[TCP]: Make sure write_queue_from does not begin with NULL ptr
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
108
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120 /* Adapt the MSS value used to make delayed ack decision to the
121 * real world.
122 */
123 static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
125 {
126 struct inet_connection_sock *icsk = inet_csk(sk);
127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 unsigned int len;
129
130 icsk->icsk_ack.last_seg_size = 0;
131
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
134 */
135 len = skb_shinfo(skb)->gso_size ?: skb->len;
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
141 *
142 * "len" is invariant segment length, including TCP header.
143 */
144 len += skb->data - skb_transport_header(skb);
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
150 */
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
156 */
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
159 if (len == lss) {
160 icsk->icsk_ack.rcv_mss = len;
161 return;
162 }
163 }
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175 if (quickacks==0)
176 quickacks=2;
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
226 }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
257
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290 struct tcp_sock *tp = tcp_sk(sk);
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
294
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299 truesize >>= 1;
300 window >>= 1;
301 }
302 return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk,
306 struct sk_buff *skb)
307 {
308 struct tcp_sock *tp = tcp_sk(sk);
309
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
322 incr = __tcp_grow_window(sk, skb);
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326 inet_csk(sk)->icsk_ack.quick |= 1;
327 }
328 }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338 /* Try to select rcvbuf so that 4 mss-sized segments
339 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 */
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349 * established state.
350 */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
355
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
360
361 tp->rcvq_space.space = tp->rcv_wnd;
362
363 maxwin = tcp_full_space(sk);
364
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
367
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
372 }
373
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387 struct tcp_sock *tp = tcp_sk(sk);
388 struct inet_connection_sock *icsk = inet_csk(sk);
389
390 icsk->icsk_ack.quick = 0;
391
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
398 }
399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401 }
402
403
404 /* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
449 * non-timestamp case, we do not smooth things out
450 * else with timestamps disabled convergence takes too
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
459 /* No previous measure. */
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
475 1);
476
477 new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
480 }
481
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483 {
484 struct tcp_sock *tp = tcp_sk(sk);
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489 }
490
491 /*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495 void tcp_rcv_space_adjust(struct sock *sk)
496 {
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
500
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
503
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
508
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511 space = max(tp->rcvq_space.space, space);
512
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
515
516 tp->rcvq_space.space = space;
517
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520 int new_clamp = space;
521
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
525 */
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
537
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
540 }
541 }
542 }
543
544 new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
547 }
548
549 /* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
558 */
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560 {
561 struct tcp_sock *tp = tcp_sk(sk);
562 struct inet_connection_sock *icsk = inet_csk(sk);
563 u32 now;
564
565 inet_csk_schedule_ack(sk);
566
567 tcp_measure_rcv_mss(sk, skb);
568
569 tcp_rcv_rtt_measure(tp);
570
571 now = tcp_time_stamp;
572
573 if (!icsk->icsk_ack.ato) {
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
576 */
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
579 } else {
580 int m = now - icsk->icsk_ack.lrcvtime;
581
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
590 /* Too long gap. Apparently sender failed to
591 * restart window, so that we send ACKs quickly.
592 */
593 tcp_incr_quickack(sk);
594 sk_stream_mem_reclaim(sk);
595 }
596 }
597 icsk->icsk_ack.lrcvtime = now;
598
599 TCP_ECN_check_ce(tp, skb);
600
601 if (skb->len >= 128)
602 tcp_grow_window(sk, skb);
603 }
604
605 static u32 tcp_rto_min(struct sock *sk)
606 {
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
609
610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
613 }
614
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625 {
626 struct tcp_sock *tp = tcp_sk(sk);
627 long m = mrtt; /* RTT */
628
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
632 * This is designed to be as fast as possible
633 * m stands for "measurement".
634 *
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
637 *
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
640 * too slowly, when it should be increased quickly, decrease too quickly
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
644 */
645 if (m == 0)
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
660 */
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 }
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
671 }
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
676 tp->mdev_max = tcp_rto_min(sk);
677 }
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683 tp->rtt_seq = tp->snd_nxt;
684 }
685 }
686
687 /* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
690 static inline void tcp_set_rto(struct sock *sk)
691 {
692 const struct tcp_sock *tp = tcp_sk(sk);
693 /* Old crap is replaced with new one. 8)
694 *
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
701 * ACKs in some circumstances.
702 */
703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
708 * with correct one. It is exactly, which we pretend to do.
709 */
710 }
711
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
715 static inline void tcp_bound_rto(struct sock *sk)
716 {
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719 }
720
721 /* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725 void tcp_update_metrics(struct sock *sk)
726 {
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
729
730 if (sysctl_tcp_nometrics_save)
731 return;
732
733 dst_confirm(dst);
734
735 if (dst && (dst->flags&DST_HOST)) {
736 const struct inet_connection_sock *icsk = inet_csk(sk);
737 int m;
738
739 if (icsk->icsk_backoff || !tp->srtt) {
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
743 */
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
747 }
748
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
760 }
761
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
765
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
770
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 }
777
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788 icsk->icsk_ca_state == TCP_CA_Open) {
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
798 */
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 }
812 }
813 }
814
815 /* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
823 */
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 {
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd) {
829 if (tp->mss_cache > 1460)
830 cwnd = 2;
831 else
832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833 }
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840 struct tcp_sock *tp = tcp_sk(sk);
841 const struct inet_connection_sock *icsk = inet_csk(sk);
842
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
846 tp->undo_marker = 0;
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
855
856 tcp_set_ca_state(sk, TCP_CA_CWR);
857 }
858 }
859
860 /*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866 tp->rx_opt.sack_ok &= ~2;
867 }
868
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872 tp->rx_opt.sack_ok |= 4;
873 }
874
875 /* Initialize metrics on socket. */
876
877 static void tcp_init_metrics(struct sock *sk)
878 {
879 struct tcp_sock *tp = tcp_sk(sk);
880 struct dst_entry *dst = __sk_dst_get(sk);
881
882 if (dst == NULL)
883 goto reset;
884
885 dst_confirm(dst);
886
887 if (dst_metric_locked(dst, RTAX_CWND))
888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 if (dst_metric(dst, RTAX_SSTHRESH)) {
890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 }
894 if (dst_metric(dst, RTAX_REORDERING) &&
895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896 tcp_disable_fack(tp);
897 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 }
899
900 if (dst_metric(dst, RTAX_RTT) == 0)
901 goto reset;
902
903 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 goto reset;
905
906 /* Initial rtt is determined from SYN,SYN-ACK.
907 * The segment is small and rtt may appear much
908 * less than real one. Use per-dst memory
909 * to make it more realistic.
910 *
911 * A bit of theory. RTT is time passed after "normal" sized packet
912 * is sent until it is ACKed. In normal circumstances sending small
913 * packets force peer to delay ACKs and calculation is correct too.
914 * The algorithm is adaptive and, provided we follow specs, it
915 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 * tricks sort of "quick acks" for time long enough to decrease RTT
917 * to low value, and then abruptly stops to do it and starts to delay
918 * ACKs, wait for troubles.
919 */
920 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 tp->srtt = dst_metric(dst, RTAX_RTT);
922 tp->rtt_seq = tp->snd_nxt;
923 }
924 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
927 }
928 tcp_set_rto(sk);
929 tcp_bound_rto(sk);
930 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931 goto reset;
932 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 tp->snd_cwnd_stamp = tcp_time_stamp;
934 return;
935
936 reset:
937 /* Play conservative. If timestamps are not
938 * supported, TCP will fail to recalculate correct
939 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 */
941 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 tp->srtt = 0;
943 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945 }
946 }
947
948 static void tcp_update_reordering(struct sock *sk, const int metric,
949 const int ts)
950 {
951 struct tcp_sock *tp = tcp_sk(sk);
952 if (metric > tp->reordering) {
953 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955 /* This exciting event is worth to be remembered. 8) */
956 if (ts)
957 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958 else if (tcp_is_reno(tp))
959 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960 else if (tcp_is_fack(tp))
961 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 else
963 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964 #if FASTRETRANS_DEBUG > 1
965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967 tp->reordering,
968 tp->fackets_out,
969 tp->sacked_out,
970 tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972 tcp_disable_fack(tp);
973 }
974 }
975
976 /* This procedure tags the retransmission queue when SACKs arrive.
977 *
978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979 * Packets in queue with these bits set are counted in variables
980 * sacked_out, retrans_out and lost_out, correspondingly.
981 *
982 * Valid combinations are:
983 * Tag InFlight Description
984 * 0 1 - orig segment is in flight.
985 * S 0 - nothing flies, orig reached receiver.
986 * L 0 - nothing flies, orig lost by net.
987 * R 2 - both orig and retransmit are in flight.
988 * L|R 1 - orig is lost, retransmit is in flight.
989 * S|R 1 - orig reached receiver, retrans is still in flight.
990 * (L|S|R is logically valid, it could occur when L|R is sacked,
991 * but it is equivalent to plain S and code short-curcuits it to S.
992 * L|S is logically invalid, it would mean -1 packet in flight 8))
993 *
994 * These 6 states form finite state machine, controlled by the following events:
995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997 * 3. Loss detection event of one of three flavors:
998 * A. Scoreboard estimator decided the packet is lost.
999 * A'. Reno "three dupacks" marks head of queue lost.
1000 * A''. Its FACK modfication, head until snd.fack is lost.
1001 * B. SACK arrives sacking data transmitted after never retransmitted
1002 * hole was sent out.
1003 * C. SACK arrives sacking SND.NXT at the moment, when the
1004 * segment was retransmitted.
1005 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006 *
1007 * It is pleasant to note, that state diagram turns out to be commutative,
1008 * so that we are allowed not to be bothered by order of our actions,
1009 * when multiple events arrive simultaneously. (see the function below).
1010 *
1011 * Reordering detection.
1012 * --------------------
1013 * Reordering metric is maximal distance, which a packet can be displaced
1014 * in packet stream. With SACKs we can estimate it:
1015 *
1016 * 1. SACK fills old hole and the corresponding segment was not
1017 * ever retransmitted -> reordering. Alas, we cannot use it
1018 * when segment was retransmitted.
1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020 * for retransmitted and already SACKed segment -> reordering..
1021 * Both of these heuristics are not used in Loss state, when we cannot
1022 * account for retransmits accurately.
1023 *
1024 * SACK block validation.
1025 * ----------------------
1026 *
1027 * SACK block range validation checks that the received SACK block fits to
1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029 * Note that SND.UNA is not included to the range though being valid because
1030 * it means that the receiver is rather inconsistent with itself reporting
1031 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032 * perfectly valid, however, in light of RFC2018 which explicitly states
1033 * that "SACK block MUST reflect the newest segment. Even if the newest
1034 * segment is going to be discarded ...", not that it looks very clever
1035 * in case of head skb. Due to potentional receiver driven attacks, we
1036 * choose to avoid immediate execution of a walk in write queue due to
1037 * reneging and defer head skb's loss recovery to standard loss recovery
1038 * procedure that will eventually trigger (nothing forbids us doing this).
1039 *
1040 * Implements also blockage to start_seq wrap-around. Problem lies in the
1041 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042 * there's no guarantee that it will be before snd_nxt (n). The problem
1043 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044 * wrap (s_w):
1045 *
1046 * <- outs wnd -> <- wrapzone ->
1047 * u e n u_w e_w s n_w
1048 * | | | | | | |
1049 * |<------------+------+----- TCP seqno space --------------+---------->|
1050 * ...-- <2^31 ->| |<--------...
1051 * ...---- >2^31 ------>| |<--------...
1052 *
1053 * Current code wouldn't be vulnerable but it's better still to discard such
1054 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057 * equal to the ideal case (infinite seqno space without wrap caused issues).
1058 *
1059 * With D-SACK the lower bound is extended to cover sequence space below
1060 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061 * again, D-SACK block must not to go across snd_una (for the same reason as
1062 * for the normal SACK blocks, explained above). But there all simplicity
1063 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064 * fully below undo_marker they do not affect behavior in anyway and can
1065 * therefore be safely ignored. In rare cases (which are more or less
1066 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067 * fragmentation and packet reordering past skb's retransmission. To consider
1068 * them correctly, the acceptable range must be extended even more though
1069 * the exact amount is rather hard to quantify. However, tp->max_window can
1070 * be used as an exaggerated estimate.
1071 */
1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073 u32 start_seq, u32 end_seq)
1074 {
1075 /* Too far in future, or reversed (interpretation is ambiguous) */
1076 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077 return 0;
1078
1079 /* Nasty start_seq wrap-around check (see comments above) */
1080 if (!before(start_seq, tp->snd_nxt))
1081 return 0;
1082
1083 /* In outstanding window? ...This is valid exit for D-SACKs too.
1084 * start_seq == snd_una is non-sensical (see comments above)
1085 */
1086 if (after(start_seq, tp->snd_una))
1087 return 1;
1088
1089 if (!is_dsack || !tp->undo_marker)
1090 return 0;
1091
1092 /* ...Then it's D-SACK, and must reside below snd_una completely */
1093 if (!after(end_seq, tp->snd_una))
1094 return 0;
1095
1096 if (!before(start_seq, tp->undo_marker))
1097 return 1;
1098
1099 /* Too old */
1100 if (!after(end_seq, tp->undo_marker))
1101 return 0;
1102
1103 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1104 * start_seq < undo_marker and end_seq >= undo_marker.
1105 */
1106 return !before(start_seq, end_seq - tp->max_window);
1107 }
1108
1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110 * Event "C". Later note: FACK people cheated me again 8), we have to account
1111 * for reordering! Ugly, but should help.
1112 *
1113 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1114 * less than what is now known to be received by the other end (derived from
1115 * SACK blocks by the caller). Also calculate the lowest snd_nxt among the
1116 * remaining retransmitted skbs to avoid some costly processing per ACKs.
1117 */
1118 static int tcp_mark_lost_retrans(struct sock *sk, u32 received_upto)
1119 {
1120 struct tcp_sock *tp = tcp_sk(sk);
1121 struct sk_buff *skb;
1122 int flag = 0;
1123 int cnt = 0;
1124 u32 new_low_seq = tp->snd_nxt;
1125
1126 tcp_for_write_queue(skb, sk) {
1127 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1128
1129 if (skb == tcp_send_head(sk))
1130 break;
1131 if (cnt == tp->retrans_out)
1132 break;
1133 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1134 continue;
1135
1136 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1137 continue;
1138
1139 if (after(received_upto, ack_seq) &&
1140 (tcp_is_fack(tp) ||
1141 !before(received_upto,
1142 ack_seq + tp->reordering * tp->mss_cache))) {
1143 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1144 tp->retrans_out -= tcp_skb_pcount(skb);
1145
1146 /* clear lost hint */
1147 tp->retransmit_skb_hint = NULL;
1148
1149 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1150 tp->lost_out += tcp_skb_pcount(skb);
1151 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1152 flag |= FLAG_DATA_SACKED;
1153 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1154 }
1155 } else {
1156 if (before(ack_seq, new_low_seq))
1157 new_low_seq = ack_seq;
1158 cnt += tcp_skb_pcount(skb);
1159 }
1160 }
1161
1162 if (tp->retrans_out)
1163 tp->lost_retrans_low = new_low_seq;
1164
1165 return flag;
1166 }
1167
1168 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1169 struct tcp_sack_block_wire *sp, int num_sacks,
1170 u32 prior_snd_una)
1171 {
1172 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1173 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1174 int dup_sack = 0;
1175
1176 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1177 dup_sack = 1;
1178 tcp_dsack_seen(tp);
1179 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1180 } else if (num_sacks > 1) {
1181 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1182 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1183
1184 if (!after(end_seq_0, end_seq_1) &&
1185 !before(start_seq_0, start_seq_1)) {
1186 dup_sack = 1;
1187 tcp_dsack_seen(tp);
1188 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1189 }
1190 }
1191
1192 /* D-SACK for already forgotten data... Do dumb counting. */
1193 if (dup_sack &&
1194 !after(end_seq_0, prior_snd_una) &&
1195 after(end_seq_0, tp->undo_marker))
1196 tp->undo_retrans--;
1197
1198 return dup_sack;
1199 }
1200
1201 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1202 * the incoming SACK may not exactly match but we can find smaller MSS
1203 * aligned portion of it that matches. Therefore we might need to fragment
1204 * which may fail and creates some hassle (caller must handle error case
1205 * returns).
1206 */
1207 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1208 u32 start_seq, u32 end_seq)
1209 {
1210 int in_sack, err;
1211 unsigned int pkt_len;
1212
1213 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1214 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1215
1216 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1217 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1218
1219 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1220
1221 if (!in_sack)
1222 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1223 else
1224 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1225 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1226 if (err < 0)
1227 return err;
1228 }
1229
1230 return in_sack;
1231 }
1232
1233 static int
1234 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1235 {
1236 const struct inet_connection_sock *icsk = inet_csk(sk);
1237 struct tcp_sock *tp = tcp_sk(sk);
1238 unsigned char *ptr = (skb_transport_header(ack_skb) +
1239 TCP_SKB_CB(ack_skb)->sacked);
1240 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
1241 struct sk_buff *cached_skb;
1242 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1243 int reord = tp->packets_out;
1244 int prior_fackets;
1245 u32 highest_sack_end_seq = tp->lost_retrans_low;
1246 int flag = 0;
1247 int found_dup_sack = 0;
1248 int cached_fack_count;
1249 int i;
1250 int first_sack_index;
1251 int force_one_sack;
1252
1253 if (!tp->sacked_out) {
1254 if (WARN_ON(tp->fackets_out))
1255 tp->fackets_out = 0;
1256 tp->highest_sack = tp->snd_una;
1257 }
1258 prior_fackets = tp->fackets_out;
1259
1260 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1261 num_sacks, prior_snd_una);
1262 if (found_dup_sack)
1263 flag |= FLAG_DSACKING_ACK;
1264
1265 /* Eliminate too old ACKs, but take into
1266 * account more or less fresh ones, they can
1267 * contain valid SACK info.
1268 */
1269 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1270 return 0;
1271
1272 if (!tp->packets_out)
1273 goto out;
1274
1275 /* SACK fastpath:
1276 * if the only SACK change is the increase of the end_seq of
1277 * the first block then only apply that SACK block
1278 * and use retrans queue hinting otherwise slowpath */
1279 force_one_sack = 1;
1280 for (i = 0; i < num_sacks; i++) {
1281 __be32 start_seq = sp[i].start_seq;
1282 __be32 end_seq = sp[i].end_seq;
1283
1284 if (i == 0) {
1285 if (tp->recv_sack_cache[i].start_seq != start_seq)
1286 force_one_sack = 0;
1287 } else {
1288 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1289 (tp->recv_sack_cache[i].end_seq != end_seq))
1290 force_one_sack = 0;
1291 }
1292 tp->recv_sack_cache[i].start_seq = start_seq;
1293 tp->recv_sack_cache[i].end_seq = end_seq;
1294 }
1295 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1296 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1297 tp->recv_sack_cache[i].start_seq = 0;
1298 tp->recv_sack_cache[i].end_seq = 0;
1299 }
1300
1301 first_sack_index = 0;
1302 if (force_one_sack)
1303 num_sacks = 1;
1304 else {
1305 int j;
1306 tp->fastpath_skb_hint = NULL;
1307
1308 /* order SACK blocks to allow in order walk of the retrans queue */
1309 for (i = num_sacks-1; i > 0; i--) {
1310 for (j = 0; j < i; j++){
1311 if (after(ntohl(sp[j].start_seq),
1312 ntohl(sp[j+1].start_seq))){
1313 struct tcp_sack_block_wire tmp;
1314
1315 tmp = sp[j];
1316 sp[j] = sp[j+1];
1317 sp[j+1] = tmp;
1318
1319 /* Track where the first SACK block goes to */
1320 if (j == first_sack_index)
1321 first_sack_index = j+1;
1322 }
1323
1324 }
1325 }
1326 }
1327
1328 /* Use SACK fastpath hint if valid */
1329 cached_skb = tp->fastpath_skb_hint;
1330 cached_fack_count = tp->fastpath_cnt_hint;
1331 if (!cached_skb) {
1332 cached_skb = tcp_write_queue_head(sk);
1333 cached_fack_count = 0;
1334 }
1335
1336 for (i = 0; i < num_sacks; i++) {
1337 struct sk_buff *skb;
1338 __u32 start_seq = ntohl(sp->start_seq);
1339 __u32 end_seq = ntohl(sp->end_seq);
1340 int fack_count;
1341 int dup_sack = (found_dup_sack && (i == first_sack_index));
1342 int next_dup = (found_dup_sack && (i+1 == first_sack_index));
1343
1344 sp++;
1345
1346 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1347 if (dup_sack) {
1348 if (!tp->undo_marker)
1349 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1350 else
1351 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1352 } else {
1353 /* Don't count olds caused by ACK reordering */
1354 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1355 !after(end_seq, tp->snd_una))
1356 continue;
1357 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1358 }
1359 continue;
1360 }
1361
1362 skb = cached_skb;
1363 fack_count = cached_fack_count;
1364
1365 /* Event "B" in the comment above. */
1366 if (after(end_seq, tp->high_seq))
1367 flag |= FLAG_DATA_LOST;
1368
1369 tcp_for_write_queue_from(skb, sk) {
1370 int in_sack = 0;
1371 u8 sacked;
1372
1373 if (skb == tcp_send_head(sk))
1374 break;
1375
1376 cached_skb = skb;
1377 cached_fack_count = fack_count;
1378 if (i == first_sack_index) {
1379 tp->fastpath_skb_hint = skb;
1380 tp->fastpath_cnt_hint = fack_count;
1381 }
1382
1383 /* The retransmission queue is always in order, so
1384 * we can short-circuit the walk early.
1385 */
1386 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1387 break;
1388
1389 dup_sack = (found_dup_sack && (i == first_sack_index));
1390
1391 /* Due to sorting DSACK may reside within this SACK block! */
1392 if (next_dup) {
1393 u32 dup_start = ntohl(sp->start_seq);
1394 u32 dup_end = ntohl(sp->end_seq);
1395
1396 if (before(TCP_SKB_CB(skb)->seq, dup_end)) {
1397 in_sack = tcp_match_skb_to_sack(sk, skb, dup_start, dup_end);
1398 if (in_sack > 0)
1399 dup_sack = 1;
1400 }
1401 }
1402
1403 /* DSACK info lost if out-of-mem, try SACK still */
1404 if (in_sack <= 0)
1405 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1406 if (unlikely(in_sack < 0))
1407 break;
1408
1409 sacked = TCP_SKB_CB(skb)->sacked;
1410
1411 /* Account D-SACK for retransmitted packet. */
1412 if ((dup_sack && in_sack) &&
1413 (sacked & TCPCB_RETRANS) &&
1414 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1415 tp->undo_retrans--;
1416
1417 /* The frame is ACKed. */
1418 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1419 if (sacked&TCPCB_RETRANS) {
1420 if ((dup_sack && in_sack) &&
1421 (sacked&TCPCB_SACKED_ACKED))
1422 reord = min(fack_count, reord);
1423 }
1424
1425 /* Nothing to do; acked frame is about to be dropped. */
1426 fack_count += tcp_skb_pcount(skb);
1427 continue;
1428 }
1429
1430 if (!in_sack) {
1431 fack_count += tcp_skb_pcount(skb);
1432 continue;
1433 }
1434
1435 if (!(sacked&TCPCB_SACKED_ACKED)) {
1436 if (sacked & TCPCB_SACKED_RETRANS) {
1437 /* If the segment is not tagged as lost,
1438 * we do not clear RETRANS, believing
1439 * that retransmission is still in flight.
1440 */
1441 if (sacked & TCPCB_LOST) {
1442 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1443 tp->lost_out -= tcp_skb_pcount(skb);
1444 tp->retrans_out -= tcp_skb_pcount(skb);
1445
1446 /* clear lost hint */
1447 tp->retransmit_skb_hint = NULL;
1448 }
1449 } else {
1450 if (!(sacked & TCPCB_RETRANS)) {
1451 /* New sack for not retransmitted frame,
1452 * which was in hole. It is reordering.
1453 */
1454 if (fack_count < prior_fackets)
1455 reord = min(fack_count, reord);
1456
1457 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1458 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1459 flag |= FLAG_ONLY_ORIG_SACKED;
1460 }
1461
1462 if (sacked & TCPCB_LOST) {
1463 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1464 tp->lost_out -= tcp_skb_pcount(skb);
1465
1466 /* clear lost hint */
1467 tp->retransmit_skb_hint = NULL;
1468 }
1469 }
1470
1471 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1472 flag |= FLAG_DATA_SACKED;
1473 tp->sacked_out += tcp_skb_pcount(skb);
1474
1475 fack_count += tcp_skb_pcount(skb);
1476 if (fack_count > tp->fackets_out)
1477 tp->fackets_out = fack_count;
1478
1479 if (after(TCP_SKB_CB(skb)->seq, tp->highest_sack)) {
1480 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1481 highest_sack_end_seq = TCP_SKB_CB(skb)->end_seq;
1482 }
1483 } else {
1484 if (dup_sack && (sacked&TCPCB_RETRANS))
1485 reord = min(fack_count, reord);
1486
1487 fack_count += tcp_skb_pcount(skb);
1488 }
1489
1490 /* D-SACK. We can detect redundant retransmission
1491 * in S|R and plain R frames and clear it.
1492 * undo_retrans is decreased above, L|R frames
1493 * are accounted above as well.
1494 */
1495 if (dup_sack &&
1496 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1497 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1498 tp->retrans_out -= tcp_skb_pcount(skb);
1499 tp->retransmit_skb_hint = NULL;
1500 }
1501 }
1502
1503 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1504 * due to in-order walk
1505 */
1506 if (after(end_seq, tp->frto_highmark))
1507 flag &= ~FLAG_ONLY_ORIG_SACKED;
1508 }
1509
1510 if (tp->retrans_out &&
1511 after(highest_sack_end_seq, tp->lost_retrans_low) &&
1512 icsk->icsk_ca_state == TCP_CA_Recovery)
1513 flag |= tcp_mark_lost_retrans(sk, highest_sack_end_seq);
1514
1515 tcp_verify_left_out(tp);
1516
1517 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1518 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1519 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1520
1521 out:
1522
1523 #if FASTRETRANS_DEBUG > 0
1524 BUG_TRAP((int)tp->sacked_out >= 0);
1525 BUG_TRAP((int)tp->lost_out >= 0);
1526 BUG_TRAP((int)tp->retrans_out >= 0);
1527 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1528 #endif
1529 return flag;
1530 }
1531
1532 /* If we receive more dupacks than we expected counting segments
1533 * in assumption of absent reordering, interpret this as reordering.
1534 * The only another reason could be bug in receiver TCP.
1535 */
1536 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1537 {
1538 struct tcp_sock *tp = tcp_sk(sk);
1539 u32 holes;
1540
1541 holes = max(tp->lost_out, 1U);
1542 holes = min(holes, tp->packets_out);
1543
1544 if ((tp->sacked_out + holes) > tp->packets_out) {
1545 tp->sacked_out = tp->packets_out - holes;
1546 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1547 }
1548 }
1549
1550 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1551
1552 static void tcp_add_reno_sack(struct sock *sk)
1553 {
1554 struct tcp_sock *tp = tcp_sk(sk);
1555 tp->sacked_out++;
1556 tcp_check_reno_reordering(sk, 0);
1557 tcp_verify_left_out(tp);
1558 }
1559
1560 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1561
1562 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1563 {
1564 struct tcp_sock *tp = tcp_sk(sk);
1565
1566 if (acked > 0) {
1567 /* One ACK acked hole. The rest eat duplicate ACKs. */
1568 if (acked-1 >= tp->sacked_out)
1569 tp->sacked_out = 0;
1570 else
1571 tp->sacked_out -= acked-1;
1572 }
1573 tcp_check_reno_reordering(sk, acked);
1574 tcp_verify_left_out(tp);
1575 }
1576
1577 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1578 {
1579 tp->sacked_out = 0;
1580 }
1581
1582 /* F-RTO can only be used if TCP has never retransmitted anything other than
1583 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1584 */
1585 int tcp_use_frto(struct sock *sk)
1586 {
1587 const struct tcp_sock *tp = tcp_sk(sk);
1588 struct sk_buff *skb;
1589
1590 if (!sysctl_tcp_frto)
1591 return 0;
1592
1593 if (IsSackFrto())
1594 return 1;
1595
1596 /* Avoid expensive walking of rexmit queue if possible */
1597 if (tp->retrans_out > 1)
1598 return 0;
1599
1600 skb = tcp_write_queue_head(sk);
1601 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1602 tcp_for_write_queue_from(skb, sk) {
1603 if (skb == tcp_send_head(sk))
1604 break;
1605 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1606 return 0;
1607 /* Short-circuit when first non-SACKed skb has been checked */
1608 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1609 break;
1610 }
1611 return 1;
1612 }
1613
1614 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1615 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1616 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1617 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1618 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1619 * bits are handled if the Loss state is really to be entered (in
1620 * tcp_enter_frto_loss).
1621 *
1622 * Do like tcp_enter_loss() would; when RTO expires the second time it
1623 * does:
1624 * "Reduce ssthresh if it has not yet been made inside this window."
1625 */
1626 void tcp_enter_frto(struct sock *sk)
1627 {
1628 const struct inet_connection_sock *icsk = inet_csk(sk);
1629 struct tcp_sock *tp = tcp_sk(sk);
1630 struct sk_buff *skb;
1631
1632 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1633 tp->snd_una == tp->high_seq ||
1634 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1635 !icsk->icsk_retransmits)) {
1636 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1637 /* Our state is too optimistic in ssthresh() call because cwnd
1638 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1639 * recovery has not yet completed. Pattern would be this: RTO,
1640 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1641 * up here twice).
1642 * RFC4138 should be more specific on what to do, even though
1643 * RTO is quite unlikely to occur after the first Cumulative ACK
1644 * due to back-off and complexity of triggering events ...
1645 */
1646 if (tp->frto_counter) {
1647 u32 stored_cwnd;
1648 stored_cwnd = tp->snd_cwnd;
1649 tp->snd_cwnd = 2;
1650 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1651 tp->snd_cwnd = stored_cwnd;
1652 } else {
1653 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1654 }
1655 /* ... in theory, cong.control module could do "any tricks" in
1656 * ssthresh(), which means that ca_state, lost bits and lost_out
1657 * counter would have to be faked before the call occurs. We
1658 * consider that too expensive, unlikely and hacky, so modules
1659 * using these in ssthresh() must deal these incompatibility
1660 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1661 */
1662 tcp_ca_event(sk, CA_EVENT_FRTO);
1663 }
1664
1665 tp->undo_marker = tp->snd_una;
1666 tp->undo_retrans = 0;
1667
1668 skb = tcp_write_queue_head(sk);
1669 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1670 tp->undo_marker = 0;
1671 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1672 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1673 tp->retrans_out -= tcp_skb_pcount(skb);
1674 }
1675 tcp_verify_left_out(tp);
1676
1677 /* Too bad if TCP was application limited */
1678 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1679
1680 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1681 * The last condition is necessary at least in tp->frto_counter case.
1682 */
1683 if (IsSackFrto() && (tp->frto_counter ||
1684 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1685 after(tp->high_seq, tp->snd_una)) {
1686 tp->frto_highmark = tp->high_seq;
1687 } else {
1688 tp->frto_highmark = tp->snd_nxt;
1689 }
1690 tcp_set_ca_state(sk, TCP_CA_Disorder);
1691 tp->high_seq = tp->snd_nxt;
1692 tp->frto_counter = 1;
1693 }
1694
1695 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1696 * which indicates that we should follow the traditional RTO recovery,
1697 * i.e. mark everything lost and do go-back-N retransmission.
1698 */
1699 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1700 {
1701 struct tcp_sock *tp = tcp_sk(sk);
1702 struct sk_buff *skb;
1703
1704 tp->lost_out = 0;
1705 tp->retrans_out = 0;
1706 if (tcp_is_reno(tp))
1707 tcp_reset_reno_sack(tp);
1708
1709 tcp_for_write_queue(skb, sk) {
1710 if (skb == tcp_send_head(sk))
1711 break;
1712
1713 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1714 /*
1715 * Count the retransmission made on RTO correctly (only when
1716 * waiting for the first ACK and did not get it)...
1717 */
1718 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1719 /* For some reason this R-bit might get cleared? */
1720 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1721 tp->retrans_out += tcp_skb_pcount(skb);
1722 /* ...enter this if branch just for the first segment */
1723 flag |= FLAG_DATA_ACKED;
1724 } else {
1725 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1726 tp->undo_marker = 0;
1727 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1728 }
1729
1730 /* Don't lost mark skbs that were fwd transmitted after RTO */
1731 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1732 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1733 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1734 tp->lost_out += tcp_skb_pcount(skb);
1735 }
1736 }
1737 tcp_verify_left_out(tp);
1738
1739 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1740 tp->snd_cwnd_cnt = 0;
1741 tp->snd_cwnd_stamp = tcp_time_stamp;
1742 tp->frto_counter = 0;
1743 tp->bytes_acked = 0;
1744
1745 tp->reordering = min_t(unsigned int, tp->reordering,
1746 sysctl_tcp_reordering);
1747 tcp_set_ca_state(sk, TCP_CA_Loss);
1748 tp->high_seq = tp->frto_highmark;
1749 TCP_ECN_queue_cwr(tp);
1750
1751 tcp_clear_retrans_hints_partial(tp);
1752 }
1753
1754 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1755 {
1756 tp->retrans_out = 0;
1757 tp->lost_out = 0;
1758
1759 tp->undo_marker = 0;
1760 tp->undo_retrans = 0;
1761 }
1762
1763 void tcp_clear_retrans(struct tcp_sock *tp)
1764 {
1765 tcp_clear_retrans_partial(tp);
1766
1767 tp->fackets_out = 0;
1768 tp->sacked_out = 0;
1769 }
1770
1771 /* Enter Loss state. If "how" is not zero, forget all SACK information
1772 * and reset tags completely, otherwise preserve SACKs. If receiver
1773 * dropped its ofo queue, we will know this due to reneging detection.
1774 */
1775 void tcp_enter_loss(struct sock *sk, int how)
1776 {
1777 const struct inet_connection_sock *icsk = inet_csk(sk);
1778 struct tcp_sock *tp = tcp_sk(sk);
1779 struct sk_buff *skb;
1780
1781 /* Reduce ssthresh if it has not yet been made inside this window. */
1782 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1783 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1784 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1785 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1786 tcp_ca_event(sk, CA_EVENT_LOSS);
1787 }
1788 tp->snd_cwnd = 1;
1789 tp->snd_cwnd_cnt = 0;
1790 tp->snd_cwnd_stamp = tcp_time_stamp;
1791
1792 tp->bytes_acked = 0;
1793 tcp_clear_retrans_partial(tp);
1794
1795 if (tcp_is_reno(tp))
1796 tcp_reset_reno_sack(tp);
1797
1798 if (!how) {
1799 /* Push undo marker, if it was plain RTO and nothing
1800 * was retransmitted. */
1801 tp->undo_marker = tp->snd_una;
1802 tcp_clear_retrans_hints_partial(tp);
1803 } else {
1804 tp->sacked_out = 0;
1805 tp->fackets_out = 0;
1806 tcp_clear_all_retrans_hints(tp);
1807 }
1808
1809 tcp_for_write_queue(skb, sk) {
1810 if (skb == tcp_send_head(sk))
1811 break;
1812
1813 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1814 tp->undo_marker = 0;
1815 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1816 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1817 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1818 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1819 tp->lost_out += tcp_skb_pcount(skb);
1820 }
1821 }
1822 tcp_verify_left_out(tp);
1823
1824 tp->reordering = min_t(unsigned int, tp->reordering,
1825 sysctl_tcp_reordering);
1826 tcp_set_ca_state(sk, TCP_CA_Loss);
1827 tp->high_seq = tp->snd_nxt;
1828 TCP_ECN_queue_cwr(tp);
1829 /* Abort F-RTO algorithm if one is in progress */
1830 tp->frto_counter = 0;
1831 }
1832
1833 static int tcp_check_sack_reneging(struct sock *sk)
1834 {
1835 struct sk_buff *skb;
1836
1837 /* If ACK arrived pointing to a remembered SACK,
1838 * it means that our remembered SACKs do not reflect
1839 * real state of receiver i.e.
1840 * receiver _host_ is heavily congested (or buggy).
1841 * Do processing similar to RTO timeout.
1842 */
1843 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1844 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1845 struct inet_connection_sock *icsk = inet_csk(sk);
1846 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1847
1848 tcp_enter_loss(sk, 1);
1849 icsk->icsk_retransmits++;
1850 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1851 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1852 icsk->icsk_rto, TCP_RTO_MAX);
1853 return 1;
1854 }
1855 return 0;
1856 }
1857
1858 static inline int tcp_fackets_out(struct tcp_sock *tp)
1859 {
1860 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1861 }
1862
1863 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1864 {
1865 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1866 }
1867
1868 static inline int tcp_head_timedout(struct sock *sk)
1869 {
1870 struct tcp_sock *tp = tcp_sk(sk);
1871
1872 return tp->packets_out &&
1873 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1874 }
1875
1876 /* Linux NewReno/SACK/FACK/ECN state machine.
1877 * --------------------------------------
1878 *
1879 * "Open" Normal state, no dubious events, fast path.
1880 * "Disorder" In all the respects it is "Open",
1881 * but requires a bit more attention. It is entered when
1882 * we see some SACKs or dupacks. It is split of "Open"
1883 * mainly to move some processing from fast path to slow one.
1884 * "CWR" CWND was reduced due to some Congestion Notification event.
1885 * It can be ECN, ICMP source quench, local device congestion.
1886 * "Recovery" CWND was reduced, we are fast-retransmitting.
1887 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1888 *
1889 * tcp_fastretrans_alert() is entered:
1890 * - each incoming ACK, if state is not "Open"
1891 * - when arrived ACK is unusual, namely:
1892 * * SACK
1893 * * Duplicate ACK.
1894 * * ECN ECE.
1895 *
1896 * Counting packets in flight is pretty simple.
1897 *
1898 * in_flight = packets_out - left_out + retrans_out
1899 *
1900 * packets_out is SND.NXT-SND.UNA counted in packets.
1901 *
1902 * retrans_out is number of retransmitted segments.
1903 *
1904 * left_out is number of segments left network, but not ACKed yet.
1905 *
1906 * left_out = sacked_out + lost_out
1907 *
1908 * sacked_out: Packets, which arrived to receiver out of order
1909 * and hence not ACKed. With SACKs this number is simply
1910 * amount of SACKed data. Even without SACKs
1911 * it is easy to give pretty reliable estimate of this number,
1912 * counting duplicate ACKs.
1913 *
1914 * lost_out: Packets lost by network. TCP has no explicit
1915 * "loss notification" feedback from network (for now).
1916 * It means that this number can be only _guessed_.
1917 * Actually, it is the heuristics to predict lossage that
1918 * distinguishes different algorithms.
1919 *
1920 * F.e. after RTO, when all the queue is considered as lost,
1921 * lost_out = packets_out and in_flight = retrans_out.
1922 *
1923 * Essentially, we have now two algorithms counting
1924 * lost packets.
1925 *
1926 * FACK: It is the simplest heuristics. As soon as we decided
1927 * that something is lost, we decide that _all_ not SACKed
1928 * packets until the most forward SACK are lost. I.e.
1929 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1930 * It is absolutely correct estimate, if network does not reorder
1931 * packets. And it loses any connection to reality when reordering
1932 * takes place. We use FACK by default until reordering
1933 * is suspected on the path to this destination.
1934 *
1935 * NewReno: when Recovery is entered, we assume that one segment
1936 * is lost (classic Reno). While we are in Recovery and
1937 * a partial ACK arrives, we assume that one more packet
1938 * is lost (NewReno). This heuristics are the same in NewReno
1939 * and SACK.
1940 *
1941 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1942 * deflation etc. CWND is real congestion window, never inflated, changes
1943 * only according to classic VJ rules.
1944 *
1945 * Really tricky (and requiring careful tuning) part of algorithm
1946 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1947 * The first determines the moment _when_ we should reduce CWND and,
1948 * hence, slow down forward transmission. In fact, it determines the moment
1949 * when we decide that hole is caused by loss, rather than by a reorder.
1950 *
1951 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1952 * holes, caused by lost packets.
1953 *
1954 * And the most logically complicated part of algorithm is undo
1955 * heuristics. We detect false retransmits due to both too early
1956 * fast retransmit (reordering) and underestimated RTO, analyzing
1957 * timestamps and D-SACKs. When we detect that some segments were
1958 * retransmitted by mistake and CWND reduction was wrong, we undo
1959 * window reduction and abort recovery phase. This logic is hidden
1960 * inside several functions named tcp_try_undo_<something>.
1961 */
1962
1963 /* This function decides, when we should leave Disordered state
1964 * and enter Recovery phase, reducing congestion window.
1965 *
1966 * Main question: may we further continue forward transmission
1967 * with the same cwnd?
1968 */
1969 static int tcp_time_to_recover(struct sock *sk)
1970 {
1971 struct tcp_sock *tp = tcp_sk(sk);
1972 __u32 packets_out;
1973
1974 /* Do not perform any recovery during F-RTO algorithm */
1975 if (tp->frto_counter)
1976 return 0;
1977
1978 /* Trick#1: The loss is proven. */
1979 if (tp->lost_out)
1980 return 1;
1981
1982 /* Not-A-Trick#2 : Classic rule... */
1983 if (tcp_fackets_out(tp) > tp->reordering)
1984 return 1;
1985
1986 /* Trick#3 : when we use RFC2988 timer restart, fast
1987 * retransmit can be triggered by timeout of queue head.
1988 */
1989 if (tcp_head_timedout(sk))
1990 return 1;
1991
1992 /* Trick#4: It is still not OK... But will it be useful to delay
1993 * recovery more?
1994 */
1995 packets_out = tp->packets_out;
1996 if (packets_out <= tp->reordering &&
1997 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1998 !tcp_may_send_now(sk)) {
1999 /* We have nothing to send. This connection is limited
2000 * either by receiver window or by application.
2001 */
2002 return 1;
2003 }
2004
2005 return 0;
2006 }
2007
2008 /* RFC: This is from the original, I doubt that this is necessary at all:
2009 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2010 * retransmitted past LOST markings in the first place? I'm not fully sure
2011 * about undo and end of connection cases, which can cause R without L?
2012 */
2013 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2014 struct sk_buff *skb)
2015 {
2016 if ((tp->retransmit_skb_hint != NULL) &&
2017 before(TCP_SKB_CB(skb)->seq,
2018 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2019 tp->retransmit_skb_hint = NULL;
2020 }
2021
2022 /* Mark head of queue up as lost. */
2023 static void tcp_mark_head_lost(struct sock *sk, int packets)
2024 {
2025 struct tcp_sock *tp = tcp_sk(sk);
2026 struct sk_buff *skb;
2027 int cnt;
2028
2029 BUG_TRAP(packets <= tp->packets_out);
2030 if (tp->lost_skb_hint) {
2031 skb = tp->lost_skb_hint;
2032 cnt = tp->lost_cnt_hint;
2033 } else {
2034 skb = tcp_write_queue_head(sk);
2035 cnt = 0;
2036 }
2037
2038 tcp_for_write_queue_from(skb, sk) {
2039 if (skb == tcp_send_head(sk))
2040 break;
2041 /* TODO: do this better */
2042 /* this is not the most efficient way to do this... */
2043 tp->lost_skb_hint = skb;
2044 tp->lost_cnt_hint = cnt;
2045 cnt += tcp_skb_pcount(skb);
2046 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2047 break;
2048 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2049 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2050 tp->lost_out += tcp_skb_pcount(skb);
2051 tcp_verify_retransmit_hint(tp, skb);
2052 }
2053 }
2054 tcp_verify_left_out(tp);
2055 }
2056
2057 /* Account newly detected lost packet(s) */
2058
2059 static void tcp_update_scoreboard(struct sock *sk)
2060 {
2061 struct tcp_sock *tp = tcp_sk(sk);
2062
2063 if (tcp_is_fack(tp)) {
2064 int lost = tp->fackets_out - tp->reordering;
2065 if (lost <= 0)
2066 lost = 1;
2067 tcp_mark_head_lost(sk, lost);
2068 } else {
2069 tcp_mark_head_lost(sk, 1);
2070 }
2071
2072 /* New heuristics: it is possible only after we switched
2073 * to restart timer each time when something is ACKed.
2074 * Hence, we can detect timed out packets during fast
2075 * retransmit without falling to slow start.
2076 */
2077 if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
2078 struct sk_buff *skb;
2079
2080 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2081 : tcp_write_queue_head(sk);
2082
2083 tcp_for_write_queue_from(skb, sk) {
2084 if (skb == tcp_send_head(sk))
2085 break;
2086 if (!tcp_skb_timedout(sk, skb))
2087 break;
2088
2089 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2090 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2091 tp->lost_out += tcp_skb_pcount(skb);
2092 tcp_verify_retransmit_hint(tp, skb);
2093 }
2094 }
2095
2096 tp->scoreboard_skb_hint = skb;
2097
2098 tcp_verify_left_out(tp);
2099 }
2100 }
2101
2102 /* CWND moderation, preventing bursts due to too big ACKs
2103 * in dubious situations.
2104 */
2105 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2106 {
2107 tp->snd_cwnd = min(tp->snd_cwnd,
2108 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2109 tp->snd_cwnd_stamp = tcp_time_stamp;
2110 }
2111
2112 /* Lower bound on congestion window is slow start threshold
2113 * unless congestion avoidance choice decides to overide it.
2114 */
2115 static inline u32 tcp_cwnd_min(const struct sock *sk)
2116 {
2117 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2118
2119 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2120 }
2121
2122 /* Decrease cwnd each second ack. */
2123 static void tcp_cwnd_down(struct sock *sk, int flag)
2124 {
2125 struct tcp_sock *tp = tcp_sk(sk);
2126 int decr = tp->snd_cwnd_cnt + 1;
2127
2128 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2129 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2130 tp->snd_cwnd_cnt = decr&1;
2131 decr >>= 1;
2132
2133 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2134 tp->snd_cwnd -= decr;
2135
2136 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2137 tp->snd_cwnd_stamp = tcp_time_stamp;
2138 }
2139 }
2140
2141 /* Nothing was retransmitted or returned timestamp is less
2142 * than timestamp of the first retransmission.
2143 */
2144 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2145 {
2146 return !tp->retrans_stamp ||
2147 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2148 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2149 }
2150
2151 /* Undo procedures. */
2152
2153 #if FASTRETRANS_DEBUG > 1
2154 static void DBGUNDO(struct sock *sk, const char *msg)
2155 {
2156 struct tcp_sock *tp = tcp_sk(sk);
2157 struct inet_sock *inet = inet_sk(sk);
2158
2159 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2160 msg,
2161 NIPQUAD(inet->daddr), ntohs(inet->dport),
2162 tp->snd_cwnd, tcp_left_out(tp),
2163 tp->snd_ssthresh, tp->prior_ssthresh,
2164 tp->packets_out);
2165 }
2166 #else
2167 #define DBGUNDO(x...) do { } while (0)
2168 #endif
2169
2170 static void tcp_undo_cwr(struct sock *sk, const int undo)
2171 {
2172 struct tcp_sock *tp = tcp_sk(sk);
2173
2174 if (tp->prior_ssthresh) {
2175 const struct inet_connection_sock *icsk = inet_csk(sk);
2176
2177 if (icsk->icsk_ca_ops->undo_cwnd)
2178 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2179 else
2180 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2181
2182 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2183 tp->snd_ssthresh = tp->prior_ssthresh;
2184 TCP_ECN_withdraw_cwr(tp);
2185 }
2186 } else {
2187 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2188 }
2189 tcp_moderate_cwnd(tp);
2190 tp->snd_cwnd_stamp = tcp_time_stamp;
2191
2192 /* There is something screwy going on with the retrans hints after
2193 an undo */
2194 tcp_clear_all_retrans_hints(tp);
2195 }
2196
2197 static inline int tcp_may_undo(struct tcp_sock *tp)
2198 {
2199 return tp->undo_marker &&
2200 (!tp->undo_retrans || tcp_packet_delayed(tp));
2201 }
2202
2203 /* People celebrate: "We love our President!" */
2204 static int tcp_try_undo_recovery(struct sock *sk)
2205 {
2206 struct tcp_sock *tp = tcp_sk(sk);
2207
2208 if (tcp_may_undo(tp)) {
2209 /* Happy end! We did not retransmit anything
2210 * or our original transmission succeeded.
2211 */
2212 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2213 tcp_undo_cwr(sk, 1);
2214 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2215 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2216 else
2217 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2218 tp->undo_marker = 0;
2219 }
2220 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2221 /* Hold old state until something *above* high_seq
2222 * is ACKed. For Reno it is MUST to prevent false
2223 * fast retransmits (RFC2582). SACK TCP is safe. */
2224 tcp_moderate_cwnd(tp);
2225 return 1;
2226 }
2227 tcp_set_ca_state(sk, TCP_CA_Open);
2228 return 0;
2229 }
2230
2231 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2232 static void tcp_try_undo_dsack(struct sock *sk)
2233 {
2234 struct tcp_sock *tp = tcp_sk(sk);
2235
2236 if (tp->undo_marker && !tp->undo_retrans) {
2237 DBGUNDO(sk, "D-SACK");
2238 tcp_undo_cwr(sk, 1);
2239 tp->undo_marker = 0;
2240 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2241 }
2242 }
2243
2244 /* Undo during fast recovery after partial ACK. */
2245
2246 static int tcp_try_undo_partial(struct sock *sk, int acked)
2247 {
2248 struct tcp_sock *tp = tcp_sk(sk);
2249 /* Partial ACK arrived. Force Hoe's retransmit. */
2250 int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
2251
2252 if (tcp_may_undo(tp)) {
2253 /* Plain luck! Hole if filled with delayed
2254 * packet, rather than with a retransmit.
2255 */
2256 if (tp->retrans_out == 0)
2257 tp->retrans_stamp = 0;
2258
2259 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2260
2261 DBGUNDO(sk, "Hoe");
2262 tcp_undo_cwr(sk, 0);
2263 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2264
2265 /* So... Do not make Hoe's retransmit yet.
2266 * If the first packet was delayed, the rest
2267 * ones are most probably delayed as well.
2268 */
2269 failed = 0;
2270 }
2271 return failed;
2272 }
2273
2274 /* Undo during loss recovery after partial ACK. */
2275 static int tcp_try_undo_loss(struct sock *sk)
2276 {
2277 struct tcp_sock *tp = tcp_sk(sk);
2278
2279 if (tcp_may_undo(tp)) {
2280 struct sk_buff *skb;
2281 tcp_for_write_queue(skb, sk) {
2282 if (skb == tcp_send_head(sk))
2283 break;
2284 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2285 }
2286
2287 tcp_clear_all_retrans_hints(tp);
2288
2289 DBGUNDO(sk, "partial loss");
2290 tp->lost_out = 0;
2291 tcp_undo_cwr(sk, 1);
2292 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2293 inet_csk(sk)->icsk_retransmits = 0;
2294 tp->undo_marker = 0;
2295 if (tcp_is_sack(tp))
2296 tcp_set_ca_state(sk, TCP_CA_Open);
2297 return 1;
2298 }
2299 return 0;
2300 }
2301
2302 static inline void tcp_complete_cwr(struct sock *sk)
2303 {
2304 struct tcp_sock *tp = tcp_sk(sk);
2305 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2306 tp->snd_cwnd_stamp = tcp_time_stamp;
2307 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2308 }
2309
2310 static void tcp_try_to_open(struct sock *sk, int flag)
2311 {
2312 struct tcp_sock *tp = tcp_sk(sk);
2313
2314 tcp_verify_left_out(tp);
2315
2316 if (tp->retrans_out == 0)
2317 tp->retrans_stamp = 0;
2318
2319 if (flag&FLAG_ECE)
2320 tcp_enter_cwr(sk, 1);
2321
2322 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2323 int state = TCP_CA_Open;
2324
2325 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2326 state = TCP_CA_Disorder;
2327
2328 if (inet_csk(sk)->icsk_ca_state != state) {
2329 tcp_set_ca_state(sk, state);
2330 tp->high_seq = tp->snd_nxt;
2331 }
2332 tcp_moderate_cwnd(tp);
2333 } else {
2334 tcp_cwnd_down(sk, flag);
2335 }
2336 }
2337
2338 static void tcp_mtup_probe_failed(struct sock *sk)
2339 {
2340 struct inet_connection_sock *icsk = inet_csk(sk);
2341
2342 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2343 icsk->icsk_mtup.probe_size = 0;
2344 }
2345
2346 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2347 {
2348 struct tcp_sock *tp = tcp_sk(sk);
2349 struct inet_connection_sock *icsk = inet_csk(sk);
2350
2351 /* FIXME: breaks with very large cwnd */
2352 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2353 tp->snd_cwnd = tp->snd_cwnd *
2354 tcp_mss_to_mtu(sk, tp->mss_cache) /
2355 icsk->icsk_mtup.probe_size;
2356 tp->snd_cwnd_cnt = 0;
2357 tp->snd_cwnd_stamp = tcp_time_stamp;
2358 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2359
2360 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2361 icsk->icsk_mtup.probe_size = 0;
2362 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2363 }
2364
2365
2366 /* Process an event, which can update packets-in-flight not trivially.
2367 * Main goal of this function is to calculate new estimate for left_out,
2368 * taking into account both packets sitting in receiver's buffer and
2369 * packets lost by network.
2370 *
2371 * Besides that it does CWND reduction, when packet loss is detected
2372 * and changes state of machine.
2373 *
2374 * It does _not_ decide what to send, it is made in function
2375 * tcp_xmit_retransmit_queue().
2376 */
2377 static void
2378 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2379 {
2380 struct inet_connection_sock *icsk = inet_csk(sk);
2381 struct tcp_sock *tp = tcp_sk(sk);
2382 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2383 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2384 (tp->fackets_out > tp->reordering));
2385
2386 /* Some technical things:
2387 * 1. Reno does not count dupacks (sacked_out) automatically. */
2388 if (!tp->packets_out)
2389 tp->sacked_out = 0;
2390
2391 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2392 tp->fackets_out = 0;
2393
2394 /* Now state machine starts.
2395 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2396 if (flag&FLAG_ECE)
2397 tp->prior_ssthresh = 0;
2398
2399 /* B. In all the states check for reneging SACKs. */
2400 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2401 return;
2402
2403 /* C. Process data loss notification, provided it is valid. */
2404 if ((flag&FLAG_DATA_LOST) &&
2405 before(tp->snd_una, tp->high_seq) &&
2406 icsk->icsk_ca_state != TCP_CA_Open &&
2407 tp->fackets_out > tp->reordering) {
2408 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2409 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2410 }
2411
2412 /* D. Check consistency of the current state. */
2413 tcp_verify_left_out(tp);
2414
2415 /* E. Check state exit conditions. State can be terminated
2416 * when high_seq is ACKed. */
2417 if (icsk->icsk_ca_state == TCP_CA_Open) {
2418 BUG_TRAP(tp->retrans_out == 0);
2419 tp->retrans_stamp = 0;
2420 } else if (!before(tp->snd_una, tp->high_seq)) {
2421 switch (icsk->icsk_ca_state) {
2422 case TCP_CA_Loss:
2423 icsk->icsk_retransmits = 0;
2424 if (tcp_try_undo_recovery(sk))
2425 return;
2426 break;
2427
2428 case TCP_CA_CWR:
2429 /* CWR is to be held something *above* high_seq
2430 * is ACKed for CWR bit to reach receiver. */
2431 if (tp->snd_una != tp->high_seq) {
2432 tcp_complete_cwr(sk);
2433 tcp_set_ca_state(sk, TCP_CA_Open);
2434 }
2435 break;
2436
2437 case TCP_CA_Disorder:
2438 tcp_try_undo_dsack(sk);
2439 if (!tp->undo_marker ||
2440 /* For SACK case do not Open to allow to undo
2441 * catching for all duplicate ACKs. */
2442 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2443 tp->undo_marker = 0;
2444 tcp_set_ca_state(sk, TCP_CA_Open);
2445 }
2446 break;
2447
2448 case TCP_CA_Recovery:
2449 if (tcp_is_reno(tp))
2450 tcp_reset_reno_sack(tp);
2451 if (tcp_try_undo_recovery(sk))
2452 return;
2453 tcp_complete_cwr(sk);
2454 break;
2455 }
2456 }
2457
2458 /* F. Process state. */
2459 switch (icsk->icsk_ca_state) {
2460 case TCP_CA_Recovery:
2461 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2462 if (tcp_is_reno(tp) && is_dupack)
2463 tcp_add_reno_sack(sk);
2464 } else
2465 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2466 break;
2467 case TCP_CA_Loss:
2468 if (flag&FLAG_DATA_ACKED)
2469 icsk->icsk_retransmits = 0;
2470 if (!tcp_try_undo_loss(sk)) {
2471 tcp_moderate_cwnd(tp);
2472 tcp_xmit_retransmit_queue(sk);
2473 return;
2474 }
2475 if (icsk->icsk_ca_state != TCP_CA_Open)
2476 return;
2477 /* Loss is undone; fall through to processing in Open state. */
2478 default:
2479 if (tcp_is_reno(tp)) {
2480 if (flag & FLAG_SND_UNA_ADVANCED)
2481 tcp_reset_reno_sack(tp);
2482 if (is_dupack)
2483 tcp_add_reno_sack(sk);
2484 }
2485
2486 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2487 tcp_try_undo_dsack(sk);
2488
2489 if (!tcp_time_to_recover(sk)) {
2490 tcp_try_to_open(sk, flag);
2491 return;
2492 }
2493
2494 /* MTU probe failure: don't reduce cwnd */
2495 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2496 icsk->icsk_mtup.probe_size &&
2497 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2498 tcp_mtup_probe_failed(sk);
2499 /* Restores the reduction we did in tcp_mtup_probe() */
2500 tp->snd_cwnd++;
2501 tcp_simple_retransmit(sk);
2502 return;
2503 }
2504
2505 /* Otherwise enter Recovery state */
2506
2507 if (tcp_is_reno(tp))
2508 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2509 else
2510 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2511
2512 tp->high_seq = tp->snd_nxt;
2513 tp->prior_ssthresh = 0;
2514 tp->undo_marker = tp->snd_una;
2515 tp->undo_retrans = tp->retrans_out;
2516
2517 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2518 if (!(flag&FLAG_ECE))
2519 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2520 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2521 TCP_ECN_queue_cwr(tp);
2522 }
2523
2524 tp->bytes_acked = 0;
2525 tp->snd_cwnd_cnt = 0;
2526 tcp_set_ca_state(sk, TCP_CA_Recovery);
2527 }
2528
2529 if (do_lost || tcp_head_timedout(sk))
2530 tcp_update_scoreboard(sk);
2531 tcp_cwnd_down(sk, flag);
2532 tcp_xmit_retransmit_queue(sk);
2533 }
2534
2535 /* Read draft-ietf-tcplw-high-performance before mucking
2536 * with this code. (Supersedes RFC1323)
2537 */
2538 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2539 {
2540 /* RTTM Rule: A TSecr value received in a segment is used to
2541 * update the averaged RTT measurement only if the segment
2542 * acknowledges some new data, i.e., only if it advances the
2543 * left edge of the send window.
2544 *
2545 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2546 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2547 *
2548 * Changed: reset backoff as soon as we see the first valid sample.
2549 * If we do not, we get strongly overestimated rto. With timestamps
2550 * samples are accepted even from very old segments: f.e., when rtt=1
2551 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2552 * answer arrives rto becomes 120 seconds! If at least one of segments
2553 * in window is lost... Voila. --ANK (010210)
2554 */
2555 struct tcp_sock *tp = tcp_sk(sk);
2556 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2557 tcp_rtt_estimator(sk, seq_rtt);
2558 tcp_set_rto(sk);
2559 inet_csk(sk)->icsk_backoff = 0;
2560 tcp_bound_rto(sk);
2561 }
2562
2563 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2564 {
2565 /* We don't have a timestamp. Can only use
2566 * packets that are not retransmitted to determine
2567 * rtt estimates. Also, we must not reset the
2568 * backoff for rto until we get a non-retransmitted
2569 * packet. This allows us to deal with a situation
2570 * where the network delay has increased suddenly.
2571 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2572 */
2573
2574 if (flag & FLAG_RETRANS_DATA_ACKED)
2575 return;
2576
2577 tcp_rtt_estimator(sk, seq_rtt);
2578 tcp_set_rto(sk);
2579 inet_csk(sk)->icsk_backoff = 0;
2580 tcp_bound_rto(sk);
2581 }
2582
2583 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2584 const s32 seq_rtt)
2585 {
2586 const struct tcp_sock *tp = tcp_sk(sk);
2587 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2588 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2589 tcp_ack_saw_tstamp(sk, flag);
2590 else if (seq_rtt >= 0)
2591 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2592 }
2593
2594 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2595 u32 in_flight, int good)
2596 {
2597 const struct inet_connection_sock *icsk = inet_csk(sk);
2598 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2599 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2600 }
2601
2602 /* Restart timer after forward progress on connection.
2603 * RFC2988 recommends to restart timer to now+rto.
2604 */
2605 static void tcp_rearm_rto(struct sock *sk)
2606 {
2607 struct tcp_sock *tp = tcp_sk(sk);
2608
2609 if (!tp->packets_out) {
2610 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2611 } else {
2612 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2613 }
2614 }
2615
2616 /* If we get here, the whole TSO packet has not been acked. */
2617 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2618 {
2619 struct tcp_sock *tp = tcp_sk(sk);
2620 u32 packets_acked;
2621
2622 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2623
2624 packets_acked = tcp_skb_pcount(skb);
2625 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2626 return 0;
2627 packets_acked -= tcp_skb_pcount(skb);
2628
2629 if (packets_acked) {
2630 BUG_ON(tcp_skb_pcount(skb) == 0);
2631 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2632 }
2633
2634 return packets_acked;
2635 }
2636
2637 /* Remove acknowledged frames from the retransmission queue. If our packet
2638 * is before the ack sequence we can discard it as it's confirmed to have
2639 * arrived at the other end.
2640 */
2641 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p,
2642 int prior_fackets)
2643 {
2644 struct tcp_sock *tp = tcp_sk(sk);
2645 const struct inet_connection_sock *icsk = inet_csk(sk);
2646 struct sk_buff *skb;
2647 u32 now = tcp_time_stamp;
2648 int fully_acked = 1;
2649 int flag = 0;
2650 int prior_packets = tp->packets_out;
2651 u32 cnt = 0;
2652 u32 reord = tp->packets_out;
2653 s32 seq_rtt = -1;
2654 ktime_t last_ackt = net_invalid_timestamp();
2655
2656 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2657 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2658 u32 end_seq;
2659 u32 packets_acked;
2660 u8 sacked = scb->sacked;
2661
2662 if (after(scb->end_seq, tp->snd_una)) {
2663 if (tcp_skb_pcount(skb) == 1 ||
2664 !after(tp->snd_una, scb->seq))
2665 break;
2666
2667 packets_acked = tcp_tso_acked(sk, skb);
2668 if (!packets_acked)
2669 break;
2670
2671 fully_acked = 0;
2672 end_seq = tp->snd_una;
2673 } else {
2674 packets_acked = tcp_skb_pcount(skb);
2675 end_seq = scb->end_seq;
2676 }
2677
2678 /* MTU probing checks */
2679 if (fully_acked && icsk->icsk_mtup.probe_size &&
2680 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2681 tcp_mtup_probe_success(sk, skb);
2682 }
2683
2684 if (sacked) {
2685 if (sacked & TCPCB_RETRANS) {
2686 if (sacked & TCPCB_SACKED_RETRANS)
2687 tp->retrans_out -= packets_acked;
2688 flag |= FLAG_RETRANS_DATA_ACKED;
2689 seq_rtt = -1;
2690 if ((flag & FLAG_DATA_ACKED) ||
2691 (packets_acked > 1))
2692 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2693 } else {
2694 if (seq_rtt < 0) {
2695 seq_rtt = now - scb->when;
2696 if (fully_acked)
2697 last_ackt = skb->tstamp;
2698 }
2699 if (!(sacked & TCPCB_SACKED_ACKED))
2700 reord = min(cnt, reord);
2701 }
2702
2703 if (sacked & TCPCB_SACKED_ACKED)
2704 tp->sacked_out -= packets_acked;
2705 if (sacked & TCPCB_LOST)
2706 tp->lost_out -= packets_acked;
2707
2708 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2709 !before(end_seq, tp->snd_up))
2710 tp->urg_mode = 0;
2711 } else {
2712 if (seq_rtt < 0) {
2713 seq_rtt = now - scb->when;
2714 if (fully_acked)
2715 last_ackt = skb->tstamp;
2716 }
2717 reord = min(cnt, reord);
2718 }
2719 tp->packets_out -= packets_acked;
2720 cnt += packets_acked;
2721
2722 /* Initial outgoing SYN's get put onto the write_queue
2723 * just like anything else we transmit. It is not
2724 * true data, and if we misinform our callers that
2725 * this ACK acks real data, we will erroneously exit
2726 * connection startup slow start one packet too
2727 * quickly. This is severely frowned upon behavior.
2728 */
2729 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2730 flag |= FLAG_DATA_ACKED;
2731 } else {
2732 flag |= FLAG_SYN_ACKED;
2733 tp->retrans_stamp = 0;
2734 }
2735
2736 if (!fully_acked)
2737 break;
2738
2739 tcp_unlink_write_queue(skb, sk);
2740 sk_stream_free_skb(sk, skb);
2741 tcp_clear_all_retrans_hints(tp);
2742 }
2743
2744 if (flag & FLAG_ACKED) {
2745 u32 pkts_acked = prior_packets - tp->packets_out;
2746 const struct tcp_congestion_ops *ca_ops
2747 = inet_csk(sk)->icsk_ca_ops;
2748
2749 tcp_ack_update_rtt(sk, flag, seq_rtt);
2750 tcp_rearm_rto(sk);
2751
2752 if (tcp_is_reno(tp)) {
2753 tcp_remove_reno_sacks(sk, pkts_acked);
2754 } else {
2755 /* Non-retransmitted hole got filled? That's reordering */
2756 if (reord < prior_fackets)
2757 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2758 }
2759
2760 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2761 /* hint's skb might be NULL but we don't need to care */
2762 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2763 tp->fastpath_cnt_hint);
2764 if (ca_ops->pkts_acked) {
2765 s32 rtt_us = -1;
2766
2767 /* Is the ACK triggering packet unambiguous? */
2768 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2769 /* High resolution needed and available? */
2770 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2771 !ktime_equal(last_ackt,
2772 net_invalid_timestamp()))
2773 rtt_us = ktime_us_delta(ktime_get_real(),
2774 last_ackt);
2775 else if (seq_rtt > 0)
2776 rtt_us = jiffies_to_usecs(seq_rtt);
2777 }
2778
2779 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2780 }
2781 }
2782
2783 #if FASTRETRANS_DEBUG > 0
2784 BUG_TRAP((int)tp->sacked_out >= 0);
2785 BUG_TRAP((int)tp->lost_out >= 0);
2786 BUG_TRAP((int)tp->retrans_out >= 0);
2787 if (!tp->packets_out && tcp_is_sack(tp)) {
2788 icsk = inet_csk(sk);
2789 if (tp->lost_out) {
2790 printk(KERN_DEBUG "Leak l=%u %d\n",
2791 tp->lost_out, icsk->icsk_ca_state);
2792 tp->lost_out = 0;
2793 }
2794 if (tp->sacked_out) {
2795 printk(KERN_DEBUG "Leak s=%u %d\n",
2796 tp->sacked_out, icsk->icsk_ca_state);
2797 tp->sacked_out = 0;
2798 }
2799 if (tp->retrans_out) {
2800 printk(KERN_DEBUG "Leak r=%u %d\n",
2801 tp->retrans_out, icsk->icsk_ca_state);
2802 tp->retrans_out = 0;
2803 }
2804 }
2805 #endif
2806 *seq_rtt_p = seq_rtt;
2807 return flag;
2808 }
2809
2810 static void tcp_ack_probe(struct sock *sk)
2811 {
2812 const struct tcp_sock *tp = tcp_sk(sk);
2813 struct inet_connection_sock *icsk = inet_csk(sk);
2814
2815 /* Was it a usable window open? */
2816
2817 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2818 tp->snd_una + tp->snd_wnd)) {
2819 icsk->icsk_backoff = 0;
2820 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2821 /* Socket must be waked up by subsequent tcp_data_snd_check().
2822 * This function is not for random using!
2823 */
2824 } else {
2825 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2826 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2827 TCP_RTO_MAX);
2828 }
2829 }
2830
2831 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2832 {
2833 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2834 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2835 }
2836
2837 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2838 {
2839 const struct tcp_sock *tp = tcp_sk(sk);
2840 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2841 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2842 }
2843
2844 /* Check that window update is acceptable.
2845 * The function assumes that snd_una<=ack<=snd_next.
2846 */
2847 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2848 const u32 ack_seq, const u32 nwin)
2849 {
2850 return (after(ack, tp->snd_una) ||
2851 after(ack_seq, tp->snd_wl1) ||
2852 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2853 }
2854
2855 /* Update our send window.
2856 *
2857 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2858 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2859 */
2860 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2861 u32 ack_seq)
2862 {
2863 struct tcp_sock *tp = tcp_sk(sk);
2864 int flag = 0;
2865 u32 nwin = ntohs(tcp_hdr(skb)->window);
2866
2867 if (likely(!tcp_hdr(skb)->syn))
2868 nwin <<= tp->rx_opt.snd_wscale;
2869
2870 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2871 flag |= FLAG_WIN_UPDATE;
2872 tcp_update_wl(tp, ack, ack_seq);
2873
2874 if (tp->snd_wnd != nwin) {
2875 tp->snd_wnd = nwin;
2876
2877 /* Note, it is the only place, where
2878 * fast path is recovered for sending TCP.
2879 */
2880 tp->pred_flags = 0;
2881 tcp_fast_path_check(sk);
2882
2883 if (nwin > tp->max_window) {
2884 tp->max_window = nwin;
2885 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2886 }
2887 }
2888 }
2889
2890 tp->snd_una = ack;
2891
2892 return flag;
2893 }
2894
2895 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2896 * continue in congestion avoidance.
2897 */
2898 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2899 {
2900 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2901 tp->snd_cwnd_cnt = 0;
2902 tp->bytes_acked = 0;
2903 TCP_ECN_queue_cwr(tp);
2904 tcp_moderate_cwnd(tp);
2905 }
2906
2907 /* A conservative spurious RTO response algorithm: reduce cwnd using
2908 * rate halving and continue in congestion avoidance.
2909 */
2910 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2911 {
2912 tcp_enter_cwr(sk, 0);
2913 }
2914
2915 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2916 {
2917 if (flag&FLAG_ECE)
2918 tcp_ratehalving_spur_to_response(sk);
2919 else
2920 tcp_undo_cwr(sk, 1);
2921 }
2922
2923 /* F-RTO spurious RTO detection algorithm (RFC4138)
2924 *
2925 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2926 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2927 * window (but not to or beyond highest sequence sent before RTO):
2928 * On First ACK, send two new segments out.
2929 * On Second ACK, RTO was likely spurious. Do spurious response (response
2930 * algorithm is not part of the F-RTO detection algorithm
2931 * given in RFC4138 but can be selected separately).
2932 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2933 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2934 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2935 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2936 *
2937 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2938 * original window even after we transmit two new data segments.
2939 *
2940 * SACK version:
2941 * on first step, wait until first cumulative ACK arrives, then move to
2942 * the second step. In second step, the next ACK decides.
2943 *
2944 * F-RTO is implemented (mainly) in four functions:
2945 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2946 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2947 * called when tcp_use_frto() showed green light
2948 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2949 * - tcp_enter_frto_loss() is called if there is not enough evidence
2950 * to prove that the RTO is indeed spurious. It transfers the control
2951 * from F-RTO to the conventional RTO recovery
2952 */
2953 static int tcp_process_frto(struct sock *sk, int flag)
2954 {
2955 struct tcp_sock *tp = tcp_sk(sk);
2956
2957 tcp_verify_left_out(tp);
2958
2959 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2960 if (flag&FLAG_DATA_ACKED)
2961 inet_csk(sk)->icsk_retransmits = 0;
2962
2963 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2964 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2965 tp->undo_marker = 0;
2966
2967 if (!before(tp->snd_una, tp->frto_highmark)) {
2968 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2969 return 1;
2970 }
2971
2972 if (!IsSackFrto() || tcp_is_reno(tp)) {
2973 /* RFC4138 shortcoming in step 2; should also have case c):
2974 * ACK isn't duplicate nor advances window, e.g., opposite dir
2975 * data, winupdate
2976 */
2977 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
2978 return 1;
2979
2980 if (!(flag&FLAG_DATA_ACKED)) {
2981 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2982 flag);
2983 return 1;
2984 }
2985 } else {
2986 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2987 /* Prevent sending of new data. */
2988 tp->snd_cwnd = min(tp->snd_cwnd,
2989 tcp_packets_in_flight(tp));
2990 return 1;
2991 }
2992
2993 if ((tp->frto_counter >= 2) &&
2994 (!(flag&FLAG_FORWARD_PROGRESS) ||
2995 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2996 /* RFC4138 shortcoming (see comment above) */
2997 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2998 return 1;
2999
3000 tcp_enter_frto_loss(sk, 3, flag);
3001 return 1;
3002 }
3003 }
3004
3005 if (tp->frto_counter == 1) {
3006 /* Sending of the next skb must be allowed or no F-RTO */
3007 if (!tcp_send_head(sk) ||
3008 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
3009 tp->snd_una + tp->snd_wnd)) {
3010 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
3011 flag);
3012 return 1;
3013 }
3014
3015 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3016 tp->frto_counter = 2;
3017 return 1;
3018 } else {
3019 switch (sysctl_tcp_frto_response) {
3020 case 2:
3021 tcp_undo_spur_to_response(sk, flag);
3022 break;
3023 case 1:
3024 tcp_conservative_spur_to_response(tp);
3025 break;
3026 default:
3027 tcp_ratehalving_spur_to_response(sk);
3028 break;
3029 }
3030 tp->frto_counter = 0;
3031 tp->undo_marker = 0;
3032 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3033 }
3034 return 0;
3035 }
3036
3037 /* This routine deals with incoming acks, but not outgoing ones. */
3038 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3039 {
3040 struct inet_connection_sock *icsk = inet_csk(sk);
3041 struct tcp_sock *tp = tcp_sk(sk);
3042 u32 prior_snd_una = tp->snd_una;
3043 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3044 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3045 u32 prior_in_flight;
3046 u32 prior_fackets;
3047 s32 seq_rtt;
3048 int prior_packets;
3049 int frto_cwnd = 0;
3050
3051 /* If the ack is newer than sent or older than previous acks
3052 * then we can probably ignore it.
3053 */
3054 if (after(ack, tp->snd_nxt))
3055 goto uninteresting_ack;
3056
3057 if (before(ack, prior_snd_una))
3058 goto old_ack;
3059
3060 if (after(ack, prior_snd_una))
3061 flag |= FLAG_SND_UNA_ADVANCED;
3062
3063 if (sysctl_tcp_abc) {
3064 if (icsk->icsk_ca_state < TCP_CA_CWR)
3065 tp->bytes_acked += ack - prior_snd_una;
3066 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3067 /* we assume just one segment left network */
3068 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3069 }
3070
3071 prior_fackets = tp->fackets_out;
3072
3073 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3074 /* Window is constant, pure forward advance.
3075 * No more checks are required.
3076 * Note, we use the fact that SND.UNA>=SND.WL2.
3077 */
3078 tcp_update_wl(tp, ack, ack_seq);
3079 tp->snd_una = ack;
3080 flag |= FLAG_WIN_UPDATE;
3081
3082 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3083
3084 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3085 } else {
3086 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3087 flag |= FLAG_DATA;
3088 else
3089 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3090
3091 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3092
3093 if (TCP_SKB_CB(skb)->sacked)
3094 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3095
3096 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3097 flag |= FLAG_ECE;
3098
3099 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3100 }
3101
3102 /* We passed data and got it acked, remove any soft error
3103 * log. Something worked...
3104 */
3105 sk->sk_err_soft = 0;
3106 tp->rcv_tstamp = tcp_time_stamp;
3107 prior_packets = tp->packets_out;
3108 if (!prior_packets)
3109 goto no_queue;
3110
3111 prior_in_flight = tcp_packets_in_flight(tp);
3112
3113 /* See if we can take anything off of the retransmit queue. */
3114 flag |= tcp_clean_rtx_queue(sk, &seq_rtt, prior_fackets);
3115
3116 /* Guarantee sacktag reordering detection against wrap-arounds */
3117 if (before(tp->frto_highmark, tp->snd_una))
3118 tp->frto_highmark = 0;
3119 if (tp->frto_counter)
3120 frto_cwnd = tcp_process_frto(sk, flag);
3121
3122 if (tcp_ack_is_dubious(sk, flag)) {
3123 /* Advance CWND, if state allows this. */
3124 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3125 tcp_may_raise_cwnd(sk, flag))
3126 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3127 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3128 } else {
3129 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3130 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3131 }
3132
3133 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3134 dst_confirm(sk->sk_dst_cache);
3135
3136 return 1;
3137
3138 no_queue:
3139 icsk->icsk_probes_out = 0;
3140
3141 /* If this ack opens up a zero window, clear backoff. It was
3142 * being used to time the probes, and is probably far higher than
3143 * it needs to be for normal retransmission.
3144 */
3145 if (tcp_send_head(sk))
3146 tcp_ack_probe(sk);
3147 return 1;
3148
3149 old_ack:
3150 if (TCP_SKB_CB(skb)->sacked)
3151 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3152
3153 uninteresting_ack:
3154 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3155 return 0;
3156 }
3157
3158
3159 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3160 * But, this can also be called on packets in the established flow when
3161 * the fast version below fails.
3162 */
3163 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3164 {
3165 unsigned char *ptr;
3166 struct tcphdr *th = tcp_hdr(skb);
3167 int length=(th->doff*4)-sizeof(struct tcphdr);
3168
3169 ptr = (unsigned char *)(th + 1);
3170 opt_rx->saw_tstamp = 0;
3171
3172 while (length > 0) {
3173 int opcode=*ptr++;
3174 int opsize;
3175
3176 switch (opcode) {
3177 case TCPOPT_EOL:
3178 return;
3179 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3180 length--;
3181 continue;
3182 default:
3183 opsize=*ptr++;
3184 if (opsize < 2) /* "silly options" */
3185 return;
3186 if (opsize > length)
3187 return; /* don't parse partial options */
3188 switch (opcode) {
3189 case TCPOPT_MSS:
3190 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3191 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3192 if (in_mss) {
3193 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3194 in_mss = opt_rx->user_mss;
3195 opt_rx->mss_clamp = in_mss;
3196 }
3197 }
3198 break;
3199 case TCPOPT_WINDOW:
3200 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3201 if (sysctl_tcp_window_scaling) {
3202 __u8 snd_wscale = *(__u8 *) ptr;
3203 opt_rx->wscale_ok = 1;
3204 if (snd_wscale > 14) {
3205 if (net_ratelimit())
3206 printk(KERN_INFO "tcp_parse_options: Illegal window "
3207 "scaling value %d >14 received.\n",
3208 snd_wscale);
3209 snd_wscale = 14;
3210 }
3211 opt_rx->snd_wscale = snd_wscale;
3212 }
3213 break;
3214 case TCPOPT_TIMESTAMP:
3215 if (opsize==TCPOLEN_TIMESTAMP) {
3216 if ((estab && opt_rx->tstamp_ok) ||
3217 (!estab && sysctl_tcp_timestamps)) {
3218 opt_rx->saw_tstamp = 1;
3219 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3220 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3221 }
3222 }
3223 break;
3224 case TCPOPT_SACK_PERM:
3225 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3226 if (sysctl_tcp_sack) {
3227 opt_rx->sack_ok = 1;
3228 tcp_sack_reset(opt_rx);
3229 }
3230 }
3231 break;
3232
3233 case TCPOPT_SACK:
3234 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3235 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3236 opt_rx->sack_ok) {
3237 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3238 }
3239 break;
3240 #ifdef CONFIG_TCP_MD5SIG
3241 case TCPOPT_MD5SIG:
3242 /*
3243 * The MD5 Hash has already been
3244 * checked (see tcp_v{4,6}_do_rcv()).
3245 */
3246 break;
3247 #endif
3248 }
3249
3250 ptr+=opsize-2;
3251 length-=opsize;
3252 }
3253 }
3254 }
3255
3256 /* Fast parse options. This hopes to only see timestamps.
3257 * If it is wrong it falls back on tcp_parse_options().
3258 */
3259 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3260 struct tcp_sock *tp)
3261 {
3262 if (th->doff == sizeof(struct tcphdr)>>2) {
3263 tp->rx_opt.saw_tstamp = 0;
3264 return 0;
3265 } else if (tp->rx_opt.tstamp_ok &&
3266 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3267 __be32 *ptr = (__be32 *)(th + 1);
3268 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3269 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3270 tp->rx_opt.saw_tstamp = 1;
3271 ++ptr;
3272 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3273 ++ptr;
3274 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3275 return 1;
3276 }
3277 }
3278 tcp_parse_options(skb, &tp->rx_opt, 1);
3279 return 1;
3280 }
3281
3282 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3283 {
3284 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3285 tp->rx_opt.ts_recent_stamp = get_seconds();
3286 }
3287
3288 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3289 {
3290 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3291 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3292 * extra check below makes sure this can only happen
3293 * for pure ACK frames. -DaveM
3294 *
3295 * Not only, also it occurs for expired timestamps.
3296 */
3297
3298 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3299 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3300 tcp_store_ts_recent(tp);
3301 }
3302 }
3303
3304 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3305 *
3306 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3307 * it can pass through stack. So, the following predicate verifies that
3308 * this segment is not used for anything but congestion avoidance or
3309 * fast retransmit. Moreover, we even are able to eliminate most of such
3310 * second order effects, if we apply some small "replay" window (~RTO)
3311 * to timestamp space.
3312 *
3313 * All these measures still do not guarantee that we reject wrapped ACKs
3314 * on networks with high bandwidth, when sequence space is recycled fastly,
3315 * but it guarantees that such events will be very rare and do not affect
3316 * connection seriously. This doesn't look nice, but alas, PAWS is really
3317 * buggy extension.
3318 *
3319 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3320 * states that events when retransmit arrives after original data are rare.
3321 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3322 * the biggest problem on large power networks even with minor reordering.
3323 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3324 * up to bandwidth of 18Gigabit/sec. 8) ]
3325 */
3326
3327 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3328 {
3329 struct tcp_sock *tp = tcp_sk(sk);
3330 struct tcphdr *th = tcp_hdr(skb);
3331 u32 seq = TCP_SKB_CB(skb)->seq;
3332 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3333
3334 return (/* 1. Pure ACK with correct sequence number. */
3335 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3336
3337 /* 2. ... and duplicate ACK. */
3338 ack == tp->snd_una &&
3339
3340 /* 3. ... and does not update window. */
3341 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3342
3343 /* 4. ... and sits in replay window. */
3344 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3345 }
3346
3347 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3348 {
3349 const struct tcp_sock *tp = tcp_sk(sk);
3350 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3351 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3352 !tcp_disordered_ack(sk, skb));
3353 }
3354
3355 /* Check segment sequence number for validity.
3356 *
3357 * Segment controls are considered valid, if the segment
3358 * fits to the window after truncation to the window. Acceptability
3359 * of data (and SYN, FIN, of course) is checked separately.
3360 * See tcp_data_queue(), for example.
3361 *
3362 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3363 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3364 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3365 * (borrowed from freebsd)
3366 */
3367
3368 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3369 {
3370 return !before(end_seq, tp->rcv_wup) &&
3371 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3372 }
3373
3374 /* When we get a reset we do this. */
3375 static void tcp_reset(struct sock *sk)
3376 {
3377 /* We want the right error as BSD sees it (and indeed as we do). */
3378 switch (sk->sk_state) {
3379 case TCP_SYN_SENT:
3380 sk->sk_err = ECONNREFUSED;
3381 break;
3382 case TCP_CLOSE_WAIT:
3383 sk->sk_err = EPIPE;
3384 break;
3385 case TCP_CLOSE:
3386 return;
3387 default:
3388 sk->sk_err = ECONNRESET;
3389 }
3390
3391 if (!sock_flag(sk, SOCK_DEAD))
3392 sk->sk_error_report(sk);
3393
3394 tcp_done(sk);
3395 }
3396
3397 /*
3398 * Process the FIN bit. This now behaves as it is supposed to work
3399 * and the FIN takes effect when it is validly part of sequence
3400 * space. Not before when we get holes.
3401 *
3402 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3403 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3404 * TIME-WAIT)
3405 *
3406 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3407 * close and we go into CLOSING (and later onto TIME-WAIT)
3408 *
3409 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3410 */
3411 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3412 {
3413 struct tcp_sock *tp = tcp_sk(sk);
3414
3415 inet_csk_schedule_ack(sk);
3416
3417 sk->sk_shutdown |= RCV_SHUTDOWN;
3418 sock_set_flag(sk, SOCK_DONE);
3419
3420 switch (sk->sk_state) {
3421 case TCP_SYN_RECV:
3422 case TCP_ESTABLISHED:
3423 /* Move to CLOSE_WAIT */
3424 tcp_set_state(sk, TCP_CLOSE_WAIT);
3425 inet_csk(sk)->icsk_ack.pingpong = 1;
3426 break;
3427
3428 case TCP_CLOSE_WAIT:
3429 case TCP_CLOSING:
3430 /* Received a retransmission of the FIN, do
3431 * nothing.
3432 */
3433 break;
3434 case TCP_LAST_ACK:
3435 /* RFC793: Remain in the LAST-ACK state. */
3436 break;
3437
3438 case TCP_FIN_WAIT1:
3439 /* This case occurs when a simultaneous close
3440 * happens, we must ack the received FIN and
3441 * enter the CLOSING state.
3442 */
3443 tcp_send_ack(sk);
3444 tcp_set_state(sk, TCP_CLOSING);
3445 break;
3446 case TCP_FIN_WAIT2:
3447 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3448 tcp_send_ack(sk);
3449 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3450 break;
3451 default:
3452 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3453 * cases we should never reach this piece of code.
3454 */
3455 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3456 __FUNCTION__, sk->sk_state);
3457 break;
3458 }
3459
3460 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3461 * Probably, we should reset in this case. For now drop them.
3462 */
3463 __skb_queue_purge(&tp->out_of_order_queue);
3464 if (tcp_is_sack(tp))
3465 tcp_sack_reset(&tp->rx_opt);
3466 sk_stream_mem_reclaim(sk);
3467
3468 if (!sock_flag(sk, SOCK_DEAD)) {
3469 sk->sk_state_change(sk);
3470
3471 /* Do not send POLL_HUP for half duplex close. */
3472 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3473 sk->sk_state == TCP_CLOSE)
3474 sk_wake_async(sk, 1, POLL_HUP);
3475 else
3476 sk_wake_async(sk, 1, POLL_IN);
3477 }
3478 }
3479
3480 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3481 {
3482 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3483 if (before(seq, sp->start_seq))
3484 sp->start_seq = seq;
3485 if (after(end_seq, sp->end_seq))
3486 sp->end_seq = end_seq;
3487 return 1;
3488 }
3489 return 0;
3490 }
3491
3492 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3493 {
3494 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3495 if (before(seq, tp->rcv_nxt))
3496 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3497 else
3498 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3499
3500 tp->rx_opt.dsack = 1;
3501 tp->duplicate_sack[0].start_seq = seq;
3502 tp->duplicate_sack[0].end_seq = end_seq;
3503 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3504 }
3505 }
3506
3507 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3508 {
3509 if (!tp->rx_opt.dsack)
3510 tcp_dsack_set(tp, seq, end_seq);
3511 else
3512 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3513 }
3514
3515 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3516 {
3517 struct tcp_sock *tp = tcp_sk(sk);
3518
3519 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3520 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3521 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3522 tcp_enter_quickack_mode(sk);
3523
3524 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3525 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3526
3527 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3528 end_seq = tp->rcv_nxt;
3529 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3530 }
3531 }
3532
3533 tcp_send_ack(sk);
3534 }
3535
3536 /* These routines update the SACK block as out-of-order packets arrive or
3537 * in-order packets close up the sequence space.
3538 */
3539 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3540 {
3541 int this_sack;
3542 struct tcp_sack_block *sp = &tp->selective_acks[0];
3543 struct tcp_sack_block *swalk = sp+1;
3544
3545 /* See if the recent change to the first SACK eats into
3546 * or hits the sequence space of other SACK blocks, if so coalesce.
3547 */
3548 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3549 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3550 int i;
3551
3552 /* Zap SWALK, by moving every further SACK up by one slot.
3553 * Decrease num_sacks.
3554 */
3555 tp->rx_opt.num_sacks--;
3556 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3557 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3558 sp[i] = sp[i+1];
3559 continue;
3560 }
3561 this_sack++, swalk++;
3562 }
3563 }
3564
3565 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3566 {
3567 __u32 tmp;
3568
3569 tmp = sack1->start_seq;
3570 sack1->start_seq = sack2->start_seq;
3571 sack2->start_seq = tmp;
3572
3573 tmp = sack1->end_seq;
3574 sack1->end_seq = sack2->end_seq;
3575 sack2->end_seq = tmp;
3576 }
3577
3578 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3579 {
3580 struct tcp_sock *tp = tcp_sk(sk);
3581 struct tcp_sack_block *sp = &tp->selective_acks[0];
3582 int cur_sacks = tp->rx_opt.num_sacks;
3583 int this_sack;
3584
3585 if (!cur_sacks)
3586 goto new_sack;
3587
3588 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3589 if (tcp_sack_extend(sp, seq, end_seq)) {
3590 /* Rotate this_sack to the first one. */
3591 for (; this_sack>0; this_sack--, sp--)
3592 tcp_sack_swap(sp, sp-1);
3593 if (cur_sacks > 1)
3594 tcp_sack_maybe_coalesce(tp);
3595 return;
3596 }
3597 }
3598
3599 /* Could not find an adjacent existing SACK, build a new one,
3600 * put it at the front, and shift everyone else down. We
3601 * always know there is at least one SACK present already here.
3602 *
3603 * If the sack array is full, forget about the last one.
3604 */
3605 if (this_sack >= 4) {
3606 this_sack--;
3607 tp->rx_opt.num_sacks--;
3608 sp--;
3609 }
3610 for (; this_sack > 0; this_sack--, sp--)
3611 *sp = *(sp-1);
3612
3613 new_sack:
3614 /* Build the new head SACK, and we're done. */
3615 sp->start_seq = seq;
3616 sp->end_seq = end_seq;
3617 tp->rx_opt.num_sacks++;
3618 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3619 }
3620
3621 /* RCV.NXT advances, some SACKs should be eaten. */
3622
3623 static void tcp_sack_remove(struct tcp_sock *tp)
3624 {
3625 struct tcp_sack_block *sp = &tp->selective_acks[0];
3626 int num_sacks = tp->rx_opt.num_sacks;
3627 int this_sack;
3628
3629 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3630 if (skb_queue_empty(&tp->out_of_order_queue)) {
3631 tp->rx_opt.num_sacks = 0;
3632 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3633 return;
3634 }
3635
3636 for (this_sack = 0; this_sack < num_sacks; ) {
3637 /* Check if the start of the sack is covered by RCV.NXT. */
3638 if (!before(tp->rcv_nxt, sp->start_seq)) {
3639 int i;
3640
3641 /* RCV.NXT must cover all the block! */
3642 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3643
3644 /* Zap this SACK, by moving forward any other SACKS. */
3645 for (i=this_sack+1; i < num_sacks; i++)
3646 tp->selective_acks[i-1] = tp->selective_acks[i];
3647 num_sacks--;
3648 continue;
3649 }
3650 this_sack++;
3651 sp++;
3652 }
3653 if (num_sacks != tp->rx_opt.num_sacks) {
3654 tp->rx_opt.num_sacks = num_sacks;
3655 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3656 }
3657 }
3658
3659 /* This one checks to see if we can put data from the
3660 * out_of_order queue into the receive_queue.
3661 */
3662 static void tcp_ofo_queue(struct sock *sk)
3663 {
3664 struct tcp_sock *tp = tcp_sk(sk);
3665 __u32 dsack_high = tp->rcv_nxt;
3666 struct sk_buff *skb;
3667
3668 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3669 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3670 break;
3671
3672 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3673 __u32 dsack = dsack_high;
3674 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3675 dsack_high = TCP_SKB_CB(skb)->end_seq;
3676 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3677 }
3678
3679 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3680 SOCK_DEBUG(sk, "ofo packet was already received \n");
3681 __skb_unlink(skb, &tp->out_of_order_queue);
3682 __kfree_skb(skb);
3683 continue;
3684 }
3685 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3686 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3687 TCP_SKB_CB(skb)->end_seq);
3688
3689 __skb_unlink(skb, &tp->out_of_order_queue);
3690 __skb_queue_tail(&sk->sk_receive_queue, skb);
3691 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3692 if (tcp_hdr(skb)->fin)
3693 tcp_fin(skb, sk, tcp_hdr(skb));
3694 }
3695 }
3696
3697 static int tcp_prune_queue(struct sock *sk);
3698
3699 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3700 {
3701 struct tcphdr *th = tcp_hdr(skb);
3702 struct tcp_sock *tp = tcp_sk(sk);
3703 int eaten = -1;
3704
3705 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3706 goto drop;
3707
3708 __skb_pull(skb, th->doff*4);
3709
3710 TCP_ECN_accept_cwr(tp, skb);
3711
3712 if (tp->rx_opt.dsack) {
3713 tp->rx_opt.dsack = 0;
3714 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3715 4 - tp->rx_opt.tstamp_ok);
3716 }
3717
3718 /* Queue data for delivery to the user.
3719 * Packets in sequence go to the receive queue.
3720 * Out of sequence packets to the out_of_order_queue.
3721 */
3722 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3723 if (tcp_receive_window(tp) == 0)
3724 goto out_of_window;
3725
3726 /* Ok. In sequence. In window. */
3727 if (tp->ucopy.task == current &&
3728 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3729 sock_owned_by_user(sk) && !tp->urg_data) {
3730 int chunk = min_t(unsigned int, skb->len,
3731 tp->ucopy.len);
3732
3733 __set_current_state(TASK_RUNNING);
3734
3735 local_bh_enable();
3736 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3737 tp->ucopy.len -= chunk;
3738 tp->copied_seq += chunk;
3739 eaten = (chunk == skb->len && !th->fin);
3740 tcp_rcv_space_adjust(sk);
3741 }
3742 local_bh_disable();
3743 }
3744
3745 if (eaten <= 0) {
3746 queue_and_out:
3747 if (eaten < 0 &&
3748 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3749 !sk_stream_rmem_schedule(sk, skb))) {
3750 if (tcp_prune_queue(sk) < 0 ||
3751 !sk_stream_rmem_schedule(sk, skb))
3752 goto drop;
3753 }
3754 sk_stream_set_owner_r(skb, sk);
3755 __skb_queue_tail(&sk->sk_receive_queue, skb);
3756 }
3757 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3758 if (skb->len)
3759 tcp_event_data_recv(sk, skb);
3760 if (th->fin)
3761 tcp_fin(skb, sk, th);
3762
3763 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3764 tcp_ofo_queue(sk);
3765
3766 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3767 * gap in queue is filled.
3768 */
3769 if (skb_queue_empty(&tp->out_of_order_queue))
3770 inet_csk(sk)->icsk_ack.pingpong = 0;
3771 }
3772
3773 if (tp->rx_opt.num_sacks)
3774 tcp_sack_remove(tp);
3775
3776 tcp_fast_path_check(sk);
3777
3778 if (eaten > 0)
3779 __kfree_skb(skb);
3780 else if (!sock_flag(sk, SOCK_DEAD))
3781 sk->sk_data_ready(sk, 0);
3782 return;
3783 }
3784
3785 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3786 /* A retransmit, 2nd most common case. Force an immediate ack. */
3787 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3788 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3789
3790 out_of_window:
3791 tcp_enter_quickack_mode(sk);
3792 inet_csk_schedule_ack(sk);
3793 drop:
3794 __kfree_skb(skb);
3795 return;
3796 }
3797
3798 /* Out of window. F.e. zero window probe. */
3799 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3800 goto out_of_window;
3801
3802 tcp_enter_quickack_mode(sk);
3803
3804 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3805 /* Partial packet, seq < rcv_next < end_seq */
3806 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3807 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3808 TCP_SKB_CB(skb)->end_seq);
3809
3810 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3811
3812 /* If window is closed, drop tail of packet. But after
3813 * remembering D-SACK for its head made in previous line.
3814 */
3815 if (!tcp_receive_window(tp))
3816 goto out_of_window;
3817 goto queue_and_out;
3818 }
3819
3820 TCP_ECN_check_ce(tp, skb);
3821
3822 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3823 !sk_stream_rmem_schedule(sk, skb)) {
3824 if (tcp_prune_queue(sk) < 0 ||
3825 !sk_stream_rmem_schedule(sk, skb))
3826 goto drop;
3827 }
3828
3829 /* Disable header prediction. */
3830 tp->pred_flags = 0;
3831 inet_csk_schedule_ack(sk);
3832
3833 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3834 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3835
3836 sk_stream_set_owner_r(skb, sk);
3837
3838 if (!skb_peek(&tp->out_of_order_queue)) {
3839 /* Initial out of order segment, build 1 SACK. */
3840 if (tcp_is_sack(tp)) {
3841 tp->rx_opt.num_sacks = 1;
3842 tp->rx_opt.dsack = 0;
3843 tp->rx_opt.eff_sacks = 1;
3844 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3845 tp->selective_acks[0].end_seq =
3846 TCP_SKB_CB(skb)->end_seq;
3847 }
3848 __skb_queue_head(&tp->out_of_order_queue,skb);
3849 } else {
3850 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3851 u32 seq = TCP_SKB_CB(skb)->seq;
3852 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3853
3854 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3855 __skb_append(skb1, skb, &tp->out_of_order_queue);
3856
3857 if (!tp->rx_opt.num_sacks ||
3858 tp->selective_acks[0].end_seq != seq)
3859 goto add_sack;
3860
3861 /* Common case: data arrive in order after hole. */
3862 tp->selective_acks[0].end_seq = end_seq;
3863 return;
3864 }
3865
3866 /* Find place to insert this segment. */
3867 do {
3868 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3869 break;
3870 } while ((skb1 = skb1->prev) !=
3871 (struct sk_buff*)&tp->out_of_order_queue);
3872
3873 /* Do skb overlap to previous one? */
3874 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3875 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3876 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3877 /* All the bits are present. Drop. */
3878 __kfree_skb(skb);
3879 tcp_dsack_set(tp, seq, end_seq);
3880 goto add_sack;
3881 }
3882 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3883 /* Partial overlap. */
3884 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3885 } else {
3886 skb1 = skb1->prev;
3887 }
3888 }
3889 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3890
3891 /* And clean segments covered by new one as whole. */
3892 while ((skb1 = skb->next) !=
3893 (struct sk_buff*)&tp->out_of_order_queue &&
3894 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3895 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3896 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3897 break;
3898 }
3899 __skb_unlink(skb1, &tp->out_of_order_queue);
3900 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3901 __kfree_skb(skb1);
3902 }
3903
3904 add_sack:
3905 if (tcp_is_sack(tp))
3906 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3907 }
3908 }
3909
3910 /* Collapse contiguous sequence of skbs head..tail with
3911 * sequence numbers start..end.
3912 * Segments with FIN/SYN are not collapsed (only because this
3913 * simplifies code)
3914 */
3915 static void
3916 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3917 struct sk_buff *head, struct sk_buff *tail,
3918 u32 start, u32 end)
3919 {
3920 struct sk_buff *skb;
3921
3922 /* First, check that queue is collapsible and find
3923 * the point where collapsing can be useful. */
3924 for (skb = head; skb != tail; ) {
3925 /* No new bits? It is possible on ofo queue. */
3926 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3927 struct sk_buff *next = skb->next;
3928 __skb_unlink(skb, list);
3929 __kfree_skb(skb);
3930 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3931 skb = next;
3932 continue;
3933 }
3934
3935 /* The first skb to collapse is:
3936 * - not SYN/FIN and
3937 * - bloated or contains data before "start" or
3938 * overlaps to the next one.
3939 */
3940 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3941 (tcp_win_from_space(skb->truesize) > skb->len ||
3942 before(TCP_SKB_CB(skb)->seq, start) ||
3943 (skb->next != tail &&
3944 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3945 break;
3946
3947 /* Decided to skip this, advance start seq. */
3948 start = TCP_SKB_CB(skb)->end_seq;
3949 skb = skb->next;
3950 }
3951 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3952 return;
3953
3954 while (before(start, end)) {
3955 struct sk_buff *nskb;
3956 unsigned int header = skb_headroom(skb);
3957 int copy = SKB_MAX_ORDER(header, 0);
3958
3959 /* Too big header? This can happen with IPv6. */
3960 if (copy < 0)
3961 return;
3962 if (end-start < copy)
3963 copy = end-start;
3964 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3965 if (!nskb)
3966 return;
3967
3968 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3969 skb_set_network_header(nskb, (skb_network_header(skb) -
3970 skb->head));
3971 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3972 skb->head));
3973 skb_reserve(nskb, header);
3974 memcpy(nskb->head, skb->head, header);
3975 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3976 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3977 __skb_insert(nskb, skb->prev, skb, list);
3978 sk_stream_set_owner_r(nskb, sk);
3979
3980 /* Copy data, releasing collapsed skbs. */
3981 while (copy > 0) {
3982 int offset = start - TCP_SKB_CB(skb)->seq;
3983 int size = TCP_SKB_CB(skb)->end_seq - start;
3984
3985 BUG_ON(offset < 0);
3986 if (size > 0) {
3987 size = min(copy, size);
3988 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3989 BUG();
3990 TCP_SKB_CB(nskb)->end_seq += size;
3991 copy -= size;
3992 start += size;
3993 }
3994 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3995 struct sk_buff *next = skb->next;
3996 __skb_unlink(skb, list);
3997 __kfree_skb(skb);
3998 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3999 skb = next;
4000 if (skb == tail ||
4001 tcp_hdr(skb)->syn ||
4002 tcp_hdr(skb)->fin)
4003 return;
4004 }
4005 }
4006 }
4007 }
4008
4009 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4010 * and tcp_collapse() them until all the queue is collapsed.
4011 */
4012 static void tcp_collapse_ofo_queue(struct sock *sk)
4013 {
4014 struct tcp_sock *tp = tcp_sk(sk);
4015 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4016 struct sk_buff *head;
4017 u32 start, end;
4018
4019 if (skb == NULL)
4020 return;
4021
4022 start = TCP_SKB_CB(skb)->seq;
4023 end = TCP_SKB_CB(skb)->end_seq;
4024 head = skb;
4025
4026 for (;;) {
4027 skb = skb->next;
4028
4029 /* Segment is terminated when we see gap or when
4030 * we are at the end of all the queue. */
4031 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4032 after(TCP_SKB_CB(skb)->seq, end) ||
4033 before(TCP_SKB_CB(skb)->end_seq, start)) {
4034 tcp_collapse(sk, &tp->out_of_order_queue,
4035 head, skb, start, end);
4036 head = skb;
4037 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4038 break;
4039 /* Start new segment */
4040 start = TCP_SKB_CB(skb)->seq;
4041 end = TCP_SKB_CB(skb)->end_seq;
4042 } else {
4043 if (before(TCP_SKB_CB(skb)->seq, start))
4044 start = TCP_SKB_CB(skb)->seq;
4045 if (after(TCP_SKB_CB(skb)->end_seq, end))
4046 end = TCP_SKB_CB(skb)->end_seq;
4047 }
4048 }
4049 }
4050
4051 /* Reduce allocated memory if we can, trying to get
4052 * the socket within its memory limits again.
4053 *
4054 * Return less than zero if we should start dropping frames
4055 * until the socket owning process reads some of the data
4056 * to stabilize the situation.
4057 */
4058 static int tcp_prune_queue(struct sock *sk)
4059 {
4060 struct tcp_sock *tp = tcp_sk(sk);
4061
4062 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4063
4064 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4065
4066 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4067 tcp_clamp_window(sk);
4068 else if (tcp_memory_pressure)
4069 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4070
4071 tcp_collapse_ofo_queue(sk);
4072 tcp_collapse(sk, &sk->sk_receive_queue,
4073 sk->sk_receive_queue.next,
4074 (struct sk_buff*)&sk->sk_receive_queue,
4075 tp->copied_seq, tp->rcv_nxt);
4076 sk_stream_mem_reclaim(sk);
4077
4078 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4079 return 0;
4080
4081 /* Collapsing did not help, destructive actions follow.
4082 * This must not ever occur. */
4083
4084 /* First, purge the out_of_order queue. */
4085 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4086 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4087 __skb_queue_purge(&tp->out_of_order_queue);
4088
4089 /* Reset SACK state. A conforming SACK implementation will
4090 * do the same at a timeout based retransmit. When a connection
4091 * is in a sad state like this, we care only about integrity
4092 * of the connection not performance.
4093 */
4094 if (tcp_is_sack(tp))
4095 tcp_sack_reset(&tp->rx_opt);
4096 sk_stream_mem_reclaim(sk);
4097 }
4098
4099 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4100 return 0;
4101
4102 /* If we are really being abused, tell the caller to silently
4103 * drop receive data on the floor. It will get retransmitted
4104 * and hopefully then we'll have sufficient space.
4105 */
4106 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4107
4108 /* Massive buffer overcommit. */
4109 tp->pred_flags = 0;
4110 return -1;
4111 }
4112
4113
4114 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4115 * As additional protections, we do not touch cwnd in retransmission phases,
4116 * and if application hit its sndbuf limit recently.
4117 */
4118 void tcp_cwnd_application_limited(struct sock *sk)
4119 {
4120 struct tcp_sock *tp = tcp_sk(sk);
4121
4122 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4123 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4124 /* Limited by application or receiver window. */
4125 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4126 u32 win_used = max(tp->snd_cwnd_used, init_win);
4127 if (win_used < tp->snd_cwnd) {
4128 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4129 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4130 }
4131 tp->snd_cwnd_used = 0;
4132 }
4133 tp->snd_cwnd_stamp = tcp_time_stamp;
4134 }
4135
4136 static int tcp_should_expand_sndbuf(struct sock *sk)
4137 {
4138 struct tcp_sock *tp = tcp_sk(sk);
4139
4140 /* If the user specified a specific send buffer setting, do
4141 * not modify it.
4142 */
4143 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4144 return 0;
4145
4146 /* If we are under global TCP memory pressure, do not expand. */
4147 if (tcp_memory_pressure)
4148 return 0;
4149
4150 /* If we are under soft global TCP memory pressure, do not expand. */
4151 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4152 return 0;
4153
4154 /* If we filled the congestion window, do not expand. */
4155 if (tp->packets_out >= tp->snd_cwnd)
4156 return 0;
4157
4158 return 1;
4159 }
4160
4161 /* When incoming ACK allowed to free some skb from write_queue,
4162 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4163 * on the exit from tcp input handler.
4164 *
4165 * PROBLEM: sndbuf expansion does not work well with largesend.
4166 */
4167 static void tcp_new_space(struct sock *sk)
4168 {
4169 struct tcp_sock *tp = tcp_sk(sk);
4170
4171 if (tcp_should_expand_sndbuf(sk)) {
4172 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4173 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4174 demanded = max_t(unsigned int, tp->snd_cwnd,
4175 tp->reordering + 1);
4176 sndmem *= 2*demanded;
4177 if (sndmem > sk->sk_sndbuf)
4178 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4179 tp->snd_cwnd_stamp = tcp_time_stamp;
4180 }
4181
4182 sk->sk_write_space(sk);
4183 }
4184
4185 static void tcp_check_space(struct sock *sk)
4186 {
4187 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4188 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4189 if (sk->sk_socket &&
4190 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4191 tcp_new_space(sk);
4192 }
4193 }
4194
4195 static inline void tcp_data_snd_check(struct sock *sk)
4196 {
4197 tcp_push_pending_frames(sk);
4198 tcp_check_space(sk);
4199 }
4200
4201 /*
4202 * Check if sending an ack is needed.
4203 */
4204 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4205 {
4206 struct tcp_sock *tp = tcp_sk(sk);
4207
4208 /* More than one full frame received... */
4209 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4210 /* ... and right edge of window advances far enough.
4211 * (tcp_recvmsg() will send ACK otherwise). Or...
4212 */
4213 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4214 /* We ACK each frame or... */
4215 tcp_in_quickack_mode(sk) ||
4216 /* We have out of order data. */
4217 (ofo_possible &&
4218 skb_peek(&tp->out_of_order_queue))) {
4219 /* Then ack it now */
4220 tcp_send_ack(sk);
4221 } else {
4222 /* Else, send delayed ack. */
4223 tcp_send_delayed_ack(sk);
4224 }
4225 }
4226
4227 static inline void tcp_ack_snd_check(struct sock *sk)
4228 {
4229 if (!inet_csk_ack_scheduled(sk)) {
4230 /* We sent a data segment already. */
4231 return;
4232 }
4233 __tcp_ack_snd_check(sk, 1);
4234 }
4235
4236 /*
4237 * This routine is only called when we have urgent data
4238 * signaled. Its the 'slow' part of tcp_urg. It could be
4239 * moved inline now as tcp_urg is only called from one
4240 * place. We handle URGent data wrong. We have to - as
4241 * BSD still doesn't use the correction from RFC961.
4242 * For 1003.1g we should support a new option TCP_STDURG to permit
4243 * either form (or just set the sysctl tcp_stdurg).
4244 */
4245
4246 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4247 {
4248 struct tcp_sock *tp = tcp_sk(sk);
4249 u32 ptr = ntohs(th->urg_ptr);
4250
4251 if (ptr && !sysctl_tcp_stdurg)
4252 ptr--;
4253 ptr += ntohl(th->seq);
4254
4255 /* Ignore urgent data that we've already seen and read. */
4256 if (after(tp->copied_seq, ptr))
4257 return;
4258
4259 /* Do not replay urg ptr.
4260 *
4261 * NOTE: interesting situation not covered by specs.
4262 * Misbehaving sender may send urg ptr, pointing to segment,
4263 * which we already have in ofo queue. We are not able to fetch
4264 * such data and will stay in TCP_URG_NOTYET until will be eaten
4265 * by recvmsg(). Seems, we are not obliged to handle such wicked
4266 * situations. But it is worth to think about possibility of some
4267 * DoSes using some hypothetical application level deadlock.
4268 */
4269 if (before(ptr, tp->rcv_nxt))
4270 return;
4271
4272 /* Do we already have a newer (or duplicate) urgent pointer? */
4273 if (tp->urg_data && !after(ptr, tp->urg_seq))
4274 return;
4275
4276 /* Tell the world about our new urgent pointer. */
4277 sk_send_sigurg(sk);
4278
4279 /* We may be adding urgent data when the last byte read was
4280 * urgent. To do this requires some care. We cannot just ignore
4281 * tp->copied_seq since we would read the last urgent byte again
4282 * as data, nor can we alter copied_seq until this data arrives
4283 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4284 *
4285 * NOTE. Double Dutch. Rendering to plain English: author of comment
4286 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4287 * and expect that both A and B disappear from stream. This is _wrong_.
4288 * Though this happens in BSD with high probability, this is occasional.
4289 * Any application relying on this is buggy. Note also, that fix "works"
4290 * only in this artificial test. Insert some normal data between A and B and we will
4291 * decline of BSD again. Verdict: it is better to remove to trap
4292 * buggy users.
4293 */
4294 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4295 !sock_flag(sk, SOCK_URGINLINE) &&
4296 tp->copied_seq != tp->rcv_nxt) {
4297 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4298 tp->copied_seq++;
4299 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4300 __skb_unlink(skb, &sk->sk_receive_queue);
4301 __kfree_skb(skb);
4302 }
4303 }
4304
4305 tp->urg_data = TCP_URG_NOTYET;
4306 tp->urg_seq = ptr;
4307
4308 /* Disable header prediction. */
4309 tp->pred_flags = 0;
4310 }
4311
4312 /* This is the 'fast' part of urgent handling. */
4313 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4314 {
4315 struct tcp_sock *tp = tcp_sk(sk);
4316
4317 /* Check if we get a new urgent pointer - normally not. */
4318 if (th->urg)
4319 tcp_check_urg(sk,th);
4320
4321 /* Do we wait for any urgent data? - normally not... */
4322 if (tp->urg_data == TCP_URG_NOTYET) {
4323 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4324 th->syn;
4325
4326 /* Is the urgent pointer pointing into this packet? */
4327 if (ptr < skb->len) {
4328 u8 tmp;
4329 if (skb_copy_bits(skb, ptr, &tmp, 1))
4330 BUG();
4331 tp->urg_data = TCP_URG_VALID | tmp;
4332 if (!sock_flag(sk, SOCK_DEAD))
4333 sk->sk_data_ready(sk, 0);
4334 }
4335 }
4336 }
4337
4338 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4339 {
4340 struct tcp_sock *tp = tcp_sk(sk);
4341 int chunk = skb->len - hlen;
4342 int err;
4343
4344 local_bh_enable();
4345 if (skb_csum_unnecessary(skb))
4346 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4347 else
4348 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4349 tp->ucopy.iov);
4350
4351 if (!err) {
4352 tp->ucopy.len -= chunk;
4353 tp->copied_seq += chunk;
4354 tcp_rcv_space_adjust(sk);
4355 }
4356
4357 local_bh_disable();
4358 return err;
4359 }
4360
4361 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4362 {
4363 __sum16 result;
4364
4365 if (sock_owned_by_user(sk)) {
4366 local_bh_enable();
4367 result = __tcp_checksum_complete(skb);
4368 local_bh_disable();
4369 } else {
4370 result = __tcp_checksum_complete(skb);
4371 }
4372 return result;
4373 }
4374
4375 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4376 {
4377 return !skb_csum_unnecessary(skb) &&
4378 __tcp_checksum_complete_user(sk, skb);
4379 }
4380
4381 #ifdef CONFIG_NET_DMA
4382 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4383 {
4384 struct tcp_sock *tp = tcp_sk(sk);
4385 int chunk = skb->len - hlen;
4386 int dma_cookie;
4387 int copied_early = 0;
4388
4389 if (tp->ucopy.wakeup)
4390 return 0;
4391
4392 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4393 tp->ucopy.dma_chan = get_softnet_dma();
4394
4395 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4396
4397 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4398 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4399
4400 if (dma_cookie < 0)
4401 goto out;
4402
4403 tp->ucopy.dma_cookie = dma_cookie;
4404 copied_early = 1;
4405
4406 tp->ucopy.len -= chunk;
4407 tp->copied_seq += chunk;
4408 tcp_rcv_space_adjust(sk);
4409
4410 if ((tp->ucopy.len == 0) ||
4411 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4412 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4413 tp->ucopy.wakeup = 1;
4414 sk->sk_data_ready(sk, 0);
4415 }
4416 } else if (chunk > 0) {
4417 tp->ucopy.wakeup = 1;
4418 sk->sk_data_ready(sk, 0);
4419 }
4420 out:
4421 return copied_early;
4422 }
4423 #endif /* CONFIG_NET_DMA */
4424
4425 /*
4426 * TCP receive function for the ESTABLISHED state.
4427 *
4428 * It is split into a fast path and a slow path. The fast path is
4429 * disabled when:
4430 * - A zero window was announced from us - zero window probing
4431 * is only handled properly in the slow path.
4432 * - Out of order segments arrived.
4433 * - Urgent data is expected.
4434 * - There is no buffer space left
4435 * - Unexpected TCP flags/window values/header lengths are received
4436 * (detected by checking the TCP header against pred_flags)
4437 * - Data is sent in both directions. Fast path only supports pure senders
4438 * or pure receivers (this means either the sequence number or the ack
4439 * value must stay constant)
4440 * - Unexpected TCP option.
4441 *
4442 * When these conditions are not satisfied it drops into a standard
4443 * receive procedure patterned after RFC793 to handle all cases.
4444 * The first three cases are guaranteed by proper pred_flags setting,
4445 * the rest is checked inline. Fast processing is turned on in
4446 * tcp_data_queue when everything is OK.
4447 */
4448 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4449 struct tcphdr *th, unsigned len)
4450 {
4451 struct tcp_sock *tp = tcp_sk(sk);
4452
4453 /*
4454 * Header prediction.
4455 * The code loosely follows the one in the famous
4456 * "30 instruction TCP receive" Van Jacobson mail.
4457 *
4458 * Van's trick is to deposit buffers into socket queue
4459 * on a device interrupt, to call tcp_recv function
4460 * on the receive process context and checksum and copy
4461 * the buffer to user space. smart...
4462 *
4463 * Our current scheme is not silly either but we take the
4464 * extra cost of the net_bh soft interrupt processing...
4465 * We do checksum and copy also but from device to kernel.
4466 */
4467
4468 tp->rx_opt.saw_tstamp = 0;
4469
4470 /* pred_flags is 0xS?10 << 16 + snd_wnd
4471 * if header_prediction is to be made
4472 * 'S' will always be tp->tcp_header_len >> 2
4473 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4474 * turn it off (when there are holes in the receive
4475 * space for instance)
4476 * PSH flag is ignored.
4477 */
4478
4479 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4480 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4481 int tcp_header_len = tp->tcp_header_len;
4482
4483 /* Timestamp header prediction: tcp_header_len
4484 * is automatically equal to th->doff*4 due to pred_flags
4485 * match.
4486 */
4487
4488 /* Check timestamp */
4489 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4490 __be32 *ptr = (__be32 *)(th + 1);
4491
4492 /* No? Slow path! */
4493 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4494 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4495 goto slow_path;
4496
4497 tp->rx_opt.saw_tstamp = 1;
4498 ++ptr;
4499 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4500 ++ptr;
4501 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4502
4503 /* If PAWS failed, check it more carefully in slow path */
4504 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4505 goto slow_path;
4506
4507 /* DO NOT update ts_recent here, if checksum fails
4508 * and timestamp was corrupted part, it will result
4509 * in a hung connection since we will drop all
4510 * future packets due to the PAWS test.
4511 */
4512 }
4513
4514 if (len <= tcp_header_len) {
4515 /* Bulk data transfer: sender */
4516 if (len == tcp_header_len) {
4517 /* Predicted packet is in window by definition.
4518 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4519 * Hence, check seq<=rcv_wup reduces to:
4520 */
4521 if (tcp_header_len ==
4522 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4523 tp->rcv_nxt == tp->rcv_wup)
4524 tcp_store_ts_recent(tp);
4525
4526 /* We know that such packets are checksummed
4527 * on entry.
4528 */
4529 tcp_ack(sk, skb, 0);
4530 __kfree_skb(skb);
4531 tcp_data_snd_check(sk);
4532 return 0;
4533 } else { /* Header too small */
4534 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4535 goto discard;
4536 }
4537 } else {
4538 int eaten = 0;
4539 int copied_early = 0;
4540
4541 if (tp->copied_seq == tp->rcv_nxt &&
4542 len - tcp_header_len <= tp->ucopy.len) {
4543 #ifdef CONFIG_NET_DMA
4544 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4545 copied_early = 1;
4546 eaten = 1;
4547 }
4548 #endif
4549 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4550 __set_current_state(TASK_RUNNING);
4551
4552 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4553 eaten = 1;
4554 }
4555 if (eaten) {
4556 /* Predicted packet is in window by definition.
4557 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4558 * Hence, check seq<=rcv_wup reduces to:
4559 */
4560 if (tcp_header_len ==
4561 (sizeof(struct tcphdr) +
4562 TCPOLEN_TSTAMP_ALIGNED) &&
4563 tp->rcv_nxt == tp->rcv_wup)
4564 tcp_store_ts_recent(tp);
4565
4566 tcp_rcv_rtt_measure_ts(sk, skb);
4567
4568 __skb_pull(skb, tcp_header_len);
4569 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4570 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4571 }
4572 if (copied_early)
4573 tcp_cleanup_rbuf(sk, skb->len);
4574 }
4575 if (!eaten) {
4576 if (tcp_checksum_complete_user(sk, skb))
4577 goto csum_error;
4578
4579 /* Predicted packet is in window by definition.
4580 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4581 * Hence, check seq<=rcv_wup reduces to:
4582 */
4583 if (tcp_header_len ==
4584 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4585 tp->rcv_nxt == tp->rcv_wup)
4586 tcp_store_ts_recent(tp);
4587
4588 tcp_rcv_rtt_measure_ts(sk, skb);
4589
4590 if ((int)skb->truesize > sk->sk_forward_alloc)
4591 goto step5;
4592
4593 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4594
4595 /* Bulk data transfer: receiver */
4596 __skb_pull(skb,tcp_header_len);
4597 __skb_queue_tail(&sk->sk_receive_queue, skb);
4598 sk_stream_set_owner_r(skb, sk);
4599 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4600 }
4601
4602 tcp_event_data_recv(sk, skb);
4603
4604 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4605 /* Well, only one small jumplet in fast path... */
4606 tcp_ack(sk, skb, FLAG_DATA);
4607 tcp_data_snd_check(sk);
4608 if (!inet_csk_ack_scheduled(sk))
4609 goto no_ack;
4610 }
4611
4612 __tcp_ack_snd_check(sk, 0);
4613 no_ack:
4614 #ifdef CONFIG_NET_DMA
4615 if (copied_early)
4616 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4617 else
4618 #endif
4619 if (eaten)
4620 __kfree_skb(skb);
4621 else
4622 sk->sk_data_ready(sk, 0);
4623 return 0;
4624 }
4625 }
4626
4627 slow_path:
4628 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4629 goto csum_error;
4630
4631 /*
4632 * RFC1323: H1. Apply PAWS check first.
4633 */
4634 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4635 tcp_paws_discard(sk, skb)) {
4636 if (!th->rst) {
4637 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4638 tcp_send_dupack(sk, skb);
4639 goto discard;
4640 }
4641 /* Resets are accepted even if PAWS failed.
4642
4643 ts_recent update must be made after we are sure
4644 that the packet is in window.
4645 */
4646 }
4647
4648 /*
4649 * Standard slow path.
4650 */
4651
4652 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4653 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4654 * (RST) segments are validated by checking their SEQ-fields."
4655 * And page 69: "If an incoming segment is not acceptable,
4656 * an acknowledgment should be sent in reply (unless the RST bit
4657 * is set, if so drop the segment and return)".
4658 */
4659 if (!th->rst)
4660 tcp_send_dupack(sk, skb);
4661 goto discard;
4662 }
4663
4664 if (th->rst) {
4665 tcp_reset(sk);
4666 goto discard;
4667 }
4668
4669 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4670
4671 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4672 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4673 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4674 tcp_reset(sk);
4675 return 1;
4676 }
4677
4678 step5:
4679 if (th->ack)
4680 tcp_ack(sk, skb, FLAG_SLOWPATH);
4681
4682 tcp_rcv_rtt_measure_ts(sk, skb);
4683
4684 /* Process urgent data. */
4685 tcp_urg(sk, skb, th);
4686
4687 /* step 7: process the segment text */
4688 tcp_data_queue(sk, skb);
4689
4690 tcp_data_snd_check(sk);
4691 tcp_ack_snd_check(sk);
4692 return 0;
4693
4694 csum_error:
4695 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4696
4697 discard:
4698 __kfree_skb(skb);
4699 return 0;
4700 }
4701
4702 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4703 struct tcphdr *th, unsigned len)
4704 {
4705 struct tcp_sock *tp = tcp_sk(sk);
4706 struct inet_connection_sock *icsk = inet_csk(sk);
4707 int saved_clamp = tp->rx_opt.mss_clamp;
4708
4709 tcp_parse_options(skb, &tp->rx_opt, 0);
4710
4711 if (th->ack) {
4712 /* rfc793:
4713 * "If the state is SYN-SENT then
4714 * first check the ACK bit
4715 * If the ACK bit is set
4716 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4717 * a reset (unless the RST bit is set, if so drop
4718 * the segment and return)"
4719 *
4720 * We do not send data with SYN, so that RFC-correct
4721 * test reduces to:
4722 */
4723 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4724 goto reset_and_undo;
4725
4726 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4727 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4728 tcp_time_stamp)) {
4729 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4730 goto reset_and_undo;
4731 }
4732
4733 /* Now ACK is acceptable.
4734 *
4735 * "If the RST bit is set
4736 * If the ACK was acceptable then signal the user "error:
4737 * connection reset", drop the segment, enter CLOSED state,
4738 * delete TCB, and return."
4739 */
4740
4741 if (th->rst) {
4742 tcp_reset(sk);
4743 goto discard;
4744 }
4745
4746 /* rfc793:
4747 * "fifth, if neither of the SYN or RST bits is set then
4748 * drop the segment and return."
4749 *
4750 * See note below!
4751 * --ANK(990513)
4752 */
4753 if (!th->syn)
4754 goto discard_and_undo;
4755
4756 /* rfc793:
4757 * "If the SYN bit is on ...
4758 * are acceptable then ...
4759 * (our SYN has been ACKed), change the connection
4760 * state to ESTABLISHED..."
4761 */
4762
4763 TCP_ECN_rcv_synack(tp, th);
4764
4765 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4766 tcp_ack(sk, skb, FLAG_SLOWPATH);
4767
4768 /* Ok.. it's good. Set up sequence numbers and
4769 * move to established.
4770 */
4771 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4772 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4773
4774 /* RFC1323: The window in SYN & SYN/ACK segments is
4775 * never scaled.
4776 */
4777 tp->snd_wnd = ntohs(th->window);
4778 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4779
4780 if (!tp->rx_opt.wscale_ok) {
4781 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4782 tp->window_clamp = min(tp->window_clamp, 65535U);
4783 }
4784
4785 if (tp->rx_opt.saw_tstamp) {
4786 tp->rx_opt.tstamp_ok = 1;
4787 tp->tcp_header_len =
4788 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4789 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4790 tcp_store_ts_recent(tp);
4791 } else {
4792 tp->tcp_header_len = sizeof(struct tcphdr);
4793 }
4794
4795 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4796 tcp_enable_fack(tp);
4797
4798 tcp_mtup_init(sk);
4799 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4800 tcp_initialize_rcv_mss(sk);
4801
4802 /* Remember, tcp_poll() does not lock socket!
4803 * Change state from SYN-SENT only after copied_seq
4804 * is initialized. */
4805 tp->copied_seq = tp->rcv_nxt;
4806 smp_mb();
4807 tcp_set_state(sk, TCP_ESTABLISHED);
4808
4809 security_inet_conn_established(sk, skb);
4810
4811 /* Make sure socket is routed, for correct metrics. */
4812 icsk->icsk_af_ops->rebuild_header(sk);
4813
4814 tcp_init_metrics(sk);
4815
4816 tcp_init_congestion_control(sk);
4817
4818 /* Prevent spurious tcp_cwnd_restart() on first data
4819 * packet.
4820 */
4821 tp->lsndtime = tcp_time_stamp;
4822
4823 tcp_init_buffer_space(sk);
4824
4825 if (sock_flag(sk, SOCK_KEEPOPEN))
4826 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4827
4828 if (!tp->rx_opt.snd_wscale)
4829 __tcp_fast_path_on(tp, tp->snd_wnd);
4830 else
4831 tp->pred_flags = 0;
4832
4833 if (!sock_flag(sk, SOCK_DEAD)) {
4834 sk->sk_state_change(sk);
4835 sk_wake_async(sk, 0, POLL_OUT);
4836 }
4837
4838 if (sk->sk_write_pending ||
4839 icsk->icsk_accept_queue.rskq_defer_accept ||
4840 icsk->icsk_ack.pingpong) {
4841 /* Save one ACK. Data will be ready after
4842 * several ticks, if write_pending is set.
4843 *
4844 * It may be deleted, but with this feature tcpdumps
4845 * look so _wonderfully_ clever, that I was not able
4846 * to stand against the temptation 8) --ANK
4847 */
4848 inet_csk_schedule_ack(sk);
4849 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4850 icsk->icsk_ack.ato = TCP_ATO_MIN;
4851 tcp_incr_quickack(sk);
4852 tcp_enter_quickack_mode(sk);
4853 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4854 TCP_DELACK_MAX, TCP_RTO_MAX);
4855
4856 discard:
4857 __kfree_skb(skb);
4858 return 0;
4859 } else {
4860 tcp_send_ack(sk);
4861 }
4862 return -1;
4863 }
4864
4865 /* No ACK in the segment */
4866
4867 if (th->rst) {
4868 /* rfc793:
4869 * "If the RST bit is set
4870 *
4871 * Otherwise (no ACK) drop the segment and return."
4872 */
4873
4874 goto discard_and_undo;
4875 }
4876
4877 /* PAWS check. */
4878 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4879 goto discard_and_undo;
4880
4881 if (th->syn) {
4882 /* We see SYN without ACK. It is attempt of
4883 * simultaneous connect with crossed SYNs.
4884 * Particularly, it can be connect to self.
4885 */
4886 tcp_set_state(sk, TCP_SYN_RECV);
4887
4888 if (tp->rx_opt.saw_tstamp) {
4889 tp->rx_opt.tstamp_ok = 1;
4890 tcp_store_ts_recent(tp);
4891 tp->tcp_header_len =
4892 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4893 } else {
4894 tp->tcp_header_len = sizeof(struct tcphdr);
4895 }
4896
4897 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4898 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4899
4900 /* RFC1323: The window in SYN & SYN/ACK segments is
4901 * never scaled.
4902 */
4903 tp->snd_wnd = ntohs(th->window);
4904 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4905 tp->max_window = tp->snd_wnd;
4906
4907 TCP_ECN_rcv_syn(tp, th);
4908
4909 tcp_mtup_init(sk);
4910 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4911 tcp_initialize_rcv_mss(sk);
4912
4913
4914 tcp_send_synack(sk);
4915 #if 0
4916 /* Note, we could accept data and URG from this segment.
4917 * There are no obstacles to make this.
4918 *
4919 * However, if we ignore data in ACKless segments sometimes,
4920 * we have no reasons to accept it sometimes.
4921 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4922 * is not flawless. So, discard packet for sanity.
4923 * Uncomment this return to process the data.
4924 */
4925 return -1;
4926 #else
4927 goto discard;
4928 #endif
4929 }
4930 /* "fifth, if neither of the SYN or RST bits is set then
4931 * drop the segment and return."
4932 */
4933
4934 discard_and_undo:
4935 tcp_clear_options(&tp->rx_opt);
4936 tp->rx_opt.mss_clamp = saved_clamp;
4937 goto discard;
4938
4939 reset_and_undo:
4940 tcp_clear_options(&tp->rx_opt);
4941 tp->rx_opt.mss_clamp = saved_clamp;
4942 return 1;
4943 }
4944
4945
4946 /*
4947 * This function implements the receiving procedure of RFC 793 for
4948 * all states except ESTABLISHED and TIME_WAIT.
4949 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4950 * address independent.
4951 */
4952
4953 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4954 struct tcphdr *th, unsigned len)
4955 {
4956 struct tcp_sock *tp = tcp_sk(sk);
4957 struct inet_connection_sock *icsk = inet_csk(sk);
4958 int queued = 0;
4959
4960 tp->rx_opt.saw_tstamp = 0;
4961
4962 switch (sk->sk_state) {
4963 case TCP_CLOSE:
4964 goto discard;
4965
4966 case TCP_LISTEN:
4967 if (th->ack)
4968 return 1;
4969
4970 if (th->rst)
4971 goto discard;
4972
4973 if (th->syn) {
4974 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4975 return 1;
4976
4977 /* Now we have several options: In theory there is
4978 * nothing else in the frame. KA9Q has an option to
4979 * send data with the syn, BSD accepts data with the
4980 * syn up to the [to be] advertised window and
4981 * Solaris 2.1 gives you a protocol error. For now
4982 * we just ignore it, that fits the spec precisely
4983 * and avoids incompatibilities. It would be nice in
4984 * future to drop through and process the data.
4985 *
4986 * Now that TTCP is starting to be used we ought to
4987 * queue this data.
4988 * But, this leaves one open to an easy denial of
4989 * service attack, and SYN cookies can't defend
4990 * against this problem. So, we drop the data
4991 * in the interest of security over speed unless
4992 * it's still in use.
4993 */
4994 kfree_skb(skb);
4995 return 0;
4996 }
4997 goto discard;
4998
4999 case TCP_SYN_SENT:
5000 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5001 if (queued >= 0)
5002 return queued;
5003
5004 /* Do step6 onward by hand. */
5005 tcp_urg(sk, skb, th);
5006 __kfree_skb(skb);
5007 tcp_data_snd_check(sk);
5008 return 0;
5009 }
5010
5011 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5012 tcp_paws_discard(sk, skb)) {
5013 if (!th->rst) {
5014 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5015 tcp_send_dupack(sk, skb);
5016 goto discard;
5017 }
5018 /* Reset is accepted even if it did not pass PAWS. */
5019 }
5020
5021 /* step 1: check sequence number */
5022 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5023 if (!th->rst)
5024 tcp_send_dupack(sk, skb);
5025 goto discard;
5026 }
5027
5028 /* step 2: check RST bit */
5029 if (th->rst) {
5030 tcp_reset(sk);
5031 goto discard;
5032 }
5033
5034 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5035
5036 /* step 3: check security and precedence [ignored] */
5037
5038 /* step 4:
5039 *
5040 * Check for a SYN in window.
5041 */
5042 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5043 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5044 tcp_reset(sk);
5045 return 1;
5046 }
5047
5048 /* step 5: check the ACK field */
5049 if (th->ack) {
5050 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5051
5052 switch (sk->sk_state) {
5053 case TCP_SYN_RECV:
5054 if (acceptable) {
5055 tp->copied_seq = tp->rcv_nxt;
5056 smp_mb();
5057 tcp_set_state(sk, TCP_ESTABLISHED);
5058 sk->sk_state_change(sk);
5059
5060 /* Note, that this wakeup is only for marginal
5061 * crossed SYN case. Passively open sockets
5062 * are not waked up, because sk->sk_sleep ==
5063 * NULL and sk->sk_socket == NULL.
5064 */
5065 if (sk->sk_socket) {
5066 sk_wake_async(sk,0,POLL_OUT);
5067 }
5068
5069 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5070 tp->snd_wnd = ntohs(th->window) <<
5071 tp->rx_opt.snd_wscale;
5072 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5073 TCP_SKB_CB(skb)->seq);
5074
5075 /* tcp_ack considers this ACK as duplicate
5076 * and does not calculate rtt.
5077 * Fix it at least with timestamps.
5078 */
5079 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5080 !tp->srtt)
5081 tcp_ack_saw_tstamp(sk, 0);
5082
5083 if (tp->rx_opt.tstamp_ok)
5084 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5085
5086 /* Make sure socket is routed, for
5087 * correct metrics.
5088 */
5089 icsk->icsk_af_ops->rebuild_header(sk);
5090
5091 tcp_init_metrics(sk);
5092
5093 tcp_init_congestion_control(sk);
5094
5095 /* Prevent spurious tcp_cwnd_restart() on
5096 * first data packet.
5097 */
5098 tp->lsndtime = tcp_time_stamp;
5099
5100 tcp_mtup_init(sk);
5101 tcp_initialize_rcv_mss(sk);
5102 tcp_init_buffer_space(sk);
5103 tcp_fast_path_on(tp);
5104 } else {
5105 return 1;
5106 }
5107 break;
5108
5109 case TCP_FIN_WAIT1:
5110 if (tp->snd_una == tp->write_seq) {
5111 tcp_set_state(sk, TCP_FIN_WAIT2);
5112 sk->sk_shutdown |= SEND_SHUTDOWN;
5113 dst_confirm(sk->sk_dst_cache);
5114
5115 if (!sock_flag(sk, SOCK_DEAD))
5116 /* Wake up lingering close() */
5117 sk->sk_state_change(sk);
5118 else {
5119 int tmo;
5120
5121 if (tp->linger2 < 0 ||
5122 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5123 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5124 tcp_done(sk);
5125 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5126 return 1;
5127 }
5128
5129 tmo = tcp_fin_time(sk);
5130 if (tmo > TCP_TIMEWAIT_LEN) {
5131 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5132 } else if (th->fin || sock_owned_by_user(sk)) {
5133 /* Bad case. We could lose such FIN otherwise.
5134 * It is not a big problem, but it looks confusing
5135 * and not so rare event. We still can lose it now,
5136 * if it spins in bh_lock_sock(), but it is really
5137 * marginal case.
5138 */
5139 inet_csk_reset_keepalive_timer(sk, tmo);
5140 } else {
5141 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5142 goto discard;
5143 }
5144 }
5145 }
5146 break;
5147
5148 case TCP_CLOSING:
5149 if (tp->snd_una == tp->write_seq) {
5150 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5151 goto discard;
5152 }
5153 break;
5154
5155 case TCP_LAST_ACK:
5156 if (tp->snd_una == tp->write_seq) {
5157 tcp_update_metrics(sk);
5158 tcp_done(sk);
5159 goto discard;
5160 }
5161 break;
5162 }
5163 } else
5164 goto discard;
5165
5166 /* step 6: check the URG bit */
5167 tcp_urg(sk, skb, th);
5168
5169 /* step 7: process the segment text */
5170 switch (sk->sk_state) {
5171 case TCP_CLOSE_WAIT:
5172 case TCP_CLOSING:
5173 case TCP_LAST_ACK:
5174 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5175 break;
5176 case TCP_FIN_WAIT1:
5177 case TCP_FIN_WAIT2:
5178 /* RFC 793 says to queue data in these states,
5179 * RFC 1122 says we MUST send a reset.
5180 * BSD 4.4 also does reset.
5181 */
5182 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5183 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5184 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5185 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5186 tcp_reset(sk);
5187 return 1;
5188 }
5189 }
5190 /* Fall through */
5191 case TCP_ESTABLISHED:
5192 tcp_data_queue(sk, skb);
5193 queued = 1;
5194 break;
5195 }
5196
5197 /* tcp_data could move socket to TIME-WAIT */
5198 if (sk->sk_state != TCP_CLOSE) {
5199 tcp_data_snd_check(sk);
5200 tcp_ack_snd_check(sk);
5201 }
5202
5203 if (!queued) {
5204 discard:
5205 __kfree_skb(skb);
5206 }
5207 return 0;
5208 }
5209
5210 EXPORT_SYMBOL(sysctl_tcp_ecn);
5211 EXPORT_SYMBOL(sysctl_tcp_reordering);
5212 EXPORT_SYMBOL(tcp_parse_options);
5213 EXPORT_SYMBOL(tcp_rcv_established);
5214 EXPORT_SYMBOL(tcp_rcv_state_process);
5215 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.191183 seconds and 6 git commands to generate.