[TCP]: Create tcp_sacktag_one().
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
108
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120 /* Adapt the MSS value used to make delayed ack decision to the
121 * real world.
122 */
123 static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
125 {
126 struct inet_connection_sock *icsk = inet_csk(sk);
127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 unsigned int len;
129
130 icsk->icsk_ack.last_seg_size = 0;
131
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
134 */
135 len = skb_shinfo(skb)->gso_size ?: skb->len;
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
141 *
142 * "len" is invariant segment length, including TCP header.
143 */
144 len += skb->data - skb_transport_header(skb);
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
150 */
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
156 */
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
159 if (len == lss) {
160 icsk->icsk_ack.rcv_mss = len;
161 return;
162 }
163 }
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175 if (quickacks==0)
176 quickacks=2;
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
226 }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
257
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290 struct tcp_sock *tp = tcp_sk(sk);
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
294
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299 truesize >>= 1;
300 window >>= 1;
301 }
302 return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk,
306 struct sk_buff *skb)
307 {
308 struct tcp_sock *tp = tcp_sk(sk);
309
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
322 incr = __tcp_grow_window(sk, skb);
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326 inet_csk(sk)->icsk_ack.quick |= 1;
327 }
328 }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338 /* Try to select rcvbuf so that 4 mss-sized segments
339 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 */
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349 * established state.
350 */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
355
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
360
361 tp->rcvq_space.space = tp->rcv_wnd;
362
363 maxwin = tcp_full_space(sk);
364
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
367
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
372 }
373
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387 struct tcp_sock *tp = tcp_sk(sk);
388 struct inet_connection_sock *icsk = inet_csk(sk);
389
390 icsk->icsk_ack.quick = 0;
391
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
398 }
399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401 }
402
403
404 /* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
449 * non-timestamp case, we do not smooth things out
450 * else with timestamps disabled convergence takes too
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
459 /* No previous measure. */
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
475 1);
476
477 new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
480 }
481
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483 {
484 struct tcp_sock *tp = tcp_sk(sk);
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489 }
490
491 /*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495 void tcp_rcv_space_adjust(struct sock *sk)
496 {
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
500
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
503
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
508
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511 space = max(tp->rcvq_space.space, space);
512
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
515
516 tp->rcvq_space.space = space;
517
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520 int new_clamp = space;
521
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
525 */
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
537
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
540 }
541 }
542 }
543
544 new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
547 }
548
549 /* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
558 */
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560 {
561 struct tcp_sock *tp = tcp_sk(sk);
562 struct inet_connection_sock *icsk = inet_csk(sk);
563 u32 now;
564
565 inet_csk_schedule_ack(sk);
566
567 tcp_measure_rcv_mss(sk, skb);
568
569 tcp_rcv_rtt_measure(tp);
570
571 now = tcp_time_stamp;
572
573 if (!icsk->icsk_ack.ato) {
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
576 */
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
579 } else {
580 int m = now - icsk->icsk_ack.lrcvtime;
581
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
590 /* Too long gap. Apparently sender failed to
591 * restart window, so that we send ACKs quickly.
592 */
593 tcp_incr_quickack(sk);
594 sk_stream_mem_reclaim(sk);
595 }
596 }
597 icsk->icsk_ack.lrcvtime = now;
598
599 TCP_ECN_check_ce(tp, skb);
600
601 if (skb->len >= 128)
602 tcp_grow_window(sk, skb);
603 }
604
605 static u32 tcp_rto_min(struct sock *sk)
606 {
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
609
610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
613 }
614
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625 {
626 struct tcp_sock *tp = tcp_sk(sk);
627 long m = mrtt; /* RTT */
628
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
632 * This is designed to be as fast as possible
633 * m stands for "measurement".
634 *
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
637 *
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
640 * too slowly, when it should be increased quickly, decrease too quickly
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
644 */
645 if (m == 0)
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
660 */
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 }
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
671 }
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
676 tp->mdev_max = tcp_rto_min(sk);
677 }
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683 tp->rtt_seq = tp->snd_nxt;
684 }
685 }
686
687 /* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
690 static inline void tcp_set_rto(struct sock *sk)
691 {
692 const struct tcp_sock *tp = tcp_sk(sk);
693 /* Old crap is replaced with new one. 8)
694 *
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
701 * ACKs in some circumstances.
702 */
703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
708 * with correct one. It is exactly, which we pretend to do.
709 */
710 }
711
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
715 static inline void tcp_bound_rto(struct sock *sk)
716 {
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719 }
720
721 /* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725 void tcp_update_metrics(struct sock *sk)
726 {
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
729
730 if (sysctl_tcp_nometrics_save)
731 return;
732
733 dst_confirm(dst);
734
735 if (dst && (dst->flags&DST_HOST)) {
736 const struct inet_connection_sock *icsk = inet_csk(sk);
737 int m;
738
739 if (icsk->icsk_backoff || !tp->srtt) {
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
743 */
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
747 }
748
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
760 }
761
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
765
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
770
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 }
777
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788 icsk->icsk_ca_state == TCP_CA_Open) {
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
798 */
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 }
812 }
813 }
814
815 /* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
823 */
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 {
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd) {
829 if (tp->mss_cache > 1460)
830 cwnd = 2;
831 else
832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833 }
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840 struct tcp_sock *tp = tcp_sk(sk);
841 const struct inet_connection_sock *icsk = inet_csk(sk);
842
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
846 tp->undo_marker = 0;
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
855
856 tcp_set_ca_state(sk, TCP_CA_CWR);
857 }
858 }
859
860 /*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866 /* RFC3517 uses different metric in lost marker => reset on change */
867 if (tcp_is_fack(tp))
868 tp->lost_skb_hint = NULL;
869 tp->rx_opt.sack_ok &= ~2;
870 }
871
872 /* Take a notice that peer is sending D-SACKs */
873 static void tcp_dsack_seen(struct tcp_sock *tp)
874 {
875 tp->rx_opt.sack_ok |= 4;
876 }
877
878 /* Initialize metrics on socket. */
879
880 static void tcp_init_metrics(struct sock *sk)
881 {
882 struct tcp_sock *tp = tcp_sk(sk);
883 struct dst_entry *dst = __sk_dst_get(sk);
884
885 if (dst == NULL)
886 goto reset;
887
888 dst_confirm(dst);
889
890 if (dst_metric_locked(dst, RTAX_CWND))
891 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
892 if (dst_metric(dst, RTAX_SSTHRESH)) {
893 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
894 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
895 tp->snd_ssthresh = tp->snd_cwnd_clamp;
896 }
897 if (dst_metric(dst, RTAX_REORDERING) &&
898 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
899 tcp_disable_fack(tp);
900 tp->reordering = dst_metric(dst, RTAX_REORDERING);
901 }
902
903 if (dst_metric(dst, RTAX_RTT) == 0)
904 goto reset;
905
906 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
907 goto reset;
908
909 /* Initial rtt is determined from SYN,SYN-ACK.
910 * The segment is small and rtt may appear much
911 * less than real one. Use per-dst memory
912 * to make it more realistic.
913 *
914 * A bit of theory. RTT is time passed after "normal" sized packet
915 * is sent until it is ACKed. In normal circumstances sending small
916 * packets force peer to delay ACKs and calculation is correct too.
917 * The algorithm is adaptive and, provided we follow specs, it
918 * NEVER underestimate RTT. BUT! If peer tries to make some clever
919 * tricks sort of "quick acks" for time long enough to decrease RTT
920 * to low value, and then abruptly stops to do it and starts to delay
921 * ACKs, wait for troubles.
922 */
923 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
924 tp->srtt = dst_metric(dst, RTAX_RTT);
925 tp->rtt_seq = tp->snd_nxt;
926 }
927 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
928 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
929 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930 }
931 tcp_set_rto(sk);
932 tcp_bound_rto(sk);
933 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
934 goto reset;
935 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
936 tp->snd_cwnd_stamp = tcp_time_stamp;
937 return;
938
939 reset:
940 /* Play conservative. If timestamps are not
941 * supported, TCP will fail to recalculate correct
942 * rtt, if initial rto is too small. FORGET ALL AND RESET!
943 */
944 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
945 tp->srtt = 0;
946 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
947 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
948 }
949 }
950
951 static void tcp_update_reordering(struct sock *sk, const int metric,
952 const int ts)
953 {
954 struct tcp_sock *tp = tcp_sk(sk);
955 if (metric > tp->reordering) {
956 tp->reordering = min(TCP_MAX_REORDERING, metric);
957
958 /* This exciting event is worth to be remembered. 8) */
959 if (ts)
960 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
961 else if (tcp_is_reno(tp))
962 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
963 else if (tcp_is_fack(tp))
964 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
965 else
966 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
967 #if FASTRETRANS_DEBUG > 1
968 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
969 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
970 tp->reordering,
971 tp->fackets_out,
972 tp->sacked_out,
973 tp->undo_marker ? tp->undo_retrans : 0);
974 #endif
975 tcp_disable_fack(tp);
976 }
977 }
978
979 /* This procedure tags the retransmission queue when SACKs arrive.
980 *
981 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
982 * Packets in queue with these bits set are counted in variables
983 * sacked_out, retrans_out and lost_out, correspondingly.
984 *
985 * Valid combinations are:
986 * Tag InFlight Description
987 * 0 1 - orig segment is in flight.
988 * S 0 - nothing flies, orig reached receiver.
989 * L 0 - nothing flies, orig lost by net.
990 * R 2 - both orig and retransmit are in flight.
991 * L|R 1 - orig is lost, retransmit is in flight.
992 * S|R 1 - orig reached receiver, retrans is still in flight.
993 * (L|S|R is logically valid, it could occur when L|R is sacked,
994 * but it is equivalent to plain S and code short-curcuits it to S.
995 * L|S is logically invalid, it would mean -1 packet in flight 8))
996 *
997 * These 6 states form finite state machine, controlled by the following events:
998 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
999 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1000 * 3. Loss detection event of one of three flavors:
1001 * A. Scoreboard estimator decided the packet is lost.
1002 * A'. Reno "three dupacks" marks head of queue lost.
1003 * A''. Its FACK modfication, head until snd.fack is lost.
1004 * B. SACK arrives sacking data transmitted after never retransmitted
1005 * hole was sent out.
1006 * C. SACK arrives sacking SND.NXT at the moment, when the
1007 * segment was retransmitted.
1008 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1009 *
1010 * It is pleasant to note, that state diagram turns out to be commutative,
1011 * so that we are allowed not to be bothered by order of our actions,
1012 * when multiple events arrive simultaneously. (see the function below).
1013 *
1014 * Reordering detection.
1015 * --------------------
1016 * Reordering metric is maximal distance, which a packet can be displaced
1017 * in packet stream. With SACKs we can estimate it:
1018 *
1019 * 1. SACK fills old hole and the corresponding segment was not
1020 * ever retransmitted -> reordering. Alas, we cannot use it
1021 * when segment was retransmitted.
1022 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1023 * for retransmitted and already SACKed segment -> reordering..
1024 * Both of these heuristics are not used in Loss state, when we cannot
1025 * account for retransmits accurately.
1026 *
1027 * SACK block validation.
1028 * ----------------------
1029 *
1030 * SACK block range validation checks that the received SACK block fits to
1031 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1032 * Note that SND.UNA is not included to the range though being valid because
1033 * it means that the receiver is rather inconsistent with itself reporting
1034 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1035 * perfectly valid, however, in light of RFC2018 which explicitly states
1036 * that "SACK block MUST reflect the newest segment. Even if the newest
1037 * segment is going to be discarded ...", not that it looks very clever
1038 * in case of head skb. Due to potentional receiver driven attacks, we
1039 * choose to avoid immediate execution of a walk in write queue due to
1040 * reneging and defer head skb's loss recovery to standard loss recovery
1041 * procedure that will eventually trigger (nothing forbids us doing this).
1042 *
1043 * Implements also blockage to start_seq wrap-around. Problem lies in the
1044 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1045 * there's no guarantee that it will be before snd_nxt (n). The problem
1046 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1047 * wrap (s_w):
1048 *
1049 * <- outs wnd -> <- wrapzone ->
1050 * u e n u_w e_w s n_w
1051 * | | | | | | |
1052 * |<------------+------+----- TCP seqno space --------------+---------->|
1053 * ...-- <2^31 ->| |<--------...
1054 * ...---- >2^31 ------>| |<--------...
1055 *
1056 * Current code wouldn't be vulnerable but it's better still to discard such
1057 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1058 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1059 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1060 * equal to the ideal case (infinite seqno space without wrap caused issues).
1061 *
1062 * With D-SACK the lower bound is extended to cover sequence space below
1063 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1064 * again, D-SACK block must not to go across snd_una (for the same reason as
1065 * for the normal SACK blocks, explained above). But there all simplicity
1066 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1067 * fully below undo_marker they do not affect behavior in anyway and can
1068 * therefore be safely ignored. In rare cases (which are more or less
1069 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1070 * fragmentation and packet reordering past skb's retransmission. To consider
1071 * them correctly, the acceptable range must be extended even more though
1072 * the exact amount is rather hard to quantify. However, tp->max_window can
1073 * be used as an exaggerated estimate.
1074 */
1075 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1076 u32 start_seq, u32 end_seq)
1077 {
1078 /* Too far in future, or reversed (interpretation is ambiguous) */
1079 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1080 return 0;
1081
1082 /* Nasty start_seq wrap-around check (see comments above) */
1083 if (!before(start_seq, tp->snd_nxt))
1084 return 0;
1085
1086 /* In outstanding window? ...This is valid exit for D-SACKs too.
1087 * start_seq == snd_una is non-sensical (see comments above)
1088 */
1089 if (after(start_seq, tp->snd_una))
1090 return 1;
1091
1092 if (!is_dsack || !tp->undo_marker)
1093 return 0;
1094
1095 /* ...Then it's D-SACK, and must reside below snd_una completely */
1096 if (!after(end_seq, tp->snd_una))
1097 return 0;
1098
1099 if (!before(start_seq, tp->undo_marker))
1100 return 1;
1101
1102 /* Too old */
1103 if (!after(end_seq, tp->undo_marker))
1104 return 0;
1105
1106 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1107 * start_seq < undo_marker and end_seq >= undo_marker.
1108 */
1109 return !before(start_seq, end_seq - tp->max_window);
1110 }
1111
1112 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1113 * Event "C". Later note: FACK people cheated me again 8), we have to account
1114 * for reordering! Ugly, but should help.
1115 *
1116 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1117 * less than what is now known to be received by the other end (derived from
1118 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1119 * retransmitted skbs to avoid some costly processing per ACKs.
1120 */
1121 static int tcp_mark_lost_retrans(struct sock *sk)
1122 {
1123 const struct inet_connection_sock *icsk = inet_csk(sk);
1124 struct tcp_sock *tp = tcp_sk(sk);
1125 struct sk_buff *skb;
1126 int flag = 0;
1127 int cnt = 0;
1128 u32 new_low_seq = tp->snd_nxt;
1129 u32 received_upto = TCP_SKB_CB(tp->highest_sack)->end_seq;
1130
1131 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1132 !after(received_upto, tp->lost_retrans_low) ||
1133 icsk->icsk_ca_state != TCP_CA_Recovery)
1134 return flag;
1135
1136 tcp_for_write_queue(skb, sk) {
1137 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1138
1139 if (skb == tcp_send_head(sk))
1140 break;
1141 if (cnt == tp->retrans_out)
1142 break;
1143 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1144 continue;
1145
1146 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1147 continue;
1148
1149 if (after(received_upto, ack_seq) &&
1150 (tcp_is_fack(tp) ||
1151 !before(received_upto,
1152 ack_seq + tp->reordering * tp->mss_cache))) {
1153 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1154 tp->retrans_out -= tcp_skb_pcount(skb);
1155
1156 /* clear lost hint */
1157 tp->retransmit_skb_hint = NULL;
1158
1159 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1160 tp->lost_out += tcp_skb_pcount(skb);
1161 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1162 flag |= FLAG_DATA_SACKED;
1163 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1164 }
1165 } else {
1166 if (before(ack_seq, new_low_seq))
1167 new_low_seq = ack_seq;
1168 cnt += tcp_skb_pcount(skb);
1169 }
1170 }
1171
1172 if (tp->retrans_out)
1173 tp->lost_retrans_low = new_low_seq;
1174
1175 return flag;
1176 }
1177
1178 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1179 struct tcp_sack_block_wire *sp, int num_sacks,
1180 u32 prior_snd_una)
1181 {
1182 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1183 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1184 int dup_sack = 0;
1185
1186 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1187 dup_sack = 1;
1188 tcp_dsack_seen(tp);
1189 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1190 } else if (num_sacks > 1) {
1191 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1192 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1193
1194 if (!after(end_seq_0, end_seq_1) &&
1195 !before(start_seq_0, start_seq_1)) {
1196 dup_sack = 1;
1197 tcp_dsack_seen(tp);
1198 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1199 }
1200 }
1201
1202 /* D-SACK for already forgotten data... Do dumb counting. */
1203 if (dup_sack &&
1204 !after(end_seq_0, prior_snd_una) &&
1205 after(end_seq_0, tp->undo_marker))
1206 tp->undo_retrans--;
1207
1208 return dup_sack;
1209 }
1210
1211 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1212 * the incoming SACK may not exactly match but we can find smaller MSS
1213 * aligned portion of it that matches. Therefore we might need to fragment
1214 * which may fail and creates some hassle (caller must handle error case
1215 * returns).
1216 */
1217 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1218 u32 start_seq, u32 end_seq)
1219 {
1220 int in_sack, err;
1221 unsigned int pkt_len;
1222
1223 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1224 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1225
1226 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1227 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1228
1229 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1230
1231 if (!in_sack)
1232 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1233 else
1234 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1235 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1236 if (err < 0)
1237 return err;
1238 }
1239
1240 return in_sack;
1241 }
1242
1243 static int tcp_sacktag_one(struct sk_buff *skb, struct tcp_sock *tp,
1244 int *reord, int dup_sack, int fack_count)
1245 {
1246 u8 sacked = TCP_SKB_CB(skb)->sacked;
1247 int flag = 0;
1248
1249 /* Account D-SACK for retransmitted packet. */
1250 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1251 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1252 tp->undo_retrans--;
1253 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una) &&
1254 (sacked & TCPCB_SACKED_ACKED))
1255 *reord = min(fack_count, *reord);
1256 }
1257
1258 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1259 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1260 return flag;
1261
1262 if (!(sacked & TCPCB_SACKED_ACKED)) {
1263 if (sacked & TCPCB_SACKED_RETRANS) {
1264 /* If the segment is not tagged as lost,
1265 * we do not clear RETRANS, believing
1266 * that retransmission is still in flight.
1267 */
1268 if (sacked & TCPCB_LOST) {
1269 TCP_SKB_CB(skb)->sacked &=
1270 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1271 tp->lost_out -= tcp_skb_pcount(skb);
1272 tp->retrans_out -= tcp_skb_pcount(skb);
1273
1274 /* clear lost hint */
1275 tp->retransmit_skb_hint = NULL;
1276 }
1277 } else {
1278 if (!(sacked & TCPCB_RETRANS)) {
1279 /* New sack for not retransmitted frame,
1280 * which was in hole. It is reordering.
1281 */
1282 if (before(TCP_SKB_CB(skb)->seq,
1283 tcp_highest_sack_seq(tp)))
1284 *reord = min(fack_count, *reord);
1285
1286 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1287 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1288 flag |= FLAG_ONLY_ORIG_SACKED;
1289 }
1290
1291 if (sacked & TCPCB_LOST) {
1292 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1293 tp->lost_out -= tcp_skb_pcount(skb);
1294
1295 /* clear lost hint */
1296 tp->retransmit_skb_hint = NULL;
1297 }
1298 }
1299
1300 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1301 flag |= FLAG_DATA_SACKED;
1302 tp->sacked_out += tcp_skb_pcount(skb);
1303
1304 fack_count += tcp_skb_pcount(skb);
1305
1306 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1307 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1308 before(TCP_SKB_CB(skb)->seq,
1309 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1310 tp->lost_cnt_hint += tcp_skb_pcount(skb);
1311
1312 if (fack_count > tp->fackets_out)
1313 tp->fackets_out = fack_count;
1314
1315 if (after(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1316 tp->highest_sack = skb;
1317
1318 } else {
1319 if (dup_sack && (sacked & TCPCB_RETRANS))
1320 *reord = min(fack_count, *reord);
1321 }
1322
1323 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1324 * frames and clear it. undo_retrans is decreased above, L|R frames
1325 * are accounted above as well.
1326 */
1327 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1328 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1329 tp->retrans_out -= tcp_skb_pcount(skb);
1330 tp->retransmit_skb_hint = NULL;
1331 }
1332
1333 return flag;
1334 }
1335
1336 static int
1337 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1338 {
1339 const struct inet_connection_sock *icsk = inet_csk(sk);
1340 struct tcp_sock *tp = tcp_sk(sk);
1341 unsigned char *ptr = (skb_transport_header(ack_skb) +
1342 TCP_SKB_CB(ack_skb)->sacked);
1343 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
1344 struct sk_buff *cached_skb;
1345 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1346 int reord = tp->packets_out;
1347 int flag = 0;
1348 int found_dup_sack = 0;
1349 int cached_fack_count;
1350 int i;
1351 int first_sack_index;
1352 int force_one_sack;
1353
1354 if (!tp->sacked_out) {
1355 if (WARN_ON(tp->fackets_out))
1356 tp->fackets_out = 0;
1357 tp->highest_sack = tcp_write_queue_head(sk);
1358 }
1359
1360 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1361 num_sacks, prior_snd_una);
1362 if (found_dup_sack)
1363 flag |= FLAG_DSACKING_ACK;
1364
1365 /* Eliminate too old ACKs, but take into
1366 * account more or less fresh ones, they can
1367 * contain valid SACK info.
1368 */
1369 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1370 return 0;
1371
1372 if (!tp->packets_out)
1373 goto out;
1374
1375 /* SACK fastpath:
1376 * if the only SACK change is the increase of the end_seq of
1377 * the first block then only apply that SACK block
1378 * and use retrans queue hinting otherwise slowpath */
1379 force_one_sack = 1;
1380 for (i = 0; i < num_sacks; i++) {
1381 __be32 start_seq = sp[i].start_seq;
1382 __be32 end_seq = sp[i].end_seq;
1383
1384 if (i == 0) {
1385 if (tp->recv_sack_cache[i].start_seq != start_seq)
1386 force_one_sack = 0;
1387 } else {
1388 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1389 (tp->recv_sack_cache[i].end_seq != end_seq))
1390 force_one_sack = 0;
1391 }
1392 tp->recv_sack_cache[i].start_seq = start_seq;
1393 tp->recv_sack_cache[i].end_seq = end_seq;
1394 }
1395 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1396 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1397 tp->recv_sack_cache[i].start_seq = 0;
1398 tp->recv_sack_cache[i].end_seq = 0;
1399 }
1400
1401 first_sack_index = 0;
1402 if (force_one_sack)
1403 num_sacks = 1;
1404 else {
1405 int j;
1406 tp->fastpath_skb_hint = NULL;
1407
1408 /* order SACK blocks to allow in order walk of the retrans queue */
1409 for (i = num_sacks-1; i > 0; i--) {
1410 for (j = 0; j < i; j++){
1411 if (after(ntohl(sp[j].start_seq),
1412 ntohl(sp[j+1].start_seq))){
1413 struct tcp_sack_block_wire tmp;
1414
1415 tmp = sp[j];
1416 sp[j] = sp[j+1];
1417 sp[j+1] = tmp;
1418
1419 /* Track where the first SACK block goes to */
1420 if (j == first_sack_index)
1421 first_sack_index = j+1;
1422 }
1423
1424 }
1425 }
1426 }
1427
1428 /* Use SACK fastpath hint if valid */
1429 cached_skb = tp->fastpath_skb_hint;
1430 cached_fack_count = tp->fastpath_cnt_hint;
1431 if (!cached_skb) {
1432 cached_skb = tcp_write_queue_head(sk);
1433 cached_fack_count = 0;
1434 }
1435
1436 for (i = 0; i < num_sacks; i++) {
1437 struct sk_buff *skb;
1438 __u32 start_seq = ntohl(sp->start_seq);
1439 __u32 end_seq = ntohl(sp->end_seq);
1440 int fack_count;
1441 int dup_sack = (found_dup_sack && (i == first_sack_index));
1442 int next_dup = (found_dup_sack && (i+1 == first_sack_index));
1443
1444 sp++;
1445
1446 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1447 if (dup_sack) {
1448 if (!tp->undo_marker)
1449 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1450 else
1451 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1452 } else {
1453 /* Don't count olds caused by ACK reordering */
1454 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1455 !after(end_seq, tp->snd_una))
1456 continue;
1457 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1458 }
1459 continue;
1460 }
1461
1462 skb = cached_skb;
1463 fack_count = cached_fack_count;
1464
1465 /* Event "B" in the comment above. */
1466 if (after(end_seq, tp->high_seq))
1467 flag |= FLAG_DATA_LOST;
1468
1469 tcp_for_write_queue_from(skb, sk) {
1470 int in_sack = 0;
1471
1472 if (skb == tcp_send_head(sk))
1473 break;
1474
1475 cached_skb = skb;
1476 cached_fack_count = fack_count;
1477 if (i == first_sack_index) {
1478 tp->fastpath_skb_hint = skb;
1479 tp->fastpath_cnt_hint = fack_count;
1480 }
1481
1482 /* The retransmission queue is always in order, so
1483 * we can short-circuit the walk early.
1484 */
1485 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1486 break;
1487
1488 dup_sack = (found_dup_sack && (i == first_sack_index));
1489
1490 /* Due to sorting DSACK may reside within this SACK block! */
1491 if (next_dup) {
1492 u32 dup_start = ntohl(sp->start_seq);
1493 u32 dup_end = ntohl(sp->end_seq);
1494
1495 if (before(TCP_SKB_CB(skb)->seq, dup_end)) {
1496 in_sack = tcp_match_skb_to_sack(sk, skb, dup_start, dup_end);
1497 if (in_sack > 0)
1498 dup_sack = 1;
1499 }
1500 }
1501
1502 /* DSACK info lost if out-of-mem, try SACK still */
1503 if (in_sack <= 0)
1504 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1505 if (unlikely(in_sack < 0))
1506 break;
1507
1508 if (in_sack)
1509 flag |= tcp_sacktag_one(skb, tp, &reord, dup_sack, fack_count);
1510
1511 fack_count += tcp_skb_pcount(skb);
1512 }
1513
1514 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1515 * due to in-order walk
1516 */
1517 if (after(end_seq, tp->frto_highmark))
1518 flag &= ~FLAG_ONLY_ORIG_SACKED;
1519 }
1520
1521 flag |= tcp_mark_lost_retrans(sk);
1522
1523 tcp_verify_left_out(tp);
1524
1525 if ((reord < tp->fackets_out) &&
1526 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1527 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1528 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1529
1530 out:
1531
1532 #if FASTRETRANS_DEBUG > 0
1533 BUG_TRAP((int)tp->sacked_out >= 0);
1534 BUG_TRAP((int)tp->lost_out >= 0);
1535 BUG_TRAP((int)tp->retrans_out >= 0);
1536 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1537 #endif
1538 return flag;
1539 }
1540
1541 /* If we receive more dupacks than we expected counting segments
1542 * in assumption of absent reordering, interpret this as reordering.
1543 * The only another reason could be bug in receiver TCP.
1544 */
1545 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1546 {
1547 struct tcp_sock *tp = tcp_sk(sk);
1548 u32 holes;
1549
1550 holes = max(tp->lost_out, 1U);
1551 holes = min(holes, tp->packets_out);
1552
1553 if ((tp->sacked_out + holes) > tp->packets_out) {
1554 tp->sacked_out = tp->packets_out - holes;
1555 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1556 }
1557 }
1558
1559 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1560
1561 static void tcp_add_reno_sack(struct sock *sk)
1562 {
1563 struct tcp_sock *tp = tcp_sk(sk);
1564 tp->sacked_out++;
1565 tcp_check_reno_reordering(sk, 0);
1566 tcp_verify_left_out(tp);
1567 }
1568
1569 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1570
1571 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1572 {
1573 struct tcp_sock *tp = tcp_sk(sk);
1574
1575 if (acked > 0) {
1576 /* One ACK acked hole. The rest eat duplicate ACKs. */
1577 if (acked-1 >= tp->sacked_out)
1578 tp->sacked_out = 0;
1579 else
1580 tp->sacked_out -= acked-1;
1581 }
1582 tcp_check_reno_reordering(sk, acked);
1583 tcp_verify_left_out(tp);
1584 }
1585
1586 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1587 {
1588 tp->sacked_out = 0;
1589 }
1590
1591 /* F-RTO can only be used if TCP has never retransmitted anything other than
1592 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1593 */
1594 int tcp_use_frto(struct sock *sk)
1595 {
1596 const struct tcp_sock *tp = tcp_sk(sk);
1597 struct sk_buff *skb;
1598
1599 if (!sysctl_tcp_frto)
1600 return 0;
1601
1602 if (IsSackFrto())
1603 return 1;
1604
1605 /* Avoid expensive walking of rexmit queue if possible */
1606 if (tp->retrans_out > 1)
1607 return 0;
1608
1609 skb = tcp_write_queue_head(sk);
1610 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1611 tcp_for_write_queue_from(skb, sk) {
1612 if (skb == tcp_send_head(sk))
1613 break;
1614 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1615 return 0;
1616 /* Short-circuit when first non-SACKed skb has been checked */
1617 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1618 break;
1619 }
1620 return 1;
1621 }
1622
1623 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1624 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1625 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1626 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1627 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1628 * bits are handled if the Loss state is really to be entered (in
1629 * tcp_enter_frto_loss).
1630 *
1631 * Do like tcp_enter_loss() would; when RTO expires the second time it
1632 * does:
1633 * "Reduce ssthresh if it has not yet been made inside this window."
1634 */
1635 void tcp_enter_frto(struct sock *sk)
1636 {
1637 const struct inet_connection_sock *icsk = inet_csk(sk);
1638 struct tcp_sock *tp = tcp_sk(sk);
1639 struct sk_buff *skb;
1640
1641 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1642 tp->snd_una == tp->high_seq ||
1643 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1644 !icsk->icsk_retransmits)) {
1645 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1646 /* Our state is too optimistic in ssthresh() call because cwnd
1647 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1648 * recovery has not yet completed. Pattern would be this: RTO,
1649 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1650 * up here twice).
1651 * RFC4138 should be more specific on what to do, even though
1652 * RTO is quite unlikely to occur after the first Cumulative ACK
1653 * due to back-off and complexity of triggering events ...
1654 */
1655 if (tp->frto_counter) {
1656 u32 stored_cwnd;
1657 stored_cwnd = tp->snd_cwnd;
1658 tp->snd_cwnd = 2;
1659 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1660 tp->snd_cwnd = stored_cwnd;
1661 } else {
1662 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1663 }
1664 /* ... in theory, cong.control module could do "any tricks" in
1665 * ssthresh(), which means that ca_state, lost bits and lost_out
1666 * counter would have to be faked before the call occurs. We
1667 * consider that too expensive, unlikely and hacky, so modules
1668 * using these in ssthresh() must deal these incompatibility
1669 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1670 */
1671 tcp_ca_event(sk, CA_EVENT_FRTO);
1672 }
1673
1674 tp->undo_marker = tp->snd_una;
1675 tp->undo_retrans = 0;
1676
1677 skb = tcp_write_queue_head(sk);
1678 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1679 tp->undo_marker = 0;
1680 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1681 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1682 tp->retrans_out -= tcp_skb_pcount(skb);
1683 }
1684 tcp_verify_left_out(tp);
1685
1686 /* Too bad if TCP was application limited */
1687 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1688
1689 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1690 * The last condition is necessary at least in tp->frto_counter case.
1691 */
1692 if (IsSackFrto() && (tp->frto_counter ||
1693 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1694 after(tp->high_seq, tp->snd_una)) {
1695 tp->frto_highmark = tp->high_seq;
1696 } else {
1697 tp->frto_highmark = tp->snd_nxt;
1698 }
1699 tcp_set_ca_state(sk, TCP_CA_Disorder);
1700 tp->high_seq = tp->snd_nxt;
1701 tp->frto_counter = 1;
1702 }
1703
1704 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1705 * which indicates that we should follow the traditional RTO recovery,
1706 * i.e. mark everything lost and do go-back-N retransmission.
1707 */
1708 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1709 {
1710 struct tcp_sock *tp = tcp_sk(sk);
1711 struct sk_buff *skb;
1712
1713 tp->lost_out = 0;
1714 tp->retrans_out = 0;
1715 if (tcp_is_reno(tp))
1716 tcp_reset_reno_sack(tp);
1717
1718 tcp_for_write_queue(skb, sk) {
1719 if (skb == tcp_send_head(sk))
1720 break;
1721
1722 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1723 /*
1724 * Count the retransmission made on RTO correctly (only when
1725 * waiting for the first ACK and did not get it)...
1726 */
1727 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1728 /* For some reason this R-bit might get cleared? */
1729 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1730 tp->retrans_out += tcp_skb_pcount(skb);
1731 /* ...enter this if branch just for the first segment */
1732 flag |= FLAG_DATA_ACKED;
1733 } else {
1734 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1735 tp->undo_marker = 0;
1736 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1737 }
1738
1739 /* Don't lost mark skbs that were fwd transmitted after RTO */
1740 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1741 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1742 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1743 tp->lost_out += tcp_skb_pcount(skb);
1744 }
1745 }
1746 tcp_verify_left_out(tp);
1747
1748 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1749 tp->snd_cwnd_cnt = 0;
1750 tp->snd_cwnd_stamp = tcp_time_stamp;
1751 tp->frto_counter = 0;
1752 tp->bytes_acked = 0;
1753
1754 tp->reordering = min_t(unsigned int, tp->reordering,
1755 sysctl_tcp_reordering);
1756 tcp_set_ca_state(sk, TCP_CA_Loss);
1757 tp->high_seq = tp->frto_highmark;
1758 TCP_ECN_queue_cwr(tp);
1759
1760 tcp_clear_retrans_hints_partial(tp);
1761 }
1762
1763 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1764 {
1765 tp->retrans_out = 0;
1766 tp->lost_out = 0;
1767
1768 tp->undo_marker = 0;
1769 tp->undo_retrans = 0;
1770 }
1771
1772 void tcp_clear_retrans(struct tcp_sock *tp)
1773 {
1774 tcp_clear_retrans_partial(tp);
1775
1776 tp->fackets_out = 0;
1777 tp->sacked_out = 0;
1778 }
1779
1780 /* Enter Loss state. If "how" is not zero, forget all SACK information
1781 * and reset tags completely, otherwise preserve SACKs. If receiver
1782 * dropped its ofo queue, we will know this due to reneging detection.
1783 */
1784 void tcp_enter_loss(struct sock *sk, int how)
1785 {
1786 const struct inet_connection_sock *icsk = inet_csk(sk);
1787 struct tcp_sock *tp = tcp_sk(sk);
1788 struct sk_buff *skb;
1789
1790 /* Reduce ssthresh if it has not yet been made inside this window. */
1791 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1792 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1793 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1794 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1795 tcp_ca_event(sk, CA_EVENT_LOSS);
1796 }
1797 tp->snd_cwnd = 1;
1798 tp->snd_cwnd_cnt = 0;
1799 tp->snd_cwnd_stamp = tcp_time_stamp;
1800
1801 tp->bytes_acked = 0;
1802 tcp_clear_retrans_partial(tp);
1803
1804 if (tcp_is_reno(tp))
1805 tcp_reset_reno_sack(tp);
1806
1807 if (!how) {
1808 /* Push undo marker, if it was plain RTO and nothing
1809 * was retransmitted. */
1810 tp->undo_marker = tp->snd_una;
1811 tcp_clear_retrans_hints_partial(tp);
1812 } else {
1813 tp->sacked_out = 0;
1814 tp->fackets_out = 0;
1815 tcp_clear_all_retrans_hints(tp);
1816 }
1817
1818 tcp_for_write_queue(skb, sk) {
1819 if (skb == tcp_send_head(sk))
1820 break;
1821
1822 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1823 tp->undo_marker = 0;
1824 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1825 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1826 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1827 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1828 tp->lost_out += tcp_skb_pcount(skb);
1829 }
1830 }
1831 tcp_verify_left_out(tp);
1832
1833 tp->reordering = min_t(unsigned int, tp->reordering,
1834 sysctl_tcp_reordering);
1835 tcp_set_ca_state(sk, TCP_CA_Loss);
1836 tp->high_seq = tp->snd_nxt;
1837 TCP_ECN_queue_cwr(tp);
1838 /* Abort F-RTO algorithm if one is in progress */
1839 tp->frto_counter = 0;
1840 }
1841
1842 static int tcp_check_sack_reneging(struct sock *sk)
1843 {
1844 struct sk_buff *skb;
1845
1846 /* If ACK arrived pointing to a remembered SACK,
1847 * it means that our remembered SACKs do not reflect
1848 * real state of receiver i.e.
1849 * receiver _host_ is heavily congested (or buggy).
1850 * Do processing similar to RTO timeout.
1851 */
1852 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1853 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1854 struct inet_connection_sock *icsk = inet_csk(sk);
1855 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1856
1857 tcp_enter_loss(sk, 1);
1858 icsk->icsk_retransmits++;
1859 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1860 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1861 icsk->icsk_rto, TCP_RTO_MAX);
1862 return 1;
1863 }
1864 return 0;
1865 }
1866
1867 static inline int tcp_fackets_out(struct tcp_sock *tp)
1868 {
1869 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1870 }
1871
1872 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1873 * counter when SACK is enabled (without SACK, sacked_out is used for
1874 * that purpose).
1875 *
1876 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1877 * segments up to the highest received SACK block so far and holes in
1878 * between them.
1879 *
1880 * With reordering, holes may still be in flight, so RFC3517 recovery
1881 * uses pure sacked_out (total number of SACKed segments) even though
1882 * it violates the RFC that uses duplicate ACKs, often these are equal
1883 * but when e.g. out-of-window ACKs or packet duplication occurs,
1884 * they differ. Since neither occurs due to loss, TCP should really
1885 * ignore them.
1886 */
1887 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1888 {
1889 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1890 }
1891
1892 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1893 {
1894 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1895 }
1896
1897 static inline int tcp_head_timedout(struct sock *sk)
1898 {
1899 struct tcp_sock *tp = tcp_sk(sk);
1900
1901 return tp->packets_out &&
1902 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1903 }
1904
1905 /* Linux NewReno/SACK/FACK/ECN state machine.
1906 * --------------------------------------
1907 *
1908 * "Open" Normal state, no dubious events, fast path.
1909 * "Disorder" In all the respects it is "Open",
1910 * but requires a bit more attention. It is entered when
1911 * we see some SACKs or dupacks. It is split of "Open"
1912 * mainly to move some processing from fast path to slow one.
1913 * "CWR" CWND was reduced due to some Congestion Notification event.
1914 * It can be ECN, ICMP source quench, local device congestion.
1915 * "Recovery" CWND was reduced, we are fast-retransmitting.
1916 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1917 *
1918 * tcp_fastretrans_alert() is entered:
1919 * - each incoming ACK, if state is not "Open"
1920 * - when arrived ACK is unusual, namely:
1921 * * SACK
1922 * * Duplicate ACK.
1923 * * ECN ECE.
1924 *
1925 * Counting packets in flight is pretty simple.
1926 *
1927 * in_flight = packets_out - left_out + retrans_out
1928 *
1929 * packets_out is SND.NXT-SND.UNA counted in packets.
1930 *
1931 * retrans_out is number of retransmitted segments.
1932 *
1933 * left_out is number of segments left network, but not ACKed yet.
1934 *
1935 * left_out = sacked_out + lost_out
1936 *
1937 * sacked_out: Packets, which arrived to receiver out of order
1938 * and hence not ACKed. With SACKs this number is simply
1939 * amount of SACKed data. Even without SACKs
1940 * it is easy to give pretty reliable estimate of this number,
1941 * counting duplicate ACKs.
1942 *
1943 * lost_out: Packets lost by network. TCP has no explicit
1944 * "loss notification" feedback from network (for now).
1945 * It means that this number can be only _guessed_.
1946 * Actually, it is the heuristics to predict lossage that
1947 * distinguishes different algorithms.
1948 *
1949 * F.e. after RTO, when all the queue is considered as lost,
1950 * lost_out = packets_out and in_flight = retrans_out.
1951 *
1952 * Essentially, we have now two algorithms counting
1953 * lost packets.
1954 *
1955 * FACK: It is the simplest heuristics. As soon as we decided
1956 * that something is lost, we decide that _all_ not SACKed
1957 * packets until the most forward SACK are lost. I.e.
1958 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1959 * It is absolutely correct estimate, if network does not reorder
1960 * packets. And it loses any connection to reality when reordering
1961 * takes place. We use FACK by default until reordering
1962 * is suspected on the path to this destination.
1963 *
1964 * NewReno: when Recovery is entered, we assume that one segment
1965 * is lost (classic Reno). While we are in Recovery and
1966 * a partial ACK arrives, we assume that one more packet
1967 * is lost (NewReno). This heuristics are the same in NewReno
1968 * and SACK.
1969 *
1970 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1971 * deflation etc. CWND is real congestion window, never inflated, changes
1972 * only according to classic VJ rules.
1973 *
1974 * Really tricky (and requiring careful tuning) part of algorithm
1975 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1976 * The first determines the moment _when_ we should reduce CWND and,
1977 * hence, slow down forward transmission. In fact, it determines the moment
1978 * when we decide that hole is caused by loss, rather than by a reorder.
1979 *
1980 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1981 * holes, caused by lost packets.
1982 *
1983 * And the most logically complicated part of algorithm is undo
1984 * heuristics. We detect false retransmits due to both too early
1985 * fast retransmit (reordering) and underestimated RTO, analyzing
1986 * timestamps and D-SACKs. When we detect that some segments were
1987 * retransmitted by mistake and CWND reduction was wrong, we undo
1988 * window reduction and abort recovery phase. This logic is hidden
1989 * inside several functions named tcp_try_undo_<something>.
1990 */
1991
1992 /* This function decides, when we should leave Disordered state
1993 * and enter Recovery phase, reducing congestion window.
1994 *
1995 * Main question: may we further continue forward transmission
1996 * with the same cwnd?
1997 */
1998 static int tcp_time_to_recover(struct sock *sk)
1999 {
2000 struct tcp_sock *tp = tcp_sk(sk);
2001 __u32 packets_out;
2002
2003 /* Do not perform any recovery during F-RTO algorithm */
2004 if (tp->frto_counter)
2005 return 0;
2006
2007 /* Trick#1: The loss is proven. */
2008 if (tp->lost_out)
2009 return 1;
2010
2011 /* Not-A-Trick#2 : Classic rule... */
2012 if (tcp_dupack_heurestics(tp) > tp->reordering)
2013 return 1;
2014
2015 /* Trick#3 : when we use RFC2988 timer restart, fast
2016 * retransmit can be triggered by timeout of queue head.
2017 */
2018 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2019 return 1;
2020
2021 /* Trick#4: It is still not OK... But will it be useful to delay
2022 * recovery more?
2023 */
2024 packets_out = tp->packets_out;
2025 if (packets_out <= tp->reordering &&
2026 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2027 !tcp_may_send_now(sk)) {
2028 /* We have nothing to send. This connection is limited
2029 * either by receiver window or by application.
2030 */
2031 return 1;
2032 }
2033
2034 return 0;
2035 }
2036
2037 /* RFC: This is from the original, I doubt that this is necessary at all:
2038 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2039 * retransmitted past LOST markings in the first place? I'm not fully sure
2040 * about undo and end of connection cases, which can cause R without L?
2041 */
2042 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2043 struct sk_buff *skb)
2044 {
2045 if ((tp->retransmit_skb_hint != NULL) &&
2046 before(TCP_SKB_CB(skb)->seq,
2047 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2048 tp->retransmit_skb_hint = NULL;
2049 }
2050
2051 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2052 * is against sacked "cnt", otherwise it's against facked "cnt"
2053 */
2054 static void tcp_mark_head_lost(struct sock *sk, int packets, int fast_rexmit)
2055 {
2056 struct tcp_sock *tp = tcp_sk(sk);
2057 struct sk_buff *skb;
2058 int cnt;
2059
2060 BUG_TRAP(packets <= tp->packets_out);
2061 if (tp->lost_skb_hint) {
2062 skb = tp->lost_skb_hint;
2063 cnt = tp->lost_cnt_hint;
2064 } else {
2065 skb = tcp_write_queue_head(sk);
2066 cnt = 0;
2067 }
2068
2069 tcp_for_write_queue_from(skb, sk) {
2070 if (skb == tcp_send_head(sk))
2071 break;
2072 /* TODO: do this better */
2073 /* this is not the most efficient way to do this... */
2074 tp->lost_skb_hint = skb;
2075 tp->lost_cnt_hint = cnt;
2076
2077 if (tcp_is_fack(tp) ||
2078 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2079 cnt += tcp_skb_pcount(skb);
2080
2081 if (((!fast_rexmit || (tp->lost_out > 0)) && (cnt > packets)) ||
2082 after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2083 break;
2084 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2085 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2086 tp->lost_out += tcp_skb_pcount(skb);
2087 tcp_verify_retransmit_hint(tp, skb);
2088 }
2089 }
2090 tcp_verify_left_out(tp);
2091 }
2092
2093 /* Account newly detected lost packet(s) */
2094
2095 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2096 {
2097 struct tcp_sock *tp = tcp_sk(sk);
2098
2099 if (tcp_is_reno(tp)) {
2100 tcp_mark_head_lost(sk, 1, fast_rexmit);
2101 } else if (tcp_is_fack(tp)) {
2102 int lost = tp->fackets_out - tp->reordering;
2103 if (lost <= 0)
2104 lost = 1;
2105 tcp_mark_head_lost(sk, lost, fast_rexmit);
2106 } else {
2107 int sacked_upto = tp->sacked_out - tp->reordering;
2108 if (sacked_upto < 0)
2109 sacked_upto = 0;
2110 tcp_mark_head_lost(sk, sacked_upto, fast_rexmit);
2111 }
2112
2113 /* New heuristics: it is possible only after we switched
2114 * to restart timer each time when something is ACKed.
2115 * Hence, we can detect timed out packets during fast
2116 * retransmit without falling to slow start.
2117 */
2118 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2119 struct sk_buff *skb;
2120
2121 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2122 : tcp_write_queue_head(sk);
2123
2124 tcp_for_write_queue_from(skb, sk) {
2125 if (skb == tcp_send_head(sk))
2126 break;
2127 if (!tcp_skb_timedout(sk, skb))
2128 break;
2129
2130 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2131 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2132 tp->lost_out += tcp_skb_pcount(skb);
2133 tcp_verify_retransmit_hint(tp, skb);
2134 }
2135 }
2136
2137 tp->scoreboard_skb_hint = skb;
2138
2139 tcp_verify_left_out(tp);
2140 }
2141 }
2142
2143 /* CWND moderation, preventing bursts due to too big ACKs
2144 * in dubious situations.
2145 */
2146 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2147 {
2148 tp->snd_cwnd = min(tp->snd_cwnd,
2149 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2150 tp->snd_cwnd_stamp = tcp_time_stamp;
2151 }
2152
2153 /* Lower bound on congestion window is slow start threshold
2154 * unless congestion avoidance choice decides to overide it.
2155 */
2156 static inline u32 tcp_cwnd_min(const struct sock *sk)
2157 {
2158 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2159
2160 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2161 }
2162
2163 /* Decrease cwnd each second ack. */
2164 static void tcp_cwnd_down(struct sock *sk, int flag)
2165 {
2166 struct tcp_sock *tp = tcp_sk(sk);
2167 int decr = tp->snd_cwnd_cnt + 1;
2168
2169 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2170 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2171 tp->snd_cwnd_cnt = decr&1;
2172 decr >>= 1;
2173
2174 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2175 tp->snd_cwnd -= decr;
2176
2177 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2178 tp->snd_cwnd_stamp = tcp_time_stamp;
2179 }
2180 }
2181
2182 /* Nothing was retransmitted or returned timestamp is less
2183 * than timestamp of the first retransmission.
2184 */
2185 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2186 {
2187 return !tp->retrans_stamp ||
2188 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2189 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2190 }
2191
2192 /* Undo procedures. */
2193
2194 #if FASTRETRANS_DEBUG > 1
2195 static void DBGUNDO(struct sock *sk, const char *msg)
2196 {
2197 struct tcp_sock *tp = tcp_sk(sk);
2198 struct inet_sock *inet = inet_sk(sk);
2199
2200 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2201 msg,
2202 NIPQUAD(inet->daddr), ntohs(inet->dport),
2203 tp->snd_cwnd, tcp_left_out(tp),
2204 tp->snd_ssthresh, tp->prior_ssthresh,
2205 tp->packets_out);
2206 }
2207 #else
2208 #define DBGUNDO(x...) do { } while (0)
2209 #endif
2210
2211 static void tcp_undo_cwr(struct sock *sk, const int undo)
2212 {
2213 struct tcp_sock *tp = tcp_sk(sk);
2214
2215 if (tp->prior_ssthresh) {
2216 const struct inet_connection_sock *icsk = inet_csk(sk);
2217
2218 if (icsk->icsk_ca_ops->undo_cwnd)
2219 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2220 else
2221 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2222
2223 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2224 tp->snd_ssthresh = tp->prior_ssthresh;
2225 TCP_ECN_withdraw_cwr(tp);
2226 }
2227 } else {
2228 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2229 }
2230 tcp_moderate_cwnd(tp);
2231 tp->snd_cwnd_stamp = tcp_time_stamp;
2232
2233 /* There is something screwy going on with the retrans hints after
2234 an undo */
2235 tcp_clear_all_retrans_hints(tp);
2236 }
2237
2238 static inline int tcp_may_undo(struct tcp_sock *tp)
2239 {
2240 return tp->undo_marker &&
2241 (!tp->undo_retrans || tcp_packet_delayed(tp));
2242 }
2243
2244 /* People celebrate: "We love our President!" */
2245 static int tcp_try_undo_recovery(struct sock *sk)
2246 {
2247 struct tcp_sock *tp = tcp_sk(sk);
2248
2249 if (tcp_may_undo(tp)) {
2250 /* Happy end! We did not retransmit anything
2251 * or our original transmission succeeded.
2252 */
2253 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2254 tcp_undo_cwr(sk, 1);
2255 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2256 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2257 else
2258 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2259 tp->undo_marker = 0;
2260 }
2261 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2262 /* Hold old state until something *above* high_seq
2263 * is ACKed. For Reno it is MUST to prevent false
2264 * fast retransmits (RFC2582). SACK TCP is safe. */
2265 tcp_moderate_cwnd(tp);
2266 return 1;
2267 }
2268 tcp_set_ca_state(sk, TCP_CA_Open);
2269 return 0;
2270 }
2271
2272 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2273 static void tcp_try_undo_dsack(struct sock *sk)
2274 {
2275 struct tcp_sock *tp = tcp_sk(sk);
2276
2277 if (tp->undo_marker && !tp->undo_retrans) {
2278 DBGUNDO(sk, "D-SACK");
2279 tcp_undo_cwr(sk, 1);
2280 tp->undo_marker = 0;
2281 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2282 }
2283 }
2284
2285 /* Undo during fast recovery after partial ACK. */
2286
2287 static int tcp_try_undo_partial(struct sock *sk, int acked)
2288 {
2289 struct tcp_sock *tp = tcp_sk(sk);
2290 /* Partial ACK arrived. Force Hoe's retransmit. */
2291 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2292
2293 if (tcp_may_undo(tp)) {
2294 /* Plain luck! Hole if filled with delayed
2295 * packet, rather than with a retransmit.
2296 */
2297 if (tp->retrans_out == 0)
2298 tp->retrans_stamp = 0;
2299
2300 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2301
2302 DBGUNDO(sk, "Hoe");
2303 tcp_undo_cwr(sk, 0);
2304 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2305
2306 /* So... Do not make Hoe's retransmit yet.
2307 * If the first packet was delayed, the rest
2308 * ones are most probably delayed as well.
2309 */
2310 failed = 0;
2311 }
2312 return failed;
2313 }
2314
2315 /* Undo during loss recovery after partial ACK. */
2316 static int tcp_try_undo_loss(struct sock *sk)
2317 {
2318 struct tcp_sock *tp = tcp_sk(sk);
2319
2320 if (tcp_may_undo(tp)) {
2321 struct sk_buff *skb;
2322 tcp_for_write_queue(skb, sk) {
2323 if (skb == tcp_send_head(sk))
2324 break;
2325 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2326 }
2327
2328 tcp_clear_all_retrans_hints(tp);
2329
2330 DBGUNDO(sk, "partial loss");
2331 tp->lost_out = 0;
2332 tcp_undo_cwr(sk, 1);
2333 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2334 inet_csk(sk)->icsk_retransmits = 0;
2335 tp->undo_marker = 0;
2336 if (tcp_is_sack(tp))
2337 tcp_set_ca_state(sk, TCP_CA_Open);
2338 return 1;
2339 }
2340 return 0;
2341 }
2342
2343 static inline void tcp_complete_cwr(struct sock *sk)
2344 {
2345 struct tcp_sock *tp = tcp_sk(sk);
2346 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2347 tp->snd_cwnd_stamp = tcp_time_stamp;
2348 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2349 }
2350
2351 static void tcp_try_to_open(struct sock *sk, int flag)
2352 {
2353 struct tcp_sock *tp = tcp_sk(sk);
2354
2355 tcp_verify_left_out(tp);
2356
2357 if (tp->retrans_out == 0)
2358 tp->retrans_stamp = 0;
2359
2360 if (flag&FLAG_ECE)
2361 tcp_enter_cwr(sk, 1);
2362
2363 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2364 int state = TCP_CA_Open;
2365
2366 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2367 state = TCP_CA_Disorder;
2368
2369 if (inet_csk(sk)->icsk_ca_state != state) {
2370 tcp_set_ca_state(sk, state);
2371 tp->high_seq = tp->snd_nxt;
2372 }
2373 tcp_moderate_cwnd(tp);
2374 } else {
2375 tcp_cwnd_down(sk, flag);
2376 }
2377 }
2378
2379 static void tcp_mtup_probe_failed(struct sock *sk)
2380 {
2381 struct inet_connection_sock *icsk = inet_csk(sk);
2382
2383 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2384 icsk->icsk_mtup.probe_size = 0;
2385 }
2386
2387 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2388 {
2389 struct tcp_sock *tp = tcp_sk(sk);
2390 struct inet_connection_sock *icsk = inet_csk(sk);
2391
2392 /* FIXME: breaks with very large cwnd */
2393 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2394 tp->snd_cwnd = tp->snd_cwnd *
2395 tcp_mss_to_mtu(sk, tp->mss_cache) /
2396 icsk->icsk_mtup.probe_size;
2397 tp->snd_cwnd_cnt = 0;
2398 tp->snd_cwnd_stamp = tcp_time_stamp;
2399 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2400
2401 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2402 icsk->icsk_mtup.probe_size = 0;
2403 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2404 }
2405
2406
2407 /* Process an event, which can update packets-in-flight not trivially.
2408 * Main goal of this function is to calculate new estimate for left_out,
2409 * taking into account both packets sitting in receiver's buffer and
2410 * packets lost by network.
2411 *
2412 * Besides that it does CWND reduction, when packet loss is detected
2413 * and changes state of machine.
2414 *
2415 * It does _not_ decide what to send, it is made in function
2416 * tcp_xmit_retransmit_queue().
2417 */
2418 static void
2419 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2420 {
2421 struct inet_connection_sock *icsk = inet_csk(sk);
2422 struct tcp_sock *tp = tcp_sk(sk);
2423 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2424 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2425 (tcp_fackets_out(tp) > tp->reordering));
2426 int fast_rexmit = 0;
2427
2428 /* Some technical things:
2429 * 1. Reno does not count dupacks (sacked_out) automatically. */
2430 if (!tp->packets_out)
2431 tp->sacked_out = 0;
2432
2433 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2434 tp->fackets_out = 0;
2435
2436 /* Now state machine starts.
2437 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2438 if (flag&FLAG_ECE)
2439 tp->prior_ssthresh = 0;
2440
2441 /* B. In all the states check for reneging SACKs. */
2442 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2443 return;
2444
2445 /* C. Process data loss notification, provided it is valid. */
2446 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2447 before(tp->snd_una, tp->high_seq) &&
2448 icsk->icsk_ca_state != TCP_CA_Open &&
2449 tp->fackets_out > tp->reordering) {
2450 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, 0);
2451 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2452 }
2453
2454 /* D. Check consistency of the current state. */
2455 tcp_verify_left_out(tp);
2456
2457 /* E. Check state exit conditions. State can be terminated
2458 * when high_seq is ACKed. */
2459 if (icsk->icsk_ca_state == TCP_CA_Open) {
2460 BUG_TRAP(tp->retrans_out == 0);
2461 tp->retrans_stamp = 0;
2462 } else if (!before(tp->snd_una, tp->high_seq)) {
2463 switch (icsk->icsk_ca_state) {
2464 case TCP_CA_Loss:
2465 icsk->icsk_retransmits = 0;
2466 if (tcp_try_undo_recovery(sk))
2467 return;
2468 break;
2469
2470 case TCP_CA_CWR:
2471 /* CWR is to be held something *above* high_seq
2472 * is ACKed for CWR bit to reach receiver. */
2473 if (tp->snd_una != tp->high_seq) {
2474 tcp_complete_cwr(sk);
2475 tcp_set_ca_state(sk, TCP_CA_Open);
2476 }
2477 break;
2478
2479 case TCP_CA_Disorder:
2480 tcp_try_undo_dsack(sk);
2481 if (!tp->undo_marker ||
2482 /* For SACK case do not Open to allow to undo
2483 * catching for all duplicate ACKs. */
2484 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2485 tp->undo_marker = 0;
2486 tcp_set_ca_state(sk, TCP_CA_Open);
2487 }
2488 break;
2489
2490 case TCP_CA_Recovery:
2491 if (tcp_is_reno(tp))
2492 tcp_reset_reno_sack(tp);
2493 if (tcp_try_undo_recovery(sk))
2494 return;
2495 tcp_complete_cwr(sk);
2496 break;
2497 }
2498 }
2499
2500 /* F. Process state. */
2501 switch (icsk->icsk_ca_state) {
2502 case TCP_CA_Recovery:
2503 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2504 if (tcp_is_reno(tp) && is_dupack)
2505 tcp_add_reno_sack(sk);
2506 } else
2507 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2508 break;
2509 case TCP_CA_Loss:
2510 if (flag&FLAG_DATA_ACKED)
2511 icsk->icsk_retransmits = 0;
2512 if (!tcp_try_undo_loss(sk)) {
2513 tcp_moderate_cwnd(tp);
2514 tcp_xmit_retransmit_queue(sk);
2515 return;
2516 }
2517 if (icsk->icsk_ca_state != TCP_CA_Open)
2518 return;
2519 /* Loss is undone; fall through to processing in Open state. */
2520 default:
2521 if (tcp_is_reno(tp)) {
2522 if (flag & FLAG_SND_UNA_ADVANCED)
2523 tcp_reset_reno_sack(tp);
2524 if (is_dupack)
2525 tcp_add_reno_sack(sk);
2526 }
2527
2528 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2529 tcp_try_undo_dsack(sk);
2530
2531 if (!tcp_time_to_recover(sk)) {
2532 tcp_try_to_open(sk, flag);
2533 return;
2534 }
2535
2536 /* MTU probe failure: don't reduce cwnd */
2537 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2538 icsk->icsk_mtup.probe_size &&
2539 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2540 tcp_mtup_probe_failed(sk);
2541 /* Restores the reduction we did in tcp_mtup_probe() */
2542 tp->snd_cwnd++;
2543 tcp_simple_retransmit(sk);
2544 return;
2545 }
2546
2547 /* Otherwise enter Recovery state */
2548
2549 if (tcp_is_reno(tp))
2550 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2551 else
2552 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2553
2554 tp->high_seq = tp->snd_nxt;
2555 tp->prior_ssthresh = 0;
2556 tp->undo_marker = tp->snd_una;
2557 tp->undo_retrans = tp->retrans_out;
2558
2559 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2560 if (!(flag&FLAG_ECE))
2561 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2562 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2563 TCP_ECN_queue_cwr(tp);
2564 }
2565
2566 tp->bytes_acked = 0;
2567 tp->snd_cwnd_cnt = 0;
2568 tcp_set_ca_state(sk, TCP_CA_Recovery);
2569 fast_rexmit = 1;
2570 }
2571
2572 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2573 tcp_update_scoreboard(sk, fast_rexmit);
2574 tcp_cwnd_down(sk, flag);
2575 tcp_xmit_retransmit_queue(sk);
2576 }
2577
2578 /* Read draft-ietf-tcplw-high-performance before mucking
2579 * with this code. (Supersedes RFC1323)
2580 */
2581 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2582 {
2583 /* RTTM Rule: A TSecr value received in a segment is used to
2584 * update the averaged RTT measurement only if the segment
2585 * acknowledges some new data, i.e., only if it advances the
2586 * left edge of the send window.
2587 *
2588 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2589 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2590 *
2591 * Changed: reset backoff as soon as we see the first valid sample.
2592 * If we do not, we get strongly overestimated rto. With timestamps
2593 * samples are accepted even from very old segments: f.e., when rtt=1
2594 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2595 * answer arrives rto becomes 120 seconds! If at least one of segments
2596 * in window is lost... Voila. --ANK (010210)
2597 */
2598 struct tcp_sock *tp = tcp_sk(sk);
2599 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2600 tcp_rtt_estimator(sk, seq_rtt);
2601 tcp_set_rto(sk);
2602 inet_csk(sk)->icsk_backoff = 0;
2603 tcp_bound_rto(sk);
2604 }
2605
2606 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2607 {
2608 /* We don't have a timestamp. Can only use
2609 * packets that are not retransmitted to determine
2610 * rtt estimates. Also, we must not reset the
2611 * backoff for rto until we get a non-retransmitted
2612 * packet. This allows us to deal with a situation
2613 * where the network delay has increased suddenly.
2614 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2615 */
2616
2617 if (flag & FLAG_RETRANS_DATA_ACKED)
2618 return;
2619
2620 tcp_rtt_estimator(sk, seq_rtt);
2621 tcp_set_rto(sk);
2622 inet_csk(sk)->icsk_backoff = 0;
2623 tcp_bound_rto(sk);
2624 }
2625
2626 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2627 const s32 seq_rtt)
2628 {
2629 const struct tcp_sock *tp = tcp_sk(sk);
2630 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2631 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2632 tcp_ack_saw_tstamp(sk, flag);
2633 else if (seq_rtt >= 0)
2634 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2635 }
2636
2637 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2638 u32 in_flight, int good)
2639 {
2640 const struct inet_connection_sock *icsk = inet_csk(sk);
2641 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2642 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2643 }
2644
2645 /* Restart timer after forward progress on connection.
2646 * RFC2988 recommends to restart timer to now+rto.
2647 */
2648 static void tcp_rearm_rto(struct sock *sk)
2649 {
2650 struct tcp_sock *tp = tcp_sk(sk);
2651
2652 if (!tp->packets_out) {
2653 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2654 } else {
2655 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2656 }
2657 }
2658
2659 /* If we get here, the whole TSO packet has not been acked. */
2660 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2661 {
2662 struct tcp_sock *tp = tcp_sk(sk);
2663 u32 packets_acked;
2664
2665 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2666
2667 packets_acked = tcp_skb_pcount(skb);
2668 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2669 return 0;
2670 packets_acked -= tcp_skb_pcount(skb);
2671
2672 if (packets_acked) {
2673 BUG_ON(tcp_skb_pcount(skb) == 0);
2674 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2675 }
2676
2677 return packets_acked;
2678 }
2679
2680 /* Remove acknowledged frames from the retransmission queue. If our packet
2681 * is before the ack sequence we can discard it as it's confirmed to have
2682 * arrived at the other end.
2683 */
2684 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p,
2685 int prior_fackets)
2686 {
2687 struct tcp_sock *tp = tcp_sk(sk);
2688 const struct inet_connection_sock *icsk = inet_csk(sk);
2689 struct sk_buff *skb;
2690 u32 now = tcp_time_stamp;
2691 int fully_acked = 1;
2692 int flag = 0;
2693 int prior_packets = tp->packets_out;
2694 u32 cnt = 0;
2695 u32 reord = tp->packets_out;
2696 s32 seq_rtt = -1;
2697 s32 ca_seq_rtt = -1;
2698 ktime_t last_ackt = net_invalid_timestamp();
2699
2700 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2701 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2702 u32 end_seq;
2703 u32 packets_acked;
2704 u8 sacked = scb->sacked;
2705
2706 /* Determine how many packets and what bytes were acked, tso and else */
2707 if (after(scb->end_seq, tp->snd_una)) {
2708 if (tcp_skb_pcount(skb) == 1 ||
2709 !after(tp->snd_una, scb->seq))
2710 break;
2711
2712 packets_acked = tcp_tso_acked(sk, skb);
2713 if (!packets_acked)
2714 break;
2715
2716 fully_acked = 0;
2717 end_seq = tp->snd_una;
2718 } else {
2719 packets_acked = tcp_skb_pcount(skb);
2720 end_seq = scb->end_seq;
2721 }
2722
2723 /* MTU probing checks */
2724 if (fully_acked && icsk->icsk_mtup.probe_size &&
2725 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2726 tcp_mtup_probe_success(sk, skb);
2727 }
2728
2729 if (sacked) {
2730 if (sacked & TCPCB_RETRANS) {
2731 if (sacked & TCPCB_SACKED_RETRANS)
2732 tp->retrans_out -= packets_acked;
2733 flag |= FLAG_RETRANS_DATA_ACKED;
2734 ca_seq_rtt = -1;
2735 seq_rtt = -1;
2736 if ((flag & FLAG_DATA_ACKED) ||
2737 (packets_acked > 1))
2738 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2739 } else {
2740 ca_seq_rtt = now - scb->when;
2741 last_ackt = skb->tstamp;
2742 if (seq_rtt < 0) {
2743 seq_rtt = ca_seq_rtt;
2744 }
2745 if (!(sacked & TCPCB_SACKED_ACKED))
2746 reord = min(cnt, reord);
2747 }
2748
2749 if (sacked & TCPCB_SACKED_ACKED)
2750 tp->sacked_out -= packets_acked;
2751 if (sacked & TCPCB_LOST)
2752 tp->lost_out -= packets_acked;
2753
2754 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2755 !before(end_seq, tp->snd_up))
2756 tp->urg_mode = 0;
2757 } else {
2758 ca_seq_rtt = now - scb->when;
2759 last_ackt = skb->tstamp;
2760 if (seq_rtt < 0) {
2761 seq_rtt = ca_seq_rtt;
2762 }
2763 reord = min(cnt, reord);
2764 }
2765 tp->packets_out -= packets_acked;
2766 cnt += packets_acked;
2767
2768 /* Initial outgoing SYN's get put onto the write_queue
2769 * just like anything else we transmit. It is not
2770 * true data, and if we misinform our callers that
2771 * this ACK acks real data, we will erroneously exit
2772 * connection startup slow start one packet too
2773 * quickly. This is severely frowned upon behavior.
2774 */
2775 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2776 flag |= FLAG_DATA_ACKED;
2777 } else {
2778 flag |= FLAG_SYN_ACKED;
2779 tp->retrans_stamp = 0;
2780 }
2781
2782 if (!fully_acked)
2783 break;
2784
2785 tcp_unlink_write_queue(skb, sk);
2786 sk_stream_free_skb(sk, skb);
2787 tcp_clear_all_retrans_hints(tp);
2788 }
2789
2790 if (flag & FLAG_ACKED) {
2791 u32 pkts_acked = prior_packets - tp->packets_out;
2792 const struct tcp_congestion_ops *ca_ops
2793 = inet_csk(sk)->icsk_ca_ops;
2794
2795 tcp_ack_update_rtt(sk, flag, seq_rtt);
2796 tcp_rearm_rto(sk);
2797
2798 if (tcp_is_reno(tp)) {
2799 tcp_remove_reno_sacks(sk, pkts_acked);
2800 } else {
2801 /* Non-retransmitted hole got filled? That's reordering */
2802 if (reord < prior_fackets)
2803 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2804 }
2805
2806 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2807 /* hint's skb might be NULL but we don't need to care */
2808 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2809 tp->fastpath_cnt_hint);
2810 if (ca_ops->pkts_acked) {
2811 s32 rtt_us = -1;
2812
2813 /* Is the ACK triggering packet unambiguous? */
2814 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2815 /* High resolution needed and available? */
2816 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2817 !ktime_equal(last_ackt,
2818 net_invalid_timestamp()))
2819 rtt_us = ktime_us_delta(ktime_get_real(),
2820 last_ackt);
2821 else if (ca_seq_rtt > 0)
2822 rtt_us = jiffies_to_usecs(ca_seq_rtt);
2823 }
2824
2825 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2826 }
2827 }
2828
2829 #if FASTRETRANS_DEBUG > 0
2830 BUG_TRAP((int)tp->sacked_out >= 0);
2831 BUG_TRAP((int)tp->lost_out >= 0);
2832 BUG_TRAP((int)tp->retrans_out >= 0);
2833 if (!tp->packets_out && tcp_is_sack(tp)) {
2834 icsk = inet_csk(sk);
2835 if (tp->lost_out) {
2836 printk(KERN_DEBUG "Leak l=%u %d\n",
2837 tp->lost_out, icsk->icsk_ca_state);
2838 tp->lost_out = 0;
2839 }
2840 if (tp->sacked_out) {
2841 printk(KERN_DEBUG "Leak s=%u %d\n",
2842 tp->sacked_out, icsk->icsk_ca_state);
2843 tp->sacked_out = 0;
2844 }
2845 if (tp->retrans_out) {
2846 printk(KERN_DEBUG "Leak r=%u %d\n",
2847 tp->retrans_out, icsk->icsk_ca_state);
2848 tp->retrans_out = 0;
2849 }
2850 }
2851 #endif
2852 *seq_rtt_p = seq_rtt;
2853 return flag;
2854 }
2855
2856 static void tcp_ack_probe(struct sock *sk)
2857 {
2858 const struct tcp_sock *tp = tcp_sk(sk);
2859 struct inet_connection_sock *icsk = inet_csk(sk);
2860
2861 /* Was it a usable window open? */
2862
2863 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2864 tp->snd_una + tp->snd_wnd)) {
2865 icsk->icsk_backoff = 0;
2866 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2867 /* Socket must be waked up by subsequent tcp_data_snd_check().
2868 * This function is not for random using!
2869 */
2870 } else {
2871 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2872 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2873 TCP_RTO_MAX);
2874 }
2875 }
2876
2877 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2878 {
2879 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2880 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2881 }
2882
2883 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2884 {
2885 const struct tcp_sock *tp = tcp_sk(sk);
2886 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2887 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2888 }
2889
2890 /* Check that window update is acceptable.
2891 * The function assumes that snd_una<=ack<=snd_next.
2892 */
2893 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2894 const u32 ack_seq, const u32 nwin)
2895 {
2896 return (after(ack, tp->snd_una) ||
2897 after(ack_seq, tp->snd_wl1) ||
2898 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2899 }
2900
2901 /* Update our send window.
2902 *
2903 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2904 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2905 */
2906 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2907 u32 ack_seq)
2908 {
2909 struct tcp_sock *tp = tcp_sk(sk);
2910 int flag = 0;
2911 u32 nwin = ntohs(tcp_hdr(skb)->window);
2912
2913 if (likely(!tcp_hdr(skb)->syn))
2914 nwin <<= tp->rx_opt.snd_wscale;
2915
2916 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2917 flag |= FLAG_WIN_UPDATE;
2918 tcp_update_wl(tp, ack, ack_seq);
2919
2920 if (tp->snd_wnd != nwin) {
2921 tp->snd_wnd = nwin;
2922
2923 /* Note, it is the only place, where
2924 * fast path is recovered for sending TCP.
2925 */
2926 tp->pred_flags = 0;
2927 tcp_fast_path_check(sk);
2928
2929 if (nwin > tp->max_window) {
2930 tp->max_window = nwin;
2931 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2932 }
2933 }
2934 }
2935
2936 tp->snd_una = ack;
2937
2938 return flag;
2939 }
2940
2941 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2942 * continue in congestion avoidance.
2943 */
2944 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2945 {
2946 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2947 tp->snd_cwnd_cnt = 0;
2948 tp->bytes_acked = 0;
2949 TCP_ECN_queue_cwr(tp);
2950 tcp_moderate_cwnd(tp);
2951 }
2952
2953 /* A conservative spurious RTO response algorithm: reduce cwnd using
2954 * rate halving and continue in congestion avoidance.
2955 */
2956 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2957 {
2958 tcp_enter_cwr(sk, 0);
2959 }
2960
2961 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2962 {
2963 if (flag&FLAG_ECE)
2964 tcp_ratehalving_spur_to_response(sk);
2965 else
2966 tcp_undo_cwr(sk, 1);
2967 }
2968
2969 /* F-RTO spurious RTO detection algorithm (RFC4138)
2970 *
2971 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2972 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2973 * window (but not to or beyond highest sequence sent before RTO):
2974 * On First ACK, send two new segments out.
2975 * On Second ACK, RTO was likely spurious. Do spurious response (response
2976 * algorithm is not part of the F-RTO detection algorithm
2977 * given in RFC4138 but can be selected separately).
2978 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2979 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2980 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2981 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2982 *
2983 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2984 * original window even after we transmit two new data segments.
2985 *
2986 * SACK version:
2987 * on first step, wait until first cumulative ACK arrives, then move to
2988 * the second step. In second step, the next ACK decides.
2989 *
2990 * F-RTO is implemented (mainly) in four functions:
2991 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2992 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2993 * called when tcp_use_frto() showed green light
2994 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2995 * - tcp_enter_frto_loss() is called if there is not enough evidence
2996 * to prove that the RTO is indeed spurious. It transfers the control
2997 * from F-RTO to the conventional RTO recovery
2998 */
2999 static int tcp_process_frto(struct sock *sk, int flag)
3000 {
3001 struct tcp_sock *tp = tcp_sk(sk);
3002
3003 tcp_verify_left_out(tp);
3004
3005 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3006 if (flag&FLAG_DATA_ACKED)
3007 inet_csk(sk)->icsk_retransmits = 0;
3008
3009 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3010 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3011 tp->undo_marker = 0;
3012
3013 if (!before(tp->snd_una, tp->frto_highmark)) {
3014 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3015 return 1;
3016 }
3017
3018 if (!IsSackFrto() || tcp_is_reno(tp)) {
3019 /* RFC4138 shortcoming in step 2; should also have case c):
3020 * ACK isn't duplicate nor advances window, e.g., opposite dir
3021 * data, winupdate
3022 */
3023 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
3024 return 1;
3025
3026 if (!(flag&FLAG_DATA_ACKED)) {
3027 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3028 flag);
3029 return 1;
3030 }
3031 } else {
3032 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3033 /* Prevent sending of new data. */
3034 tp->snd_cwnd = min(tp->snd_cwnd,
3035 tcp_packets_in_flight(tp));
3036 return 1;
3037 }
3038
3039 if ((tp->frto_counter >= 2) &&
3040 (!(flag&FLAG_FORWARD_PROGRESS) ||
3041 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
3042 /* RFC4138 shortcoming (see comment above) */
3043 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
3044 return 1;
3045
3046 tcp_enter_frto_loss(sk, 3, flag);
3047 return 1;
3048 }
3049 }
3050
3051 if (tp->frto_counter == 1) {
3052 /* tcp_may_send_now needs to see updated state */
3053 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3054 tp->frto_counter = 2;
3055
3056 if (!tcp_may_send_now(sk))
3057 tcp_enter_frto_loss(sk, 2, flag);
3058
3059 return 1;
3060 } else {
3061 switch (sysctl_tcp_frto_response) {
3062 case 2:
3063 tcp_undo_spur_to_response(sk, flag);
3064 break;
3065 case 1:
3066 tcp_conservative_spur_to_response(tp);
3067 break;
3068 default:
3069 tcp_ratehalving_spur_to_response(sk);
3070 break;
3071 }
3072 tp->frto_counter = 0;
3073 tp->undo_marker = 0;
3074 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3075 }
3076 return 0;
3077 }
3078
3079 /* This routine deals with incoming acks, but not outgoing ones. */
3080 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3081 {
3082 struct inet_connection_sock *icsk = inet_csk(sk);
3083 struct tcp_sock *tp = tcp_sk(sk);
3084 u32 prior_snd_una = tp->snd_una;
3085 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3086 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3087 u32 prior_in_flight;
3088 u32 prior_fackets;
3089 s32 seq_rtt;
3090 int prior_packets;
3091 int frto_cwnd = 0;
3092
3093 /* If the ack is newer than sent or older than previous acks
3094 * then we can probably ignore it.
3095 */
3096 if (after(ack, tp->snd_nxt))
3097 goto uninteresting_ack;
3098
3099 if (before(ack, prior_snd_una))
3100 goto old_ack;
3101
3102 if (after(ack, prior_snd_una))
3103 flag |= FLAG_SND_UNA_ADVANCED;
3104
3105 if (sysctl_tcp_abc) {
3106 if (icsk->icsk_ca_state < TCP_CA_CWR)
3107 tp->bytes_acked += ack - prior_snd_una;
3108 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3109 /* we assume just one segment left network */
3110 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3111 }
3112
3113 prior_fackets = tp->fackets_out;
3114 prior_in_flight = tcp_packets_in_flight(tp);
3115
3116 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3117 /* Window is constant, pure forward advance.
3118 * No more checks are required.
3119 * Note, we use the fact that SND.UNA>=SND.WL2.
3120 */
3121 tcp_update_wl(tp, ack, ack_seq);
3122 tp->snd_una = ack;
3123 flag |= FLAG_WIN_UPDATE;
3124
3125 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3126
3127 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3128 } else {
3129 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3130 flag |= FLAG_DATA;
3131 else
3132 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3133
3134 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3135
3136 if (TCP_SKB_CB(skb)->sacked)
3137 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3138
3139 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3140 flag |= FLAG_ECE;
3141
3142 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3143 }
3144
3145 /* We passed data and got it acked, remove any soft error
3146 * log. Something worked...
3147 */
3148 sk->sk_err_soft = 0;
3149 tp->rcv_tstamp = tcp_time_stamp;
3150 prior_packets = tp->packets_out;
3151 if (!prior_packets)
3152 goto no_queue;
3153
3154 /* See if we can take anything off of the retransmit queue. */
3155 flag |= tcp_clean_rtx_queue(sk, &seq_rtt, prior_fackets);
3156
3157 if (tp->frto_counter)
3158 frto_cwnd = tcp_process_frto(sk, flag);
3159 /* Guarantee sacktag reordering detection against wrap-arounds */
3160 if (before(tp->frto_highmark, tp->snd_una))
3161 tp->frto_highmark = 0;
3162
3163 if (tcp_ack_is_dubious(sk, flag)) {
3164 /* Advance CWND, if state allows this. */
3165 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3166 tcp_may_raise_cwnd(sk, flag))
3167 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3168 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3169 } else {
3170 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3171 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3172 }
3173
3174 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3175 dst_confirm(sk->sk_dst_cache);
3176
3177 return 1;
3178
3179 no_queue:
3180 icsk->icsk_probes_out = 0;
3181
3182 /* If this ack opens up a zero window, clear backoff. It was
3183 * being used to time the probes, and is probably far higher than
3184 * it needs to be for normal retransmission.
3185 */
3186 if (tcp_send_head(sk))
3187 tcp_ack_probe(sk);
3188 return 1;
3189
3190 old_ack:
3191 if (TCP_SKB_CB(skb)->sacked)
3192 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3193
3194 uninteresting_ack:
3195 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3196 return 0;
3197 }
3198
3199
3200 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3201 * But, this can also be called on packets in the established flow when
3202 * the fast version below fails.
3203 */
3204 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3205 {
3206 unsigned char *ptr;
3207 struct tcphdr *th = tcp_hdr(skb);
3208 int length=(th->doff*4)-sizeof(struct tcphdr);
3209
3210 ptr = (unsigned char *)(th + 1);
3211 opt_rx->saw_tstamp = 0;
3212
3213 while (length > 0) {
3214 int opcode=*ptr++;
3215 int opsize;
3216
3217 switch (opcode) {
3218 case TCPOPT_EOL:
3219 return;
3220 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3221 length--;
3222 continue;
3223 default:
3224 opsize=*ptr++;
3225 if (opsize < 2) /* "silly options" */
3226 return;
3227 if (opsize > length)
3228 return; /* don't parse partial options */
3229 switch (opcode) {
3230 case TCPOPT_MSS:
3231 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3232 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3233 if (in_mss) {
3234 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3235 in_mss = opt_rx->user_mss;
3236 opt_rx->mss_clamp = in_mss;
3237 }
3238 }
3239 break;
3240 case TCPOPT_WINDOW:
3241 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3242 if (sysctl_tcp_window_scaling) {
3243 __u8 snd_wscale = *(__u8 *) ptr;
3244 opt_rx->wscale_ok = 1;
3245 if (snd_wscale > 14) {
3246 if (net_ratelimit())
3247 printk(KERN_INFO "tcp_parse_options: Illegal window "
3248 "scaling value %d >14 received.\n",
3249 snd_wscale);
3250 snd_wscale = 14;
3251 }
3252 opt_rx->snd_wscale = snd_wscale;
3253 }
3254 break;
3255 case TCPOPT_TIMESTAMP:
3256 if (opsize==TCPOLEN_TIMESTAMP) {
3257 if ((estab && opt_rx->tstamp_ok) ||
3258 (!estab && sysctl_tcp_timestamps)) {
3259 opt_rx->saw_tstamp = 1;
3260 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3261 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3262 }
3263 }
3264 break;
3265 case TCPOPT_SACK_PERM:
3266 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3267 if (sysctl_tcp_sack) {
3268 opt_rx->sack_ok = 1;
3269 tcp_sack_reset(opt_rx);
3270 }
3271 }
3272 break;
3273
3274 case TCPOPT_SACK:
3275 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3276 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3277 opt_rx->sack_ok) {
3278 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3279 }
3280 break;
3281 #ifdef CONFIG_TCP_MD5SIG
3282 case TCPOPT_MD5SIG:
3283 /*
3284 * The MD5 Hash has already been
3285 * checked (see tcp_v{4,6}_do_rcv()).
3286 */
3287 break;
3288 #endif
3289 }
3290
3291 ptr+=opsize-2;
3292 length-=opsize;
3293 }
3294 }
3295 }
3296
3297 /* Fast parse options. This hopes to only see timestamps.
3298 * If it is wrong it falls back on tcp_parse_options().
3299 */
3300 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3301 struct tcp_sock *tp)
3302 {
3303 if (th->doff == sizeof(struct tcphdr)>>2) {
3304 tp->rx_opt.saw_tstamp = 0;
3305 return 0;
3306 } else if (tp->rx_opt.tstamp_ok &&
3307 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3308 __be32 *ptr = (__be32 *)(th + 1);
3309 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3310 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3311 tp->rx_opt.saw_tstamp = 1;
3312 ++ptr;
3313 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3314 ++ptr;
3315 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3316 return 1;
3317 }
3318 }
3319 tcp_parse_options(skb, &tp->rx_opt, 1);
3320 return 1;
3321 }
3322
3323 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3324 {
3325 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3326 tp->rx_opt.ts_recent_stamp = get_seconds();
3327 }
3328
3329 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3330 {
3331 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3332 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3333 * extra check below makes sure this can only happen
3334 * for pure ACK frames. -DaveM
3335 *
3336 * Not only, also it occurs for expired timestamps.
3337 */
3338
3339 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3340 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3341 tcp_store_ts_recent(tp);
3342 }
3343 }
3344
3345 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3346 *
3347 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3348 * it can pass through stack. So, the following predicate verifies that
3349 * this segment is not used for anything but congestion avoidance or
3350 * fast retransmit. Moreover, we even are able to eliminate most of such
3351 * second order effects, if we apply some small "replay" window (~RTO)
3352 * to timestamp space.
3353 *
3354 * All these measures still do not guarantee that we reject wrapped ACKs
3355 * on networks with high bandwidth, when sequence space is recycled fastly,
3356 * but it guarantees that such events will be very rare and do not affect
3357 * connection seriously. This doesn't look nice, but alas, PAWS is really
3358 * buggy extension.
3359 *
3360 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3361 * states that events when retransmit arrives after original data are rare.
3362 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3363 * the biggest problem on large power networks even with minor reordering.
3364 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3365 * up to bandwidth of 18Gigabit/sec. 8) ]
3366 */
3367
3368 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3369 {
3370 struct tcp_sock *tp = tcp_sk(sk);
3371 struct tcphdr *th = tcp_hdr(skb);
3372 u32 seq = TCP_SKB_CB(skb)->seq;
3373 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3374
3375 return (/* 1. Pure ACK with correct sequence number. */
3376 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3377
3378 /* 2. ... and duplicate ACK. */
3379 ack == tp->snd_una &&
3380
3381 /* 3. ... and does not update window. */
3382 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3383
3384 /* 4. ... and sits in replay window. */
3385 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3386 }
3387
3388 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3389 {
3390 const struct tcp_sock *tp = tcp_sk(sk);
3391 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3392 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3393 !tcp_disordered_ack(sk, skb));
3394 }
3395
3396 /* Check segment sequence number for validity.
3397 *
3398 * Segment controls are considered valid, if the segment
3399 * fits to the window after truncation to the window. Acceptability
3400 * of data (and SYN, FIN, of course) is checked separately.
3401 * See tcp_data_queue(), for example.
3402 *
3403 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3404 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3405 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3406 * (borrowed from freebsd)
3407 */
3408
3409 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3410 {
3411 return !before(end_seq, tp->rcv_wup) &&
3412 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3413 }
3414
3415 /* When we get a reset we do this. */
3416 static void tcp_reset(struct sock *sk)
3417 {
3418 /* We want the right error as BSD sees it (and indeed as we do). */
3419 switch (sk->sk_state) {
3420 case TCP_SYN_SENT:
3421 sk->sk_err = ECONNREFUSED;
3422 break;
3423 case TCP_CLOSE_WAIT:
3424 sk->sk_err = EPIPE;
3425 break;
3426 case TCP_CLOSE:
3427 return;
3428 default:
3429 sk->sk_err = ECONNRESET;
3430 }
3431
3432 if (!sock_flag(sk, SOCK_DEAD))
3433 sk->sk_error_report(sk);
3434
3435 tcp_done(sk);
3436 }
3437
3438 /*
3439 * Process the FIN bit. This now behaves as it is supposed to work
3440 * and the FIN takes effect when it is validly part of sequence
3441 * space. Not before when we get holes.
3442 *
3443 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3444 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3445 * TIME-WAIT)
3446 *
3447 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3448 * close and we go into CLOSING (and later onto TIME-WAIT)
3449 *
3450 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3451 */
3452 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3453 {
3454 struct tcp_sock *tp = tcp_sk(sk);
3455
3456 inet_csk_schedule_ack(sk);
3457
3458 sk->sk_shutdown |= RCV_SHUTDOWN;
3459 sock_set_flag(sk, SOCK_DONE);
3460
3461 switch (sk->sk_state) {
3462 case TCP_SYN_RECV:
3463 case TCP_ESTABLISHED:
3464 /* Move to CLOSE_WAIT */
3465 tcp_set_state(sk, TCP_CLOSE_WAIT);
3466 inet_csk(sk)->icsk_ack.pingpong = 1;
3467 break;
3468
3469 case TCP_CLOSE_WAIT:
3470 case TCP_CLOSING:
3471 /* Received a retransmission of the FIN, do
3472 * nothing.
3473 */
3474 break;
3475 case TCP_LAST_ACK:
3476 /* RFC793: Remain in the LAST-ACK state. */
3477 break;
3478
3479 case TCP_FIN_WAIT1:
3480 /* This case occurs when a simultaneous close
3481 * happens, we must ack the received FIN and
3482 * enter the CLOSING state.
3483 */
3484 tcp_send_ack(sk);
3485 tcp_set_state(sk, TCP_CLOSING);
3486 break;
3487 case TCP_FIN_WAIT2:
3488 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3489 tcp_send_ack(sk);
3490 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3491 break;
3492 default:
3493 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3494 * cases we should never reach this piece of code.
3495 */
3496 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3497 __FUNCTION__, sk->sk_state);
3498 break;
3499 }
3500
3501 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3502 * Probably, we should reset in this case. For now drop them.
3503 */
3504 __skb_queue_purge(&tp->out_of_order_queue);
3505 if (tcp_is_sack(tp))
3506 tcp_sack_reset(&tp->rx_opt);
3507 sk_stream_mem_reclaim(sk);
3508
3509 if (!sock_flag(sk, SOCK_DEAD)) {
3510 sk->sk_state_change(sk);
3511
3512 /* Do not send POLL_HUP for half duplex close. */
3513 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3514 sk->sk_state == TCP_CLOSE)
3515 sk_wake_async(sk, 1, POLL_HUP);
3516 else
3517 sk_wake_async(sk, 1, POLL_IN);
3518 }
3519 }
3520
3521 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3522 {
3523 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3524 if (before(seq, sp->start_seq))
3525 sp->start_seq = seq;
3526 if (after(end_seq, sp->end_seq))
3527 sp->end_seq = end_seq;
3528 return 1;
3529 }
3530 return 0;
3531 }
3532
3533 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3534 {
3535 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3536 if (before(seq, tp->rcv_nxt))
3537 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3538 else
3539 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3540
3541 tp->rx_opt.dsack = 1;
3542 tp->duplicate_sack[0].start_seq = seq;
3543 tp->duplicate_sack[0].end_seq = end_seq;
3544 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3545 }
3546 }
3547
3548 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3549 {
3550 if (!tp->rx_opt.dsack)
3551 tcp_dsack_set(tp, seq, end_seq);
3552 else
3553 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3554 }
3555
3556 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3557 {
3558 struct tcp_sock *tp = tcp_sk(sk);
3559
3560 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3561 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3562 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3563 tcp_enter_quickack_mode(sk);
3564
3565 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3566 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3567
3568 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3569 end_seq = tp->rcv_nxt;
3570 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3571 }
3572 }
3573
3574 tcp_send_ack(sk);
3575 }
3576
3577 /* These routines update the SACK block as out-of-order packets arrive or
3578 * in-order packets close up the sequence space.
3579 */
3580 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3581 {
3582 int this_sack;
3583 struct tcp_sack_block *sp = &tp->selective_acks[0];
3584 struct tcp_sack_block *swalk = sp+1;
3585
3586 /* See if the recent change to the first SACK eats into
3587 * or hits the sequence space of other SACK blocks, if so coalesce.
3588 */
3589 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3590 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3591 int i;
3592
3593 /* Zap SWALK, by moving every further SACK up by one slot.
3594 * Decrease num_sacks.
3595 */
3596 tp->rx_opt.num_sacks--;
3597 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3598 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3599 sp[i] = sp[i+1];
3600 continue;
3601 }
3602 this_sack++, swalk++;
3603 }
3604 }
3605
3606 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3607 {
3608 __u32 tmp;
3609
3610 tmp = sack1->start_seq;
3611 sack1->start_seq = sack2->start_seq;
3612 sack2->start_seq = tmp;
3613
3614 tmp = sack1->end_seq;
3615 sack1->end_seq = sack2->end_seq;
3616 sack2->end_seq = tmp;
3617 }
3618
3619 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3620 {
3621 struct tcp_sock *tp = tcp_sk(sk);
3622 struct tcp_sack_block *sp = &tp->selective_acks[0];
3623 int cur_sacks = tp->rx_opt.num_sacks;
3624 int this_sack;
3625
3626 if (!cur_sacks)
3627 goto new_sack;
3628
3629 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3630 if (tcp_sack_extend(sp, seq, end_seq)) {
3631 /* Rotate this_sack to the first one. */
3632 for (; this_sack>0; this_sack--, sp--)
3633 tcp_sack_swap(sp, sp-1);
3634 if (cur_sacks > 1)
3635 tcp_sack_maybe_coalesce(tp);
3636 return;
3637 }
3638 }
3639
3640 /* Could not find an adjacent existing SACK, build a new one,
3641 * put it at the front, and shift everyone else down. We
3642 * always know there is at least one SACK present already here.
3643 *
3644 * If the sack array is full, forget about the last one.
3645 */
3646 if (this_sack >= 4) {
3647 this_sack--;
3648 tp->rx_opt.num_sacks--;
3649 sp--;
3650 }
3651 for (; this_sack > 0; this_sack--, sp--)
3652 *sp = *(sp-1);
3653
3654 new_sack:
3655 /* Build the new head SACK, and we're done. */
3656 sp->start_seq = seq;
3657 sp->end_seq = end_seq;
3658 tp->rx_opt.num_sacks++;
3659 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3660 }
3661
3662 /* RCV.NXT advances, some SACKs should be eaten. */
3663
3664 static void tcp_sack_remove(struct tcp_sock *tp)
3665 {
3666 struct tcp_sack_block *sp = &tp->selective_acks[0];
3667 int num_sacks = tp->rx_opt.num_sacks;
3668 int this_sack;
3669
3670 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3671 if (skb_queue_empty(&tp->out_of_order_queue)) {
3672 tp->rx_opt.num_sacks = 0;
3673 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3674 return;
3675 }
3676
3677 for (this_sack = 0; this_sack < num_sacks; ) {
3678 /* Check if the start of the sack is covered by RCV.NXT. */
3679 if (!before(tp->rcv_nxt, sp->start_seq)) {
3680 int i;
3681
3682 /* RCV.NXT must cover all the block! */
3683 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3684
3685 /* Zap this SACK, by moving forward any other SACKS. */
3686 for (i=this_sack+1; i < num_sacks; i++)
3687 tp->selective_acks[i-1] = tp->selective_acks[i];
3688 num_sacks--;
3689 continue;
3690 }
3691 this_sack++;
3692 sp++;
3693 }
3694 if (num_sacks != tp->rx_opt.num_sacks) {
3695 tp->rx_opt.num_sacks = num_sacks;
3696 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3697 }
3698 }
3699
3700 /* This one checks to see if we can put data from the
3701 * out_of_order queue into the receive_queue.
3702 */
3703 static void tcp_ofo_queue(struct sock *sk)
3704 {
3705 struct tcp_sock *tp = tcp_sk(sk);
3706 __u32 dsack_high = tp->rcv_nxt;
3707 struct sk_buff *skb;
3708
3709 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3710 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3711 break;
3712
3713 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3714 __u32 dsack = dsack_high;
3715 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3716 dsack_high = TCP_SKB_CB(skb)->end_seq;
3717 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3718 }
3719
3720 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3721 SOCK_DEBUG(sk, "ofo packet was already received \n");
3722 __skb_unlink(skb, &tp->out_of_order_queue);
3723 __kfree_skb(skb);
3724 continue;
3725 }
3726 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3727 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3728 TCP_SKB_CB(skb)->end_seq);
3729
3730 __skb_unlink(skb, &tp->out_of_order_queue);
3731 __skb_queue_tail(&sk->sk_receive_queue, skb);
3732 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3733 if (tcp_hdr(skb)->fin)
3734 tcp_fin(skb, sk, tcp_hdr(skb));
3735 }
3736 }
3737
3738 static int tcp_prune_queue(struct sock *sk);
3739
3740 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3741 {
3742 struct tcphdr *th = tcp_hdr(skb);
3743 struct tcp_sock *tp = tcp_sk(sk);
3744 int eaten = -1;
3745
3746 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3747 goto drop;
3748
3749 __skb_pull(skb, th->doff*4);
3750
3751 TCP_ECN_accept_cwr(tp, skb);
3752
3753 if (tp->rx_opt.dsack) {
3754 tp->rx_opt.dsack = 0;
3755 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3756 4 - tp->rx_opt.tstamp_ok);
3757 }
3758
3759 /* Queue data for delivery to the user.
3760 * Packets in sequence go to the receive queue.
3761 * Out of sequence packets to the out_of_order_queue.
3762 */
3763 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3764 if (tcp_receive_window(tp) == 0)
3765 goto out_of_window;
3766
3767 /* Ok. In sequence. In window. */
3768 if (tp->ucopy.task == current &&
3769 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3770 sock_owned_by_user(sk) && !tp->urg_data) {
3771 int chunk = min_t(unsigned int, skb->len,
3772 tp->ucopy.len);
3773
3774 __set_current_state(TASK_RUNNING);
3775
3776 local_bh_enable();
3777 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3778 tp->ucopy.len -= chunk;
3779 tp->copied_seq += chunk;
3780 eaten = (chunk == skb->len && !th->fin);
3781 tcp_rcv_space_adjust(sk);
3782 }
3783 local_bh_disable();
3784 }
3785
3786 if (eaten <= 0) {
3787 queue_and_out:
3788 if (eaten < 0 &&
3789 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3790 !sk_stream_rmem_schedule(sk, skb))) {
3791 if (tcp_prune_queue(sk) < 0 ||
3792 !sk_stream_rmem_schedule(sk, skb))
3793 goto drop;
3794 }
3795 sk_stream_set_owner_r(skb, sk);
3796 __skb_queue_tail(&sk->sk_receive_queue, skb);
3797 }
3798 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3799 if (skb->len)
3800 tcp_event_data_recv(sk, skb);
3801 if (th->fin)
3802 tcp_fin(skb, sk, th);
3803
3804 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3805 tcp_ofo_queue(sk);
3806
3807 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3808 * gap in queue is filled.
3809 */
3810 if (skb_queue_empty(&tp->out_of_order_queue))
3811 inet_csk(sk)->icsk_ack.pingpong = 0;
3812 }
3813
3814 if (tp->rx_opt.num_sacks)
3815 tcp_sack_remove(tp);
3816
3817 tcp_fast_path_check(sk);
3818
3819 if (eaten > 0)
3820 __kfree_skb(skb);
3821 else if (!sock_flag(sk, SOCK_DEAD))
3822 sk->sk_data_ready(sk, 0);
3823 return;
3824 }
3825
3826 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3827 /* A retransmit, 2nd most common case. Force an immediate ack. */
3828 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3829 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3830
3831 out_of_window:
3832 tcp_enter_quickack_mode(sk);
3833 inet_csk_schedule_ack(sk);
3834 drop:
3835 __kfree_skb(skb);
3836 return;
3837 }
3838
3839 /* Out of window. F.e. zero window probe. */
3840 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3841 goto out_of_window;
3842
3843 tcp_enter_quickack_mode(sk);
3844
3845 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3846 /* Partial packet, seq < rcv_next < end_seq */
3847 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3848 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3849 TCP_SKB_CB(skb)->end_seq);
3850
3851 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3852
3853 /* If window is closed, drop tail of packet. But after
3854 * remembering D-SACK for its head made in previous line.
3855 */
3856 if (!tcp_receive_window(tp))
3857 goto out_of_window;
3858 goto queue_and_out;
3859 }
3860
3861 TCP_ECN_check_ce(tp, skb);
3862
3863 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3864 !sk_stream_rmem_schedule(sk, skb)) {
3865 if (tcp_prune_queue(sk) < 0 ||
3866 !sk_stream_rmem_schedule(sk, skb))
3867 goto drop;
3868 }
3869
3870 /* Disable header prediction. */
3871 tp->pred_flags = 0;
3872 inet_csk_schedule_ack(sk);
3873
3874 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3875 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3876
3877 sk_stream_set_owner_r(skb, sk);
3878
3879 if (!skb_peek(&tp->out_of_order_queue)) {
3880 /* Initial out of order segment, build 1 SACK. */
3881 if (tcp_is_sack(tp)) {
3882 tp->rx_opt.num_sacks = 1;
3883 tp->rx_opt.dsack = 0;
3884 tp->rx_opt.eff_sacks = 1;
3885 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3886 tp->selective_acks[0].end_seq =
3887 TCP_SKB_CB(skb)->end_seq;
3888 }
3889 __skb_queue_head(&tp->out_of_order_queue,skb);
3890 } else {
3891 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3892 u32 seq = TCP_SKB_CB(skb)->seq;
3893 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3894
3895 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3896 __skb_append(skb1, skb, &tp->out_of_order_queue);
3897
3898 if (!tp->rx_opt.num_sacks ||
3899 tp->selective_acks[0].end_seq != seq)
3900 goto add_sack;
3901
3902 /* Common case: data arrive in order after hole. */
3903 tp->selective_acks[0].end_seq = end_seq;
3904 return;
3905 }
3906
3907 /* Find place to insert this segment. */
3908 do {
3909 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3910 break;
3911 } while ((skb1 = skb1->prev) !=
3912 (struct sk_buff*)&tp->out_of_order_queue);
3913
3914 /* Do skb overlap to previous one? */
3915 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3916 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3917 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3918 /* All the bits are present. Drop. */
3919 __kfree_skb(skb);
3920 tcp_dsack_set(tp, seq, end_seq);
3921 goto add_sack;
3922 }
3923 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3924 /* Partial overlap. */
3925 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3926 } else {
3927 skb1 = skb1->prev;
3928 }
3929 }
3930 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3931
3932 /* And clean segments covered by new one as whole. */
3933 while ((skb1 = skb->next) !=
3934 (struct sk_buff*)&tp->out_of_order_queue &&
3935 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3936 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3937 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3938 break;
3939 }
3940 __skb_unlink(skb1, &tp->out_of_order_queue);
3941 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3942 __kfree_skb(skb1);
3943 }
3944
3945 add_sack:
3946 if (tcp_is_sack(tp))
3947 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3948 }
3949 }
3950
3951 /* Collapse contiguous sequence of skbs head..tail with
3952 * sequence numbers start..end.
3953 * Segments with FIN/SYN are not collapsed (only because this
3954 * simplifies code)
3955 */
3956 static void
3957 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3958 struct sk_buff *head, struct sk_buff *tail,
3959 u32 start, u32 end)
3960 {
3961 struct sk_buff *skb;
3962
3963 /* First, check that queue is collapsible and find
3964 * the point where collapsing can be useful. */
3965 for (skb = head; skb != tail; ) {
3966 /* No new bits? It is possible on ofo queue. */
3967 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3968 struct sk_buff *next = skb->next;
3969 __skb_unlink(skb, list);
3970 __kfree_skb(skb);
3971 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3972 skb = next;
3973 continue;
3974 }
3975
3976 /* The first skb to collapse is:
3977 * - not SYN/FIN and
3978 * - bloated or contains data before "start" or
3979 * overlaps to the next one.
3980 */
3981 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3982 (tcp_win_from_space(skb->truesize) > skb->len ||
3983 before(TCP_SKB_CB(skb)->seq, start) ||
3984 (skb->next != tail &&
3985 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3986 break;
3987
3988 /* Decided to skip this, advance start seq. */
3989 start = TCP_SKB_CB(skb)->end_seq;
3990 skb = skb->next;
3991 }
3992 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3993 return;
3994
3995 while (before(start, end)) {
3996 struct sk_buff *nskb;
3997 unsigned int header = skb_headroom(skb);
3998 int copy = SKB_MAX_ORDER(header, 0);
3999
4000 /* Too big header? This can happen with IPv6. */
4001 if (copy < 0)
4002 return;
4003 if (end-start < copy)
4004 copy = end-start;
4005 nskb = alloc_skb(copy+header, GFP_ATOMIC);
4006 if (!nskb)
4007 return;
4008
4009 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4010 skb_set_network_header(nskb, (skb_network_header(skb) -
4011 skb->head));
4012 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4013 skb->head));
4014 skb_reserve(nskb, header);
4015 memcpy(nskb->head, skb->head, header);
4016 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4017 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4018 __skb_insert(nskb, skb->prev, skb, list);
4019 sk_stream_set_owner_r(nskb, sk);
4020
4021 /* Copy data, releasing collapsed skbs. */
4022 while (copy > 0) {
4023 int offset = start - TCP_SKB_CB(skb)->seq;
4024 int size = TCP_SKB_CB(skb)->end_seq - start;
4025
4026 BUG_ON(offset < 0);
4027 if (size > 0) {
4028 size = min(copy, size);
4029 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4030 BUG();
4031 TCP_SKB_CB(nskb)->end_seq += size;
4032 copy -= size;
4033 start += size;
4034 }
4035 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4036 struct sk_buff *next = skb->next;
4037 __skb_unlink(skb, list);
4038 __kfree_skb(skb);
4039 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4040 skb = next;
4041 if (skb == tail ||
4042 tcp_hdr(skb)->syn ||
4043 tcp_hdr(skb)->fin)
4044 return;
4045 }
4046 }
4047 }
4048 }
4049
4050 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4051 * and tcp_collapse() them until all the queue is collapsed.
4052 */
4053 static void tcp_collapse_ofo_queue(struct sock *sk)
4054 {
4055 struct tcp_sock *tp = tcp_sk(sk);
4056 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4057 struct sk_buff *head;
4058 u32 start, end;
4059
4060 if (skb == NULL)
4061 return;
4062
4063 start = TCP_SKB_CB(skb)->seq;
4064 end = TCP_SKB_CB(skb)->end_seq;
4065 head = skb;
4066
4067 for (;;) {
4068 skb = skb->next;
4069
4070 /* Segment is terminated when we see gap or when
4071 * we are at the end of all the queue. */
4072 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4073 after(TCP_SKB_CB(skb)->seq, end) ||
4074 before(TCP_SKB_CB(skb)->end_seq, start)) {
4075 tcp_collapse(sk, &tp->out_of_order_queue,
4076 head, skb, start, end);
4077 head = skb;
4078 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4079 break;
4080 /* Start new segment */
4081 start = TCP_SKB_CB(skb)->seq;
4082 end = TCP_SKB_CB(skb)->end_seq;
4083 } else {
4084 if (before(TCP_SKB_CB(skb)->seq, start))
4085 start = TCP_SKB_CB(skb)->seq;
4086 if (after(TCP_SKB_CB(skb)->end_seq, end))
4087 end = TCP_SKB_CB(skb)->end_seq;
4088 }
4089 }
4090 }
4091
4092 /* Reduce allocated memory if we can, trying to get
4093 * the socket within its memory limits again.
4094 *
4095 * Return less than zero if we should start dropping frames
4096 * until the socket owning process reads some of the data
4097 * to stabilize the situation.
4098 */
4099 static int tcp_prune_queue(struct sock *sk)
4100 {
4101 struct tcp_sock *tp = tcp_sk(sk);
4102
4103 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4104
4105 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4106
4107 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4108 tcp_clamp_window(sk);
4109 else if (tcp_memory_pressure)
4110 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4111
4112 tcp_collapse_ofo_queue(sk);
4113 tcp_collapse(sk, &sk->sk_receive_queue,
4114 sk->sk_receive_queue.next,
4115 (struct sk_buff*)&sk->sk_receive_queue,
4116 tp->copied_seq, tp->rcv_nxt);
4117 sk_stream_mem_reclaim(sk);
4118
4119 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4120 return 0;
4121
4122 /* Collapsing did not help, destructive actions follow.
4123 * This must not ever occur. */
4124
4125 /* First, purge the out_of_order queue. */
4126 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4127 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4128 __skb_queue_purge(&tp->out_of_order_queue);
4129
4130 /* Reset SACK state. A conforming SACK implementation will
4131 * do the same at a timeout based retransmit. When a connection
4132 * is in a sad state like this, we care only about integrity
4133 * of the connection not performance.
4134 */
4135 if (tcp_is_sack(tp))
4136 tcp_sack_reset(&tp->rx_opt);
4137 sk_stream_mem_reclaim(sk);
4138 }
4139
4140 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4141 return 0;
4142
4143 /* If we are really being abused, tell the caller to silently
4144 * drop receive data on the floor. It will get retransmitted
4145 * and hopefully then we'll have sufficient space.
4146 */
4147 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4148
4149 /* Massive buffer overcommit. */
4150 tp->pred_flags = 0;
4151 return -1;
4152 }
4153
4154
4155 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4156 * As additional protections, we do not touch cwnd in retransmission phases,
4157 * and if application hit its sndbuf limit recently.
4158 */
4159 void tcp_cwnd_application_limited(struct sock *sk)
4160 {
4161 struct tcp_sock *tp = tcp_sk(sk);
4162
4163 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4164 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4165 /* Limited by application or receiver window. */
4166 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4167 u32 win_used = max(tp->snd_cwnd_used, init_win);
4168 if (win_used < tp->snd_cwnd) {
4169 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4170 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4171 }
4172 tp->snd_cwnd_used = 0;
4173 }
4174 tp->snd_cwnd_stamp = tcp_time_stamp;
4175 }
4176
4177 static int tcp_should_expand_sndbuf(struct sock *sk)
4178 {
4179 struct tcp_sock *tp = tcp_sk(sk);
4180
4181 /* If the user specified a specific send buffer setting, do
4182 * not modify it.
4183 */
4184 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4185 return 0;
4186
4187 /* If we are under global TCP memory pressure, do not expand. */
4188 if (tcp_memory_pressure)
4189 return 0;
4190
4191 /* If we are under soft global TCP memory pressure, do not expand. */
4192 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4193 return 0;
4194
4195 /* If we filled the congestion window, do not expand. */
4196 if (tp->packets_out >= tp->snd_cwnd)
4197 return 0;
4198
4199 return 1;
4200 }
4201
4202 /* When incoming ACK allowed to free some skb from write_queue,
4203 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4204 * on the exit from tcp input handler.
4205 *
4206 * PROBLEM: sndbuf expansion does not work well with largesend.
4207 */
4208 static void tcp_new_space(struct sock *sk)
4209 {
4210 struct tcp_sock *tp = tcp_sk(sk);
4211
4212 if (tcp_should_expand_sndbuf(sk)) {
4213 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4214 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4215 demanded = max_t(unsigned int, tp->snd_cwnd,
4216 tp->reordering + 1);
4217 sndmem *= 2*demanded;
4218 if (sndmem > sk->sk_sndbuf)
4219 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4220 tp->snd_cwnd_stamp = tcp_time_stamp;
4221 }
4222
4223 sk->sk_write_space(sk);
4224 }
4225
4226 static void tcp_check_space(struct sock *sk)
4227 {
4228 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4229 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4230 if (sk->sk_socket &&
4231 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4232 tcp_new_space(sk);
4233 }
4234 }
4235
4236 static inline void tcp_data_snd_check(struct sock *sk)
4237 {
4238 tcp_push_pending_frames(sk);
4239 tcp_check_space(sk);
4240 }
4241
4242 /*
4243 * Check if sending an ack is needed.
4244 */
4245 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4246 {
4247 struct tcp_sock *tp = tcp_sk(sk);
4248
4249 /* More than one full frame received... */
4250 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4251 /* ... and right edge of window advances far enough.
4252 * (tcp_recvmsg() will send ACK otherwise). Or...
4253 */
4254 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4255 /* We ACK each frame or... */
4256 tcp_in_quickack_mode(sk) ||
4257 /* We have out of order data. */
4258 (ofo_possible &&
4259 skb_peek(&tp->out_of_order_queue))) {
4260 /* Then ack it now */
4261 tcp_send_ack(sk);
4262 } else {
4263 /* Else, send delayed ack. */
4264 tcp_send_delayed_ack(sk);
4265 }
4266 }
4267
4268 static inline void tcp_ack_snd_check(struct sock *sk)
4269 {
4270 if (!inet_csk_ack_scheduled(sk)) {
4271 /* We sent a data segment already. */
4272 return;
4273 }
4274 __tcp_ack_snd_check(sk, 1);
4275 }
4276
4277 /*
4278 * This routine is only called when we have urgent data
4279 * signaled. Its the 'slow' part of tcp_urg. It could be
4280 * moved inline now as tcp_urg is only called from one
4281 * place. We handle URGent data wrong. We have to - as
4282 * BSD still doesn't use the correction from RFC961.
4283 * For 1003.1g we should support a new option TCP_STDURG to permit
4284 * either form (or just set the sysctl tcp_stdurg).
4285 */
4286
4287 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4288 {
4289 struct tcp_sock *tp = tcp_sk(sk);
4290 u32 ptr = ntohs(th->urg_ptr);
4291
4292 if (ptr && !sysctl_tcp_stdurg)
4293 ptr--;
4294 ptr += ntohl(th->seq);
4295
4296 /* Ignore urgent data that we've already seen and read. */
4297 if (after(tp->copied_seq, ptr))
4298 return;
4299
4300 /* Do not replay urg ptr.
4301 *
4302 * NOTE: interesting situation not covered by specs.
4303 * Misbehaving sender may send urg ptr, pointing to segment,
4304 * which we already have in ofo queue. We are not able to fetch
4305 * such data and will stay in TCP_URG_NOTYET until will be eaten
4306 * by recvmsg(). Seems, we are not obliged to handle such wicked
4307 * situations. But it is worth to think about possibility of some
4308 * DoSes using some hypothetical application level deadlock.
4309 */
4310 if (before(ptr, tp->rcv_nxt))
4311 return;
4312
4313 /* Do we already have a newer (or duplicate) urgent pointer? */
4314 if (tp->urg_data && !after(ptr, tp->urg_seq))
4315 return;
4316
4317 /* Tell the world about our new urgent pointer. */
4318 sk_send_sigurg(sk);
4319
4320 /* We may be adding urgent data when the last byte read was
4321 * urgent. To do this requires some care. We cannot just ignore
4322 * tp->copied_seq since we would read the last urgent byte again
4323 * as data, nor can we alter copied_seq until this data arrives
4324 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4325 *
4326 * NOTE. Double Dutch. Rendering to plain English: author of comment
4327 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4328 * and expect that both A and B disappear from stream. This is _wrong_.
4329 * Though this happens in BSD with high probability, this is occasional.
4330 * Any application relying on this is buggy. Note also, that fix "works"
4331 * only in this artificial test. Insert some normal data between A and B and we will
4332 * decline of BSD again. Verdict: it is better to remove to trap
4333 * buggy users.
4334 */
4335 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4336 !sock_flag(sk, SOCK_URGINLINE) &&
4337 tp->copied_seq != tp->rcv_nxt) {
4338 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4339 tp->copied_seq++;
4340 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4341 __skb_unlink(skb, &sk->sk_receive_queue);
4342 __kfree_skb(skb);
4343 }
4344 }
4345
4346 tp->urg_data = TCP_URG_NOTYET;
4347 tp->urg_seq = ptr;
4348
4349 /* Disable header prediction. */
4350 tp->pred_flags = 0;
4351 }
4352
4353 /* This is the 'fast' part of urgent handling. */
4354 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4355 {
4356 struct tcp_sock *tp = tcp_sk(sk);
4357
4358 /* Check if we get a new urgent pointer - normally not. */
4359 if (th->urg)
4360 tcp_check_urg(sk,th);
4361
4362 /* Do we wait for any urgent data? - normally not... */
4363 if (tp->urg_data == TCP_URG_NOTYET) {
4364 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4365 th->syn;
4366
4367 /* Is the urgent pointer pointing into this packet? */
4368 if (ptr < skb->len) {
4369 u8 tmp;
4370 if (skb_copy_bits(skb, ptr, &tmp, 1))
4371 BUG();
4372 tp->urg_data = TCP_URG_VALID | tmp;
4373 if (!sock_flag(sk, SOCK_DEAD))
4374 sk->sk_data_ready(sk, 0);
4375 }
4376 }
4377 }
4378
4379 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4380 {
4381 struct tcp_sock *tp = tcp_sk(sk);
4382 int chunk = skb->len - hlen;
4383 int err;
4384
4385 local_bh_enable();
4386 if (skb_csum_unnecessary(skb))
4387 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4388 else
4389 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4390 tp->ucopy.iov);
4391
4392 if (!err) {
4393 tp->ucopy.len -= chunk;
4394 tp->copied_seq += chunk;
4395 tcp_rcv_space_adjust(sk);
4396 }
4397
4398 local_bh_disable();
4399 return err;
4400 }
4401
4402 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4403 {
4404 __sum16 result;
4405
4406 if (sock_owned_by_user(sk)) {
4407 local_bh_enable();
4408 result = __tcp_checksum_complete(skb);
4409 local_bh_disable();
4410 } else {
4411 result = __tcp_checksum_complete(skb);
4412 }
4413 return result;
4414 }
4415
4416 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4417 {
4418 return !skb_csum_unnecessary(skb) &&
4419 __tcp_checksum_complete_user(sk, skb);
4420 }
4421
4422 #ifdef CONFIG_NET_DMA
4423 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4424 {
4425 struct tcp_sock *tp = tcp_sk(sk);
4426 int chunk = skb->len - hlen;
4427 int dma_cookie;
4428 int copied_early = 0;
4429
4430 if (tp->ucopy.wakeup)
4431 return 0;
4432
4433 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4434 tp->ucopy.dma_chan = get_softnet_dma();
4435
4436 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4437
4438 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4439 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4440
4441 if (dma_cookie < 0)
4442 goto out;
4443
4444 tp->ucopy.dma_cookie = dma_cookie;
4445 copied_early = 1;
4446
4447 tp->ucopy.len -= chunk;
4448 tp->copied_seq += chunk;
4449 tcp_rcv_space_adjust(sk);
4450
4451 if ((tp->ucopy.len == 0) ||
4452 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4453 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4454 tp->ucopy.wakeup = 1;
4455 sk->sk_data_ready(sk, 0);
4456 }
4457 } else if (chunk > 0) {
4458 tp->ucopy.wakeup = 1;
4459 sk->sk_data_ready(sk, 0);
4460 }
4461 out:
4462 return copied_early;
4463 }
4464 #endif /* CONFIG_NET_DMA */
4465
4466 /*
4467 * TCP receive function for the ESTABLISHED state.
4468 *
4469 * It is split into a fast path and a slow path. The fast path is
4470 * disabled when:
4471 * - A zero window was announced from us - zero window probing
4472 * is only handled properly in the slow path.
4473 * - Out of order segments arrived.
4474 * - Urgent data is expected.
4475 * - There is no buffer space left
4476 * - Unexpected TCP flags/window values/header lengths are received
4477 * (detected by checking the TCP header against pred_flags)
4478 * - Data is sent in both directions. Fast path only supports pure senders
4479 * or pure receivers (this means either the sequence number or the ack
4480 * value must stay constant)
4481 * - Unexpected TCP option.
4482 *
4483 * When these conditions are not satisfied it drops into a standard
4484 * receive procedure patterned after RFC793 to handle all cases.
4485 * The first three cases are guaranteed by proper pred_flags setting,
4486 * the rest is checked inline. Fast processing is turned on in
4487 * tcp_data_queue when everything is OK.
4488 */
4489 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4490 struct tcphdr *th, unsigned len)
4491 {
4492 struct tcp_sock *tp = tcp_sk(sk);
4493
4494 /*
4495 * Header prediction.
4496 * The code loosely follows the one in the famous
4497 * "30 instruction TCP receive" Van Jacobson mail.
4498 *
4499 * Van's trick is to deposit buffers into socket queue
4500 * on a device interrupt, to call tcp_recv function
4501 * on the receive process context and checksum and copy
4502 * the buffer to user space. smart...
4503 *
4504 * Our current scheme is not silly either but we take the
4505 * extra cost of the net_bh soft interrupt processing...
4506 * We do checksum and copy also but from device to kernel.
4507 */
4508
4509 tp->rx_opt.saw_tstamp = 0;
4510
4511 /* pred_flags is 0xS?10 << 16 + snd_wnd
4512 * if header_prediction is to be made
4513 * 'S' will always be tp->tcp_header_len >> 2
4514 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4515 * turn it off (when there are holes in the receive
4516 * space for instance)
4517 * PSH flag is ignored.
4518 */
4519
4520 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4521 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4522 int tcp_header_len = tp->tcp_header_len;
4523
4524 /* Timestamp header prediction: tcp_header_len
4525 * is automatically equal to th->doff*4 due to pred_flags
4526 * match.
4527 */
4528
4529 /* Check timestamp */
4530 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4531 __be32 *ptr = (__be32 *)(th + 1);
4532
4533 /* No? Slow path! */
4534 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4535 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4536 goto slow_path;
4537
4538 tp->rx_opt.saw_tstamp = 1;
4539 ++ptr;
4540 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4541 ++ptr;
4542 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4543
4544 /* If PAWS failed, check it more carefully in slow path */
4545 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4546 goto slow_path;
4547
4548 /* DO NOT update ts_recent here, if checksum fails
4549 * and timestamp was corrupted part, it will result
4550 * in a hung connection since we will drop all
4551 * future packets due to the PAWS test.
4552 */
4553 }
4554
4555 if (len <= tcp_header_len) {
4556 /* Bulk data transfer: sender */
4557 if (len == tcp_header_len) {
4558 /* Predicted packet is in window by definition.
4559 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4560 * Hence, check seq<=rcv_wup reduces to:
4561 */
4562 if (tcp_header_len ==
4563 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4564 tp->rcv_nxt == tp->rcv_wup)
4565 tcp_store_ts_recent(tp);
4566
4567 /* We know that such packets are checksummed
4568 * on entry.
4569 */
4570 tcp_ack(sk, skb, 0);
4571 __kfree_skb(skb);
4572 tcp_data_snd_check(sk);
4573 return 0;
4574 } else { /* Header too small */
4575 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4576 goto discard;
4577 }
4578 } else {
4579 int eaten = 0;
4580 int copied_early = 0;
4581
4582 if (tp->copied_seq == tp->rcv_nxt &&
4583 len - tcp_header_len <= tp->ucopy.len) {
4584 #ifdef CONFIG_NET_DMA
4585 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4586 copied_early = 1;
4587 eaten = 1;
4588 }
4589 #endif
4590 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4591 __set_current_state(TASK_RUNNING);
4592
4593 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4594 eaten = 1;
4595 }
4596 if (eaten) {
4597 /* Predicted packet is in window by definition.
4598 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4599 * Hence, check seq<=rcv_wup reduces to:
4600 */
4601 if (tcp_header_len ==
4602 (sizeof(struct tcphdr) +
4603 TCPOLEN_TSTAMP_ALIGNED) &&
4604 tp->rcv_nxt == tp->rcv_wup)
4605 tcp_store_ts_recent(tp);
4606
4607 tcp_rcv_rtt_measure_ts(sk, skb);
4608
4609 __skb_pull(skb, tcp_header_len);
4610 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4611 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4612 }
4613 if (copied_early)
4614 tcp_cleanup_rbuf(sk, skb->len);
4615 }
4616 if (!eaten) {
4617 if (tcp_checksum_complete_user(sk, skb))
4618 goto csum_error;
4619
4620 /* Predicted packet is in window by definition.
4621 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4622 * Hence, check seq<=rcv_wup reduces to:
4623 */
4624 if (tcp_header_len ==
4625 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4626 tp->rcv_nxt == tp->rcv_wup)
4627 tcp_store_ts_recent(tp);
4628
4629 tcp_rcv_rtt_measure_ts(sk, skb);
4630
4631 if ((int)skb->truesize > sk->sk_forward_alloc)
4632 goto step5;
4633
4634 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4635
4636 /* Bulk data transfer: receiver */
4637 __skb_pull(skb,tcp_header_len);
4638 __skb_queue_tail(&sk->sk_receive_queue, skb);
4639 sk_stream_set_owner_r(skb, sk);
4640 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4641 }
4642
4643 tcp_event_data_recv(sk, skb);
4644
4645 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4646 /* Well, only one small jumplet in fast path... */
4647 tcp_ack(sk, skb, FLAG_DATA);
4648 tcp_data_snd_check(sk);
4649 if (!inet_csk_ack_scheduled(sk))
4650 goto no_ack;
4651 }
4652
4653 __tcp_ack_snd_check(sk, 0);
4654 no_ack:
4655 #ifdef CONFIG_NET_DMA
4656 if (copied_early)
4657 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4658 else
4659 #endif
4660 if (eaten)
4661 __kfree_skb(skb);
4662 else
4663 sk->sk_data_ready(sk, 0);
4664 return 0;
4665 }
4666 }
4667
4668 slow_path:
4669 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4670 goto csum_error;
4671
4672 /*
4673 * RFC1323: H1. Apply PAWS check first.
4674 */
4675 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4676 tcp_paws_discard(sk, skb)) {
4677 if (!th->rst) {
4678 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4679 tcp_send_dupack(sk, skb);
4680 goto discard;
4681 }
4682 /* Resets are accepted even if PAWS failed.
4683
4684 ts_recent update must be made after we are sure
4685 that the packet is in window.
4686 */
4687 }
4688
4689 /*
4690 * Standard slow path.
4691 */
4692
4693 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4694 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4695 * (RST) segments are validated by checking their SEQ-fields."
4696 * And page 69: "If an incoming segment is not acceptable,
4697 * an acknowledgment should be sent in reply (unless the RST bit
4698 * is set, if so drop the segment and return)".
4699 */
4700 if (!th->rst)
4701 tcp_send_dupack(sk, skb);
4702 goto discard;
4703 }
4704
4705 if (th->rst) {
4706 tcp_reset(sk);
4707 goto discard;
4708 }
4709
4710 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4711
4712 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4713 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4714 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4715 tcp_reset(sk);
4716 return 1;
4717 }
4718
4719 step5:
4720 if (th->ack)
4721 tcp_ack(sk, skb, FLAG_SLOWPATH);
4722
4723 tcp_rcv_rtt_measure_ts(sk, skb);
4724
4725 /* Process urgent data. */
4726 tcp_urg(sk, skb, th);
4727
4728 /* step 7: process the segment text */
4729 tcp_data_queue(sk, skb);
4730
4731 tcp_data_snd_check(sk);
4732 tcp_ack_snd_check(sk);
4733 return 0;
4734
4735 csum_error:
4736 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4737
4738 discard:
4739 __kfree_skb(skb);
4740 return 0;
4741 }
4742
4743 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4744 struct tcphdr *th, unsigned len)
4745 {
4746 struct tcp_sock *tp = tcp_sk(sk);
4747 struct inet_connection_sock *icsk = inet_csk(sk);
4748 int saved_clamp = tp->rx_opt.mss_clamp;
4749
4750 tcp_parse_options(skb, &tp->rx_opt, 0);
4751
4752 if (th->ack) {
4753 /* rfc793:
4754 * "If the state is SYN-SENT then
4755 * first check the ACK bit
4756 * If the ACK bit is set
4757 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4758 * a reset (unless the RST bit is set, if so drop
4759 * the segment and return)"
4760 *
4761 * We do not send data with SYN, so that RFC-correct
4762 * test reduces to:
4763 */
4764 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4765 goto reset_and_undo;
4766
4767 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4768 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4769 tcp_time_stamp)) {
4770 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4771 goto reset_and_undo;
4772 }
4773
4774 /* Now ACK is acceptable.
4775 *
4776 * "If the RST bit is set
4777 * If the ACK was acceptable then signal the user "error:
4778 * connection reset", drop the segment, enter CLOSED state,
4779 * delete TCB, and return."
4780 */
4781
4782 if (th->rst) {
4783 tcp_reset(sk);
4784 goto discard;
4785 }
4786
4787 /* rfc793:
4788 * "fifth, if neither of the SYN or RST bits is set then
4789 * drop the segment and return."
4790 *
4791 * See note below!
4792 * --ANK(990513)
4793 */
4794 if (!th->syn)
4795 goto discard_and_undo;
4796
4797 /* rfc793:
4798 * "If the SYN bit is on ...
4799 * are acceptable then ...
4800 * (our SYN has been ACKed), change the connection
4801 * state to ESTABLISHED..."
4802 */
4803
4804 TCP_ECN_rcv_synack(tp, th);
4805
4806 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4807 tcp_ack(sk, skb, FLAG_SLOWPATH);
4808
4809 /* Ok.. it's good. Set up sequence numbers and
4810 * move to established.
4811 */
4812 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4813 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4814
4815 /* RFC1323: The window in SYN & SYN/ACK segments is
4816 * never scaled.
4817 */
4818 tp->snd_wnd = ntohs(th->window);
4819 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4820
4821 if (!tp->rx_opt.wscale_ok) {
4822 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4823 tp->window_clamp = min(tp->window_clamp, 65535U);
4824 }
4825
4826 if (tp->rx_opt.saw_tstamp) {
4827 tp->rx_opt.tstamp_ok = 1;
4828 tp->tcp_header_len =
4829 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4830 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4831 tcp_store_ts_recent(tp);
4832 } else {
4833 tp->tcp_header_len = sizeof(struct tcphdr);
4834 }
4835
4836 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4837 tcp_enable_fack(tp);
4838
4839 tcp_mtup_init(sk);
4840 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4841 tcp_initialize_rcv_mss(sk);
4842
4843 /* Remember, tcp_poll() does not lock socket!
4844 * Change state from SYN-SENT only after copied_seq
4845 * is initialized. */
4846 tp->copied_seq = tp->rcv_nxt;
4847 smp_mb();
4848 tcp_set_state(sk, TCP_ESTABLISHED);
4849
4850 security_inet_conn_established(sk, skb);
4851
4852 /* Make sure socket is routed, for correct metrics. */
4853 icsk->icsk_af_ops->rebuild_header(sk);
4854
4855 tcp_init_metrics(sk);
4856
4857 tcp_init_congestion_control(sk);
4858
4859 /* Prevent spurious tcp_cwnd_restart() on first data
4860 * packet.
4861 */
4862 tp->lsndtime = tcp_time_stamp;
4863
4864 tcp_init_buffer_space(sk);
4865
4866 if (sock_flag(sk, SOCK_KEEPOPEN))
4867 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4868
4869 if (!tp->rx_opt.snd_wscale)
4870 __tcp_fast_path_on(tp, tp->snd_wnd);
4871 else
4872 tp->pred_flags = 0;
4873
4874 if (!sock_flag(sk, SOCK_DEAD)) {
4875 sk->sk_state_change(sk);
4876 sk_wake_async(sk, 0, POLL_OUT);
4877 }
4878
4879 if (sk->sk_write_pending ||
4880 icsk->icsk_accept_queue.rskq_defer_accept ||
4881 icsk->icsk_ack.pingpong) {
4882 /* Save one ACK. Data will be ready after
4883 * several ticks, if write_pending is set.
4884 *
4885 * It may be deleted, but with this feature tcpdumps
4886 * look so _wonderfully_ clever, that I was not able
4887 * to stand against the temptation 8) --ANK
4888 */
4889 inet_csk_schedule_ack(sk);
4890 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4891 icsk->icsk_ack.ato = TCP_ATO_MIN;
4892 tcp_incr_quickack(sk);
4893 tcp_enter_quickack_mode(sk);
4894 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4895 TCP_DELACK_MAX, TCP_RTO_MAX);
4896
4897 discard:
4898 __kfree_skb(skb);
4899 return 0;
4900 } else {
4901 tcp_send_ack(sk);
4902 }
4903 return -1;
4904 }
4905
4906 /* No ACK in the segment */
4907
4908 if (th->rst) {
4909 /* rfc793:
4910 * "If the RST bit is set
4911 *
4912 * Otherwise (no ACK) drop the segment and return."
4913 */
4914
4915 goto discard_and_undo;
4916 }
4917
4918 /* PAWS check. */
4919 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4920 goto discard_and_undo;
4921
4922 if (th->syn) {
4923 /* We see SYN without ACK. It is attempt of
4924 * simultaneous connect with crossed SYNs.
4925 * Particularly, it can be connect to self.
4926 */
4927 tcp_set_state(sk, TCP_SYN_RECV);
4928
4929 if (tp->rx_opt.saw_tstamp) {
4930 tp->rx_opt.tstamp_ok = 1;
4931 tcp_store_ts_recent(tp);
4932 tp->tcp_header_len =
4933 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4934 } else {
4935 tp->tcp_header_len = sizeof(struct tcphdr);
4936 }
4937
4938 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4939 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4940
4941 /* RFC1323: The window in SYN & SYN/ACK segments is
4942 * never scaled.
4943 */
4944 tp->snd_wnd = ntohs(th->window);
4945 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4946 tp->max_window = tp->snd_wnd;
4947
4948 TCP_ECN_rcv_syn(tp, th);
4949
4950 tcp_mtup_init(sk);
4951 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4952 tcp_initialize_rcv_mss(sk);
4953
4954
4955 tcp_send_synack(sk);
4956 #if 0
4957 /* Note, we could accept data and URG from this segment.
4958 * There are no obstacles to make this.
4959 *
4960 * However, if we ignore data in ACKless segments sometimes,
4961 * we have no reasons to accept it sometimes.
4962 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4963 * is not flawless. So, discard packet for sanity.
4964 * Uncomment this return to process the data.
4965 */
4966 return -1;
4967 #else
4968 goto discard;
4969 #endif
4970 }
4971 /* "fifth, if neither of the SYN or RST bits is set then
4972 * drop the segment and return."
4973 */
4974
4975 discard_and_undo:
4976 tcp_clear_options(&tp->rx_opt);
4977 tp->rx_opt.mss_clamp = saved_clamp;
4978 goto discard;
4979
4980 reset_and_undo:
4981 tcp_clear_options(&tp->rx_opt);
4982 tp->rx_opt.mss_clamp = saved_clamp;
4983 return 1;
4984 }
4985
4986
4987 /*
4988 * This function implements the receiving procedure of RFC 793 for
4989 * all states except ESTABLISHED and TIME_WAIT.
4990 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4991 * address independent.
4992 */
4993
4994 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4995 struct tcphdr *th, unsigned len)
4996 {
4997 struct tcp_sock *tp = tcp_sk(sk);
4998 struct inet_connection_sock *icsk = inet_csk(sk);
4999 int queued = 0;
5000
5001 tp->rx_opt.saw_tstamp = 0;
5002
5003 switch (sk->sk_state) {
5004 case TCP_CLOSE:
5005 goto discard;
5006
5007 case TCP_LISTEN:
5008 if (th->ack)
5009 return 1;
5010
5011 if (th->rst)
5012 goto discard;
5013
5014 if (th->syn) {
5015 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5016 return 1;
5017
5018 /* Now we have several options: In theory there is
5019 * nothing else in the frame. KA9Q has an option to
5020 * send data with the syn, BSD accepts data with the
5021 * syn up to the [to be] advertised window and
5022 * Solaris 2.1 gives you a protocol error. For now
5023 * we just ignore it, that fits the spec precisely
5024 * and avoids incompatibilities. It would be nice in
5025 * future to drop through and process the data.
5026 *
5027 * Now that TTCP is starting to be used we ought to
5028 * queue this data.
5029 * But, this leaves one open to an easy denial of
5030 * service attack, and SYN cookies can't defend
5031 * against this problem. So, we drop the data
5032 * in the interest of security over speed unless
5033 * it's still in use.
5034 */
5035 kfree_skb(skb);
5036 return 0;
5037 }
5038 goto discard;
5039
5040 case TCP_SYN_SENT:
5041 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5042 if (queued >= 0)
5043 return queued;
5044
5045 /* Do step6 onward by hand. */
5046 tcp_urg(sk, skb, th);
5047 __kfree_skb(skb);
5048 tcp_data_snd_check(sk);
5049 return 0;
5050 }
5051
5052 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5053 tcp_paws_discard(sk, skb)) {
5054 if (!th->rst) {
5055 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5056 tcp_send_dupack(sk, skb);
5057 goto discard;
5058 }
5059 /* Reset is accepted even if it did not pass PAWS. */
5060 }
5061
5062 /* step 1: check sequence number */
5063 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5064 if (!th->rst)
5065 tcp_send_dupack(sk, skb);
5066 goto discard;
5067 }
5068
5069 /* step 2: check RST bit */
5070 if (th->rst) {
5071 tcp_reset(sk);
5072 goto discard;
5073 }
5074
5075 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5076
5077 /* step 3: check security and precedence [ignored] */
5078
5079 /* step 4:
5080 *
5081 * Check for a SYN in window.
5082 */
5083 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5084 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5085 tcp_reset(sk);
5086 return 1;
5087 }
5088
5089 /* step 5: check the ACK field */
5090 if (th->ack) {
5091 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5092
5093 switch (sk->sk_state) {
5094 case TCP_SYN_RECV:
5095 if (acceptable) {
5096 tp->copied_seq = tp->rcv_nxt;
5097 smp_mb();
5098 tcp_set_state(sk, TCP_ESTABLISHED);
5099 sk->sk_state_change(sk);
5100
5101 /* Note, that this wakeup is only for marginal
5102 * crossed SYN case. Passively open sockets
5103 * are not waked up, because sk->sk_sleep ==
5104 * NULL and sk->sk_socket == NULL.
5105 */
5106 if (sk->sk_socket) {
5107 sk_wake_async(sk,0,POLL_OUT);
5108 }
5109
5110 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5111 tp->snd_wnd = ntohs(th->window) <<
5112 tp->rx_opt.snd_wscale;
5113 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5114 TCP_SKB_CB(skb)->seq);
5115
5116 /* tcp_ack considers this ACK as duplicate
5117 * and does not calculate rtt.
5118 * Fix it at least with timestamps.
5119 */
5120 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5121 !tp->srtt)
5122 tcp_ack_saw_tstamp(sk, 0);
5123
5124 if (tp->rx_opt.tstamp_ok)
5125 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5126
5127 /* Make sure socket is routed, for
5128 * correct metrics.
5129 */
5130 icsk->icsk_af_ops->rebuild_header(sk);
5131
5132 tcp_init_metrics(sk);
5133
5134 tcp_init_congestion_control(sk);
5135
5136 /* Prevent spurious tcp_cwnd_restart() on
5137 * first data packet.
5138 */
5139 tp->lsndtime = tcp_time_stamp;
5140
5141 tcp_mtup_init(sk);
5142 tcp_initialize_rcv_mss(sk);
5143 tcp_init_buffer_space(sk);
5144 tcp_fast_path_on(tp);
5145 } else {
5146 return 1;
5147 }
5148 break;
5149
5150 case TCP_FIN_WAIT1:
5151 if (tp->snd_una == tp->write_seq) {
5152 tcp_set_state(sk, TCP_FIN_WAIT2);
5153 sk->sk_shutdown |= SEND_SHUTDOWN;
5154 dst_confirm(sk->sk_dst_cache);
5155
5156 if (!sock_flag(sk, SOCK_DEAD))
5157 /* Wake up lingering close() */
5158 sk->sk_state_change(sk);
5159 else {
5160 int tmo;
5161
5162 if (tp->linger2 < 0 ||
5163 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5164 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5165 tcp_done(sk);
5166 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5167 return 1;
5168 }
5169
5170 tmo = tcp_fin_time(sk);
5171 if (tmo > TCP_TIMEWAIT_LEN) {
5172 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5173 } else if (th->fin || sock_owned_by_user(sk)) {
5174 /* Bad case. We could lose such FIN otherwise.
5175 * It is not a big problem, but it looks confusing
5176 * and not so rare event. We still can lose it now,
5177 * if it spins in bh_lock_sock(), but it is really
5178 * marginal case.
5179 */
5180 inet_csk_reset_keepalive_timer(sk, tmo);
5181 } else {
5182 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5183 goto discard;
5184 }
5185 }
5186 }
5187 break;
5188
5189 case TCP_CLOSING:
5190 if (tp->snd_una == tp->write_seq) {
5191 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5192 goto discard;
5193 }
5194 break;
5195
5196 case TCP_LAST_ACK:
5197 if (tp->snd_una == tp->write_seq) {
5198 tcp_update_metrics(sk);
5199 tcp_done(sk);
5200 goto discard;
5201 }
5202 break;
5203 }
5204 } else
5205 goto discard;
5206
5207 /* step 6: check the URG bit */
5208 tcp_urg(sk, skb, th);
5209
5210 /* step 7: process the segment text */
5211 switch (sk->sk_state) {
5212 case TCP_CLOSE_WAIT:
5213 case TCP_CLOSING:
5214 case TCP_LAST_ACK:
5215 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5216 break;
5217 case TCP_FIN_WAIT1:
5218 case TCP_FIN_WAIT2:
5219 /* RFC 793 says to queue data in these states,
5220 * RFC 1122 says we MUST send a reset.
5221 * BSD 4.4 also does reset.
5222 */
5223 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5224 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5225 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5226 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5227 tcp_reset(sk);
5228 return 1;
5229 }
5230 }
5231 /* Fall through */
5232 case TCP_ESTABLISHED:
5233 tcp_data_queue(sk, skb);
5234 queued = 1;
5235 break;
5236 }
5237
5238 /* tcp_data could move socket to TIME-WAIT */
5239 if (sk->sk_state != TCP_CLOSE) {
5240 tcp_data_snd_check(sk);
5241 tcp_ack_snd_check(sk);
5242 }
5243
5244 if (!queued) {
5245 discard:
5246 __kfree_skb(skb);
5247 }
5248 return 0;
5249 }
5250
5251 EXPORT_SYMBOL(sysctl_tcp_ecn);
5252 EXPORT_SYMBOL(sysctl_tcp_reordering);
5253 EXPORT_SYMBOL(tcp_parse_options);
5254 EXPORT_SYMBOL(tcp_rcv_established);
5255 EXPORT_SYMBOL(tcp_rcv_state_process);
5256 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.141787 seconds and 6 git commands to generate.