[TCP]: Consider GSO while counting reord in sacktag
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
108
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120 /* Adapt the MSS value used to make delayed ack decision to the
121 * real world.
122 */
123 static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
125 {
126 struct inet_connection_sock *icsk = inet_csk(sk);
127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 unsigned int len;
129
130 icsk->icsk_ack.last_seg_size = 0;
131
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
134 */
135 len = skb_shinfo(skb)->gso_size ?: skb->len;
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
141 *
142 * "len" is invariant segment length, including TCP header.
143 */
144 len += skb->data - skb_transport_header(skb);
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
150 */
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
156 */
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
159 if (len == lss) {
160 icsk->icsk_ack.rcv_mss = len;
161 return;
162 }
163 }
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175 if (quickacks==0)
176 quickacks=2;
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
226 }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
257
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290 struct tcp_sock *tp = tcp_sk(sk);
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
294
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299 truesize >>= 1;
300 window >>= 1;
301 }
302 return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk,
306 struct sk_buff *skb)
307 {
308 struct tcp_sock *tp = tcp_sk(sk);
309
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
322 incr = __tcp_grow_window(sk, skb);
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326 inet_csk(sk)->icsk_ack.quick |= 1;
327 }
328 }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338 /* Try to select rcvbuf so that 4 mss-sized segments
339 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 */
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349 * established state.
350 */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
355
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
360
361 tp->rcvq_space.space = tp->rcv_wnd;
362
363 maxwin = tcp_full_space(sk);
364
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
367
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
372 }
373
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387 struct tcp_sock *tp = tcp_sk(sk);
388 struct inet_connection_sock *icsk = inet_csk(sk);
389
390 icsk->icsk_ack.quick = 0;
391
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
398 }
399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401 }
402
403
404 /* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
449 * non-timestamp case, we do not smooth things out
450 * else with timestamps disabled convergence takes too
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
459 /* No previous measure. */
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
475 1);
476
477 new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
480 }
481
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483 {
484 struct tcp_sock *tp = tcp_sk(sk);
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489 }
490
491 /*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495 void tcp_rcv_space_adjust(struct sock *sk)
496 {
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
500
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
503
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
508
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511 space = max(tp->rcvq_space.space, space);
512
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
515
516 tp->rcvq_space.space = space;
517
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520 int new_clamp = space;
521
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
525 */
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
537
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
540 }
541 }
542 }
543
544 new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
547 }
548
549 /* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
558 */
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560 {
561 struct tcp_sock *tp = tcp_sk(sk);
562 struct inet_connection_sock *icsk = inet_csk(sk);
563 u32 now;
564
565 inet_csk_schedule_ack(sk);
566
567 tcp_measure_rcv_mss(sk, skb);
568
569 tcp_rcv_rtt_measure(tp);
570
571 now = tcp_time_stamp;
572
573 if (!icsk->icsk_ack.ato) {
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
576 */
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
579 } else {
580 int m = now - icsk->icsk_ack.lrcvtime;
581
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
590 /* Too long gap. Apparently sender failed to
591 * restart window, so that we send ACKs quickly.
592 */
593 tcp_incr_quickack(sk);
594 sk_stream_mem_reclaim(sk);
595 }
596 }
597 icsk->icsk_ack.lrcvtime = now;
598
599 TCP_ECN_check_ce(tp, skb);
600
601 if (skb->len >= 128)
602 tcp_grow_window(sk, skb);
603 }
604
605 static u32 tcp_rto_min(struct sock *sk)
606 {
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
609
610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
613 }
614
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625 {
626 struct tcp_sock *tp = tcp_sk(sk);
627 long m = mrtt; /* RTT */
628
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
632 * This is designed to be as fast as possible
633 * m stands for "measurement".
634 *
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
637 *
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
640 * too slowly, when it should be increased quickly, decrease too quickly
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
644 */
645 if (m == 0)
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
660 */
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 }
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
671 }
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
676 tp->mdev_max = tcp_rto_min(sk);
677 }
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683 tp->rtt_seq = tp->snd_nxt;
684 }
685 }
686
687 /* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
690 static inline void tcp_set_rto(struct sock *sk)
691 {
692 const struct tcp_sock *tp = tcp_sk(sk);
693 /* Old crap is replaced with new one. 8)
694 *
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
701 * ACKs in some circumstances.
702 */
703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
708 * with correct one. It is exactly, which we pretend to do.
709 */
710 }
711
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
715 static inline void tcp_bound_rto(struct sock *sk)
716 {
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719 }
720
721 /* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725 void tcp_update_metrics(struct sock *sk)
726 {
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
729
730 if (sysctl_tcp_nometrics_save)
731 return;
732
733 dst_confirm(dst);
734
735 if (dst && (dst->flags&DST_HOST)) {
736 const struct inet_connection_sock *icsk = inet_csk(sk);
737 int m;
738
739 if (icsk->icsk_backoff || !tp->srtt) {
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
743 */
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
747 }
748
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
760 }
761
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
765
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
770
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 }
777
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788 icsk->icsk_ca_state == TCP_CA_Open) {
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
798 */
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 }
812 }
813 }
814
815 /* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
823 */
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 {
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd) {
829 if (tp->mss_cache > 1460)
830 cwnd = 2;
831 else
832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833 }
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840 struct tcp_sock *tp = tcp_sk(sk);
841 const struct inet_connection_sock *icsk = inet_csk(sk);
842
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
846 tp->undo_marker = 0;
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
855
856 tcp_set_ca_state(sk, TCP_CA_CWR);
857 }
858 }
859
860 /*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866 tp->rx_opt.sack_ok &= ~2;
867 }
868
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872 tp->rx_opt.sack_ok |= 4;
873 }
874
875 /* Initialize metrics on socket. */
876
877 static void tcp_init_metrics(struct sock *sk)
878 {
879 struct tcp_sock *tp = tcp_sk(sk);
880 struct dst_entry *dst = __sk_dst_get(sk);
881
882 if (dst == NULL)
883 goto reset;
884
885 dst_confirm(dst);
886
887 if (dst_metric_locked(dst, RTAX_CWND))
888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 if (dst_metric(dst, RTAX_SSTHRESH)) {
890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 }
894 if (dst_metric(dst, RTAX_REORDERING) &&
895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896 tcp_disable_fack(tp);
897 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 }
899
900 if (dst_metric(dst, RTAX_RTT) == 0)
901 goto reset;
902
903 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 goto reset;
905
906 /* Initial rtt is determined from SYN,SYN-ACK.
907 * The segment is small and rtt may appear much
908 * less than real one. Use per-dst memory
909 * to make it more realistic.
910 *
911 * A bit of theory. RTT is time passed after "normal" sized packet
912 * is sent until it is ACKed. In normal circumstances sending small
913 * packets force peer to delay ACKs and calculation is correct too.
914 * The algorithm is adaptive and, provided we follow specs, it
915 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 * tricks sort of "quick acks" for time long enough to decrease RTT
917 * to low value, and then abruptly stops to do it and starts to delay
918 * ACKs, wait for troubles.
919 */
920 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 tp->srtt = dst_metric(dst, RTAX_RTT);
922 tp->rtt_seq = tp->snd_nxt;
923 }
924 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
927 }
928 tcp_set_rto(sk);
929 tcp_bound_rto(sk);
930 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931 goto reset;
932 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 tp->snd_cwnd_stamp = tcp_time_stamp;
934 return;
935
936 reset:
937 /* Play conservative. If timestamps are not
938 * supported, TCP will fail to recalculate correct
939 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 */
941 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 tp->srtt = 0;
943 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945 }
946 }
947
948 static void tcp_update_reordering(struct sock *sk, const int metric,
949 const int ts)
950 {
951 struct tcp_sock *tp = tcp_sk(sk);
952 if (metric > tp->reordering) {
953 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955 /* This exciting event is worth to be remembered. 8) */
956 if (ts)
957 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958 else if (tcp_is_reno(tp))
959 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960 else if (tcp_is_fack(tp))
961 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 else
963 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964 #if FASTRETRANS_DEBUG > 1
965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967 tp->reordering,
968 tp->fackets_out,
969 tp->sacked_out,
970 tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972 tcp_disable_fack(tp);
973 }
974 }
975
976 /* This procedure tags the retransmission queue when SACKs arrive.
977 *
978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979 * Packets in queue with these bits set are counted in variables
980 * sacked_out, retrans_out and lost_out, correspondingly.
981 *
982 * Valid combinations are:
983 * Tag InFlight Description
984 * 0 1 - orig segment is in flight.
985 * S 0 - nothing flies, orig reached receiver.
986 * L 0 - nothing flies, orig lost by net.
987 * R 2 - both orig and retransmit are in flight.
988 * L|R 1 - orig is lost, retransmit is in flight.
989 * S|R 1 - orig reached receiver, retrans is still in flight.
990 * (L|S|R is logically valid, it could occur when L|R is sacked,
991 * but it is equivalent to plain S and code short-curcuits it to S.
992 * L|S is logically invalid, it would mean -1 packet in flight 8))
993 *
994 * These 6 states form finite state machine, controlled by the following events:
995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997 * 3. Loss detection event of one of three flavors:
998 * A. Scoreboard estimator decided the packet is lost.
999 * A'. Reno "three dupacks" marks head of queue lost.
1000 * A''. Its FACK modfication, head until snd.fack is lost.
1001 * B. SACK arrives sacking data transmitted after never retransmitted
1002 * hole was sent out.
1003 * C. SACK arrives sacking SND.NXT at the moment, when the
1004 * segment was retransmitted.
1005 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006 *
1007 * It is pleasant to note, that state diagram turns out to be commutative,
1008 * so that we are allowed not to be bothered by order of our actions,
1009 * when multiple events arrive simultaneously. (see the function below).
1010 *
1011 * Reordering detection.
1012 * --------------------
1013 * Reordering metric is maximal distance, which a packet can be displaced
1014 * in packet stream. With SACKs we can estimate it:
1015 *
1016 * 1. SACK fills old hole and the corresponding segment was not
1017 * ever retransmitted -> reordering. Alas, we cannot use it
1018 * when segment was retransmitted.
1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020 * for retransmitted and already SACKed segment -> reordering..
1021 * Both of these heuristics are not used in Loss state, when we cannot
1022 * account for retransmits accurately.
1023 *
1024 * SACK block validation.
1025 * ----------------------
1026 *
1027 * SACK block range validation checks that the received SACK block fits to
1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029 * Note that SND.UNA is not included to the range though being valid because
1030 * it means that the receiver is rather inconsistent with itself reporting
1031 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032 * perfectly valid, however, in light of RFC2018 which explicitly states
1033 * that "SACK block MUST reflect the newest segment. Even if the newest
1034 * segment is going to be discarded ...", not that it looks very clever
1035 * in case of head skb. Due to potentional receiver driven attacks, we
1036 * choose to avoid immediate execution of a walk in write queue due to
1037 * reneging and defer head skb's loss recovery to standard loss recovery
1038 * procedure that will eventually trigger (nothing forbids us doing this).
1039 *
1040 * Implements also blockage to start_seq wrap-around. Problem lies in the
1041 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042 * there's no guarantee that it will be before snd_nxt (n). The problem
1043 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044 * wrap (s_w):
1045 *
1046 * <- outs wnd -> <- wrapzone ->
1047 * u e n u_w e_w s n_w
1048 * | | | | | | |
1049 * |<------------+------+----- TCP seqno space --------------+---------->|
1050 * ...-- <2^31 ->| |<--------...
1051 * ...---- >2^31 ------>| |<--------...
1052 *
1053 * Current code wouldn't be vulnerable but it's better still to discard such
1054 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057 * equal to the ideal case (infinite seqno space without wrap caused issues).
1058 *
1059 * With D-SACK the lower bound is extended to cover sequence space below
1060 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061 * again, D-SACK block must not to go across snd_una (for the same reason as
1062 * for the normal SACK blocks, explained above). But there all simplicity
1063 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064 * fully below undo_marker they do not affect behavior in anyway and can
1065 * therefore be safely ignored. In rare cases (which are more or less
1066 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067 * fragmentation and packet reordering past skb's retransmission. To consider
1068 * them correctly, the acceptable range must be extended even more though
1069 * the exact amount is rather hard to quantify. However, tp->max_window can
1070 * be used as an exaggerated estimate.
1071 */
1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073 u32 start_seq, u32 end_seq)
1074 {
1075 /* Too far in future, or reversed (interpretation is ambiguous) */
1076 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077 return 0;
1078
1079 /* Nasty start_seq wrap-around check (see comments above) */
1080 if (!before(start_seq, tp->snd_nxt))
1081 return 0;
1082
1083 /* In outstanding window? ...This is valid exit for D-SACKs too.
1084 * start_seq == snd_una is non-sensical (see comments above)
1085 */
1086 if (after(start_seq, tp->snd_una))
1087 return 1;
1088
1089 if (!is_dsack || !tp->undo_marker)
1090 return 0;
1091
1092 /* ...Then it's D-SACK, and must reside below snd_una completely */
1093 if (!after(end_seq, tp->snd_una))
1094 return 0;
1095
1096 if (!before(start_seq, tp->undo_marker))
1097 return 1;
1098
1099 /* Too old */
1100 if (!after(end_seq, tp->undo_marker))
1101 return 0;
1102
1103 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1104 * start_seq < undo_marker and end_seq >= undo_marker.
1105 */
1106 return !before(start_seq, end_seq - tp->max_window);
1107 }
1108
1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110 * Event "C". Later note: FACK people cheated me again 8), we have to account
1111 * for reordering! Ugly, but should help.
1112 *
1113 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1114 * less than what is now known to be received by the other end (derived from
1115 * SACK blocks by the caller). Also calculate the lowest snd_nxt among the
1116 * remaining retransmitted skbs to avoid some costly processing per ACKs.
1117 */
1118 static int tcp_mark_lost_retrans(struct sock *sk, u32 received_upto)
1119 {
1120 struct tcp_sock *tp = tcp_sk(sk);
1121 struct sk_buff *skb;
1122 int flag = 0;
1123 int cnt = 0;
1124 u32 new_low_seq = tp->snd_nxt;
1125
1126 tcp_for_write_queue(skb, sk) {
1127 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1128
1129 if (skb == tcp_send_head(sk))
1130 break;
1131 if (cnt == tp->retrans_out)
1132 break;
1133 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1134 continue;
1135
1136 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1137 continue;
1138
1139 if (after(received_upto, ack_seq) &&
1140 (tcp_is_fack(tp) ||
1141 !before(received_upto,
1142 ack_seq + tp->reordering * tp->mss_cache))) {
1143 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1144 tp->retrans_out -= tcp_skb_pcount(skb);
1145
1146 /* clear lost hint */
1147 tp->retransmit_skb_hint = NULL;
1148
1149 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1150 tp->lost_out += tcp_skb_pcount(skb);
1151 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1152 flag |= FLAG_DATA_SACKED;
1153 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1154 }
1155 } else {
1156 if (before(ack_seq, new_low_seq))
1157 new_low_seq = ack_seq;
1158 cnt += tcp_skb_pcount(skb);
1159 }
1160 }
1161
1162 if (tp->retrans_out)
1163 tp->lost_retrans_low = new_low_seq;
1164
1165 return flag;
1166 }
1167
1168 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1169 struct tcp_sack_block_wire *sp, int num_sacks,
1170 u32 prior_snd_una)
1171 {
1172 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1173 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1174 int dup_sack = 0;
1175
1176 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1177 dup_sack = 1;
1178 tcp_dsack_seen(tp);
1179 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1180 } else if (num_sacks > 1) {
1181 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1182 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1183
1184 if (!after(end_seq_0, end_seq_1) &&
1185 !before(start_seq_0, start_seq_1)) {
1186 dup_sack = 1;
1187 tcp_dsack_seen(tp);
1188 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1189 }
1190 }
1191
1192 /* D-SACK for already forgotten data... Do dumb counting. */
1193 if (dup_sack &&
1194 !after(end_seq_0, prior_snd_una) &&
1195 after(end_seq_0, tp->undo_marker))
1196 tp->undo_retrans--;
1197
1198 return dup_sack;
1199 }
1200
1201 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1202 * the incoming SACK may not exactly match but we can find smaller MSS
1203 * aligned portion of it that matches. Therefore we might need to fragment
1204 * which may fail and creates some hassle (caller must handle error case
1205 * returns).
1206 */
1207 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1208 u32 start_seq, u32 end_seq)
1209 {
1210 int in_sack, err;
1211 unsigned int pkt_len;
1212
1213 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1214 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1215
1216 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1217 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1218
1219 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1220
1221 if (!in_sack)
1222 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1223 else
1224 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1225 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1226 if (err < 0)
1227 return err;
1228 }
1229
1230 return in_sack;
1231 }
1232
1233 static int
1234 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1235 {
1236 const struct inet_connection_sock *icsk = inet_csk(sk);
1237 struct tcp_sock *tp = tcp_sk(sk);
1238 unsigned char *ptr = (skb_transport_header(ack_skb) +
1239 TCP_SKB_CB(ack_skb)->sacked);
1240 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
1241 struct sk_buff *cached_skb;
1242 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1243 int reord = tp->packets_out;
1244 int prior_fackets;
1245 u32 highest_sack_end_seq = tp->lost_retrans_low;
1246 int flag = 0;
1247 int found_dup_sack = 0;
1248 int cached_fack_count;
1249 int i;
1250 int first_sack_index;
1251 int force_one_sack;
1252
1253 if (!tp->sacked_out) {
1254 if (WARN_ON(tp->fackets_out))
1255 tp->fackets_out = 0;
1256 tp->highest_sack = tp->snd_una;
1257 }
1258 prior_fackets = tp->fackets_out;
1259
1260 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1261 num_sacks, prior_snd_una);
1262 if (found_dup_sack)
1263 flag |= FLAG_DSACKING_ACK;
1264
1265 /* Eliminate too old ACKs, but take into
1266 * account more or less fresh ones, they can
1267 * contain valid SACK info.
1268 */
1269 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1270 return 0;
1271
1272 /* SACK fastpath:
1273 * if the only SACK change is the increase of the end_seq of
1274 * the first block then only apply that SACK block
1275 * and use retrans queue hinting otherwise slowpath */
1276 force_one_sack = 1;
1277 for (i = 0; i < num_sacks; i++) {
1278 __be32 start_seq = sp[i].start_seq;
1279 __be32 end_seq = sp[i].end_seq;
1280
1281 if (i == 0) {
1282 if (tp->recv_sack_cache[i].start_seq != start_seq)
1283 force_one_sack = 0;
1284 } else {
1285 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1286 (tp->recv_sack_cache[i].end_seq != end_seq))
1287 force_one_sack = 0;
1288 }
1289 tp->recv_sack_cache[i].start_seq = start_seq;
1290 tp->recv_sack_cache[i].end_seq = end_seq;
1291 }
1292 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1293 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1294 tp->recv_sack_cache[i].start_seq = 0;
1295 tp->recv_sack_cache[i].end_seq = 0;
1296 }
1297
1298 first_sack_index = 0;
1299 if (force_one_sack)
1300 num_sacks = 1;
1301 else {
1302 int j;
1303 tp->fastpath_skb_hint = NULL;
1304
1305 /* order SACK blocks to allow in order walk of the retrans queue */
1306 for (i = num_sacks-1; i > 0; i--) {
1307 for (j = 0; j < i; j++){
1308 if (after(ntohl(sp[j].start_seq),
1309 ntohl(sp[j+1].start_seq))){
1310 struct tcp_sack_block_wire tmp;
1311
1312 tmp = sp[j];
1313 sp[j] = sp[j+1];
1314 sp[j+1] = tmp;
1315
1316 /* Track where the first SACK block goes to */
1317 if (j == first_sack_index)
1318 first_sack_index = j+1;
1319 }
1320
1321 }
1322 }
1323 }
1324
1325 /* Use SACK fastpath hint if valid */
1326 cached_skb = tp->fastpath_skb_hint;
1327 cached_fack_count = tp->fastpath_cnt_hint;
1328 if (!cached_skb) {
1329 cached_skb = tcp_write_queue_head(sk);
1330 cached_fack_count = 0;
1331 }
1332
1333 for (i = 0; i < num_sacks; i++) {
1334 struct sk_buff *skb;
1335 __u32 start_seq = ntohl(sp->start_seq);
1336 __u32 end_seq = ntohl(sp->end_seq);
1337 int fack_count;
1338 int dup_sack = (found_dup_sack && (i == first_sack_index));
1339 int next_dup = (found_dup_sack && (i+1 == first_sack_index));
1340
1341 sp++;
1342
1343 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1344 if (dup_sack) {
1345 if (!tp->undo_marker)
1346 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1347 else
1348 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1349 } else {
1350 /* Don't count olds caused by ACK reordering */
1351 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1352 !after(end_seq, tp->snd_una))
1353 continue;
1354 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1355 }
1356 continue;
1357 }
1358
1359 skb = cached_skb;
1360 fack_count = cached_fack_count;
1361
1362 /* Event "B" in the comment above. */
1363 if (after(end_seq, tp->high_seq))
1364 flag |= FLAG_DATA_LOST;
1365
1366 tcp_for_write_queue_from(skb, sk) {
1367 int in_sack = 0;
1368 u8 sacked;
1369
1370 if (skb == tcp_send_head(sk))
1371 break;
1372
1373 cached_skb = skb;
1374 cached_fack_count = fack_count;
1375 if (i == first_sack_index) {
1376 tp->fastpath_skb_hint = skb;
1377 tp->fastpath_cnt_hint = fack_count;
1378 }
1379
1380 /* The retransmission queue is always in order, so
1381 * we can short-circuit the walk early.
1382 */
1383 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1384 break;
1385
1386 dup_sack = (found_dup_sack && (i == first_sack_index));
1387
1388 /* Due to sorting DSACK may reside within this SACK block! */
1389 if (next_dup) {
1390 u32 dup_start = ntohl(sp->start_seq);
1391 u32 dup_end = ntohl(sp->end_seq);
1392
1393 if (before(TCP_SKB_CB(skb)->seq, dup_end)) {
1394 in_sack = tcp_match_skb_to_sack(sk, skb, dup_start, dup_end);
1395 if (in_sack > 0)
1396 dup_sack = 1;
1397 }
1398 }
1399
1400 /* DSACK info lost if out-of-mem, try SACK still */
1401 if (in_sack <= 0)
1402 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1403 if (in_sack < 0)
1404 break;
1405
1406 sacked = TCP_SKB_CB(skb)->sacked;
1407
1408 /* Account D-SACK for retransmitted packet. */
1409 if ((dup_sack && in_sack) &&
1410 (sacked & TCPCB_RETRANS) &&
1411 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1412 tp->undo_retrans--;
1413
1414 /* The frame is ACKed. */
1415 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1416 if (sacked&TCPCB_RETRANS) {
1417 if ((dup_sack && in_sack) &&
1418 (sacked&TCPCB_SACKED_ACKED))
1419 reord = min(fack_count, reord);
1420 } else {
1421 /* If it was in a hole, we detected reordering. */
1422 if (fack_count < prior_fackets &&
1423 !(sacked&TCPCB_SACKED_ACKED))
1424 reord = min(fack_count, reord);
1425 }
1426
1427 /* Nothing to do; acked frame is about to be dropped. */
1428 fack_count += tcp_skb_pcount(skb);
1429 continue;
1430 }
1431
1432 if (!in_sack) {
1433 fack_count += tcp_skb_pcount(skb);
1434 continue;
1435 }
1436
1437 if (!(sacked&TCPCB_SACKED_ACKED)) {
1438 if (sacked & TCPCB_SACKED_RETRANS) {
1439 /* If the segment is not tagged as lost,
1440 * we do not clear RETRANS, believing
1441 * that retransmission is still in flight.
1442 */
1443 if (sacked & TCPCB_LOST) {
1444 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1445 tp->lost_out -= tcp_skb_pcount(skb);
1446 tp->retrans_out -= tcp_skb_pcount(skb);
1447
1448 /* clear lost hint */
1449 tp->retransmit_skb_hint = NULL;
1450 }
1451 } else {
1452 /* New sack for not retransmitted frame,
1453 * which was in hole. It is reordering.
1454 */
1455 if (!(sacked & TCPCB_RETRANS) &&
1456 fack_count < prior_fackets)
1457 reord = min(fack_count, reord);
1458
1459 if (sacked & TCPCB_LOST) {
1460 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1461 tp->lost_out -= tcp_skb_pcount(skb);
1462
1463 /* clear lost hint */
1464 tp->retransmit_skb_hint = NULL;
1465 }
1466 /* SACK enhanced F-RTO detection.
1467 * Set flag if and only if non-rexmitted
1468 * segments below frto_highmark are
1469 * SACKed (RFC4138; Appendix B).
1470 * Clearing correct due to in-order walk
1471 */
1472 if (after(end_seq, tp->frto_highmark)) {
1473 flag &= ~FLAG_ONLY_ORIG_SACKED;
1474 } else {
1475 if (!(sacked & TCPCB_RETRANS))
1476 flag |= FLAG_ONLY_ORIG_SACKED;
1477 }
1478 }
1479
1480 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1481 flag |= FLAG_DATA_SACKED;
1482 tp->sacked_out += tcp_skb_pcount(skb);
1483
1484 fack_count += tcp_skb_pcount(skb);
1485 if (fack_count > tp->fackets_out)
1486 tp->fackets_out = fack_count;
1487
1488 if (after(TCP_SKB_CB(skb)->seq, tp->highest_sack)) {
1489 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1490 highest_sack_end_seq = TCP_SKB_CB(skb)->end_seq;
1491 }
1492 } else {
1493 if (dup_sack && (sacked&TCPCB_RETRANS))
1494 reord = min(fack_count, reord);
1495
1496 fack_count += tcp_skb_pcount(skb);
1497 }
1498
1499 /* D-SACK. We can detect redundant retransmission
1500 * in S|R and plain R frames and clear it.
1501 * undo_retrans is decreased above, L|R frames
1502 * are accounted above as well.
1503 */
1504 if (dup_sack &&
1505 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1506 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1507 tp->retrans_out -= tcp_skb_pcount(skb);
1508 tp->retransmit_skb_hint = NULL;
1509 }
1510 }
1511 }
1512
1513 if (tp->retrans_out &&
1514 after(highest_sack_end_seq, tp->lost_retrans_low) &&
1515 icsk->icsk_ca_state == TCP_CA_Recovery)
1516 flag |= tcp_mark_lost_retrans(sk, highest_sack_end_seq);
1517
1518 tcp_verify_left_out(tp);
1519
1520 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1521 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1522 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1523
1524 #if FASTRETRANS_DEBUG > 0
1525 BUG_TRAP((int)tp->sacked_out >= 0);
1526 BUG_TRAP((int)tp->lost_out >= 0);
1527 BUG_TRAP((int)tp->retrans_out >= 0);
1528 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1529 #endif
1530 return flag;
1531 }
1532
1533 /* If we receive more dupacks than we expected counting segments
1534 * in assumption of absent reordering, interpret this as reordering.
1535 * The only another reason could be bug in receiver TCP.
1536 */
1537 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1538 {
1539 struct tcp_sock *tp = tcp_sk(sk);
1540 u32 holes;
1541
1542 holes = max(tp->lost_out, 1U);
1543 holes = min(holes, tp->packets_out);
1544
1545 if ((tp->sacked_out + holes) > tp->packets_out) {
1546 tp->sacked_out = tp->packets_out - holes;
1547 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1548 }
1549 }
1550
1551 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1552
1553 static void tcp_add_reno_sack(struct sock *sk)
1554 {
1555 struct tcp_sock *tp = tcp_sk(sk);
1556 tp->sacked_out++;
1557 tcp_check_reno_reordering(sk, 0);
1558 tcp_verify_left_out(tp);
1559 }
1560
1561 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1562
1563 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1564 {
1565 struct tcp_sock *tp = tcp_sk(sk);
1566
1567 if (acked > 0) {
1568 /* One ACK acked hole. The rest eat duplicate ACKs. */
1569 if (acked-1 >= tp->sacked_out)
1570 tp->sacked_out = 0;
1571 else
1572 tp->sacked_out -= acked-1;
1573 }
1574 tcp_check_reno_reordering(sk, acked);
1575 tcp_verify_left_out(tp);
1576 }
1577
1578 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1579 {
1580 tp->sacked_out = 0;
1581 }
1582
1583 /* F-RTO can only be used if TCP has never retransmitted anything other than
1584 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1585 */
1586 int tcp_use_frto(struct sock *sk)
1587 {
1588 const struct tcp_sock *tp = tcp_sk(sk);
1589 struct sk_buff *skb;
1590
1591 if (!sysctl_tcp_frto)
1592 return 0;
1593
1594 if (IsSackFrto())
1595 return 1;
1596
1597 /* Avoid expensive walking of rexmit queue if possible */
1598 if (tp->retrans_out > 1)
1599 return 0;
1600
1601 skb = tcp_write_queue_head(sk);
1602 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1603 tcp_for_write_queue_from(skb, sk) {
1604 if (skb == tcp_send_head(sk))
1605 break;
1606 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1607 return 0;
1608 /* Short-circuit when first non-SACKed skb has been checked */
1609 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1610 break;
1611 }
1612 return 1;
1613 }
1614
1615 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1616 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1617 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1618 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1619 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1620 * bits are handled if the Loss state is really to be entered (in
1621 * tcp_enter_frto_loss).
1622 *
1623 * Do like tcp_enter_loss() would; when RTO expires the second time it
1624 * does:
1625 * "Reduce ssthresh if it has not yet been made inside this window."
1626 */
1627 void tcp_enter_frto(struct sock *sk)
1628 {
1629 const struct inet_connection_sock *icsk = inet_csk(sk);
1630 struct tcp_sock *tp = tcp_sk(sk);
1631 struct sk_buff *skb;
1632
1633 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1634 tp->snd_una == tp->high_seq ||
1635 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1636 !icsk->icsk_retransmits)) {
1637 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1638 /* Our state is too optimistic in ssthresh() call because cwnd
1639 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1640 * recovery has not yet completed. Pattern would be this: RTO,
1641 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1642 * up here twice).
1643 * RFC4138 should be more specific on what to do, even though
1644 * RTO is quite unlikely to occur after the first Cumulative ACK
1645 * due to back-off and complexity of triggering events ...
1646 */
1647 if (tp->frto_counter) {
1648 u32 stored_cwnd;
1649 stored_cwnd = tp->snd_cwnd;
1650 tp->snd_cwnd = 2;
1651 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1652 tp->snd_cwnd = stored_cwnd;
1653 } else {
1654 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1655 }
1656 /* ... in theory, cong.control module could do "any tricks" in
1657 * ssthresh(), which means that ca_state, lost bits and lost_out
1658 * counter would have to be faked before the call occurs. We
1659 * consider that too expensive, unlikely and hacky, so modules
1660 * using these in ssthresh() must deal these incompatibility
1661 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1662 */
1663 tcp_ca_event(sk, CA_EVENT_FRTO);
1664 }
1665
1666 tp->undo_marker = tp->snd_una;
1667 tp->undo_retrans = 0;
1668
1669 skb = tcp_write_queue_head(sk);
1670 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1671 tp->undo_marker = 0;
1672 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1673 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1674 tp->retrans_out -= tcp_skb_pcount(skb);
1675 }
1676 tcp_verify_left_out(tp);
1677
1678 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1679 * The last condition is necessary at least in tp->frto_counter case.
1680 */
1681 if (IsSackFrto() && (tp->frto_counter ||
1682 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1683 after(tp->high_seq, tp->snd_una)) {
1684 tp->frto_highmark = tp->high_seq;
1685 } else {
1686 tp->frto_highmark = tp->snd_nxt;
1687 }
1688 tcp_set_ca_state(sk, TCP_CA_Disorder);
1689 tp->high_seq = tp->snd_nxt;
1690 tp->frto_counter = 1;
1691 }
1692
1693 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1694 * which indicates that we should follow the traditional RTO recovery,
1695 * i.e. mark everything lost and do go-back-N retransmission.
1696 */
1697 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1698 {
1699 struct tcp_sock *tp = tcp_sk(sk);
1700 struct sk_buff *skb;
1701
1702 tp->lost_out = 0;
1703 tp->retrans_out = 0;
1704 if (tcp_is_reno(tp))
1705 tcp_reset_reno_sack(tp);
1706
1707 tcp_for_write_queue(skb, sk) {
1708 if (skb == tcp_send_head(sk))
1709 break;
1710 /*
1711 * Count the retransmission made on RTO correctly (only when
1712 * waiting for the first ACK and did not get it)...
1713 */
1714 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1715 /* For some reason this R-bit might get cleared? */
1716 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1717 tp->retrans_out += tcp_skb_pcount(skb);
1718 /* ...enter this if branch just for the first segment */
1719 flag |= FLAG_DATA_ACKED;
1720 } else {
1721 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1722 tp->undo_marker = 0;
1723 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1724 }
1725
1726 /* Don't lost mark skbs that were fwd transmitted after RTO */
1727 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1728 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1729 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1730 tp->lost_out += tcp_skb_pcount(skb);
1731 }
1732 }
1733 tcp_verify_left_out(tp);
1734
1735 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1736 tp->snd_cwnd_cnt = 0;
1737 tp->snd_cwnd_stamp = tcp_time_stamp;
1738 tp->frto_counter = 0;
1739 tp->bytes_acked = 0;
1740
1741 tp->reordering = min_t(unsigned int, tp->reordering,
1742 sysctl_tcp_reordering);
1743 tcp_set_ca_state(sk, TCP_CA_Loss);
1744 tp->high_seq = tp->frto_highmark;
1745 TCP_ECN_queue_cwr(tp);
1746
1747 tcp_clear_retrans_hints_partial(tp);
1748 }
1749
1750 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1751 {
1752 tp->retrans_out = 0;
1753 tp->lost_out = 0;
1754
1755 tp->undo_marker = 0;
1756 tp->undo_retrans = 0;
1757 }
1758
1759 void tcp_clear_retrans(struct tcp_sock *tp)
1760 {
1761 tcp_clear_retrans_partial(tp);
1762
1763 tp->fackets_out = 0;
1764 tp->sacked_out = 0;
1765 }
1766
1767 /* Enter Loss state. If "how" is not zero, forget all SACK information
1768 * and reset tags completely, otherwise preserve SACKs. If receiver
1769 * dropped its ofo queue, we will know this due to reneging detection.
1770 */
1771 void tcp_enter_loss(struct sock *sk, int how)
1772 {
1773 const struct inet_connection_sock *icsk = inet_csk(sk);
1774 struct tcp_sock *tp = tcp_sk(sk);
1775 struct sk_buff *skb;
1776
1777 /* Reduce ssthresh if it has not yet been made inside this window. */
1778 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1779 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1780 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1781 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1782 tcp_ca_event(sk, CA_EVENT_LOSS);
1783 }
1784 tp->snd_cwnd = 1;
1785 tp->snd_cwnd_cnt = 0;
1786 tp->snd_cwnd_stamp = tcp_time_stamp;
1787
1788 tp->bytes_acked = 0;
1789 tcp_clear_retrans_partial(tp);
1790
1791 if (tcp_is_reno(tp))
1792 tcp_reset_reno_sack(tp);
1793
1794 if (!how) {
1795 /* Push undo marker, if it was plain RTO and nothing
1796 * was retransmitted. */
1797 tp->undo_marker = tp->snd_una;
1798 tcp_clear_retrans_hints_partial(tp);
1799 } else {
1800 tp->sacked_out = 0;
1801 tp->fackets_out = 0;
1802 tcp_clear_all_retrans_hints(tp);
1803 }
1804
1805 tcp_for_write_queue(skb, sk) {
1806 if (skb == tcp_send_head(sk))
1807 break;
1808
1809 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1810 tp->undo_marker = 0;
1811 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1812 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1813 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1814 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1815 tp->lost_out += tcp_skb_pcount(skb);
1816 }
1817 }
1818 tcp_verify_left_out(tp);
1819
1820 tp->reordering = min_t(unsigned int, tp->reordering,
1821 sysctl_tcp_reordering);
1822 tcp_set_ca_state(sk, TCP_CA_Loss);
1823 tp->high_seq = tp->snd_nxt;
1824 TCP_ECN_queue_cwr(tp);
1825 /* Abort F-RTO algorithm if one is in progress */
1826 tp->frto_counter = 0;
1827 }
1828
1829 static int tcp_check_sack_reneging(struct sock *sk)
1830 {
1831 struct sk_buff *skb;
1832
1833 /* If ACK arrived pointing to a remembered SACK,
1834 * it means that our remembered SACKs do not reflect
1835 * real state of receiver i.e.
1836 * receiver _host_ is heavily congested (or buggy).
1837 * Do processing similar to RTO timeout.
1838 */
1839 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1840 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1841 struct inet_connection_sock *icsk = inet_csk(sk);
1842 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1843
1844 tcp_enter_loss(sk, 1);
1845 icsk->icsk_retransmits++;
1846 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1847 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1848 icsk->icsk_rto, TCP_RTO_MAX);
1849 return 1;
1850 }
1851 return 0;
1852 }
1853
1854 static inline int tcp_fackets_out(struct tcp_sock *tp)
1855 {
1856 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1857 }
1858
1859 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1860 {
1861 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1862 }
1863
1864 static inline int tcp_head_timedout(struct sock *sk)
1865 {
1866 struct tcp_sock *tp = tcp_sk(sk);
1867
1868 return tp->packets_out &&
1869 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1870 }
1871
1872 /* Linux NewReno/SACK/FACK/ECN state machine.
1873 * --------------------------------------
1874 *
1875 * "Open" Normal state, no dubious events, fast path.
1876 * "Disorder" In all the respects it is "Open",
1877 * but requires a bit more attention. It is entered when
1878 * we see some SACKs or dupacks. It is split of "Open"
1879 * mainly to move some processing from fast path to slow one.
1880 * "CWR" CWND was reduced due to some Congestion Notification event.
1881 * It can be ECN, ICMP source quench, local device congestion.
1882 * "Recovery" CWND was reduced, we are fast-retransmitting.
1883 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1884 *
1885 * tcp_fastretrans_alert() is entered:
1886 * - each incoming ACK, if state is not "Open"
1887 * - when arrived ACK is unusual, namely:
1888 * * SACK
1889 * * Duplicate ACK.
1890 * * ECN ECE.
1891 *
1892 * Counting packets in flight is pretty simple.
1893 *
1894 * in_flight = packets_out - left_out + retrans_out
1895 *
1896 * packets_out is SND.NXT-SND.UNA counted in packets.
1897 *
1898 * retrans_out is number of retransmitted segments.
1899 *
1900 * left_out is number of segments left network, but not ACKed yet.
1901 *
1902 * left_out = sacked_out + lost_out
1903 *
1904 * sacked_out: Packets, which arrived to receiver out of order
1905 * and hence not ACKed. With SACKs this number is simply
1906 * amount of SACKed data. Even without SACKs
1907 * it is easy to give pretty reliable estimate of this number,
1908 * counting duplicate ACKs.
1909 *
1910 * lost_out: Packets lost by network. TCP has no explicit
1911 * "loss notification" feedback from network (for now).
1912 * It means that this number can be only _guessed_.
1913 * Actually, it is the heuristics to predict lossage that
1914 * distinguishes different algorithms.
1915 *
1916 * F.e. after RTO, when all the queue is considered as lost,
1917 * lost_out = packets_out and in_flight = retrans_out.
1918 *
1919 * Essentially, we have now two algorithms counting
1920 * lost packets.
1921 *
1922 * FACK: It is the simplest heuristics. As soon as we decided
1923 * that something is lost, we decide that _all_ not SACKed
1924 * packets until the most forward SACK are lost. I.e.
1925 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1926 * It is absolutely correct estimate, if network does not reorder
1927 * packets. And it loses any connection to reality when reordering
1928 * takes place. We use FACK by default until reordering
1929 * is suspected on the path to this destination.
1930 *
1931 * NewReno: when Recovery is entered, we assume that one segment
1932 * is lost (classic Reno). While we are in Recovery and
1933 * a partial ACK arrives, we assume that one more packet
1934 * is lost (NewReno). This heuristics are the same in NewReno
1935 * and SACK.
1936 *
1937 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1938 * deflation etc. CWND is real congestion window, never inflated, changes
1939 * only according to classic VJ rules.
1940 *
1941 * Really tricky (and requiring careful tuning) part of algorithm
1942 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1943 * The first determines the moment _when_ we should reduce CWND and,
1944 * hence, slow down forward transmission. In fact, it determines the moment
1945 * when we decide that hole is caused by loss, rather than by a reorder.
1946 *
1947 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1948 * holes, caused by lost packets.
1949 *
1950 * And the most logically complicated part of algorithm is undo
1951 * heuristics. We detect false retransmits due to both too early
1952 * fast retransmit (reordering) and underestimated RTO, analyzing
1953 * timestamps and D-SACKs. When we detect that some segments were
1954 * retransmitted by mistake and CWND reduction was wrong, we undo
1955 * window reduction and abort recovery phase. This logic is hidden
1956 * inside several functions named tcp_try_undo_<something>.
1957 */
1958
1959 /* This function decides, when we should leave Disordered state
1960 * and enter Recovery phase, reducing congestion window.
1961 *
1962 * Main question: may we further continue forward transmission
1963 * with the same cwnd?
1964 */
1965 static int tcp_time_to_recover(struct sock *sk)
1966 {
1967 struct tcp_sock *tp = tcp_sk(sk);
1968 __u32 packets_out;
1969
1970 /* Do not perform any recovery during F-RTO algorithm */
1971 if (tp->frto_counter)
1972 return 0;
1973
1974 /* Trick#1: The loss is proven. */
1975 if (tp->lost_out)
1976 return 1;
1977
1978 /* Not-A-Trick#2 : Classic rule... */
1979 if (tcp_fackets_out(tp) > tp->reordering)
1980 return 1;
1981
1982 /* Trick#3 : when we use RFC2988 timer restart, fast
1983 * retransmit can be triggered by timeout of queue head.
1984 */
1985 if (tcp_head_timedout(sk))
1986 return 1;
1987
1988 /* Trick#4: It is still not OK... But will it be useful to delay
1989 * recovery more?
1990 */
1991 packets_out = tp->packets_out;
1992 if (packets_out <= tp->reordering &&
1993 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1994 !tcp_may_send_now(sk)) {
1995 /* We have nothing to send. This connection is limited
1996 * either by receiver window or by application.
1997 */
1998 return 1;
1999 }
2000
2001 return 0;
2002 }
2003
2004 /* RFC: This is from the original, I doubt that this is necessary at all:
2005 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2006 * retransmitted past LOST markings in the first place? I'm not fully sure
2007 * about undo and end of connection cases, which can cause R without L?
2008 */
2009 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2010 struct sk_buff *skb)
2011 {
2012 if ((tp->retransmit_skb_hint != NULL) &&
2013 before(TCP_SKB_CB(skb)->seq,
2014 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2015 tp->retransmit_skb_hint = NULL;
2016 }
2017
2018 /* Mark head of queue up as lost. */
2019 static void tcp_mark_head_lost(struct sock *sk, int packets)
2020 {
2021 struct tcp_sock *tp = tcp_sk(sk);
2022 struct sk_buff *skb;
2023 int cnt;
2024
2025 BUG_TRAP(packets <= tp->packets_out);
2026 if (tp->lost_skb_hint) {
2027 skb = tp->lost_skb_hint;
2028 cnt = tp->lost_cnt_hint;
2029 } else {
2030 skb = tcp_write_queue_head(sk);
2031 cnt = 0;
2032 }
2033
2034 tcp_for_write_queue_from(skb, sk) {
2035 if (skb == tcp_send_head(sk))
2036 break;
2037 /* TODO: do this better */
2038 /* this is not the most efficient way to do this... */
2039 tp->lost_skb_hint = skb;
2040 tp->lost_cnt_hint = cnt;
2041 cnt += tcp_skb_pcount(skb);
2042 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2043 break;
2044 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2045 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2046 tp->lost_out += tcp_skb_pcount(skb);
2047 tcp_verify_retransmit_hint(tp, skb);
2048 }
2049 }
2050 tcp_verify_left_out(tp);
2051 }
2052
2053 /* Account newly detected lost packet(s) */
2054
2055 static void tcp_update_scoreboard(struct sock *sk)
2056 {
2057 struct tcp_sock *tp = tcp_sk(sk);
2058
2059 if (tcp_is_fack(tp)) {
2060 int lost = tp->fackets_out - tp->reordering;
2061 if (lost <= 0)
2062 lost = 1;
2063 tcp_mark_head_lost(sk, lost);
2064 } else {
2065 tcp_mark_head_lost(sk, 1);
2066 }
2067
2068 /* New heuristics: it is possible only after we switched
2069 * to restart timer each time when something is ACKed.
2070 * Hence, we can detect timed out packets during fast
2071 * retransmit without falling to slow start.
2072 */
2073 if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
2074 struct sk_buff *skb;
2075
2076 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2077 : tcp_write_queue_head(sk);
2078
2079 tcp_for_write_queue_from(skb, sk) {
2080 if (skb == tcp_send_head(sk))
2081 break;
2082 if (!tcp_skb_timedout(sk, skb))
2083 break;
2084
2085 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2086 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2087 tp->lost_out += tcp_skb_pcount(skb);
2088 tcp_verify_retransmit_hint(tp, skb);
2089 }
2090 }
2091
2092 tp->scoreboard_skb_hint = skb;
2093
2094 tcp_verify_left_out(tp);
2095 }
2096 }
2097
2098 /* CWND moderation, preventing bursts due to too big ACKs
2099 * in dubious situations.
2100 */
2101 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2102 {
2103 tp->snd_cwnd = min(tp->snd_cwnd,
2104 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2105 tp->snd_cwnd_stamp = tcp_time_stamp;
2106 }
2107
2108 /* Lower bound on congestion window is slow start threshold
2109 * unless congestion avoidance choice decides to overide it.
2110 */
2111 static inline u32 tcp_cwnd_min(const struct sock *sk)
2112 {
2113 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2114
2115 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2116 }
2117
2118 /* Decrease cwnd each second ack. */
2119 static void tcp_cwnd_down(struct sock *sk, int flag)
2120 {
2121 struct tcp_sock *tp = tcp_sk(sk);
2122 int decr = tp->snd_cwnd_cnt + 1;
2123
2124 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2125 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2126 tp->snd_cwnd_cnt = decr&1;
2127 decr >>= 1;
2128
2129 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2130 tp->snd_cwnd -= decr;
2131
2132 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2133 tp->snd_cwnd_stamp = tcp_time_stamp;
2134 }
2135 }
2136
2137 /* Nothing was retransmitted or returned timestamp is less
2138 * than timestamp of the first retransmission.
2139 */
2140 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2141 {
2142 return !tp->retrans_stamp ||
2143 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2144 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2145 }
2146
2147 /* Undo procedures. */
2148
2149 #if FASTRETRANS_DEBUG > 1
2150 static void DBGUNDO(struct sock *sk, const char *msg)
2151 {
2152 struct tcp_sock *tp = tcp_sk(sk);
2153 struct inet_sock *inet = inet_sk(sk);
2154
2155 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2156 msg,
2157 NIPQUAD(inet->daddr), ntohs(inet->dport),
2158 tp->snd_cwnd, tcp_left_out(tp),
2159 tp->snd_ssthresh, tp->prior_ssthresh,
2160 tp->packets_out);
2161 }
2162 #else
2163 #define DBGUNDO(x...) do { } while (0)
2164 #endif
2165
2166 static void tcp_undo_cwr(struct sock *sk, const int undo)
2167 {
2168 struct tcp_sock *tp = tcp_sk(sk);
2169
2170 if (tp->prior_ssthresh) {
2171 const struct inet_connection_sock *icsk = inet_csk(sk);
2172
2173 if (icsk->icsk_ca_ops->undo_cwnd)
2174 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2175 else
2176 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2177
2178 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2179 tp->snd_ssthresh = tp->prior_ssthresh;
2180 TCP_ECN_withdraw_cwr(tp);
2181 }
2182 } else {
2183 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2184 }
2185 tcp_moderate_cwnd(tp);
2186 tp->snd_cwnd_stamp = tcp_time_stamp;
2187
2188 /* There is something screwy going on with the retrans hints after
2189 an undo */
2190 tcp_clear_all_retrans_hints(tp);
2191 }
2192
2193 static inline int tcp_may_undo(struct tcp_sock *tp)
2194 {
2195 return tp->undo_marker &&
2196 (!tp->undo_retrans || tcp_packet_delayed(tp));
2197 }
2198
2199 /* People celebrate: "We love our President!" */
2200 static int tcp_try_undo_recovery(struct sock *sk)
2201 {
2202 struct tcp_sock *tp = tcp_sk(sk);
2203
2204 if (tcp_may_undo(tp)) {
2205 /* Happy end! We did not retransmit anything
2206 * or our original transmission succeeded.
2207 */
2208 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2209 tcp_undo_cwr(sk, 1);
2210 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2211 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2212 else
2213 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2214 tp->undo_marker = 0;
2215 }
2216 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2217 /* Hold old state until something *above* high_seq
2218 * is ACKed. For Reno it is MUST to prevent false
2219 * fast retransmits (RFC2582). SACK TCP is safe. */
2220 tcp_moderate_cwnd(tp);
2221 return 1;
2222 }
2223 tcp_set_ca_state(sk, TCP_CA_Open);
2224 return 0;
2225 }
2226
2227 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2228 static void tcp_try_undo_dsack(struct sock *sk)
2229 {
2230 struct tcp_sock *tp = tcp_sk(sk);
2231
2232 if (tp->undo_marker && !tp->undo_retrans) {
2233 DBGUNDO(sk, "D-SACK");
2234 tcp_undo_cwr(sk, 1);
2235 tp->undo_marker = 0;
2236 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2237 }
2238 }
2239
2240 /* Undo during fast recovery after partial ACK. */
2241
2242 static int tcp_try_undo_partial(struct sock *sk, int acked)
2243 {
2244 struct tcp_sock *tp = tcp_sk(sk);
2245 /* Partial ACK arrived. Force Hoe's retransmit. */
2246 int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
2247
2248 if (tcp_may_undo(tp)) {
2249 /* Plain luck! Hole if filled with delayed
2250 * packet, rather than with a retransmit.
2251 */
2252 if (tp->retrans_out == 0)
2253 tp->retrans_stamp = 0;
2254
2255 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2256
2257 DBGUNDO(sk, "Hoe");
2258 tcp_undo_cwr(sk, 0);
2259 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2260
2261 /* So... Do not make Hoe's retransmit yet.
2262 * If the first packet was delayed, the rest
2263 * ones are most probably delayed as well.
2264 */
2265 failed = 0;
2266 }
2267 return failed;
2268 }
2269
2270 /* Undo during loss recovery after partial ACK. */
2271 static int tcp_try_undo_loss(struct sock *sk)
2272 {
2273 struct tcp_sock *tp = tcp_sk(sk);
2274
2275 if (tcp_may_undo(tp)) {
2276 struct sk_buff *skb;
2277 tcp_for_write_queue(skb, sk) {
2278 if (skb == tcp_send_head(sk))
2279 break;
2280 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2281 }
2282
2283 tcp_clear_all_retrans_hints(tp);
2284
2285 DBGUNDO(sk, "partial loss");
2286 tp->lost_out = 0;
2287 tcp_undo_cwr(sk, 1);
2288 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2289 inet_csk(sk)->icsk_retransmits = 0;
2290 tp->undo_marker = 0;
2291 if (tcp_is_sack(tp))
2292 tcp_set_ca_state(sk, TCP_CA_Open);
2293 return 1;
2294 }
2295 return 0;
2296 }
2297
2298 static inline void tcp_complete_cwr(struct sock *sk)
2299 {
2300 struct tcp_sock *tp = tcp_sk(sk);
2301 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2302 tp->snd_cwnd_stamp = tcp_time_stamp;
2303 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2304 }
2305
2306 static void tcp_try_to_open(struct sock *sk, int flag)
2307 {
2308 struct tcp_sock *tp = tcp_sk(sk);
2309
2310 tcp_verify_left_out(tp);
2311
2312 if (tp->retrans_out == 0)
2313 tp->retrans_stamp = 0;
2314
2315 if (flag&FLAG_ECE)
2316 tcp_enter_cwr(sk, 1);
2317
2318 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2319 int state = TCP_CA_Open;
2320
2321 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2322 state = TCP_CA_Disorder;
2323
2324 if (inet_csk(sk)->icsk_ca_state != state) {
2325 tcp_set_ca_state(sk, state);
2326 tp->high_seq = tp->snd_nxt;
2327 }
2328 tcp_moderate_cwnd(tp);
2329 } else {
2330 tcp_cwnd_down(sk, flag);
2331 }
2332 }
2333
2334 static void tcp_mtup_probe_failed(struct sock *sk)
2335 {
2336 struct inet_connection_sock *icsk = inet_csk(sk);
2337
2338 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2339 icsk->icsk_mtup.probe_size = 0;
2340 }
2341
2342 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2343 {
2344 struct tcp_sock *tp = tcp_sk(sk);
2345 struct inet_connection_sock *icsk = inet_csk(sk);
2346
2347 /* FIXME: breaks with very large cwnd */
2348 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2349 tp->snd_cwnd = tp->snd_cwnd *
2350 tcp_mss_to_mtu(sk, tp->mss_cache) /
2351 icsk->icsk_mtup.probe_size;
2352 tp->snd_cwnd_cnt = 0;
2353 tp->snd_cwnd_stamp = tcp_time_stamp;
2354 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2355
2356 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2357 icsk->icsk_mtup.probe_size = 0;
2358 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2359 }
2360
2361
2362 /* Process an event, which can update packets-in-flight not trivially.
2363 * Main goal of this function is to calculate new estimate for left_out,
2364 * taking into account both packets sitting in receiver's buffer and
2365 * packets lost by network.
2366 *
2367 * Besides that it does CWND reduction, when packet loss is detected
2368 * and changes state of machine.
2369 *
2370 * It does _not_ decide what to send, it is made in function
2371 * tcp_xmit_retransmit_queue().
2372 */
2373 static void
2374 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2375 {
2376 struct inet_connection_sock *icsk = inet_csk(sk);
2377 struct tcp_sock *tp = tcp_sk(sk);
2378 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2379 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2380 (tp->fackets_out > tp->reordering));
2381
2382 /* Some technical things:
2383 * 1. Reno does not count dupacks (sacked_out) automatically. */
2384 if (!tp->packets_out)
2385 tp->sacked_out = 0;
2386
2387 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2388 tp->fackets_out = 0;
2389
2390 /* Now state machine starts.
2391 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2392 if (flag&FLAG_ECE)
2393 tp->prior_ssthresh = 0;
2394
2395 /* B. In all the states check for reneging SACKs. */
2396 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2397 return;
2398
2399 /* C. Process data loss notification, provided it is valid. */
2400 if ((flag&FLAG_DATA_LOST) &&
2401 before(tp->snd_una, tp->high_seq) &&
2402 icsk->icsk_ca_state != TCP_CA_Open &&
2403 tp->fackets_out > tp->reordering) {
2404 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2405 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2406 }
2407
2408 /* D. Check consistency of the current state. */
2409 tcp_verify_left_out(tp);
2410
2411 /* E. Check state exit conditions. State can be terminated
2412 * when high_seq is ACKed. */
2413 if (icsk->icsk_ca_state == TCP_CA_Open) {
2414 BUG_TRAP(tp->retrans_out == 0);
2415 tp->retrans_stamp = 0;
2416 } else if (!before(tp->snd_una, tp->high_seq)) {
2417 switch (icsk->icsk_ca_state) {
2418 case TCP_CA_Loss:
2419 icsk->icsk_retransmits = 0;
2420 if (tcp_try_undo_recovery(sk))
2421 return;
2422 break;
2423
2424 case TCP_CA_CWR:
2425 /* CWR is to be held something *above* high_seq
2426 * is ACKed for CWR bit to reach receiver. */
2427 if (tp->snd_una != tp->high_seq) {
2428 tcp_complete_cwr(sk);
2429 tcp_set_ca_state(sk, TCP_CA_Open);
2430 }
2431 break;
2432
2433 case TCP_CA_Disorder:
2434 tcp_try_undo_dsack(sk);
2435 if (!tp->undo_marker ||
2436 /* For SACK case do not Open to allow to undo
2437 * catching for all duplicate ACKs. */
2438 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2439 tp->undo_marker = 0;
2440 tcp_set_ca_state(sk, TCP_CA_Open);
2441 }
2442 break;
2443
2444 case TCP_CA_Recovery:
2445 if (tcp_is_reno(tp))
2446 tcp_reset_reno_sack(tp);
2447 if (tcp_try_undo_recovery(sk))
2448 return;
2449 tcp_complete_cwr(sk);
2450 break;
2451 }
2452 }
2453
2454 /* F. Process state. */
2455 switch (icsk->icsk_ca_state) {
2456 case TCP_CA_Recovery:
2457 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2458 if (tcp_is_reno(tp) && is_dupack)
2459 tcp_add_reno_sack(sk);
2460 } else
2461 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2462 break;
2463 case TCP_CA_Loss:
2464 if (flag&FLAG_DATA_ACKED)
2465 icsk->icsk_retransmits = 0;
2466 if (!tcp_try_undo_loss(sk)) {
2467 tcp_moderate_cwnd(tp);
2468 tcp_xmit_retransmit_queue(sk);
2469 return;
2470 }
2471 if (icsk->icsk_ca_state != TCP_CA_Open)
2472 return;
2473 /* Loss is undone; fall through to processing in Open state. */
2474 default:
2475 if (tcp_is_reno(tp)) {
2476 if (flag & FLAG_SND_UNA_ADVANCED)
2477 tcp_reset_reno_sack(tp);
2478 if (is_dupack)
2479 tcp_add_reno_sack(sk);
2480 }
2481
2482 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2483 tcp_try_undo_dsack(sk);
2484
2485 if (!tcp_time_to_recover(sk)) {
2486 tcp_try_to_open(sk, flag);
2487 return;
2488 }
2489
2490 /* MTU probe failure: don't reduce cwnd */
2491 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2492 icsk->icsk_mtup.probe_size &&
2493 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2494 tcp_mtup_probe_failed(sk);
2495 /* Restores the reduction we did in tcp_mtup_probe() */
2496 tp->snd_cwnd++;
2497 tcp_simple_retransmit(sk);
2498 return;
2499 }
2500
2501 /* Otherwise enter Recovery state */
2502
2503 if (tcp_is_reno(tp))
2504 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2505 else
2506 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2507
2508 tp->high_seq = tp->snd_nxt;
2509 tp->prior_ssthresh = 0;
2510 tp->undo_marker = tp->snd_una;
2511 tp->undo_retrans = tp->retrans_out;
2512
2513 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2514 if (!(flag&FLAG_ECE))
2515 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2516 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2517 TCP_ECN_queue_cwr(tp);
2518 }
2519
2520 tp->bytes_acked = 0;
2521 tp->snd_cwnd_cnt = 0;
2522 tcp_set_ca_state(sk, TCP_CA_Recovery);
2523 }
2524
2525 if (do_lost || tcp_head_timedout(sk))
2526 tcp_update_scoreboard(sk);
2527 tcp_cwnd_down(sk, flag);
2528 tcp_xmit_retransmit_queue(sk);
2529 }
2530
2531 /* Read draft-ietf-tcplw-high-performance before mucking
2532 * with this code. (Supersedes RFC1323)
2533 */
2534 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2535 {
2536 /* RTTM Rule: A TSecr value received in a segment is used to
2537 * update the averaged RTT measurement only if the segment
2538 * acknowledges some new data, i.e., only if it advances the
2539 * left edge of the send window.
2540 *
2541 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2542 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2543 *
2544 * Changed: reset backoff as soon as we see the first valid sample.
2545 * If we do not, we get strongly overestimated rto. With timestamps
2546 * samples are accepted even from very old segments: f.e., when rtt=1
2547 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2548 * answer arrives rto becomes 120 seconds! If at least one of segments
2549 * in window is lost... Voila. --ANK (010210)
2550 */
2551 struct tcp_sock *tp = tcp_sk(sk);
2552 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2553 tcp_rtt_estimator(sk, seq_rtt);
2554 tcp_set_rto(sk);
2555 inet_csk(sk)->icsk_backoff = 0;
2556 tcp_bound_rto(sk);
2557 }
2558
2559 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2560 {
2561 /* We don't have a timestamp. Can only use
2562 * packets that are not retransmitted to determine
2563 * rtt estimates. Also, we must not reset the
2564 * backoff for rto until we get a non-retransmitted
2565 * packet. This allows us to deal with a situation
2566 * where the network delay has increased suddenly.
2567 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2568 */
2569
2570 if (flag & FLAG_RETRANS_DATA_ACKED)
2571 return;
2572
2573 tcp_rtt_estimator(sk, seq_rtt);
2574 tcp_set_rto(sk);
2575 inet_csk(sk)->icsk_backoff = 0;
2576 tcp_bound_rto(sk);
2577 }
2578
2579 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2580 const s32 seq_rtt)
2581 {
2582 const struct tcp_sock *tp = tcp_sk(sk);
2583 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2584 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2585 tcp_ack_saw_tstamp(sk, flag);
2586 else if (seq_rtt >= 0)
2587 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2588 }
2589
2590 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2591 u32 in_flight, int good)
2592 {
2593 const struct inet_connection_sock *icsk = inet_csk(sk);
2594 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2595 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2596 }
2597
2598 /* Restart timer after forward progress on connection.
2599 * RFC2988 recommends to restart timer to now+rto.
2600 */
2601 static void tcp_rearm_rto(struct sock *sk)
2602 {
2603 struct tcp_sock *tp = tcp_sk(sk);
2604
2605 if (!tp->packets_out) {
2606 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2607 } else {
2608 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2609 }
2610 }
2611
2612 /* If we get here, the whole TSO packet has not been acked. */
2613 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2614 {
2615 struct tcp_sock *tp = tcp_sk(sk);
2616 u32 packets_acked;
2617
2618 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2619
2620 packets_acked = tcp_skb_pcount(skb);
2621 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2622 return 0;
2623 packets_acked -= tcp_skb_pcount(skb);
2624
2625 if (packets_acked) {
2626 BUG_ON(tcp_skb_pcount(skb) == 0);
2627 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2628 }
2629
2630 return packets_acked;
2631 }
2632
2633 /* Remove acknowledged frames from the retransmission queue. If our packet
2634 * is before the ack sequence we can discard it as it's confirmed to have
2635 * arrived at the other end.
2636 */
2637 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p)
2638 {
2639 struct tcp_sock *tp = tcp_sk(sk);
2640 const struct inet_connection_sock *icsk = inet_csk(sk);
2641 struct sk_buff *skb;
2642 u32 now = tcp_time_stamp;
2643 int fully_acked = 1;
2644 int flag = 0;
2645 int prior_packets = tp->packets_out;
2646 s32 seq_rtt = -1;
2647 ktime_t last_ackt = net_invalid_timestamp();
2648
2649 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2650 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2651 u32 end_seq;
2652 u32 packets_acked;
2653 u8 sacked = scb->sacked;
2654
2655 if (after(scb->end_seq, tp->snd_una)) {
2656 if (tcp_skb_pcount(skb) == 1 ||
2657 !after(tp->snd_una, scb->seq))
2658 break;
2659
2660 packets_acked = tcp_tso_acked(sk, skb);
2661 if (!packets_acked)
2662 break;
2663
2664 fully_acked = 0;
2665 end_seq = tp->snd_una;
2666 } else {
2667 packets_acked = tcp_skb_pcount(skb);
2668 end_seq = scb->end_seq;
2669 }
2670
2671 /* MTU probing checks */
2672 if (fully_acked && icsk->icsk_mtup.probe_size &&
2673 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2674 tcp_mtup_probe_success(sk, skb);
2675 }
2676
2677 if (sacked) {
2678 if (sacked & TCPCB_RETRANS) {
2679 if (sacked & TCPCB_SACKED_RETRANS)
2680 tp->retrans_out -= packets_acked;
2681 flag |= FLAG_RETRANS_DATA_ACKED;
2682 seq_rtt = -1;
2683 if ((flag & FLAG_DATA_ACKED) ||
2684 (packets_acked > 1))
2685 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2686 } else if (seq_rtt < 0) {
2687 seq_rtt = now - scb->when;
2688 if (fully_acked)
2689 last_ackt = skb->tstamp;
2690 }
2691
2692 if (sacked & TCPCB_SACKED_ACKED)
2693 tp->sacked_out -= packets_acked;
2694 if (sacked & TCPCB_LOST)
2695 tp->lost_out -= packets_acked;
2696
2697 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2698 !before(end_seq, tp->snd_up))
2699 tp->urg_mode = 0;
2700 } else if (seq_rtt < 0) {
2701 seq_rtt = now - scb->when;
2702 if (fully_acked)
2703 last_ackt = skb->tstamp;
2704 }
2705 tp->packets_out -= packets_acked;
2706
2707 /* Initial outgoing SYN's get put onto the write_queue
2708 * just like anything else we transmit. It is not
2709 * true data, and if we misinform our callers that
2710 * this ACK acks real data, we will erroneously exit
2711 * connection startup slow start one packet too
2712 * quickly. This is severely frowned upon behavior.
2713 */
2714 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2715 flag |= FLAG_DATA_ACKED;
2716 } else {
2717 flag |= FLAG_SYN_ACKED;
2718 tp->retrans_stamp = 0;
2719 }
2720
2721 if (!fully_acked)
2722 break;
2723
2724 tcp_unlink_write_queue(skb, sk);
2725 sk_stream_free_skb(sk, skb);
2726 tcp_clear_all_retrans_hints(tp);
2727 }
2728
2729 if (flag & FLAG_ACKED) {
2730 u32 pkts_acked = prior_packets - tp->packets_out;
2731 const struct tcp_congestion_ops *ca_ops
2732 = inet_csk(sk)->icsk_ca_ops;
2733
2734 tcp_ack_update_rtt(sk, flag, seq_rtt);
2735 tcp_rearm_rto(sk);
2736
2737 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2738 /* hint's skb might be NULL but we don't need to care */
2739 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2740 tp->fastpath_cnt_hint);
2741 if (tcp_is_reno(tp))
2742 tcp_remove_reno_sacks(sk, pkts_acked);
2743
2744 if (ca_ops->pkts_acked) {
2745 s32 rtt_us = -1;
2746
2747 /* Is the ACK triggering packet unambiguous? */
2748 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2749 /* High resolution needed and available? */
2750 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2751 !ktime_equal(last_ackt,
2752 net_invalid_timestamp()))
2753 rtt_us = ktime_us_delta(ktime_get_real(),
2754 last_ackt);
2755 else if (seq_rtt > 0)
2756 rtt_us = jiffies_to_usecs(seq_rtt);
2757 }
2758
2759 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2760 }
2761 }
2762
2763 #if FASTRETRANS_DEBUG > 0
2764 BUG_TRAP((int)tp->sacked_out >= 0);
2765 BUG_TRAP((int)tp->lost_out >= 0);
2766 BUG_TRAP((int)tp->retrans_out >= 0);
2767 if (!tp->packets_out && tcp_is_sack(tp)) {
2768 icsk = inet_csk(sk);
2769 if (tp->lost_out) {
2770 printk(KERN_DEBUG "Leak l=%u %d\n",
2771 tp->lost_out, icsk->icsk_ca_state);
2772 tp->lost_out = 0;
2773 }
2774 if (tp->sacked_out) {
2775 printk(KERN_DEBUG "Leak s=%u %d\n",
2776 tp->sacked_out, icsk->icsk_ca_state);
2777 tp->sacked_out = 0;
2778 }
2779 if (tp->retrans_out) {
2780 printk(KERN_DEBUG "Leak r=%u %d\n",
2781 tp->retrans_out, icsk->icsk_ca_state);
2782 tp->retrans_out = 0;
2783 }
2784 }
2785 #endif
2786 *seq_rtt_p = seq_rtt;
2787 return flag;
2788 }
2789
2790 static void tcp_ack_probe(struct sock *sk)
2791 {
2792 const struct tcp_sock *tp = tcp_sk(sk);
2793 struct inet_connection_sock *icsk = inet_csk(sk);
2794
2795 /* Was it a usable window open? */
2796
2797 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2798 tp->snd_una + tp->snd_wnd)) {
2799 icsk->icsk_backoff = 0;
2800 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2801 /* Socket must be waked up by subsequent tcp_data_snd_check().
2802 * This function is not for random using!
2803 */
2804 } else {
2805 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2806 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2807 TCP_RTO_MAX);
2808 }
2809 }
2810
2811 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2812 {
2813 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2814 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2815 }
2816
2817 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2818 {
2819 const struct tcp_sock *tp = tcp_sk(sk);
2820 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2821 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2822 }
2823
2824 /* Check that window update is acceptable.
2825 * The function assumes that snd_una<=ack<=snd_next.
2826 */
2827 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2828 const u32 ack_seq, const u32 nwin)
2829 {
2830 return (after(ack, tp->snd_una) ||
2831 after(ack_seq, tp->snd_wl1) ||
2832 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2833 }
2834
2835 /* Update our send window.
2836 *
2837 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2838 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2839 */
2840 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2841 u32 ack_seq)
2842 {
2843 struct tcp_sock *tp = tcp_sk(sk);
2844 int flag = 0;
2845 u32 nwin = ntohs(tcp_hdr(skb)->window);
2846
2847 if (likely(!tcp_hdr(skb)->syn))
2848 nwin <<= tp->rx_opt.snd_wscale;
2849
2850 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2851 flag |= FLAG_WIN_UPDATE;
2852 tcp_update_wl(tp, ack, ack_seq);
2853
2854 if (tp->snd_wnd != nwin) {
2855 tp->snd_wnd = nwin;
2856
2857 /* Note, it is the only place, where
2858 * fast path is recovered for sending TCP.
2859 */
2860 tp->pred_flags = 0;
2861 tcp_fast_path_check(sk);
2862
2863 if (nwin > tp->max_window) {
2864 tp->max_window = nwin;
2865 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2866 }
2867 }
2868 }
2869
2870 tp->snd_una = ack;
2871
2872 return flag;
2873 }
2874
2875 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2876 * continue in congestion avoidance.
2877 */
2878 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2879 {
2880 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2881 tp->snd_cwnd_cnt = 0;
2882 tp->bytes_acked = 0;
2883 TCP_ECN_queue_cwr(tp);
2884 tcp_moderate_cwnd(tp);
2885 }
2886
2887 /* A conservative spurious RTO response algorithm: reduce cwnd using
2888 * rate halving and continue in congestion avoidance.
2889 */
2890 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2891 {
2892 tcp_enter_cwr(sk, 0);
2893 }
2894
2895 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2896 {
2897 if (flag&FLAG_ECE)
2898 tcp_ratehalving_spur_to_response(sk);
2899 else
2900 tcp_undo_cwr(sk, 1);
2901 }
2902
2903 /* F-RTO spurious RTO detection algorithm (RFC4138)
2904 *
2905 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2906 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2907 * window (but not to or beyond highest sequence sent before RTO):
2908 * On First ACK, send two new segments out.
2909 * On Second ACK, RTO was likely spurious. Do spurious response (response
2910 * algorithm is not part of the F-RTO detection algorithm
2911 * given in RFC4138 but can be selected separately).
2912 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2913 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2914 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2915 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2916 *
2917 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2918 * original window even after we transmit two new data segments.
2919 *
2920 * SACK version:
2921 * on first step, wait until first cumulative ACK arrives, then move to
2922 * the second step. In second step, the next ACK decides.
2923 *
2924 * F-RTO is implemented (mainly) in four functions:
2925 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2926 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2927 * called when tcp_use_frto() showed green light
2928 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2929 * - tcp_enter_frto_loss() is called if there is not enough evidence
2930 * to prove that the RTO is indeed spurious. It transfers the control
2931 * from F-RTO to the conventional RTO recovery
2932 */
2933 static int tcp_process_frto(struct sock *sk, int flag)
2934 {
2935 struct tcp_sock *tp = tcp_sk(sk);
2936
2937 tcp_verify_left_out(tp);
2938
2939 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2940 if (flag&FLAG_DATA_ACKED)
2941 inet_csk(sk)->icsk_retransmits = 0;
2942
2943 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2944 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2945 tp->undo_marker = 0;
2946
2947 if (!before(tp->snd_una, tp->frto_highmark)) {
2948 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2949 return 1;
2950 }
2951
2952 if (!IsSackFrto() || tcp_is_reno(tp)) {
2953 /* RFC4138 shortcoming in step 2; should also have case c):
2954 * ACK isn't duplicate nor advances window, e.g., opposite dir
2955 * data, winupdate
2956 */
2957 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
2958 return 1;
2959
2960 if (!(flag&FLAG_DATA_ACKED)) {
2961 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2962 flag);
2963 return 1;
2964 }
2965 } else {
2966 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2967 /* Prevent sending of new data. */
2968 tp->snd_cwnd = min(tp->snd_cwnd,
2969 tcp_packets_in_flight(tp));
2970 return 1;
2971 }
2972
2973 if ((tp->frto_counter >= 2) &&
2974 (!(flag&FLAG_FORWARD_PROGRESS) ||
2975 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2976 /* RFC4138 shortcoming (see comment above) */
2977 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2978 return 1;
2979
2980 tcp_enter_frto_loss(sk, 3, flag);
2981 return 1;
2982 }
2983 }
2984
2985 if (tp->frto_counter == 1) {
2986 /* Sending of the next skb must be allowed or no F-RTO */
2987 if (!tcp_send_head(sk) ||
2988 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2989 tp->snd_una + tp->snd_wnd)) {
2990 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2991 flag);
2992 return 1;
2993 }
2994
2995 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2996 tp->frto_counter = 2;
2997 return 1;
2998 } else {
2999 switch (sysctl_tcp_frto_response) {
3000 case 2:
3001 tcp_undo_spur_to_response(sk, flag);
3002 break;
3003 case 1:
3004 tcp_conservative_spur_to_response(tp);
3005 break;
3006 default:
3007 tcp_ratehalving_spur_to_response(sk);
3008 break;
3009 }
3010 tp->frto_counter = 0;
3011 tp->undo_marker = 0;
3012 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3013 }
3014 return 0;
3015 }
3016
3017 /* This routine deals with incoming acks, but not outgoing ones. */
3018 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3019 {
3020 struct inet_connection_sock *icsk = inet_csk(sk);
3021 struct tcp_sock *tp = tcp_sk(sk);
3022 u32 prior_snd_una = tp->snd_una;
3023 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3024 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3025 u32 prior_in_flight;
3026 s32 seq_rtt;
3027 int prior_packets;
3028 int frto_cwnd = 0;
3029
3030 /* If the ack is newer than sent or older than previous acks
3031 * then we can probably ignore it.
3032 */
3033 if (after(ack, tp->snd_nxt))
3034 goto uninteresting_ack;
3035
3036 if (before(ack, prior_snd_una))
3037 goto old_ack;
3038
3039 if (after(ack, prior_snd_una))
3040 flag |= FLAG_SND_UNA_ADVANCED;
3041
3042 if (sysctl_tcp_abc) {
3043 if (icsk->icsk_ca_state < TCP_CA_CWR)
3044 tp->bytes_acked += ack - prior_snd_una;
3045 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3046 /* we assume just one segment left network */
3047 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3048 }
3049
3050 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3051 /* Window is constant, pure forward advance.
3052 * No more checks are required.
3053 * Note, we use the fact that SND.UNA>=SND.WL2.
3054 */
3055 tcp_update_wl(tp, ack, ack_seq);
3056 tp->snd_una = ack;
3057 flag |= FLAG_WIN_UPDATE;
3058
3059 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3060
3061 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3062 } else {
3063 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3064 flag |= FLAG_DATA;
3065 else
3066 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3067
3068 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3069
3070 if (TCP_SKB_CB(skb)->sacked)
3071 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3072
3073 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3074 flag |= FLAG_ECE;
3075
3076 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3077 }
3078
3079 /* We passed data and got it acked, remove any soft error
3080 * log. Something worked...
3081 */
3082 sk->sk_err_soft = 0;
3083 tp->rcv_tstamp = tcp_time_stamp;
3084 prior_packets = tp->packets_out;
3085 if (!prior_packets)
3086 goto no_queue;
3087
3088 prior_in_flight = tcp_packets_in_flight(tp);
3089
3090 /* See if we can take anything off of the retransmit queue. */
3091 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
3092
3093 /* Guarantee sacktag reordering detection against wrap-arounds */
3094 if (before(tp->frto_highmark, tp->snd_una))
3095 tp->frto_highmark = 0;
3096 if (tp->frto_counter)
3097 frto_cwnd = tcp_process_frto(sk, flag);
3098
3099 if (tcp_ack_is_dubious(sk, flag)) {
3100 /* Advance CWND, if state allows this. */
3101 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3102 tcp_may_raise_cwnd(sk, flag))
3103 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3104 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3105 } else {
3106 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3107 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3108 }
3109
3110 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3111 dst_confirm(sk->sk_dst_cache);
3112
3113 return 1;
3114
3115 no_queue:
3116 icsk->icsk_probes_out = 0;
3117
3118 /* If this ack opens up a zero window, clear backoff. It was
3119 * being used to time the probes, and is probably far higher than
3120 * it needs to be for normal retransmission.
3121 */
3122 if (tcp_send_head(sk))
3123 tcp_ack_probe(sk);
3124 return 1;
3125
3126 old_ack:
3127 if (TCP_SKB_CB(skb)->sacked)
3128 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3129
3130 uninteresting_ack:
3131 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3132 return 0;
3133 }
3134
3135
3136 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3137 * But, this can also be called on packets in the established flow when
3138 * the fast version below fails.
3139 */
3140 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3141 {
3142 unsigned char *ptr;
3143 struct tcphdr *th = tcp_hdr(skb);
3144 int length=(th->doff*4)-sizeof(struct tcphdr);
3145
3146 ptr = (unsigned char *)(th + 1);
3147 opt_rx->saw_tstamp = 0;
3148
3149 while (length > 0) {
3150 int opcode=*ptr++;
3151 int opsize;
3152
3153 switch (opcode) {
3154 case TCPOPT_EOL:
3155 return;
3156 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3157 length--;
3158 continue;
3159 default:
3160 opsize=*ptr++;
3161 if (opsize < 2) /* "silly options" */
3162 return;
3163 if (opsize > length)
3164 return; /* don't parse partial options */
3165 switch (opcode) {
3166 case TCPOPT_MSS:
3167 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3168 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3169 if (in_mss) {
3170 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3171 in_mss = opt_rx->user_mss;
3172 opt_rx->mss_clamp = in_mss;
3173 }
3174 }
3175 break;
3176 case TCPOPT_WINDOW:
3177 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3178 if (sysctl_tcp_window_scaling) {
3179 __u8 snd_wscale = *(__u8 *) ptr;
3180 opt_rx->wscale_ok = 1;
3181 if (snd_wscale > 14) {
3182 if (net_ratelimit())
3183 printk(KERN_INFO "tcp_parse_options: Illegal window "
3184 "scaling value %d >14 received.\n",
3185 snd_wscale);
3186 snd_wscale = 14;
3187 }
3188 opt_rx->snd_wscale = snd_wscale;
3189 }
3190 break;
3191 case TCPOPT_TIMESTAMP:
3192 if (opsize==TCPOLEN_TIMESTAMP) {
3193 if ((estab && opt_rx->tstamp_ok) ||
3194 (!estab && sysctl_tcp_timestamps)) {
3195 opt_rx->saw_tstamp = 1;
3196 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3197 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3198 }
3199 }
3200 break;
3201 case TCPOPT_SACK_PERM:
3202 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3203 if (sysctl_tcp_sack) {
3204 opt_rx->sack_ok = 1;
3205 tcp_sack_reset(opt_rx);
3206 }
3207 }
3208 break;
3209
3210 case TCPOPT_SACK:
3211 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3212 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3213 opt_rx->sack_ok) {
3214 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3215 }
3216 break;
3217 #ifdef CONFIG_TCP_MD5SIG
3218 case TCPOPT_MD5SIG:
3219 /*
3220 * The MD5 Hash has already been
3221 * checked (see tcp_v{4,6}_do_rcv()).
3222 */
3223 break;
3224 #endif
3225 }
3226
3227 ptr+=opsize-2;
3228 length-=opsize;
3229 }
3230 }
3231 }
3232
3233 /* Fast parse options. This hopes to only see timestamps.
3234 * If it is wrong it falls back on tcp_parse_options().
3235 */
3236 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3237 struct tcp_sock *tp)
3238 {
3239 if (th->doff == sizeof(struct tcphdr)>>2) {
3240 tp->rx_opt.saw_tstamp = 0;
3241 return 0;
3242 } else if (tp->rx_opt.tstamp_ok &&
3243 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3244 __be32 *ptr = (__be32 *)(th + 1);
3245 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3246 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3247 tp->rx_opt.saw_tstamp = 1;
3248 ++ptr;
3249 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3250 ++ptr;
3251 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3252 return 1;
3253 }
3254 }
3255 tcp_parse_options(skb, &tp->rx_opt, 1);
3256 return 1;
3257 }
3258
3259 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3260 {
3261 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3262 tp->rx_opt.ts_recent_stamp = get_seconds();
3263 }
3264
3265 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3266 {
3267 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3268 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3269 * extra check below makes sure this can only happen
3270 * for pure ACK frames. -DaveM
3271 *
3272 * Not only, also it occurs for expired timestamps.
3273 */
3274
3275 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3276 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3277 tcp_store_ts_recent(tp);
3278 }
3279 }
3280
3281 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3282 *
3283 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3284 * it can pass through stack. So, the following predicate verifies that
3285 * this segment is not used for anything but congestion avoidance or
3286 * fast retransmit. Moreover, we even are able to eliminate most of such
3287 * second order effects, if we apply some small "replay" window (~RTO)
3288 * to timestamp space.
3289 *
3290 * All these measures still do not guarantee that we reject wrapped ACKs
3291 * on networks with high bandwidth, when sequence space is recycled fastly,
3292 * but it guarantees that such events will be very rare and do not affect
3293 * connection seriously. This doesn't look nice, but alas, PAWS is really
3294 * buggy extension.
3295 *
3296 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3297 * states that events when retransmit arrives after original data are rare.
3298 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3299 * the biggest problem on large power networks even with minor reordering.
3300 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3301 * up to bandwidth of 18Gigabit/sec. 8) ]
3302 */
3303
3304 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3305 {
3306 struct tcp_sock *tp = tcp_sk(sk);
3307 struct tcphdr *th = tcp_hdr(skb);
3308 u32 seq = TCP_SKB_CB(skb)->seq;
3309 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3310
3311 return (/* 1. Pure ACK with correct sequence number. */
3312 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3313
3314 /* 2. ... and duplicate ACK. */
3315 ack == tp->snd_una &&
3316
3317 /* 3. ... and does not update window. */
3318 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3319
3320 /* 4. ... and sits in replay window. */
3321 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3322 }
3323
3324 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3325 {
3326 const struct tcp_sock *tp = tcp_sk(sk);
3327 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3328 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3329 !tcp_disordered_ack(sk, skb));
3330 }
3331
3332 /* Check segment sequence number for validity.
3333 *
3334 * Segment controls are considered valid, if the segment
3335 * fits to the window after truncation to the window. Acceptability
3336 * of data (and SYN, FIN, of course) is checked separately.
3337 * See tcp_data_queue(), for example.
3338 *
3339 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3340 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3341 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3342 * (borrowed from freebsd)
3343 */
3344
3345 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3346 {
3347 return !before(end_seq, tp->rcv_wup) &&
3348 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3349 }
3350
3351 /* When we get a reset we do this. */
3352 static void tcp_reset(struct sock *sk)
3353 {
3354 /* We want the right error as BSD sees it (and indeed as we do). */
3355 switch (sk->sk_state) {
3356 case TCP_SYN_SENT:
3357 sk->sk_err = ECONNREFUSED;
3358 break;
3359 case TCP_CLOSE_WAIT:
3360 sk->sk_err = EPIPE;
3361 break;
3362 case TCP_CLOSE:
3363 return;
3364 default:
3365 sk->sk_err = ECONNRESET;
3366 }
3367
3368 if (!sock_flag(sk, SOCK_DEAD))
3369 sk->sk_error_report(sk);
3370
3371 tcp_done(sk);
3372 }
3373
3374 /*
3375 * Process the FIN bit. This now behaves as it is supposed to work
3376 * and the FIN takes effect when it is validly part of sequence
3377 * space. Not before when we get holes.
3378 *
3379 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3380 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3381 * TIME-WAIT)
3382 *
3383 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3384 * close and we go into CLOSING (and later onto TIME-WAIT)
3385 *
3386 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3387 */
3388 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3389 {
3390 struct tcp_sock *tp = tcp_sk(sk);
3391
3392 inet_csk_schedule_ack(sk);
3393
3394 sk->sk_shutdown |= RCV_SHUTDOWN;
3395 sock_set_flag(sk, SOCK_DONE);
3396
3397 switch (sk->sk_state) {
3398 case TCP_SYN_RECV:
3399 case TCP_ESTABLISHED:
3400 /* Move to CLOSE_WAIT */
3401 tcp_set_state(sk, TCP_CLOSE_WAIT);
3402 inet_csk(sk)->icsk_ack.pingpong = 1;
3403 break;
3404
3405 case TCP_CLOSE_WAIT:
3406 case TCP_CLOSING:
3407 /* Received a retransmission of the FIN, do
3408 * nothing.
3409 */
3410 break;
3411 case TCP_LAST_ACK:
3412 /* RFC793: Remain in the LAST-ACK state. */
3413 break;
3414
3415 case TCP_FIN_WAIT1:
3416 /* This case occurs when a simultaneous close
3417 * happens, we must ack the received FIN and
3418 * enter the CLOSING state.
3419 */
3420 tcp_send_ack(sk);
3421 tcp_set_state(sk, TCP_CLOSING);
3422 break;
3423 case TCP_FIN_WAIT2:
3424 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3425 tcp_send_ack(sk);
3426 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3427 break;
3428 default:
3429 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3430 * cases we should never reach this piece of code.
3431 */
3432 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3433 __FUNCTION__, sk->sk_state);
3434 break;
3435 }
3436
3437 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3438 * Probably, we should reset in this case. For now drop them.
3439 */
3440 __skb_queue_purge(&tp->out_of_order_queue);
3441 if (tcp_is_sack(tp))
3442 tcp_sack_reset(&tp->rx_opt);
3443 sk_stream_mem_reclaim(sk);
3444
3445 if (!sock_flag(sk, SOCK_DEAD)) {
3446 sk->sk_state_change(sk);
3447
3448 /* Do not send POLL_HUP for half duplex close. */
3449 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3450 sk->sk_state == TCP_CLOSE)
3451 sk_wake_async(sk, 1, POLL_HUP);
3452 else
3453 sk_wake_async(sk, 1, POLL_IN);
3454 }
3455 }
3456
3457 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3458 {
3459 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3460 if (before(seq, sp->start_seq))
3461 sp->start_seq = seq;
3462 if (after(end_seq, sp->end_seq))
3463 sp->end_seq = end_seq;
3464 return 1;
3465 }
3466 return 0;
3467 }
3468
3469 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3470 {
3471 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3472 if (before(seq, tp->rcv_nxt))
3473 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3474 else
3475 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3476
3477 tp->rx_opt.dsack = 1;
3478 tp->duplicate_sack[0].start_seq = seq;
3479 tp->duplicate_sack[0].end_seq = end_seq;
3480 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3481 }
3482 }
3483
3484 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3485 {
3486 if (!tp->rx_opt.dsack)
3487 tcp_dsack_set(tp, seq, end_seq);
3488 else
3489 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3490 }
3491
3492 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3493 {
3494 struct tcp_sock *tp = tcp_sk(sk);
3495
3496 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3497 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3498 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3499 tcp_enter_quickack_mode(sk);
3500
3501 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3502 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3503
3504 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3505 end_seq = tp->rcv_nxt;
3506 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3507 }
3508 }
3509
3510 tcp_send_ack(sk);
3511 }
3512
3513 /* These routines update the SACK block as out-of-order packets arrive or
3514 * in-order packets close up the sequence space.
3515 */
3516 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3517 {
3518 int this_sack;
3519 struct tcp_sack_block *sp = &tp->selective_acks[0];
3520 struct tcp_sack_block *swalk = sp+1;
3521
3522 /* See if the recent change to the first SACK eats into
3523 * or hits the sequence space of other SACK blocks, if so coalesce.
3524 */
3525 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3526 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3527 int i;
3528
3529 /* Zap SWALK, by moving every further SACK up by one slot.
3530 * Decrease num_sacks.
3531 */
3532 tp->rx_opt.num_sacks--;
3533 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3534 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3535 sp[i] = sp[i+1];
3536 continue;
3537 }
3538 this_sack++, swalk++;
3539 }
3540 }
3541
3542 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3543 {
3544 __u32 tmp;
3545
3546 tmp = sack1->start_seq;
3547 sack1->start_seq = sack2->start_seq;
3548 sack2->start_seq = tmp;
3549
3550 tmp = sack1->end_seq;
3551 sack1->end_seq = sack2->end_seq;
3552 sack2->end_seq = tmp;
3553 }
3554
3555 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3556 {
3557 struct tcp_sock *tp = tcp_sk(sk);
3558 struct tcp_sack_block *sp = &tp->selective_acks[0];
3559 int cur_sacks = tp->rx_opt.num_sacks;
3560 int this_sack;
3561
3562 if (!cur_sacks)
3563 goto new_sack;
3564
3565 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3566 if (tcp_sack_extend(sp, seq, end_seq)) {
3567 /* Rotate this_sack to the first one. */
3568 for (; this_sack>0; this_sack--, sp--)
3569 tcp_sack_swap(sp, sp-1);
3570 if (cur_sacks > 1)
3571 tcp_sack_maybe_coalesce(tp);
3572 return;
3573 }
3574 }
3575
3576 /* Could not find an adjacent existing SACK, build a new one,
3577 * put it at the front, and shift everyone else down. We
3578 * always know there is at least one SACK present already here.
3579 *
3580 * If the sack array is full, forget about the last one.
3581 */
3582 if (this_sack >= 4) {
3583 this_sack--;
3584 tp->rx_opt.num_sacks--;
3585 sp--;
3586 }
3587 for (; this_sack > 0; this_sack--, sp--)
3588 *sp = *(sp-1);
3589
3590 new_sack:
3591 /* Build the new head SACK, and we're done. */
3592 sp->start_seq = seq;
3593 sp->end_seq = end_seq;
3594 tp->rx_opt.num_sacks++;
3595 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3596 }
3597
3598 /* RCV.NXT advances, some SACKs should be eaten. */
3599
3600 static void tcp_sack_remove(struct tcp_sock *tp)
3601 {
3602 struct tcp_sack_block *sp = &tp->selective_acks[0];
3603 int num_sacks = tp->rx_opt.num_sacks;
3604 int this_sack;
3605
3606 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3607 if (skb_queue_empty(&tp->out_of_order_queue)) {
3608 tp->rx_opt.num_sacks = 0;
3609 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3610 return;
3611 }
3612
3613 for (this_sack = 0; this_sack < num_sacks; ) {
3614 /* Check if the start of the sack is covered by RCV.NXT. */
3615 if (!before(tp->rcv_nxt, sp->start_seq)) {
3616 int i;
3617
3618 /* RCV.NXT must cover all the block! */
3619 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3620
3621 /* Zap this SACK, by moving forward any other SACKS. */
3622 for (i=this_sack+1; i < num_sacks; i++)
3623 tp->selective_acks[i-1] = tp->selective_acks[i];
3624 num_sacks--;
3625 continue;
3626 }
3627 this_sack++;
3628 sp++;
3629 }
3630 if (num_sacks != tp->rx_opt.num_sacks) {
3631 tp->rx_opt.num_sacks = num_sacks;
3632 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3633 }
3634 }
3635
3636 /* This one checks to see if we can put data from the
3637 * out_of_order queue into the receive_queue.
3638 */
3639 static void tcp_ofo_queue(struct sock *sk)
3640 {
3641 struct tcp_sock *tp = tcp_sk(sk);
3642 __u32 dsack_high = tp->rcv_nxt;
3643 struct sk_buff *skb;
3644
3645 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3646 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3647 break;
3648
3649 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3650 __u32 dsack = dsack_high;
3651 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3652 dsack_high = TCP_SKB_CB(skb)->end_seq;
3653 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3654 }
3655
3656 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3657 SOCK_DEBUG(sk, "ofo packet was already received \n");
3658 __skb_unlink(skb, &tp->out_of_order_queue);
3659 __kfree_skb(skb);
3660 continue;
3661 }
3662 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3663 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3664 TCP_SKB_CB(skb)->end_seq);
3665
3666 __skb_unlink(skb, &tp->out_of_order_queue);
3667 __skb_queue_tail(&sk->sk_receive_queue, skb);
3668 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3669 if (tcp_hdr(skb)->fin)
3670 tcp_fin(skb, sk, tcp_hdr(skb));
3671 }
3672 }
3673
3674 static int tcp_prune_queue(struct sock *sk);
3675
3676 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3677 {
3678 struct tcphdr *th = tcp_hdr(skb);
3679 struct tcp_sock *tp = tcp_sk(sk);
3680 int eaten = -1;
3681
3682 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3683 goto drop;
3684
3685 __skb_pull(skb, th->doff*4);
3686
3687 TCP_ECN_accept_cwr(tp, skb);
3688
3689 if (tp->rx_opt.dsack) {
3690 tp->rx_opt.dsack = 0;
3691 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3692 4 - tp->rx_opt.tstamp_ok);
3693 }
3694
3695 /* Queue data for delivery to the user.
3696 * Packets in sequence go to the receive queue.
3697 * Out of sequence packets to the out_of_order_queue.
3698 */
3699 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3700 if (tcp_receive_window(tp) == 0)
3701 goto out_of_window;
3702
3703 /* Ok. In sequence. In window. */
3704 if (tp->ucopy.task == current &&
3705 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3706 sock_owned_by_user(sk) && !tp->urg_data) {
3707 int chunk = min_t(unsigned int, skb->len,
3708 tp->ucopy.len);
3709
3710 __set_current_state(TASK_RUNNING);
3711
3712 local_bh_enable();
3713 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3714 tp->ucopy.len -= chunk;
3715 tp->copied_seq += chunk;
3716 eaten = (chunk == skb->len && !th->fin);
3717 tcp_rcv_space_adjust(sk);
3718 }
3719 local_bh_disable();
3720 }
3721
3722 if (eaten <= 0) {
3723 queue_and_out:
3724 if (eaten < 0 &&
3725 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3726 !sk_stream_rmem_schedule(sk, skb))) {
3727 if (tcp_prune_queue(sk) < 0 ||
3728 !sk_stream_rmem_schedule(sk, skb))
3729 goto drop;
3730 }
3731 sk_stream_set_owner_r(skb, sk);
3732 __skb_queue_tail(&sk->sk_receive_queue, skb);
3733 }
3734 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3735 if (skb->len)
3736 tcp_event_data_recv(sk, skb);
3737 if (th->fin)
3738 tcp_fin(skb, sk, th);
3739
3740 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3741 tcp_ofo_queue(sk);
3742
3743 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3744 * gap in queue is filled.
3745 */
3746 if (skb_queue_empty(&tp->out_of_order_queue))
3747 inet_csk(sk)->icsk_ack.pingpong = 0;
3748 }
3749
3750 if (tp->rx_opt.num_sacks)
3751 tcp_sack_remove(tp);
3752
3753 tcp_fast_path_check(sk);
3754
3755 if (eaten > 0)
3756 __kfree_skb(skb);
3757 else if (!sock_flag(sk, SOCK_DEAD))
3758 sk->sk_data_ready(sk, 0);
3759 return;
3760 }
3761
3762 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3763 /* A retransmit, 2nd most common case. Force an immediate ack. */
3764 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3765 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3766
3767 out_of_window:
3768 tcp_enter_quickack_mode(sk);
3769 inet_csk_schedule_ack(sk);
3770 drop:
3771 __kfree_skb(skb);
3772 return;
3773 }
3774
3775 /* Out of window. F.e. zero window probe. */
3776 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3777 goto out_of_window;
3778
3779 tcp_enter_quickack_mode(sk);
3780
3781 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3782 /* Partial packet, seq < rcv_next < end_seq */
3783 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3784 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3785 TCP_SKB_CB(skb)->end_seq);
3786
3787 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3788
3789 /* If window is closed, drop tail of packet. But after
3790 * remembering D-SACK for its head made in previous line.
3791 */
3792 if (!tcp_receive_window(tp))
3793 goto out_of_window;
3794 goto queue_and_out;
3795 }
3796
3797 TCP_ECN_check_ce(tp, skb);
3798
3799 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3800 !sk_stream_rmem_schedule(sk, skb)) {
3801 if (tcp_prune_queue(sk) < 0 ||
3802 !sk_stream_rmem_schedule(sk, skb))
3803 goto drop;
3804 }
3805
3806 /* Disable header prediction. */
3807 tp->pred_flags = 0;
3808 inet_csk_schedule_ack(sk);
3809
3810 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3811 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3812
3813 sk_stream_set_owner_r(skb, sk);
3814
3815 if (!skb_peek(&tp->out_of_order_queue)) {
3816 /* Initial out of order segment, build 1 SACK. */
3817 if (tcp_is_sack(tp)) {
3818 tp->rx_opt.num_sacks = 1;
3819 tp->rx_opt.dsack = 0;
3820 tp->rx_opt.eff_sacks = 1;
3821 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3822 tp->selective_acks[0].end_seq =
3823 TCP_SKB_CB(skb)->end_seq;
3824 }
3825 __skb_queue_head(&tp->out_of_order_queue,skb);
3826 } else {
3827 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3828 u32 seq = TCP_SKB_CB(skb)->seq;
3829 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3830
3831 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3832 __skb_append(skb1, skb, &tp->out_of_order_queue);
3833
3834 if (!tp->rx_opt.num_sacks ||
3835 tp->selective_acks[0].end_seq != seq)
3836 goto add_sack;
3837
3838 /* Common case: data arrive in order after hole. */
3839 tp->selective_acks[0].end_seq = end_seq;
3840 return;
3841 }
3842
3843 /* Find place to insert this segment. */
3844 do {
3845 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3846 break;
3847 } while ((skb1 = skb1->prev) !=
3848 (struct sk_buff*)&tp->out_of_order_queue);
3849
3850 /* Do skb overlap to previous one? */
3851 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3852 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3853 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3854 /* All the bits are present. Drop. */
3855 __kfree_skb(skb);
3856 tcp_dsack_set(tp, seq, end_seq);
3857 goto add_sack;
3858 }
3859 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3860 /* Partial overlap. */
3861 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3862 } else {
3863 skb1 = skb1->prev;
3864 }
3865 }
3866 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3867
3868 /* And clean segments covered by new one as whole. */
3869 while ((skb1 = skb->next) !=
3870 (struct sk_buff*)&tp->out_of_order_queue &&
3871 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3872 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3873 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3874 break;
3875 }
3876 __skb_unlink(skb1, &tp->out_of_order_queue);
3877 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3878 __kfree_skb(skb1);
3879 }
3880
3881 add_sack:
3882 if (tcp_is_sack(tp))
3883 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3884 }
3885 }
3886
3887 /* Collapse contiguous sequence of skbs head..tail with
3888 * sequence numbers start..end.
3889 * Segments with FIN/SYN are not collapsed (only because this
3890 * simplifies code)
3891 */
3892 static void
3893 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3894 struct sk_buff *head, struct sk_buff *tail,
3895 u32 start, u32 end)
3896 {
3897 struct sk_buff *skb;
3898
3899 /* First, check that queue is collapsible and find
3900 * the point where collapsing can be useful. */
3901 for (skb = head; skb != tail; ) {
3902 /* No new bits? It is possible on ofo queue. */
3903 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3904 struct sk_buff *next = skb->next;
3905 __skb_unlink(skb, list);
3906 __kfree_skb(skb);
3907 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3908 skb = next;
3909 continue;
3910 }
3911
3912 /* The first skb to collapse is:
3913 * - not SYN/FIN and
3914 * - bloated or contains data before "start" or
3915 * overlaps to the next one.
3916 */
3917 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3918 (tcp_win_from_space(skb->truesize) > skb->len ||
3919 before(TCP_SKB_CB(skb)->seq, start) ||
3920 (skb->next != tail &&
3921 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3922 break;
3923
3924 /* Decided to skip this, advance start seq. */
3925 start = TCP_SKB_CB(skb)->end_seq;
3926 skb = skb->next;
3927 }
3928 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3929 return;
3930
3931 while (before(start, end)) {
3932 struct sk_buff *nskb;
3933 unsigned int header = skb_headroom(skb);
3934 int copy = SKB_MAX_ORDER(header, 0);
3935
3936 /* Too big header? This can happen with IPv6. */
3937 if (copy < 0)
3938 return;
3939 if (end-start < copy)
3940 copy = end-start;
3941 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3942 if (!nskb)
3943 return;
3944
3945 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3946 skb_set_network_header(nskb, (skb_network_header(skb) -
3947 skb->head));
3948 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3949 skb->head));
3950 skb_reserve(nskb, header);
3951 memcpy(nskb->head, skb->head, header);
3952 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3953 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3954 __skb_insert(nskb, skb->prev, skb, list);
3955 sk_stream_set_owner_r(nskb, sk);
3956
3957 /* Copy data, releasing collapsed skbs. */
3958 while (copy > 0) {
3959 int offset = start - TCP_SKB_CB(skb)->seq;
3960 int size = TCP_SKB_CB(skb)->end_seq - start;
3961
3962 BUG_ON(offset < 0);
3963 if (size > 0) {
3964 size = min(copy, size);
3965 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3966 BUG();
3967 TCP_SKB_CB(nskb)->end_seq += size;
3968 copy -= size;
3969 start += size;
3970 }
3971 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3972 struct sk_buff *next = skb->next;
3973 __skb_unlink(skb, list);
3974 __kfree_skb(skb);
3975 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3976 skb = next;
3977 if (skb == tail ||
3978 tcp_hdr(skb)->syn ||
3979 tcp_hdr(skb)->fin)
3980 return;
3981 }
3982 }
3983 }
3984 }
3985
3986 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3987 * and tcp_collapse() them until all the queue is collapsed.
3988 */
3989 static void tcp_collapse_ofo_queue(struct sock *sk)
3990 {
3991 struct tcp_sock *tp = tcp_sk(sk);
3992 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3993 struct sk_buff *head;
3994 u32 start, end;
3995
3996 if (skb == NULL)
3997 return;
3998
3999 start = TCP_SKB_CB(skb)->seq;
4000 end = TCP_SKB_CB(skb)->end_seq;
4001 head = skb;
4002
4003 for (;;) {
4004 skb = skb->next;
4005
4006 /* Segment is terminated when we see gap or when
4007 * we are at the end of all the queue. */
4008 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4009 after(TCP_SKB_CB(skb)->seq, end) ||
4010 before(TCP_SKB_CB(skb)->end_seq, start)) {
4011 tcp_collapse(sk, &tp->out_of_order_queue,
4012 head, skb, start, end);
4013 head = skb;
4014 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4015 break;
4016 /* Start new segment */
4017 start = TCP_SKB_CB(skb)->seq;
4018 end = TCP_SKB_CB(skb)->end_seq;
4019 } else {
4020 if (before(TCP_SKB_CB(skb)->seq, start))
4021 start = TCP_SKB_CB(skb)->seq;
4022 if (after(TCP_SKB_CB(skb)->end_seq, end))
4023 end = TCP_SKB_CB(skb)->end_seq;
4024 }
4025 }
4026 }
4027
4028 /* Reduce allocated memory if we can, trying to get
4029 * the socket within its memory limits again.
4030 *
4031 * Return less than zero if we should start dropping frames
4032 * until the socket owning process reads some of the data
4033 * to stabilize the situation.
4034 */
4035 static int tcp_prune_queue(struct sock *sk)
4036 {
4037 struct tcp_sock *tp = tcp_sk(sk);
4038
4039 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4040
4041 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4042
4043 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4044 tcp_clamp_window(sk);
4045 else if (tcp_memory_pressure)
4046 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4047
4048 tcp_collapse_ofo_queue(sk);
4049 tcp_collapse(sk, &sk->sk_receive_queue,
4050 sk->sk_receive_queue.next,
4051 (struct sk_buff*)&sk->sk_receive_queue,
4052 tp->copied_seq, tp->rcv_nxt);
4053 sk_stream_mem_reclaim(sk);
4054
4055 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4056 return 0;
4057
4058 /* Collapsing did not help, destructive actions follow.
4059 * This must not ever occur. */
4060
4061 /* First, purge the out_of_order queue. */
4062 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4063 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4064 __skb_queue_purge(&tp->out_of_order_queue);
4065
4066 /* Reset SACK state. A conforming SACK implementation will
4067 * do the same at a timeout based retransmit. When a connection
4068 * is in a sad state like this, we care only about integrity
4069 * of the connection not performance.
4070 */
4071 if (tcp_is_sack(tp))
4072 tcp_sack_reset(&tp->rx_opt);
4073 sk_stream_mem_reclaim(sk);
4074 }
4075
4076 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4077 return 0;
4078
4079 /* If we are really being abused, tell the caller to silently
4080 * drop receive data on the floor. It will get retransmitted
4081 * and hopefully then we'll have sufficient space.
4082 */
4083 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4084
4085 /* Massive buffer overcommit. */
4086 tp->pred_flags = 0;
4087 return -1;
4088 }
4089
4090
4091 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4092 * As additional protections, we do not touch cwnd in retransmission phases,
4093 * and if application hit its sndbuf limit recently.
4094 */
4095 void tcp_cwnd_application_limited(struct sock *sk)
4096 {
4097 struct tcp_sock *tp = tcp_sk(sk);
4098
4099 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4100 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4101 /* Limited by application or receiver window. */
4102 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4103 u32 win_used = max(tp->snd_cwnd_used, init_win);
4104 if (win_used < tp->snd_cwnd) {
4105 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4106 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4107 }
4108 tp->snd_cwnd_used = 0;
4109 }
4110 tp->snd_cwnd_stamp = tcp_time_stamp;
4111 }
4112
4113 static int tcp_should_expand_sndbuf(struct sock *sk)
4114 {
4115 struct tcp_sock *tp = tcp_sk(sk);
4116
4117 /* If the user specified a specific send buffer setting, do
4118 * not modify it.
4119 */
4120 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4121 return 0;
4122
4123 /* If we are under global TCP memory pressure, do not expand. */
4124 if (tcp_memory_pressure)
4125 return 0;
4126
4127 /* If we are under soft global TCP memory pressure, do not expand. */
4128 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4129 return 0;
4130
4131 /* If we filled the congestion window, do not expand. */
4132 if (tp->packets_out >= tp->snd_cwnd)
4133 return 0;
4134
4135 return 1;
4136 }
4137
4138 /* When incoming ACK allowed to free some skb from write_queue,
4139 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4140 * on the exit from tcp input handler.
4141 *
4142 * PROBLEM: sndbuf expansion does not work well with largesend.
4143 */
4144 static void tcp_new_space(struct sock *sk)
4145 {
4146 struct tcp_sock *tp = tcp_sk(sk);
4147
4148 if (tcp_should_expand_sndbuf(sk)) {
4149 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4150 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4151 demanded = max_t(unsigned int, tp->snd_cwnd,
4152 tp->reordering + 1);
4153 sndmem *= 2*demanded;
4154 if (sndmem > sk->sk_sndbuf)
4155 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4156 tp->snd_cwnd_stamp = tcp_time_stamp;
4157 }
4158
4159 sk->sk_write_space(sk);
4160 }
4161
4162 static void tcp_check_space(struct sock *sk)
4163 {
4164 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4165 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4166 if (sk->sk_socket &&
4167 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4168 tcp_new_space(sk);
4169 }
4170 }
4171
4172 static inline void tcp_data_snd_check(struct sock *sk)
4173 {
4174 tcp_push_pending_frames(sk);
4175 tcp_check_space(sk);
4176 }
4177
4178 /*
4179 * Check if sending an ack is needed.
4180 */
4181 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4182 {
4183 struct tcp_sock *tp = tcp_sk(sk);
4184
4185 /* More than one full frame received... */
4186 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4187 /* ... and right edge of window advances far enough.
4188 * (tcp_recvmsg() will send ACK otherwise). Or...
4189 */
4190 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4191 /* We ACK each frame or... */
4192 tcp_in_quickack_mode(sk) ||
4193 /* We have out of order data. */
4194 (ofo_possible &&
4195 skb_peek(&tp->out_of_order_queue))) {
4196 /* Then ack it now */
4197 tcp_send_ack(sk);
4198 } else {
4199 /* Else, send delayed ack. */
4200 tcp_send_delayed_ack(sk);
4201 }
4202 }
4203
4204 static inline void tcp_ack_snd_check(struct sock *sk)
4205 {
4206 if (!inet_csk_ack_scheduled(sk)) {
4207 /* We sent a data segment already. */
4208 return;
4209 }
4210 __tcp_ack_snd_check(sk, 1);
4211 }
4212
4213 /*
4214 * This routine is only called when we have urgent data
4215 * signaled. Its the 'slow' part of tcp_urg. It could be
4216 * moved inline now as tcp_urg is only called from one
4217 * place. We handle URGent data wrong. We have to - as
4218 * BSD still doesn't use the correction from RFC961.
4219 * For 1003.1g we should support a new option TCP_STDURG to permit
4220 * either form (or just set the sysctl tcp_stdurg).
4221 */
4222
4223 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4224 {
4225 struct tcp_sock *tp = tcp_sk(sk);
4226 u32 ptr = ntohs(th->urg_ptr);
4227
4228 if (ptr && !sysctl_tcp_stdurg)
4229 ptr--;
4230 ptr += ntohl(th->seq);
4231
4232 /* Ignore urgent data that we've already seen and read. */
4233 if (after(tp->copied_seq, ptr))
4234 return;
4235
4236 /* Do not replay urg ptr.
4237 *
4238 * NOTE: interesting situation not covered by specs.
4239 * Misbehaving sender may send urg ptr, pointing to segment,
4240 * which we already have in ofo queue. We are not able to fetch
4241 * such data and will stay in TCP_URG_NOTYET until will be eaten
4242 * by recvmsg(). Seems, we are not obliged to handle such wicked
4243 * situations. But it is worth to think about possibility of some
4244 * DoSes using some hypothetical application level deadlock.
4245 */
4246 if (before(ptr, tp->rcv_nxt))
4247 return;
4248
4249 /* Do we already have a newer (or duplicate) urgent pointer? */
4250 if (tp->urg_data && !after(ptr, tp->urg_seq))
4251 return;
4252
4253 /* Tell the world about our new urgent pointer. */
4254 sk_send_sigurg(sk);
4255
4256 /* We may be adding urgent data when the last byte read was
4257 * urgent. To do this requires some care. We cannot just ignore
4258 * tp->copied_seq since we would read the last urgent byte again
4259 * as data, nor can we alter copied_seq until this data arrives
4260 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4261 *
4262 * NOTE. Double Dutch. Rendering to plain English: author of comment
4263 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4264 * and expect that both A and B disappear from stream. This is _wrong_.
4265 * Though this happens in BSD with high probability, this is occasional.
4266 * Any application relying on this is buggy. Note also, that fix "works"
4267 * only in this artificial test. Insert some normal data between A and B and we will
4268 * decline of BSD again. Verdict: it is better to remove to trap
4269 * buggy users.
4270 */
4271 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4272 !sock_flag(sk, SOCK_URGINLINE) &&
4273 tp->copied_seq != tp->rcv_nxt) {
4274 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4275 tp->copied_seq++;
4276 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4277 __skb_unlink(skb, &sk->sk_receive_queue);
4278 __kfree_skb(skb);
4279 }
4280 }
4281
4282 tp->urg_data = TCP_URG_NOTYET;
4283 tp->urg_seq = ptr;
4284
4285 /* Disable header prediction. */
4286 tp->pred_flags = 0;
4287 }
4288
4289 /* This is the 'fast' part of urgent handling. */
4290 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4291 {
4292 struct tcp_sock *tp = tcp_sk(sk);
4293
4294 /* Check if we get a new urgent pointer - normally not. */
4295 if (th->urg)
4296 tcp_check_urg(sk,th);
4297
4298 /* Do we wait for any urgent data? - normally not... */
4299 if (tp->urg_data == TCP_URG_NOTYET) {
4300 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4301 th->syn;
4302
4303 /* Is the urgent pointer pointing into this packet? */
4304 if (ptr < skb->len) {
4305 u8 tmp;
4306 if (skb_copy_bits(skb, ptr, &tmp, 1))
4307 BUG();
4308 tp->urg_data = TCP_URG_VALID | tmp;
4309 if (!sock_flag(sk, SOCK_DEAD))
4310 sk->sk_data_ready(sk, 0);
4311 }
4312 }
4313 }
4314
4315 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4316 {
4317 struct tcp_sock *tp = tcp_sk(sk);
4318 int chunk = skb->len - hlen;
4319 int err;
4320
4321 local_bh_enable();
4322 if (skb_csum_unnecessary(skb))
4323 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4324 else
4325 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4326 tp->ucopy.iov);
4327
4328 if (!err) {
4329 tp->ucopy.len -= chunk;
4330 tp->copied_seq += chunk;
4331 tcp_rcv_space_adjust(sk);
4332 }
4333
4334 local_bh_disable();
4335 return err;
4336 }
4337
4338 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4339 {
4340 __sum16 result;
4341
4342 if (sock_owned_by_user(sk)) {
4343 local_bh_enable();
4344 result = __tcp_checksum_complete(skb);
4345 local_bh_disable();
4346 } else {
4347 result = __tcp_checksum_complete(skb);
4348 }
4349 return result;
4350 }
4351
4352 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4353 {
4354 return !skb_csum_unnecessary(skb) &&
4355 __tcp_checksum_complete_user(sk, skb);
4356 }
4357
4358 #ifdef CONFIG_NET_DMA
4359 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4360 {
4361 struct tcp_sock *tp = tcp_sk(sk);
4362 int chunk = skb->len - hlen;
4363 int dma_cookie;
4364 int copied_early = 0;
4365
4366 if (tp->ucopy.wakeup)
4367 return 0;
4368
4369 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4370 tp->ucopy.dma_chan = get_softnet_dma();
4371
4372 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4373
4374 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4375 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4376
4377 if (dma_cookie < 0)
4378 goto out;
4379
4380 tp->ucopy.dma_cookie = dma_cookie;
4381 copied_early = 1;
4382
4383 tp->ucopy.len -= chunk;
4384 tp->copied_seq += chunk;
4385 tcp_rcv_space_adjust(sk);
4386
4387 if ((tp->ucopy.len == 0) ||
4388 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4389 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4390 tp->ucopy.wakeup = 1;
4391 sk->sk_data_ready(sk, 0);
4392 }
4393 } else if (chunk > 0) {
4394 tp->ucopy.wakeup = 1;
4395 sk->sk_data_ready(sk, 0);
4396 }
4397 out:
4398 return copied_early;
4399 }
4400 #endif /* CONFIG_NET_DMA */
4401
4402 /*
4403 * TCP receive function for the ESTABLISHED state.
4404 *
4405 * It is split into a fast path and a slow path. The fast path is
4406 * disabled when:
4407 * - A zero window was announced from us - zero window probing
4408 * is only handled properly in the slow path.
4409 * - Out of order segments arrived.
4410 * - Urgent data is expected.
4411 * - There is no buffer space left
4412 * - Unexpected TCP flags/window values/header lengths are received
4413 * (detected by checking the TCP header against pred_flags)
4414 * - Data is sent in both directions. Fast path only supports pure senders
4415 * or pure receivers (this means either the sequence number or the ack
4416 * value must stay constant)
4417 * - Unexpected TCP option.
4418 *
4419 * When these conditions are not satisfied it drops into a standard
4420 * receive procedure patterned after RFC793 to handle all cases.
4421 * The first three cases are guaranteed by proper pred_flags setting,
4422 * the rest is checked inline. Fast processing is turned on in
4423 * tcp_data_queue when everything is OK.
4424 */
4425 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4426 struct tcphdr *th, unsigned len)
4427 {
4428 struct tcp_sock *tp = tcp_sk(sk);
4429
4430 /*
4431 * Header prediction.
4432 * The code loosely follows the one in the famous
4433 * "30 instruction TCP receive" Van Jacobson mail.
4434 *
4435 * Van's trick is to deposit buffers into socket queue
4436 * on a device interrupt, to call tcp_recv function
4437 * on the receive process context and checksum and copy
4438 * the buffer to user space. smart...
4439 *
4440 * Our current scheme is not silly either but we take the
4441 * extra cost of the net_bh soft interrupt processing...
4442 * We do checksum and copy also but from device to kernel.
4443 */
4444
4445 tp->rx_opt.saw_tstamp = 0;
4446
4447 /* pred_flags is 0xS?10 << 16 + snd_wnd
4448 * if header_prediction is to be made
4449 * 'S' will always be tp->tcp_header_len >> 2
4450 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4451 * turn it off (when there are holes in the receive
4452 * space for instance)
4453 * PSH flag is ignored.
4454 */
4455
4456 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4457 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4458 int tcp_header_len = tp->tcp_header_len;
4459
4460 /* Timestamp header prediction: tcp_header_len
4461 * is automatically equal to th->doff*4 due to pred_flags
4462 * match.
4463 */
4464
4465 /* Check timestamp */
4466 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4467 __be32 *ptr = (__be32 *)(th + 1);
4468
4469 /* No? Slow path! */
4470 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4471 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4472 goto slow_path;
4473
4474 tp->rx_opt.saw_tstamp = 1;
4475 ++ptr;
4476 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4477 ++ptr;
4478 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4479
4480 /* If PAWS failed, check it more carefully in slow path */
4481 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4482 goto slow_path;
4483
4484 /* DO NOT update ts_recent here, if checksum fails
4485 * and timestamp was corrupted part, it will result
4486 * in a hung connection since we will drop all
4487 * future packets due to the PAWS test.
4488 */
4489 }
4490
4491 if (len <= tcp_header_len) {
4492 /* Bulk data transfer: sender */
4493 if (len == tcp_header_len) {
4494 /* Predicted packet is in window by definition.
4495 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4496 * Hence, check seq<=rcv_wup reduces to:
4497 */
4498 if (tcp_header_len ==
4499 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4500 tp->rcv_nxt == tp->rcv_wup)
4501 tcp_store_ts_recent(tp);
4502
4503 /* We know that such packets are checksummed
4504 * on entry.
4505 */
4506 tcp_ack(sk, skb, 0);
4507 __kfree_skb(skb);
4508 tcp_data_snd_check(sk);
4509 return 0;
4510 } else { /* Header too small */
4511 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4512 goto discard;
4513 }
4514 } else {
4515 int eaten = 0;
4516 int copied_early = 0;
4517
4518 if (tp->copied_seq == tp->rcv_nxt &&
4519 len - tcp_header_len <= tp->ucopy.len) {
4520 #ifdef CONFIG_NET_DMA
4521 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4522 copied_early = 1;
4523 eaten = 1;
4524 }
4525 #endif
4526 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4527 __set_current_state(TASK_RUNNING);
4528
4529 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4530 eaten = 1;
4531 }
4532 if (eaten) {
4533 /* Predicted packet is in window by definition.
4534 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4535 * Hence, check seq<=rcv_wup reduces to:
4536 */
4537 if (tcp_header_len ==
4538 (sizeof(struct tcphdr) +
4539 TCPOLEN_TSTAMP_ALIGNED) &&
4540 tp->rcv_nxt == tp->rcv_wup)
4541 tcp_store_ts_recent(tp);
4542
4543 tcp_rcv_rtt_measure_ts(sk, skb);
4544
4545 __skb_pull(skb, tcp_header_len);
4546 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4547 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4548 }
4549 if (copied_early)
4550 tcp_cleanup_rbuf(sk, skb->len);
4551 }
4552 if (!eaten) {
4553 if (tcp_checksum_complete_user(sk, skb))
4554 goto csum_error;
4555
4556 /* Predicted packet is in window by definition.
4557 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4558 * Hence, check seq<=rcv_wup reduces to:
4559 */
4560 if (tcp_header_len ==
4561 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4562 tp->rcv_nxt == tp->rcv_wup)
4563 tcp_store_ts_recent(tp);
4564
4565 tcp_rcv_rtt_measure_ts(sk, skb);
4566
4567 if ((int)skb->truesize > sk->sk_forward_alloc)
4568 goto step5;
4569
4570 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4571
4572 /* Bulk data transfer: receiver */
4573 __skb_pull(skb,tcp_header_len);
4574 __skb_queue_tail(&sk->sk_receive_queue, skb);
4575 sk_stream_set_owner_r(skb, sk);
4576 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4577 }
4578
4579 tcp_event_data_recv(sk, skb);
4580
4581 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4582 /* Well, only one small jumplet in fast path... */
4583 tcp_ack(sk, skb, FLAG_DATA);
4584 tcp_data_snd_check(sk);
4585 if (!inet_csk_ack_scheduled(sk))
4586 goto no_ack;
4587 }
4588
4589 __tcp_ack_snd_check(sk, 0);
4590 no_ack:
4591 #ifdef CONFIG_NET_DMA
4592 if (copied_early)
4593 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4594 else
4595 #endif
4596 if (eaten)
4597 __kfree_skb(skb);
4598 else
4599 sk->sk_data_ready(sk, 0);
4600 return 0;
4601 }
4602 }
4603
4604 slow_path:
4605 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4606 goto csum_error;
4607
4608 /*
4609 * RFC1323: H1. Apply PAWS check first.
4610 */
4611 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4612 tcp_paws_discard(sk, skb)) {
4613 if (!th->rst) {
4614 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4615 tcp_send_dupack(sk, skb);
4616 goto discard;
4617 }
4618 /* Resets are accepted even if PAWS failed.
4619
4620 ts_recent update must be made after we are sure
4621 that the packet is in window.
4622 */
4623 }
4624
4625 /*
4626 * Standard slow path.
4627 */
4628
4629 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4630 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4631 * (RST) segments are validated by checking their SEQ-fields."
4632 * And page 69: "If an incoming segment is not acceptable,
4633 * an acknowledgment should be sent in reply (unless the RST bit
4634 * is set, if so drop the segment and return)".
4635 */
4636 if (!th->rst)
4637 tcp_send_dupack(sk, skb);
4638 goto discard;
4639 }
4640
4641 if (th->rst) {
4642 tcp_reset(sk);
4643 goto discard;
4644 }
4645
4646 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4647
4648 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4649 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4650 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4651 tcp_reset(sk);
4652 return 1;
4653 }
4654
4655 step5:
4656 if (th->ack)
4657 tcp_ack(sk, skb, FLAG_SLOWPATH);
4658
4659 tcp_rcv_rtt_measure_ts(sk, skb);
4660
4661 /* Process urgent data. */
4662 tcp_urg(sk, skb, th);
4663
4664 /* step 7: process the segment text */
4665 tcp_data_queue(sk, skb);
4666
4667 tcp_data_snd_check(sk);
4668 tcp_ack_snd_check(sk);
4669 return 0;
4670
4671 csum_error:
4672 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4673
4674 discard:
4675 __kfree_skb(skb);
4676 return 0;
4677 }
4678
4679 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4680 struct tcphdr *th, unsigned len)
4681 {
4682 struct tcp_sock *tp = tcp_sk(sk);
4683 struct inet_connection_sock *icsk = inet_csk(sk);
4684 int saved_clamp = tp->rx_opt.mss_clamp;
4685
4686 tcp_parse_options(skb, &tp->rx_opt, 0);
4687
4688 if (th->ack) {
4689 /* rfc793:
4690 * "If the state is SYN-SENT then
4691 * first check the ACK bit
4692 * If the ACK bit is set
4693 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4694 * a reset (unless the RST bit is set, if so drop
4695 * the segment and return)"
4696 *
4697 * We do not send data with SYN, so that RFC-correct
4698 * test reduces to:
4699 */
4700 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4701 goto reset_and_undo;
4702
4703 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4704 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4705 tcp_time_stamp)) {
4706 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4707 goto reset_and_undo;
4708 }
4709
4710 /* Now ACK is acceptable.
4711 *
4712 * "If the RST bit is set
4713 * If the ACK was acceptable then signal the user "error:
4714 * connection reset", drop the segment, enter CLOSED state,
4715 * delete TCB, and return."
4716 */
4717
4718 if (th->rst) {
4719 tcp_reset(sk);
4720 goto discard;
4721 }
4722
4723 /* rfc793:
4724 * "fifth, if neither of the SYN or RST bits is set then
4725 * drop the segment and return."
4726 *
4727 * See note below!
4728 * --ANK(990513)
4729 */
4730 if (!th->syn)
4731 goto discard_and_undo;
4732
4733 /* rfc793:
4734 * "If the SYN bit is on ...
4735 * are acceptable then ...
4736 * (our SYN has been ACKed), change the connection
4737 * state to ESTABLISHED..."
4738 */
4739
4740 TCP_ECN_rcv_synack(tp, th);
4741
4742 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4743 tcp_ack(sk, skb, FLAG_SLOWPATH);
4744
4745 /* Ok.. it's good. Set up sequence numbers and
4746 * move to established.
4747 */
4748 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4749 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4750
4751 /* RFC1323: The window in SYN & SYN/ACK segments is
4752 * never scaled.
4753 */
4754 tp->snd_wnd = ntohs(th->window);
4755 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4756
4757 if (!tp->rx_opt.wscale_ok) {
4758 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4759 tp->window_clamp = min(tp->window_clamp, 65535U);
4760 }
4761
4762 if (tp->rx_opt.saw_tstamp) {
4763 tp->rx_opt.tstamp_ok = 1;
4764 tp->tcp_header_len =
4765 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4766 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4767 tcp_store_ts_recent(tp);
4768 } else {
4769 tp->tcp_header_len = sizeof(struct tcphdr);
4770 }
4771
4772 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4773 tcp_enable_fack(tp);
4774
4775 tcp_mtup_init(sk);
4776 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4777 tcp_initialize_rcv_mss(sk);
4778
4779 /* Remember, tcp_poll() does not lock socket!
4780 * Change state from SYN-SENT only after copied_seq
4781 * is initialized. */
4782 tp->copied_seq = tp->rcv_nxt;
4783 smp_mb();
4784 tcp_set_state(sk, TCP_ESTABLISHED);
4785
4786 security_inet_conn_established(sk, skb);
4787
4788 /* Make sure socket is routed, for correct metrics. */
4789 icsk->icsk_af_ops->rebuild_header(sk);
4790
4791 tcp_init_metrics(sk);
4792
4793 tcp_init_congestion_control(sk);
4794
4795 /* Prevent spurious tcp_cwnd_restart() on first data
4796 * packet.
4797 */
4798 tp->lsndtime = tcp_time_stamp;
4799
4800 tcp_init_buffer_space(sk);
4801
4802 if (sock_flag(sk, SOCK_KEEPOPEN))
4803 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4804
4805 if (!tp->rx_opt.snd_wscale)
4806 __tcp_fast_path_on(tp, tp->snd_wnd);
4807 else
4808 tp->pred_flags = 0;
4809
4810 if (!sock_flag(sk, SOCK_DEAD)) {
4811 sk->sk_state_change(sk);
4812 sk_wake_async(sk, 0, POLL_OUT);
4813 }
4814
4815 if (sk->sk_write_pending ||
4816 icsk->icsk_accept_queue.rskq_defer_accept ||
4817 icsk->icsk_ack.pingpong) {
4818 /* Save one ACK. Data will be ready after
4819 * several ticks, if write_pending is set.
4820 *
4821 * It may be deleted, but with this feature tcpdumps
4822 * look so _wonderfully_ clever, that I was not able
4823 * to stand against the temptation 8) --ANK
4824 */
4825 inet_csk_schedule_ack(sk);
4826 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4827 icsk->icsk_ack.ato = TCP_ATO_MIN;
4828 tcp_incr_quickack(sk);
4829 tcp_enter_quickack_mode(sk);
4830 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4831 TCP_DELACK_MAX, TCP_RTO_MAX);
4832
4833 discard:
4834 __kfree_skb(skb);
4835 return 0;
4836 } else {
4837 tcp_send_ack(sk);
4838 }
4839 return -1;
4840 }
4841
4842 /* No ACK in the segment */
4843
4844 if (th->rst) {
4845 /* rfc793:
4846 * "If the RST bit is set
4847 *
4848 * Otherwise (no ACK) drop the segment and return."
4849 */
4850
4851 goto discard_and_undo;
4852 }
4853
4854 /* PAWS check. */
4855 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4856 goto discard_and_undo;
4857
4858 if (th->syn) {
4859 /* We see SYN without ACK. It is attempt of
4860 * simultaneous connect with crossed SYNs.
4861 * Particularly, it can be connect to self.
4862 */
4863 tcp_set_state(sk, TCP_SYN_RECV);
4864
4865 if (tp->rx_opt.saw_tstamp) {
4866 tp->rx_opt.tstamp_ok = 1;
4867 tcp_store_ts_recent(tp);
4868 tp->tcp_header_len =
4869 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4870 } else {
4871 tp->tcp_header_len = sizeof(struct tcphdr);
4872 }
4873
4874 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4875 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4876
4877 /* RFC1323: The window in SYN & SYN/ACK segments is
4878 * never scaled.
4879 */
4880 tp->snd_wnd = ntohs(th->window);
4881 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4882 tp->max_window = tp->snd_wnd;
4883
4884 TCP_ECN_rcv_syn(tp, th);
4885
4886 tcp_mtup_init(sk);
4887 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4888 tcp_initialize_rcv_mss(sk);
4889
4890
4891 tcp_send_synack(sk);
4892 #if 0
4893 /* Note, we could accept data and URG from this segment.
4894 * There are no obstacles to make this.
4895 *
4896 * However, if we ignore data in ACKless segments sometimes,
4897 * we have no reasons to accept it sometimes.
4898 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4899 * is not flawless. So, discard packet for sanity.
4900 * Uncomment this return to process the data.
4901 */
4902 return -1;
4903 #else
4904 goto discard;
4905 #endif
4906 }
4907 /* "fifth, if neither of the SYN or RST bits is set then
4908 * drop the segment and return."
4909 */
4910
4911 discard_and_undo:
4912 tcp_clear_options(&tp->rx_opt);
4913 tp->rx_opt.mss_clamp = saved_clamp;
4914 goto discard;
4915
4916 reset_and_undo:
4917 tcp_clear_options(&tp->rx_opt);
4918 tp->rx_opt.mss_clamp = saved_clamp;
4919 return 1;
4920 }
4921
4922
4923 /*
4924 * This function implements the receiving procedure of RFC 793 for
4925 * all states except ESTABLISHED and TIME_WAIT.
4926 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4927 * address independent.
4928 */
4929
4930 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4931 struct tcphdr *th, unsigned len)
4932 {
4933 struct tcp_sock *tp = tcp_sk(sk);
4934 struct inet_connection_sock *icsk = inet_csk(sk);
4935 int queued = 0;
4936
4937 tp->rx_opt.saw_tstamp = 0;
4938
4939 switch (sk->sk_state) {
4940 case TCP_CLOSE:
4941 goto discard;
4942
4943 case TCP_LISTEN:
4944 if (th->ack)
4945 return 1;
4946
4947 if (th->rst)
4948 goto discard;
4949
4950 if (th->syn) {
4951 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4952 return 1;
4953
4954 /* Now we have several options: In theory there is
4955 * nothing else in the frame. KA9Q has an option to
4956 * send data with the syn, BSD accepts data with the
4957 * syn up to the [to be] advertised window and
4958 * Solaris 2.1 gives you a protocol error. For now
4959 * we just ignore it, that fits the spec precisely
4960 * and avoids incompatibilities. It would be nice in
4961 * future to drop through and process the data.
4962 *
4963 * Now that TTCP is starting to be used we ought to
4964 * queue this data.
4965 * But, this leaves one open to an easy denial of
4966 * service attack, and SYN cookies can't defend
4967 * against this problem. So, we drop the data
4968 * in the interest of security over speed unless
4969 * it's still in use.
4970 */
4971 kfree_skb(skb);
4972 return 0;
4973 }
4974 goto discard;
4975
4976 case TCP_SYN_SENT:
4977 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4978 if (queued >= 0)
4979 return queued;
4980
4981 /* Do step6 onward by hand. */
4982 tcp_urg(sk, skb, th);
4983 __kfree_skb(skb);
4984 tcp_data_snd_check(sk);
4985 return 0;
4986 }
4987
4988 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4989 tcp_paws_discard(sk, skb)) {
4990 if (!th->rst) {
4991 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4992 tcp_send_dupack(sk, skb);
4993 goto discard;
4994 }
4995 /* Reset is accepted even if it did not pass PAWS. */
4996 }
4997
4998 /* step 1: check sequence number */
4999 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5000 if (!th->rst)
5001 tcp_send_dupack(sk, skb);
5002 goto discard;
5003 }
5004
5005 /* step 2: check RST bit */
5006 if (th->rst) {
5007 tcp_reset(sk);
5008 goto discard;
5009 }
5010
5011 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5012
5013 /* step 3: check security and precedence [ignored] */
5014
5015 /* step 4:
5016 *
5017 * Check for a SYN in window.
5018 */
5019 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5020 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5021 tcp_reset(sk);
5022 return 1;
5023 }
5024
5025 /* step 5: check the ACK field */
5026 if (th->ack) {
5027 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5028
5029 switch (sk->sk_state) {
5030 case TCP_SYN_RECV:
5031 if (acceptable) {
5032 tp->copied_seq = tp->rcv_nxt;
5033 smp_mb();
5034 tcp_set_state(sk, TCP_ESTABLISHED);
5035 sk->sk_state_change(sk);
5036
5037 /* Note, that this wakeup is only for marginal
5038 * crossed SYN case. Passively open sockets
5039 * are not waked up, because sk->sk_sleep ==
5040 * NULL and sk->sk_socket == NULL.
5041 */
5042 if (sk->sk_socket) {
5043 sk_wake_async(sk,0,POLL_OUT);
5044 }
5045
5046 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5047 tp->snd_wnd = ntohs(th->window) <<
5048 tp->rx_opt.snd_wscale;
5049 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5050 TCP_SKB_CB(skb)->seq);
5051
5052 /* tcp_ack considers this ACK as duplicate
5053 * and does not calculate rtt.
5054 * Fix it at least with timestamps.
5055 */
5056 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5057 !tp->srtt)
5058 tcp_ack_saw_tstamp(sk, 0);
5059
5060 if (tp->rx_opt.tstamp_ok)
5061 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5062
5063 /* Make sure socket is routed, for
5064 * correct metrics.
5065 */
5066 icsk->icsk_af_ops->rebuild_header(sk);
5067
5068 tcp_init_metrics(sk);
5069
5070 tcp_init_congestion_control(sk);
5071
5072 /* Prevent spurious tcp_cwnd_restart() on
5073 * first data packet.
5074 */
5075 tp->lsndtime = tcp_time_stamp;
5076
5077 tcp_mtup_init(sk);
5078 tcp_initialize_rcv_mss(sk);
5079 tcp_init_buffer_space(sk);
5080 tcp_fast_path_on(tp);
5081 } else {
5082 return 1;
5083 }
5084 break;
5085
5086 case TCP_FIN_WAIT1:
5087 if (tp->snd_una == tp->write_seq) {
5088 tcp_set_state(sk, TCP_FIN_WAIT2);
5089 sk->sk_shutdown |= SEND_SHUTDOWN;
5090 dst_confirm(sk->sk_dst_cache);
5091
5092 if (!sock_flag(sk, SOCK_DEAD))
5093 /* Wake up lingering close() */
5094 sk->sk_state_change(sk);
5095 else {
5096 int tmo;
5097
5098 if (tp->linger2 < 0 ||
5099 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5100 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5101 tcp_done(sk);
5102 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5103 return 1;
5104 }
5105
5106 tmo = tcp_fin_time(sk);
5107 if (tmo > TCP_TIMEWAIT_LEN) {
5108 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5109 } else if (th->fin || sock_owned_by_user(sk)) {
5110 /* Bad case. We could lose such FIN otherwise.
5111 * It is not a big problem, but it looks confusing
5112 * and not so rare event. We still can lose it now,
5113 * if it spins in bh_lock_sock(), but it is really
5114 * marginal case.
5115 */
5116 inet_csk_reset_keepalive_timer(sk, tmo);
5117 } else {
5118 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5119 goto discard;
5120 }
5121 }
5122 }
5123 break;
5124
5125 case TCP_CLOSING:
5126 if (tp->snd_una == tp->write_seq) {
5127 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5128 goto discard;
5129 }
5130 break;
5131
5132 case TCP_LAST_ACK:
5133 if (tp->snd_una == tp->write_seq) {
5134 tcp_update_metrics(sk);
5135 tcp_done(sk);
5136 goto discard;
5137 }
5138 break;
5139 }
5140 } else
5141 goto discard;
5142
5143 /* step 6: check the URG bit */
5144 tcp_urg(sk, skb, th);
5145
5146 /* step 7: process the segment text */
5147 switch (sk->sk_state) {
5148 case TCP_CLOSE_WAIT:
5149 case TCP_CLOSING:
5150 case TCP_LAST_ACK:
5151 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5152 break;
5153 case TCP_FIN_WAIT1:
5154 case TCP_FIN_WAIT2:
5155 /* RFC 793 says to queue data in these states,
5156 * RFC 1122 says we MUST send a reset.
5157 * BSD 4.4 also does reset.
5158 */
5159 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5160 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5161 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5162 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5163 tcp_reset(sk);
5164 return 1;
5165 }
5166 }
5167 /* Fall through */
5168 case TCP_ESTABLISHED:
5169 tcp_data_queue(sk, skb);
5170 queued = 1;
5171 break;
5172 }
5173
5174 /* tcp_data could move socket to TIME-WAIT */
5175 if (sk->sk_state != TCP_CLOSE) {
5176 tcp_data_snd_check(sk);
5177 tcp_ack_snd_check(sk);
5178 }
5179
5180 if (!queued) {
5181 discard:
5182 __kfree_skb(skb);
5183 }
5184 return 0;
5185 }
5186
5187 EXPORT_SYMBOL(sysctl_tcp_ecn);
5188 EXPORT_SYMBOL(sysctl_tcp_reordering);
5189 EXPORT_SYMBOL(tcp_parse_options);
5190 EXPORT_SYMBOL(tcp_rcv_established);
5191 EXPORT_SYMBOL(tcp_rcv_state_process);
5192 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.207026 seconds and 6 git commands to generate.