tcp_use_frto() showed green light
2515 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2516 * - tcp_enter_frto_loss() is called if there is not enough evidence
2517 * to prove that the RTO is indeed spurious. It transfers the control
2518 * from F-RTO to the conventional RTO recovery
2519 */
2520 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
2521 {
2522 struct tcp_sock *tp = tcp_sk(sk);
2523
2524 tcp_sync_left_out(tp);
2525
2526 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2527 if (flag&FLAG_DATA_ACKED)
2528 inet_csk(sk)->icsk_retransmits = 0;
2529
2530 if (tp->snd_una == prior_snd_una ||
2531 !before(tp->snd_una, tp->frto_highmark)) {
2532 tcp_enter_frto_loss(sk);
2533 return;
2534 }
2535
2536 if (tp->frto_counter == 1) {
2537 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2538 } else /* frto_counter == 2 */ {
2539 tcp_conservative_spur_to_response(tp);
2540 }
2541
2542 tp->frto_counter = (tp->frto_counter + 1) % 3;
2543 }
2544
2545 /* This routine deals with incoming acks, but not outgoing ones. */
2546 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2547 {
2548 struct inet_connection_sock *icsk = inet_csk(sk);
2549 struct tcp_sock *tp = tcp_sk(sk);
2550 u32 prior_snd_una = tp->snd_una;
2551 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2552 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2553 u32 prior_in_flight;
2554 s32 seq_rtt;
2555 int prior_packets;
2556
2557 /* If the ack is newer than sent or older than previous acks
2558 * then we can probably ignore it.
2559 */
2560 if (after(ack, tp->snd_nxt))
2561 goto uninteresting_ack;
2562
2563 if (before(ack, prior_snd_una))
2564 goto old_ack;
2565
2566 if (sysctl_tcp_abc) {
2567 if (icsk->icsk_ca_state < TCP_CA_CWR)
2568 tp->bytes_acked += ack - prior_snd_una;
2569 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2570 /* we assume just one segment left network */
2571 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2572 }
2573
2574 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2575 /* Window is constant, pure forward advance.
2576 * No more checks are required.
2577 * Note, we use the fact that SND.UNA>=SND.WL2.
2578 */
2579 tcp_update_wl(tp, ack, ack_seq);
2580 tp->snd_una = ack;
2581 flag |= FLAG_WIN_UPDATE;
2582
2583 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2584
2585 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2586 } else {
2587 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2588 flag |= FLAG_DATA;
2589 else
2590 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2591
2592 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2593
2594 if (TCP_SKB_CB(skb)->sacked)
2595 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2596
2597 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2598 flag |= FLAG_ECE;
2599
2600 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2601 }
2602
2603 /* We passed data and got it acked, remove any soft error
2604 * log. Something worked...
2605 */
2606 sk->sk_err_soft = 0;
2607 tp->rcv_tstamp = tcp_time_stamp;
2608 prior_packets = tp->packets_out;
2609 if (!prior_packets)
2610 goto no_queue;
2611
2612 prior_in_flight = tcp_packets_in_flight(tp);
2613
2614 /* See if we can take anything off of the retransmit queue. */
2615 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2616
2617 if (tp->frto_counter)
2618 tcp_process_frto(sk, prior_snd_una, flag);
2619
2620 if (tcp_ack_is_dubious(sk, flag)) {
2621 /* Advance CWND, if state allows this. */
2622 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2623 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2624 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2625 } else {
2626 if ((flag & FLAG_DATA_ACKED))
2627 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2628 }
2629
2630 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2631 dst_confirm(sk->sk_dst_cache);
2632
2633 return 1;
2634
2635 no_queue:
2636 icsk->icsk_probes_out = 0;
2637
2638 /* If this ack opens up a zero window, clear backoff. It was
2639 * being used to time the probes, and is probably far higher than
2640 * it needs to be for normal retransmission.
2641 */
2642 if (sk->sk_send_head)
2643 tcp_ack_probe(sk);
2644 return 1;
2645
2646 old_ack:
2647 if (TCP_SKB_CB(skb)->sacked)
2648 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2649
2650 uninteresting_ack:
2651 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2652 return 0;
2653 }
2654
2655
2656 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2657 * But, this can also be called on packets in the established flow when
2658 * the fast version below fails.
2659 */
2660 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2661 {
2662 unsigned char *ptr;
2663 struct tcphdr *th = skb->h.th;
2664 int length=(th->doff*4)-sizeof(struct tcphdr);
2665
2666 ptr = (unsigned char *)(th + 1);
2667 opt_rx->saw_tstamp = 0;
2668
2669 while(length>0) {
2670 int opcode=*ptr++;
2671 int opsize;
2672
2673 switch (opcode) {
2674 case TCPOPT_EOL:
2675 return;
2676 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2677 length--;
2678 continue;
2679 default:
2680 opsize=*ptr++;
2681 if (opsize < 2) /* "silly options" */
2682 return;
2683 if (opsize > length)
2684 return; /* don't parse partial options */
2685 switch(opcode) {
2686 case TCPOPT_MSS:
2687 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2688 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2689 if (in_mss) {
2690 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2691 in_mss = opt_rx->user_mss;
2692 opt_rx->mss_clamp = in_mss;
2693 }
2694 }
2695 break;
2696 case TCPOPT_WINDOW:
2697 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2698 if (sysctl_tcp_window_scaling) {
2699 __u8 snd_wscale = *(__u8 *) ptr;
2700 opt_rx->wscale_ok = 1;
2701 if (snd_wscale > 14) {
2702 if(net_ratelimit())
2703 printk(KERN_INFO "tcp_parse_options: Illegal window "
2704 "scaling value %d >14 received.\n",
2705 snd_wscale);
2706 snd_wscale = 14;
2707 }
2708 opt_rx->snd_wscale = snd_wscale;
2709 }
2710 break;
2711 case TCPOPT_TIMESTAMP:
2712 if(opsize==TCPOLEN_TIMESTAMP) {
2713 if ((estab && opt_rx->tstamp_ok) ||
2714 (!estab && sysctl_tcp_timestamps)) {
2715 opt_rx->saw_tstamp = 1;
2716 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2717 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2718 }
2719 }
2720 break;
2721 case TCPOPT_SACK_PERM:
2722 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2723 if (sysctl_tcp_sack) {
2724 opt_rx->sack_ok = 1;
2725 tcp_sack_reset(opt_rx);
2726 }
2727 }
2728 break;
2729
2730 case TCPOPT_SACK:
2731 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2732 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2733 opt_rx->sack_ok) {
2734 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2735 }
2736 #ifdef CONFIG_TCP_MD5SIG
2737 case TCPOPT_MD5SIG:
2738 /*
2739 * The MD5 Hash has already been
2740 * checked (see tcp_v{4,6}_do_rcv()).
2741 */
2742 break;
2743 #endif
2744 };
2745 ptr+=opsize-2;
2746 length-=opsize;
2747 };
2748 }
2749 }
2750
2751 /* Fast parse options. This hopes to only see timestamps.
2752 * If it is wrong it falls back on tcp_parse_options().
2753 */
2754 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2755 struct tcp_sock *tp)
2756 {
2757 if (th->doff == sizeof(struct tcphdr)>>2) {
2758 tp->rx_opt.saw_tstamp = 0;
2759 return 0;
2760 } else if (tp->rx_opt.tstamp_ok &&
2761 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2762 __be32 *ptr = (__be32 *)(th + 1);
2763 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2764 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2765 tp->rx_opt.saw_tstamp = 1;
2766 ++ptr;
2767 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2768 ++ptr;
2769 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2770 return 1;
2771 }
2772 }
2773 tcp_parse_options(skb, &tp->rx_opt, 1);
2774 return 1;
2775 }
2776
2777 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2778 {
2779 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2780 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2781 }
2782
2783 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2784 {
2785 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2786 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2787 * extra check below makes sure this can only happen
2788 * for pure ACK frames. -DaveM
2789 *
2790 * Not only, also it occurs for expired timestamps.
2791 */
2792
2793 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2794 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2795 tcp_store_ts_recent(tp);
2796 }
2797 }
2798
2799 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2800 *
2801 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2802 * it can pass through stack. So, the following predicate verifies that
2803 * this segment is not used for anything but congestion avoidance or
2804 * fast retransmit. Moreover, we even are able to eliminate most of such
2805 * second order effects, if we apply some small "replay" window (~RTO)
2806 * to timestamp space.
2807 *
2808 * All these measures still do not guarantee that we reject wrapped ACKs
2809 * on networks with high bandwidth, when sequence space is recycled fastly,
2810 * but it guarantees that such events will be very rare and do not affect
2811 * connection seriously. This doesn't look nice, but alas, PAWS is really
2812 * buggy extension.
2813 *
2814 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2815 * states that events when retransmit arrives after original data are rare.
2816 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2817 * the biggest problem on large power networks even with minor reordering.
2818 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2819 * up to bandwidth of 18Gigabit/sec. 8) ]
2820 */
2821
2822 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2823 {
2824 struct tcp_sock *tp = tcp_sk(sk);
2825 struct tcphdr *th = skb->h.th;
2826 u32 seq = TCP_SKB_CB(skb)->seq;
2827 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2828
2829 return (/* 1. Pure ACK with correct sequence number. */
2830 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2831
2832 /* 2. ... and duplicate ACK. */
2833 ack == tp->snd_una &&
2834
2835 /* 3. ... and does not update window. */
2836 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2837
2838 /* 4. ... and sits in replay window. */
2839 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2840 }
2841
2842 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2843 {
2844 const struct tcp_sock *tp = tcp_sk(sk);
2845 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2846 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2847 !tcp_disordered_ack(sk, skb));
2848 }
2849
2850 /* Check segment sequence number for validity.
2851 *
2852 * Segment controls are considered valid, if the segment
2853 * fits to the window after truncation to the window. Acceptability
2854 * of data (and SYN, FIN, of course) is checked separately.
2855 * See tcp_data_queue(), for example.
2856 *
2857 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2858 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2859 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2860 * (borrowed from freebsd)
2861 */
2862
2863 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2864 {
2865 return !before(end_seq, tp->rcv_wup) &&
2866 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2867 }
2868
2869 /* When we get a reset we do this. */
2870 static void tcp_reset(struct sock *sk)
2871 {
2872 /* We want the right error as BSD sees it (and indeed as we do). */
2873 switch (sk->sk_state) {
2874 case TCP_SYN_SENT:
2875 sk->sk_err = ECONNREFUSED;
2876 break;
2877 case TCP_CLOSE_WAIT:
2878 sk->sk_err = EPIPE;
2879 break;
2880 case TCP_CLOSE:
2881 return;
2882 default:
2883 sk->sk_err = ECONNRESET;
2884 }
2885
2886 if (!sock_flag(sk, SOCK_DEAD))
2887 sk->sk_error_report(sk);
2888
2889 tcp_done(sk);
2890 }
2891
2892 /*
2893 * Process the FIN bit. This now behaves as it is supposed to work
2894 * and the FIN takes effect when it is validly part of sequence
2895 * space. Not before when we get holes.
2896 *
2897 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2898 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2899 * TIME-WAIT)
2900 *
2901 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2902 * close and we go into CLOSING (and later onto TIME-WAIT)
2903 *
2904 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2905 */
2906 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2907 {
2908 struct tcp_sock *tp = tcp_sk(sk);
2909
2910 inet_csk_schedule_ack(sk);
2911
2912 sk->sk_shutdown |= RCV_SHUTDOWN;
2913 sock_set_flag(sk, SOCK_DONE);
2914
2915 switch (sk->sk_state) {
2916 case TCP_SYN_RECV:
2917 case TCP_ESTABLISHED:
2918 /* Move to CLOSE_WAIT */
2919 tcp_set_state(sk, TCP_CLOSE_WAIT);
2920 inet_csk(sk)->icsk_ack.pingpong = 1;
2921 break;
2922
2923 case TCP_CLOSE_WAIT:
2924 case TCP_CLOSING:
2925 /* Received a retransmission of the FIN, do
2926 * nothing.
2927 */
2928 break;
2929 case TCP_LAST_ACK:
2930 /* RFC793: Remain in the LAST-ACK state. */
2931 break;
2932
2933 case TCP_FIN_WAIT1:
2934 /* This case occurs when a simultaneous close
2935 * happens, we must ack the received FIN and
2936 * enter the CLOSING state.
2937 */
2938 tcp_send_ack(sk);
2939 tcp_set_state(sk, TCP_CLOSING);
2940 break;
2941 case TCP_FIN_WAIT2:
2942 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2943 tcp_send_ack(sk);
2944 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2945 break;
2946 default:
2947 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2948 * cases we should never reach this piece of code.
2949 */
2950 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2951 __FUNCTION__, sk->sk_state);
2952 break;
2953 };
2954
2955 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2956 * Probably, we should reset in this case. For now drop them.
2957 */
2958 __skb_queue_purge(&tp->out_of_order_queue);
2959 if (tp->rx_opt.sack_ok)
2960 tcp_sack_reset(&tp->rx_opt);
2961 sk_stream_mem_reclaim(sk);
2962
2963 if (!sock_flag(sk, SOCK_DEAD)) {
2964 sk->sk_state_change(sk);
2965
2966 /* Do not send POLL_HUP for half duplex close. */
2967 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2968 sk->sk_state == TCP_CLOSE)
2969 sk_wake_async(sk, 1, POLL_HUP);
2970 else
2971 sk_wake_async(sk, 1, POLL_IN);
2972 }
2973 }
2974
2975 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2976 {
2977 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2978 if (before(seq, sp->start_seq))
2979 sp->start_seq = seq;
2980 if (after(end_seq, sp->end_seq))
2981 sp->end_seq = end_seq;
2982 return 1;
2983 }
2984 return 0;
2985 }
2986
2987 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2988 {
2989 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2990 if (before(seq, tp->rcv_nxt))
2991 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2992 else
2993 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2994
2995 tp->rx_opt.dsack = 1;
2996 tp->duplicate_sack[0].start_seq = seq;
2997 tp->duplicate_sack[0].end_seq = end_seq;
2998 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2999 }
3000 }
3001
3002 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3003 {
3004 if (!tp->rx_opt.dsack)
3005 tcp_dsack_set(tp, seq, end_seq);
3006 else
3007 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3008 }
3009
3010 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3011 {
3012 struct tcp_sock *tp = tcp_sk(sk);
3013
3014 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3015 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3016 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3017 tcp_enter_quickack_mode(sk);
3018
3019 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3020 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3021
3022 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3023 end_seq = tp->rcv_nxt;
3024 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3025 }
3026 }
3027
3028 tcp_send_ack(sk);
3029 }
3030
3031 /* These routines update the SACK block as out-of-order packets arrive or
3032 * in-order packets close up the sequence space.
3033 */
3034 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3035 {
3036 int this_sack;
3037 struct tcp_sack_block *sp = &tp->selective_acks[0];
3038 struct tcp_sack_block *swalk = sp+1;
3039
3040 /* See if the recent change to the first SACK eats into
3041 * or hits the sequence space of other SACK blocks, if so coalesce.
3042 */
3043 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3044 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3045 int i;
3046
3047 /* Zap SWALK, by moving every further SACK up by one slot.
3048 * Decrease num_sacks.
3049 */
3050 tp->rx_opt.num_sacks--;
3051 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3052 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
3053 sp[i] = sp[i+1];
3054 continue;
3055 }
3056 this_sack++, swalk++;
3057 }
3058 }
3059
3060 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3061 {
3062 __u32 tmp;
3063
3064 tmp = sack1->start_seq;
3065 sack1->start_seq = sack2->start_seq;
3066 sack2->start_seq = tmp;
3067
3068 tmp = sack1->end_seq;
3069 sack1->end_seq = sack2->end_seq;
3070 sack2->end_seq = tmp;
3071 }
3072
3073 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3074 {
3075 struct tcp_sock *tp = tcp_sk(sk);
3076 struct tcp_sack_block *sp = &tp->selective_acks[0];
3077 int cur_sacks = tp->rx_opt.num_sacks;
3078 int this_sack;
3079
3080 if (!cur_sacks)
3081 goto new_sack;
3082
3083 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3084 if (tcp_sack_extend(sp, seq, end_seq)) {
3085 /* Rotate this_sack to the first one. */
3086 for (; this_sack>0; this_sack--, sp--)
3087 tcp_sack_swap(sp, sp-1);
3088 if (cur_sacks > 1)
3089 tcp_sack_maybe_coalesce(tp);
3090 return;
3091 }
3092 }
3093
3094 /* Could not find an adjacent existing SACK, build a new one,
3095 * put it at the front, and shift everyone else down. We
3096 * always know there is at least one SACK present already here.
3097 *
3098 * If the sack array is full, forget about the last one.
3099 */
3100 if (this_sack >= 4) {
3101 this_sack--;
3102 tp->rx_opt.num_sacks--;
3103 sp--;
3104 }
3105 for(; this_sack > 0; this_sack--, sp--)
3106 *sp = *(sp-1);
3107
3108 new_sack:
3109 /* Build the new head SACK, and we're done. */
3110 sp->start_seq = seq;
3111 sp->end_seq = end_seq;
3112 tp->rx_opt.num_sacks++;
3113 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3114 }
3115
3116 /* RCV.NXT advances, some SACKs should be eaten. */
3117
3118 static void tcp_sack_remove(struct tcp_sock *tp)
3119 {
3120 struct tcp_sack_block *sp = &tp->selective_acks[0];
3121 int num_sacks = tp->rx_opt.num_sacks;
3122 int this_sack;
3123
3124 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3125 if (skb_queue_empty(&tp->out_of_order_queue)) {
3126 tp->rx_opt.num_sacks = 0;
3127 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3128 return;
3129 }
3130
3131 for(this_sack = 0; this_sack < num_sacks; ) {
3132 /* Check if the start of the sack is covered by RCV.NXT. */
3133 if (!before(tp->rcv_nxt, sp->start_seq)) {
3134 int i;
3135
3136 /* RCV.NXT must cover all the block! */
3137 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3138
3139 /* Zap this SACK, by moving forward any other SACKS. */
3140 for (i=this_sack+1; i < num_sacks; i++)
3141 tp->selective_acks[i-1] = tp->selective_acks[i];
3142 num_sacks--;
3143 continue;
3144 }
3145 this_sack++;
3146 sp++;
3147 }
3148 if (num_sacks != tp->rx_opt.num_sacks) {
3149 tp->rx_opt.num_sacks = num_sacks;
3150 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3151 }
3152 }
3153
3154 /* This one checks to see if we can put data from the
3155 * out_of_order queue into the receive_queue.
3156 */
3157 static void tcp_ofo_queue(struct sock *sk)
3158 {
3159 struct tcp_sock *tp = tcp_sk(sk);
3160 __u32 dsack_high = tp->rcv_nxt;
3161 struct sk_buff *skb;
3162
3163 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3164 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3165 break;
3166
3167 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3168 __u32 dsack = dsack_high;
3169 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3170 dsack_high = TCP_SKB_CB(skb)->end_seq;
3171 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3172 }
3173
3174 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3175 SOCK_DEBUG(sk, "ofo packet was already received \n");
3176 __skb_unlink(skb, &tp->out_of_order_queue);
3177 __kfree_skb(skb);
3178 continue;
3179 }
3180 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3181 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3182 TCP_SKB_CB(skb)->end_seq);
3183
3184 __skb_unlink(skb, &tp->out_of_order_queue);
3185 __skb_queue_tail(&sk->sk_receive_queue, skb);
3186 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3187 if(skb->h.th->fin)
3188 tcp_fin(skb, sk, skb->h.th);
3189 }
3190 }
3191
3192 static int tcp_prune_queue(struct sock *sk);
3193
3194 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3195 {
3196 struct tcphdr *th = skb->h.th;
3197 struct tcp_sock *tp = tcp_sk(sk);
3198 int eaten = -1;
3199
3200 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3201 goto drop;
3202
3203 __skb_pull(skb, th->doff*4);
3204
3205 TCP_ECN_accept_cwr(tp, skb);
3206
3207 if (tp->rx_opt.dsack) {
3208 tp->rx_opt.dsack = 0;
3209 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3210 4 - tp->rx_opt.tstamp_ok);
3211 }
3212
3213 /* Queue data for delivery to the user.
3214 * Packets in sequence go to the receive queue.
3215 * Out of sequence packets to the out_of_order_queue.
3216 */
3217 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3218 if (tcp_receive_window(tp) == 0)
3219 goto out_of_window;
3220
3221 /* Ok. In sequence. In window. */
3222 if (tp->ucopy.task == current &&
3223 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3224 sock_owned_by_user(sk) && !tp->urg_data) {
3225 int chunk = min_t(unsigned int, skb->len,
3226 tp->ucopy.len);
3227
3228 __set_current_state(TASK_RUNNING);
3229
3230 local_bh_enable();
3231 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3232 tp->ucopy.len -= chunk;
3233 tp->copied_seq += chunk;
3234 eaten = (chunk == skb->len && !th->fin);
3235 tcp_rcv_space_adjust(sk);
3236 }
3237 local_bh_disable();
3238 }
3239
3240 if (eaten <= 0) {
3241 queue_and_out:
3242 if (eaten < 0 &&
3243 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3244 !sk_stream_rmem_schedule(sk, skb))) {
3245 if (tcp_prune_queue(sk) < 0 ||
3246 !sk_stream_rmem_schedule(sk, skb))
3247 goto drop;
3248 }
3249 sk_stream_set_owner_r(skb, sk);
3250 __skb_queue_tail(&sk->sk_receive_queue, skb);
3251 }
3252 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3253 if(skb->len)
3254 tcp_event_data_recv(sk, tp, skb);
3255 if(th->fin)
3256 tcp_fin(skb, sk, th);
3257
3258 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3259 tcp_ofo_queue(sk);
3260
3261 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3262 * gap in queue is filled.
3263 */
3264 if (skb_queue_empty(&tp->out_of_order_queue))
3265 inet_csk(sk)->icsk_ack.pingpong = 0;
3266 }
3267
3268 if (tp->rx_opt.num_sacks)
3269 tcp_sack_remove(tp);
3270
3271 tcp_fast_path_check(sk, tp);
3272
3273 if (eaten > 0)
3274 __kfree_skb(skb);
3275 else if (!sock_flag(sk, SOCK_DEAD))
3276 sk->sk_data_ready(sk, 0);
3277 return;
3278 }
3279
3280 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3281 /* A retransmit, 2nd most common case. Force an immediate ack. */
3282 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3283 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3284
3285 out_of_window:
3286 tcp_enter_quickack_mode(sk);
3287 inet_csk_schedule_ack(sk);
3288 drop:
3289 __kfree_skb(skb);
3290 return;
3291 }
3292
3293 /* Out of window. F.e. zero window probe. */
3294 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3295 goto out_of_window;
3296
3297 tcp_enter_quickack_mode(sk);
3298
3299 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3300 /* Partial packet, seq < rcv_next < end_seq */
3301 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3302 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3303 TCP_SKB_CB(skb)->end_seq);
3304
3305 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3306
3307 /* If window is closed, drop tail of packet. But after
3308 * remembering D-SACK for its head made in previous line.
3309 */
3310 if (!tcp_receive_window(tp))
3311 goto out_of_window;
3312 goto queue_and_out;
3313 }
3314
3315 TCP_ECN_check_ce(tp, skb);
3316
3317 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3318 !sk_stream_rmem_schedule(sk, skb)) {
3319 if (tcp_prune_queue(sk) < 0 ||
3320 !sk_stream_rmem_schedule(sk, skb))
3321 goto drop;
3322 }
3323
3324 /* Disable header prediction. */
3325 tp->pred_flags = 0;
3326 inet_csk_schedule_ack(sk);
3327
3328 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3329 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3330
3331 sk_stream_set_owner_r(skb, sk);
3332
3333 if (!skb_peek(&tp->out_of_order_queue)) {
3334 /* Initial out of order segment, build 1 SACK. */
3335 if (tp->rx_opt.sack_ok) {
3336 tp->rx_opt.num_sacks = 1;
3337 tp->rx_opt.dsack = 0;
3338 tp->rx_opt.eff_sacks = 1;
3339 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3340 tp->selective_acks[0].end_seq =
3341 TCP_SKB_CB(skb)->end_seq;
3342 }
3343 __skb_queue_head(&tp->out_of_order_queue,skb);
3344 } else {
3345 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3346 u32 seq = TCP_SKB_CB(skb)->seq;
3347 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3348
3349 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3350 __skb_append(skb1, skb, &tp->out_of_order_queue);
3351
3352 if (!tp->rx_opt.num_sacks ||
3353 tp->selective_acks[0].end_seq != seq)
3354 goto add_sack;
3355
3356 /* Common case: data arrive in order after hole. */
3357 tp->selective_acks[0].end_seq = end_seq;
3358 return;
3359 }
3360
3361 /* Find place to insert this segment. */
3362 do {
3363 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3364 break;
3365 } while ((skb1 = skb1->prev) !=
3366 (struct sk_buff*)&tp->out_of_order_queue);
3367
3368 /* Do skb overlap to previous one? */
3369 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3370 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3371 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3372 /* All the bits are present. Drop. */
3373 __kfree_skb(skb);
3374 tcp_dsack_set(tp, seq, end_seq);
3375 goto add_sack;
3376 }
3377 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3378 /* Partial overlap. */
3379 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3380 } else {
3381 skb1 = skb1->prev;
3382 }
3383 }
3384 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3385
3386 /* And clean segments covered by new one as whole. */
3387 while ((skb1 = skb->next) !=
3388 (struct sk_buff*)&tp->out_of_order_queue &&
3389 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3390 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3391 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3392 break;
3393 }
3394 __skb_unlink(skb1, &tp->out_of_order_queue);
3395 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3396 __kfree_skb(skb1);
3397 }
3398
3399 add_sack:
3400 if (tp->rx_opt.sack_ok)
3401 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3402 }
3403 }
3404
3405 /* Collapse contiguous sequence of skbs head..tail with
3406 * sequence numbers start..end.
3407 * Segments with FIN/SYN are not collapsed (only because this
3408 * simplifies code)
3409 */
3410 static void
3411 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3412 struct sk_buff *head, struct sk_buff *tail,
3413 u32 start, u32 end)
3414 {
3415 struct sk_buff *skb;
3416
3417 /* First, check that queue is collapsible and find
3418 * the point where collapsing can be useful. */
3419 for (skb = head; skb != tail; ) {
3420 /* No new bits? It is possible on ofo queue. */
3421 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3422 struct sk_buff *next = skb->next;
3423 __skb_unlink(skb, list);
3424 __kfree_skb(skb);
3425 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3426 skb = next;
3427 continue;
3428 }
3429
3430 /* The first skb to collapse is:
3431 * - not SYN/FIN and
3432 * - bloated or contains data before "start" or
3433 * overlaps to the next one.
3434 */
3435 if (!skb->h.th->syn && !skb->h.th->fin &&
3436 (tcp_win_from_space(skb->truesize) > skb->len ||
3437 before(TCP_SKB_CB(skb)->seq, start) ||
3438 (skb->next != tail &&
3439 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3440 break;
3441
3442 /* Decided to skip this, advance start seq. */
3443 start = TCP_SKB_CB(skb)->end_seq;
3444 skb = skb->next;
3445 }
3446 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3447 return;
3448
3449 while (before(start, end)) {
3450 struct sk_buff *nskb;
3451 int header = skb_headroom(skb);
3452 int copy = SKB_MAX_ORDER(header, 0);
3453
3454 /* Too big header? This can happen with IPv6. */
3455 if (copy < 0)
3456 return;
3457 if (end-start < copy)
3458 copy = end-start;
3459 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3460 if (!nskb)
3461 return;
3462 skb_reserve(nskb, header);
3463 memcpy(nskb->head, skb->head, header);
3464 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3465 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3466 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3467 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3468 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3469 __skb_insert(nskb, skb->prev, skb, list);
3470 sk_stream_set_owner_r(nskb, sk);
3471
3472 /* Copy data, releasing collapsed skbs. */
3473 while (copy > 0) {
3474 int offset = start - TCP_SKB_CB(skb)->seq;
3475 int size = TCP_SKB_CB(skb)->end_seq - start;
3476
3477 BUG_ON(offset < 0);
3478 if (size > 0) {
3479 size = min(copy, size);
3480 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3481 BUG();
3482 TCP_SKB_CB(nskb)->end_seq += size;
3483 copy -= size;
3484 start += size;
3485 }
3486 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3487 struct sk_buff *next = skb->next;
3488 __skb_unlink(skb, list);
3489 __kfree_skb(skb);
3490 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3491 skb = next;
3492 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3493 return;
3494 }
3495 }
3496 }
3497 }
3498
3499 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3500 * and tcp_collapse() them until all the queue is collapsed.
3501 */
3502 static void tcp_collapse_ofo_queue(struct sock *sk)
3503 {
3504 struct tcp_sock *tp = tcp_sk(sk);
3505 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3506 struct sk_buff *head;
3507 u32 start, end;
3508
3509 if (skb == NULL)
3510 return;
3511
3512 start = TCP_SKB_CB(skb)->seq;
3513 end = TCP_SKB_CB(skb)->end_seq;
3514 head = skb;
3515
3516 for (;;) {
3517 skb = skb->next;
3518
3519 /* Segment is terminated when we see gap or when
3520 * we are at the end of all the queue. */
3521 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3522 after(TCP_SKB_CB(skb)->seq, end) ||
3523 before(TCP_SKB_CB(skb)->end_seq, start)) {
3524 tcp_collapse(sk, &tp->out_of_order_queue,
3525 head, skb, start, end);
3526 head = skb;
3527 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3528 break;
3529 /* Start new segment */
3530 start = TCP_SKB_CB(skb)->seq;
3531 end = TCP_SKB_CB(skb)->end_seq;
3532 } else {
3533 if (before(TCP_SKB_CB(skb)->seq, start))
3534 start = TCP_SKB_CB(skb)->seq;
3535 if (after(TCP_SKB_CB(skb)->end_seq, end))
3536 end = TCP_SKB_CB(skb)->end_seq;
3537 }
3538 }
3539 }
3540
3541 /* Reduce allocated memory if we can, trying to get
3542 * the socket within its memory limits again.
3543 *
3544 * Return less than zero if we should start dropping frames
3545 * until the socket owning process reads some of the data
3546 * to stabilize the situation.
3547 */
3548 static int tcp_prune_queue(struct sock *sk)
3549 {
3550 struct tcp_sock *tp = tcp_sk(sk);
3551
3552 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3553
3554 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3555
3556 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3557 tcp_clamp_window(sk, tp);
3558 else if (tcp_memory_pressure)
3559 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3560
3561 tcp_collapse_ofo_queue(sk);
3562 tcp_collapse(sk, &sk->sk_receive_queue,
3563 sk->sk_receive_queue.next,
3564 (struct sk_buff*)&sk->sk_receive_queue,
3565 tp->copied_seq, tp->rcv_nxt);
3566 sk_stream_mem_reclaim(sk);
3567
3568 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3569 return 0;
3570
3571 /* Collapsing did not help, destructive actions follow.
3572 * This must not ever occur. */
3573
3574 /* First, purge the out_of_order queue. */
3575 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3576 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3577 __skb_queue_purge(&tp->out_of_order_queue);
3578
3579 /* Reset SACK state. A conforming SACK implementation will
3580 * do the same at a timeout based retransmit. When a connection
3581 * is in a sad state like this, we care only about integrity
3582 * of the connection not performance.
3583 */
3584 if (tp->rx_opt.sack_ok)
3585 tcp_sack_reset(&tp->rx_opt);
3586 sk_stream_mem_reclaim(sk);
3587 }
3588
3589 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3590 return 0;
3591
3592 /* If we are really being abused, tell the caller to silently
3593 * drop receive data on the floor. It will get retransmitted
3594 * and hopefully then we'll have sufficient space.
3595 */
3596 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3597
3598 /* Massive buffer overcommit. */
3599 tp->pred_flags = 0;
3600 return -1;
3601 }
3602
3603
3604 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3605 * As additional protections, we do not touch cwnd in retransmission phases,
3606 * and if application hit its sndbuf limit recently.
3607 */
3608 void tcp_cwnd_application_limited(struct sock *sk)
3609 {
3610 struct tcp_sock *tp = tcp_sk(sk);
3611
3612 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3613 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3614 /* Limited by application or receiver window. */
3615 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3616 u32 win_used = max(tp->snd_cwnd_used, init_win);
3617 if (win_used < tp->snd_cwnd) {
3618 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3619 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3620 }
3621 tp->snd_cwnd_used = 0;
3622 }
3623 tp->snd_cwnd_stamp = tcp_time_stamp;
3624 }
3625
3626 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3627 {
3628 /* If the user specified a specific send buffer setting, do
3629 * not modify it.
3630 */
3631 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3632 return 0;
3633
3634 /* If we are under global TCP memory pressure, do not expand. */
3635 if (tcp_memory_pressure)
3636 return 0;
3637
3638 /* If we are under soft global TCP memory pressure, do not expand. */
3639 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3640 return 0;
3641
3642 /* If we filled the congestion window, do not expand. */
3643 if (tp->packets_out >= tp->snd_cwnd)
3644 return 0;
3645
3646 return 1;
3647 }
3648
3649 /* When incoming ACK allowed to free some skb from write_queue,
3650 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3651 * on the exit from tcp input handler.
3652 *
3653 * PROBLEM: sndbuf expansion does not work well with largesend.
3654 */
3655 static void tcp_new_space(struct sock *sk)
3656 {
3657 struct tcp_sock *tp = tcp_sk(sk);
3658
3659 if (tcp_should_expand_sndbuf(sk, tp)) {
3660 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3661 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3662 demanded = max_t(unsigned int, tp->snd_cwnd,
3663 tp->reordering + 1);
3664 sndmem *= 2*demanded;
3665 if (sndmem > sk->sk_sndbuf)
3666 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3667 tp->snd_cwnd_stamp = tcp_time_stamp;
3668 }
3669
3670 sk->sk_write_space(sk);
3671 }
3672
3673 static void tcp_check_space(struct sock *sk)
3674 {
3675 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3676 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3677 if (sk->sk_socket &&
3678 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3679 tcp_new_space(sk);
3680 }
3681 }
3682
3683 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3684 {
3685 tcp_push_pending_frames(sk, tp);
3686 tcp_check_space(sk);
3687 }
3688
3689 /*
3690 * Check if sending an ack is needed.
3691 */
3692 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3693 {
3694 struct tcp_sock *tp = tcp_sk(sk);
3695
3696 /* More than one full frame received... */
3697 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3698 /* ... and right edge of window advances far enough.
3699 * (tcp_recvmsg() will send ACK otherwise). Or...
3700 */
3701 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3702 /* We ACK each frame or... */
3703 tcp_in_quickack_mode(sk) ||
3704 /* We have out of order data. */
3705 (ofo_possible &&
3706 skb_peek(&tp->out_of_order_queue))) {
3707 /* Then ack it now */
3708 tcp_send_ack(sk);
3709 } else {
3710 /* Else, send delayed ack. */
3711 tcp_send_delayed_ack(sk);
3712 }
3713 }
3714
3715 static inline void tcp_ack_snd_check(struct sock *sk)
3716 {
3717 if (!inet_csk_ack_scheduled(sk)) {
3718 /* We sent a data segment already. */
3719 return;
3720 }
3721 __tcp_ack_snd_check(sk, 1);
3722 }
3723
3724 /*
3725 * This routine is only called when we have urgent data
3726 * signaled. Its the 'slow' part of tcp_urg. It could be
3727 * moved inline now as tcp_urg is only called from one
3728 * place. We handle URGent data wrong. We have to - as
3729 * BSD still doesn't use the correction from RFC961.
3730 * For 1003.1g we should support a new option TCP_STDURG to permit
3731 * either form (or just set the sysctl tcp_stdurg).
3732 */
3733
3734 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3735 {
3736 struct tcp_sock *tp = tcp_sk(sk);
3737 u32 ptr = ntohs(th->urg_ptr);
3738
3739 if (ptr && !sysctl_tcp_stdurg)
3740 ptr--;
3741 ptr += ntohl(th->seq);
3742
3743 /* Ignore urgent data that we've already seen and read. */
3744 if (after(tp->copied_seq, ptr))
3745 return;
3746
3747 /* Do not replay urg ptr.
3748 *
3749 * NOTE: interesting situation not covered by specs.
3750 * Misbehaving sender may send urg ptr, pointing to segment,
3751 * which we already have in ofo queue. We are not able to fetch
3752 * such data and will stay in TCP_URG_NOTYET until will be eaten
3753 * by recvmsg(). Seems, we are not obliged to handle such wicked
3754 * situations. But it is worth to think about possibility of some
3755 * DoSes using some hypothetical application level deadlock.
3756 */
3757 if (before(ptr, tp->rcv_nxt))
3758 return;
3759
3760 /* Do we already have a newer (or duplicate) urgent pointer? */
3761 if (tp->urg_data && !after(ptr, tp->urg_seq))
3762 return;
3763
3764 /* Tell the world about our new urgent pointer. */
3765 sk_send_sigurg(sk);
3766
3767 /* We may be adding urgent data when the last byte read was
3768 * urgent. To do this requires some care. We cannot just ignore
3769 * tp->copied_seq since we would read the last urgent byte again
3770 * as data, nor can we alter copied_seq until this data arrives
3771 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3772 *
3773 * NOTE. Double Dutch. Rendering to plain English: author of comment
3774 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3775 * and expect that both A and B disappear from stream. This is _wrong_.
3776 * Though this happens in BSD with high probability, this is occasional.
3777 * Any application relying on this is buggy. Note also, that fix "works"
3778 * only in this artificial test. Insert some normal data between A and B and we will
3779 * decline of BSD again. Verdict: it is better to remove to trap
3780 * buggy users.
3781 */
3782 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3783 !sock_flag(sk, SOCK_URGINLINE) &&
3784 tp->copied_seq != tp->rcv_nxt) {
3785 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3786 tp->copied_seq++;
3787 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3788 __skb_unlink(skb, &sk->sk_receive_queue);
3789 __kfree_skb(skb);
3790 }
3791 }
3792
3793 tp->urg_data = TCP_URG_NOTYET;
3794 tp->urg_seq = ptr;
3795
3796 /* Disable header prediction. */
3797 tp->pred_flags = 0;
3798 }
3799
3800 /* This is the 'fast' part of urgent handling. */
3801 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3802 {
3803 struct tcp_sock *tp = tcp_sk(sk);
3804
3805 /* Check if we get a new urgent pointer - normally not. */
3806 if (th->urg)
3807 tcp_check_urg(sk,th);
3808
3809 /* Do we wait for any urgent data? - normally not... */
3810 if (tp->urg_data == TCP_URG_NOTYET) {
3811 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3812 th->syn;
3813
3814 /* Is the urgent pointer pointing into this packet? */
3815 if (ptr < skb->len) {
3816 u8 tmp;
3817 if (skb_copy_bits(skb, ptr, &tmp, 1))
3818 BUG();
3819 tp->urg_data = TCP_URG_VALID | tmp;
3820 if (!sock_flag(sk, SOCK_DEAD))
3821 sk->sk_data_ready(sk, 0);
3822 }
3823 }
3824 }
3825
3826 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3827 {
3828 struct tcp_sock *tp = tcp_sk(sk);
3829 int chunk = skb->len - hlen;
3830 int err;
3831
3832 local_bh_enable();
3833 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3834 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3835 else
3836 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3837 tp->ucopy.iov);
3838
3839 if (!err) {
3840 tp->ucopy.len -= chunk;
3841 tp->copied_seq += chunk;
3842 tcp_rcv_space_adjust(sk);
3843 }
3844
3845 local_bh_disable();
3846 return err;
3847 }
3848
3849 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3850 {
3851 __sum16 result;
3852
3853 if (sock_owned_by_user(sk)) {
3854 local_bh_enable();
3855 result = __tcp_checksum_complete(skb);
3856 local_bh_disable();
3857 } else {
3858 result = __tcp_checksum_complete(skb);
3859 }
3860 return result;
3861 }
3862
3863 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3864 {
3865 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3866 __tcp_checksum_complete_user(sk, skb);
3867 }
3868
3869 #ifdef CONFIG_NET_DMA
3870 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3871 {
3872 struct tcp_sock *tp = tcp_sk(sk);
3873 int chunk = skb->len - hlen;
3874 int dma_cookie;
3875 int copied_early = 0;
3876
3877 if (tp->ucopy.wakeup)
3878 return 0;
3879
3880 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
3881 tp->ucopy.dma_chan = get_softnet_dma();
3882
3883 if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
3884
3885 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
3886 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
3887
3888 if (dma_cookie < 0)
3889 goto out;
3890
3891 tp->ucopy.dma_cookie = dma_cookie;
3892 copied_early = 1;
3893
3894 tp->ucopy.len -= chunk;
3895 tp->copied_seq += chunk;
3896 tcp_rcv_space_adjust(sk);
3897
3898 if ((tp->ucopy.len == 0) ||
3899 (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
3900 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
3901 tp->ucopy.wakeup = 1;
3902 sk->sk_data_ready(sk, 0);
3903 }
3904 } else if (chunk > 0) {
3905 tp->ucopy.wakeup = 1;
3906 sk->sk_data_ready(sk, 0);
3907 }
3908 out:
3909 return copied_early;
3910 }
3911 #endif /* CONFIG_NET_DMA */
3912
3913 /*
3914 * TCP receive function for the ESTABLISHED state.
3915 *
3916 * It is split into a fast path and a slow path. The fast path is
3917 * disabled when:
3918 * - A zero window was announced from us - zero window probing
3919 * is only handled properly in the slow path.
3920 * - Out of order segments arrived.
3921 * - Urgent data is expected.
3922 * - There is no buffer space left
3923 * - Unexpected TCP flags/window values/header lengths are received
3924 * (detected by checking the TCP header against pred_flags)
3925 * - Data is sent in both directions. Fast path only supports pure senders
3926 * or pure receivers (this means either the sequence number or the ack
3927 * value must stay constant)
3928 * - Unexpected TCP option.
3929 *
3930 * When these conditions are not satisfied it drops into a standard
3931 * receive procedure patterned after RFC793 to handle all cases.
3932 * The first three cases are guaranteed by proper pred_flags setting,
3933 * the rest is checked inline. Fast processing is turned on in
3934 * tcp_data_queue when everything is OK.
3935 */
3936 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3937 struct tcphdr *th, unsigned len)
3938 {
3939 struct tcp_sock *tp = tcp_sk(sk);
3940
3941 /*
3942 * Header prediction.
3943 * The code loosely follows the one in the famous
3944 * "30 instruction TCP receive" Van Jacobson mail.
3945 *
3946 * Van's trick is to deposit buffers into socket queue
3947 * on a device interrupt, to call tcp_recv function
3948 * on the receive process context and checksum and copy
3949 * the buffer to user space. smart...
3950 *
3951 * Our current scheme is not silly either but we take the
3952 * extra cost of the net_bh soft interrupt processing...
3953 * We do checksum and copy also but from device to kernel.
3954 */
3955
3956 tp->rx_opt.saw_tstamp = 0;
3957
3958 /* pred_flags is 0xS?10 << 16 + snd_wnd
3959 * if header_prediction is to be made
3960 * 'S' will always be tp->tcp_header_len >> 2
3961 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3962 * turn it off (when there are holes in the receive
3963 * space for instance)
3964 * PSH flag is ignored.
3965 */
3966
3967 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3968 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3969 int tcp_header_len = tp->tcp_header_len;
3970
3971 /* Timestamp header prediction: tcp_header_len
3972 * is automatically equal to th->doff*4 due to pred_flags
3973 * match.
3974 */
3975
3976 /* Check timestamp */
3977 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3978 __be32 *ptr = (__be32 *)(th + 1);
3979
3980 /* No? Slow path! */
3981 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3982 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3983 goto slow_path;
3984
3985 tp->rx_opt.saw_tstamp = 1;
3986 ++ptr;
3987 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3988 ++ptr;
3989 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3990
3991 /* If PAWS failed, check it more carefully in slow path */
3992 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3993 goto slow_path;
3994
3995 /* DO NOT update ts_recent here, if checksum fails
3996 * and timestamp was corrupted part, it will result
3997 * in a hung connection since we will drop all
3998 * future packets due to the PAWS test.
3999 */
4000 }
4001
4002 if (len <= tcp_header_len) {
4003 /* Bulk data transfer: sender */
4004 if (len == tcp_header_len) {
4005 /* Predicted packet is in window by definition.
4006 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4007 * Hence, check seq<=rcv_wup reduces to:
4008 */
4009 if (tcp_header_len ==
4010 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4011 tp->rcv_nxt == tp->rcv_wup)
4012 tcp_store_ts_recent(tp);
4013
4014 /* We know that such packets are checksummed
4015 * on entry.
4016 */
4017 tcp_ack(sk, skb, 0);
4018 __kfree_skb(skb);
4019 tcp_data_snd_check(sk, tp);
4020 return 0;
4021 } else { /* Header too small */
4022 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4023 goto discard;
4024 }
4025 } else {
4026 int eaten = 0;
4027 int copied_early = 0;
4028
4029 if (tp->copied_seq == tp->rcv_nxt &&
4030 len - tcp_header_len <= tp->ucopy.len) {
4031 #ifdef CONFIG_NET_DMA
4032 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4033 copied_early = 1;
4034 eaten = 1;
4035 }
4036 #endif
4037 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4038 __set_current_state(TASK_RUNNING);
4039
4040 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4041 eaten = 1;
4042 }
4043 if (eaten) {
4044 /* Predicted packet is in window by definition.
4045 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4046 * Hence, check seq<=rcv_wup reduces to:
4047 */
4048 if (tcp_header_len ==
4049 (sizeof(struct tcphdr) +
4050 TCPOLEN_TSTAMP_ALIGNED) &&
4051 tp->rcv_nxt == tp->rcv_wup)
4052 tcp_store_ts_recent(tp);
4053
4054 tcp_rcv_rtt_measure_ts(sk, skb);
4055
4056 __skb_pull(skb, tcp_header_len);
4057 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4058 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4059 }
4060 if (copied_early)
4061 tcp_cleanup_rbuf(sk, skb->len);
4062 }
4063 if (!eaten) {
4064 if (tcp_checksum_complete_user(sk, skb))
4065 goto csum_error;
4066
4067 /* Predicted packet is in window by definition.
4068 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4069 * Hence, check seq<=rcv_wup reduces to:
4070 */
4071 if (tcp_header_len ==
4072 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4073 tp->rcv_nxt == tp->rcv_wup)
4074 tcp_store_ts_recent(tp);
4075
4076 tcp_rcv_rtt_measure_ts(sk, skb);
4077
4078 if ((int)skb->truesize > sk->sk_forward_alloc)
4079 goto step5;
4080
4081 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4082
4083 /* Bulk data transfer: receiver */
4084 __skb_pull(skb,tcp_header_len);
4085 __skb_queue_tail(&sk->sk_receive_queue, skb);
4086 sk_stream_set_owner_r(skb, sk);
4087 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4088 }
4089
4090 tcp_event_data_recv(sk, tp, skb);
4091
4092 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4093 /* Well, only one small jumplet in fast path... */
4094 tcp_ack(sk, skb, FLAG_DATA);
4095 tcp_data_snd_check(sk, tp);
4096 if (!inet_csk_ack_scheduled(sk))
4097 goto no_ack;
4098 }
4099
4100 __tcp_ack_snd_check(sk, 0);
4101 no_ack:
4102 #ifdef CONFIG_NET_DMA
4103 if (copied_early)
4104 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4105 else
4106 #endif
4107 if (eaten)
4108 __kfree_skb(skb);
4109 else
4110 sk->sk_data_ready(sk, 0);
4111 return 0;
4112 }
4113 }
4114
4115 slow_path:
4116 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4117 goto csum_error;
4118
4119 /*
4120 * RFC1323: H1. Apply PAWS check first.
4121 */
4122 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4123 tcp_paws_discard(sk, skb)) {
4124 if (!th->rst) {
4125 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4126 tcp_send_dupack(sk, skb);
4127 goto discard;
4128 }
4129 /* Resets are accepted even if PAWS failed.
4130
4131 ts_recent update must be made after we are sure
4132 that the packet is in window.
4133 */
4134 }
4135
4136 /*
4137 * Standard slow path.
4138 */
4139
4140 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4141 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4142 * (RST) segments are validated by checking their SEQ-fields."
4143 * And page 69: "If an incoming segment is not acceptable,
4144 * an acknowledgment should be sent in reply (unless the RST bit
4145 * is set, if so drop the segment and return)".
4146 */
4147 if (!th->rst)
4148 tcp_send_dupack(sk, skb);
4149 goto discard;
4150 }
4151
4152 if(th->rst) {
4153 tcp_reset(sk);
4154 goto discard;
4155 }
4156
4157 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4158
4159 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4160 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4161 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4162 tcp_reset(sk);
4163 return 1;
4164 }
4165
4166 step5:
4167 if(th->ack)
4168 tcp_ack(sk, skb, FLAG_SLOWPATH);
4169
4170 tcp_rcv_rtt_measure_ts(sk, skb);
4171
4172 /* Process urgent data. */
4173 tcp_urg(sk, skb, th);
4174
4175 /* step 7: process the segment text */
4176 tcp_data_queue(sk, skb);
4177
4178 tcp_data_snd_check(sk, tp);
4179 tcp_ack_snd_check(sk);
4180 return 0;
4181
4182 csum_error:
4183 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4184
4185 discard:
4186 __kfree_skb(skb);
4187 return 0;
4188 }
4189
4190 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4191 struct tcphdr *th, unsigned len)
4192 {
4193 struct tcp_sock *tp = tcp_sk(sk);
4194 struct inet_connection_sock *icsk = inet_csk(sk);
4195 int saved_clamp = tp->rx_opt.mss_clamp;
4196
4197 tcp_parse_options(skb, &tp->rx_opt, 0);
4198
4199 if (th->ack) {
4200 /* rfc793:
4201 * "If the state is SYN-SENT then
4202 * first check the ACK bit
4203 * If the ACK bit is set
4204 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4205 * a reset (unless the RST bit is set, if so drop
4206 * the segment and return)"
4207 *
4208 * We do not send data with SYN, so that RFC-correct
4209 * test reduces to:
4210 */
4211 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4212 goto reset_and_undo;
4213
4214 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4215 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4216 tcp_time_stamp)) {
4217 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4218 goto reset_and_undo;
4219 }
4220
4221 /* Now ACK is acceptable.
4222 *
4223 * "If the RST bit is set
4224 * If the ACK was acceptable then signal the user "error:
4225 * connection reset", drop the segment, enter CLOSED state,
4226 * delete TCB, and return."
4227 */
4228
4229 if (th->rst) {
4230 tcp_reset(sk);
4231 goto discard;
4232 }
4233
4234 /* rfc793:
4235 * "fifth, if neither of the SYN or RST bits is set then
4236 * drop the segment and return."
4237 *
4238 * See note below!
4239 * --ANK(990513)
4240 */
4241 if (!th->syn)
4242 goto discard_and_undo;
4243
4244 /* rfc793:
4245 * "If the SYN bit is on ...
4246 * are acceptable then ...
4247 * (our SYN has been ACKed), change the connection
4248 * state to ESTABLISHED..."
4249 */
4250
4251 TCP_ECN_rcv_synack(tp, th);
4252
4253 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4254 tcp_ack(sk, skb, FLAG_SLOWPATH);
4255
4256 /* Ok.. it's good. Set up sequence numbers and
4257 * move to established.
4258 */
4259 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4260 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4261
4262 /* RFC1323: The window in SYN & SYN/ACK segments is
4263 * never scaled.
4264 */
4265 tp->snd_wnd = ntohs(th->window);
4266 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4267
4268 if (!tp->rx_opt.wscale_ok) {
4269 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4270 tp->window_clamp = min(tp->window_clamp, 65535U);
4271 }
4272
4273 if (tp->rx_opt.saw_tstamp) {
4274 tp->rx_opt.tstamp_ok = 1;
4275 tp->tcp_header_len =
4276 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4277 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4278 tcp_store_ts_recent(tp);
4279 } else {
4280 tp->tcp_header_len = sizeof(struct tcphdr);
4281 }
4282
4283 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4284 tp->rx_opt.sack_ok |= 2;
4285
4286 tcp_mtup_init(sk);
4287 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4288 tcp_initialize_rcv_mss(sk);
4289
4290 /* Remember, tcp_poll() does not lock socket!
4291 * Change state from SYN-SENT only after copied_seq
4292 * is initialized. */
4293 tp->copied_seq = tp->rcv_nxt;
4294 smp_mb();
4295 tcp_set_state(sk, TCP_ESTABLISHED);
4296
4297 security_inet_conn_established(sk, skb);
4298
4299 /* Make sure socket is routed, for correct metrics. */
4300 icsk->icsk_af_ops->rebuild_header(sk);
4301
4302 tcp_init_metrics(sk);
4303
4304 tcp_init_congestion_control(sk);
4305
4306 /* Prevent spurious tcp_cwnd_restart() on first data
4307 * packet.
4308 */
4309 tp->lsndtime = tcp_time_stamp;
4310
4311 tcp_init_buffer_space(sk);
4312
4313 if (sock_flag(sk, SOCK_KEEPOPEN))
4314 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4315
4316 if (!tp->rx_opt.snd_wscale)
4317 __tcp_fast_path_on(tp, tp->snd_wnd);
4318 else
4319 tp->pred_flags = 0;
4320
4321 if (!sock_flag(sk, SOCK_DEAD)) {
4322 sk->sk_state_change(sk);
4323 sk_wake_async(sk, 0, POLL_OUT);
4324 }
4325
4326 if (sk->sk_write_pending ||
4327 icsk->icsk_accept_queue.rskq_defer_accept ||
4328 icsk->icsk_ack.pingpong) {
4329 /* Save one ACK. Data will be ready after
4330 * several ticks, if write_pending is set.
4331 *
4332 * It may be deleted, but with this feature tcpdumps
4333 * look so _wonderfully_ clever, that I was not able
4334 * to stand against the temptation 8) --ANK
4335 */
4336 inet_csk_schedule_ack(sk);
4337 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4338 icsk->icsk_ack.ato = TCP_ATO_MIN;
4339 tcp_incr_quickack(sk);
4340 tcp_enter_quickack_mode(sk);
4341 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4342 TCP_DELACK_MAX, TCP_RTO_MAX);
4343
4344 discard:
4345 __kfree_skb(skb);
4346 return 0;
4347 } else {
4348 tcp_send_ack(sk);
4349 }
4350 return -1;
4351 }
4352
4353 /* No ACK in the segment */
4354
4355 if (th->rst) {
4356 /* rfc793:
4357 * "If the RST bit is set
4358 *
4359 * Otherwise (no ACK) drop the segment and return."
4360 */
4361
4362 goto discard_and_undo;
4363 }
4364
4365 /* PAWS check. */
4366 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4367 goto discard_and_undo;
4368
4369 if (th->syn) {
4370 /* We see SYN without ACK. It is attempt of
4371 * simultaneous connect with crossed SYNs.
4372 * Particularly, it can be connect to self.
4373 */
4374 tcp_set_state(sk, TCP_SYN_RECV);
4375
4376 if (tp->rx_opt.saw_tstamp) {
4377 tp->rx_opt.tstamp_ok = 1;
4378 tcp_store_ts_recent(tp);
4379 tp->tcp_header_len =
4380 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4381 } else {
4382 tp->tcp_header_len = sizeof(struct tcphdr);
4383 }
4384
4385 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4386 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4387
4388 /* RFC1323: The window in SYN & SYN/ACK segments is
4389 * never scaled.
4390 */
4391 tp->snd_wnd = ntohs(th->window);
4392 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4393 tp->max_window = tp->snd_wnd;
4394
4395 TCP_ECN_rcv_syn(tp, th);
4396
4397 tcp_mtup_init(sk);
4398 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4399 tcp_initialize_rcv_mss(sk);
4400
4401
4402 tcp_send_synack(sk);
4403 #if 0
4404 /* Note, we could accept data and URG from this segment.
4405 * There are no obstacles to make this.
4406 *
4407 * However, if we ignore data in ACKless segments sometimes,
4408 * we have no reasons to accept it sometimes.
4409 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4410 * is not flawless. So, discard packet for sanity.
4411 * Uncomment this return to process the data.
4412 */
4413 return -1;
4414 #else
4415 goto discard;
4416 #endif
4417 }
4418 /* "fifth, if neither of the SYN or RST bits is set then
4419 * drop the segment and return."
4420 */
4421
4422 discard_and_undo:
4423 tcp_clear_options(&tp->rx_opt);
4424 tp->rx_opt.mss_clamp = saved_clamp;
4425 goto discard;
4426
4427 reset_and_undo:
4428 tcp_clear_options(&tp->rx_opt);
4429 tp->rx_opt.mss_clamp = saved_clamp;
4430 return 1;
4431 }
4432
4433
4434 /*
4435 * This function implements the receiving procedure of RFC 793 for
4436 * all states except ESTABLISHED and TIME_WAIT.
4437 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4438 * address independent.
4439 */
4440
4441 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4442 struct tcphdr *th, unsigned len)
4443 {
4444 struct tcp_sock *tp = tcp_sk(sk);
4445 struct inet_connection_sock *icsk = inet_csk(sk);
4446 int queued = 0;
4447
4448 tp->rx_opt.saw_tstamp = 0;
4449
4450 switch (sk->sk_state) {
4451 case TCP_CLOSE:
4452 goto discard;
4453
4454 case TCP_LISTEN:
4455 if(th->ack)
4456 return 1;
4457
4458 if(th->rst)
4459 goto discard;
4460
4461 if(th->syn) {
4462 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4463 return 1;
4464
4465 /* Now we have several options: In theory there is
4466 * nothing else in the frame. KA9Q has an option to
4467 * send data with the syn, BSD accepts data with the
4468 * syn up to the [to be] advertised window and
4469 * Solaris 2.1 gives you a protocol error. For now
4470 * we just ignore it, that fits the spec precisely
4471 * and avoids incompatibilities. It would be nice in
4472 * future to drop through and process the data.
4473 *
4474 * Now that TTCP is starting to be used we ought to
4475 * queue this data.
4476 * But, this leaves one open to an easy denial of
4477 * service attack, and SYN cookies can't defend
4478 * against this problem. So, we drop the data
4479 * in the interest of security over speed unless
4480 * it's still in use.
4481 */
4482 kfree_skb(skb);
4483 return 0;
4484 }
4485 goto discard;
4486
4487 case TCP_SYN_SENT:
4488 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4489 if (queued >= 0)
4490 return queued;
4491
4492 /* Do step6 onward by hand. */
4493 tcp_urg(sk, skb, th);
4494 __kfree_skb(skb);
4495 tcp_data_snd_check(sk, tp);
4496 return 0;
4497 }
4498
4499 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4500 tcp_paws_discard(sk, skb)) {
4501 if (!th->rst) {
4502 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4503 tcp_send_dupack(sk, skb);
4504 goto discard;
4505 }
4506 /* Reset is accepted even if it did not pass PAWS. */
4507 }
4508
4509 /* step 1: check sequence number */
4510 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4511 if (!th->rst)
4512 tcp_send_dupack(sk, skb);
4513 goto discard;
4514 }
4515
4516 /* step 2: check RST bit */
4517 if(th->rst) {
4518 tcp_reset(sk);
4519 goto discard;
4520 }
4521
4522 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4523
4524 /* step 3: check security and precedence [ignored] */
4525
4526 /* step 4:
4527 *
4528 * Check for a SYN in window.
4529 */
4530 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4531 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4532 tcp_reset(sk);
4533 return 1;
4534 }
4535
4536 /* step 5: check the ACK field */
4537 if (th->ack) {
4538 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4539
4540 switch(sk->sk_state) {
4541 case TCP_SYN_RECV:
4542 if (acceptable) {
4543 tp->copied_seq = tp->rcv_nxt;
4544 smp_mb();
4545 tcp_set_state(sk, TCP_ESTABLISHED);
4546 sk->sk_state_change(sk);
4547
4548 /* Note, that this wakeup is only for marginal
4549 * crossed SYN case. Passively open sockets
4550 * are not waked up, because sk->sk_sleep ==
4551 * NULL and sk->sk_socket == NULL.
4552 */
4553 if (sk->sk_socket) {
4554 sk_wake_async(sk,0,POLL_OUT);
4555 }
4556
4557 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4558 tp->snd_wnd = ntohs(th->window) <<
4559 tp->rx_opt.snd_wscale;
4560 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4561 TCP_SKB_CB(skb)->seq);
4562
4563 /* tcp_ack considers this ACK as duplicate
4564 * and does not calculate rtt.
4565 * Fix it at least with timestamps.
4566 */
4567 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4568 !tp->srtt)
4569 tcp_ack_saw_tstamp(sk, 0);
4570
4571 if (tp->rx_opt.tstamp_ok)
4572 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4573
4574 /* Make sure socket is routed, for
4575 * correct metrics.
4576 */
4577 icsk->icsk_af_ops->rebuild_header(sk);
4578
4579 tcp_init_metrics(sk);
4580
4581 tcp_init_congestion_control(sk);
4582
4583 /* Prevent spurious tcp_cwnd_restart() on
4584 * first data packet.
4585 */
4586 tp->lsndtime = tcp_time_stamp;
4587
4588 tcp_mtup_init(sk);
4589 tcp_initialize_rcv_mss(sk);
4590 tcp_init_buffer_space(sk);
4591 tcp_fast_path_on(tp);
4592 } else {
4593 return 1;
4594 }
4595 break;
4596
4597 case TCP_FIN_WAIT1:
4598 if (tp->snd_una == tp->write_seq) {
4599 tcp_set_state(sk, TCP_FIN_WAIT2);
4600 sk->sk_shutdown |= SEND_SHUTDOWN;
4601 dst_confirm(sk->sk_dst_cache);
4602
4603 if (!sock_flag(sk, SOCK_DEAD))
4604 /* Wake up lingering close() */
4605 sk->sk_state_change(sk);
4606 else {
4607 int tmo;
4608
4609 if (tp->linger2 < 0 ||
4610 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4611 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4612 tcp_done(sk);
4613 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4614 return 1;
4615 }
4616
4617 tmo = tcp_fin_time(sk);
4618 if (tmo > TCP_TIMEWAIT_LEN) {
4619 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4620 } else if (th->fin || sock_owned_by_user(sk)) {
4621 /* Bad case. We could lose such FIN otherwise.
4622 * It is not a big problem, but it looks confusing
4623 * and not so rare event. We still can lose it now,
4624 * if it spins in bh_lock_sock(), but it is really
4625 * marginal case.
4626 */
4627 inet_csk_reset_keepalive_timer(sk, tmo);
4628 } else {
4629 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4630 goto discard;
4631 }
4632 }
4633 }
4634 break;
4635
4636 case TCP_CLOSING:
4637 if (tp->snd_una == tp->write_seq) {
4638 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4639 goto discard;
4640 }
4641 break;
4642
4643 case TCP_LAST_ACK:
4644 if (tp->snd_una == tp->write_seq) {
4645 tcp_update_metrics(sk);
4646 tcp_done(sk);
4647 goto discard;
4648 }
4649 break;
4650 }
4651 } else
4652 goto discard;
4653
4654 /* step 6: check the URG bit */
4655 tcp_urg(sk, skb, th);
4656
4657 /* step 7: process the segment text */
4658 switch (sk->sk_state) {
4659 case TCP_CLOSE_WAIT:
4660 case TCP_CLOSING:
4661 case TCP_LAST_ACK:
4662 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4663 break;
4664 case TCP_FIN_WAIT1:
4665 case TCP_FIN_WAIT2:
4666 /* RFC 793 says to queue data in these states,
4667 * RFC 1122 says we MUST send a reset.
4668 * BSD 4.4 also does reset.
4669 */
4670 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4671 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4672 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4673 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4674 tcp_reset(sk);
4675 return 1;
4676 }
4677 }
4678 /* Fall through */
4679 case TCP_ESTABLISHED:
4680 tcp_data_queue(sk, skb);
4681 queued = 1;
4682 break;
4683 }
4684
4685 /* tcp_data could move socket to TIME-WAIT */
4686 if (sk->sk_state != TCP_CLOSE) {
4687 tcp_data_snd_check(sk, tp);
4688 tcp_ack_snd_check(sk);
4689 }
4690
4691 if (!queued) {
4692 discard:
4693 __kfree_skb(skb);
4694 }
4695 return 0;
4696 }
4697
4698 EXPORT_SYMBOL(sysctl_tcp_ecn);
4699 EXPORT_SYMBOL(sysctl_tcp_reordering);
4700 EXPORT_SYMBOL(tcp_parse_options);
4701 EXPORT_SYMBOL(tcp_rcv_established);
4702 EXPORT_SYMBOL(tcp_rcv_state_process);
4703 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.128584 seconds and 6 git commands to generate.