[TCP]: Kill bogus comment above tcp_tso_acked().
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presnce of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/config.h>
67 #include <linux/mm.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
84
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
88 int sysctl_tcp_frto;
89 int sysctl_tcp_nometrics_save;
90
91 int sysctl_tcp_moderate_rcvbuf = 1;
92
93 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
94 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
95 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
96 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
97 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
98 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
99 #define FLAG_ECE 0x40 /* ECE in this ACK */
100 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
101 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
102
103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
107
108 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
109 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
110 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
111
112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
113
114 /* Adapt the MSS value used to make delayed ack decision to the
115 * real world.
116 */
117 static inline void tcp_measure_rcv_mss(struct tcp_sock *tp,
118 struct sk_buff *skb)
119 {
120 unsigned int len, lss;
121
122 lss = tp->ack.last_seg_size;
123 tp->ack.last_seg_size = 0;
124
125 /* skb->len may jitter because of SACKs, even if peer
126 * sends good full-sized frames.
127 */
128 len = skb->len;
129 if (len >= tp->ack.rcv_mss) {
130 tp->ack.rcv_mss = len;
131 } else {
132 /* Otherwise, we make more careful check taking into account,
133 * that SACKs block is variable.
134 *
135 * "len" is invariant segment length, including TCP header.
136 */
137 len += skb->data - skb->h.raw;
138 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
139 /* If PSH is not set, packet should be
140 * full sized, provided peer TCP is not badly broken.
141 * This observation (if it is correct 8)) allows
142 * to handle super-low mtu links fairly.
143 */
144 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
145 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
146 /* Subtract also invariant (if peer is RFC compliant),
147 * tcp header plus fixed timestamp option length.
148 * Resulting "len" is MSS free of SACK jitter.
149 */
150 len -= tp->tcp_header_len;
151 tp->ack.last_seg_size = len;
152 if (len == lss) {
153 tp->ack.rcv_mss = len;
154 return;
155 }
156 }
157 tp->ack.pending |= TCP_ACK_PUSHED;
158 }
159 }
160
161 static void tcp_incr_quickack(struct tcp_sock *tp)
162 {
163 unsigned quickacks = tp->rcv_wnd/(2*tp->ack.rcv_mss);
164
165 if (quickacks==0)
166 quickacks=2;
167 if (quickacks > tp->ack.quick)
168 tp->ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
169 }
170
171 void tcp_enter_quickack_mode(struct tcp_sock *tp)
172 {
173 tcp_incr_quickack(tp);
174 tp->ack.pingpong = 0;
175 tp->ack.ato = TCP_ATO_MIN;
176 }
177
178 /* Send ACKs quickly, if "quick" count is not exhausted
179 * and the session is not interactive.
180 */
181
182 static __inline__ int tcp_in_quickack_mode(struct tcp_sock *tp)
183 {
184 return (tp->ack.quick && !tp->ack.pingpong);
185 }
186
187 /* Buffer size and advertised window tuning.
188 *
189 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
190 */
191
192 static void tcp_fixup_sndbuf(struct sock *sk)
193 {
194 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
195 sizeof(struct sk_buff);
196
197 if (sk->sk_sndbuf < 3 * sndmem)
198 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
199 }
200
201 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
202 *
203 * All tcp_full_space() is split to two parts: "network" buffer, allocated
204 * forward and advertised in receiver window (tp->rcv_wnd) and
205 * "application buffer", required to isolate scheduling/application
206 * latencies from network.
207 * window_clamp is maximal advertised window. It can be less than
208 * tcp_full_space(), in this case tcp_full_space() - window_clamp
209 * is reserved for "application" buffer. The less window_clamp is
210 * the smoother our behaviour from viewpoint of network, but the lower
211 * throughput and the higher sensitivity of the connection to losses. 8)
212 *
213 * rcv_ssthresh is more strict window_clamp used at "slow start"
214 * phase to predict further behaviour of this connection.
215 * It is used for two goals:
216 * - to enforce header prediction at sender, even when application
217 * requires some significant "application buffer". It is check #1.
218 * - to prevent pruning of receive queue because of misprediction
219 * of receiver window. Check #2.
220 *
221 * The scheme does not work when sender sends good segments opening
222 * window and then starts to feed us spagetti. But it should work
223 * in common situations. Otherwise, we have to rely on queue collapsing.
224 */
225
226 /* Slow part of check#2. */
227 static int __tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
228 struct sk_buff *skb)
229 {
230 /* Optimize this! */
231 int truesize = tcp_win_from_space(skb->truesize)/2;
232 int window = tcp_full_space(sk)/2;
233
234 while (tp->rcv_ssthresh <= window) {
235 if (truesize <= skb->len)
236 return 2*tp->ack.rcv_mss;
237
238 truesize >>= 1;
239 window >>= 1;
240 }
241 return 0;
242 }
243
244 static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
245 struct sk_buff *skb)
246 {
247 /* Check #1 */
248 if (tp->rcv_ssthresh < tp->window_clamp &&
249 (int)tp->rcv_ssthresh < tcp_space(sk) &&
250 !tcp_memory_pressure) {
251 int incr;
252
253 /* Check #2. Increase window, if skb with such overhead
254 * will fit to rcvbuf in future.
255 */
256 if (tcp_win_from_space(skb->truesize) <= skb->len)
257 incr = 2*tp->advmss;
258 else
259 incr = __tcp_grow_window(sk, tp, skb);
260
261 if (incr) {
262 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
263 tp->ack.quick |= 1;
264 }
265 }
266 }
267
268 /* 3. Tuning rcvbuf, when connection enters established state. */
269
270 static void tcp_fixup_rcvbuf(struct sock *sk)
271 {
272 struct tcp_sock *tp = tcp_sk(sk);
273 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
274
275 /* Try to select rcvbuf so that 4 mss-sized segments
276 * will fit to window and correspoding skbs will fit to our rcvbuf.
277 * (was 3; 4 is minimum to allow fast retransmit to work.)
278 */
279 while (tcp_win_from_space(rcvmem) < tp->advmss)
280 rcvmem += 128;
281 if (sk->sk_rcvbuf < 4 * rcvmem)
282 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
283 }
284
285 /* 4. Try to fixup all. It is made iimediately after connection enters
286 * established state.
287 */
288 static void tcp_init_buffer_space(struct sock *sk)
289 {
290 struct tcp_sock *tp = tcp_sk(sk);
291 int maxwin;
292
293 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
294 tcp_fixup_rcvbuf(sk);
295 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
296 tcp_fixup_sndbuf(sk);
297
298 tp->rcvq_space.space = tp->rcv_wnd;
299
300 maxwin = tcp_full_space(sk);
301
302 if (tp->window_clamp >= maxwin) {
303 tp->window_clamp = maxwin;
304
305 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
306 tp->window_clamp = max(maxwin -
307 (maxwin >> sysctl_tcp_app_win),
308 4 * tp->advmss);
309 }
310
311 /* Force reservation of one segment. */
312 if (sysctl_tcp_app_win &&
313 tp->window_clamp > 2 * tp->advmss &&
314 tp->window_clamp + tp->advmss > maxwin)
315 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
316
317 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
318 tp->snd_cwnd_stamp = tcp_time_stamp;
319 }
320
321 /* 5. Recalculate window clamp after socket hit its memory bounds. */
322 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
323 {
324 struct sk_buff *skb;
325 unsigned int app_win = tp->rcv_nxt - tp->copied_seq;
326 int ofo_win = 0;
327
328 tp->ack.quick = 0;
329
330 skb_queue_walk(&tp->out_of_order_queue, skb) {
331 ofo_win += skb->len;
332 }
333
334 /* If overcommit is due to out of order segments,
335 * do not clamp window. Try to expand rcvbuf instead.
336 */
337 if (ofo_win) {
338 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
339 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
340 !tcp_memory_pressure &&
341 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
342 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
343 sysctl_tcp_rmem[2]);
344 }
345 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
346 app_win += ofo_win;
347 if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf)
348 app_win >>= 1;
349 if (app_win > tp->ack.rcv_mss)
350 app_win -= tp->ack.rcv_mss;
351 app_win = max(app_win, 2U*tp->advmss);
352
353 if (!ofo_win)
354 tp->window_clamp = min(tp->window_clamp, app_win);
355 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
356 }
357 }
358
359 /* Receiver "autotuning" code.
360 *
361 * The algorithm for RTT estimation w/o timestamps is based on
362 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
363 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
364 *
365 * More detail on this code can be found at
366 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
367 * though this reference is out of date. A new paper
368 * is pending.
369 */
370 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
371 {
372 u32 new_sample = tp->rcv_rtt_est.rtt;
373 long m = sample;
374
375 if (m == 0)
376 m = 1;
377
378 if (new_sample != 0) {
379 /* If we sample in larger samples in the non-timestamp
380 * case, we could grossly overestimate the RTT especially
381 * with chatty applications or bulk transfer apps which
382 * are stalled on filesystem I/O.
383 *
384 * Also, since we are only going for a minimum in the
385 * non-timestamp case, we do not smoothe things out
386 * else with timestamps disabled convergance takes too
387 * long.
388 */
389 if (!win_dep) {
390 m -= (new_sample >> 3);
391 new_sample += m;
392 } else if (m < new_sample)
393 new_sample = m << 3;
394 } else {
395 /* No previous mesaure. */
396 new_sample = m << 3;
397 }
398
399 if (tp->rcv_rtt_est.rtt != new_sample)
400 tp->rcv_rtt_est.rtt = new_sample;
401 }
402
403 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
404 {
405 if (tp->rcv_rtt_est.time == 0)
406 goto new_measure;
407 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
408 return;
409 tcp_rcv_rtt_update(tp,
410 jiffies - tp->rcv_rtt_est.time,
411 1);
412
413 new_measure:
414 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
415 tp->rcv_rtt_est.time = tcp_time_stamp;
416 }
417
418 static inline void tcp_rcv_rtt_measure_ts(struct tcp_sock *tp, struct sk_buff *skb)
419 {
420 if (tp->rx_opt.rcv_tsecr &&
421 (TCP_SKB_CB(skb)->end_seq -
422 TCP_SKB_CB(skb)->seq >= tp->ack.rcv_mss))
423 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
424 }
425
426 /*
427 * This function should be called every time data is copied to user space.
428 * It calculates the appropriate TCP receive buffer space.
429 */
430 void tcp_rcv_space_adjust(struct sock *sk)
431 {
432 struct tcp_sock *tp = tcp_sk(sk);
433 int time;
434 int space;
435
436 if (tp->rcvq_space.time == 0)
437 goto new_measure;
438
439 time = tcp_time_stamp - tp->rcvq_space.time;
440 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
441 tp->rcv_rtt_est.rtt == 0)
442 return;
443
444 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
445
446 space = max(tp->rcvq_space.space, space);
447
448 if (tp->rcvq_space.space != space) {
449 int rcvmem;
450
451 tp->rcvq_space.space = space;
452
453 if (sysctl_tcp_moderate_rcvbuf) {
454 int new_clamp = space;
455
456 /* Receive space grows, normalize in order to
457 * take into account packet headers and sk_buff
458 * structure overhead.
459 */
460 space /= tp->advmss;
461 if (!space)
462 space = 1;
463 rcvmem = (tp->advmss + MAX_TCP_HEADER +
464 16 + sizeof(struct sk_buff));
465 while (tcp_win_from_space(rcvmem) < tp->advmss)
466 rcvmem += 128;
467 space *= rcvmem;
468 space = min(space, sysctl_tcp_rmem[2]);
469 if (space > sk->sk_rcvbuf) {
470 sk->sk_rcvbuf = space;
471
472 /* Make the window clamp follow along. */
473 tp->window_clamp = new_clamp;
474 }
475 }
476 }
477
478 new_measure:
479 tp->rcvq_space.seq = tp->copied_seq;
480 tp->rcvq_space.time = tcp_time_stamp;
481 }
482
483 /* There is something which you must keep in mind when you analyze the
484 * behavior of the tp->ato delayed ack timeout interval. When a
485 * connection starts up, we want to ack as quickly as possible. The
486 * problem is that "good" TCP's do slow start at the beginning of data
487 * transmission. The means that until we send the first few ACK's the
488 * sender will sit on his end and only queue most of his data, because
489 * he can only send snd_cwnd unacked packets at any given time. For
490 * each ACK we send, he increments snd_cwnd and transmits more of his
491 * queue. -DaveM
492 */
493 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
494 {
495 u32 now;
496
497 tcp_schedule_ack(tp);
498
499 tcp_measure_rcv_mss(tp, skb);
500
501 tcp_rcv_rtt_measure(tp);
502
503 now = tcp_time_stamp;
504
505 if (!tp->ack.ato) {
506 /* The _first_ data packet received, initialize
507 * delayed ACK engine.
508 */
509 tcp_incr_quickack(tp);
510 tp->ack.ato = TCP_ATO_MIN;
511 } else {
512 int m = now - tp->ack.lrcvtime;
513
514 if (m <= TCP_ATO_MIN/2) {
515 /* The fastest case is the first. */
516 tp->ack.ato = (tp->ack.ato>>1) + TCP_ATO_MIN/2;
517 } else if (m < tp->ack.ato) {
518 tp->ack.ato = (tp->ack.ato>>1) + m;
519 if (tp->ack.ato > tp->rto)
520 tp->ack.ato = tp->rto;
521 } else if (m > tp->rto) {
522 /* Too long gap. Apparently sender falled to
523 * restart window, so that we send ACKs quickly.
524 */
525 tcp_incr_quickack(tp);
526 sk_stream_mem_reclaim(sk);
527 }
528 }
529 tp->ack.lrcvtime = now;
530
531 TCP_ECN_check_ce(tp, skb);
532
533 if (skb->len >= 128)
534 tcp_grow_window(sk, tp, skb);
535 }
536
537 /* Called to compute a smoothed rtt estimate. The data fed to this
538 * routine either comes from timestamps, or from segments that were
539 * known _not_ to have been retransmitted [see Karn/Partridge
540 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
541 * piece by Van Jacobson.
542 * NOTE: the next three routines used to be one big routine.
543 * To save cycles in the RFC 1323 implementation it was better to break
544 * it up into three procedures. -- erics
545 */
546 static void tcp_rtt_estimator(struct tcp_sock *tp, __u32 mrtt, u32 *usrtt)
547 {
548 long m = mrtt; /* RTT */
549
550 /* The following amusing code comes from Jacobson's
551 * article in SIGCOMM '88. Note that rtt and mdev
552 * are scaled versions of rtt and mean deviation.
553 * This is designed to be as fast as possible
554 * m stands for "measurement".
555 *
556 * On a 1990 paper the rto value is changed to:
557 * RTO = rtt + 4 * mdev
558 *
559 * Funny. This algorithm seems to be very broken.
560 * These formulae increase RTO, when it should be decreased, increase
561 * too slowly, when it should be incresed fastly, decrease too fastly
562 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
563 * does not matter how to _calculate_ it. Seems, it was trap
564 * that VJ failed to avoid. 8)
565 */
566 if(m == 0)
567 m = 1;
568 if (tp->srtt != 0) {
569 m -= (tp->srtt >> 3); /* m is now error in rtt est */
570 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
571 if (m < 0) {
572 m = -m; /* m is now abs(error) */
573 m -= (tp->mdev >> 2); /* similar update on mdev */
574 /* This is similar to one of Eifel findings.
575 * Eifel blocks mdev updates when rtt decreases.
576 * This solution is a bit different: we use finer gain
577 * for mdev in this case (alpha*beta).
578 * Like Eifel it also prevents growth of rto,
579 * but also it limits too fast rto decreases,
580 * happening in pure Eifel.
581 */
582 if (m > 0)
583 m >>= 3;
584 } else {
585 m -= (tp->mdev >> 2); /* similar update on mdev */
586 }
587 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
588 if (tp->mdev > tp->mdev_max) {
589 tp->mdev_max = tp->mdev;
590 if (tp->mdev_max > tp->rttvar)
591 tp->rttvar = tp->mdev_max;
592 }
593 if (after(tp->snd_una, tp->rtt_seq)) {
594 if (tp->mdev_max < tp->rttvar)
595 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
596 tp->rtt_seq = tp->snd_nxt;
597 tp->mdev_max = TCP_RTO_MIN;
598 }
599 } else {
600 /* no previous measure. */
601 tp->srtt = m<<3; /* take the measured time to be rtt */
602 tp->mdev = m<<1; /* make sure rto = 3*rtt */
603 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
604 tp->rtt_seq = tp->snd_nxt;
605 }
606
607 if (tp->ca_ops->rtt_sample)
608 tp->ca_ops->rtt_sample(tp, *usrtt);
609 }
610
611 /* Calculate rto without backoff. This is the second half of Van Jacobson's
612 * routine referred to above.
613 */
614 static inline void tcp_set_rto(struct tcp_sock *tp)
615 {
616 /* Old crap is replaced with new one. 8)
617 *
618 * More seriously:
619 * 1. If rtt variance happened to be less 50msec, it is hallucination.
620 * It cannot be less due to utterly erratic ACK generation made
621 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
622 * to do with delayed acks, because at cwnd>2 true delack timeout
623 * is invisible. Actually, Linux-2.4 also generates erratic
624 * ACKs in some curcumstances.
625 */
626 tp->rto = (tp->srtt >> 3) + tp->rttvar;
627
628 /* 2. Fixups made earlier cannot be right.
629 * If we do not estimate RTO correctly without them,
630 * all the algo is pure shit and should be replaced
631 * with correct one. It is exaclty, which we pretend to do.
632 */
633 }
634
635 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
636 * guarantees that rto is higher.
637 */
638 static inline void tcp_bound_rto(struct tcp_sock *tp)
639 {
640 if (tp->rto > TCP_RTO_MAX)
641 tp->rto = TCP_RTO_MAX;
642 }
643
644 /* Save metrics learned by this TCP session.
645 This function is called only, when TCP finishes successfully
646 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
647 */
648 void tcp_update_metrics(struct sock *sk)
649 {
650 struct tcp_sock *tp = tcp_sk(sk);
651 struct dst_entry *dst = __sk_dst_get(sk);
652
653 if (sysctl_tcp_nometrics_save)
654 return;
655
656 dst_confirm(dst);
657
658 if (dst && (dst->flags&DST_HOST)) {
659 int m;
660
661 if (tp->backoff || !tp->srtt) {
662 /* This session failed to estimate rtt. Why?
663 * Probably, no packets returned in time.
664 * Reset our results.
665 */
666 if (!(dst_metric_locked(dst, RTAX_RTT)))
667 dst->metrics[RTAX_RTT-1] = 0;
668 return;
669 }
670
671 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
672
673 /* If newly calculated rtt larger than stored one,
674 * store new one. Otherwise, use EWMA. Remember,
675 * rtt overestimation is always better than underestimation.
676 */
677 if (!(dst_metric_locked(dst, RTAX_RTT))) {
678 if (m <= 0)
679 dst->metrics[RTAX_RTT-1] = tp->srtt;
680 else
681 dst->metrics[RTAX_RTT-1] -= (m>>3);
682 }
683
684 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
685 if (m < 0)
686 m = -m;
687
688 /* Scale deviation to rttvar fixed point */
689 m >>= 1;
690 if (m < tp->mdev)
691 m = tp->mdev;
692
693 if (m >= dst_metric(dst, RTAX_RTTVAR))
694 dst->metrics[RTAX_RTTVAR-1] = m;
695 else
696 dst->metrics[RTAX_RTTVAR-1] -=
697 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
698 }
699
700 if (tp->snd_ssthresh >= 0xFFFF) {
701 /* Slow start still did not finish. */
702 if (dst_metric(dst, RTAX_SSTHRESH) &&
703 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
704 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
705 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
706 if (!dst_metric_locked(dst, RTAX_CWND) &&
707 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
708 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
709 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
710 tp->ca_state == TCP_CA_Open) {
711 /* Cong. avoidance phase, cwnd is reliable. */
712 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
713 dst->metrics[RTAX_SSTHRESH-1] =
714 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
715 if (!dst_metric_locked(dst, RTAX_CWND))
716 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
717 } else {
718 /* Else slow start did not finish, cwnd is non-sense,
719 ssthresh may be also invalid.
720 */
721 if (!dst_metric_locked(dst, RTAX_CWND))
722 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
723 if (dst->metrics[RTAX_SSTHRESH-1] &&
724 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
725 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
726 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
727 }
728
729 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
730 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
731 tp->reordering != sysctl_tcp_reordering)
732 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
733 }
734 }
735 }
736
737 /* Numbers are taken from RFC2414. */
738 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
739 {
740 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
741
742 if (!cwnd) {
743 if (tp->mss_cache_std > 1460)
744 cwnd = 2;
745 else
746 cwnd = (tp->mss_cache_std > 1095) ? 3 : 4;
747 }
748 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
749 }
750
751 /* Initialize metrics on socket. */
752
753 static void tcp_init_metrics(struct sock *sk)
754 {
755 struct tcp_sock *tp = tcp_sk(sk);
756 struct dst_entry *dst = __sk_dst_get(sk);
757
758 if (dst == NULL)
759 goto reset;
760
761 dst_confirm(dst);
762
763 if (dst_metric_locked(dst, RTAX_CWND))
764 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
765 if (dst_metric(dst, RTAX_SSTHRESH)) {
766 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
767 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
768 tp->snd_ssthresh = tp->snd_cwnd_clamp;
769 }
770 if (dst_metric(dst, RTAX_REORDERING) &&
771 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
772 tp->rx_opt.sack_ok &= ~2;
773 tp->reordering = dst_metric(dst, RTAX_REORDERING);
774 }
775
776 if (dst_metric(dst, RTAX_RTT) == 0)
777 goto reset;
778
779 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
780 goto reset;
781
782 /* Initial rtt is determined from SYN,SYN-ACK.
783 * The segment is small and rtt may appear much
784 * less than real one. Use per-dst memory
785 * to make it more realistic.
786 *
787 * A bit of theory. RTT is time passed after "normal" sized packet
788 * is sent until it is ACKed. In normal curcumstances sending small
789 * packets force peer to delay ACKs and calculation is correct too.
790 * The algorithm is adaptive and, provided we follow specs, it
791 * NEVER underestimate RTT. BUT! If peer tries to make some clever
792 * tricks sort of "quick acks" for time long enough to decrease RTT
793 * to low value, and then abruptly stops to do it and starts to delay
794 * ACKs, wait for troubles.
795 */
796 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
797 tp->srtt = dst_metric(dst, RTAX_RTT);
798 tp->rtt_seq = tp->snd_nxt;
799 }
800 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
801 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
802 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
803 }
804 tcp_set_rto(tp);
805 tcp_bound_rto(tp);
806 if (tp->rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
807 goto reset;
808 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
809 tp->snd_cwnd_stamp = tcp_time_stamp;
810 return;
811
812 reset:
813 /* Play conservative. If timestamps are not
814 * supported, TCP will fail to recalculate correct
815 * rtt, if initial rto is too small. FORGET ALL AND RESET!
816 */
817 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
818 tp->srtt = 0;
819 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
820 tp->rto = TCP_TIMEOUT_INIT;
821 }
822 }
823
824 static void tcp_update_reordering(struct tcp_sock *tp, int metric, int ts)
825 {
826 if (metric > tp->reordering) {
827 tp->reordering = min(TCP_MAX_REORDERING, metric);
828
829 /* This exciting event is worth to be remembered. 8) */
830 if (ts)
831 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
832 else if (IsReno(tp))
833 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
834 else if (IsFack(tp))
835 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
836 else
837 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
838 #if FASTRETRANS_DEBUG > 1
839 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
840 tp->rx_opt.sack_ok, tp->ca_state,
841 tp->reordering,
842 tp->fackets_out,
843 tp->sacked_out,
844 tp->undo_marker ? tp->undo_retrans : 0);
845 #endif
846 /* Disable FACK yet. */
847 tp->rx_opt.sack_ok &= ~2;
848 }
849 }
850
851 /* This procedure tags the retransmission queue when SACKs arrive.
852 *
853 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
854 * Packets in queue with these bits set are counted in variables
855 * sacked_out, retrans_out and lost_out, correspondingly.
856 *
857 * Valid combinations are:
858 * Tag InFlight Description
859 * 0 1 - orig segment is in flight.
860 * S 0 - nothing flies, orig reached receiver.
861 * L 0 - nothing flies, orig lost by net.
862 * R 2 - both orig and retransmit are in flight.
863 * L|R 1 - orig is lost, retransmit is in flight.
864 * S|R 1 - orig reached receiver, retrans is still in flight.
865 * (L|S|R is logically valid, it could occur when L|R is sacked,
866 * but it is equivalent to plain S and code short-curcuits it to S.
867 * L|S is logically invalid, it would mean -1 packet in flight 8))
868 *
869 * These 6 states form finite state machine, controlled by the following events:
870 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
871 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
872 * 3. Loss detection event of one of three flavors:
873 * A. Scoreboard estimator decided the packet is lost.
874 * A'. Reno "three dupacks" marks head of queue lost.
875 * A''. Its FACK modfication, head until snd.fack is lost.
876 * B. SACK arrives sacking data transmitted after never retransmitted
877 * hole was sent out.
878 * C. SACK arrives sacking SND.NXT at the moment, when the
879 * segment was retransmitted.
880 * 4. D-SACK added new rule: D-SACK changes any tag to S.
881 *
882 * It is pleasant to note, that state diagram turns out to be commutative,
883 * so that we are allowed not to be bothered by order of our actions,
884 * when multiple events arrive simultaneously. (see the function below).
885 *
886 * Reordering detection.
887 * --------------------
888 * Reordering metric is maximal distance, which a packet can be displaced
889 * in packet stream. With SACKs we can estimate it:
890 *
891 * 1. SACK fills old hole and the corresponding segment was not
892 * ever retransmitted -> reordering. Alas, we cannot use it
893 * when segment was retransmitted.
894 * 2. The last flaw is solved with D-SACK. D-SACK arrives
895 * for retransmitted and already SACKed segment -> reordering..
896 * Both of these heuristics are not used in Loss state, when we cannot
897 * account for retransmits accurately.
898 */
899 static int
900 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
901 {
902 struct tcp_sock *tp = tcp_sk(sk);
903 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
904 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
905 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
906 int reord = tp->packets_out;
907 int prior_fackets;
908 u32 lost_retrans = 0;
909 int flag = 0;
910 int i;
911
912 /* So, SACKs for already sent large segments will be lost.
913 * Not good, but alternative is to resegment the queue. */
914 if (sk->sk_route_caps & NETIF_F_TSO) {
915 sk->sk_route_caps &= ~NETIF_F_TSO;
916 sock_set_flag(sk, SOCK_NO_LARGESEND);
917 tp->mss_cache = tp->mss_cache_std;
918 }
919
920 if (!tp->sacked_out)
921 tp->fackets_out = 0;
922 prior_fackets = tp->fackets_out;
923
924 for (i=0; i<num_sacks; i++, sp++) {
925 struct sk_buff *skb;
926 __u32 start_seq = ntohl(sp->start_seq);
927 __u32 end_seq = ntohl(sp->end_seq);
928 int fack_count = 0;
929 int dup_sack = 0;
930
931 /* Check for D-SACK. */
932 if (i == 0) {
933 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
934
935 if (before(start_seq, ack)) {
936 dup_sack = 1;
937 tp->rx_opt.sack_ok |= 4;
938 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
939 } else if (num_sacks > 1 &&
940 !after(end_seq, ntohl(sp[1].end_seq)) &&
941 !before(start_seq, ntohl(sp[1].start_seq))) {
942 dup_sack = 1;
943 tp->rx_opt.sack_ok |= 4;
944 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
945 }
946
947 /* D-SACK for already forgotten data...
948 * Do dumb counting. */
949 if (dup_sack &&
950 !after(end_seq, prior_snd_una) &&
951 after(end_seq, tp->undo_marker))
952 tp->undo_retrans--;
953
954 /* Eliminate too old ACKs, but take into
955 * account more or less fresh ones, they can
956 * contain valid SACK info.
957 */
958 if (before(ack, prior_snd_una - tp->max_window))
959 return 0;
960 }
961
962 /* Event "B" in the comment above. */
963 if (after(end_seq, tp->high_seq))
964 flag |= FLAG_DATA_LOST;
965
966 sk_stream_for_retrans_queue(skb, sk) {
967 u8 sacked = TCP_SKB_CB(skb)->sacked;
968 int in_sack;
969
970 /* The retransmission queue is always in order, so
971 * we can short-circuit the walk early.
972 */
973 if(!before(TCP_SKB_CB(skb)->seq, end_seq))
974 break;
975
976 fack_count += tcp_skb_pcount(skb);
977
978 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
979 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
980
981 /* Account D-SACK for retransmitted packet. */
982 if ((dup_sack && in_sack) &&
983 (sacked & TCPCB_RETRANS) &&
984 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
985 tp->undo_retrans--;
986
987 /* The frame is ACKed. */
988 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
989 if (sacked&TCPCB_RETRANS) {
990 if ((dup_sack && in_sack) &&
991 (sacked&TCPCB_SACKED_ACKED))
992 reord = min(fack_count, reord);
993 } else {
994 /* If it was in a hole, we detected reordering. */
995 if (fack_count < prior_fackets &&
996 !(sacked&TCPCB_SACKED_ACKED))
997 reord = min(fack_count, reord);
998 }
999
1000 /* Nothing to do; acked frame is about to be dropped. */
1001 continue;
1002 }
1003
1004 if ((sacked&TCPCB_SACKED_RETRANS) &&
1005 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1006 (!lost_retrans || after(end_seq, lost_retrans)))
1007 lost_retrans = end_seq;
1008
1009 if (!in_sack)
1010 continue;
1011
1012 if (!(sacked&TCPCB_SACKED_ACKED)) {
1013 if (sacked & TCPCB_SACKED_RETRANS) {
1014 /* If the segment is not tagged as lost,
1015 * we do not clear RETRANS, believing
1016 * that retransmission is still in flight.
1017 */
1018 if (sacked & TCPCB_LOST) {
1019 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1020 tp->lost_out -= tcp_skb_pcount(skb);
1021 tp->retrans_out -= tcp_skb_pcount(skb);
1022 }
1023 } else {
1024 /* New sack for not retransmitted frame,
1025 * which was in hole. It is reordering.
1026 */
1027 if (!(sacked & TCPCB_RETRANS) &&
1028 fack_count < prior_fackets)
1029 reord = min(fack_count, reord);
1030
1031 if (sacked & TCPCB_LOST) {
1032 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1033 tp->lost_out -= tcp_skb_pcount(skb);
1034 }
1035 }
1036
1037 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1038 flag |= FLAG_DATA_SACKED;
1039 tp->sacked_out += tcp_skb_pcount(skb);
1040
1041 if (fack_count > tp->fackets_out)
1042 tp->fackets_out = fack_count;
1043 } else {
1044 if (dup_sack && (sacked&TCPCB_RETRANS))
1045 reord = min(fack_count, reord);
1046 }
1047
1048 /* D-SACK. We can detect redundant retransmission
1049 * in S|R and plain R frames and clear it.
1050 * undo_retrans is decreased above, L|R frames
1051 * are accounted above as well.
1052 */
1053 if (dup_sack &&
1054 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1055 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1056 tp->retrans_out -= tcp_skb_pcount(skb);
1057 }
1058 }
1059 }
1060
1061 /* Check for lost retransmit. This superb idea is
1062 * borrowed from "ratehalving". Event "C".
1063 * Later note: FACK people cheated me again 8),
1064 * we have to account for reordering! Ugly,
1065 * but should help.
1066 */
1067 if (lost_retrans && tp->ca_state == TCP_CA_Recovery) {
1068 struct sk_buff *skb;
1069
1070 sk_stream_for_retrans_queue(skb, sk) {
1071 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1072 break;
1073 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1074 continue;
1075 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1076 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1077 (IsFack(tp) ||
1078 !before(lost_retrans,
1079 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1080 tp->mss_cache_std))) {
1081 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1082 tp->retrans_out -= tcp_skb_pcount(skb);
1083
1084 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1085 tp->lost_out += tcp_skb_pcount(skb);
1086 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1087 flag |= FLAG_DATA_SACKED;
1088 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1089 }
1090 }
1091 }
1092 }
1093
1094 tp->left_out = tp->sacked_out + tp->lost_out;
1095
1096 if ((reord < tp->fackets_out) && tp->ca_state != TCP_CA_Loss)
1097 tcp_update_reordering(tp, ((tp->fackets_out + 1) - reord), 0);
1098
1099 #if FASTRETRANS_DEBUG > 0
1100 BUG_TRAP((int)tp->sacked_out >= 0);
1101 BUG_TRAP((int)tp->lost_out >= 0);
1102 BUG_TRAP((int)tp->retrans_out >= 0);
1103 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1104 #endif
1105 return flag;
1106 }
1107
1108 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1109 * segments to see from the next ACKs whether any data was really missing.
1110 * If the RTO was spurious, new ACKs should arrive.
1111 */
1112 void tcp_enter_frto(struct sock *sk)
1113 {
1114 struct tcp_sock *tp = tcp_sk(sk);
1115 struct sk_buff *skb;
1116
1117 tp->frto_counter = 1;
1118
1119 if (tp->ca_state <= TCP_CA_Disorder ||
1120 tp->snd_una == tp->high_seq ||
1121 (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
1122 tp->prior_ssthresh = tcp_current_ssthresh(tp);
1123 tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1124 tcp_ca_event(tp, CA_EVENT_FRTO);
1125 }
1126
1127 /* Have to clear retransmission markers here to keep the bookkeeping
1128 * in shape, even though we are not yet in Loss state.
1129 * If something was really lost, it is eventually caught up
1130 * in tcp_enter_frto_loss.
1131 */
1132 tp->retrans_out = 0;
1133 tp->undo_marker = tp->snd_una;
1134 tp->undo_retrans = 0;
1135
1136 sk_stream_for_retrans_queue(skb, sk) {
1137 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1138 }
1139 tcp_sync_left_out(tp);
1140
1141 tcp_set_ca_state(tp, TCP_CA_Open);
1142 tp->frto_highmark = tp->snd_nxt;
1143 }
1144
1145 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1146 * which indicates that we should follow the traditional RTO recovery,
1147 * i.e. mark everything lost and do go-back-N retransmission.
1148 */
1149 static void tcp_enter_frto_loss(struct sock *sk)
1150 {
1151 struct tcp_sock *tp = tcp_sk(sk);
1152 struct sk_buff *skb;
1153 int cnt = 0;
1154
1155 tp->sacked_out = 0;
1156 tp->lost_out = 0;
1157 tp->fackets_out = 0;
1158
1159 sk_stream_for_retrans_queue(skb, sk) {
1160 cnt += tcp_skb_pcount(skb);
1161 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1162 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1163
1164 /* Do not mark those segments lost that were
1165 * forward transmitted after RTO
1166 */
1167 if (!after(TCP_SKB_CB(skb)->end_seq,
1168 tp->frto_highmark)) {
1169 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1170 tp->lost_out += tcp_skb_pcount(skb);
1171 }
1172 } else {
1173 tp->sacked_out += tcp_skb_pcount(skb);
1174 tp->fackets_out = cnt;
1175 }
1176 }
1177 tcp_sync_left_out(tp);
1178
1179 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1180 tp->snd_cwnd_cnt = 0;
1181 tp->snd_cwnd_stamp = tcp_time_stamp;
1182 tp->undo_marker = 0;
1183 tp->frto_counter = 0;
1184
1185 tp->reordering = min_t(unsigned int, tp->reordering,
1186 sysctl_tcp_reordering);
1187 tcp_set_ca_state(tp, TCP_CA_Loss);
1188 tp->high_seq = tp->frto_highmark;
1189 TCP_ECN_queue_cwr(tp);
1190 }
1191
1192 void tcp_clear_retrans(struct tcp_sock *tp)
1193 {
1194 tp->left_out = 0;
1195 tp->retrans_out = 0;
1196
1197 tp->fackets_out = 0;
1198 tp->sacked_out = 0;
1199 tp->lost_out = 0;
1200
1201 tp->undo_marker = 0;
1202 tp->undo_retrans = 0;
1203 }
1204
1205 /* Enter Loss state. If "how" is not zero, forget all SACK information
1206 * and reset tags completely, otherwise preserve SACKs. If receiver
1207 * dropped its ofo queue, we will know this due to reneging detection.
1208 */
1209 void tcp_enter_loss(struct sock *sk, int how)
1210 {
1211 struct tcp_sock *tp = tcp_sk(sk);
1212 struct sk_buff *skb;
1213 int cnt = 0;
1214
1215 /* Reduce ssthresh if it has not yet been made inside this window. */
1216 if (tp->ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1217 (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
1218 tp->prior_ssthresh = tcp_current_ssthresh(tp);
1219 tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1220 tcp_ca_event(tp, CA_EVENT_LOSS);
1221 }
1222 tp->snd_cwnd = 1;
1223 tp->snd_cwnd_cnt = 0;
1224 tp->snd_cwnd_stamp = tcp_time_stamp;
1225
1226 tcp_clear_retrans(tp);
1227
1228 /* Push undo marker, if it was plain RTO and nothing
1229 * was retransmitted. */
1230 if (!how)
1231 tp->undo_marker = tp->snd_una;
1232
1233 sk_stream_for_retrans_queue(skb, sk) {
1234 cnt += tcp_skb_pcount(skb);
1235 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1236 tp->undo_marker = 0;
1237 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1238 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1239 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1240 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1241 tp->lost_out += tcp_skb_pcount(skb);
1242 } else {
1243 tp->sacked_out += tcp_skb_pcount(skb);
1244 tp->fackets_out = cnt;
1245 }
1246 }
1247 tcp_sync_left_out(tp);
1248
1249 tp->reordering = min_t(unsigned int, tp->reordering,
1250 sysctl_tcp_reordering);
1251 tcp_set_ca_state(tp, TCP_CA_Loss);
1252 tp->high_seq = tp->snd_nxt;
1253 TCP_ECN_queue_cwr(tp);
1254 }
1255
1256 static int tcp_check_sack_reneging(struct sock *sk, struct tcp_sock *tp)
1257 {
1258 struct sk_buff *skb;
1259
1260 /* If ACK arrived pointing to a remembered SACK,
1261 * it means that our remembered SACKs do not reflect
1262 * real state of receiver i.e.
1263 * receiver _host_ is heavily congested (or buggy).
1264 * Do processing similar to RTO timeout.
1265 */
1266 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1267 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1268 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1269
1270 tcp_enter_loss(sk, 1);
1271 tp->retransmits++;
1272 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1273 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1274 return 1;
1275 }
1276 return 0;
1277 }
1278
1279 static inline int tcp_fackets_out(struct tcp_sock *tp)
1280 {
1281 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1282 }
1283
1284 static inline int tcp_skb_timedout(struct tcp_sock *tp, struct sk_buff *skb)
1285 {
1286 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > tp->rto);
1287 }
1288
1289 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1290 {
1291 return tp->packets_out &&
1292 tcp_skb_timedout(tp, skb_peek(&sk->sk_write_queue));
1293 }
1294
1295 /* Linux NewReno/SACK/FACK/ECN state machine.
1296 * --------------------------------------
1297 *
1298 * "Open" Normal state, no dubious events, fast path.
1299 * "Disorder" In all the respects it is "Open",
1300 * but requires a bit more attention. It is entered when
1301 * we see some SACKs or dupacks. It is split of "Open"
1302 * mainly to move some processing from fast path to slow one.
1303 * "CWR" CWND was reduced due to some Congestion Notification event.
1304 * It can be ECN, ICMP source quench, local device congestion.
1305 * "Recovery" CWND was reduced, we are fast-retransmitting.
1306 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1307 *
1308 * tcp_fastretrans_alert() is entered:
1309 * - each incoming ACK, if state is not "Open"
1310 * - when arrived ACK is unusual, namely:
1311 * * SACK
1312 * * Duplicate ACK.
1313 * * ECN ECE.
1314 *
1315 * Counting packets in flight is pretty simple.
1316 *
1317 * in_flight = packets_out - left_out + retrans_out
1318 *
1319 * packets_out is SND.NXT-SND.UNA counted in packets.
1320 *
1321 * retrans_out is number of retransmitted segments.
1322 *
1323 * left_out is number of segments left network, but not ACKed yet.
1324 *
1325 * left_out = sacked_out + lost_out
1326 *
1327 * sacked_out: Packets, which arrived to receiver out of order
1328 * and hence not ACKed. With SACKs this number is simply
1329 * amount of SACKed data. Even without SACKs
1330 * it is easy to give pretty reliable estimate of this number,
1331 * counting duplicate ACKs.
1332 *
1333 * lost_out: Packets lost by network. TCP has no explicit
1334 * "loss notification" feedback from network (for now).
1335 * It means that this number can be only _guessed_.
1336 * Actually, it is the heuristics to predict lossage that
1337 * distinguishes different algorithms.
1338 *
1339 * F.e. after RTO, when all the queue is considered as lost,
1340 * lost_out = packets_out and in_flight = retrans_out.
1341 *
1342 * Essentially, we have now two algorithms counting
1343 * lost packets.
1344 *
1345 * FACK: It is the simplest heuristics. As soon as we decided
1346 * that something is lost, we decide that _all_ not SACKed
1347 * packets until the most forward SACK are lost. I.e.
1348 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1349 * It is absolutely correct estimate, if network does not reorder
1350 * packets. And it loses any connection to reality when reordering
1351 * takes place. We use FACK by default until reordering
1352 * is suspected on the path to this destination.
1353 *
1354 * NewReno: when Recovery is entered, we assume that one segment
1355 * is lost (classic Reno). While we are in Recovery and
1356 * a partial ACK arrives, we assume that one more packet
1357 * is lost (NewReno). This heuristics are the same in NewReno
1358 * and SACK.
1359 *
1360 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1361 * deflation etc. CWND is real congestion window, never inflated, changes
1362 * only according to classic VJ rules.
1363 *
1364 * Really tricky (and requiring careful tuning) part of algorithm
1365 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1366 * The first determines the moment _when_ we should reduce CWND and,
1367 * hence, slow down forward transmission. In fact, it determines the moment
1368 * when we decide that hole is caused by loss, rather than by a reorder.
1369 *
1370 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1371 * holes, caused by lost packets.
1372 *
1373 * And the most logically complicated part of algorithm is undo
1374 * heuristics. We detect false retransmits due to both too early
1375 * fast retransmit (reordering) and underestimated RTO, analyzing
1376 * timestamps and D-SACKs. When we detect that some segments were
1377 * retransmitted by mistake and CWND reduction was wrong, we undo
1378 * window reduction and abort recovery phase. This logic is hidden
1379 * inside several functions named tcp_try_undo_<something>.
1380 */
1381
1382 /* This function decides, when we should leave Disordered state
1383 * and enter Recovery phase, reducing congestion window.
1384 *
1385 * Main question: may we further continue forward transmission
1386 * with the same cwnd?
1387 */
1388 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1389 {
1390 __u32 packets_out;
1391
1392 /* Trick#1: The loss is proven. */
1393 if (tp->lost_out)
1394 return 1;
1395
1396 /* Not-A-Trick#2 : Classic rule... */
1397 if (tcp_fackets_out(tp) > tp->reordering)
1398 return 1;
1399
1400 /* Trick#3 : when we use RFC2988 timer restart, fast
1401 * retransmit can be triggered by timeout of queue head.
1402 */
1403 if (tcp_head_timedout(sk, tp))
1404 return 1;
1405
1406 /* Trick#4: It is still not OK... But will it be useful to delay
1407 * recovery more?
1408 */
1409 packets_out = tp->packets_out;
1410 if (packets_out <= tp->reordering &&
1411 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1412 !tcp_may_send_now(sk, tp)) {
1413 /* We have nothing to send. This connection is limited
1414 * either by receiver window or by application.
1415 */
1416 return 1;
1417 }
1418
1419 return 0;
1420 }
1421
1422 /* If we receive more dupacks than we expected counting segments
1423 * in assumption of absent reordering, interpret this as reordering.
1424 * The only another reason could be bug in receiver TCP.
1425 */
1426 static void tcp_check_reno_reordering(struct tcp_sock *tp, int addend)
1427 {
1428 u32 holes;
1429
1430 holes = max(tp->lost_out, 1U);
1431 holes = min(holes, tp->packets_out);
1432
1433 if ((tp->sacked_out + holes) > tp->packets_out) {
1434 tp->sacked_out = tp->packets_out - holes;
1435 tcp_update_reordering(tp, tp->packets_out+addend, 0);
1436 }
1437 }
1438
1439 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1440
1441 static void tcp_add_reno_sack(struct tcp_sock *tp)
1442 {
1443 tp->sacked_out++;
1444 tcp_check_reno_reordering(tp, 0);
1445 tcp_sync_left_out(tp);
1446 }
1447
1448 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1449
1450 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1451 {
1452 if (acked > 0) {
1453 /* One ACK acked hole. The rest eat duplicate ACKs. */
1454 if (acked-1 >= tp->sacked_out)
1455 tp->sacked_out = 0;
1456 else
1457 tp->sacked_out -= acked-1;
1458 }
1459 tcp_check_reno_reordering(tp, acked);
1460 tcp_sync_left_out(tp);
1461 }
1462
1463 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1464 {
1465 tp->sacked_out = 0;
1466 tp->left_out = tp->lost_out;
1467 }
1468
1469 /* Mark head of queue up as lost. */
1470 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1471 int packets, u32 high_seq)
1472 {
1473 struct sk_buff *skb;
1474 int cnt = packets;
1475
1476 BUG_TRAP(cnt <= tp->packets_out);
1477
1478 sk_stream_for_retrans_queue(skb, sk) {
1479 cnt -= tcp_skb_pcount(skb);
1480 if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1481 break;
1482 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1483 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1484 tp->lost_out += tcp_skb_pcount(skb);
1485 }
1486 }
1487 tcp_sync_left_out(tp);
1488 }
1489
1490 /* Account newly detected lost packet(s) */
1491
1492 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1493 {
1494 if (IsFack(tp)) {
1495 int lost = tp->fackets_out - tp->reordering;
1496 if (lost <= 0)
1497 lost = 1;
1498 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1499 } else {
1500 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1501 }
1502
1503 /* New heuristics: it is possible only after we switched
1504 * to restart timer each time when something is ACKed.
1505 * Hence, we can detect timed out packets during fast
1506 * retransmit without falling to slow start.
1507 */
1508 if (tcp_head_timedout(sk, tp)) {
1509 struct sk_buff *skb;
1510
1511 sk_stream_for_retrans_queue(skb, sk) {
1512 if (tcp_skb_timedout(tp, skb) &&
1513 !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1514 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1515 tp->lost_out += tcp_skb_pcount(skb);
1516 }
1517 }
1518 tcp_sync_left_out(tp);
1519 }
1520 }
1521
1522 /* CWND moderation, preventing bursts due to too big ACKs
1523 * in dubious situations.
1524 */
1525 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1526 {
1527 tp->snd_cwnd = min(tp->snd_cwnd,
1528 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1529 tp->snd_cwnd_stamp = tcp_time_stamp;
1530 }
1531
1532 /* Decrease cwnd each second ack. */
1533 static void tcp_cwnd_down(struct tcp_sock *tp)
1534 {
1535 int decr = tp->snd_cwnd_cnt + 1;
1536
1537 tp->snd_cwnd_cnt = decr&1;
1538 decr >>= 1;
1539
1540 if (decr && tp->snd_cwnd > tp->ca_ops->min_cwnd(tp))
1541 tp->snd_cwnd -= decr;
1542
1543 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1544 tp->snd_cwnd_stamp = tcp_time_stamp;
1545 }
1546
1547 /* Nothing was retransmitted or returned timestamp is less
1548 * than timestamp of the first retransmission.
1549 */
1550 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1551 {
1552 return !tp->retrans_stamp ||
1553 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1554 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1555 }
1556
1557 /* Undo procedures. */
1558
1559 #if FASTRETRANS_DEBUG > 1
1560 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1561 {
1562 struct inet_sock *inet = inet_sk(sk);
1563 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1564 msg,
1565 NIPQUAD(inet->daddr), ntohs(inet->dport),
1566 tp->snd_cwnd, tp->left_out,
1567 tp->snd_ssthresh, tp->prior_ssthresh,
1568 tp->packets_out);
1569 }
1570 #else
1571 #define DBGUNDO(x...) do { } while (0)
1572 #endif
1573
1574 static void tcp_undo_cwr(struct tcp_sock *tp, int undo)
1575 {
1576 if (tp->prior_ssthresh) {
1577 if (tp->ca_ops->undo_cwnd)
1578 tp->snd_cwnd = tp->ca_ops->undo_cwnd(tp);
1579 else
1580 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1581
1582 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1583 tp->snd_ssthresh = tp->prior_ssthresh;
1584 TCP_ECN_withdraw_cwr(tp);
1585 }
1586 } else {
1587 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1588 }
1589 tcp_moderate_cwnd(tp);
1590 tp->snd_cwnd_stamp = tcp_time_stamp;
1591 }
1592
1593 static inline int tcp_may_undo(struct tcp_sock *tp)
1594 {
1595 return tp->undo_marker &&
1596 (!tp->undo_retrans || tcp_packet_delayed(tp));
1597 }
1598
1599 /* People celebrate: "We love our President!" */
1600 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1601 {
1602 if (tcp_may_undo(tp)) {
1603 /* Happy end! We did not retransmit anything
1604 * or our original transmission succeeded.
1605 */
1606 DBGUNDO(sk, tp, tp->ca_state == TCP_CA_Loss ? "loss" : "retrans");
1607 tcp_undo_cwr(tp, 1);
1608 if (tp->ca_state == TCP_CA_Loss)
1609 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1610 else
1611 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1612 tp->undo_marker = 0;
1613 }
1614 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1615 /* Hold old state until something *above* high_seq
1616 * is ACKed. For Reno it is MUST to prevent false
1617 * fast retransmits (RFC2582). SACK TCP is safe. */
1618 tcp_moderate_cwnd(tp);
1619 return 1;
1620 }
1621 tcp_set_ca_state(tp, TCP_CA_Open);
1622 return 0;
1623 }
1624
1625 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1626 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1627 {
1628 if (tp->undo_marker && !tp->undo_retrans) {
1629 DBGUNDO(sk, tp, "D-SACK");
1630 tcp_undo_cwr(tp, 1);
1631 tp->undo_marker = 0;
1632 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1633 }
1634 }
1635
1636 /* Undo during fast recovery after partial ACK. */
1637
1638 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1639 int acked)
1640 {
1641 /* Partial ACK arrived. Force Hoe's retransmit. */
1642 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1643
1644 if (tcp_may_undo(tp)) {
1645 /* Plain luck! Hole if filled with delayed
1646 * packet, rather than with a retransmit.
1647 */
1648 if (tp->retrans_out == 0)
1649 tp->retrans_stamp = 0;
1650
1651 tcp_update_reordering(tp, tcp_fackets_out(tp)+acked, 1);
1652
1653 DBGUNDO(sk, tp, "Hoe");
1654 tcp_undo_cwr(tp, 0);
1655 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1656
1657 /* So... Do not make Hoe's retransmit yet.
1658 * If the first packet was delayed, the rest
1659 * ones are most probably delayed as well.
1660 */
1661 failed = 0;
1662 }
1663 return failed;
1664 }
1665
1666 /* Undo during loss recovery after partial ACK. */
1667 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1668 {
1669 if (tcp_may_undo(tp)) {
1670 struct sk_buff *skb;
1671 sk_stream_for_retrans_queue(skb, sk) {
1672 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1673 }
1674 DBGUNDO(sk, tp, "partial loss");
1675 tp->lost_out = 0;
1676 tp->left_out = tp->sacked_out;
1677 tcp_undo_cwr(tp, 1);
1678 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1679 tp->retransmits = 0;
1680 tp->undo_marker = 0;
1681 if (!IsReno(tp))
1682 tcp_set_ca_state(tp, TCP_CA_Open);
1683 return 1;
1684 }
1685 return 0;
1686 }
1687
1688 static inline void tcp_complete_cwr(struct tcp_sock *tp)
1689 {
1690 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1691 tp->snd_cwnd_stamp = tcp_time_stamp;
1692 tcp_ca_event(tp, CA_EVENT_COMPLETE_CWR);
1693 }
1694
1695 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1696 {
1697 tp->left_out = tp->sacked_out;
1698
1699 if (tp->retrans_out == 0)
1700 tp->retrans_stamp = 0;
1701
1702 if (flag&FLAG_ECE)
1703 tcp_enter_cwr(tp);
1704
1705 if (tp->ca_state != TCP_CA_CWR) {
1706 int state = TCP_CA_Open;
1707
1708 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1709 state = TCP_CA_Disorder;
1710
1711 if (tp->ca_state != state) {
1712 tcp_set_ca_state(tp, state);
1713 tp->high_seq = tp->snd_nxt;
1714 }
1715 tcp_moderate_cwnd(tp);
1716 } else {
1717 tcp_cwnd_down(tp);
1718 }
1719 }
1720
1721 /* Process an event, which can update packets-in-flight not trivially.
1722 * Main goal of this function is to calculate new estimate for left_out,
1723 * taking into account both packets sitting in receiver's buffer and
1724 * packets lost by network.
1725 *
1726 * Besides that it does CWND reduction, when packet loss is detected
1727 * and changes state of machine.
1728 *
1729 * It does _not_ decide what to send, it is made in function
1730 * tcp_xmit_retransmit_queue().
1731 */
1732 static void
1733 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1734 int prior_packets, int flag)
1735 {
1736 struct tcp_sock *tp = tcp_sk(sk);
1737 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1738
1739 /* Some technical things:
1740 * 1. Reno does not count dupacks (sacked_out) automatically. */
1741 if (!tp->packets_out)
1742 tp->sacked_out = 0;
1743 /* 2. SACK counts snd_fack in packets inaccurately. */
1744 if (tp->sacked_out == 0)
1745 tp->fackets_out = 0;
1746
1747 /* Now state machine starts.
1748 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1749 if (flag&FLAG_ECE)
1750 tp->prior_ssthresh = 0;
1751
1752 /* B. In all the states check for reneging SACKs. */
1753 if (tp->sacked_out && tcp_check_sack_reneging(sk, tp))
1754 return;
1755
1756 /* C. Process data loss notification, provided it is valid. */
1757 if ((flag&FLAG_DATA_LOST) &&
1758 before(tp->snd_una, tp->high_seq) &&
1759 tp->ca_state != TCP_CA_Open &&
1760 tp->fackets_out > tp->reordering) {
1761 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1762 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1763 }
1764
1765 /* D. Synchronize left_out to current state. */
1766 tcp_sync_left_out(tp);
1767
1768 /* E. Check state exit conditions. State can be terminated
1769 * when high_seq is ACKed. */
1770 if (tp->ca_state == TCP_CA_Open) {
1771 if (!sysctl_tcp_frto)
1772 BUG_TRAP(tp->retrans_out == 0);
1773 tp->retrans_stamp = 0;
1774 } else if (!before(tp->snd_una, tp->high_seq)) {
1775 switch (tp->ca_state) {
1776 case TCP_CA_Loss:
1777 tp->retransmits = 0;
1778 if (tcp_try_undo_recovery(sk, tp))
1779 return;
1780 break;
1781
1782 case TCP_CA_CWR:
1783 /* CWR is to be held something *above* high_seq
1784 * is ACKed for CWR bit to reach receiver. */
1785 if (tp->snd_una != tp->high_seq) {
1786 tcp_complete_cwr(tp);
1787 tcp_set_ca_state(tp, TCP_CA_Open);
1788 }
1789 break;
1790
1791 case TCP_CA_Disorder:
1792 tcp_try_undo_dsack(sk, tp);
1793 if (!tp->undo_marker ||
1794 /* For SACK case do not Open to allow to undo
1795 * catching for all duplicate ACKs. */
1796 IsReno(tp) || tp->snd_una != tp->high_seq) {
1797 tp->undo_marker = 0;
1798 tcp_set_ca_state(tp, TCP_CA_Open);
1799 }
1800 break;
1801
1802 case TCP_CA_Recovery:
1803 if (IsReno(tp))
1804 tcp_reset_reno_sack(tp);
1805 if (tcp_try_undo_recovery(sk, tp))
1806 return;
1807 tcp_complete_cwr(tp);
1808 break;
1809 }
1810 }
1811
1812 /* F. Process state. */
1813 switch (tp->ca_state) {
1814 case TCP_CA_Recovery:
1815 if (prior_snd_una == tp->snd_una) {
1816 if (IsReno(tp) && is_dupack)
1817 tcp_add_reno_sack(tp);
1818 } else {
1819 int acked = prior_packets - tp->packets_out;
1820 if (IsReno(tp))
1821 tcp_remove_reno_sacks(sk, tp, acked);
1822 is_dupack = tcp_try_undo_partial(sk, tp, acked);
1823 }
1824 break;
1825 case TCP_CA_Loss:
1826 if (flag&FLAG_DATA_ACKED)
1827 tp->retransmits = 0;
1828 if (!tcp_try_undo_loss(sk, tp)) {
1829 tcp_moderate_cwnd(tp);
1830 tcp_xmit_retransmit_queue(sk);
1831 return;
1832 }
1833 if (tp->ca_state != TCP_CA_Open)
1834 return;
1835 /* Loss is undone; fall through to processing in Open state. */
1836 default:
1837 if (IsReno(tp)) {
1838 if (tp->snd_una != prior_snd_una)
1839 tcp_reset_reno_sack(tp);
1840 if (is_dupack)
1841 tcp_add_reno_sack(tp);
1842 }
1843
1844 if (tp->ca_state == TCP_CA_Disorder)
1845 tcp_try_undo_dsack(sk, tp);
1846
1847 if (!tcp_time_to_recover(sk, tp)) {
1848 tcp_try_to_open(sk, tp, flag);
1849 return;
1850 }
1851
1852 /* Otherwise enter Recovery state */
1853
1854 if (IsReno(tp))
1855 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
1856 else
1857 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
1858
1859 tp->high_seq = tp->snd_nxt;
1860 tp->prior_ssthresh = 0;
1861 tp->undo_marker = tp->snd_una;
1862 tp->undo_retrans = tp->retrans_out;
1863
1864 if (tp->ca_state < TCP_CA_CWR) {
1865 if (!(flag&FLAG_ECE))
1866 tp->prior_ssthresh = tcp_current_ssthresh(tp);
1867 tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1868 TCP_ECN_queue_cwr(tp);
1869 }
1870
1871 tp->snd_cwnd_cnt = 0;
1872 tcp_set_ca_state(tp, TCP_CA_Recovery);
1873 }
1874
1875 if (is_dupack || tcp_head_timedout(sk, tp))
1876 tcp_update_scoreboard(sk, tp);
1877 tcp_cwnd_down(tp);
1878 tcp_xmit_retransmit_queue(sk);
1879 }
1880
1881 /* Read draft-ietf-tcplw-high-performance before mucking
1882 * with this code. (Superceeds RFC1323)
1883 */
1884 static void tcp_ack_saw_tstamp(struct tcp_sock *tp, u32 *usrtt, int flag)
1885 {
1886 __u32 seq_rtt;
1887
1888 /* RTTM Rule: A TSecr value received in a segment is used to
1889 * update the averaged RTT measurement only if the segment
1890 * acknowledges some new data, i.e., only if it advances the
1891 * left edge of the send window.
1892 *
1893 * See draft-ietf-tcplw-high-performance-00, section 3.3.
1894 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
1895 *
1896 * Changed: reset backoff as soon as we see the first valid sample.
1897 * If we do not, we get strongly overstimated rto. With timestamps
1898 * samples are accepted even from very old segments: f.e., when rtt=1
1899 * increases to 8, we retransmit 5 times and after 8 seconds delayed
1900 * answer arrives rto becomes 120 seconds! If at least one of segments
1901 * in window is lost... Voila. --ANK (010210)
1902 */
1903 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
1904 tcp_rtt_estimator(tp, seq_rtt, usrtt);
1905 tcp_set_rto(tp);
1906 tp->backoff = 0;
1907 tcp_bound_rto(tp);
1908 }
1909
1910 static void tcp_ack_no_tstamp(struct tcp_sock *tp, u32 seq_rtt, u32 *usrtt, int flag)
1911 {
1912 /* We don't have a timestamp. Can only use
1913 * packets that are not retransmitted to determine
1914 * rtt estimates. Also, we must not reset the
1915 * backoff for rto until we get a non-retransmitted
1916 * packet. This allows us to deal with a situation
1917 * where the network delay has increased suddenly.
1918 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
1919 */
1920
1921 if (flag & FLAG_RETRANS_DATA_ACKED)
1922 return;
1923
1924 tcp_rtt_estimator(tp, seq_rtt, usrtt);
1925 tcp_set_rto(tp);
1926 tp->backoff = 0;
1927 tcp_bound_rto(tp);
1928 }
1929
1930 static inline void tcp_ack_update_rtt(struct tcp_sock *tp,
1931 int flag, s32 seq_rtt, u32 *usrtt)
1932 {
1933 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
1934 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
1935 tcp_ack_saw_tstamp(tp, usrtt, flag);
1936 else if (seq_rtt >= 0)
1937 tcp_ack_no_tstamp(tp, seq_rtt, usrtt, flag);
1938 }
1939
1940 static inline void tcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 rtt,
1941 u32 in_flight, int good)
1942 {
1943 tp->ca_ops->cong_avoid(tp, ack, rtt, in_flight, good);
1944 tp->snd_cwnd_stamp = tcp_time_stamp;
1945 }
1946
1947 /* Restart timer after forward progress on connection.
1948 * RFC2988 recommends to restart timer to now+rto.
1949 */
1950
1951 static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
1952 {
1953 if (!tp->packets_out) {
1954 tcp_clear_xmit_timer(sk, TCP_TIME_RETRANS);
1955 } else {
1956 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1957 }
1958 }
1959
1960 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
1961 __u32 now, __s32 *seq_rtt)
1962 {
1963 struct tcp_sock *tp = tcp_sk(sk);
1964 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1965 __u32 seq = tp->snd_una;
1966 __u32 packets_acked;
1967 int acked = 0;
1968
1969 /* If we get here, the whole TSO packet has not been
1970 * acked.
1971 */
1972 BUG_ON(!after(scb->end_seq, seq));
1973
1974 packets_acked = tcp_skb_pcount(skb);
1975 if (tcp_trim_head(sk, skb, seq - scb->seq))
1976 return 0;
1977 packets_acked -= tcp_skb_pcount(skb);
1978
1979 if (packets_acked) {
1980 __u8 sacked = scb->sacked;
1981
1982 acked |= FLAG_DATA_ACKED;
1983 if (sacked) {
1984 if (sacked & TCPCB_RETRANS) {
1985 if (sacked & TCPCB_SACKED_RETRANS)
1986 tp->retrans_out -= packets_acked;
1987 acked |= FLAG_RETRANS_DATA_ACKED;
1988 *seq_rtt = -1;
1989 } else if (*seq_rtt < 0)
1990 *seq_rtt = now - scb->when;
1991 if (sacked & TCPCB_SACKED_ACKED)
1992 tp->sacked_out -= packets_acked;
1993 if (sacked & TCPCB_LOST)
1994 tp->lost_out -= packets_acked;
1995 if (sacked & TCPCB_URG) {
1996 if (tp->urg_mode &&
1997 !before(seq, tp->snd_up))
1998 tp->urg_mode = 0;
1999 }
2000 } else if (*seq_rtt < 0)
2001 *seq_rtt = now - scb->when;
2002
2003 if (tp->fackets_out) {
2004 __u32 dval = min(tp->fackets_out, packets_acked);
2005 tp->fackets_out -= dval;
2006 }
2007 tp->packets_out -= packets_acked;
2008
2009 BUG_ON(tcp_skb_pcount(skb) == 0);
2010 BUG_ON(!before(scb->seq, scb->end_seq));
2011 }
2012
2013 return acked;
2014 }
2015
2016
2017 /* Remove acknowledged frames from the retransmission queue. */
2018 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p, s32 *seq_usrtt)
2019 {
2020 struct tcp_sock *tp = tcp_sk(sk);
2021 struct sk_buff *skb;
2022 __u32 now = tcp_time_stamp;
2023 int acked = 0;
2024 __s32 seq_rtt = -1;
2025 struct timeval usnow;
2026 u32 pkts_acked = 0;
2027
2028 if (seq_usrtt)
2029 do_gettimeofday(&usnow);
2030
2031 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2032 skb != sk->sk_send_head) {
2033 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2034 __u8 sacked = scb->sacked;
2035
2036 /* If our packet is before the ack sequence we can
2037 * discard it as it's confirmed to have arrived at
2038 * the other end.
2039 */
2040 if (after(scb->end_seq, tp->snd_una)) {
2041 if (tcp_skb_pcount(skb) > 1)
2042 acked |= tcp_tso_acked(sk, skb,
2043 now, &seq_rtt);
2044 break;
2045 }
2046
2047 /* Initial outgoing SYN's get put onto the write_queue
2048 * just like anything else we transmit. It is not
2049 * true data, and if we misinform our callers that
2050 * this ACK acks real data, we will erroneously exit
2051 * connection startup slow start one packet too
2052 * quickly. This is severely frowned upon behavior.
2053 */
2054 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2055 acked |= FLAG_DATA_ACKED;
2056 ++pkts_acked;
2057 } else {
2058 acked |= FLAG_SYN_ACKED;
2059 tp->retrans_stamp = 0;
2060 }
2061
2062 if (sacked) {
2063 if (sacked & TCPCB_RETRANS) {
2064 if(sacked & TCPCB_SACKED_RETRANS)
2065 tp->retrans_out -= tcp_skb_pcount(skb);
2066 acked |= FLAG_RETRANS_DATA_ACKED;
2067 seq_rtt = -1;
2068 } else if (seq_rtt < 0)
2069 seq_rtt = now - scb->when;
2070 if (seq_usrtt)
2071 *seq_usrtt = (usnow.tv_sec - skb->stamp.tv_sec) * 1000000
2072 + (usnow.tv_usec - skb->stamp.tv_usec);
2073
2074 if (sacked & TCPCB_SACKED_ACKED)
2075 tp->sacked_out -= tcp_skb_pcount(skb);
2076 if (sacked & TCPCB_LOST)
2077 tp->lost_out -= tcp_skb_pcount(skb);
2078 if (sacked & TCPCB_URG) {
2079 if (tp->urg_mode &&
2080 !before(scb->end_seq, tp->snd_up))
2081 tp->urg_mode = 0;
2082 }
2083 } else if (seq_rtt < 0)
2084 seq_rtt = now - scb->when;
2085 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2086 tcp_packets_out_dec(tp, skb);
2087 __skb_unlink(skb, skb->list);
2088 sk_stream_free_skb(sk, skb);
2089 }
2090
2091 if (acked&FLAG_ACKED) {
2092 tcp_ack_update_rtt(tp, acked, seq_rtt, seq_usrtt);
2093 tcp_ack_packets_out(sk, tp);
2094
2095 if (tp->ca_ops->pkts_acked)
2096 tp->ca_ops->pkts_acked(tp, pkts_acked);
2097 }
2098
2099 #if FASTRETRANS_DEBUG > 0
2100 BUG_TRAP((int)tp->sacked_out >= 0);
2101 BUG_TRAP((int)tp->lost_out >= 0);
2102 BUG_TRAP((int)tp->retrans_out >= 0);
2103 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2104 if (tp->lost_out) {
2105 printk(KERN_DEBUG "Leak l=%u %d\n",
2106 tp->lost_out, tp->ca_state);
2107 tp->lost_out = 0;
2108 }
2109 if (tp->sacked_out) {
2110 printk(KERN_DEBUG "Leak s=%u %d\n",
2111 tp->sacked_out, tp->ca_state);
2112 tp->sacked_out = 0;
2113 }
2114 if (tp->retrans_out) {
2115 printk(KERN_DEBUG "Leak r=%u %d\n",
2116 tp->retrans_out, tp->ca_state);
2117 tp->retrans_out = 0;
2118 }
2119 }
2120 #endif
2121 *seq_rtt_p = seq_rtt;
2122 return acked;
2123 }
2124
2125 static void tcp_ack_probe(struct sock *sk)
2126 {
2127 struct tcp_sock *tp = tcp_sk(sk);
2128
2129 /* Was it a usable window open? */
2130
2131 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2132 tp->snd_una + tp->snd_wnd)) {
2133 tp->backoff = 0;
2134 tcp_clear_xmit_timer(sk, TCP_TIME_PROBE0);
2135 /* Socket must be waked up by subsequent tcp_data_snd_check().
2136 * This function is not for random using!
2137 */
2138 } else {
2139 tcp_reset_xmit_timer(sk, TCP_TIME_PROBE0,
2140 min(tp->rto << tp->backoff, TCP_RTO_MAX));
2141 }
2142 }
2143
2144 static inline int tcp_ack_is_dubious(struct tcp_sock *tp, int flag)
2145 {
2146 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2147 tp->ca_state != TCP_CA_Open);
2148 }
2149
2150 static inline int tcp_may_raise_cwnd(struct tcp_sock *tp, int flag)
2151 {
2152 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2153 !((1<<tp->ca_state)&(TCPF_CA_Recovery|TCPF_CA_CWR));
2154 }
2155
2156 /* Check that window update is acceptable.
2157 * The function assumes that snd_una<=ack<=snd_next.
2158 */
2159 static inline int tcp_may_update_window(struct tcp_sock *tp, u32 ack,
2160 u32 ack_seq, u32 nwin)
2161 {
2162 return (after(ack, tp->snd_una) ||
2163 after(ack_seq, tp->snd_wl1) ||
2164 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2165 }
2166
2167 /* Update our send window.
2168 *
2169 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2170 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2171 */
2172 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2173 struct sk_buff *skb, u32 ack, u32 ack_seq)
2174 {
2175 int flag = 0;
2176 u32 nwin = ntohs(skb->h.th->window);
2177
2178 if (likely(!skb->h.th->syn))
2179 nwin <<= tp->rx_opt.snd_wscale;
2180
2181 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2182 flag |= FLAG_WIN_UPDATE;
2183 tcp_update_wl(tp, ack, ack_seq);
2184
2185 if (tp->snd_wnd != nwin) {
2186 tp->snd_wnd = nwin;
2187
2188 /* Note, it is the only place, where
2189 * fast path is recovered for sending TCP.
2190 */
2191 tcp_fast_path_check(sk, tp);
2192
2193 if (nwin > tp->max_window) {
2194 tp->max_window = nwin;
2195 tcp_sync_mss(sk, tp->pmtu_cookie);
2196 }
2197 }
2198 }
2199
2200 tp->snd_una = ack;
2201
2202 return flag;
2203 }
2204
2205 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2206 {
2207 struct tcp_sock *tp = tcp_sk(sk);
2208
2209 tcp_sync_left_out(tp);
2210
2211 if (tp->snd_una == prior_snd_una ||
2212 !before(tp->snd_una, tp->frto_highmark)) {
2213 /* RTO was caused by loss, start retransmitting in
2214 * go-back-N slow start
2215 */
2216 tcp_enter_frto_loss(sk);
2217 return;
2218 }
2219
2220 if (tp->frto_counter == 1) {
2221 /* First ACK after RTO advances the window: allow two new
2222 * segments out.
2223 */
2224 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2225 } else {
2226 /* Also the second ACK after RTO advances the window.
2227 * The RTO was likely spurious. Reduce cwnd and continue
2228 * in congestion avoidance
2229 */
2230 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2231 tcp_moderate_cwnd(tp);
2232 }
2233
2234 /* F-RTO affects on two new ACKs following RTO.
2235 * At latest on third ACK the TCP behavor is back to normal.
2236 */
2237 tp->frto_counter = (tp->frto_counter + 1) % 3;
2238 }
2239
2240 /* This routine deals with incoming acks, but not outgoing ones. */
2241 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2242 {
2243 struct tcp_sock *tp = tcp_sk(sk);
2244 u32 prior_snd_una = tp->snd_una;
2245 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2246 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2247 u32 prior_in_flight;
2248 s32 seq_rtt;
2249 s32 seq_usrtt = 0;
2250 int prior_packets;
2251
2252 /* If the ack is newer than sent or older than previous acks
2253 * then we can probably ignore it.
2254 */
2255 if (after(ack, tp->snd_nxt))
2256 goto uninteresting_ack;
2257
2258 if (before(ack, prior_snd_una))
2259 goto old_ack;
2260
2261 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2262 /* Window is constant, pure forward advance.
2263 * No more checks are required.
2264 * Note, we use the fact that SND.UNA>=SND.WL2.
2265 */
2266 tcp_update_wl(tp, ack, ack_seq);
2267 tp->snd_una = ack;
2268 flag |= FLAG_WIN_UPDATE;
2269
2270 tcp_ca_event(tp, CA_EVENT_FAST_ACK);
2271
2272 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2273 } else {
2274 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2275 flag |= FLAG_DATA;
2276 else
2277 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2278
2279 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2280
2281 if (TCP_SKB_CB(skb)->sacked)
2282 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2283
2284 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2285 flag |= FLAG_ECE;
2286
2287 tcp_ca_event(tp, CA_EVENT_SLOW_ACK);
2288 }
2289
2290 /* We passed data and got it acked, remove any soft error
2291 * log. Something worked...
2292 */
2293 sk->sk_err_soft = 0;
2294 tp->rcv_tstamp = tcp_time_stamp;
2295 prior_packets = tp->packets_out;
2296 if (!prior_packets)
2297 goto no_queue;
2298
2299 prior_in_flight = tcp_packets_in_flight(tp);
2300
2301 /* See if we can take anything off of the retransmit queue. */
2302 flag |= tcp_clean_rtx_queue(sk, &seq_rtt,
2303 tp->ca_ops->rtt_sample ? &seq_usrtt : NULL);
2304
2305 if (tp->frto_counter)
2306 tcp_process_frto(sk, prior_snd_una);
2307
2308 if (tcp_ack_is_dubious(tp, flag)) {
2309 /* Advanve CWND, if state allows this. */
2310 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(tp, flag))
2311 tcp_cong_avoid(tp, ack, seq_rtt, prior_in_flight, 0);
2312 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2313 } else {
2314 if ((flag & FLAG_DATA_ACKED))
2315 tcp_cong_avoid(tp, ack, seq_rtt, prior_in_flight, 1);
2316 }
2317
2318 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2319 dst_confirm(sk->sk_dst_cache);
2320
2321 return 1;
2322
2323 no_queue:
2324 tp->probes_out = 0;
2325
2326 /* If this ack opens up a zero window, clear backoff. It was
2327 * being used to time the probes, and is probably far higher than
2328 * it needs to be for normal retransmission.
2329 */
2330 if (sk->sk_send_head)
2331 tcp_ack_probe(sk);
2332 return 1;
2333
2334 old_ack:
2335 if (TCP_SKB_CB(skb)->sacked)
2336 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2337
2338 uninteresting_ack:
2339 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2340 return 0;
2341 }
2342
2343
2344 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2345 * But, this can also be called on packets in the established flow when
2346 * the fast version below fails.
2347 */
2348 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2349 {
2350 unsigned char *ptr;
2351 struct tcphdr *th = skb->h.th;
2352 int length=(th->doff*4)-sizeof(struct tcphdr);
2353
2354 ptr = (unsigned char *)(th + 1);
2355 opt_rx->saw_tstamp = 0;
2356
2357 while(length>0) {
2358 int opcode=*ptr++;
2359 int opsize;
2360
2361 switch (opcode) {
2362 case TCPOPT_EOL:
2363 return;
2364 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2365 length--;
2366 continue;
2367 default:
2368 opsize=*ptr++;
2369 if (opsize < 2) /* "silly options" */
2370 return;
2371 if (opsize > length)
2372 return; /* don't parse partial options */
2373 switch(opcode) {
2374 case TCPOPT_MSS:
2375 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2376 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2377 if (in_mss) {
2378 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2379 in_mss = opt_rx->user_mss;
2380 opt_rx->mss_clamp = in_mss;
2381 }
2382 }
2383 break;
2384 case TCPOPT_WINDOW:
2385 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2386 if (sysctl_tcp_window_scaling) {
2387 __u8 snd_wscale = *(__u8 *) ptr;
2388 opt_rx->wscale_ok = 1;
2389 if (snd_wscale > 14) {
2390 if(net_ratelimit())
2391 printk(KERN_INFO "tcp_parse_options: Illegal window "
2392 "scaling value %d >14 received.\n",
2393 snd_wscale);
2394 snd_wscale = 14;
2395 }
2396 opt_rx->snd_wscale = snd_wscale;
2397 }
2398 break;
2399 case TCPOPT_TIMESTAMP:
2400 if(opsize==TCPOLEN_TIMESTAMP) {
2401 if ((estab && opt_rx->tstamp_ok) ||
2402 (!estab && sysctl_tcp_timestamps)) {
2403 opt_rx->saw_tstamp = 1;
2404 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2405 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2406 }
2407 }
2408 break;
2409 case TCPOPT_SACK_PERM:
2410 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2411 if (sysctl_tcp_sack) {
2412 opt_rx->sack_ok = 1;
2413 tcp_sack_reset(opt_rx);
2414 }
2415 }
2416 break;
2417
2418 case TCPOPT_SACK:
2419 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2420 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2421 opt_rx->sack_ok) {
2422 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2423 }
2424 };
2425 ptr+=opsize-2;
2426 length-=opsize;
2427 };
2428 }
2429 }
2430
2431 /* Fast parse options. This hopes to only see timestamps.
2432 * If it is wrong it falls back on tcp_parse_options().
2433 */
2434 static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2435 struct tcp_sock *tp)
2436 {
2437 if (th->doff == sizeof(struct tcphdr)>>2) {
2438 tp->rx_opt.saw_tstamp = 0;
2439 return 0;
2440 } else if (tp->rx_opt.tstamp_ok &&
2441 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2442 __u32 *ptr = (__u32 *)(th + 1);
2443 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2444 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2445 tp->rx_opt.saw_tstamp = 1;
2446 ++ptr;
2447 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2448 ++ptr;
2449 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2450 return 1;
2451 }
2452 }
2453 tcp_parse_options(skb, &tp->rx_opt, 1);
2454 return 1;
2455 }
2456
2457 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2458 {
2459 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2460 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2461 }
2462
2463 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2464 {
2465 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2466 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2467 * extra check below makes sure this can only happen
2468 * for pure ACK frames. -DaveM
2469 *
2470 * Not only, also it occurs for expired timestamps.
2471 */
2472
2473 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2474 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2475 tcp_store_ts_recent(tp);
2476 }
2477 }
2478
2479 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2480 *
2481 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2482 * it can pass through stack. So, the following predicate verifies that
2483 * this segment is not used for anything but congestion avoidance or
2484 * fast retransmit. Moreover, we even are able to eliminate most of such
2485 * second order effects, if we apply some small "replay" window (~RTO)
2486 * to timestamp space.
2487 *
2488 * All these measures still do not guarantee that we reject wrapped ACKs
2489 * on networks with high bandwidth, when sequence space is recycled fastly,
2490 * but it guarantees that such events will be very rare and do not affect
2491 * connection seriously. This doesn't look nice, but alas, PAWS is really
2492 * buggy extension.
2493 *
2494 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2495 * states that events when retransmit arrives after original data are rare.
2496 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2497 * the biggest problem on large power networks even with minor reordering.
2498 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2499 * up to bandwidth of 18Gigabit/sec. 8) ]
2500 */
2501
2502 static int tcp_disordered_ack(struct tcp_sock *tp, struct sk_buff *skb)
2503 {
2504 struct tcphdr *th = skb->h.th;
2505 u32 seq = TCP_SKB_CB(skb)->seq;
2506 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2507
2508 return (/* 1. Pure ACK with correct sequence number. */
2509 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2510
2511 /* 2. ... and duplicate ACK. */
2512 ack == tp->snd_una &&
2513
2514 /* 3. ... and does not update window. */
2515 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2516
2517 /* 4. ... and sits in replay window. */
2518 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (tp->rto*1024)/HZ);
2519 }
2520
2521 static inline int tcp_paws_discard(struct tcp_sock *tp, struct sk_buff *skb)
2522 {
2523 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2524 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2525 !tcp_disordered_ack(tp, skb));
2526 }
2527
2528 /* Check segment sequence number for validity.
2529 *
2530 * Segment controls are considered valid, if the segment
2531 * fits to the window after truncation to the window. Acceptability
2532 * of data (and SYN, FIN, of course) is checked separately.
2533 * See tcp_data_queue(), for example.
2534 *
2535 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2536 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2537 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2538 * (borrowed from freebsd)
2539 */
2540
2541 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2542 {
2543 return !before(end_seq, tp->rcv_wup) &&
2544 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2545 }
2546
2547 /* When we get a reset we do this. */
2548 static void tcp_reset(struct sock *sk)
2549 {
2550 /* We want the right error as BSD sees it (and indeed as we do). */
2551 switch (sk->sk_state) {
2552 case TCP_SYN_SENT:
2553 sk->sk_err = ECONNREFUSED;
2554 break;
2555 case TCP_CLOSE_WAIT:
2556 sk->sk_err = EPIPE;
2557 break;
2558 case TCP_CLOSE:
2559 return;
2560 default:
2561 sk->sk_err = ECONNRESET;
2562 }
2563
2564 if (!sock_flag(sk, SOCK_DEAD))
2565 sk->sk_error_report(sk);
2566
2567 tcp_done(sk);
2568 }
2569
2570 /*
2571 * Process the FIN bit. This now behaves as it is supposed to work
2572 * and the FIN takes effect when it is validly part of sequence
2573 * space. Not before when we get holes.
2574 *
2575 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2576 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2577 * TIME-WAIT)
2578 *
2579 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2580 * close and we go into CLOSING (and later onto TIME-WAIT)
2581 *
2582 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2583 */
2584 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2585 {
2586 struct tcp_sock *tp = tcp_sk(sk);
2587
2588 tcp_schedule_ack(tp);
2589
2590 sk->sk_shutdown |= RCV_SHUTDOWN;
2591 sock_set_flag(sk, SOCK_DONE);
2592
2593 switch (sk->sk_state) {
2594 case TCP_SYN_RECV:
2595 case TCP_ESTABLISHED:
2596 /* Move to CLOSE_WAIT */
2597 tcp_set_state(sk, TCP_CLOSE_WAIT);
2598 tp->ack.pingpong = 1;
2599 break;
2600
2601 case TCP_CLOSE_WAIT:
2602 case TCP_CLOSING:
2603 /* Received a retransmission of the FIN, do
2604 * nothing.
2605 */
2606 break;
2607 case TCP_LAST_ACK:
2608 /* RFC793: Remain in the LAST-ACK state. */
2609 break;
2610
2611 case TCP_FIN_WAIT1:
2612 /* This case occurs when a simultaneous close
2613 * happens, we must ack the received FIN and
2614 * enter the CLOSING state.
2615 */
2616 tcp_send_ack(sk);
2617 tcp_set_state(sk, TCP_CLOSING);
2618 break;
2619 case TCP_FIN_WAIT2:
2620 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2621 tcp_send_ack(sk);
2622 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2623 break;
2624 default:
2625 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2626 * cases we should never reach this piece of code.
2627 */
2628 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2629 __FUNCTION__, sk->sk_state);
2630 break;
2631 };
2632
2633 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2634 * Probably, we should reset in this case. For now drop them.
2635 */
2636 __skb_queue_purge(&tp->out_of_order_queue);
2637 if (tp->rx_opt.sack_ok)
2638 tcp_sack_reset(&tp->rx_opt);
2639 sk_stream_mem_reclaim(sk);
2640
2641 if (!sock_flag(sk, SOCK_DEAD)) {
2642 sk->sk_state_change(sk);
2643
2644 /* Do not send POLL_HUP for half duplex close. */
2645 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2646 sk->sk_state == TCP_CLOSE)
2647 sk_wake_async(sk, 1, POLL_HUP);
2648 else
2649 sk_wake_async(sk, 1, POLL_IN);
2650 }
2651 }
2652
2653 static __inline__ int
2654 tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2655 {
2656 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2657 if (before(seq, sp->start_seq))
2658 sp->start_seq = seq;
2659 if (after(end_seq, sp->end_seq))
2660 sp->end_seq = end_seq;
2661 return 1;
2662 }
2663 return 0;
2664 }
2665
2666 static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2667 {
2668 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2669 if (before(seq, tp->rcv_nxt))
2670 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2671 else
2672 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2673
2674 tp->rx_opt.dsack = 1;
2675 tp->duplicate_sack[0].start_seq = seq;
2676 tp->duplicate_sack[0].end_seq = end_seq;
2677 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2678 }
2679 }
2680
2681 static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2682 {
2683 if (!tp->rx_opt.dsack)
2684 tcp_dsack_set(tp, seq, end_seq);
2685 else
2686 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2687 }
2688
2689 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2690 {
2691 struct tcp_sock *tp = tcp_sk(sk);
2692
2693 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2694 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2695 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2696 tcp_enter_quickack_mode(tp);
2697
2698 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2699 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2700
2701 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2702 end_seq = tp->rcv_nxt;
2703 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2704 }
2705 }
2706
2707 tcp_send_ack(sk);
2708 }
2709
2710 /* These routines update the SACK block as out-of-order packets arrive or
2711 * in-order packets close up the sequence space.
2712 */
2713 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2714 {
2715 int this_sack;
2716 struct tcp_sack_block *sp = &tp->selective_acks[0];
2717 struct tcp_sack_block *swalk = sp+1;
2718
2719 /* See if the recent change to the first SACK eats into
2720 * or hits the sequence space of other SACK blocks, if so coalesce.
2721 */
2722 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2723 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2724 int i;
2725
2726 /* Zap SWALK, by moving every further SACK up by one slot.
2727 * Decrease num_sacks.
2728 */
2729 tp->rx_opt.num_sacks--;
2730 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2731 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2732 sp[i] = sp[i+1];
2733 continue;
2734 }
2735 this_sack++, swalk++;
2736 }
2737 }
2738
2739 static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2740 {
2741 __u32 tmp;
2742
2743 tmp = sack1->start_seq;
2744 sack1->start_seq = sack2->start_seq;
2745 sack2->start_seq = tmp;
2746
2747 tmp = sack1->end_seq;
2748 sack1->end_seq = sack2->end_seq;
2749 sack2->end_seq = tmp;
2750 }
2751
2752 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2753 {
2754 struct tcp_sock *tp = tcp_sk(sk);
2755 struct tcp_sack_block *sp = &tp->selective_acks[0];
2756 int cur_sacks = tp->rx_opt.num_sacks;
2757 int this_sack;
2758
2759 if (!cur_sacks)
2760 goto new_sack;
2761
2762 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
2763 if (tcp_sack_extend(sp, seq, end_seq)) {
2764 /* Rotate this_sack to the first one. */
2765 for (; this_sack>0; this_sack--, sp--)
2766 tcp_sack_swap(sp, sp-1);
2767 if (cur_sacks > 1)
2768 tcp_sack_maybe_coalesce(tp);
2769 return;
2770 }
2771 }
2772
2773 /* Could not find an adjacent existing SACK, build a new one,
2774 * put it at the front, and shift everyone else down. We
2775 * always know there is at least one SACK present already here.
2776 *
2777 * If the sack array is full, forget about the last one.
2778 */
2779 if (this_sack >= 4) {
2780 this_sack--;
2781 tp->rx_opt.num_sacks--;
2782 sp--;
2783 }
2784 for(; this_sack > 0; this_sack--, sp--)
2785 *sp = *(sp-1);
2786
2787 new_sack:
2788 /* Build the new head SACK, and we're done. */
2789 sp->start_seq = seq;
2790 sp->end_seq = end_seq;
2791 tp->rx_opt.num_sacks++;
2792 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2793 }
2794
2795 /* RCV.NXT advances, some SACKs should be eaten. */
2796
2797 static void tcp_sack_remove(struct tcp_sock *tp)
2798 {
2799 struct tcp_sack_block *sp = &tp->selective_acks[0];
2800 int num_sacks = tp->rx_opt.num_sacks;
2801 int this_sack;
2802
2803 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
2804 if (skb_queue_len(&tp->out_of_order_queue) == 0) {
2805 tp->rx_opt.num_sacks = 0;
2806 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
2807 return;
2808 }
2809
2810 for(this_sack = 0; this_sack < num_sacks; ) {
2811 /* Check if the start of the sack is covered by RCV.NXT. */
2812 if (!before(tp->rcv_nxt, sp->start_seq)) {
2813 int i;
2814
2815 /* RCV.NXT must cover all the block! */
2816 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
2817
2818 /* Zap this SACK, by moving forward any other SACKS. */
2819 for (i=this_sack+1; i < num_sacks; i++)
2820 tp->selective_acks[i-1] = tp->selective_acks[i];
2821 num_sacks--;
2822 continue;
2823 }
2824 this_sack++;
2825 sp++;
2826 }
2827 if (num_sacks != tp->rx_opt.num_sacks) {
2828 tp->rx_opt.num_sacks = num_sacks;
2829 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2830 }
2831 }
2832
2833 /* This one checks to see if we can put data from the
2834 * out_of_order queue into the receive_queue.
2835 */
2836 static void tcp_ofo_queue(struct sock *sk)
2837 {
2838 struct tcp_sock *tp = tcp_sk(sk);
2839 __u32 dsack_high = tp->rcv_nxt;
2840 struct sk_buff *skb;
2841
2842 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
2843 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
2844 break;
2845
2846 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
2847 __u32 dsack = dsack_high;
2848 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
2849 dsack_high = TCP_SKB_CB(skb)->end_seq;
2850 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
2851 }
2852
2853 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2854 SOCK_DEBUG(sk, "ofo packet was already received \n");
2855 __skb_unlink(skb, skb->list);
2856 __kfree_skb(skb);
2857 continue;
2858 }
2859 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
2860 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2861 TCP_SKB_CB(skb)->end_seq);
2862
2863 __skb_unlink(skb, skb->list);
2864 __skb_queue_tail(&sk->sk_receive_queue, skb);
2865 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2866 if(skb->h.th->fin)
2867 tcp_fin(skb, sk, skb->h.th);
2868 }
2869 }
2870
2871 static int tcp_prune_queue(struct sock *sk);
2872
2873 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
2874 {
2875 struct tcphdr *th = skb->h.th;
2876 struct tcp_sock *tp = tcp_sk(sk);
2877 int eaten = -1;
2878
2879 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
2880 goto drop;
2881
2882 __skb_pull(skb, th->doff*4);
2883
2884 TCP_ECN_accept_cwr(tp, skb);
2885
2886 if (tp->rx_opt.dsack) {
2887 tp->rx_opt.dsack = 0;
2888 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
2889 4 - tp->rx_opt.tstamp_ok);
2890 }
2891
2892 /* Queue data for delivery to the user.
2893 * Packets in sequence go to the receive queue.
2894 * Out of sequence packets to the out_of_order_queue.
2895 */
2896 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
2897 if (tcp_receive_window(tp) == 0)
2898 goto out_of_window;
2899
2900 /* Ok. In sequence. In window. */
2901 if (tp->ucopy.task == current &&
2902 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
2903 sock_owned_by_user(sk) && !tp->urg_data) {
2904 int chunk = min_t(unsigned int, skb->len,
2905 tp->ucopy.len);
2906
2907 __set_current_state(TASK_RUNNING);
2908
2909 local_bh_enable();
2910 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
2911 tp->ucopy.len -= chunk;
2912 tp->copied_seq += chunk;
2913 eaten = (chunk == skb->len && !th->fin);
2914 tcp_rcv_space_adjust(sk);
2915 }
2916 local_bh_disable();
2917 }
2918
2919 if (eaten <= 0) {
2920 queue_and_out:
2921 if (eaten < 0 &&
2922 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
2923 !sk_stream_rmem_schedule(sk, skb))) {
2924 if (tcp_prune_queue(sk) < 0 ||
2925 !sk_stream_rmem_schedule(sk, skb))
2926 goto drop;
2927 }
2928 sk_stream_set_owner_r(skb, sk);
2929 __skb_queue_tail(&sk->sk_receive_queue, skb);
2930 }
2931 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2932 if(skb->len)
2933 tcp_event_data_recv(sk, tp, skb);
2934 if(th->fin)
2935 tcp_fin(skb, sk, th);
2936
2937 if (skb_queue_len(&tp->out_of_order_queue)) {
2938 tcp_ofo_queue(sk);
2939
2940 /* RFC2581. 4.2. SHOULD send immediate ACK, when
2941 * gap in queue is filled.
2942 */
2943 if (!skb_queue_len(&tp->out_of_order_queue))
2944 tp->ack.pingpong = 0;
2945 }
2946
2947 if (tp->rx_opt.num_sacks)
2948 tcp_sack_remove(tp);
2949
2950 tcp_fast_path_check(sk, tp);
2951
2952 if (eaten > 0)
2953 __kfree_skb(skb);
2954 else if (!sock_flag(sk, SOCK_DEAD))
2955 sk->sk_data_ready(sk, 0);
2956 return;
2957 }
2958
2959 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2960 /* A retransmit, 2nd most common case. Force an immediate ack. */
2961 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2962 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
2963
2964 out_of_window:
2965 tcp_enter_quickack_mode(tp);
2966 tcp_schedule_ack(tp);
2967 drop:
2968 __kfree_skb(skb);
2969 return;
2970 }
2971
2972 /* Out of window. F.e. zero window probe. */
2973 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
2974 goto out_of_window;
2975
2976 tcp_enter_quickack_mode(tp);
2977
2978 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2979 /* Partial packet, seq < rcv_next < end_seq */
2980 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
2981 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2982 TCP_SKB_CB(skb)->end_seq);
2983
2984 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
2985
2986 /* If window is closed, drop tail of packet. But after
2987 * remembering D-SACK for its head made in previous line.
2988 */
2989 if (!tcp_receive_window(tp))
2990 goto out_of_window;
2991 goto queue_and_out;
2992 }
2993
2994 TCP_ECN_check_ce(tp, skb);
2995
2996 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
2997 !sk_stream_rmem_schedule(sk, skb)) {
2998 if (tcp_prune_queue(sk) < 0 ||
2999 !sk_stream_rmem_schedule(sk, skb))
3000 goto drop;
3001 }
3002
3003 /* Disable header prediction. */
3004 tp->pred_flags = 0;
3005 tcp_schedule_ack(tp);
3006
3007 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3008 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3009
3010 sk_stream_set_owner_r(skb, sk);
3011
3012 if (!skb_peek(&tp->out_of_order_queue)) {
3013 /* Initial out of order segment, build 1 SACK. */
3014 if (tp->rx_opt.sack_ok) {
3015 tp->rx_opt.num_sacks = 1;
3016 tp->rx_opt.dsack = 0;
3017 tp->rx_opt.eff_sacks = 1;
3018 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3019 tp->selective_acks[0].end_seq =
3020 TCP_SKB_CB(skb)->end_seq;
3021 }
3022 __skb_queue_head(&tp->out_of_order_queue,skb);
3023 } else {
3024 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3025 u32 seq = TCP_SKB_CB(skb)->seq;
3026 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3027
3028 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3029 __skb_append(skb1, skb);
3030
3031 if (!tp->rx_opt.num_sacks ||
3032 tp->selective_acks[0].end_seq != seq)
3033 goto add_sack;
3034
3035 /* Common case: data arrive in order after hole. */
3036 tp->selective_acks[0].end_seq = end_seq;
3037 return;
3038 }
3039
3040 /* Find place to insert this segment. */
3041 do {
3042 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3043 break;
3044 } while ((skb1 = skb1->prev) !=
3045 (struct sk_buff*)&tp->out_of_order_queue);
3046
3047 /* Do skb overlap to previous one? */
3048 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3049 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3050 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3051 /* All the bits are present. Drop. */
3052 __kfree_skb(skb);
3053 tcp_dsack_set(tp, seq, end_seq);
3054 goto add_sack;
3055 }
3056 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3057 /* Partial overlap. */
3058 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3059 } else {
3060 skb1 = skb1->prev;
3061 }
3062 }
3063 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3064
3065 /* And clean segments covered by new one as whole. */
3066 while ((skb1 = skb->next) !=
3067 (struct sk_buff*)&tp->out_of_order_queue &&
3068 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3069 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3070 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3071 break;
3072 }
3073 __skb_unlink(skb1, skb1->list);
3074 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3075 __kfree_skb(skb1);
3076 }
3077
3078 add_sack:
3079 if (tp->rx_opt.sack_ok)
3080 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3081 }
3082 }
3083
3084 /* Collapse contiguous sequence of skbs head..tail with
3085 * sequence numbers start..end.
3086 * Segments with FIN/SYN are not collapsed (only because this
3087 * simplifies code)
3088 */
3089 static void
3090 tcp_collapse(struct sock *sk, struct sk_buff *head,
3091 struct sk_buff *tail, u32 start, u32 end)
3092 {
3093 struct sk_buff *skb;
3094
3095 /* First, check that queue is collapsable and find
3096 * the point where collapsing can be useful. */
3097 for (skb = head; skb != tail; ) {
3098 /* No new bits? It is possible on ofo queue. */
3099 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3100 struct sk_buff *next = skb->next;
3101 __skb_unlink(skb, skb->list);
3102 __kfree_skb(skb);
3103 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3104 skb = next;
3105 continue;
3106 }
3107
3108 /* The first skb to collapse is:
3109 * - not SYN/FIN and
3110 * - bloated or contains data before "start" or
3111 * overlaps to the next one.
3112 */
3113 if (!skb->h.th->syn && !skb->h.th->fin &&
3114 (tcp_win_from_space(skb->truesize) > skb->len ||
3115 before(TCP_SKB_CB(skb)->seq, start) ||
3116 (skb->next != tail &&
3117 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3118 break;
3119
3120 /* Decided to skip this, advance start seq. */
3121 start = TCP_SKB_CB(skb)->end_seq;
3122 skb = skb->next;
3123 }
3124 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3125 return;
3126
3127 while (before(start, end)) {
3128 struct sk_buff *nskb;
3129 int header = skb_headroom(skb);
3130 int copy = SKB_MAX_ORDER(header, 0);
3131
3132 /* Too big header? This can happen with IPv6. */
3133 if (copy < 0)
3134 return;
3135 if (end-start < copy)
3136 copy = end-start;
3137 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3138 if (!nskb)
3139 return;
3140 skb_reserve(nskb, header);
3141 memcpy(nskb->head, skb->head, header);
3142 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3143 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3144 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3145 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3146 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3147 __skb_insert(nskb, skb->prev, skb, skb->list);
3148 sk_stream_set_owner_r(nskb, sk);
3149
3150 /* Copy data, releasing collapsed skbs. */
3151 while (copy > 0) {
3152 int offset = start - TCP_SKB_CB(skb)->seq;
3153 int size = TCP_SKB_CB(skb)->end_seq - start;
3154
3155 if (offset < 0) BUG();
3156 if (size > 0) {
3157 size = min(copy, size);
3158 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3159 BUG();
3160 TCP_SKB_CB(nskb)->end_seq += size;
3161 copy -= size;
3162 start += size;
3163 }
3164 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3165 struct sk_buff *next = skb->next;
3166 __skb_unlink(skb, skb->list);
3167 __kfree_skb(skb);
3168 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3169 skb = next;
3170 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3171 return;
3172 }
3173 }
3174 }
3175 }
3176
3177 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3178 * and tcp_collapse() them until all the queue is collapsed.
3179 */
3180 static void tcp_collapse_ofo_queue(struct sock *sk)
3181 {
3182 struct tcp_sock *tp = tcp_sk(sk);
3183 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3184 struct sk_buff *head;
3185 u32 start, end;
3186
3187 if (skb == NULL)
3188 return;
3189
3190 start = TCP_SKB_CB(skb)->seq;
3191 end = TCP_SKB_CB(skb)->end_seq;
3192 head = skb;
3193
3194 for (;;) {
3195 skb = skb->next;
3196
3197 /* Segment is terminated when we see gap or when
3198 * we are at the end of all the queue. */
3199 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3200 after(TCP_SKB_CB(skb)->seq, end) ||
3201 before(TCP_SKB_CB(skb)->end_seq, start)) {
3202 tcp_collapse(sk, head, skb, start, end);
3203 head = skb;
3204 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3205 break;
3206 /* Start new segment */
3207 start = TCP_SKB_CB(skb)->seq;
3208 end = TCP_SKB_CB(skb)->end_seq;
3209 } else {
3210 if (before(TCP_SKB_CB(skb)->seq, start))
3211 start = TCP_SKB_CB(skb)->seq;
3212 if (after(TCP_SKB_CB(skb)->end_seq, end))
3213 end = TCP_SKB_CB(skb)->end_seq;
3214 }
3215 }
3216 }
3217
3218 /* Reduce allocated memory if we can, trying to get
3219 * the socket within its memory limits again.
3220 *
3221 * Return less than zero if we should start dropping frames
3222 * until the socket owning process reads some of the data
3223 * to stabilize the situation.
3224 */
3225 static int tcp_prune_queue(struct sock *sk)
3226 {
3227 struct tcp_sock *tp = tcp_sk(sk);
3228
3229 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3230
3231 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3232
3233 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3234 tcp_clamp_window(sk, tp);
3235 else if (tcp_memory_pressure)
3236 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3237
3238 tcp_collapse_ofo_queue(sk);
3239 tcp_collapse(sk, sk->sk_receive_queue.next,
3240 (struct sk_buff*)&sk->sk_receive_queue,
3241 tp->copied_seq, tp->rcv_nxt);
3242 sk_stream_mem_reclaim(sk);
3243
3244 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3245 return 0;
3246
3247 /* Collapsing did not help, destructive actions follow.
3248 * This must not ever occur. */
3249
3250 /* First, purge the out_of_order queue. */
3251 if (skb_queue_len(&tp->out_of_order_queue)) {
3252 NET_ADD_STATS_BH(LINUX_MIB_OFOPRUNED,
3253 skb_queue_len(&tp->out_of_order_queue));
3254 __skb_queue_purge(&tp->out_of_order_queue);
3255
3256 /* Reset SACK state. A conforming SACK implementation will
3257 * do the same at a timeout based retransmit. When a connection
3258 * is in a sad state like this, we care only about integrity
3259 * of the connection not performance.
3260 */
3261 if (tp->rx_opt.sack_ok)
3262 tcp_sack_reset(&tp->rx_opt);
3263 sk_stream_mem_reclaim(sk);
3264 }
3265
3266 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3267 return 0;
3268
3269 /* If we are really being abused, tell the caller to silently
3270 * drop receive data on the floor. It will get retransmitted
3271 * and hopefully then we'll have sufficient space.
3272 */
3273 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3274
3275 /* Massive buffer overcommit. */
3276 tp->pred_flags = 0;
3277 return -1;
3278 }
3279
3280
3281 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3282 * As additional protections, we do not touch cwnd in retransmission phases,
3283 * and if application hit its sndbuf limit recently.
3284 */
3285 void tcp_cwnd_application_limited(struct sock *sk)
3286 {
3287 struct tcp_sock *tp = tcp_sk(sk);
3288
3289 if (tp->ca_state == TCP_CA_Open &&
3290 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3291 /* Limited by application or receiver window. */
3292 u32 win_used = max(tp->snd_cwnd_used, 2U);
3293 if (win_used < tp->snd_cwnd) {
3294 tp->snd_ssthresh = tcp_current_ssthresh(tp);
3295 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3296 }
3297 tp->snd_cwnd_used = 0;
3298 }
3299 tp->snd_cwnd_stamp = tcp_time_stamp;
3300 }
3301
3302
3303 /* When incoming ACK allowed to free some skb from write_queue,
3304 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3305 * on the exit from tcp input handler.
3306 *
3307 * PROBLEM: sndbuf expansion does not work well with largesend.
3308 */
3309 static void tcp_new_space(struct sock *sk)
3310 {
3311 struct tcp_sock *tp = tcp_sk(sk);
3312
3313 if (tp->packets_out < tp->snd_cwnd &&
3314 !(sk->sk_userlocks & SOCK_SNDBUF_LOCK) &&
3315 !tcp_memory_pressure &&
3316 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
3317 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache_std) +
3318 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3319 demanded = max_t(unsigned int, tp->snd_cwnd,
3320 tp->reordering + 1);
3321 sndmem *= 2*demanded;
3322 if (sndmem > sk->sk_sndbuf)
3323 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3324 tp->snd_cwnd_stamp = tcp_time_stamp;
3325 }
3326
3327 sk->sk_write_space(sk);
3328 }
3329
3330 static inline void tcp_check_space(struct sock *sk)
3331 {
3332 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3333 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3334 if (sk->sk_socket &&
3335 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3336 tcp_new_space(sk);
3337 }
3338 }
3339
3340 static __inline__ void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3341 {
3342 tcp_push_pending_frames(sk, tp);
3343 tcp_check_space(sk);
3344 }
3345
3346 /*
3347 * Check if sending an ack is needed.
3348 */
3349 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3350 {
3351 struct tcp_sock *tp = tcp_sk(sk);
3352
3353 /* More than one full frame received... */
3354 if (((tp->rcv_nxt - tp->rcv_wup) > tp->ack.rcv_mss
3355 /* ... and right edge of window advances far enough.
3356 * (tcp_recvmsg() will send ACK otherwise). Or...
3357 */
3358 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3359 /* We ACK each frame or... */
3360 tcp_in_quickack_mode(tp) ||
3361 /* We have out of order data. */
3362 (ofo_possible &&
3363 skb_peek(&tp->out_of_order_queue))) {
3364 /* Then ack it now */
3365 tcp_send_ack(sk);
3366 } else {
3367 /* Else, send delayed ack. */
3368 tcp_send_delayed_ack(sk);
3369 }
3370 }
3371
3372 static __inline__ void tcp_ack_snd_check(struct sock *sk)
3373 {
3374 struct tcp_sock *tp = tcp_sk(sk);
3375 if (!tcp_ack_scheduled(tp)) {
3376 /* We sent a data segment already. */
3377 return;
3378 }
3379 __tcp_ack_snd_check(sk, 1);
3380 }
3381
3382 /*
3383 * This routine is only called when we have urgent data
3384 * signalled. Its the 'slow' part of tcp_urg. It could be
3385 * moved inline now as tcp_urg is only called from one
3386 * place. We handle URGent data wrong. We have to - as
3387 * BSD still doesn't use the correction from RFC961.
3388 * For 1003.1g we should support a new option TCP_STDURG to permit
3389 * either form (or just set the sysctl tcp_stdurg).
3390 */
3391
3392 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3393 {
3394 struct tcp_sock *tp = tcp_sk(sk);
3395 u32 ptr = ntohs(th->urg_ptr);
3396
3397 if (ptr && !sysctl_tcp_stdurg)
3398 ptr--;
3399 ptr += ntohl(th->seq);
3400
3401 /* Ignore urgent data that we've already seen and read. */
3402 if (after(tp->copied_seq, ptr))
3403 return;
3404
3405 /* Do not replay urg ptr.
3406 *
3407 * NOTE: interesting situation not covered by specs.
3408 * Misbehaving sender may send urg ptr, pointing to segment,
3409 * which we already have in ofo queue. We are not able to fetch
3410 * such data and will stay in TCP_URG_NOTYET until will be eaten
3411 * by recvmsg(). Seems, we are not obliged to handle such wicked
3412 * situations. But it is worth to think about possibility of some
3413 * DoSes using some hypothetical application level deadlock.
3414 */
3415 if (before(ptr, tp->rcv_nxt))
3416 return;
3417
3418 /* Do we already have a newer (or duplicate) urgent pointer? */
3419 if (tp->urg_data && !after(ptr, tp->urg_seq))
3420 return;
3421
3422 /* Tell the world about our new urgent pointer. */
3423 sk_send_sigurg(sk);
3424
3425 /* We may be adding urgent data when the last byte read was
3426 * urgent. To do this requires some care. We cannot just ignore
3427 * tp->copied_seq since we would read the last urgent byte again
3428 * as data, nor can we alter copied_seq until this data arrives
3429 * or we break the sematics of SIOCATMARK (and thus sockatmark())
3430 *
3431 * NOTE. Double Dutch. Rendering to plain English: author of comment
3432 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3433 * and expect that both A and B disappear from stream. This is _wrong_.
3434 * Though this happens in BSD with high probability, this is occasional.
3435 * Any application relying on this is buggy. Note also, that fix "works"
3436 * only in this artificial test. Insert some normal data between A and B and we will
3437 * decline of BSD again. Verdict: it is better to remove to trap
3438 * buggy users.
3439 */
3440 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3441 !sock_flag(sk, SOCK_URGINLINE) &&
3442 tp->copied_seq != tp->rcv_nxt) {
3443 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3444 tp->copied_seq++;
3445 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3446 __skb_unlink(skb, skb->list);
3447 __kfree_skb(skb);
3448 }
3449 }
3450
3451 tp->urg_data = TCP_URG_NOTYET;
3452 tp->urg_seq = ptr;
3453
3454 /* Disable header prediction. */
3455 tp->pred_flags = 0;
3456 }
3457
3458 /* This is the 'fast' part of urgent handling. */
3459 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3460 {
3461 struct tcp_sock *tp = tcp_sk(sk);
3462
3463 /* Check if we get a new urgent pointer - normally not. */
3464 if (th->urg)
3465 tcp_check_urg(sk,th);
3466
3467 /* Do we wait for any urgent data? - normally not... */
3468 if (tp->urg_data == TCP_URG_NOTYET) {
3469 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3470 th->syn;
3471
3472 /* Is the urgent pointer pointing into this packet? */
3473 if (ptr < skb->len) {
3474 u8 tmp;
3475 if (skb_copy_bits(skb, ptr, &tmp, 1))
3476 BUG();
3477 tp->urg_data = TCP_URG_VALID | tmp;
3478 if (!sock_flag(sk, SOCK_DEAD))
3479 sk->sk_data_ready(sk, 0);
3480 }
3481 }
3482 }
3483
3484 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3485 {
3486 struct tcp_sock *tp = tcp_sk(sk);
3487 int chunk = skb->len - hlen;
3488 int err;
3489
3490 local_bh_enable();
3491 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3492 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3493 else
3494 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3495 tp->ucopy.iov);
3496
3497 if (!err) {
3498 tp->ucopy.len -= chunk;
3499 tp->copied_seq += chunk;
3500 tcp_rcv_space_adjust(sk);
3501 }
3502
3503 local_bh_disable();
3504 return err;
3505 }
3506
3507 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3508 {
3509 int result;
3510
3511 if (sock_owned_by_user(sk)) {
3512 local_bh_enable();
3513 result = __tcp_checksum_complete(skb);
3514 local_bh_disable();
3515 } else {
3516 result = __tcp_checksum_complete(skb);
3517 }
3518 return result;
3519 }
3520
3521 static __inline__ int
3522 tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3523 {
3524 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3525 __tcp_checksum_complete_user(sk, skb);
3526 }
3527
3528 /*
3529 * TCP receive function for the ESTABLISHED state.
3530 *
3531 * It is split into a fast path and a slow path. The fast path is
3532 * disabled when:
3533 * - A zero window was announced from us - zero window probing
3534 * is only handled properly in the slow path.
3535 * - Out of order segments arrived.
3536 * - Urgent data is expected.
3537 * - There is no buffer space left
3538 * - Unexpected TCP flags/window values/header lengths are received
3539 * (detected by checking the TCP header against pred_flags)
3540 * - Data is sent in both directions. Fast path only supports pure senders
3541 * or pure receivers (this means either the sequence number or the ack
3542 * value must stay constant)
3543 * - Unexpected TCP option.
3544 *
3545 * When these conditions are not satisfied it drops into a standard
3546 * receive procedure patterned after RFC793 to handle all cases.
3547 * The first three cases are guaranteed by proper pred_flags setting,
3548 * the rest is checked inline. Fast processing is turned on in
3549 * tcp_data_queue when everything is OK.
3550 */
3551 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3552 struct tcphdr *th, unsigned len)
3553 {
3554 struct tcp_sock *tp = tcp_sk(sk);
3555
3556 /*
3557 * Header prediction.
3558 * The code loosely follows the one in the famous
3559 * "30 instruction TCP receive" Van Jacobson mail.
3560 *
3561 * Van's trick is to deposit buffers into socket queue
3562 * on a device interrupt, to call tcp_recv function
3563 * on the receive process context and checksum and copy
3564 * the buffer to user space. smart...
3565 *
3566 * Our current scheme is not silly either but we take the
3567 * extra cost of the net_bh soft interrupt processing...
3568 * We do checksum and copy also but from device to kernel.
3569 */
3570
3571 tp->rx_opt.saw_tstamp = 0;
3572
3573 /* pred_flags is 0xS?10 << 16 + snd_wnd
3574 * if header_predition is to be made
3575 * 'S' will always be tp->tcp_header_len >> 2
3576 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3577 * turn it off (when there are holes in the receive
3578 * space for instance)
3579 * PSH flag is ignored.
3580 */
3581
3582 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3583 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3584 int tcp_header_len = tp->tcp_header_len;
3585
3586 /* Timestamp header prediction: tcp_header_len
3587 * is automatically equal to th->doff*4 due to pred_flags
3588 * match.
3589 */
3590
3591 /* Check timestamp */
3592 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3593 __u32 *ptr = (__u32 *)(th + 1);
3594
3595 /* No? Slow path! */
3596 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3597 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3598 goto slow_path;
3599
3600 tp->rx_opt.saw_tstamp = 1;
3601 ++ptr;
3602 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3603 ++ptr;
3604 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3605
3606 /* If PAWS failed, check it more carefully in slow path */
3607 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3608 goto slow_path;
3609
3610 /* DO NOT update ts_recent here, if checksum fails
3611 * and timestamp was corrupted part, it will result
3612 * in a hung connection since we will drop all
3613 * future packets due to the PAWS test.
3614 */
3615 }
3616
3617 if (len <= tcp_header_len) {
3618 /* Bulk data transfer: sender */
3619 if (len == tcp_header_len) {
3620 /* Predicted packet is in window by definition.
3621 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3622 * Hence, check seq<=rcv_wup reduces to:
3623 */
3624 if (tcp_header_len ==
3625 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3626 tp->rcv_nxt == tp->rcv_wup)
3627 tcp_store_ts_recent(tp);
3628
3629 tcp_rcv_rtt_measure_ts(tp, skb);
3630
3631 /* We know that such packets are checksummed
3632 * on entry.
3633 */
3634 tcp_ack(sk, skb, 0);
3635 __kfree_skb(skb);
3636 tcp_data_snd_check(sk, tp);
3637 return 0;
3638 } else { /* Header too small */
3639 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3640 goto discard;
3641 }
3642 } else {
3643 int eaten = 0;
3644
3645 if (tp->ucopy.task == current &&
3646 tp->copied_seq == tp->rcv_nxt &&
3647 len - tcp_header_len <= tp->ucopy.len &&
3648 sock_owned_by_user(sk)) {
3649 __set_current_state(TASK_RUNNING);
3650
3651 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3652 /* Predicted packet is in window by definition.
3653 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3654 * Hence, check seq<=rcv_wup reduces to:
3655 */
3656 if (tcp_header_len ==
3657 (sizeof(struct tcphdr) +
3658 TCPOLEN_TSTAMP_ALIGNED) &&
3659 tp->rcv_nxt == tp->rcv_wup)
3660 tcp_store_ts_recent(tp);
3661
3662 tcp_rcv_rtt_measure_ts(tp, skb);
3663
3664 __skb_pull(skb, tcp_header_len);
3665 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3666 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3667 eaten = 1;
3668 }
3669 }
3670 if (!eaten) {
3671 if (tcp_checksum_complete_user(sk, skb))
3672 goto csum_error;
3673
3674 /* Predicted packet is in window by definition.
3675 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3676 * Hence, check seq<=rcv_wup reduces to:
3677 */
3678 if (tcp_header_len ==
3679 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3680 tp->rcv_nxt == tp->rcv_wup)
3681 tcp_store_ts_recent(tp);
3682
3683 tcp_rcv_rtt_measure_ts(tp, skb);
3684
3685 if ((int)skb->truesize > sk->sk_forward_alloc)
3686 goto step5;
3687
3688 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3689
3690 /* Bulk data transfer: receiver */
3691 __skb_pull(skb,tcp_header_len);
3692 __skb_queue_tail(&sk->sk_receive_queue, skb);
3693 sk_stream_set_owner_r(skb, sk);
3694 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3695 }
3696
3697 tcp_event_data_recv(sk, tp, skb);
3698
3699 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3700 /* Well, only one small jumplet in fast path... */
3701 tcp_ack(sk, skb, FLAG_DATA);
3702 tcp_data_snd_check(sk, tp);
3703 if (!tcp_ack_scheduled(tp))
3704 goto no_ack;
3705 }
3706
3707 __tcp_ack_snd_check(sk, 0);
3708 no_ack:
3709 if (eaten)
3710 __kfree_skb(skb);
3711 else
3712 sk->sk_data_ready(sk, 0);
3713 return 0;
3714 }
3715 }
3716
3717 slow_path:
3718 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3719 goto csum_error;
3720
3721 /*
3722 * RFC1323: H1. Apply PAWS check first.
3723 */
3724 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
3725 tcp_paws_discard(tp, skb)) {
3726 if (!th->rst) {
3727 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3728 tcp_send_dupack(sk, skb);
3729 goto discard;
3730 }
3731 /* Resets are accepted even if PAWS failed.
3732
3733 ts_recent update must be made after we are sure
3734 that the packet is in window.
3735 */
3736 }
3737
3738 /*
3739 * Standard slow path.
3740 */
3741
3742 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
3743 /* RFC793, page 37: "In all states except SYN-SENT, all reset
3744 * (RST) segments are validated by checking their SEQ-fields."
3745 * And page 69: "If an incoming segment is not acceptable,
3746 * an acknowledgment should be sent in reply (unless the RST bit
3747 * is set, if so drop the segment and return)".
3748 */
3749 if (!th->rst)
3750 tcp_send_dupack(sk, skb);
3751 goto discard;
3752 }
3753
3754 if(th->rst) {
3755 tcp_reset(sk);
3756 goto discard;
3757 }
3758
3759 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3760
3761 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3762 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3763 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
3764 tcp_reset(sk);
3765 return 1;
3766 }
3767
3768 step5:
3769 if(th->ack)
3770 tcp_ack(sk, skb, FLAG_SLOWPATH);
3771
3772 tcp_rcv_rtt_measure_ts(tp, skb);
3773
3774 /* Process urgent data. */
3775 tcp_urg(sk, skb, th);
3776
3777 /* step 7: process the segment text */
3778 tcp_data_queue(sk, skb);
3779
3780 tcp_data_snd_check(sk, tp);
3781 tcp_ack_snd_check(sk);
3782 return 0;
3783
3784 csum_error:
3785 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3786
3787 discard:
3788 __kfree_skb(skb);
3789 return 0;
3790 }
3791
3792 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
3793 struct tcphdr *th, unsigned len)
3794 {
3795 struct tcp_sock *tp = tcp_sk(sk);
3796 int saved_clamp = tp->rx_opt.mss_clamp;
3797
3798 tcp_parse_options(skb, &tp->rx_opt, 0);
3799
3800 if (th->ack) {
3801 /* rfc793:
3802 * "If the state is SYN-SENT then
3803 * first check the ACK bit
3804 * If the ACK bit is set
3805 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
3806 * a reset (unless the RST bit is set, if so drop
3807 * the segment and return)"
3808 *
3809 * We do not send data with SYN, so that RFC-correct
3810 * test reduces to:
3811 */
3812 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
3813 goto reset_and_undo;
3814
3815 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3816 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
3817 tcp_time_stamp)) {
3818 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
3819 goto reset_and_undo;
3820 }
3821
3822 /* Now ACK is acceptable.
3823 *
3824 * "If the RST bit is set
3825 * If the ACK was acceptable then signal the user "error:
3826 * connection reset", drop the segment, enter CLOSED state,
3827 * delete TCB, and return."
3828 */
3829
3830 if (th->rst) {
3831 tcp_reset(sk);
3832 goto discard;
3833 }
3834
3835 /* rfc793:
3836 * "fifth, if neither of the SYN or RST bits is set then
3837 * drop the segment and return."
3838 *
3839 * See note below!
3840 * --ANK(990513)
3841 */
3842 if (!th->syn)
3843 goto discard_and_undo;
3844
3845 /* rfc793:
3846 * "If the SYN bit is on ...
3847 * are acceptable then ...
3848 * (our SYN has been ACKed), change the connection
3849 * state to ESTABLISHED..."
3850 */
3851
3852 TCP_ECN_rcv_synack(tp, th);
3853 if (tp->ecn_flags&TCP_ECN_OK)
3854 sock_set_flag(sk, SOCK_NO_LARGESEND);
3855
3856 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
3857 tcp_ack(sk, skb, FLAG_SLOWPATH);
3858
3859 /* Ok.. it's good. Set up sequence numbers and
3860 * move to established.
3861 */
3862 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
3863 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
3864
3865 /* RFC1323: The window in SYN & SYN/ACK segments is
3866 * never scaled.
3867 */
3868 tp->snd_wnd = ntohs(th->window);
3869 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
3870
3871 if (!tp->rx_opt.wscale_ok) {
3872 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
3873 tp->window_clamp = min(tp->window_clamp, 65535U);
3874 }
3875
3876 if (tp->rx_opt.saw_tstamp) {
3877 tp->rx_opt.tstamp_ok = 1;
3878 tp->tcp_header_len =
3879 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
3880 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
3881 tcp_store_ts_recent(tp);
3882 } else {
3883 tp->tcp_header_len = sizeof(struct tcphdr);
3884 }
3885
3886 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
3887 tp->rx_opt.sack_ok |= 2;
3888
3889 tcp_sync_mss(sk, tp->pmtu_cookie);
3890 tcp_initialize_rcv_mss(sk);
3891
3892 /* Remember, tcp_poll() does not lock socket!
3893 * Change state from SYN-SENT only after copied_seq
3894 * is initialized. */
3895 tp->copied_seq = tp->rcv_nxt;
3896 mb();
3897 tcp_set_state(sk, TCP_ESTABLISHED);
3898
3899 /* Make sure socket is routed, for correct metrics. */
3900 tp->af_specific->rebuild_header(sk);
3901
3902 tcp_init_metrics(sk);
3903
3904 tcp_init_congestion_control(tp);
3905
3906 /* Prevent spurious tcp_cwnd_restart() on first data
3907 * packet.
3908 */
3909 tp->lsndtime = tcp_time_stamp;
3910
3911 tcp_init_buffer_space(sk);
3912
3913 if (sock_flag(sk, SOCK_KEEPOPEN))
3914 tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
3915
3916 if (!tp->rx_opt.snd_wscale)
3917 __tcp_fast_path_on(tp, tp->snd_wnd);
3918 else
3919 tp->pred_flags = 0;
3920
3921 if (!sock_flag(sk, SOCK_DEAD)) {
3922 sk->sk_state_change(sk);
3923 sk_wake_async(sk, 0, POLL_OUT);
3924 }
3925
3926 if (sk->sk_write_pending || tp->defer_accept || tp->ack.pingpong) {
3927 /* Save one ACK. Data will be ready after
3928 * several ticks, if write_pending is set.
3929 *
3930 * It may be deleted, but with this feature tcpdumps
3931 * look so _wonderfully_ clever, that I was not able
3932 * to stand against the temptation 8) --ANK
3933 */
3934 tcp_schedule_ack(tp);
3935 tp->ack.lrcvtime = tcp_time_stamp;
3936 tp->ack.ato = TCP_ATO_MIN;
3937 tcp_incr_quickack(tp);
3938 tcp_enter_quickack_mode(tp);
3939 tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
3940
3941 discard:
3942 __kfree_skb(skb);
3943 return 0;
3944 } else {
3945 tcp_send_ack(sk);
3946 }
3947 return -1;
3948 }
3949
3950 /* No ACK in the segment */
3951
3952 if (th->rst) {
3953 /* rfc793:
3954 * "If the RST bit is set
3955 *
3956 * Otherwise (no ACK) drop the segment and return."
3957 */
3958
3959 goto discard_and_undo;
3960 }
3961
3962 /* PAWS check. */
3963 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
3964 goto discard_and_undo;
3965
3966 if (th->syn) {
3967 /* We see SYN without ACK. It is attempt of
3968 * simultaneous connect with crossed SYNs.
3969 * Particularly, it can be connect to self.
3970 */
3971 tcp_set_state(sk, TCP_SYN_RECV);
3972
3973 if (tp->rx_opt.saw_tstamp) {
3974 tp->rx_opt.tstamp_ok = 1;
3975 tcp_store_ts_recent(tp);
3976 tp->tcp_header_len =
3977 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
3978 } else {
3979 tp->tcp_header_len = sizeof(struct tcphdr);
3980 }
3981
3982 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
3983 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
3984
3985 /* RFC1323: The window in SYN & SYN/ACK segments is
3986 * never scaled.
3987 */
3988 tp->snd_wnd = ntohs(th->window);
3989 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
3990 tp->max_window = tp->snd_wnd;
3991
3992 TCP_ECN_rcv_syn(tp, th);
3993 if (tp->ecn_flags&TCP_ECN_OK)
3994 sock_set_flag(sk, SOCK_NO_LARGESEND);
3995
3996 tcp_sync_mss(sk, tp->pmtu_cookie);
3997 tcp_initialize_rcv_mss(sk);
3998
3999
4000 tcp_send_synack(sk);
4001 #if 0
4002 /* Note, we could accept data and URG from this segment.
4003 * There are no obstacles to make this.
4004 *
4005 * However, if we ignore data in ACKless segments sometimes,
4006 * we have no reasons to accept it sometimes.
4007 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4008 * is not flawless. So, discard packet for sanity.
4009 * Uncomment this return to process the data.
4010 */
4011 return -1;
4012 #else
4013 goto discard;
4014 #endif
4015 }
4016 /* "fifth, if neither of the SYN or RST bits is set then
4017 * drop the segment and return."
4018 */
4019
4020 discard_and_undo:
4021 tcp_clear_options(&tp->rx_opt);
4022 tp->rx_opt.mss_clamp = saved_clamp;
4023 goto discard;
4024
4025 reset_and_undo:
4026 tcp_clear_options(&tp->rx_opt);
4027 tp->rx_opt.mss_clamp = saved_clamp;
4028 return 1;
4029 }
4030
4031
4032 /*
4033 * This function implements the receiving procedure of RFC 793 for
4034 * all states except ESTABLISHED and TIME_WAIT.
4035 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4036 * address independent.
4037 */
4038
4039 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4040 struct tcphdr *th, unsigned len)
4041 {
4042 struct tcp_sock *tp = tcp_sk(sk);
4043 int queued = 0;
4044
4045 tp->rx_opt.saw_tstamp = 0;
4046
4047 switch (sk->sk_state) {
4048 case TCP_CLOSE:
4049 goto discard;
4050
4051 case TCP_LISTEN:
4052 if(th->ack)
4053 return 1;
4054
4055 if(th->rst)
4056 goto discard;
4057
4058 if(th->syn) {
4059 if(tp->af_specific->conn_request(sk, skb) < 0)
4060 return 1;
4061
4062 /* Now we have several options: In theory there is
4063 * nothing else in the frame. KA9Q has an option to
4064 * send data with the syn, BSD accepts data with the
4065 * syn up to the [to be] advertised window and
4066 * Solaris 2.1 gives you a protocol error. For now
4067 * we just ignore it, that fits the spec precisely
4068 * and avoids incompatibilities. It would be nice in
4069 * future to drop through and process the data.
4070 *
4071 * Now that TTCP is starting to be used we ought to
4072 * queue this data.
4073 * But, this leaves one open to an easy denial of
4074 * service attack, and SYN cookies can't defend
4075 * against this problem. So, we drop the data
4076 * in the interest of security over speed.
4077 */
4078 goto discard;
4079 }
4080 goto discard;
4081
4082 case TCP_SYN_SENT:
4083 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4084 if (queued >= 0)
4085 return queued;
4086
4087 /* Do step6 onward by hand. */
4088 tcp_urg(sk, skb, th);
4089 __kfree_skb(skb);
4090 tcp_data_snd_check(sk, tp);
4091 return 0;
4092 }
4093
4094 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4095 tcp_paws_discard(tp, skb)) {
4096 if (!th->rst) {
4097 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4098 tcp_send_dupack(sk, skb);
4099 goto discard;
4100 }
4101 /* Reset is accepted even if it did not pass PAWS. */
4102 }
4103
4104 /* step 1: check sequence number */
4105 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4106 if (!th->rst)
4107 tcp_send_dupack(sk, skb);
4108 goto discard;
4109 }
4110
4111 /* step 2: check RST bit */
4112 if(th->rst) {
4113 tcp_reset(sk);
4114 goto discard;
4115 }
4116
4117 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4118
4119 /* step 3: check security and precedence [ignored] */
4120
4121 /* step 4:
4122 *
4123 * Check for a SYN in window.
4124 */
4125 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4126 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4127 tcp_reset(sk);
4128 return 1;
4129 }
4130
4131 /* step 5: check the ACK field */
4132 if (th->ack) {
4133 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4134
4135 switch(sk->sk_state) {
4136 case TCP_SYN_RECV:
4137 if (acceptable) {
4138 tp->copied_seq = tp->rcv_nxt;
4139 mb();
4140 tcp_set_state(sk, TCP_ESTABLISHED);
4141 sk->sk_state_change(sk);
4142
4143 /* Note, that this wakeup is only for marginal
4144 * crossed SYN case. Passively open sockets
4145 * are not waked up, because sk->sk_sleep ==
4146 * NULL and sk->sk_socket == NULL.
4147 */
4148 if (sk->sk_socket) {
4149 sk_wake_async(sk,0,POLL_OUT);
4150 }
4151
4152 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4153 tp->snd_wnd = ntohs(th->window) <<
4154 tp->rx_opt.snd_wscale;
4155 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4156 TCP_SKB_CB(skb)->seq);
4157
4158 /* tcp_ack considers this ACK as duplicate
4159 * and does not calculate rtt.
4160 * Fix it at least with timestamps.
4161 */
4162 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4163 !tp->srtt)
4164 tcp_ack_saw_tstamp(tp, 0, 0);
4165
4166 if (tp->rx_opt.tstamp_ok)
4167 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4168
4169 /* Make sure socket is routed, for
4170 * correct metrics.
4171 */
4172 tp->af_specific->rebuild_header(sk);
4173
4174 tcp_init_metrics(sk);
4175
4176 tcp_init_congestion_control(tp);
4177
4178 /* Prevent spurious tcp_cwnd_restart() on
4179 * first data packet.
4180 */
4181 tp->lsndtime = tcp_time_stamp;
4182
4183 tcp_initialize_rcv_mss(sk);
4184 tcp_init_buffer_space(sk);
4185 tcp_fast_path_on(tp);
4186 } else {
4187 return 1;
4188 }
4189 break;
4190
4191 case TCP_FIN_WAIT1:
4192 if (tp->snd_una == tp->write_seq) {
4193 tcp_set_state(sk, TCP_FIN_WAIT2);
4194 sk->sk_shutdown |= SEND_SHUTDOWN;
4195 dst_confirm(sk->sk_dst_cache);
4196
4197 if (!sock_flag(sk, SOCK_DEAD))
4198 /* Wake up lingering close() */
4199 sk->sk_state_change(sk);
4200 else {
4201 int tmo;
4202
4203 if (tp->linger2 < 0 ||
4204 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4205 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4206 tcp_done(sk);
4207 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4208 return 1;
4209 }
4210
4211 tmo = tcp_fin_time(tp);
4212 if (tmo > TCP_TIMEWAIT_LEN) {
4213 tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4214 } else if (th->fin || sock_owned_by_user(sk)) {
4215 /* Bad case. We could lose such FIN otherwise.
4216 * It is not a big problem, but it looks confusing
4217 * and not so rare event. We still can lose it now,
4218 * if it spins in bh_lock_sock(), but it is really
4219 * marginal case.
4220 */
4221 tcp_reset_keepalive_timer(sk, tmo);
4222 } else {
4223 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4224 goto discard;
4225 }
4226 }
4227 }
4228 break;
4229
4230 case TCP_CLOSING:
4231 if (tp->snd_una == tp->write_seq) {
4232 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4233 goto discard;
4234 }
4235 break;
4236
4237 case TCP_LAST_ACK:
4238 if (tp->snd_una == tp->write_seq) {
4239 tcp_update_metrics(sk);
4240 tcp_done(sk);
4241 goto discard;
4242 }
4243 break;
4244 }
4245 } else
4246 goto discard;
4247
4248 /* step 6: check the URG bit */
4249 tcp_urg(sk, skb, th);
4250
4251 /* step 7: process the segment text */
4252 switch (sk->sk_state) {
4253 case TCP_CLOSE_WAIT:
4254 case TCP_CLOSING:
4255 case TCP_LAST_ACK:
4256 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4257 break;
4258 case TCP_FIN_WAIT1:
4259 case TCP_FIN_WAIT2:
4260 /* RFC 793 says to queue data in these states,
4261 * RFC 1122 says we MUST send a reset.
4262 * BSD 4.4 also does reset.
4263 */
4264 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4265 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4266 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4267 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4268 tcp_reset(sk);
4269 return 1;
4270 }
4271 }
4272 /* Fall through */
4273 case TCP_ESTABLISHED:
4274 tcp_data_queue(sk, skb);
4275 queued = 1;
4276 break;
4277 }
4278
4279 /* tcp_data could move socket to TIME-WAIT */
4280 if (sk->sk_state != TCP_CLOSE) {
4281 tcp_data_snd_check(sk, tp);
4282 tcp_ack_snd_check(sk);
4283 }
4284
4285 if (!queued) {
4286 discard:
4287 __kfree_skb(skb);
4288 }
4289 return 0;
4290 }
4291
4292 EXPORT_SYMBOL(sysctl_tcp_ecn);
4293 EXPORT_SYMBOL(sysctl_tcp_reordering);
4294 EXPORT_SYMBOL(tcp_parse_options);
4295 EXPORT_SYMBOL(tcp_rcv_established);
4296 EXPORT_SYMBOL(tcp_rcv_state_process);
This page took 0.124208 seconds and 6 git commands to generate.