Pull hp-pci-root into test branch
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114
115 /* Adapt the MSS value used to make delayed ack decision to the
116 * real world.
117 */
118 static void tcp_measure_rcv_mss(struct sock *sk,
119 const struct sk_buff *skb)
120 {
121 struct inet_connection_sock *icsk = inet_csk(sk);
122 const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 unsigned int len;
124
125 icsk->icsk_ack.last_seg_size = 0;
126
127 /* skb->len may jitter because of SACKs, even if peer
128 * sends good full-sized frames.
129 */
130 len = skb_shinfo(skb)->gso_size ?: skb->len;
131 if (len >= icsk->icsk_ack.rcv_mss) {
132 icsk->icsk_ack.rcv_mss = len;
133 } else {
134 /* Otherwise, we make more careful check taking into account,
135 * that SACKs block is variable.
136 *
137 * "len" is invariant segment length, including TCP header.
138 */
139 len += skb->data - skb->h.raw;
140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 /* If PSH is not set, packet should be
142 * full sized, provided peer TCP is not badly broken.
143 * This observation (if it is correct 8)) allows
144 * to handle super-low mtu links fairly.
145 */
146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 /* Subtract also invariant (if peer is RFC compliant),
149 * tcp header plus fixed timestamp option length.
150 * Resulting "len" is MSS free of SACK jitter.
151 */
152 len -= tcp_sk(sk)->tcp_header_len;
153 icsk->icsk_ack.last_seg_size = len;
154 if (len == lss) {
155 icsk->icsk_ack.rcv_mss = len;
156 return;
157 }
158 }
159 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
160 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
161 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
162 }
163 }
164
165 static void tcp_incr_quickack(struct sock *sk)
166 {
167 struct inet_connection_sock *icsk = inet_csk(sk);
168 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
169
170 if (quickacks==0)
171 quickacks=2;
172 if (quickacks > icsk->icsk_ack.quick)
173 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
174 }
175
176 void tcp_enter_quickack_mode(struct sock *sk)
177 {
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 tcp_incr_quickack(sk);
180 icsk->icsk_ack.pingpong = 0;
181 icsk->icsk_ack.ato = TCP_ATO_MIN;
182 }
183
184 /* Send ACKs quickly, if "quick" count is not exhausted
185 * and the session is not interactive.
186 */
187
188 static inline int tcp_in_quickack_mode(const struct sock *sk)
189 {
190 const struct inet_connection_sock *icsk = inet_csk(sk);
191 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
192 }
193
194 /* Buffer size and advertised window tuning.
195 *
196 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197 */
198
199 static void tcp_fixup_sndbuf(struct sock *sk)
200 {
201 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
202 sizeof(struct sk_buff);
203
204 if (sk->sk_sndbuf < 3 * sndmem)
205 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206 }
207
208 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
209 *
210 * All tcp_full_space() is split to two parts: "network" buffer, allocated
211 * forward and advertised in receiver window (tp->rcv_wnd) and
212 * "application buffer", required to isolate scheduling/application
213 * latencies from network.
214 * window_clamp is maximal advertised window. It can be less than
215 * tcp_full_space(), in this case tcp_full_space() - window_clamp
216 * is reserved for "application" buffer. The less window_clamp is
217 * the smoother our behaviour from viewpoint of network, but the lower
218 * throughput and the higher sensitivity of the connection to losses. 8)
219 *
220 * rcv_ssthresh is more strict window_clamp used at "slow start"
221 * phase to predict further behaviour of this connection.
222 * It is used for two goals:
223 * - to enforce header prediction at sender, even when application
224 * requires some significant "application buffer". It is check #1.
225 * - to prevent pruning of receive queue because of misprediction
226 * of receiver window. Check #2.
227 *
228 * The scheme does not work when sender sends good segments opening
229 * window and then starts to feed us spaghetti. But it should work
230 * in common situations. Otherwise, we have to rely on queue collapsing.
231 */
232
233 /* Slow part of check#2. */
234 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
235 const struct sk_buff *skb)
236 {
237 /* Optimize this! */
238 int truesize = tcp_win_from_space(skb->truesize)/2;
239 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
240
241 while (tp->rcv_ssthresh <= window) {
242 if (truesize <= skb->len)
243 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
244
245 truesize >>= 1;
246 window >>= 1;
247 }
248 return 0;
249 }
250
251 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
252 struct sk_buff *skb)
253 {
254 /* Check #1 */
255 if (tp->rcv_ssthresh < tp->window_clamp &&
256 (int)tp->rcv_ssthresh < tcp_space(sk) &&
257 !tcp_memory_pressure) {
258 int incr;
259
260 /* Check #2. Increase window, if skb with such overhead
261 * will fit to rcvbuf in future.
262 */
263 if (tcp_win_from_space(skb->truesize) <= skb->len)
264 incr = 2*tp->advmss;
265 else
266 incr = __tcp_grow_window(sk, tp, skb);
267
268 if (incr) {
269 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
270 inet_csk(sk)->icsk_ack.quick |= 1;
271 }
272 }
273 }
274
275 /* 3. Tuning rcvbuf, when connection enters established state. */
276
277 static void tcp_fixup_rcvbuf(struct sock *sk)
278 {
279 struct tcp_sock *tp = tcp_sk(sk);
280 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
281
282 /* Try to select rcvbuf so that 4 mss-sized segments
283 * will fit to window and corresponding skbs will fit to our rcvbuf.
284 * (was 3; 4 is minimum to allow fast retransmit to work.)
285 */
286 while (tcp_win_from_space(rcvmem) < tp->advmss)
287 rcvmem += 128;
288 if (sk->sk_rcvbuf < 4 * rcvmem)
289 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290 }
291
292 /* 4. Try to fixup all. It is made immediately after connection enters
293 * established state.
294 */
295 static void tcp_init_buffer_space(struct sock *sk)
296 {
297 struct tcp_sock *tp = tcp_sk(sk);
298 int maxwin;
299
300 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
301 tcp_fixup_rcvbuf(sk);
302 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
303 tcp_fixup_sndbuf(sk);
304
305 tp->rcvq_space.space = tp->rcv_wnd;
306
307 maxwin = tcp_full_space(sk);
308
309 if (tp->window_clamp >= maxwin) {
310 tp->window_clamp = maxwin;
311
312 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
313 tp->window_clamp = max(maxwin -
314 (maxwin >> sysctl_tcp_app_win),
315 4 * tp->advmss);
316 }
317
318 /* Force reservation of one segment. */
319 if (sysctl_tcp_app_win &&
320 tp->window_clamp > 2 * tp->advmss &&
321 tp->window_clamp + tp->advmss > maxwin)
322 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
323
324 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
325 tp->snd_cwnd_stamp = tcp_time_stamp;
326 }
327
328 /* 5. Recalculate window clamp after socket hit its memory bounds. */
329 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
330 {
331 struct inet_connection_sock *icsk = inet_csk(sk);
332
333 icsk->icsk_ack.quick = 0;
334
335 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
336 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
337 !tcp_memory_pressure &&
338 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
339 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
340 sysctl_tcp_rmem[2]);
341 }
342 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
343 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
344 }
345
346
347 /* Initialize RCV_MSS value.
348 * RCV_MSS is an our guess about MSS used by the peer.
349 * We haven't any direct information about the MSS.
350 * It's better to underestimate the RCV_MSS rather than overestimate.
351 * Overestimations make us ACKing less frequently than needed.
352 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
353 */
354 void tcp_initialize_rcv_mss(struct sock *sk)
355 {
356 struct tcp_sock *tp = tcp_sk(sk);
357 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
358
359 hint = min(hint, tp->rcv_wnd/2);
360 hint = min(hint, TCP_MIN_RCVMSS);
361 hint = max(hint, TCP_MIN_MSS);
362
363 inet_csk(sk)->icsk_ack.rcv_mss = hint;
364 }
365
366 /* Receiver "autotuning" code.
367 *
368 * The algorithm for RTT estimation w/o timestamps is based on
369 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
370 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
371 *
372 * More detail on this code can be found at
373 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
374 * though this reference is out of date. A new paper
375 * is pending.
376 */
377 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
378 {
379 u32 new_sample = tp->rcv_rtt_est.rtt;
380 long m = sample;
381
382 if (m == 0)
383 m = 1;
384
385 if (new_sample != 0) {
386 /* If we sample in larger samples in the non-timestamp
387 * case, we could grossly overestimate the RTT especially
388 * with chatty applications or bulk transfer apps which
389 * are stalled on filesystem I/O.
390 *
391 * Also, since we are only going for a minimum in the
392 * non-timestamp case, we do not smooth things out
393 * else with timestamps disabled convergence takes too
394 * long.
395 */
396 if (!win_dep) {
397 m -= (new_sample >> 3);
398 new_sample += m;
399 } else if (m < new_sample)
400 new_sample = m << 3;
401 } else {
402 /* No previous measure. */
403 new_sample = m << 3;
404 }
405
406 if (tp->rcv_rtt_est.rtt != new_sample)
407 tp->rcv_rtt_est.rtt = new_sample;
408 }
409
410 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
411 {
412 if (tp->rcv_rtt_est.time == 0)
413 goto new_measure;
414 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
415 return;
416 tcp_rcv_rtt_update(tp,
417 jiffies - tp->rcv_rtt_est.time,
418 1);
419
420 new_measure:
421 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
422 tp->rcv_rtt_est.time = tcp_time_stamp;
423 }
424
425 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
426 {
427 struct tcp_sock *tp = tcp_sk(sk);
428 if (tp->rx_opt.rcv_tsecr &&
429 (TCP_SKB_CB(skb)->end_seq -
430 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
431 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
432 }
433
434 /*
435 * This function should be called every time data is copied to user space.
436 * It calculates the appropriate TCP receive buffer space.
437 */
438 void tcp_rcv_space_adjust(struct sock *sk)
439 {
440 struct tcp_sock *tp = tcp_sk(sk);
441 int time;
442 int space;
443
444 if (tp->rcvq_space.time == 0)
445 goto new_measure;
446
447 time = tcp_time_stamp - tp->rcvq_space.time;
448 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
449 tp->rcv_rtt_est.rtt == 0)
450 return;
451
452 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
453
454 space = max(tp->rcvq_space.space, space);
455
456 if (tp->rcvq_space.space != space) {
457 int rcvmem;
458
459 tp->rcvq_space.space = space;
460
461 if (sysctl_tcp_moderate_rcvbuf &&
462 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
463 int new_clamp = space;
464
465 /* Receive space grows, normalize in order to
466 * take into account packet headers and sk_buff
467 * structure overhead.
468 */
469 space /= tp->advmss;
470 if (!space)
471 space = 1;
472 rcvmem = (tp->advmss + MAX_TCP_HEADER +
473 16 + sizeof(struct sk_buff));
474 while (tcp_win_from_space(rcvmem) < tp->advmss)
475 rcvmem += 128;
476 space *= rcvmem;
477 space = min(space, sysctl_tcp_rmem[2]);
478 if (space > sk->sk_rcvbuf) {
479 sk->sk_rcvbuf = space;
480
481 /* Make the window clamp follow along. */
482 tp->window_clamp = new_clamp;
483 }
484 }
485 }
486
487 new_measure:
488 tp->rcvq_space.seq = tp->copied_seq;
489 tp->rcvq_space.time = tcp_time_stamp;
490 }
491
492 /* There is something which you must keep in mind when you analyze the
493 * behavior of the tp->ato delayed ack timeout interval. When a
494 * connection starts up, we want to ack as quickly as possible. The
495 * problem is that "good" TCP's do slow start at the beginning of data
496 * transmission. The means that until we send the first few ACK's the
497 * sender will sit on his end and only queue most of his data, because
498 * he can only send snd_cwnd unacked packets at any given time. For
499 * each ACK we send, he increments snd_cwnd and transmits more of his
500 * queue. -DaveM
501 */
502 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
503 {
504 struct inet_connection_sock *icsk = inet_csk(sk);
505 u32 now;
506
507 inet_csk_schedule_ack(sk);
508
509 tcp_measure_rcv_mss(sk, skb);
510
511 tcp_rcv_rtt_measure(tp);
512
513 now = tcp_time_stamp;
514
515 if (!icsk->icsk_ack.ato) {
516 /* The _first_ data packet received, initialize
517 * delayed ACK engine.
518 */
519 tcp_incr_quickack(sk);
520 icsk->icsk_ack.ato = TCP_ATO_MIN;
521 } else {
522 int m = now - icsk->icsk_ack.lrcvtime;
523
524 if (m <= TCP_ATO_MIN/2) {
525 /* The fastest case is the first. */
526 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
527 } else if (m < icsk->icsk_ack.ato) {
528 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
529 if (icsk->icsk_ack.ato > icsk->icsk_rto)
530 icsk->icsk_ack.ato = icsk->icsk_rto;
531 } else if (m > icsk->icsk_rto) {
532 /* Too long gap. Apparently sender failed to
533 * restart window, so that we send ACKs quickly.
534 */
535 tcp_incr_quickack(sk);
536 sk_stream_mem_reclaim(sk);
537 }
538 }
539 icsk->icsk_ack.lrcvtime = now;
540
541 TCP_ECN_check_ce(tp, skb);
542
543 if (skb->len >= 128)
544 tcp_grow_window(sk, tp, skb);
545 }
546
547 /* Called to compute a smoothed rtt estimate. The data fed to this
548 * routine either comes from timestamps, or from segments that were
549 * known _not_ to have been retransmitted [see Karn/Partridge
550 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
551 * piece by Van Jacobson.
552 * NOTE: the next three routines used to be one big routine.
553 * To save cycles in the RFC 1323 implementation it was better to break
554 * it up into three procedures. -- erics
555 */
556 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
557 {
558 struct tcp_sock *tp = tcp_sk(sk);
559 long m = mrtt; /* RTT */
560
561 /* The following amusing code comes from Jacobson's
562 * article in SIGCOMM '88. Note that rtt and mdev
563 * are scaled versions of rtt and mean deviation.
564 * This is designed to be as fast as possible
565 * m stands for "measurement".
566 *
567 * On a 1990 paper the rto value is changed to:
568 * RTO = rtt + 4 * mdev
569 *
570 * Funny. This algorithm seems to be very broken.
571 * These formulae increase RTO, when it should be decreased, increase
572 * too slowly, when it should be increased quickly, decrease too quickly
573 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
574 * does not matter how to _calculate_ it. Seems, it was trap
575 * that VJ failed to avoid. 8)
576 */
577 if(m == 0)
578 m = 1;
579 if (tp->srtt != 0) {
580 m -= (tp->srtt >> 3); /* m is now error in rtt est */
581 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
582 if (m < 0) {
583 m = -m; /* m is now abs(error) */
584 m -= (tp->mdev >> 2); /* similar update on mdev */
585 /* This is similar to one of Eifel findings.
586 * Eifel blocks mdev updates when rtt decreases.
587 * This solution is a bit different: we use finer gain
588 * for mdev in this case (alpha*beta).
589 * Like Eifel it also prevents growth of rto,
590 * but also it limits too fast rto decreases,
591 * happening in pure Eifel.
592 */
593 if (m > 0)
594 m >>= 3;
595 } else {
596 m -= (tp->mdev >> 2); /* similar update on mdev */
597 }
598 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
599 if (tp->mdev > tp->mdev_max) {
600 tp->mdev_max = tp->mdev;
601 if (tp->mdev_max > tp->rttvar)
602 tp->rttvar = tp->mdev_max;
603 }
604 if (after(tp->snd_una, tp->rtt_seq)) {
605 if (tp->mdev_max < tp->rttvar)
606 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
607 tp->rtt_seq = tp->snd_nxt;
608 tp->mdev_max = TCP_RTO_MIN;
609 }
610 } else {
611 /* no previous measure. */
612 tp->srtt = m<<3; /* take the measured time to be rtt */
613 tp->mdev = m<<1; /* make sure rto = 3*rtt */
614 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
615 tp->rtt_seq = tp->snd_nxt;
616 }
617 }
618
619 /* Calculate rto without backoff. This is the second half of Van Jacobson's
620 * routine referred to above.
621 */
622 static inline void tcp_set_rto(struct sock *sk)
623 {
624 const struct tcp_sock *tp = tcp_sk(sk);
625 /* Old crap is replaced with new one. 8)
626 *
627 * More seriously:
628 * 1. If rtt variance happened to be less 50msec, it is hallucination.
629 * It cannot be less due to utterly erratic ACK generation made
630 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
631 * to do with delayed acks, because at cwnd>2 true delack timeout
632 * is invisible. Actually, Linux-2.4 also generates erratic
633 * ACKs in some circumstances.
634 */
635 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
636
637 /* 2. Fixups made earlier cannot be right.
638 * If we do not estimate RTO correctly without them,
639 * all the algo is pure shit and should be replaced
640 * with correct one. It is exactly, which we pretend to do.
641 */
642 }
643
644 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
645 * guarantees that rto is higher.
646 */
647 static inline void tcp_bound_rto(struct sock *sk)
648 {
649 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
650 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
651 }
652
653 /* Save metrics learned by this TCP session.
654 This function is called only, when TCP finishes successfully
655 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
656 */
657 void tcp_update_metrics(struct sock *sk)
658 {
659 struct tcp_sock *tp = tcp_sk(sk);
660 struct dst_entry *dst = __sk_dst_get(sk);
661
662 if (sysctl_tcp_nometrics_save)
663 return;
664
665 dst_confirm(dst);
666
667 if (dst && (dst->flags&DST_HOST)) {
668 const struct inet_connection_sock *icsk = inet_csk(sk);
669 int m;
670
671 if (icsk->icsk_backoff || !tp->srtt) {
672 /* This session failed to estimate rtt. Why?
673 * Probably, no packets returned in time.
674 * Reset our results.
675 */
676 if (!(dst_metric_locked(dst, RTAX_RTT)))
677 dst->metrics[RTAX_RTT-1] = 0;
678 return;
679 }
680
681 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
682
683 /* If newly calculated rtt larger than stored one,
684 * store new one. Otherwise, use EWMA. Remember,
685 * rtt overestimation is always better than underestimation.
686 */
687 if (!(dst_metric_locked(dst, RTAX_RTT))) {
688 if (m <= 0)
689 dst->metrics[RTAX_RTT-1] = tp->srtt;
690 else
691 dst->metrics[RTAX_RTT-1] -= (m>>3);
692 }
693
694 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
695 if (m < 0)
696 m = -m;
697
698 /* Scale deviation to rttvar fixed point */
699 m >>= 1;
700 if (m < tp->mdev)
701 m = tp->mdev;
702
703 if (m >= dst_metric(dst, RTAX_RTTVAR))
704 dst->metrics[RTAX_RTTVAR-1] = m;
705 else
706 dst->metrics[RTAX_RTTVAR-1] -=
707 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
708 }
709
710 if (tp->snd_ssthresh >= 0xFFFF) {
711 /* Slow start still did not finish. */
712 if (dst_metric(dst, RTAX_SSTHRESH) &&
713 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
714 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
715 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
716 if (!dst_metric_locked(dst, RTAX_CWND) &&
717 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
718 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
719 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
720 icsk->icsk_ca_state == TCP_CA_Open) {
721 /* Cong. avoidance phase, cwnd is reliable. */
722 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
723 dst->metrics[RTAX_SSTHRESH-1] =
724 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
725 if (!dst_metric_locked(dst, RTAX_CWND))
726 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
727 } else {
728 /* Else slow start did not finish, cwnd is non-sense,
729 ssthresh may be also invalid.
730 */
731 if (!dst_metric_locked(dst, RTAX_CWND))
732 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
733 if (dst->metrics[RTAX_SSTHRESH-1] &&
734 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
735 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
736 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
737 }
738
739 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
740 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
741 tp->reordering != sysctl_tcp_reordering)
742 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
743 }
744 }
745 }
746
747 /* Numbers are taken from RFC2414. */
748 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
749 {
750 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
751
752 if (!cwnd) {
753 if (tp->mss_cache > 1460)
754 cwnd = 2;
755 else
756 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
757 }
758 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
759 }
760
761 /* Set slow start threshold and cwnd not falling to slow start */
762 void tcp_enter_cwr(struct sock *sk)
763 {
764 struct tcp_sock *tp = tcp_sk(sk);
765
766 tp->prior_ssthresh = 0;
767 tp->bytes_acked = 0;
768 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
769 tp->undo_marker = 0;
770 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
771 tp->snd_cwnd = min(tp->snd_cwnd,
772 tcp_packets_in_flight(tp) + 1U);
773 tp->snd_cwnd_cnt = 0;
774 tp->high_seq = tp->snd_nxt;
775 tp->snd_cwnd_stamp = tcp_time_stamp;
776 TCP_ECN_queue_cwr(tp);
777
778 tcp_set_ca_state(sk, TCP_CA_CWR);
779 }
780 }
781
782 /* Initialize metrics on socket. */
783
784 static void tcp_init_metrics(struct sock *sk)
785 {
786 struct tcp_sock *tp = tcp_sk(sk);
787 struct dst_entry *dst = __sk_dst_get(sk);
788
789 if (dst == NULL)
790 goto reset;
791
792 dst_confirm(dst);
793
794 if (dst_metric_locked(dst, RTAX_CWND))
795 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
796 if (dst_metric(dst, RTAX_SSTHRESH)) {
797 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
798 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
799 tp->snd_ssthresh = tp->snd_cwnd_clamp;
800 }
801 if (dst_metric(dst, RTAX_REORDERING) &&
802 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
803 tp->rx_opt.sack_ok &= ~2;
804 tp->reordering = dst_metric(dst, RTAX_REORDERING);
805 }
806
807 if (dst_metric(dst, RTAX_RTT) == 0)
808 goto reset;
809
810 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
811 goto reset;
812
813 /* Initial rtt is determined from SYN,SYN-ACK.
814 * The segment is small and rtt may appear much
815 * less than real one. Use per-dst memory
816 * to make it more realistic.
817 *
818 * A bit of theory. RTT is time passed after "normal" sized packet
819 * is sent until it is ACKed. In normal circumstances sending small
820 * packets force peer to delay ACKs and calculation is correct too.
821 * The algorithm is adaptive and, provided we follow specs, it
822 * NEVER underestimate RTT. BUT! If peer tries to make some clever
823 * tricks sort of "quick acks" for time long enough to decrease RTT
824 * to low value, and then abruptly stops to do it and starts to delay
825 * ACKs, wait for troubles.
826 */
827 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
828 tp->srtt = dst_metric(dst, RTAX_RTT);
829 tp->rtt_seq = tp->snd_nxt;
830 }
831 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
832 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
833 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
834 }
835 tcp_set_rto(sk);
836 tcp_bound_rto(sk);
837 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
838 goto reset;
839 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
840 tp->snd_cwnd_stamp = tcp_time_stamp;
841 return;
842
843 reset:
844 /* Play conservative. If timestamps are not
845 * supported, TCP will fail to recalculate correct
846 * rtt, if initial rto is too small. FORGET ALL AND RESET!
847 */
848 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
849 tp->srtt = 0;
850 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
851 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
852 }
853 }
854
855 static void tcp_update_reordering(struct sock *sk, const int metric,
856 const int ts)
857 {
858 struct tcp_sock *tp = tcp_sk(sk);
859 if (metric > tp->reordering) {
860 tp->reordering = min(TCP_MAX_REORDERING, metric);
861
862 /* This exciting event is worth to be remembered. 8) */
863 if (ts)
864 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
865 else if (IsReno(tp))
866 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
867 else if (IsFack(tp))
868 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
869 else
870 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
871 #if FASTRETRANS_DEBUG > 1
872 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
873 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
874 tp->reordering,
875 tp->fackets_out,
876 tp->sacked_out,
877 tp->undo_marker ? tp->undo_retrans : 0);
878 #endif
879 /* Disable FACK yet. */
880 tp->rx_opt.sack_ok &= ~2;
881 }
882 }
883
884 /* This procedure tags the retransmission queue when SACKs arrive.
885 *
886 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
887 * Packets in queue with these bits set are counted in variables
888 * sacked_out, retrans_out and lost_out, correspondingly.
889 *
890 * Valid combinations are:
891 * Tag InFlight Description
892 * 0 1 - orig segment is in flight.
893 * S 0 - nothing flies, orig reached receiver.
894 * L 0 - nothing flies, orig lost by net.
895 * R 2 - both orig and retransmit are in flight.
896 * L|R 1 - orig is lost, retransmit is in flight.
897 * S|R 1 - orig reached receiver, retrans is still in flight.
898 * (L|S|R is logically valid, it could occur when L|R is sacked,
899 * but it is equivalent to plain S and code short-curcuits it to S.
900 * L|S is logically invalid, it would mean -1 packet in flight 8))
901 *
902 * These 6 states form finite state machine, controlled by the following events:
903 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
904 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
905 * 3. Loss detection event of one of three flavors:
906 * A. Scoreboard estimator decided the packet is lost.
907 * A'. Reno "three dupacks" marks head of queue lost.
908 * A''. Its FACK modfication, head until snd.fack is lost.
909 * B. SACK arrives sacking data transmitted after never retransmitted
910 * hole was sent out.
911 * C. SACK arrives sacking SND.NXT at the moment, when the
912 * segment was retransmitted.
913 * 4. D-SACK added new rule: D-SACK changes any tag to S.
914 *
915 * It is pleasant to note, that state diagram turns out to be commutative,
916 * so that we are allowed not to be bothered by order of our actions,
917 * when multiple events arrive simultaneously. (see the function below).
918 *
919 * Reordering detection.
920 * --------------------
921 * Reordering metric is maximal distance, which a packet can be displaced
922 * in packet stream. With SACKs we can estimate it:
923 *
924 * 1. SACK fills old hole and the corresponding segment was not
925 * ever retransmitted -> reordering. Alas, we cannot use it
926 * when segment was retransmitted.
927 * 2. The last flaw is solved with D-SACK. D-SACK arrives
928 * for retransmitted and already SACKed segment -> reordering..
929 * Both of these heuristics are not used in Loss state, when we cannot
930 * account for retransmits accurately.
931 */
932 static int
933 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
934 {
935 const struct inet_connection_sock *icsk = inet_csk(sk);
936 struct tcp_sock *tp = tcp_sk(sk);
937 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
938 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
939 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
940 int reord = tp->packets_out;
941 int prior_fackets;
942 u32 lost_retrans = 0;
943 int flag = 0;
944 int dup_sack = 0;
945 int i;
946
947 if (!tp->sacked_out)
948 tp->fackets_out = 0;
949 prior_fackets = tp->fackets_out;
950
951 /* SACK fastpath:
952 * if the only SACK change is the increase of the end_seq of
953 * the first block then only apply that SACK block
954 * and use retrans queue hinting otherwise slowpath */
955 flag = 1;
956 for (i = 0; i< num_sacks; i++) {
957 __u32 start_seq = ntohl(sp[i].start_seq);
958 __u32 end_seq = ntohl(sp[i].end_seq);
959
960 if (i == 0){
961 if (tp->recv_sack_cache[i].start_seq != start_seq)
962 flag = 0;
963 } else {
964 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
965 (tp->recv_sack_cache[i].end_seq != end_seq))
966 flag = 0;
967 }
968 tp->recv_sack_cache[i].start_seq = start_seq;
969 tp->recv_sack_cache[i].end_seq = end_seq;
970
971 /* Check for D-SACK. */
972 if (i == 0) {
973 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
974
975 if (before(start_seq, ack)) {
976 dup_sack = 1;
977 tp->rx_opt.sack_ok |= 4;
978 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
979 } else if (num_sacks > 1 &&
980 !after(end_seq, ntohl(sp[1].end_seq)) &&
981 !before(start_seq, ntohl(sp[1].start_seq))) {
982 dup_sack = 1;
983 tp->rx_opt.sack_ok |= 4;
984 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
985 }
986
987 /* D-SACK for already forgotten data...
988 * Do dumb counting. */
989 if (dup_sack &&
990 !after(end_seq, prior_snd_una) &&
991 after(end_seq, tp->undo_marker))
992 tp->undo_retrans--;
993
994 /* Eliminate too old ACKs, but take into
995 * account more or less fresh ones, they can
996 * contain valid SACK info.
997 */
998 if (before(ack, prior_snd_una - tp->max_window))
999 return 0;
1000 }
1001 }
1002
1003 if (flag)
1004 num_sacks = 1;
1005 else {
1006 int j;
1007 tp->fastpath_skb_hint = NULL;
1008
1009 /* order SACK blocks to allow in order walk of the retrans queue */
1010 for (i = num_sacks-1; i > 0; i--) {
1011 for (j = 0; j < i; j++){
1012 if (after(ntohl(sp[j].start_seq),
1013 ntohl(sp[j+1].start_seq))){
1014 struct tcp_sack_block_wire tmp;
1015
1016 tmp = sp[j];
1017 sp[j] = sp[j+1];
1018 sp[j+1] = tmp;
1019 }
1020
1021 }
1022 }
1023 }
1024
1025 /* clear flag as used for different purpose in following code */
1026 flag = 0;
1027
1028 for (i=0; i<num_sacks; i++, sp++) {
1029 struct sk_buff *skb;
1030 __u32 start_seq = ntohl(sp->start_seq);
1031 __u32 end_seq = ntohl(sp->end_seq);
1032 int fack_count;
1033
1034 /* Use SACK fastpath hint if valid */
1035 if (tp->fastpath_skb_hint) {
1036 skb = tp->fastpath_skb_hint;
1037 fack_count = tp->fastpath_cnt_hint;
1038 } else {
1039 skb = sk->sk_write_queue.next;
1040 fack_count = 0;
1041 }
1042
1043 /* Event "B" in the comment above. */
1044 if (after(end_seq, tp->high_seq))
1045 flag |= FLAG_DATA_LOST;
1046
1047 sk_stream_for_retrans_queue_from(skb, sk) {
1048 int in_sack, pcount;
1049 u8 sacked;
1050
1051 tp->fastpath_skb_hint = skb;
1052 tp->fastpath_cnt_hint = fack_count;
1053
1054 /* The retransmission queue is always in order, so
1055 * we can short-circuit the walk early.
1056 */
1057 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1058 break;
1059
1060 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1061 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1062
1063 pcount = tcp_skb_pcount(skb);
1064
1065 if (pcount > 1 && !in_sack &&
1066 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1067 unsigned int pkt_len;
1068
1069 in_sack = !after(start_seq,
1070 TCP_SKB_CB(skb)->seq);
1071
1072 if (!in_sack)
1073 pkt_len = (start_seq -
1074 TCP_SKB_CB(skb)->seq);
1075 else
1076 pkt_len = (end_seq -
1077 TCP_SKB_CB(skb)->seq);
1078 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1079 break;
1080 pcount = tcp_skb_pcount(skb);
1081 }
1082
1083 fack_count += pcount;
1084
1085 sacked = TCP_SKB_CB(skb)->sacked;
1086
1087 /* Account D-SACK for retransmitted packet. */
1088 if ((dup_sack && in_sack) &&
1089 (sacked & TCPCB_RETRANS) &&
1090 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1091 tp->undo_retrans--;
1092
1093 /* The frame is ACKed. */
1094 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1095 if (sacked&TCPCB_RETRANS) {
1096 if ((dup_sack && in_sack) &&
1097 (sacked&TCPCB_SACKED_ACKED))
1098 reord = min(fack_count, reord);
1099 } else {
1100 /* If it was in a hole, we detected reordering. */
1101 if (fack_count < prior_fackets &&
1102 !(sacked&TCPCB_SACKED_ACKED))
1103 reord = min(fack_count, reord);
1104 }
1105
1106 /* Nothing to do; acked frame is about to be dropped. */
1107 continue;
1108 }
1109
1110 if ((sacked&TCPCB_SACKED_RETRANS) &&
1111 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1112 (!lost_retrans || after(end_seq, lost_retrans)))
1113 lost_retrans = end_seq;
1114
1115 if (!in_sack)
1116 continue;
1117
1118 if (!(sacked&TCPCB_SACKED_ACKED)) {
1119 if (sacked & TCPCB_SACKED_RETRANS) {
1120 /* If the segment is not tagged as lost,
1121 * we do not clear RETRANS, believing
1122 * that retransmission is still in flight.
1123 */
1124 if (sacked & TCPCB_LOST) {
1125 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1126 tp->lost_out -= tcp_skb_pcount(skb);
1127 tp->retrans_out -= tcp_skb_pcount(skb);
1128
1129 /* clear lost hint */
1130 tp->retransmit_skb_hint = NULL;
1131 }
1132 } else {
1133 /* New sack for not retransmitted frame,
1134 * which was in hole. It is reordering.
1135 */
1136 if (!(sacked & TCPCB_RETRANS) &&
1137 fack_count < prior_fackets)
1138 reord = min(fack_count, reord);
1139
1140 if (sacked & TCPCB_LOST) {
1141 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1142 tp->lost_out -= tcp_skb_pcount(skb);
1143
1144 /* clear lost hint */
1145 tp->retransmit_skb_hint = NULL;
1146 }
1147 }
1148
1149 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1150 flag |= FLAG_DATA_SACKED;
1151 tp->sacked_out += tcp_skb_pcount(skb);
1152
1153 if (fack_count > tp->fackets_out)
1154 tp->fackets_out = fack_count;
1155 } else {
1156 if (dup_sack && (sacked&TCPCB_RETRANS))
1157 reord = min(fack_count, reord);
1158 }
1159
1160 /* D-SACK. We can detect redundant retransmission
1161 * in S|R and plain R frames and clear it.
1162 * undo_retrans is decreased above, L|R frames
1163 * are accounted above as well.
1164 */
1165 if (dup_sack &&
1166 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1167 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1168 tp->retrans_out -= tcp_skb_pcount(skb);
1169 tp->retransmit_skb_hint = NULL;
1170 }
1171 }
1172 }
1173
1174 /* Check for lost retransmit. This superb idea is
1175 * borrowed from "ratehalving". Event "C".
1176 * Later note: FACK people cheated me again 8),
1177 * we have to account for reordering! Ugly,
1178 * but should help.
1179 */
1180 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1181 struct sk_buff *skb;
1182
1183 sk_stream_for_retrans_queue(skb, sk) {
1184 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1185 break;
1186 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1187 continue;
1188 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1189 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1190 (IsFack(tp) ||
1191 !before(lost_retrans,
1192 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1193 tp->mss_cache))) {
1194 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1195 tp->retrans_out -= tcp_skb_pcount(skb);
1196
1197 /* clear lost hint */
1198 tp->retransmit_skb_hint = NULL;
1199
1200 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1201 tp->lost_out += tcp_skb_pcount(skb);
1202 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1203 flag |= FLAG_DATA_SACKED;
1204 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1205 }
1206 }
1207 }
1208 }
1209
1210 tp->left_out = tp->sacked_out + tp->lost_out;
1211
1212 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1213 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1214
1215 #if FASTRETRANS_DEBUG > 0
1216 BUG_TRAP((int)tp->sacked_out >= 0);
1217 BUG_TRAP((int)tp->lost_out >= 0);
1218 BUG_TRAP((int)tp->retrans_out >= 0);
1219 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1220 #endif
1221 return flag;
1222 }
1223
1224 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1225 * segments to see from the next ACKs whether any data was really missing.
1226 * If the RTO was spurious, new ACKs should arrive.
1227 */
1228 void tcp_enter_frto(struct sock *sk)
1229 {
1230 const struct inet_connection_sock *icsk = inet_csk(sk);
1231 struct tcp_sock *tp = tcp_sk(sk);
1232 struct sk_buff *skb;
1233
1234 tp->frto_counter = 1;
1235
1236 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1237 tp->snd_una == tp->high_seq ||
1238 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1239 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1240 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1241 tcp_ca_event(sk, CA_EVENT_FRTO);
1242 }
1243
1244 /* Have to clear retransmission markers here to keep the bookkeeping
1245 * in shape, even though we are not yet in Loss state.
1246 * If something was really lost, it is eventually caught up
1247 * in tcp_enter_frto_loss.
1248 */
1249 tp->retrans_out = 0;
1250 tp->undo_marker = tp->snd_una;
1251 tp->undo_retrans = 0;
1252
1253 sk_stream_for_retrans_queue(skb, sk) {
1254 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1255 }
1256 tcp_sync_left_out(tp);
1257
1258 tcp_set_ca_state(sk, TCP_CA_Open);
1259 tp->frto_highmark = tp->snd_nxt;
1260 }
1261
1262 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1263 * which indicates that we should follow the traditional RTO recovery,
1264 * i.e. mark everything lost and do go-back-N retransmission.
1265 */
1266 static void tcp_enter_frto_loss(struct sock *sk)
1267 {
1268 struct tcp_sock *tp = tcp_sk(sk);
1269 struct sk_buff *skb;
1270 int cnt = 0;
1271
1272 tp->sacked_out = 0;
1273 tp->lost_out = 0;
1274 tp->fackets_out = 0;
1275
1276 sk_stream_for_retrans_queue(skb, sk) {
1277 cnt += tcp_skb_pcount(skb);
1278 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1279 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1280
1281 /* Do not mark those segments lost that were
1282 * forward transmitted after RTO
1283 */
1284 if (!after(TCP_SKB_CB(skb)->end_seq,
1285 tp->frto_highmark)) {
1286 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1287 tp->lost_out += tcp_skb_pcount(skb);
1288 }
1289 } else {
1290 tp->sacked_out += tcp_skb_pcount(skb);
1291 tp->fackets_out = cnt;
1292 }
1293 }
1294 tcp_sync_left_out(tp);
1295
1296 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1297 tp->snd_cwnd_cnt = 0;
1298 tp->snd_cwnd_stamp = tcp_time_stamp;
1299 tp->undo_marker = 0;
1300 tp->frto_counter = 0;
1301
1302 tp->reordering = min_t(unsigned int, tp->reordering,
1303 sysctl_tcp_reordering);
1304 tcp_set_ca_state(sk, TCP_CA_Loss);
1305 tp->high_seq = tp->frto_highmark;
1306 TCP_ECN_queue_cwr(tp);
1307
1308 clear_all_retrans_hints(tp);
1309 }
1310
1311 void tcp_clear_retrans(struct tcp_sock *tp)
1312 {
1313 tp->left_out = 0;
1314 tp->retrans_out = 0;
1315
1316 tp->fackets_out = 0;
1317 tp->sacked_out = 0;
1318 tp->lost_out = 0;
1319
1320 tp->undo_marker = 0;
1321 tp->undo_retrans = 0;
1322 }
1323
1324 /* Enter Loss state. If "how" is not zero, forget all SACK information
1325 * and reset tags completely, otherwise preserve SACKs. If receiver
1326 * dropped its ofo queue, we will know this due to reneging detection.
1327 */
1328 void tcp_enter_loss(struct sock *sk, int how)
1329 {
1330 const struct inet_connection_sock *icsk = inet_csk(sk);
1331 struct tcp_sock *tp = tcp_sk(sk);
1332 struct sk_buff *skb;
1333 int cnt = 0;
1334
1335 /* Reduce ssthresh if it has not yet been made inside this window. */
1336 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1337 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1338 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1339 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1340 tcp_ca_event(sk, CA_EVENT_LOSS);
1341 }
1342 tp->snd_cwnd = 1;
1343 tp->snd_cwnd_cnt = 0;
1344 tp->snd_cwnd_stamp = tcp_time_stamp;
1345
1346 tp->bytes_acked = 0;
1347 tcp_clear_retrans(tp);
1348
1349 /* Push undo marker, if it was plain RTO and nothing
1350 * was retransmitted. */
1351 if (!how)
1352 tp->undo_marker = tp->snd_una;
1353
1354 sk_stream_for_retrans_queue(skb, sk) {
1355 cnt += tcp_skb_pcount(skb);
1356 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1357 tp->undo_marker = 0;
1358 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1359 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1360 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1361 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1362 tp->lost_out += tcp_skb_pcount(skb);
1363 } else {
1364 tp->sacked_out += tcp_skb_pcount(skb);
1365 tp->fackets_out = cnt;
1366 }
1367 }
1368 tcp_sync_left_out(tp);
1369
1370 tp->reordering = min_t(unsigned int, tp->reordering,
1371 sysctl_tcp_reordering);
1372 tcp_set_ca_state(sk, TCP_CA_Loss);
1373 tp->high_seq = tp->snd_nxt;
1374 TCP_ECN_queue_cwr(tp);
1375
1376 clear_all_retrans_hints(tp);
1377 }
1378
1379 static int tcp_check_sack_reneging(struct sock *sk)
1380 {
1381 struct sk_buff *skb;
1382
1383 /* If ACK arrived pointing to a remembered SACK,
1384 * it means that our remembered SACKs do not reflect
1385 * real state of receiver i.e.
1386 * receiver _host_ is heavily congested (or buggy).
1387 * Do processing similar to RTO timeout.
1388 */
1389 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1390 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1391 struct inet_connection_sock *icsk = inet_csk(sk);
1392 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1393
1394 tcp_enter_loss(sk, 1);
1395 icsk->icsk_retransmits++;
1396 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1397 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1398 icsk->icsk_rto, TCP_RTO_MAX);
1399 return 1;
1400 }
1401 return 0;
1402 }
1403
1404 static inline int tcp_fackets_out(struct tcp_sock *tp)
1405 {
1406 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1407 }
1408
1409 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1410 {
1411 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1412 }
1413
1414 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1415 {
1416 return tp->packets_out &&
1417 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1418 }
1419
1420 /* Linux NewReno/SACK/FACK/ECN state machine.
1421 * --------------------------------------
1422 *
1423 * "Open" Normal state, no dubious events, fast path.
1424 * "Disorder" In all the respects it is "Open",
1425 * but requires a bit more attention. It is entered when
1426 * we see some SACKs or dupacks. It is split of "Open"
1427 * mainly to move some processing from fast path to slow one.
1428 * "CWR" CWND was reduced due to some Congestion Notification event.
1429 * It can be ECN, ICMP source quench, local device congestion.
1430 * "Recovery" CWND was reduced, we are fast-retransmitting.
1431 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1432 *
1433 * tcp_fastretrans_alert() is entered:
1434 * - each incoming ACK, if state is not "Open"
1435 * - when arrived ACK is unusual, namely:
1436 * * SACK
1437 * * Duplicate ACK.
1438 * * ECN ECE.
1439 *
1440 * Counting packets in flight is pretty simple.
1441 *
1442 * in_flight = packets_out - left_out + retrans_out
1443 *
1444 * packets_out is SND.NXT-SND.UNA counted in packets.
1445 *
1446 * retrans_out is number of retransmitted segments.
1447 *
1448 * left_out is number of segments left network, but not ACKed yet.
1449 *
1450 * left_out = sacked_out + lost_out
1451 *
1452 * sacked_out: Packets, which arrived to receiver out of order
1453 * and hence not ACKed. With SACKs this number is simply
1454 * amount of SACKed data. Even without SACKs
1455 * it is easy to give pretty reliable estimate of this number,
1456 * counting duplicate ACKs.
1457 *
1458 * lost_out: Packets lost by network. TCP has no explicit
1459 * "loss notification" feedback from network (for now).
1460 * It means that this number can be only _guessed_.
1461 * Actually, it is the heuristics to predict lossage that
1462 * distinguishes different algorithms.
1463 *
1464 * F.e. after RTO, when all the queue is considered as lost,
1465 * lost_out = packets_out and in_flight = retrans_out.
1466 *
1467 * Essentially, we have now two algorithms counting
1468 * lost packets.
1469 *
1470 * FACK: It is the simplest heuristics. As soon as we decided
1471 * that something is lost, we decide that _all_ not SACKed
1472 * packets until the most forward SACK are lost. I.e.
1473 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1474 * It is absolutely correct estimate, if network does not reorder
1475 * packets. And it loses any connection to reality when reordering
1476 * takes place. We use FACK by default until reordering
1477 * is suspected on the path to this destination.
1478 *
1479 * NewReno: when Recovery is entered, we assume that one segment
1480 * is lost (classic Reno). While we are in Recovery and
1481 * a partial ACK arrives, we assume that one more packet
1482 * is lost (NewReno). This heuristics are the same in NewReno
1483 * and SACK.
1484 *
1485 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1486 * deflation etc. CWND is real congestion window, never inflated, changes
1487 * only according to classic VJ rules.
1488 *
1489 * Really tricky (and requiring careful tuning) part of algorithm
1490 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1491 * The first determines the moment _when_ we should reduce CWND and,
1492 * hence, slow down forward transmission. In fact, it determines the moment
1493 * when we decide that hole is caused by loss, rather than by a reorder.
1494 *
1495 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1496 * holes, caused by lost packets.
1497 *
1498 * And the most logically complicated part of algorithm is undo
1499 * heuristics. We detect false retransmits due to both too early
1500 * fast retransmit (reordering) and underestimated RTO, analyzing
1501 * timestamps and D-SACKs. When we detect that some segments were
1502 * retransmitted by mistake and CWND reduction was wrong, we undo
1503 * window reduction and abort recovery phase. This logic is hidden
1504 * inside several functions named tcp_try_undo_<something>.
1505 */
1506
1507 /* This function decides, when we should leave Disordered state
1508 * and enter Recovery phase, reducing congestion window.
1509 *
1510 * Main question: may we further continue forward transmission
1511 * with the same cwnd?
1512 */
1513 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1514 {
1515 __u32 packets_out;
1516
1517 /* Trick#1: The loss is proven. */
1518 if (tp->lost_out)
1519 return 1;
1520
1521 /* Not-A-Trick#2 : Classic rule... */
1522 if (tcp_fackets_out(tp) > tp->reordering)
1523 return 1;
1524
1525 /* Trick#3 : when we use RFC2988 timer restart, fast
1526 * retransmit can be triggered by timeout of queue head.
1527 */
1528 if (tcp_head_timedout(sk, tp))
1529 return 1;
1530
1531 /* Trick#4: It is still not OK... But will it be useful to delay
1532 * recovery more?
1533 */
1534 packets_out = tp->packets_out;
1535 if (packets_out <= tp->reordering &&
1536 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1537 !tcp_may_send_now(sk, tp)) {
1538 /* We have nothing to send. This connection is limited
1539 * either by receiver window or by application.
1540 */
1541 return 1;
1542 }
1543
1544 return 0;
1545 }
1546
1547 /* If we receive more dupacks than we expected counting segments
1548 * in assumption of absent reordering, interpret this as reordering.
1549 * The only another reason could be bug in receiver TCP.
1550 */
1551 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1552 {
1553 struct tcp_sock *tp = tcp_sk(sk);
1554 u32 holes;
1555
1556 holes = max(tp->lost_out, 1U);
1557 holes = min(holes, tp->packets_out);
1558
1559 if ((tp->sacked_out + holes) > tp->packets_out) {
1560 tp->sacked_out = tp->packets_out - holes;
1561 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1562 }
1563 }
1564
1565 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1566
1567 static void tcp_add_reno_sack(struct sock *sk)
1568 {
1569 struct tcp_sock *tp = tcp_sk(sk);
1570 tp->sacked_out++;
1571 tcp_check_reno_reordering(sk, 0);
1572 tcp_sync_left_out(tp);
1573 }
1574
1575 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1576
1577 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1578 {
1579 if (acked > 0) {
1580 /* One ACK acked hole. The rest eat duplicate ACKs. */
1581 if (acked-1 >= tp->sacked_out)
1582 tp->sacked_out = 0;
1583 else
1584 tp->sacked_out -= acked-1;
1585 }
1586 tcp_check_reno_reordering(sk, acked);
1587 tcp_sync_left_out(tp);
1588 }
1589
1590 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1591 {
1592 tp->sacked_out = 0;
1593 tp->left_out = tp->lost_out;
1594 }
1595
1596 /* Mark head of queue up as lost. */
1597 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1598 int packets, u32 high_seq)
1599 {
1600 struct sk_buff *skb;
1601 int cnt;
1602
1603 BUG_TRAP(packets <= tp->packets_out);
1604 if (tp->lost_skb_hint) {
1605 skb = tp->lost_skb_hint;
1606 cnt = tp->lost_cnt_hint;
1607 } else {
1608 skb = sk->sk_write_queue.next;
1609 cnt = 0;
1610 }
1611
1612 sk_stream_for_retrans_queue_from(skb, sk) {
1613 /* TODO: do this better */
1614 /* this is not the most efficient way to do this... */
1615 tp->lost_skb_hint = skb;
1616 tp->lost_cnt_hint = cnt;
1617 cnt += tcp_skb_pcount(skb);
1618 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1619 break;
1620 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1621 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1622 tp->lost_out += tcp_skb_pcount(skb);
1623
1624 /* clear xmit_retransmit_queue hints
1625 * if this is beyond hint */
1626 if(tp->retransmit_skb_hint != NULL &&
1627 before(TCP_SKB_CB(skb)->seq,
1628 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1629
1630 tp->retransmit_skb_hint = NULL;
1631 }
1632 }
1633 }
1634 tcp_sync_left_out(tp);
1635 }
1636
1637 /* Account newly detected lost packet(s) */
1638
1639 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1640 {
1641 if (IsFack(tp)) {
1642 int lost = tp->fackets_out - tp->reordering;
1643 if (lost <= 0)
1644 lost = 1;
1645 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1646 } else {
1647 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1648 }
1649
1650 /* New heuristics: it is possible only after we switched
1651 * to restart timer each time when something is ACKed.
1652 * Hence, we can detect timed out packets during fast
1653 * retransmit without falling to slow start.
1654 */
1655 if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1656 struct sk_buff *skb;
1657
1658 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1659 : sk->sk_write_queue.next;
1660
1661 sk_stream_for_retrans_queue_from(skb, sk) {
1662 if (!tcp_skb_timedout(sk, skb))
1663 break;
1664
1665 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1666 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1667 tp->lost_out += tcp_skb_pcount(skb);
1668
1669 /* clear xmit_retrans hint */
1670 if (tp->retransmit_skb_hint &&
1671 before(TCP_SKB_CB(skb)->seq,
1672 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1673
1674 tp->retransmit_skb_hint = NULL;
1675 }
1676 }
1677
1678 tp->scoreboard_skb_hint = skb;
1679
1680 tcp_sync_left_out(tp);
1681 }
1682 }
1683
1684 /* CWND moderation, preventing bursts due to too big ACKs
1685 * in dubious situations.
1686 */
1687 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1688 {
1689 tp->snd_cwnd = min(tp->snd_cwnd,
1690 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1691 tp->snd_cwnd_stamp = tcp_time_stamp;
1692 }
1693
1694 /* Lower bound on congestion window is slow start threshold
1695 * unless congestion avoidance choice decides to overide it.
1696 */
1697 static inline u32 tcp_cwnd_min(const struct sock *sk)
1698 {
1699 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1700
1701 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1702 }
1703
1704 /* Decrease cwnd each second ack. */
1705 static void tcp_cwnd_down(struct sock *sk)
1706 {
1707 struct tcp_sock *tp = tcp_sk(sk);
1708 int decr = tp->snd_cwnd_cnt + 1;
1709
1710 tp->snd_cwnd_cnt = decr&1;
1711 decr >>= 1;
1712
1713 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1714 tp->snd_cwnd -= decr;
1715
1716 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1717 tp->snd_cwnd_stamp = tcp_time_stamp;
1718 }
1719
1720 /* Nothing was retransmitted or returned timestamp is less
1721 * than timestamp of the first retransmission.
1722 */
1723 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1724 {
1725 return !tp->retrans_stamp ||
1726 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1727 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1728 }
1729
1730 /* Undo procedures. */
1731
1732 #if FASTRETRANS_DEBUG > 1
1733 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1734 {
1735 struct inet_sock *inet = inet_sk(sk);
1736 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1737 msg,
1738 NIPQUAD(inet->daddr), ntohs(inet->dport),
1739 tp->snd_cwnd, tp->left_out,
1740 tp->snd_ssthresh, tp->prior_ssthresh,
1741 tp->packets_out);
1742 }
1743 #else
1744 #define DBGUNDO(x...) do { } while (0)
1745 #endif
1746
1747 static void tcp_undo_cwr(struct sock *sk, const int undo)
1748 {
1749 struct tcp_sock *tp = tcp_sk(sk);
1750
1751 if (tp->prior_ssthresh) {
1752 const struct inet_connection_sock *icsk = inet_csk(sk);
1753
1754 if (icsk->icsk_ca_ops->undo_cwnd)
1755 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1756 else
1757 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1758
1759 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1760 tp->snd_ssthresh = tp->prior_ssthresh;
1761 TCP_ECN_withdraw_cwr(tp);
1762 }
1763 } else {
1764 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1765 }
1766 tcp_moderate_cwnd(tp);
1767 tp->snd_cwnd_stamp = tcp_time_stamp;
1768
1769 /* There is something screwy going on with the retrans hints after
1770 an undo */
1771 clear_all_retrans_hints(tp);
1772 }
1773
1774 static inline int tcp_may_undo(struct tcp_sock *tp)
1775 {
1776 return tp->undo_marker &&
1777 (!tp->undo_retrans || tcp_packet_delayed(tp));
1778 }
1779
1780 /* People celebrate: "We love our President!" */
1781 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1782 {
1783 if (tcp_may_undo(tp)) {
1784 /* Happy end! We did not retransmit anything
1785 * or our original transmission succeeded.
1786 */
1787 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1788 tcp_undo_cwr(sk, 1);
1789 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1790 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1791 else
1792 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1793 tp->undo_marker = 0;
1794 }
1795 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1796 /* Hold old state until something *above* high_seq
1797 * is ACKed. For Reno it is MUST to prevent false
1798 * fast retransmits (RFC2582). SACK TCP is safe. */
1799 tcp_moderate_cwnd(tp);
1800 return 1;
1801 }
1802 tcp_set_ca_state(sk, TCP_CA_Open);
1803 return 0;
1804 }
1805
1806 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1807 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1808 {
1809 if (tp->undo_marker && !tp->undo_retrans) {
1810 DBGUNDO(sk, tp, "D-SACK");
1811 tcp_undo_cwr(sk, 1);
1812 tp->undo_marker = 0;
1813 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1814 }
1815 }
1816
1817 /* Undo during fast recovery after partial ACK. */
1818
1819 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1820 int acked)
1821 {
1822 /* Partial ACK arrived. Force Hoe's retransmit. */
1823 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1824
1825 if (tcp_may_undo(tp)) {
1826 /* Plain luck! Hole if filled with delayed
1827 * packet, rather than with a retransmit.
1828 */
1829 if (tp->retrans_out == 0)
1830 tp->retrans_stamp = 0;
1831
1832 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1833
1834 DBGUNDO(sk, tp, "Hoe");
1835 tcp_undo_cwr(sk, 0);
1836 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1837
1838 /* So... Do not make Hoe's retransmit yet.
1839 * If the first packet was delayed, the rest
1840 * ones are most probably delayed as well.
1841 */
1842 failed = 0;
1843 }
1844 return failed;
1845 }
1846
1847 /* Undo during loss recovery after partial ACK. */
1848 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1849 {
1850 if (tcp_may_undo(tp)) {
1851 struct sk_buff *skb;
1852 sk_stream_for_retrans_queue(skb, sk) {
1853 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1854 }
1855
1856 clear_all_retrans_hints(tp);
1857
1858 DBGUNDO(sk, tp, "partial loss");
1859 tp->lost_out = 0;
1860 tp->left_out = tp->sacked_out;
1861 tcp_undo_cwr(sk, 1);
1862 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1863 inet_csk(sk)->icsk_retransmits = 0;
1864 tp->undo_marker = 0;
1865 if (!IsReno(tp))
1866 tcp_set_ca_state(sk, TCP_CA_Open);
1867 return 1;
1868 }
1869 return 0;
1870 }
1871
1872 static inline void tcp_complete_cwr(struct sock *sk)
1873 {
1874 struct tcp_sock *tp = tcp_sk(sk);
1875 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1876 tp->snd_cwnd_stamp = tcp_time_stamp;
1877 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1878 }
1879
1880 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1881 {
1882 tp->left_out = tp->sacked_out;
1883
1884 if (tp->retrans_out == 0)
1885 tp->retrans_stamp = 0;
1886
1887 if (flag&FLAG_ECE)
1888 tcp_enter_cwr(sk);
1889
1890 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1891 int state = TCP_CA_Open;
1892
1893 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1894 state = TCP_CA_Disorder;
1895
1896 if (inet_csk(sk)->icsk_ca_state != state) {
1897 tcp_set_ca_state(sk, state);
1898 tp->high_seq = tp->snd_nxt;
1899 }
1900 tcp_moderate_cwnd(tp);
1901 } else {
1902 tcp_cwnd_down(sk);
1903 }
1904 }
1905
1906 static void tcp_mtup_probe_failed(struct sock *sk)
1907 {
1908 struct inet_connection_sock *icsk = inet_csk(sk);
1909
1910 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1911 icsk->icsk_mtup.probe_size = 0;
1912 }
1913
1914 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1915 {
1916 struct tcp_sock *tp = tcp_sk(sk);
1917 struct inet_connection_sock *icsk = inet_csk(sk);
1918
1919 /* FIXME: breaks with very large cwnd */
1920 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1921 tp->snd_cwnd = tp->snd_cwnd *
1922 tcp_mss_to_mtu(sk, tp->mss_cache) /
1923 icsk->icsk_mtup.probe_size;
1924 tp->snd_cwnd_cnt = 0;
1925 tp->snd_cwnd_stamp = tcp_time_stamp;
1926 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1927
1928 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1929 icsk->icsk_mtup.probe_size = 0;
1930 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1931 }
1932
1933
1934 /* Process an event, which can update packets-in-flight not trivially.
1935 * Main goal of this function is to calculate new estimate for left_out,
1936 * taking into account both packets sitting in receiver's buffer and
1937 * packets lost by network.
1938 *
1939 * Besides that it does CWND reduction, when packet loss is detected
1940 * and changes state of machine.
1941 *
1942 * It does _not_ decide what to send, it is made in function
1943 * tcp_xmit_retransmit_queue().
1944 */
1945 static void
1946 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1947 int prior_packets, int flag)
1948 {
1949 struct inet_connection_sock *icsk = inet_csk(sk);
1950 struct tcp_sock *tp = tcp_sk(sk);
1951 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1952
1953 /* Some technical things:
1954 * 1. Reno does not count dupacks (sacked_out) automatically. */
1955 if (!tp->packets_out)
1956 tp->sacked_out = 0;
1957 /* 2. SACK counts snd_fack in packets inaccurately. */
1958 if (tp->sacked_out == 0)
1959 tp->fackets_out = 0;
1960
1961 /* Now state machine starts.
1962 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1963 if (flag&FLAG_ECE)
1964 tp->prior_ssthresh = 0;
1965
1966 /* B. In all the states check for reneging SACKs. */
1967 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1968 return;
1969
1970 /* C. Process data loss notification, provided it is valid. */
1971 if ((flag&FLAG_DATA_LOST) &&
1972 before(tp->snd_una, tp->high_seq) &&
1973 icsk->icsk_ca_state != TCP_CA_Open &&
1974 tp->fackets_out > tp->reordering) {
1975 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1976 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1977 }
1978
1979 /* D. Synchronize left_out to current state. */
1980 tcp_sync_left_out(tp);
1981
1982 /* E. Check state exit conditions. State can be terminated
1983 * when high_seq is ACKed. */
1984 if (icsk->icsk_ca_state == TCP_CA_Open) {
1985 if (!sysctl_tcp_frto)
1986 BUG_TRAP(tp->retrans_out == 0);
1987 tp->retrans_stamp = 0;
1988 } else if (!before(tp->snd_una, tp->high_seq)) {
1989 switch (icsk->icsk_ca_state) {
1990 case TCP_CA_Loss:
1991 icsk->icsk_retransmits = 0;
1992 if (tcp_try_undo_recovery(sk, tp))
1993 return;
1994 break;
1995
1996 case TCP_CA_CWR:
1997 /* CWR is to be held something *above* high_seq
1998 * is ACKed for CWR bit to reach receiver. */
1999 if (tp->snd_una != tp->high_seq) {
2000 tcp_complete_cwr(sk);
2001 tcp_set_ca_state(sk, TCP_CA_Open);
2002 }
2003 break;
2004
2005 case TCP_CA_Disorder:
2006 tcp_try_undo_dsack(sk, tp);
2007 if (!tp->undo_marker ||
2008 /* For SACK case do not Open to allow to undo
2009 * catching for all duplicate ACKs. */
2010 IsReno(tp) || tp->snd_una != tp->high_seq) {
2011 tp->undo_marker = 0;
2012 tcp_set_ca_state(sk, TCP_CA_Open);
2013 }
2014 break;
2015
2016 case TCP_CA_Recovery:
2017 if (IsReno(tp))
2018 tcp_reset_reno_sack(tp);
2019 if (tcp_try_undo_recovery(sk, tp))
2020 return;
2021 tcp_complete_cwr(sk);
2022 break;
2023 }
2024 }
2025
2026 /* F. Process state. */
2027 switch (icsk->icsk_ca_state) {
2028 case TCP_CA_Recovery:
2029 if (prior_snd_una == tp->snd_una) {
2030 if (IsReno(tp) && is_dupack)
2031 tcp_add_reno_sack(sk);
2032 } else {
2033 int acked = prior_packets - tp->packets_out;
2034 if (IsReno(tp))
2035 tcp_remove_reno_sacks(sk, tp, acked);
2036 is_dupack = tcp_try_undo_partial(sk, tp, acked);
2037 }
2038 break;
2039 case TCP_CA_Loss:
2040 if (flag&FLAG_DATA_ACKED)
2041 icsk->icsk_retransmits = 0;
2042 if (!tcp_try_undo_loss(sk, tp)) {
2043 tcp_moderate_cwnd(tp);
2044 tcp_xmit_retransmit_queue(sk);
2045 return;
2046 }
2047 if (icsk->icsk_ca_state != TCP_CA_Open)
2048 return;
2049 /* Loss is undone; fall through to processing in Open state. */
2050 default:
2051 if (IsReno(tp)) {
2052 if (tp->snd_una != prior_snd_una)
2053 tcp_reset_reno_sack(tp);
2054 if (is_dupack)
2055 tcp_add_reno_sack(sk);
2056 }
2057
2058 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2059 tcp_try_undo_dsack(sk, tp);
2060
2061 if (!tcp_time_to_recover(sk, tp)) {
2062 tcp_try_to_open(sk, tp, flag);
2063 return;
2064 }
2065
2066 /* MTU probe failure: don't reduce cwnd */
2067 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2068 icsk->icsk_mtup.probe_size &&
2069 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2070 tcp_mtup_probe_failed(sk);
2071 /* Restores the reduction we did in tcp_mtup_probe() */
2072 tp->snd_cwnd++;
2073 tcp_simple_retransmit(sk);
2074 return;
2075 }
2076
2077 /* Otherwise enter Recovery state */
2078
2079 if (IsReno(tp))
2080 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2081 else
2082 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2083
2084 tp->high_seq = tp->snd_nxt;
2085 tp->prior_ssthresh = 0;
2086 tp->undo_marker = tp->snd_una;
2087 tp->undo_retrans = tp->retrans_out;
2088
2089 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2090 if (!(flag&FLAG_ECE))
2091 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2092 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2093 TCP_ECN_queue_cwr(tp);
2094 }
2095
2096 tp->bytes_acked = 0;
2097 tp->snd_cwnd_cnt = 0;
2098 tcp_set_ca_state(sk, TCP_CA_Recovery);
2099 }
2100
2101 if (is_dupack || tcp_head_timedout(sk, tp))
2102 tcp_update_scoreboard(sk, tp);
2103 tcp_cwnd_down(sk);
2104 tcp_xmit_retransmit_queue(sk);
2105 }
2106
2107 /* Read draft-ietf-tcplw-high-performance before mucking
2108 * with this code. (Supersedes RFC1323)
2109 */
2110 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2111 {
2112 /* RTTM Rule: A TSecr value received in a segment is used to
2113 * update the averaged RTT measurement only if the segment
2114 * acknowledges some new data, i.e., only if it advances the
2115 * left edge of the send window.
2116 *
2117 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2118 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2119 *
2120 * Changed: reset backoff as soon as we see the first valid sample.
2121 * If we do not, we get strongly overestimated rto. With timestamps
2122 * samples are accepted even from very old segments: f.e., when rtt=1
2123 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2124 * answer arrives rto becomes 120 seconds! If at least one of segments
2125 * in window is lost... Voila. --ANK (010210)
2126 */
2127 struct tcp_sock *tp = tcp_sk(sk);
2128 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2129 tcp_rtt_estimator(sk, seq_rtt);
2130 tcp_set_rto(sk);
2131 inet_csk(sk)->icsk_backoff = 0;
2132 tcp_bound_rto(sk);
2133 }
2134
2135 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2136 {
2137 /* We don't have a timestamp. Can only use
2138 * packets that are not retransmitted to determine
2139 * rtt estimates. Also, we must not reset the
2140 * backoff for rto until we get a non-retransmitted
2141 * packet. This allows us to deal with a situation
2142 * where the network delay has increased suddenly.
2143 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2144 */
2145
2146 if (flag & FLAG_RETRANS_DATA_ACKED)
2147 return;
2148
2149 tcp_rtt_estimator(sk, seq_rtt);
2150 tcp_set_rto(sk);
2151 inet_csk(sk)->icsk_backoff = 0;
2152 tcp_bound_rto(sk);
2153 }
2154
2155 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2156 const s32 seq_rtt)
2157 {
2158 const struct tcp_sock *tp = tcp_sk(sk);
2159 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2160 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2161 tcp_ack_saw_tstamp(sk, flag);
2162 else if (seq_rtt >= 0)
2163 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2164 }
2165
2166 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2167 u32 in_flight, int good)
2168 {
2169 const struct inet_connection_sock *icsk = inet_csk(sk);
2170 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2171 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2172 }
2173
2174 /* Restart timer after forward progress on connection.
2175 * RFC2988 recommends to restart timer to now+rto.
2176 */
2177
2178 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2179 {
2180 if (!tp->packets_out) {
2181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2182 } else {
2183 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2184 }
2185 }
2186
2187 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2188 __u32 now, __s32 *seq_rtt)
2189 {
2190 struct tcp_sock *tp = tcp_sk(sk);
2191 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2192 __u32 seq = tp->snd_una;
2193 __u32 packets_acked;
2194 int acked = 0;
2195
2196 /* If we get here, the whole TSO packet has not been
2197 * acked.
2198 */
2199 BUG_ON(!after(scb->end_seq, seq));
2200
2201 packets_acked = tcp_skb_pcount(skb);
2202 if (tcp_trim_head(sk, skb, seq - scb->seq))
2203 return 0;
2204 packets_acked -= tcp_skb_pcount(skb);
2205
2206 if (packets_acked) {
2207 __u8 sacked = scb->sacked;
2208
2209 acked |= FLAG_DATA_ACKED;
2210 if (sacked) {
2211 if (sacked & TCPCB_RETRANS) {
2212 if (sacked & TCPCB_SACKED_RETRANS)
2213 tp->retrans_out -= packets_acked;
2214 acked |= FLAG_RETRANS_DATA_ACKED;
2215 *seq_rtt = -1;
2216 } else if (*seq_rtt < 0)
2217 *seq_rtt = now - scb->when;
2218 if (sacked & TCPCB_SACKED_ACKED)
2219 tp->sacked_out -= packets_acked;
2220 if (sacked & TCPCB_LOST)
2221 tp->lost_out -= packets_acked;
2222 if (sacked & TCPCB_URG) {
2223 if (tp->urg_mode &&
2224 !before(seq, tp->snd_up))
2225 tp->urg_mode = 0;
2226 }
2227 } else if (*seq_rtt < 0)
2228 *seq_rtt = now - scb->when;
2229
2230 if (tp->fackets_out) {
2231 __u32 dval = min(tp->fackets_out, packets_acked);
2232 tp->fackets_out -= dval;
2233 }
2234 tp->packets_out -= packets_acked;
2235
2236 BUG_ON(tcp_skb_pcount(skb) == 0);
2237 BUG_ON(!before(scb->seq, scb->end_seq));
2238 }
2239
2240 return acked;
2241 }
2242
2243 static u32 tcp_usrtt(struct timeval *tv)
2244 {
2245 struct timeval now;
2246
2247 do_gettimeofday(&now);
2248 return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2249 }
2250
2251 /* Remove acknowledged frames from the retransmission queue. */
2252 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2253 {
2254 struct tcp_sock *tp = tcp_sk(sk);
2255 const struct inet_connection_sock *icsk = inet_csk(sk);
2256 struct sk_buff *skb;
2257 __u32 now = tcp_time_stamp;
2258 int acked = 0;
2259 __s32 seq_rtt = -1;
2260 u32 pkts_acked = 0;
2261 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2262 = icsk->icsk_ca_ops->rtt_sample;
2263 struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
2264
2265 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2266 skb != sk->sk_send_head) {
2267 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2268 __u8 sacked = scb->sacked;
2269
2270 /* If our packet is before the ack sequence we can
2271 * discard it as it's confirmed to have arrived at
2272 * the other end.
2273 */
2274 if (after(scb->end_seq, tp->snd_una)) {
2275 if (tcp_skb_pcount(skb) > 1 &&
2276 after(tp->snd_una, scb->seq))
2277 acked |= tcp_tso_acked(sk, skb,
2278 now, &seq_rtt);
2279 break;
2280 }
2281
2282 /* Initial outgoing SYN's get put onto the write_queue
2283 * just like anything else we transmit. It is not
2284 * true data, and if we misinform our callers that
2285 * this ACK acks real data, we will erroneously exit
2286 * connection startup slow start one packet too
2287 * quickly. This is severely frowned upon behavior.
2288 */
2289 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2290 acked |= FLAG_DATA_ACKED;
2291 ++pkts_acked;
2292 } else {
2293 acked |= FLAG_SYN_ACKED;
2294 tp->retrans_stamp = 0;
2295 }
2296
2297 /* MTU probing checks */
2298 if (icsk->icsk_mtup.probe_size) {
2299 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2300 tcp_mtup_probe_success(sk, skb);
2301 }
2302 }
2303
2304 if (sacked) {
2305 if (sacked & TCPCB_RETRANS) {
2306 if(sacked & TCPCB_SACKED_RETRANS)
2307 tp->retrans_out -= tcp_skb_pcount(skb);
2308 acked |= FLAG_RETRANS_DATA_ACKED;
2309 seq_rtt = -1;
2310 } else if (seq_rtt < 0) {
2311 seq_rtt = now - scb->when;
2312 skb_get_timestamp(skb, &tv);
2313 }
2314 if (sacked & TCPCB_SACKED_ACKED)
2315 tp->sacked_out -= tcp_skb_pcount(skb);
2316 if (sacked & TCPCB_LOST)
2317 tp->lost_out -= tcp_skb_pcount(skb);
2318 if (sacked & TCPCB_URG) {
2319 if (tp->urg_mode &&
2320 !before(scb->end_seq, tp->snd_up))
2321 tp->urg_mode = 0;
2322 }
2323 } else if (seq_rtt < 0) {
2324 seq_rtt = now - scb->when;
2325 skb_get_timestamp(skb, &tv);
2326 }
2327 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2328 tcp_packets_out_dec(tp, skb);
2329 __skb_unlink(skb, &sk->sk_write_queue);
2330 sk_stream_free_skb(sk, skb);
2331 clear_all_retrans_hints(tp);
2332 }
2333
2334 if (acked&FLAG_ACKED) {
2335 tcp_ack_update_rtt(sk, acked, seq_rtt);
2336 tcp_ack_packets_out(sk, tp);
2337 if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2338 (*rtt_sample)(sk, tcp_usrtt(&tv));
2339
2340 if (icsk->icsk_ca_ops->pkts_acked)
2341 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2342 }
2343
2344 #if FASTRETRANS_DEBUG > 0
2345 BUG_TRAP((int)tp->sacked_out >= 0);
2346 BUG_TRAP((int)tp->lost_out >= 0);
2347 BUG_TRAP((int)tp->retrans_out >= 0);
2348 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2349 const struct inet_connection_sock *icsk = inet_csk(sk);
2350 if (tp->lost_out) {
2351 printk(KERN_DEBUG "Leak l=%u %d\n",
2352 tp->lost_out, icsk->icsk_ca_state);
2353 tp->lost_out = 0;
2354 }
2355 if (tp->sacked_out) {
2356 printk(KERN_DEBUG "Leak s=%u %d\n",
2357 tp->sacked_out, icsk->icsk_ca_state);
2358 tp->sacked_out = 0;
2359 }
2360 if (tp->retrans_out) {
2361 printk(KERN_DEBUG "Leak r=%u %d\n",
2362 tp->retrans_out, icsk->icsk_ca_state);
2363 tp->retrans_out = 0;
2364 }
2365 }
2366 #endif
2367 *seq_rtt_p = seq_rtt;
2368 return acked;
2369 }
2370
2371 static void tcp_ack_probe(struct sock *sk)
2372 {
2373 const struct tcp_sock *tp = tcp_sk(sk);
2374 struct inet_connection_sock *icsk = inet_csk(sk);
2375
2376 /* Was it a usable window open? */
2377
2378 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2379 tp->snd_una + tp->snd_wnd)) {
2380 icsk->icsk_backoff = 0;
2381 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2382 /* Socket must be waked up by subsequent tcp_data_snd_check().
2383 * This function is not for random using!
2384 */
2385 } else {
2386 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2387 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2388 TCP_RTO_MAX);
2389 }
2390 }
2391
2392 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2393 {
2394 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2395 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2396 }
2397
2398 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2399 {
2400 const struct tcp_sock *tp = tcp_sk(sk);
2401 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2402 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2403 }
2404
2405 /* Check that window update is acceptable.
2406 * The function assumes that snd_una<=ack<=snd_next.
2407 */
2408 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2409 const u32 ack_seq, const u32 nwin)
2410 {
2411 return (after(ack, tp->snd_una) ||
2412 after(ack_seq, tp->snd_wl1) ||
2413 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2414 }
2415
2416 /* Update our send window.
2417 *
2418 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2419 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2420 */
2421 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2422 struct sk_buff *skb, u32 ack, u32 ack_seq)
2423 {
2424 int flag = 0;
2425 u32 nwin = ntohs(skb->h.th->window);
2426
2427 if (likely(!skb->h.th->syn))
2428 nwin <<= tp->rx_opt.snd_wscale;
2429
2430 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2431 flag |= FLAG_WIN_UPDATE;
2432 tcp_update_wl(tp, ack, ack_seq);
2433
2434 if (tp->snd_wnd != nwin) {
2435 tp->snd_wnd = nwin;
2436
2437 /* Note, it is the only place, where
2438 * fast path is recovered for sending TCP.
2439 */
2440 tp->pred_flags = 0;
2441 tcp_fast_path_check(sk, tp);
2442
2443 if (nwin > tp->max_window) {
2444 tp->max_window = nwin;
2445 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2446 }
2447 }
2448 }
2449
2450 tp->snd_una = ack;
2451
2452 return flag;
2453 }
2454
2455 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2456 {
2457 struct tcp_sock *tp = tcp_sk(sk);
2458
2459 tcp_sync_left_out(tp);
2460
2461 if (tp->snd_una == prior_snd_una ||
2462 !before(tp->snd_una, tp->frto_highmark)) {
2463 /* RTO was caused by loss, start retransmitting in
2464 * go-back-N slow start
2465 */
2466 tcp_enter_frto_loss(sk);
2467 return;
2468 }
2469
2470 if (tp->frto_counter == 1) {
2471 /* First ACK after RTO advances the window: allow two new
2472 * segments out.
2473 */
2474 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2475 } else {
2476 /* Also the second ACK after RTO advances the window.
2477 * The RTO was likely spurious. Reduce cwnd and continue
2478 * in congestion avoidance
2479 */
2480 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2481 tcp_moderate_cwnd(tp);
2482 }
2483
2484 /* F-RTO affects on two new ACKs following RTO.
2485 * At latest on third ACK the TCP behavior is back to normal.
2486 */
2487 tp->frto_counter = (tp->frto_counter + 1) % 3;
2488 }
2489
2490 /* This routine deals with incoming acks, but not outgoing ones. */
2491 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2492 {
2493 struct inet_connection_sock *icsk = inet_csk(sk);
2494 struct tcp_sock *tp = tcp_sk(sk);
2495 u32 prior_snd_una = tp->snd_una;
2496 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2497 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2498 u32 prior_in_flight;
2499 s32 seq_rtt;
2500 int prior_packets;
2501
2502 /* If the ack is newer than sent or older than previous acks
2503 * then we can probably ignore it.
2504 */
2505 if (after(ack, tp->snd_nxt))
2506 goto uninteresting_ack;
2507
2508 if (before(ack, prior_snd_una))
2509 goto old_ack;
2510
2511 if (sysctl_tcp_abc) {
2512 if (icsk->icsk_ca_state < TCP_CA_CWR)
2513 tp->bytes_acked += ack - prior_snd_una;
2514 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2515 /* we assume just one segment left network */
2516 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2517 }
2518
2519 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2520 /* Window is constant, pure forward advance.
2521 * No more checks are required.
2522 * Note, we use the fact that SND.UNA>=SND.WL2.
2523 */
2524 tcp_update_wl(tp, ack, ack_seq);
2525 tp->snd_una = ack;
2526 flag |= FLAG_WIN_UPDATE;
2527
2528 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2529
2530 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2531 } else {
2532 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2533 flag |= FLAG_DATA;
2534 else
2535 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2536
2537 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2538
2539 if (TCP_SKB_CB(skb)->sacked)
2540 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2541
2542 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2543 flag |= FLAG_ECE;
2544
2545 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2546 }
2547
2548 /* We passed data and got it acked, remove any soft error
2549 * log. Something worked...
2550 */
2551 sk->sk_err_soft = 0;
2552 tp->rcv_tstamp = tcp_time_stamp;
2553 prior_packets = tp->packets_out;
2554 if (!prior_packets)
2555 goto no_queue;
2556
2557 prior_in_flight = tcp_packets_in_flight(tp);
2558
2559 /* See if we can take anything off of the retransmit queue. */
2560 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2561
2562 if (tp->frto_counter)
2563 tcp_process_frto(sk, prior_snd_una);
2564
2565 if (tcp_ack_is_dubious(sk, flag)) {
2566 /* Advance CWND, if state allows this. */
2567 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2568 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2569 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2570 } else {
2571 if ((flag & FLAG_DATA_ACKED))
2572 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2573 }
2574
2575 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2576 dst_confirm(sk->sk_dst_cache);
2577
2578 return 1;
2579
2580 no_queue:
2581 icsk->icsk_probes_out = 0;
2582
2583 /* If this ack opens up a zero window, clear backoff. It was
2584 * being used to time the probes, and is probably far higher than
2585 * it needs to be for normal retransmission.
2586 */
2587 if (sk->sk_send_head)
2588 tcp_ack_probe(sk);
2589 return 1;
2590
2591 old_ack:
2592 if (TCP_SKB_CB(skb)->sacked)
2593 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2594
2595 uninteresting_ack:
2596 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2597 return 0;
2598 }
2599
2600
2601 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2602 * But, this can also be called on packets in the established flow when
2603 * the fast version below fails.
2604 */
2605 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2606 {
2607 unsigned char *ptr;
2608 struct tcphdr *th = skb->h.th;
2609 int length=(th->doff*4)-sizeof(struct tcphdr);
2610
2611 ptr = (unsigned char *)(th + 1);
2612 opt_rx->saw_tstamp = 0;
2613
2614 while(length>0) {
2615 int opcode=*ptr++;
2616 int opsize;
2617
2618 switch (opcode) {
2619 case TCPOPT_EOL:
2620 return;
2621 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2622 length--;
2623 continue;
2624 default:
2625 opsize=*ptr++;
2626 if (opsize < 2) /* "silly options" */
2627 return;
2628 if (opsize > length)
2629 return; /* don't parse partial options */
2630 switch(opcode) {
2631 case TCPOPT_MSS:
2632 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2633 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2634 if (in_mss) {
2635 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2636 in_mss = opt_rx->user_mss;
2637 opt_rx->mss_clamp = in_mss;
2638 }
2639 }
2640 break;
2641 case TCPOPT_WINDOW:
2642 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2643 if (sysctl_tcp_window_scaling) {
2644 __u8 snd_wscale = *(__u8 *) ptr;
2645 opt_rx->wscale_ok = 1;
2646 if (snd_wscale > 14) {
2647 if(net_ratelimit())
2648 printk(KERN_INFO "tcp_parse_options: Illegal window "
2649 "scaling value %d >14 received.\n",
2650 snd_wscale);
2651 snd_wscale = 14;
2652 }
2653 opt_rx->snd_wscale = snd_wscale;
2654 }
2655 break;
2656 case TCPOPT_TIMESTAMP:
2657 if(opsize==TCPOLEN_TIMESTAMP) {
2658 if ((estab && opt_rx->tstamp_ok) ||
2659 (!estab && sysctl_tcp_timestamps)) {
2660 opt_rx->saw_tstamp = 1;
2661 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2662 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2663 }
2664 }
2665 break;
2666 case TCPOPT_SACK_PERM:
2667 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2668 if (sysctl_tcp_sack) {
2669 opt_rx->sack_ok = 1;
2670 tcp_sack_reset(opt_rx);
2671 }
2672 }
2673 break;
2674
2675 case TCPOPT_SACK:
2676 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2677 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2678 opt_rx->sack_ok) {
2679 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2680 }
2681 #ifdef CONFIG_TCP_MD5SIG
2682 case TCPOPT_MD5SIG:
2683 /*
2684 * The MD5 Hash has already been
2685 * checked (see tcp_v{4,6}_do_rcv()).
2686 */
2687 break;
2688 #endif
2689 };
2690 ptr+=opsize-2;
2691 length-=opsize;
2692 };
2693 }
2694 }
2695
2696 /* Fast parse options. This hopes to only see timestamps.
2697 * If it is wrong it falls back on tcp_parse_options().
2698 */
2699 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2700 struct tcp_sock *tp)
2701 {
2702 if (th->doff == sizeof(struct tcphdr)>>2) {
2703 tp->rx_opt.saw_tstamp = 0;
2704 return 0;
2705 } else if (tp->rx_opt.tstamp_ok &&
2706 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2707 __be32 *ptr = (__be32 *)(th + 1);
2708 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2709 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2710 tp->rx_opt.saw_tstamp = 1;
2711 ++ptr;
2712 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2713 ++ptr;
2714 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2715 return 1;
2716 }
2717 }
2718 tcp_parse_options(skb, &tp->rx_opt, 1);
2719 return 1;
2720 }
2721
2722 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2723 {
2724 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2725 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2726 }
2727
2728 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2729 {
2730 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2731 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2732 * extra check below makes sure this can only happen
2733 * for pure ACK frames. -DaveM
2734 *
2735 * Not only, also it occurs for expired timestamps.
2736 */
2737
2738 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2739 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2740 tcp_store_ts_recent(tp);
2741 }
2742 }
2743
2744 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2745 *
2746 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2747 * it can pass through stack. So, the following predicate verifies that
2748 * this segment is not used for anything but congestion avoidance or
2749 * fast retransmit. Moreover, we even are able to eliminate most of such
2750 * second order effects, if we apply some small "replay" window (~RTO)
2751 * to timestamp space.
2752 *
2753 * All these measures still do not guarantee that we reject wrapped ACKs
2754 * on networks with high bandwidth, when sequence space is recycled fastly,
2755 * but it guarantees that such events will be very rare and do not affect
2756 * connection seriously. This doesn't look nice, but alas, PAWS is really
2757 * buggy extension.
2758 *
2759 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2760 * states that events when retransmit arrives after original data are rare.
2761 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2762 * the biggest problem on large power networks even with minor reordering.
2763 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2764 * up to bandwidth of 18Gigabit/sec. 8) ]
2765 */
2766
2767 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2768 {
2769 struct tcp_sock *tp = tcp_sk(sk);
2770 struct tcphdr *th = skb->h.th;
2771 u32 seq = TCP_SKB_CB(skb)->seq;
2772 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2773
2774 return (/* 1. Pure ACK with correct sequence number. */
2775 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2776
2777 /* 2. ... and duplicate ACK. */
2778 ack == tp->snd_una &&
2779
2780 /* 3. ... and does not update window. */
2781 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2782
2783 /* 4. ... and sits in replay window. */
2784 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2785 }
2786
2787 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2788 {
2789 const struct tcp_sock *tp = tcp_sk(sk);
2790 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2791 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2792 !tcp_disordered_ack(sk, skb));
2793 }
2794
2795 /* Check segment sequence number for validity.
2796 *
2797 * Segment controls are considered valid, if the segment
2798 * fits to the window after truncation to the window. Acceptability
2799 * of data (and SYN, FIN, of course) is checked separately.
2800 * See tcp_data_queue(), for example.
2801 *
2802 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2803 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2804 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2805 * (borrowed from freebsd)
2806 */
2807
2808 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2809 {
2810 return !before(end_seq, tp->rcv_wup) &&
2811 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2812 }
2813
2814 /* When we get a reset we do this. */
2815 static void tcp_reset(struct sock *sk)
2816 {
2817 /* We want the right error as BSD sees it (and indeed as we do). */
2818 switch (sk->sk_state) {
2819 case TCP_SYN_SENT:
2820 sk->sk_err = ECONNREFUSED;
2821 break;
2822 case TCP_CLOSE_WAIT:
2823 sk->sk_err = EPIPE;
2824 break;
2825 case TCP_CLOSE:
2826 return;
2827 default:
2828 sk->sk_err = ECONNRESET;
2829 }
2830
2831 if (!sock_flag(sk, SOCK_DEAD))
2832 sk->sk_error_report(sk);
2833
2834 tcp_done(sk);
2835 }
2836
2837 /*
2838 * Process the FIN bit. This now behaves as it is supposed to work
2839 * and the FIN takes effect when it is validly part of sequence
2840 * space. Not before when we get holes.
2841 *
2842 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2843 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2844 * TIME-WAIT)
2845 *
2846 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2847 * close and we go into CLOSING (and later onto TIME-WAIT)
2848 *
2849 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2850 */
2851 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2852 {
2853 struct tcp_sock *tp = tcp_sk(sk);
2854
2855 inet_csk_schedule_ack(sk);
2856
2857 sk->sk_shutdown |= RCV_SHUTDOWN;
2858 sock_set_flag(sk, SOCK_DONE);
2859
2860 switch (sk->sk_state) {
2861 case TCP_SYN_RECV:
2862 case TCP_ESTABLISHED:
2863 /* Move to CLOSE_WAIT */
2864 tcp_set_state(sk, TCP_CLOSE_WAIT);
2865 inet_csk(sk)->icsk_ack.pingpong = 1;
2866 break;
2867
2868 case TCP_CLOSE_WAIT:
2869 case TCP_CLOSING:
2870 /* Received a retransmission of the FIN, do
2871 * nothing.
2872 */
2873 break;
2874 case TCP_LAST_ACK:
2875 /* RFC793: Remain in the LAST-ACK state. */
2876 break;
2877
2878 case TCP_FIN_WAIT1:
2879 /* This case occurs when a simultaneous close
2880 * happens, we must ack the received FIN and
2881 * enter the CLOSING state.
2882 */
2883 tcp_send_ack(sk);
2884 tcp_set_state(sk, TCP_CLOSING);
2885 break;
2886 case TCP_FIN_WAIT2:
2887 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2888 tcp_send_ack(sk);
2889 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2890 break;
2891 default:
2892 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2893 * cases we should never reach this piece of code.
2894 */
2895 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2896 __FUNCTION__, sk->sk_state);
2897 break;
2898 };
2899
2900 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2901 * Probably, we should reset in this case. For now drop them.
2902 */
2903 __skb_queue_purge(&tp->out_of_order_queue);
2904 if (tp->rx_opt.sack_ok)
2905 tcp_sack_reset(&tp->rx_opt);
2906 sk_stream_mem_reclaim(sk);
2907
2908 if (!sock_flag(sk, SOCK_DEAD)) {
2909 sk->sk_state_change(sk);
2910
2911 /* Do not send POLL_HUP for half duplex close. */
2912 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2913 sk->sk_state == TCP_CLOSE)
2914 sk_wake_async(sk, 1, POLL_HUP);
2915 else
2916 sk_wake_async(sk, 1, POLL_IN);
2917 }
2918 }
2919
2920 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2921 {
2922 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2923 if (before(seq, sp->start_seq))
2924 sp->start_seq = seq;
2925 if (after(end_seq, sp->end_seq))
2926 sp->end_seq = end_seq;
2927 return 1;
2928 }
2929 return 0;
2930 }
2931
2932 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2933 {
2934 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2935 if (before(seq, tp->rcv_nxt))
2936 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2937 else
2938 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2939
2940 tp->rx_opt.dsack = 1;
2941 tp->duplicate_sack[0].start_seq = seq;
2942 tp->duplicate_sack[0].end_seq = end_seq;
2943 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2944 }
2945 }
2946
2947 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2948 {
2949 if (!tp->rx_opt.dsack)
2950 tcp_dsack_set(tp, seq, end_seq);
2951 else
2952 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2953 }
2954
2955 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2956 {
2957 struct tcp_sock *tp = tcp_sk(sk);
2958
2959 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2960 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2961 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2962 tcp_enter_quickack_mode(sk);
2963
2964 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2965 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2966
2967 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2968 end_seq = tp->rcv_nxt;
2969 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2970 }
2971 }
2972
2973 tcp_send_ack(sk);
2974 }
2975
2976 /* These routines update the SACK block as out-of-order packets arrive or
2977 * in-order packets close up the sequence space.
2978 */
2979 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2980 {
2981 int this_sack;
2982 struct tcp_sack_block *sp = &tp->selective_acks[0];
2983 struct tcp_sack_block *swalk = sp+1;
2984
2985 /* See if the recent change to the first SACK eats into
2986 * or hits the sequence space of other SACK blocks, if so coalesce.
2987 */
2988 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2989 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2990 int i;
2991
2992 /* Zap SWALK, by moving every further SACK up by one slot.
2993 * Decrease num_sacks.
2994 */
2995 tp->rx_opt.num_sacks--;
2996 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2997 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2998 sp[i] = sp[i+1];
2999 continue;
3000 }
3001 this_sack++, swalk++;
3002 }
3003 }
3004
3005 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3006 {
3007 __u32 tmp;
3008
3009 tmp = sack1->start_seq;
3010 sack1->start_seq = sack2->start_seq;
3011 sack2->start_seq = tmp;
3012
3013 tmp = sack1->end_seq;
3014 sack1->end_seq = sack2->end_seq;
3015 sack2->end_seq = tmp;
3016 }
3017
3018 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3019 {
3020 struct tcp_sock *tp = tcp_sk(sk);
3021 struct tcp_sack_block *sp = &tp->selective_acks[0];
3022 int cur_sacks = tp->rx_opt.num_sacks;
3023 int this_sack;
3024
3025 if (!cur_sacks)
3026 goto new_sack;
3027
3028 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3029 if (tcp_sack_extend(sp, seq, end_seq)) {
3030 /* Rotate this_sack to the first one. */
3031 for (; this_sack>0; this_sack--, sp--)
3032 tcp_sack_swap(sp, sp-1);
3033 if (cur_sacks > 1)
3034 tcp_sack_maybe_coalesce(tp);
3035 return;
3036 }
3037 }
3038
3039 /* Could not find an adjacent existing SACK, build a new one,
3040 * put it at the front, and shift everyone else down. We
3041 * always know there is at least one SACK present already here.
3042 *
3043 * If the sack array is full, forget about the last one.
3044 */
3045 if (this_sack >= 4) {
3046 this_sack--;
3047 tp->rx_opt.num_sacks--;
3048 sp--;
3049 }
3050 for(; this_sack > 0; this_sack--, sp--)
3051 *sp = *(sp-1);
3052
3053 new_sack:
3054 /* Build the new head SACK, and we're done. */
3055 sp->start_seq = seq;
3056 sp->end_seq = end_seq;
3057 tp->rx_opt.num_sacks++;
3058 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3059 }
3060
3061 /* RCV.NXT advances, some SACKs should be eaten. */
3062
3063 static void tcp_sack_remove(struct tcp_sock *tp)
3064 {
3065 struct tcp_sack_block *sp = &tp->selective_acks[0];
3066 int num_sacks = tp->rx_opt.num_sacks;
3067 int this_sack;
3068
3069 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3070 if (skb_queue_empty(&tp->out_of_order_queue)) {
3071 tp->rx_opt.num_sacks = 0;
3072 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3073 return;
3074 }
3075
3076 for(this_sack = 0; this_sack < num_sacks; ) {
3077 /* Check if the start of the sack is covered by RCV.NXT. */
3078 if (!before(tp->rcv_nxt, sp->start_seq)) {
3079 int i;
3080
3081 /* RCV.NXT must cover all the block! */
3082 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3083
3084 /* Zap this SACK, by moving forward any other SACKS. */
3085 for (i=this_sack+1; i < num_sacks; i++)
3086 tp->selective_acks[i-1] = tp->selective_acks[i];
3087 num_sacks--;
3088 continue;
3089 }
3090 this_sack++;
3091 sp++;
3092 }
3093 if (num_sacks != tp->rx_opt.num_sacks) {
3094 tp->rx_opt.num_sacks = num_sacks;
3095 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3096 }
3097 }
3098
3099 /* This one checks to see if we can put data from the
3100 * out_of_order queue into the receive_queue.
3101 */
3102 static void tcp_ofo_queue(struct sock *sk)
3103 {
3104 struct tcp_sock *tp = tcp_sk(sk);
3105 __u32 dsack_high = tp->rcv_nxt;
3106 struct sk_buff *skb;
3107
3108 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3109 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3110 break;
3111
3112 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3113 __u32 dsack = dsack_high;
3114 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3115 dsack_high = TCP_SKB_CB(skb)->end_seq;
3116 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3117 }
3118
3119 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3120 SOCK_DEBUG(sk, "ofo packet was already received \n");
3121 __skb_unlink(skb, &tp->out_of_order_queue);
3122 __kfree_skb(skb);
3123 continue;
3124 }
3125 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3126 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3127 TCP_SKB_CB(skb)->end_seq);
3128
3129 __skb_unlink(skb, &tp->out_of_order_queue);
3130 __skb_queue_tail(&sk->sk_receive_queue, skb);
3131 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3132 if(skb->h.th->fin)
3133 tcp_fin(skb, sk, skb->h.th);
3134 }
3135 }
3136
3137 static int tcp_prune_queue(struct sock *sk);
3138
3139 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3140 {
3141 struct tcphdr *th = skb->h.th;
3142 struct tcp_sock *tp = tcp_sk(sk);
3143 int eaten = -1;
3144
3145 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3146 goto drop;
3147
3148 __skb_pull(skb, th->doff*4);
3149
3150 TCP_ECN_accept_cwr(tp, skb);
3151
3152 if (tp->rx_opt.dsack) {
3153 tp->rx_opt.dsack = 0;
3154 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3155 4 - tp->rx_opt.tstamp_ok);
3156 }
3157
3158 /* Queue data for delivery to the user.
3159 * Packets in sequence go to the receive queue.
3160 * Out of sequence packets to the out_of_order_queue.
3161 */
3162 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3163 if (tcp_receive_window(tp) == 0)
3164 goto out_of_window;
3165
3166 /* Ok. In sequence. In window. */
3167 if (tp->ucopy.task == current &&
3168 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3169 sock_owned_by_user(sk) && !tp->urg_data) {
3170 int chunk = min_t(unsigned int, skb->len,
3171 tp->ucopy.len);
3172
3173 __set_current_state(TASK_RUNNING);
3174
3175 local_bh_enable();
3176 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3177 tp->ucopy.len -= chunk;
3178 tp->copied_seq += chunk;
3179 eaten = (chunk == skb->len && !th->fin);
3180 tcp_rcv_space_adjust(sk);
3181 }
3182 local_bh_disable();
3183 }
3184
3185 if (eaten <= 0) {
3186 queue_and_out:
3187 if (eaten < 0 &&
3188 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3189 !sk_stream_rmem_schedule(sk, skb))) {
3190 if (tcp_prune_queue(sk) < 0 ||
3191 !sk_stream_rmem_schedule(sk, skb))
3192 goto drop;
3193 }
3194 sk_stream_set_owner_r(skb, sk);
3195 __skb_queue_tail(&sk->sk_receive_queue, skb);
3196 }
3197 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3198 if(skb->len)
3199 tcp_event_data_recv(sk, tp, skb);
3200 if(th->fin)
3201 tcp_fin(skb, sk, th);
3202
3203 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3204 tcp_ofo_queue(sk);
3205
3206 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3207 * gap in queue is filled.
3208 */
3209 if (skb_queue_empty(&tp->out_of_order_queue))
3210 inet_csk(sk)->icsk_ack.pingpong = 0;
3211 }
3212
3213 if (tp->rx_opt.num_sacks)
3214 tcp_sack_remove(tp);
3215
3216 tcp_fast_path_check(sk, tp);
3217
3218 if (eaten > 0)
3219 __kfree_skb(skb);
3220 else if (!sock_flag(sk, SOCK_DEAD))
3221 sk->sk_data_ready(sk, 0);
3222 return;
3223 }
3224
3225 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3226 /* A retransmit, 2nd most common case. Force an immediate ack. */
3227 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3228 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3229
3230 out_of_window:
3231 tcp_enter_quickack_mode(sk);
3232 inet_csk_schedule_ack(sk);
3233 drop:
3234 __kfree_skb(skb);
3235 return;
3236 }
3237
3238 /* Out of window. F.e. zero window probe. */
3239 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3240 goto out_of_window;
3241
3242 tcp_enter_quickack_mode(sk);
3243
3244 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3245 /* Partial packet, seq < rcv_next < end_seq */
3246 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3247 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3248 TCP_SKB_CB(skb)->end_seq);
3249
3250 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3251
3252 /* If window is closed, drop tail of packet. But after
3253 * remembering D-SACK for its head made in previous line.
3254 */
3255 if (!tcp_receive_window(tp))
3256 goto out_of_window;
3257 goto queue_and_out;
3258 }
3259
3260 TCP_ECN_check_ce(tp, skb);
3261
3262 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3263 !sk_stream_rmem_schedule(sk, skb)) {
3264 if (tcp_prune_queue(sk) < 0 ||
3265 !sk_stream_rmem_schedule(sk, skb))
3266 goto drop;
3267 }
3268
3269 /* Disable header prediction. */
3270 tp->pred_flags = 0;
3271 inet_csk_schedule_ack(sk);
3272
3273 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3274 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3275
3276 sk_stream_set_owner_r(skb, sk);
3277
3278 if (!skb_peek(&tp->out_of_order_queue)) {
3279 /* Initial out of order segment, build 1 SACK. */
3280 if (tp->rx_opt.sack_ok) {
3281 tp->rx_opt.num_sacks = 1;
3282 tp->rx_opt.dsack = 0;
3283 tp->rx_opt.eff_sacks = 1;
3284 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3285 tp->selective_acks[0].end_seq =
3286 TCP_SKB_CB(skb)->end_seq;
3287 }
3288 __skb_queue_head(&tp->out_of_order_queue,skb);
3289 } else {
3290 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3291 u32 seq = TCP_SKB_CB(skb)->seq;
3292 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3293
3294 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3295 __skb_append(skb1, skb, &tp->out_of_order_queue);
3296
3297 if (!tp->rx_opt.num_sacks ||
3298 tp->selective_acks[0].end_seq != seq)
3299 goto add_sack;
3300
3301 /* Common case: data arrive in order after hole. */
3302 tp->selective_acks[0].end_seq = end_seq;
3303 return;
3304 }
3305
3306 /* Find place to insert this segment. */
3307 do {
3308 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3309 break;
3310 } while ((skb1 = skb1->prev) !=
3311 (struct sk_buff*)&tp->out_of_order_queue);
3312
3313 /* Do skb overlap to previous one? */
3314 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3315 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3316 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3317 /* All the bits are present. Drop. */
3318 __kfree_skb(skb);
3319 tcp_dsack_set(tp, seq, end_seq);
3320 goto add_sack;
3321 }
3322 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3323 /* Partial overlap. */
3324 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3325 } else {
3326 skb1 = skb1->prev;
3327 }
3328 }
3329 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3330
3331 /* And clean segments covered by new one as whole. */
3332 while ((skb1 = skb->next) !=
3333 (struct sk_buff*)&tp->out_of_order_queue &&
3334 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3335 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3336 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3337 break;
3338 }
3339 __skb_unlink(skb1, &tp->out_of_order_queue);
3340 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3341 __kfree_skb(skb1);
3342 }
3343
3344 add_sack:
3345 if (tp->rx_opt.sack_ok)
3346 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3347 }
3348 }
3349
3350 /* Collapse contiguous sequence of skbs head..tail with
3351 * sequence numbers start..end.
3352 * Segments with FIN/SYN are not collapsed (only because this
3353 * simplifies code)
3354 */
3355 static void
3356 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3357 struct sk_buff *head, struct sk_buff *tail,
3358 u32 start, u32 end)
3359 {
3360 struct sk_buff *skb;
3361
3362 /* First, check that queue is collapsible and find
3363 * the point where collapsing can be useful. */
3364 for (skb = head; skb != tail; ) {
3365 /* No new bits? It is possible on ofo queue. */
3366 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3367 struct sk_buff *next = skb->next;
3368 __skb_unlink(skb, list);
3369 __kfree_skb(skb);
3370 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3371 skb = next;
3372 continue;
3373 }
3374
3375 /* The first skb to collapse is:
3376 * - not SYN/FIN and
3377 * - bloated or contains data before "start" or
3378 * overlaps to the next one.
3379 */
3380 if (!skb->h.th->syn && !skb->h.th->fin &&
3381 (tcp_win_from_space(skb->truesize) > skb->len ||
3382 before(TCP_SKB_CB(skb)->seq, start) ||
3383 (skb->next != tail &&
3384 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3385 break;
3386
3387 /* Decided to skip this, advance start seq. */
3388 start = TCP_SKB_CB(skb)->end_seq;
3389 skb = skb->next;
3390 }
3391 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3392 return;
3393
3394 while (before(start, end)) {
3395 struct sk_buff *nskb;
3396 int header = skb_headroom(skb);
3397 int copy = SKB_MAX_ORDER(header, 0);
3398
3399 /* Too big header? This can happen with IPv6. */
3400 if (copy < 0)
3401 return;
3402 if (end-start < copy)
3403 copy = end-start;
3404 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3405 if (!nskb)
3406 return;
3407 skb_reserve(nskb, header);
3408 memcpy(nskb->head, skb->head, header);
3409 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3410 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3411 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3412 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3413 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3414 __skb_insert(nskb, skb->prev, skb, list);
3415 sk_stream_set_owner_r(nskb, sk);
3416
3417 /* Copy data, releasing collapsed skbs. */
3418 while (copy > 0) {
3419 int offset = start - TCP_SKB_CB(skb)->seq;
3420 int size = TCP_SKB_CB(skb)->end_seq - start;
3421
3422 BUG_ON(offset < 0);
3423 if (size > 0) {
3424 size = min(copy, size);
3425 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3426 BUG();
3427 TCP_SKB_CB(nskb)->end_seq += size;
3428 copy -= size;
3429 start += size;
3430 }
3431 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3432 struct sk_buff *next = skb->next;
3433 __skb_unlink(skb, list);
3434 __kfree_skb(skb);
3435 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3436 skb = next;
3437 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3438 return;
3439 }
3440 }
3441 }
3442 }
3443
3444 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3445 * and tcp_collapse() them until all the queue is collapsed.
3446 */
3447 static void tcp_collapse_ofo_queue(struct sock *sk)
3448 {
3449 struct tcp_sock *tp = tcp_sk(sk);
3450 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3451 struct sk_buff *head;
3452 u32 start, end;
3453
3454 if (skb == NULL)
3455 return;
3456
3457 start = TCP_SKB_CB(skb)->seq;
3458 end = TCP_SKB_CB(skb)->end_seq;
3459 head = skb;
3460
3461 for (;;) {
3462 skb = skb->next;
3463
3464 /* Segment is terminated when we see gap or when
3465 * we are at the end of all the queue. */
3466 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3467 after(TCP_SKB_CB(skb)->seq, end) ||
3468 before(TCP_SKB_CB(skb)->end_seq, start)) {
3469 tcp_collapse(sk, &tp->out_of_order_queue,
3470 head, skb, start, end);
3471 head = skb;
3472 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3473 break;
3474 /* Start new segment */
3475 start = TCP_SKB_CB(skb)->seq;
3476 end = TCP_SKB_CB(skb)->end_seq;
3477 } else {
3478 if (before(TCP_SKB_CB(skb)->seq, start))
3479 start = TCP_SKB_CB(skb)->seq;
3480 if (after(TCP_SKB_CB(skb)->end_seq, end))
3481 end = TCP_SKB_CB(skb)->end_seq;
3482 }
3483 }
3484 }
3485
3486 /* Reduce allocated memory if we can, trying to get
3487 * the socket within its memory limits again.
3488 *
3489 * Return less than zero if we should start dropping frames
3490 * until the socket owning process reads some of the data
3491 * to stabilize the situation.
3492 */
3493 static int tcp_prune_queue(struct sock *sk)
3494 {
3495 struct tcp_sock *tp = tcp_sk(sk);
3496
3497 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3498
3499 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3500
3501 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3502 tcp_clamp_window(sk, tp);
3503 else if (tcp_memory_pressure)
3504 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3505
3506 tcp_collapse_ofo_queue(sk);
3507 tcp_collapse(sk, &sk->sk_receive_queue,
3508 sk->sk_receive_queue.next,
3509 (struct sk_buff*)&sk->sk_receive_queue,
3510 tp->copied_seq, tp->rcv_nxt);
3511 sk_stream_mem_reclaim(sk);
3512
3513 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3514 return 0;
3515
3516 /* Collapsing did not help, destructive actions follow.
3517 * This must not ever occur. */
3518
3519 /* First, purge the out_of_order queue. */
3520 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3521 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3522 __skb_queue_purge(&tp->out_of_order_queue);
3523
3524 /* Reset SACK state. A conforming SACK implementation will
3525 * do the same at a timeout based retransmit. When a connection
3526 * is in a sad state like this, we care only about integrity
3527 * of the connection not performance.
3528 */
3529 if (tp->rx_opt.sack_ok)
3530 tcp_sack_reset(&tp->rx_opt);
3531 sk_stream_mem_reclaim(sk);
3532 }
3533
3534 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3535 return 0;
3536
3537 /* If we are really being abused, tell the caller to silently
3538 * drop receive data on the floor. It will get retransmitted
3539 * and hopefully then we'll have sufficient space.
3540 */
3541 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3542
3543 /* Massive buffer overcommit. */
3544 tp->pred_flags = 0;
3545 return -1;
3546 }
3547
3548
3549 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3550 * As additional protections, we do not touch cwnd in retransmission phases,
3551 * and if application hit its sndbuf limit recently.
3552 */
3553 void tcp_cwnd_application_limited(struct sock *sk)
3554 {
3555 struct tcp_sock *tp = tcp_sk(sk);
3556
3557 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3558 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3559 /* Limited by application or receiver window. */
3560 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3561 u32 win_used = max(tp->snd_cwnd_used, init_win);
3562 if (win_used < tp->snd_cwnd) {
3563 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3564 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3565 }
3566 tp->snd_cwnd_used = 0;
3567 }
3568 tp->snd_cwnd_stamp = tcp_time_stamp;
3569 }
3570
3571 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3572 {
3573 /* If the user specified a specific send buffer setting, do
3574 * not modify it.
3575 */
3576 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3577 return 0;
3578
3579 /* If we are under global TCP memory pressure, do not expand. */
3580 if (tcp_memory_pressure)
3581 return 0;
3582
3583 /* If we are under soft global TCP memory pressure, do not expand. */
3584 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3585 return 0;
3586
3587 /* If we filled the congestion window, do not expand. */
3588 if (tp->packets_out >= tp->snd_cwnd)
3589 return 0;
3590
3591 return 1;
3592 }
3593
3594 /* When incoming ACK allowed to free some skb from write_queue,
3595 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3596 * on the exit from tcp input handler.
3597 *
3598 * PROBLEM: sndbuf expansion does not work well with largesend.
3599 */
3600 static void tcp_new_space(struct sock *sk)
3601 {
3602 struct tcp_sock *tp = tcp_sk(sk);
3603
3604 if (tcp_should_expand_sndbuf(sk, tp)) {
3605 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3606 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3607 demanded = max_t(unsigned int, tp->snd_cwnd,
3608 tp->reordering + 1);
3609 sndmem *= 2*demanded;
3610 if (sndmem > sk->sk_sndbuf)
3611 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3612 tp->snd_cwnd_stamp = tcp_time_stamp;
3613 }
3614
3615 sk->sk_write_space(sk);
3616 }
3617
3618 static void tcp_check_space(struct sock *sk)
3619 {
3620 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3621 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3622 if (sk->sk_socket &&
3623 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3624 tcp_new_space(sk);
3625 }
3626 }
3627
3628 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3629 {
3630 tcp_push_pending_frames(sk, tp);
3631 tcp_check_space(sk);
3632 }
3633
3634 /*
3635 * Check if sending an ack is needed.
3636 */
3637 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3638 {
3639 struct tcp_sock *tp = tcp_sk(sk);
3640
3641 /* More than one full frame received... */
3642 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3643 /* ... and right edge of window advances far enough.
3644 * (tcp_recvmsg() will send ACK otherwise). Or...
3645 */
3646 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3647 /* We ACK each frame or... */
3648 tcp_in_quickack_mode(sk) ||
3649 /* We have out of order data. */
3650 (ofo_possible &&
3651 skb_peek(&tp->out_of_order_queue))) {
3652 /* Then ack it now */
3653 tcp_send_ack(sk);
3654 } else {
3655 /* Else, send delayed ack. */
3656 tcp_send_delayed_ack(sk);
3657 }
3658 }
3659
3660 static inline void tcp_ack_snd_check(struct sock *sk)
3661 {
3662 if (!inet_csk_ack_scheduled(sk)) {
3663 /* We sent a data segment already. */
3664 return;
3665 }
3666 __tcp_ack_snd_check(sk, 1);
3667 }
3668
3669 /*
3670 * This routine is only called when we have urgent data
3671 * signaled. Its the 'slow' part of tcp_urg. It could be
3672 * moved inline now as tcp_urg is only called from one
3673 * place. We handle URGent data wrong. We have to - as
3674 * BSD still doesn't use the correction from RFC961.
3675 * For 1003.1g we should support a new option TCP_STDURG to permit
3676 * either form (or just set the sysctl tcp_stdurg).
3677 */
3678
3679 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3680 {
3681 struct tcp_sock *tp = tcp_sk(sk);
3682 u32 ptr = ntohs(th->urg_ptr);
3683
3684 if (ptr && !sysctl_tcp_stdurg)
3685 ptr--;
3686 ptr += ntohl(th->seq);
3687
3688 /* Ignore urgent data that we've already seen and read. */
3689 if (after(tp->copied_seq, ptr))
3690 return;
3691
3692 /* Do not replay urg ptr.
3693 *
3694 * NOTE: interesting situation not covered by specs.
3695 * Misbehaving sender may send urg ptr, pointing to segment,
3696 * which we already have in ofo queue. We are not able to fetch
3697 * such data and will stay in TCP_URG_NOTYET until will be eaten
3698 * by recvmsg(). Seems, we are not obliged to handle such wicked
3699 * situations. But it is worth to think about possibility of some
3700 * DoSes using some hypothetical application level deadlock.
3701 */
3702 if (before(ptr, tp->rcv_nxt))
3703 return;
3704
3705 /* Do we already have a newer (or duplicate) urgent pointer? */
3706 if (tp->urg_data && !after(ptr, tp->urg_seq))
3707 return;
3708
3709 /* Tell the world about our new urgent pointer. */
3710 sk_send_sigurg(sk);
3711
3712 /* We may be adding urgent data when the last byte read was
3713 * urgent. To do this requires some care. We cannot just ignore
3714 * tp->copied_seq since we would read the last urgent byte again
3715 * as data, nor can we alter copied_seq until this data arrives
3716 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3717 *
3718 * NOTE. Double Dutch. Rendering to plain English: author of comment
3719 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3720 * and expect that both A and B disappear from stream. This is _wrong_.
3721 * Though this happens in BSD with high probability, this is occasional.
3722 * Any application relying on this is buggy. Note also, that fix "works"
3723 * only in this artificial test. Insert some normal data between A and B and we will
3724 * decline of BSD again. Verdict: it is better to remove to trap
3725 * buggy users.
3726 */
3727 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3728 !sock_flag(sk, SOCK_URGINLINE) &&
3729 tp->copied_seq != tp->rcv_nxt) {
3730 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3731 tp->copied_seq++;
3732 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3733 __skb_unlink(skb, &sk->sk_receive_queue);
3734 __kfree_skb(skb);
3735 }
3736 }
3737
3738 tp->urg_data = TCP_URG_NOTYET;
3739 tp->urg_seq = ptr;
3740
3741 /* Disable header prediction. */
3742 tp->pred_flags = 0;
3743 }
3744
3745 /* This is the 'fast' part of urgent handling. */
3746 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3747 {
3748 struct tcp_sock *tp = tcp_sk(sk);
3749
3750 /* Check if we get a new urgent pointer - normally not. */
3751 if (th->urg)
3752 tcp_check_urg(sk,th);
3753
3754 /* Do we wait for any urgent data? - normally not... */
3755 if (tp->urg_data == TCP_URG_NOTYET) {
3756 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3757 th->syn;
3758
3759 /* Is the urgent pointer pointing into this packet? */
3760 if (ptr < skb->len) {
3761 u8 tmp;
3762 if (skb_copy_bits(skb, ptr, &tmp, 1))
3763 BUG();
3764 tp->urg_data = TCP_URG_VALID | tmp;
3765 if (!sock_flag(sk, SOCK_DEAD))
3766 sk->sk_data_ready(sk, 0);
3767 }
3768 }
3769 }
3770
3771 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3772 {
3773 struct tcp_sock *tp = tcp_sk(sk);
3774 int chunk = skb->len - hlen;
3775 int err;
3776
3777 local_bh_enable();
3778 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3779 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3780 else
3781 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3782 tp->ucopy.iov);
3783
3784 if (!err) {
3785 tp->ucopy.len -= chunk;
3786 tp->copied_seq += chunk;
3787 tcp_rcv_space_adjust(sk);
3788 }
3789
3790 local_bh_disable();
3791 return err;
3792 }
3793
3794 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3795 {
3796 __sum16 result;
3797
3798 if (sock_owned_by_user(sk)) {
3799 local_bh_enable();
3800 result = __tcp_checksum_complete(skb);
3801 local_bh_disable();
3802 } else {
3803 result = __tcp_checksum_complete(skb);
3804 }
3805 return result;
3806 }
3807
3808 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3809 {
3810 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3811 __tcp_checksum_complete_user(sk, skb);
3812 }
3813
3814 #ifdef CONFIG_NET_DMA
3815 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3816 {
3817 struct tcp_sock *tp = tcp_sk(sk);
3818 int chunk = skb->len - hlen;
3819 int dma_cookie;
3820 int copied_early = 0;
3821
3822 if (tp->ucopy.wakeup)
3823 return 0;
3824
3825 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
3826 tp->ucopy.dma_chan = get_softnet_dma();
3827
3828 if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
3829
3830 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
3831 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
3832
3833 if (dma_cookie < 0)
3834 goto out;
3835
3836 tp->ucopy.dma_cookie = dma_cookie;
3837 copied_early = 1;
3838
3839 tp->ucopy.len -= chunk;
3840 tp->copied_seq += chunk;
3841 tcp_rcv_space_adjust(sk);
3842
3843 if ((tp->ucopy.len == 0) ||
3844 (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
3845 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
3846 tp->ucopy.wakeup = 1;
3847 sk->sk_data_ready(sk, 0);
3848 }
3849 } else if (chunk > 0) {
3850 tp->ucopy.wakeup = 1;
3851 sk->sk_data_ready(sk, 0);
3852 }
3853 out:
3854 return copied_early;
3855 }
3856 #endif /* CONFIG_NET_DMA */
3857
3858 /*
3859 * TCP receive function for the ESTABLISHED state.
3860 *
3861 * It is split into a fast path and a slow path. The fast path is
3862 * disabled when:
3863 * - A zero window was announced from us - zero window probing
3864 * is only handled properly in the slow path.
3865 * - Out of order segments arrived.
3866 * - Urgent data is expected.
3867 * - There is no buffer space left
3868 * - Unexpected TCP flags/window values/header lengths are received
3869 * (detected by checking the TCP header against pred_flags)
3870 * - Data is sent in both directions. Fast path only supports pure senders
3871 * or pure receivers (this means either the sequence number or the ack
3872 * value must stay constant)
3873 * - Unexpected TCP option.
3874 *
3875 * When these conditions are not satisfied it drops into a standard
3876 * receive procedure patterned after RFC793 to handle all cases.
3877 * The first three cases are guaranteed by proper pred_flags setting,
3878 * the rest is checked inline. Fast processing is turned on in
3879 * tcp_data_queue when everything is OK.
3880 */
3881 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3882 struct tcphdr *th, unsigned len)
3883 {
3884 struct tcp_sock *tp = tcp_sk(sk);
3885
3886 /*
3887 * Header prediction.
3888 * The code loosely follows the one in the famous
3889 * "30 instruction TCP receive" Van Jacobson mail.
3890 *
3891 * Van's trick is to deposit buffers into socket queue
3892 * on a device interrupt, to call tcp_recv function
3893 * on the receive process context and checksum and copy
3894 * the buffer to user space. smart...
3895 *
3896 * Our current scheme is not silly either but we take the
3897 * extra cost of the net_bh soft interrupt processing...
3898 * We do checksum and copy also but from device to kernel.
3899 */
3900
3901 tp->rx_opt.saw_tstamp = 0;
3902
3903 /* pred_flags is 0xS?10 << 16 + snd_wnd
3904 * if header_prediction is to be made
3905 * 'S' will always be tp->tcp_header_len >> 2
3906 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3907 * turn it off (when there are holes in the receive
3908 * space for instance)
3909 * PSH flag is ignored.
3910 */
3911
3912 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3913 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3914 int tcp_header_len = tp->tcp_header_len;
3915
3916 /* Timestamp header prediction: tcp_header_len
3917 * is automatically equal to th->doff*4 due to pred_flags
3918 * match.
3919 */
3920
3921 /* Check timestamp */
3922 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3923 __be32 *ptr = (__be32 *)(th + 1);
3924
3925 /* No? Slow path! */
3926 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3927 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3928 goto slow_path;
3929
3930 tp->rx_opt.saw_tstamp = 1;
3931 ++ptr;
3932 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3933 ++ptr;
3934 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3935
3936 /* If PAWS failed, check it more carefully in slow path */
3937 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3938 goto slow_path;
3939
3940 /* DO NOT update ts_recent here, if checksum fails
3941 * and timestamp was corrupted part, it will result
3942 * in a hung connection since we will drop all
3943 * future packets due to the PAWS test.
3944 */
3945 }
3946
3947 if (len <= tcp_header_len) {
3948 /* Bulk data transfer: sender */
3949 if (len == tcp_header_len) {
3950 /* Predicted packet is in window by definition.
3951 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3952 * Hence, check seq<=rcv_wup reduces to:
3953 */
3954 if (tcp_header_len ==
3955 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3956 tp->rcv_nxt == tp->rcv_wup)
3957 tcp_store_ts_recent(tp);
3958
3959 /* We know that such packets are checksummed
3960 * on entry.
3961 */
3962 tcp_ack(sk, skb, 0);
3963 __kfree_skb(skb);
3964 tcp_data_snd_check(sk, tp);
3965 return 0;
3966 } else { /* Header too small */
3967 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3968 goto discard;
3969 }
3970 } else {
3971 int eaten = 0;
3972 int copied_early = 0;
3973
3974 if (tp->copied_seq == tp->rcv_nxt &&
3975 len - tcp_header_len <= tp->ucopy.len) {
3976 #ifdef CONFIG_NET_DMA
3977 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
3978 copied_early = 1;
3979 eaten = 1;
3980 }
3981 #endif
3982 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
3983 __set_current_state(TASK_RUNNING);
3984
3985 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
3986 eaten = 1;
3987 }
3988 if (eaten) {
3989 /* Predicted packet is in window by definition.
3990 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3991 * Hence, check seq<=rcv_wup reduces to:
3992 */
3993 if (tcp_header_len ==
3994 (sizeof(struct tcphdr) +
3995 TCPOLEN_TSTAMP_ALIGNED) &&
3996 tp->rcv_nxt == tp->rcv_wup)
3997 tcp_store_ts_recent(tp);
3998
3999 tcp_rcv_rtt_measure_ts(sk, skb);
4000
4001 __skb_pull(skb, tcp_header_len);
4002 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4003 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4004 }
4005 if (copied_early)
4006 tcp_cleanup_rbuf(sk, skb->len);
4007 }
4008 if (!eaten) {
4009 if (tcp_checksum_complete_user(sk, skb))
4010 goto csum_error;
4011
4012 /* Predicted packet is in window by definition.
4013 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4014 * Hence, check seq<=rcv_wup reduces to:
4015 */
4016 if (tcp_header_len ==
4017 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4018 tp->rcv_nxt == tp->rcv_wup)
4019 tcp_store_ts_recent(tp);
4020
4021 tcp_rcv_rtt_measure_ts(sk, skb);
4022
4023 if ((int)skb->truesize > sk->sk_forward_alloc)
4024 goto step5;
4025
4026 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4027
4028 /* Bulk data transfer: receiver */
4029 __skb_pull(skb,tcp_header_len);
4030 __skb_queue_tail(&sk->sk_receive_queue, skb);
4031 sk_stream_set_owner_r(skb, sk);
4032 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4033 }
4034
4035 tcp_event_data_recv(sk, tp, skb);
4036
4037 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4038 /* Well, only one small jumplet in fast path... */
4039 tcp_ack(sk, skb, FLAG_DATA);
4040 tcp_data_snd_check(sk, tp);
4041 if (!inet_csk_ack_scheduled(sk))
4042 goto no_ack;
4043 }
4044
4045 __tcp_ack_snd_check(sk, 0);
4046 no_ack:
4047 #ifdef CONFIG_NET_DMA
4048 if (copied_early)
4049 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4050 else
4051 #endif
4052 if (eaten)
4053 __kfree_skb(skb);
4054 else
4055 sk->sk_data_ready(sk, 0);
4056 return 0;
4057 }
4058 }
4059
4060 slow_path:
4061 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4062 goto csum_error;
4063
4064 /*
4065 * RFC1323: H1. Apply PAWS check first.
4066 */
4067 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4068 tcp_paws_discard(sk, skb)) {
4069 if (!th->rst) {
4070 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4071 tcp_send_dupack(sk, skb);
4072 goto discard;
4073 }
4074 /* Resets are accepted even if PAWS failed.
4075
4076 ts_recent update must be made after we are sure
4077 that the packet is in window.
4078 */
4079 }
4080
4081 /*
4082 * Standard slow path.
4083 */
4084
4085 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4086 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4087 * (RST) segments are validated by checking their SEQ-fields."
4088 * And page 69: "If an incoming segment is not acceptable,
4089 * an acknowledgment should be sent in reply (unless the RST bit
4090 * is set, if so drop the segment and return)".
4091 */
4092 if (!th->rst)
4093 tcp_send_dupack(sk, skb);
4094 goto discard;
4095 }
4096
4097 if(th->rst) {
4098 tcp_reset(sk);
4099 goto discard;
4100 }
4101
4102 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4103
4104 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4105 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4106 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4107 tcp_reset(sk);
4108 return 1;
4109 }
4110
4111 step5:
4112 if(th->ack)
4113 tcp_ack(sk, skb, FLAG_SLOWPATH);
4114
4115 tcp_rcv_rtt_measure_ts(sk, skb);
4116
4117 /* Process urgent data. */
4118 tcp_urg(sk, skb, th);
4119
4120 /* step 7: process the segment text */
4121 tcp_data_queue(sk, skb);
4122
4123 tcp_data_snd_check(sk, tp);
4124 tcp_ack_snd_check(sk);
4125 return 0;
4126
4127 csum_error:
4128 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4129
4130 discard:
4131 __kfree_skb(skb);
4132 return 0;
4133 }
4134
4135 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4136 struct tcphdr *th, unsigned len)
4137 {
4138 struct tcp_sock *tp = tcp_sk(sk);
4139 struct inet_connection_sock *icsk = inet_csk(sk);
4140 int saved_clamp = tp->rx_opt.mss_clamp;
4141
4142 tcp_parse_options(skb, &tp->rx_opt, 0);
4143
4144 if (th->ack) {
4145 /* rfc793:
4146 * "If the state is SYN-SENT then
4147 * first check the ACK bit
4148 * If the ACK bit is set
4149 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4150 * a reset (unless the RST bit is set, if so drop
4151 * the segment and return)"
4152 *
4153 * We do not send data with SYN, so that RFC-correct
4154 * test reduces to:
4155 */
4156 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4157 goto reset_and_undo;
4158
4159 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4160 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4161 tcp_time_stamp)) {
4162 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4163 goto reset_and_undo;
4164 }
4165
4166 /* Now ACK is acceptable.
4167 *
4168 * "If the RST bit is set
4169 * If the ACK was acceptable then signal the user "error:
4170 * connection reset", drop the segment, enter CLOSED state,
4171 * delete TCB, and return."
4172 */
4173
4174 if (th->rst) {
4175 tcp_reset(sk);
4176 goto discard;
4177 }
4178
4179 /* rfc793:
4180 * "fifth, if neither of the SYN or RST bits is set then
4181 * drop the segment and return."
4182 *
4183 * See note below!
4184 * --ANK(990513)
4185 */
4186 if (!th->syn)
4187 goto discard_and_undo;
4188
4189 /* rfc793:
4190 * "If the SYN bit is on ...
4191 * are acceptable then ...
4192 * (our SYN has been ACKed), change the connection
4193 * state to ESTABLISHED..."
4194 */
4195
4196 TCP_ECN_rcv_synack(tp, th);
4197
4198 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4199 tcp_ack(sk, skb, FLAG_SLOWPATH);
4200
4201 /* Ok.. it's good. Set up sequence numbers and
4202 * move to established.
4203 */
4204 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4205 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4206
4207 /* RFC1323: The window in SYN & SYN/ACK segments is
4208 * never scaled.
4209 */
4210 tp->snd_wnd = ntohs(th->window);
4211 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4212
4213 if (!tp->rx_opt.wscale_ok) {
4214 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4215 tp->window_clamp = min(tp->window_clamp, 65535U);
4216 }
4217
4218 if (tp->rx_opt.saw_tstamp) {
4219 tp->rx_opt.tstamp_ok = 1;
4220 tp->tcp_header_len =
4221 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4222 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4223 tcp_store_ts_recent(tp);
4224 } else {
4225 tp->tcp_header_len = sizeof(struct tcphdr);
4226 }
4227
4228 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4229 tp->rx_opt.sack_ok |= 2;
4230
4231 tcp_mtup_init(sk);
4232 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4233 tcp_initialize_rcv_mss(sk);
4234
4235 /* Remember, tcp_poll() does not lock socket!
4236 * Change state from SYN-SENT only after copied_seq
4237 * is initialized. */
4238 tp->copied_seq = tp->rcv_nxt;
4239 smp_mb();
4240 tcp_set_state(sk, TCP_ESTABLISHED);
4241
4242 security_inet_conn_established(sk, skb);
4243
4244 /* Make sure socket is routed, for correct metrics. */
4245 icsk->icsk_af_ops->rebuild_header(sk);
4246
4247 tcp_init_metrics(sk);
4248
4249 tcp_init_congestion_control(sk);
4250
4251 /* Prevent spurious tcp_cwnd_restart() on first data
4252 * packet.
4253 */
4254 tp->lsndtime = tcp_time_stamp;
4255
4256 tcp_init_buffer_space(sk);
4257
4258 if (sock_flag(sk, SOCK_KEEPOPEN))
4259 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4260
4261 if (!tp->rx_opt.snd_wscale)
4262 __tcp_fast_path_on(tp, tp->snd_wnd);
4263 else
4264 tp->pred_flags = 0;
4265
4266 if (!sock_flag(sk, SOCK_DEAD)) {
4267 sk->sk_state_change(sk);
4268 sk_wake_async(sk, 0, POLL_OUT);
4269 }
4270
4271 if (sk->sk_write_pending ||
4272 icsk->icsk_accept_queue.rskq_defer_accept ||
4273 icsk->icsk_ack.pingpong) {
4274 /* Save one ACK. Data will be ready after
4275 * several ticks, if write_pending is set.
4276 *
4277 * It may be deleted, but with this feature tcpdumps
4278 * look so _wonderfully_ clever, that I was not able
4279 * to stand against the temptation 8) --ANK
4280 */
4281 inet_csk_schedule_ack(sk);
4282 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4283 icsk->icsk_ack.ato = TCP_ATO_MIN;
4284 tcp_incr_quickack(sk);
4285 tcp_enter_quickack_mode(sk);
4286 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4287 TCP_DELACK_MAX, TCP_RTO_MAX);
4288
4289 discard:
4290 __kfree_skb(skb);
4291 return 0;
4292 } else {
4293 tcp_send_ack(sk);
4294 }
4295 return -1;
4296 }
4297
4298 /* No ACK in the segment */
4299
4300 if (th->rst) {
4301 /* rfc793:
4302 * "If the RST bit is set
4303 *
4304 * Otherwise (no ACK) drop the segment and return."
4305 */
4306
4307 goto discard_and_undo;
4308 }
4309
4310 /* PAWS check. */
4311 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4312 goto discard_and_undo;
4313
4314 if (th->syn) {
4315 /* We see SYN without ACK. It is attempt of
4316 * simultaneous connect with crossed SYNs.
4317 * Particularly, it can be connect to self.
4318 */
4319 tcp_set_state(sk, TCP_SYN_RECV);
4320
4321 if (tp->rx_opt.saw_tstamp) {
4322 tp->rx_opt.tstamp_ok = 1;
4323 tcp_store_ts_recent(tp);
4324 tp->tcp_header_len =
4325 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4326 } else {
4327 tp->tcp_header_len = sizeof(struct tcphdr);
4328 }
4329
4330 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4331 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4332
4333 /* RFC1323: The window in SYN & SYN/ACK segments is
4334 * never scaled.
4335 */
4336 tp->snd_wnd = ntohs(th->window);
4337 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4338 tp->max_window = tp->snd_wnd;
4339
4340 TCP_ECN_rcv_syn(tp, th);
4341
4342 tcp_mtup_init(sk);
4343 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4344 tcp_initialize_rcv_mss(sk);
4345
4346
4347 tcp_send_synack(sk);
4348 #if 0
4349 /* Note, we could accept data and URG from this segment.
4350 * There are no obstacles to make this.
4351 *
4352 * However, if we ignore data in ACKless segments sometimes,
4353 * we have no reasons to accept it sometimes.
4354 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4355 * is not flawless. So, discard packet for sanity.
4356 * Uncomment this return to process the data.
4357 */
4358 return -1;
4359 #else
4360 goto discard;
4361 #endif
4362 }
4363 /* "fifth, if neither of the SYN or RST bits is set then
4364 * drop the segment and return."
4365 */
4366
4367 discard_and_undo:
4368 tcp_clear_options(&tp->rx_opt);
4369 tp->rx_opt.mss_clamp = saved_clamp;
4370 goto discard;
4371
4372 reset_and_undo:
4373 tcp_clear_options(&tp->rx_opt);
4374 tp->rx_opt.mss_clamp = saved_clamp;
4375 return 1;
4376 }
4377
4378
4379 /*
4380 * This function implements the receiving procedure of RFC 793 for
4381 * all states except ESTABLISHED and TIME_WAIT.
4382 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4383 * address independent.
4384 */
4385
4386 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4387 struct tcphdr *th, unsigned len)
4388 {
4389 struct tcp_sock *tp = tcp_sk(sk);
4390 struct inet_connection_sock *icsk = inet_csk(sk);
4391 int queued = 0;
4392
4393 tp->rx_opt.saw_tstamp = 0;
4394
4395 switch (sk->sk_state) {
4396 case TCP_CLOSE:
4397 goto discard;
4398
4399 case TCP_LISTEN:
4400 if(th->ack)
4401 return 1;
4402
4403 if(th->rst)
4404 goto discard;
4405
4406 if(th->syn) {
4407 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4408 return 1;
4409
4410 /* Now we have several options: In theory there is
4411 * nothing else in the frame. KA9Q has an option to
4412 * send data with the syn, BSD accepts data with the
4413 * syn up to the [to be] advertised window and
4414 * Solaris 2.1 gives you a protocol error. For now
4415 * we just ignore it, that fits the spec precisely
4416 * and avoids incompatibilities. It would be nice in
4417 * future to drop through and process the data.
4418 *
4419 * Now that TTCP is starting to be used we ought to
4420 * queue this data.
4421 * But, this leaves one open to an easy denial of
4422 * service attack, and SYN cookies can't defend
4423 * against this problem. So, we drop the data
4424 * in the interest of security over speed unless
4425 * it's still in use.
4426 */
4427 kfree_skb(skb);
4428 return 0;
4429 }
4430 goto discard;
4431
4432 case TCP_SYN_SENT:
4433 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4434 if (queued >= 0)
4435 return queued;
4436
4437 /* Do step6 onward by hand. */
4438 tcp_urg(sk, skb, th);
4439 __kfree_skb(skb);
4440 tcp_data_snd_check(sk, tp);
4441 return 0;
4442 }
4443
4444 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4445 tcp_paws_discard(sk, skb)) {
4446 if (!th->rst) {
4447 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4448 tcp_send_dupack(sk, skb);
4449 goto discard;
4450 }
4451 /* Reset is accepted even if it did not pass PAWS. */
4452 }
4453
4454 /* step 1: check sequence number */
4455 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4456 if (!th->rst)
4457 tcp_send_dupack(sk, skb);
4458 goto discard;
4459 }
4460
4461 /* step 2: check RST bit */
4462 if(th->rst) {
4463 tcp_reset(sk);
4464 goto discard;
4465 }
4466
4467 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4468
4469 /* step 3: check security and precedence [ignored] */
4470
4471 /* step 4:
4472 *
4473 * Check for a SYN in window.
4474 */
4475 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4476 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4477 tcp_reset(sk);
4478 return 1;
4479 }
4480
4481 /* step 5: check the ACK field */
4482 if (th->ack) {
4483 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4484
4485 switch(sk->sk_state) {
4486 case TCP_SYN_RECV:
4487 if (acceptable) {
4488 tp->copied_seq = tp->rcv_nxt;
4489 smp_mb();
4490 tcp_set_state(sk, TCP_ESTABLISHED);
4491 sk->sk_state_change(sk);
4492
4493 /* Note, that this wakeup is only for marginal
4494 * crossed SYN case. Passively open sockets
4495 * are not waked up, because sk->sk_sleep ==
4496 * NULL and sk->sk_socket == NULL.
4497 */
4498 if (sk->sk_socket) {
4499 sk_wake_async(sk,0,POLL_OUT);
4500 }
4501
4502 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4503 tp->snd_wnd = ntohs(th->window) <<
4504 tp->rx_opt.snd_wscale;
4505 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4506 TCP_SKB_CB(skb)->seq);
4507
4508 /* tcp_ack considers this ACK as duplicate
4509 * and does not calculate rtt.
4510 * Fix it at least with timestamps.
4511 */
4512 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4513 !tp->srtt)
4514 tcp_ack_saw_tstamp(sk, 0);
4515
4516 if (tp->rx_opt.tstamp_ok)
4517 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4518
4519 /* Make sure socket is routed, for
4520 * correct metrics.
4521 */
4522 icsk->icsk_af_ops->rebuild_header(sk);
4523
4524 tcp_init_metrics(sk);
4525
4526 tcp_init_congestion_control(sk);
4527
4528 /* Prevent spurious tcp_cwnd_restart() on
4529 * first data packet.
4530 */
4531 tp->lsndtime = tcp_time_stamp;
4532
4533 tcp_mtup_init(sk);
4534 tcp_initialize_rcv_mss(sk);
4535 tcp_init_buffer_space(sk);
4536 tcp_fast_path_on(tp);
4537 } else {
4538 return 1;
4539 }
4540 break;
4541
4542 case TCP_FIN_WAIT1:
4543 if (tp->snd_una == tp->write_seq) {
4544 tcp_set_state(sk, TCP_FIN_WAIT2);
4545 sk->sk_shutdown |= SEND_SHUTDOWN;
4546 dst_confirm(sk->sk_dst_cache);
4547
4548 if (!sock_flag(sk, SOCK_DEAD))
4549 /* Wake up lingering close() */
4550 sk->sk_state_change(sk);
4551 else {
4552 int tmo;
4553
4554 if (tp->linger2 < 0 ||
4555 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4556 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4557 tcp_done(sk);
4558 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4559 return 1;
4560 }
4561
4562 tmo = tcp_fin_time(sk);
4563 if (tmo > TCP_TIMEWAIT_LEN) {
4564 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4565 } else if (th->fin || sock_owned_by_user(sk)) {
4566 /* Bad case. We could lose such FIN otherwise.
4567 * It is not a big problem, but it looks confusing
4568 * and not so rare event. We still can lose it now,
4569 * if it spins in bh_lock_sock(), but it is really
4570 * marginal case.
4571 */
4572 inet_csk_reset_keepalive_timer(sk, tmo);
4573 } else {
4574 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4575 goto discard;
4576 }
4577 }
4578 }
4579 break;
4580
4581 case TCP_CLOSING:
4582 if (tp->snd_una == tp->write_seq) {
4583 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4584 goto discard;
4585 }
4586 break;
4587
4588 case TCP_LAST_ACK:
4589 if (tp->snd_una == tp->write_seq) {
4590 tcp_update_metrics(sk);
4591 tcp_done(sk);
4592 goto discard;
4593 }
4594 break;
4595 }
4596 } else
4597 goto discard;
4598
4599 /* step 6: check the URG bit */
4600 tcp_urg(sk, skb, th);
4601
4602 /* step 7: process the segment text */
4603 switch (sk->sk_state) {
4604 case TCP_CLOSE_WAIT:
4605 case TCP_CLOSING:
4606 case TCP_LAST_ACK:
4607 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4608 break;
4609 case TCP_FIN_WAIT1:
4610 case TCP_FIN_WAIT2:
4611 /* RFC 793 says to queue data in these states,
4612 * RFC 1122 says we MUST send a reset.
4613 * BSD 4.4 also does reset.
4614 */
4615 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4616 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4617 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4618 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4619 tcp_reset(sk);
4620 return 1;
4621 }
4622 }
4623 /* Fall through */
4624 case TCP_ESTABLISHED:
4625 tcp_data_queue(sk, skb);
4626 queued = 1;
4627 break;
4628 }
4629
4630 /* tcp_data could move socket to TIME-WAIT */
4631 if (sk->sk_state != TCP_CLOSE) {
4632 tcp_data_snd_check(sk, tp);
4633 tcp_ack_snd_check(sk);
4634 }
4635
4636 if (!queued) {
4637 discard:
4638 __kfree_skb(skb);
4639 }
4640 return 0;
4641 }
4642
4643 EXPORT_SYMBOL(sysctl_tcp_ecn);
4644 EXPORT_SYMBOL(sysctl_tcp_reordering);
4645 EXPORT_SYMBOL(tcp_parse_options);
4646 EXPORT_SYMBOL(tcp_rcv_established);
4647 EXPORT_SYMBOL(tcp_rcv_state_process);
4648 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.146833 seconds and 6 git commands to generate.